From 32bf7881231938370da0969cd8ba81c034ce7410 Mon Sep 17 00:00:00 2001 From: elisno Date: Fri, 24 May 2024 14:51:00 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@438899286262e4635f83b7d60da7bfdd1035aa5e --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290603 -> 290603 bytes master/.doctrees/cleanlab/count.doctree | Bin 284077 -> 284077 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26580 -> 26580 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 133532 -> 133532 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 75599 -> 75599 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 120431 -> 120431 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 115594 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../cleanlab/models/fasttext.doctree | Bin 2465 -> 2465 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5009 -> 5009 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79104 -> 79104 bytes master/.doctrees/environment.pickle | Bin 15898104 -> 15890850 bytes master/.doctrees/index.doctree | Bin 42320 -> 42320 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1638 ++++---- .../nbsphinx/tutorials/datalab/audio.ipynb | 1242 +++--- .../tutorials/datalab/data_monitor.ipynb | 1466 ++++---- .../tutorials/datalab/datalab_advanced.ipynb | 334 +- .../datalab/datalab_quickstart.ipynb | 138 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3350 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../nbsphinx/tutorials/dataset_health.ipynb | 40 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 567 +-- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 440 ++- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 1166 +++--- .../tutorials/token_classification.ipynb | 151 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 60765 -> 60765 bytes .../tutorials/clean_learning/text.doctree | Bin 232719 -> 232719 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 336271 -> 336271 bytes .../tutorials/datalab/data_monitor.doctree | Bin 286623 -> 286623 bytes .../datalab/datalab_advanced.doctree | Bin 199380 -> 199380 bytes .../datalab/datalab_quickstart.doctree | Bin 149271 -> 149271 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 436294 -> 436292 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3292 -> 3292 bytes .../tutorials/datalab/tabular.doctree | Bin 119368 -> 119368 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 154225 -> 154225 bytes .../tutorials/dataset_health.doctree | Bin 325916 -> 325916 bytes master/.doctrees/tutorials/faq.doctree | Bin 210677 -> 210677 bytes .../tutorials/indepth_overview.doctree | Bin 222071 -> 222071 bytes master/.doctrees/tutorials/index.doctree | Bin 3139 -> 3139 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 64488 -> 64488 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104189 -> 104189 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 106940 -> 106940 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176649 -> 176679 bytes .../cleanlab/internal/neighbor/knn_graph.html | 57 - .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/data_monitor.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- .../cleanlab/internal/neighbor/knn_graph.html | 14 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1638 ++++---- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1242 +++--- master/tutorials/datalab/data_monitor.html | 16 +- master/tutorials/datalab/data_monitor.ipynb | 1466 ++++---- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 334 +- .../datalab/datalab_quickstart.ipynb | 138 +- master/tutorials/datalab/image.html | 38 +- master/tutorials/datalab/image.ipynb | 3350 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/dataset_health.ipynb | 40 +- master/tutorials/faq.html | 8 +- master/tutorials/faq.ipynb | 567 +-- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 440 ++- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 1166 +++--- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 151 +- versioning.js | 2 +- 179 files changed, 11955 insertions(+), 11908 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 1692fff68..fb1a8c0f0 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 7b07e7ef29cc913b74ec55b7f0f2d614 +config: cb3e779e3fb71d0161dd94334dc18d75 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 2b28019b3641304294ba600f9299e22cbd2b036d..1fd321feb3705d4e8d26d50b3b1e05a1ceaa54fa 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO^jaY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ YS*n?-aiW>&<_^XHPBOG{axZ5D0N1l1#Q*>R delta 117 zcmdlWxj}M6IHO@kg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay XP$<#Rz%+4l2V(#y8QM6xmoowY)P^AA diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 3354008c9bff481becb98f375f028b48ec26abf6..58c2fa83f2818cd658ed9dff81d8bf70f8899867 100644 GIT binary patch delta 1464 zcmX^3o8{ndmJRWYhH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~Q4bFtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= Ot?b-ZIrk;aLTaDB@$%~+#%@x`u%w*cSQlE`nzvdV% zA;ZC&9nG(^ljYcw&3o+^a+0Z)+3TScSz6;Kuh-++T$h?hUc7>}Pp(T9*gP#SK$Zd* zH1yn)AYc3Bh92q7!pnqR$TmV}^P^Y7Toh>E_%%(2OzjU$)VH4#V(cT=dXRo$ImT}C N!ar_1umGIG2mk~|tR(;d diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index 5b3b03909762d4c15fd222ae597847dfa5d59299..7429763065e86965135b82d80563f5ccefd797b0 100644 GIT binary patch delta 4197 zcmbuC-Afcv7{)ngX8mfn(Zn@Hh{EVga(BhqCKD2jq7U8GS~N3EolSHx%f76OM2#W@ zgAt|+Az_g&EU+edyXeNN=(3A~a$5vTp>Qb>B=Mp%Db?*h`v*MF?|t5R&wI{H#&ag) zIa5u{8!l_Vu65k-m3rDVRd3bHRKM1y`n}<{uut=beI8Zw``Ue;1FEi;mt9cHtzq^7 zkQv)Q9X7`rWW~^wP1ce$8cZJj&x3`oLh>4GIh2qvsj(c&HO3blR$r5p23gd($`)5)vMU?J13 z$ZT&qrtP$D%|GO*c4A>CFqd}CotFMB0CNLNF|ot6xp5~u0+Y2}Yyu|t?Pbm28mOa25Bpkx z?fE*IInD+u0P)6c+(p^<*ttQ#Kn&Pv`kBR>OEGb+(UVB0_Xl|pc>LItwr=pOioe>7 zSKupoL5Gmd_sk#u3--KBwDZ!NKYcb^OS;{BDg}u aMe#m|NnCVpO0}JLwin*_`QCHC^PO|1Vp&tM zteIx!=;(8XUDqnQO9IY-`-;QmahA6S%G&~^t_pXV+vD)K%A7%W(CLt$+8m|sHe-Z+ z0A%{^PshY~qpIm1ZJV*8jQJ8r|MOt}n~=QLSoOyhOscQ?v-OE3i_zb#q(Bx8FWO^v zNa;6%{jJ!lw;KLC3zo#GV$P~M^nu}!p$=97=)Zbh8`eO)F)-Y7K5?z=li9>o!k5p2 zMrgh_71MSaw-+CAR6Ds;1oWj@bEgsf=7qW5l_;!z^TP_)99}hG?(4Nnuy%HR1lbJc zI?qN~1lb6tmhu($044y%O8 zFLPN4Ad_s8r!Z76U=aZNXL``PUF-`?_U>U}nA}vvj>BZnUN#An`wy@da17K_Qz`qJ zht2tVnmfe?D*^G=Y1~Db_u0iEz(6+GIr^EwTS_o-o!%2qrT0g;54il8owjN4teU^t zj#pq4GmYFrYhGRq9@AzSHj*wUkz0wGgZeu7_cSmAEnernJ2A0O%;a)SbS?87+IYw* zJ1LuRoTt&5Cw%k-W>Y5yEG&yc%lrn~5t|O(aXyrR)-b=$ZQ|}P9t90Z8nmVZ;;jvt zCt`Lbo8GF*sG6*ckS=!GNLQ{}ldvLL&{1SE{-3Cr=JJ$U)-sIKd0-F~xuM#HRR;c!7vUCP*-YBt;i!80-o4+eh zB+t9yn+4Q5n8>tML6e(>Os$)BgUPkE&mfdst=Y!)oFEB~iZ(dh7FNiFy`jh?CC8x(m zF^X=!b@4VQ`DSd^yJKZfy7uXTj~Okd8%Qy-Z@(eUc#8}NAeo?~#(2b-bTJUc_q{KUJs@_hNPPSNk|JS zn3T7Ftzx<=LXin!6PV_b(X@fPL2-NSY^DQ}q`Ltr9Ncy=EifS61h5+>e+W^Y{<(@t zbbI?tCUtQNOxbS5$Q&w2x&dI1ycc3N;2~2lFfp99Azd%T`}1O@wgVIO8ZwFlxB;MC z!MdF}kGX@JbZ3CPKON}(gWK0sF=uF!ZUERB+iRCFKOiGFfi+JDY8Kvpa~HD|nNa|7 zzsL#Zd@=(7nxT8HG4CLwc!C9?#P&TbEc4h%4?=_im$+Hf)X6dc)Vt!}o@UJAt^@$8 CPY87Y delta 3550 zcmZ3xT5#=Z!3~~_h8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#LZQVJIT;CnbB2m@@jE`&5M{<36pLsRC_a7I)gTEl-S2bme%mi-<2nl z=iTtl0%{#hWZJ5r$<0Eh*3G)Xl*77eN6uzO*DvHcw$@`exsE;H+eU_Cf%z?b^SQt|^!-)dPZ*{S8Hqh7jjb) zV^RaTk;9p4ORm;)=_%y;byxN)@*>B6vq+&9FX`zQm?Z2sudACEM3z?l$$sjR(_^C; zMK|BNc$<@aGdAnpv9c#!`}Dxaj26=kq!`(^-;id!MTP^AOi)r|JYr0`8-O9GKY7C| ziS2PwjLQYc*FRbR4*T|&Y(@cBvds|R&b^UQ)QEKb+kxT8%ul*LQ0O^tKkEkdd3fnx_Lb3va)aMq2uUfVHqn(MgTy_1d0G?4$d|E_UXUat zL-sHp2!_ir2`yrWI6>G=QH{)8UP*S zSgROcsbdvQo(3q(m{5o_aSP1+}Dd*ClfBz z8oSMv>x4mSfvRbL0`_B{iz4kRCD9V08q%|!Co*t@ZxNUb`0 zdi(}btB!U~D5$kFokFcwGqb35PJ4n{*B=>BbTr$CqT{(%wAT34d(^rxjeL|;GD<92~wjEdi zE&}*#LAItyE`c4_1Z(DhzL7jQZ9RZdvwaukpIjmSEu>-OBFcOv*n@K$z^?#ER3h8DMNXy<3fEu#aaCQ4=^pE=u^c2bUYQnr2$Y6Q^k17J6Xh zB1->mC=D;S`Dp>W*}a-z5AgmjT8SN9Z~9pkua3|RR{VdwB}O;QrI*g-0XhLZJ~hF0 k@}Zk_)>gVyYfcOJ=>r-A_Kgd85ZSfOANif!HA8#oKW~8CJ^%m! delta 4228 zcmbuC-%FEG7{@thZMiLN*$?v~vV?x!xVazA2x(GCZKBpj28nyOw&uh&QnQux14%+M zWG~}|V7LquSw-v+CkVSKs*#y%SJJxbMsKA1B06vW1^asY!sq!s&vTyh<5h|VrD%BB zMl6x*)|jo=d8Hv}4cfyNTa(oh2s)&o+2*u2+M6s*wnl5n9q3MCz2clsWp*2n#QsC6ptM6J=Q zZK(CkkO#FM9v%j)tdRJN8UrIPz$mNZ;JAHH1B?U7U1A-h%gD(@a=q-`_)nx(6+JO= z1F2O-y^~?o>P;q4>*Z7ywLVjxpw`t#8WbH%_oL`UrWLIpbE4tgszP#zg#-WpC=Jy++bIHw`^F5f=EjQ;Y z*@4ds$m50N+$>g*P;;zM#V!D!^@eFqH^ggNsSCESmKJCEeTBXiKD|q}kZP-8$v|L0P z*bb%P;U*u=V<)>u5$qm5&_%1Ut?Nn7)$rO7O<~3V$6KOwO<#WLTpFa4z~fU9oR?p_ iNwcQ%rHU&l;HM906qq+I;2~tz)_>%;a_21Vq5lAMmf%PW@&DeVq{=p RmTG2doM>jcxtyh&2LL?$5t{%2 delta 62 zcmZotYEs(Z#$uRJVVq}@X_2p=Y@BSGW@ut*Y?hR4mY8f{Vqt1zYH4U`Vq~0Znrdta Q6iPHSFiqTC&eF{T06EDKssI20 diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 51d37e1b4cb06cfe2e7f7cc478a22cfe51149dc5..ba9ad530a3b054a24bbff317a2f4913bc6950be7 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|ChH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- T1{P+iW~Ro8W~Q4P8KWx!(sUF; delta 64 zcmccfmGRD3#ti|Ch8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M S#)d$lL_-79#LbP2(UkztK@?E{ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index ea3d3224597fb392e41b7aa34a467576c6e04a40..b442a5e05e60bd0c168d706dbbc886fe22587b04 100644 GIT binary patch delta 62 zcmZ2yxXy4xHltyhaY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ RS*n?-aiW>&<~fW);s9VZ5$6B^ delta 62 zcmZ2yxXy4xHltxig>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay QP$<#Rz%+6597Z8=09^tR_5c6? diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 79ee11c0989392a11e1aa6d971b3e28edca39096..b12ab259d31653899ecf5f2e47fb00762fa782cf 100644 GIT binary patch delta 62 zcmdlUw>@q{G^1gfaY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ RS*n?-aiW>&<{rk?x&U_%65;>= delta 62 zcmdlUw>@q{G^1fgg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay QP$<#Rz%+4l594ZG0CU_D@c;k- diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 881e71ccddd8befedde6ba08ae8383f45900d2ef..d44503fedcd3149f7115aa5d69a1d2acd92e730a 100644 GIT binary patch delta 72 zcmbO;nPbjmjt!}dhH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- c1{P+iW~Ro8W~R;47~7{YGH##7$i&7004?7XuK)l5 delta 72 zcmbO;nPbjmjt!}dh8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M b#)d$lL_-79#O7&??b8?;w@+haV&eb+D&<~qjhf@Ek*6TZ&~01gcz2><{9 delta 117 zcmX@AbyRDEFQZ{bg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay XP$<#Rz%+4l9piREGPI=$-)95>3g99q diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index f67ce4ed553ab1ce4becda6ceb9fd4eb803fdee9..733b046a6bd2f631fce60b8de382b7c27da32dc1 100644 GIT binary patch delta 5702 zcmbtYe`u6-80VS3x9Q#9-ENHSNWCdHXRf**W4E17Hrs|1mpe8*#OZBo-m!Ad)OJqY zIioZRbIWh>4J+Iq{v%i|9`gH#Mne4+1Q#SxK?MbcxE94A{Dt55UWxtvdEx!{^W%A* z&-1DJ8VV1`W9jG94Y8*9aI7hk8O}uGkxVoki#J90N5jpr zbgZ#qDAp(@XdXb7*YD)ti)Il)4VAavr840&4r9u~U0K1EuFK0|cop}!cZ24&dKGUe z-CYE$SMyWe0bISB*ZE!q)!AJsmO;i3bDN(rXqGRoK8V$u<&OhhSgl$9aNS;1bvC#U zRlQu-0p#HqoZ^=7Di<`}|Na_Z6&r7JLCNy_(-o=CG+-!lnrAG5C}IN!)v>I6Y*FuTyv68f=Dv&K*2E zcot2;uRaf7%M3e#Ul}bz6JV)t9^2?ZT})?Jh=)gi1iPpW6d2x1?%*5ajc6h?&4rUL ze*Hua4TNPRFlD_Co)-U2`Nf)!4iP>zfS1LAsd=!kJaguUVo-VJjKTlBwG0h}hKu~q zCZC(W3eJLWywe@R%=5XguKO{lu#G1{wD-10e%?-N`TJk)q6vD;Q6VnX8GQV=Quw8A zd$D<*`C|~AgYe!qx#rHR*j>>l%tezM|J?-!iOt0+EW$lvu*Q(D#c703Jg8m)4bsAZ45sq48yMvX{1~^>uX1K}gl<5REu-qVZmpi%v{fD1M_qVm4b_^a z4hMLt@hhe8ApH&Z#jrWv9wY4L=n?r^Lw<3D%2n~giTG4 z(@Xd=EMc-PBK6UPldUMQ`Q-hej^XH}ldZ6s)TUFk0pE%OiA&9&rBQq#Y!azS%B21Z Uw5sSE6!bue+^O{c*q@d^0*2FR&j0`b delta 5702 zcmbtYUuaup6z6oiX}6@eX-a8>bLmF9POGMAn%Zm~?QF|BR@cz7FxD+?3@x2@t=nwr zwq~8^Cdyp9eaa_u!#?aqm|8iw@4<-!eG-HS4pBh`1!b&Ol!EwY_}$zgeg1uLp8~%> z=bYcUIo!n$Jd66-MbXje*m%?7mWfCnNryypAAKRhF5W~cRy%et5@-k z()~rSdNn`dAH>zGd2`@tP@TP%Vhv>cD7Ob0gHG|~2ajO&PVu{;ZmiZRzPkA!s=5$9 zgsNVvYX#cG<@HyvJg2#}VS@*nX;ZZ;WJ3;BSu=p$Tx*w~s$;pf2X7)`@$^zX7|b4HOvONbTX9lW{Z=ne z55IIWhX%qi5}I{h2ak$BXMtaxO{;b8nzq$qugoca! zcQ&7&yAIBRZ@$(O!OZjdPd^M|P~jR+foT67pZutUHt|>A|Ai*#K1YRktIpyRKbFET zb=Ql_^VrWr;2ebij?Fc9U%>8)eqpcJ9RFh<7$mk=X0ZtOilG`yzL=m%GpcFRHRV3pZ z>7aoVrJX#0?S?y-FoM^mX<)V~BP2_9WE4?Xg z26*}8PFevIs^uMciTv^j>Nnt6+)W{+Q{IQh!ZD&r!YaQD54h7zO)`gO`+pNlJw%3; z_~hSV+N!Q6>2Wk*_wD%9i9UL$#9%r#J!H!Z5vo&}0ctU^Q(!t3rJd^7A?n6MYpJ$j z>NLPhjbASVN9Z@WFP6)3ah$N5qgUi>E&1^=Dp$D)8piYDk~r5(;bKtp$4ypX6`Puy zq-XJESjFUAMCzSsldUMQ1>`?r9mBC1ldW)>)V9;K72k>iiAOD+qcMCTToS2C%B21m UXj6?ZQ`iS3a<9_gW4~SdA8!e6=l}o! diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 4581fca9bb858cd27e0b5bc572133907d3026974..0e3e8bed06710e868f394b2e391391b708c23128 100644 GIT binary patch delta 2705 zcmex*o8{|mmJOkdhH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~Q6l7@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqmZwe_^R?h)^1KdmfyiXJO2N(FLR&c~aDjIGYVutmvAHdA z9}@+(e@S7cMEmme!<1;3%8sJM?<%>nWM(p8QDHfKy;(8fLa#4YvB zwKL4f32mqmo5N>KBB%1&c&Ko5_tMkk_#344$Epr-(*3=8NX3Us;J3MRk5$us%nt^eff-duWzNq{WvwUhZi@N71G>r75S3;u&>*ZZ`Ij6}9s@ZWPz zG8_#|Skq;A7)7@)<6yi?P6+}uU^~zNGOPR8>Gnd5qLU+L32!$MVcbqmo_17(7_z-j Ug7KRW89@MS*=-lpVSK^}0JotQaR2}S diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 271a7ac9de278d7e9a75640055587a94fe9495f8..ca5fc81fed4847a02852f8de86b5a8aad170f855 100644 GIT binary patch delta 1137 zcmZ4agL&l-<_*4#hH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~Q6#7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{ACgjj_D delta 1137 zcmZ4agL&l-<_*4#h8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#Lab#Eli|qoBYtQVDbWSfz6v)e1yo>-b|)WD_P;q*Ch@ylc#;Nm8>lb zSz3EGn2Z6G*PDcl9olVe96HhFjRl3f;=h z_EtR^WN9tjoV(bCjXbTBa~Jb&PFVFxnGEfM56U+GJf}oXk^pL*{PUdT=G&K9c}TZ; hv*3fjtfXt3Ecl>r^Vw&H!enTLwZ-;0sy{WS)u>{ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index d1cc59990fbbcbbc77c1cff004abfa89236dff54..07963ff3f31dbcc4dacb5adbc050ab7c81abc944 100644 GIT binary patch delta 122 zcmcbsd{=pcKciuqaY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ fS*n?-aiW>&<_5;O%tj<@)1Ul+U21bCYY7hk#0Mi_ delta 122 zcmcbsd{=pcKcitrg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay eP$<#Rz%+4l1LIs~Ba*f0Pkz8IwKgpk%5_|xlxLd zfrVMBnW=H2nd#;ZMoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}}(%1TuL delta 1125 zcmeBu&(!;#X+t=pVMc{(a^v&adQWwBs=NaCT|ok*zCmF&P0~hw9N@T3fyFAeMpwBxXA@dJd^q4gf}}# z8ncjZ#AZG@6*jW9^KCw_a+`w!?e2PC$O~|g|M@1*bQhT1rN_1TlOdNV`K|yOlS-y; zhXC!(J3PY4jR1!LgU#oBACr;Ffyp&)vqOM9GuaL|*en;anarr)oDeNbUTTk<4Ai<= hGo8(rY=`r1KD|Vn%pjZW5WqY6^b(oP>z3UY000+3OJe{4 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 910789875828a642d322b195695a54a4268f6749..6b4b4f06babb0a8e474f00c63e17e674bd8c08e2 100644 GIT binary patch delta 62 zcmew$^+9TbE0bZGaY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ RS*n?-aiW>&<}#*VTmWs+63zes delta 62 zcmew$^+9TbE0bYHg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay QP$<#Rz%+4l8PhK=0BW8R-2eap diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 97e2af194410ffc5291b26d613f183c8497a70f9..6d5d72476ae8aeb5cf78f9f8518dfb0eefea0ea2 100644 GIT binary patch delta 2628 zcmccdp5?}SmJQL2hH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~P&S81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<09Tb0VE_OC delta 2628 zcmccdp5?}SmJQL2h8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#K}F3cgfJDXjHdZf;o>I3xQfEOE3#fc4y5a%i`6WC$h1#lBIS1<_ezK z?c4 zfQfW%lNF6NY&J5zLax^57Cqzz@P^GH)}P3=Ro%XWTw5nN{vg-ZOxG3U+WN`;9~ri8 zR`l*+CL>N8bCyi5j~1T%O^0vuV*fQ{q^8LbBP2H4gm#kSXPEX);bet2Q2XZk=sHSl zeii$Qj1Y(W`(UCTCAQy5eng4wtJ9Z~5owznbIx&*m0V^{Zm8qltWu%EO{Vq*W^9uu zba72DR%aBMY?bRUxuQaK^X!(x zYPW%j48LwJ+$Bm*1yi_d)#k)QX`Ey@R?(Ex0y)JC)QHUwE^H^S zZU(tPZFAiHMjrA!u({!lk|r5ifpI*2od_e_WaSp&?X6;rFUXAT$qUR_x7#Q%rjnV^ Lwr8s|<_Z7+nr9W} diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 8d848702994af1df1e15f60e70154255945b120f..b9636a2fb834163722cc630dbcd72e77243ac0d2 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7wrR#GWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~TZn`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OR=G6{!FK delta 2632 zcmaERn&s_jmJNZ7wiy-1c_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79ME#WfIer zWwFf>tOr@h)-F6*AcSS}doBxBGK~;WWZnE)U@x3{{k zUy@q@!sJ9>-{#fIFDVOq*3H?P4df*rQ0#-Ek9G4Q?W0U&h6BuqIQhj?rqmI;td}v99-5mc+J};tht`7Q@T6-td0vNT7x(y1p1&d5KYABYV!NB) zZAxrs3DP6e_RRtzHz=|BbogxY^6#w8hOvTNq$d+#q2E8*KaF=Ye})J*nc6qh2yXsT zT*XhG_RV@N(VXOIot)6ayE&|nm5l=J8dFoqwf%z^@8-z)Q^~a*q zVI9w8lh~l?)5RH8H(PByL|y{Oo*aK(da{l`&*uGmCXi9o0MiiMh{^l+ux=JVxQ4v? zH+ysZ`9(Zr#U{uFYMT$=`J_RX_WtSdJdCW{tJoOda*$^LFc-0I*AZY0BQrfr@0DWY U*zP6HC`DcXlxzpK-JUQ4014h05C8xG diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 4270063a5d0e09bf9a89e7f42fed2f154ade1a04..d613cd4f985bb6273e91935ffa383d7f71f6d9ed 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7wrR#GWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~TZn`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0q*Gr$?v8Ak#EB0wX(jHIY4;wSq%@e9bh@R z-i>?nH_g)&#KGhb=B%4%>Nk*^et^*kHsYh<2_~{V0x@EuX%7Xi*!;o#Bc(3bX}y91 z7l6aT((W0huK4b_jG4@!d=T!mxyEe{x#{6SxclZm-kIcv0Z6;2-&=D157I6blun85 zsUi2sw0-k~@KQ=_wv4()rp=Q<{{9?0kK9OW&@pQ<;2W9^2-H*;6>k zHKNFDGe_xRvb6(Uu%U)`^UOLI^1}dP#Oh`xPI5ibZM1n#Z#EkR+OJKqB-?g9mCYCC zkr{+-lNYQJ+#J24kGx`|ZS#UP8+b|g_vXf30%T|dHajM64nA>3gLE4qEf!!hT-V?rYY(D&5kOCt%PyPFh+^Qeg&<}OAFVE|Hl5uE@4 delta 62 zcmZ3axkz(EB%@(Qg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay QP$<#Rz%+4l7o&tQ08dB}tN;K2 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index cbb7b61d5f8fec43d67a1c636e5e6a920cc41f5a..78c64d2f01beff76ee2fa8831816fca568af1b98 100644 GIT binary patch delta 2506 zcmbRCjb++5mJN}NhH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~Q6F7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NQX7V`N3 delta 2506 zcmbRCjb++5mJN}Nh8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#LZodFUZg~*>Oe9WO#U;W@ zo)Mcn1U9gfsr8eD4tXKgx%q|^n;LnxPM+ZyO`gupYn{$f7SODleLWh;^fEB2L2<>p zdA`>wCh|N0H$vL4hf-Hm2ArVO6~ZAMl)54}>>Q=8;Eg)QOjdAqO?F6=n|#2DZ}YCW zTJq8b$Oz@lqA3OBg+te7hqRC6`5$64e^v^aHiI1=m~(&<+u!HwQDXb=!X1>@KC!fh z+(=V!J%qg$)%HweOzHzuBx`ggotCll{U4HjB>u%}2W9H#@Fy zC(qXI$?rF?Z}#3K$40uXz-q2*@|o?Nn{{^{BUAh4bq79@SG{#jUUxuXbJlTf^8DSk zIpCrwd9`ELW`&!!WZF7eFPCSt%411#(>F*v%Zo|8~5$)(xJFhH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~Q5~7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>j=1(JgR delta 3034 zcmZ3sg>~5$)(xJFh8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#LZQV7s${y*{~&Nx&yj0u zYh@m}wjQhAPOhy1^?Kym8rZm=3|luFw#brKS9ERW?9yTnHEe=H6Vms)1a8gS4;Nq$^LRzxNjjZ=Q4M6nP~F(D6X+ zn%A$9>G#d+@5Ykr@AY>DH=lhf&Pk@f_1_6@Uiv&<`%|>JOFHN62AZd delta 62 zcmaDV^HgR-Fr#5cg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay QP$<#Rz%+4l3*$o`0BJiC&Hw-a diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index f69acfb06a0aef18c30d8ecd9aa3327796b5efa5..1cdc9978b61c97f4ffc196ce63f2821f3fbde633 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObahH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~Q5~7(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+{F8NA3Q4yWsD0*S0VCnf)vO0u$kr~tS(aOj zl|1d6{|a<*kf(KWj}ph`NGT@rf^8;HyYOZUnJzLN4%8k^rn^A_enj~{`2jAmd8uXt zx!x8qlGx0ybCHQ`$4hM9rQbuQ?VAORc$q1%`M>E3GHnJXbBWEJ7VjzXca%*BCAJ^2 zTT6-U!A_Nw1l>BfdP=nOd*30?@jEtO@!L&aTHm|5HYAk15Z}A`K-hEg9K3h))F?f2 zZQU4ipA1_!AB?vmLmRO8-n;o_5;J-6x_9%fv}t5S%;tsJJGjWo!?Py8*Wuc%SI*B( zruMZBLYt+UbNI>Bo;{s=am-}$3jA43aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~z1YliC0P delta 3021 zcmdmUn03!#)(zf_h8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#LYE~*U8W}S#Vz7^c(Sv{F5133Q4yWq=WJ`5xG~2JllarM3bqrzFBxOKR@s0FQq5QOLUEs>zgGu zw^cWg>wS>+3$@Fc$o7E5X2-@JGHu^n-~5;on|0b(kZChG*yeQ}rNnmK-VRD^ukUZB z#P&0j{K+dVAW7!wv`|X4v&_CjhT}I2&NCpdY+3*=+QgTXlNaI;?J3I+k>O}y%>dE< zXJs5Ewi~S3ONs4=*XvPY`|*uiDX~3hYXf-&RPW{qyST}#P?{zy)N^f)IOM`XR^ik% z*`ZBvbHeG(dXlU)wgr;3V0745R(5_?5^ne3OHQn&21v8v=!wq@n$P}j;i{>`)J@&UG* znn@=qH98odhR6`z8q@R;%4o-I!RiKCrNGf}wwH&@8qU*DULkf`L8=tK@!(lZXsBRr zYbumIL|pMDdf-bX(^zFjx3;w;C@>?Zw18UYoM)(&SM~raJ(t%fgFR!OdBFI)y^P#d zV`$IunrbxgRGk+^7wR97z~|8k=4r|!sj&mO!@oFrnnK7a|CtMDz2y`SUO+`{-HF(n z+o3JedT(?sCSv~Vi6+u}Qni8uV;lV@>Kxoho;z)5Lcl~9BgaNyDK-2_&LG!}%?#q^ zl{Cr^zap=_X4mkG)j0A^Y53M=It8|8QM-m8?jEH;-RH;>2>>^a&ZC#Pka2=Vh7Bxq yZKT?(7i8Yy$0ds24FYc(g&z$jFtiZk$ompSXWaG1)4_X=0klWHcnW^pr~d#upEy+j delta 2688 zcmbuA-77<39LF0wb1XBFT+p0CbEC7fbIzDDM6pubAj!)tG77bcn!F_CVomdq3-WS< za$)n6xRP??#ubW4uDKDeFoXE@{r;y8y3B? zSM8G&r|jtQIy_#RQl{Efr{q-ZaR@~tBExiJOw&Usqiu5@RyWA11djaKZXPmgI8P&%LhQ7HR3-f2!LyjqSjj4^ zsZjPXam5$tfiIR!W0e`*h^t9ZU`DDOLalS^DQe}NyMUFR${Uiwp0BQXz!=|NMitd# zXwUK58Z_`!y&FYC4fjakv)BZ4HCsq->O}5v94A+E7&+xXa{;Zjp5Va?sHokOh`pr) z+9Iv@diO#i=C7VuBE2X3tl+@dy3a&igL}wxrwvUAnCN`;$OtT@hCezosB}g&gSdG) zjq)Qe$ZN0JHT-<#1Nlv9_~u4B1-52UyM`a^9Hv0s=O`~40B#(e#V&Fo;{=QP4J>?R xq`J#zWZsd7Mf$iM1l}}?JQz%1XyKJ3_j3%LarYZf`|mjh&>sEfDfoGp{tNsFI_Ura diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 6110c0f637e64e9aaa4bfd7b89e2a1ec742d7a53..e8fb912d1e8789a2b3af6d252170aa3d1cd720e2 100644 GIT binary patch delta 2944 zcmX?qj^+G0mJPm)hH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~Q6#7_X6`ZTd$Q#`?)DEQO@oIN8vzWpaYH@Mc@q2`pr57vDUSONNz9 z?FO=}oAU)cxyaVevAI;5jf`Le``tkH5ZM+BPu?ZxL8fj{n4glDA~(6WJ{v0dM` zgA&_Y>^mv3{gzWGGkHk{9C3f#qAAg?;(dn<$8R?D^Cu&hZQd9xPmXPjVLjydabxg` z&1q33*kolWH@#*NUMK>9=W!LCG95H)>o;mR~_?~?N%Q#UBgPsvM>8)ymI5}P-wHjwLU zkoJG-YnjM%{N@DhC6w5FQTHO5HUpEY#O8d%6_nWi#P}{Hw)dIaP-6RZ%hQzDu5a5x ziR~@+os`&q%PEwZyd(pTxIb>ulxSD+zC(uNHyir-lab3dZw!_v$2P{W9&-G+F?hx1 zw5Sqt;ufTJbIf5f96K4L)jvUxTwBAEc9U!CtJGHVs+$R$4YK{%$x4K+ll!%}H`^Ec za*(OL!9Z|xaE%lvnc5RtL^oTs{UAg8=EMn`$wd^CNjTXRVYXH^f2O-8V^)YkR*I+vE+qxHqfqsU*h*6Q8t9UU{5%bK=oza`H4x z`@EC0c*#gI6QA^N{&78nhjgu*CqBv6BwZUQ!lthmU}W9CosaPedD#<`$5^+Ai7>t< XSHGPX$M*k{j0eeR4{isxgX5S0?yG0~ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index db13b07d60f5838db08a2907118964742e5229ae..def076ef2ebd0db654c58f1b63f580248c506fa9 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#6baY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ RS*n?-aiW>&<`%|>JOFHN62AZd delta 62 zcmaDV^HgR-Fr#5cg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay QP$<#Rz%+4l3*$o`0BJiC&Hw-a diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 1cd1a27796be71d8de5e1799234e5211e1dc35c5..7c6fe6a080cc5cfa63f0a686ac6f2a8f977c4ff6 100644 GIT binary patch delta 3483 zcmbuC-%C?r7{_^QXIgU;Tj|6SB#4O0vokzv7ll^?g>smPCDD)lXfY~WxS+y@E|5|S zU&bz~v08;tFzdm+AdweESCYGlZWfK8i*8~gsEcBBUT^Yt-~9of=lguW&-1*8Q(ZGx z*UXE3%o%b8VxI6-ty}eb^x(OmOLu$xy4xA@hcu5fq^Y{ctpzmokRH@~Txazjy2dI1 z#+f?FJ5BN01tmFeu~R_#Zo=qSmf6h!SqZ=7nSLwXXdXp`E8#r7**<|}CDGk&e>Oo) z=Sk_frvNBZvvi^BysdVWnEC?o$<${&(r2N&n$lXks<9XnKMs(_XerZgLsF8nN&4c5 zU5Wl3ETLn4J3ND`>L*Ot1>~vg)B>uyc)E&uP5P%%Ra59Sph}hS5%kJiFU_Ip-ia20 zW{u5H^WI}kd>~;ro+umnV;Q9R|79HX>$(?7d}E33iQn~^aZvl@XdPY9K*EMhVxtM) z^uanhFec)lvD-iD&0%mZ2M&}9oEm^9QD#txm}%rewh_e7WbO3%X%)p)ua!hDx&>61 zxUxKJ0r6cot-QRd(3SU(kk5jQ&nQ9V)gjb?kv{MJXr(=$1QubG;-z=k{zrMdw4dzX z7OhZx67NVBnT2M4&NtyDmWr&r7sAux{yug9om?T(Akr$%uUu{vk9Bs`4D~+6b1gf? z%3<~uJKS|XW$=oKdD-(8yopq0gbm@i*m075*oN_`FXOCJEL~(VFa%)~c!I6(loW4I b`4Xu4bzY3!V&iR)d--eBEEXQJ;jRAw`o<4S delta 3483 zcmbuCUr3Wt7{)oZZ(4H`Tj|6SB#4O0Z+~$Yg;xWGa+ruEQR_>aj1(7+sIZ|6q}0O0 z*hMu~s}KsddT|FN@}lTUayQY6{pQH;LhP2TR=?FYa2d7tNf&pCXR4P#}) znC)Tq;8o|iYpiRcQ*&zWQM=3Q^jy$90ZnyvxgBn=-Rp8VN8BS$yZ$L)SKR@+#>xQ3 znL5MU4bkcaCAnm>(naOF0i$1;7PbRqIrx&Ndd+mBaTpOU2Xpjh_cW4~MEAG+*#N^|w9`eI1@6hP{urBts4NlDHo?vEmN zCHl9&h>rE`;5@48Ic>mBK#n@jE~Bd1a~0HUT$@8x4Wq9CRVoLMqo=%id=X9ePPhOx zt8adicb{zFeKD(kMOjFTq>$$Sm$A{W>pmp$ttC3Af7fQlMy)f$HFQCJF$*$@ttR|) zM{DRnpNNenZ~v$@hyKM3I8e%SsspY>nL$2eq@f4tdJsRKw$kUP6%K#ect`iOb0#*EW$8Fi|?@g5A$g8Fj>E4 z%}{(2Z;Kb0iROPUHQ*&y3aoSx!jt0uA$A0vTs~AMk}A%xP1K9W9(KYA^*+lpO?$=K zG4>TZxSM=J=M@q0vFA;A6N&N=8^Cd~=M4L>3*!@CrdYdJxy&M92tqIL1Y6%(Dc+j! a$58W|yqLVjrdlBP^4F+QEI(v}JO2Ty*%Ffg diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 3bbda31c86fe0738800e86978bb6ed8f4e893f94..c19d0db287852495fa3b179ecfec56bf70604432 100644 GIT binary patch delta 3969 zcmbuB?MqW(7{enqq-zG|KTr zM@`8?FpN~pn>tA34B8hlPzWMHf?huuQ~RE^qxA>u>JRwscVE}JpXb@apnhRcKT<#;cKw%vA7*lbyanqWOukFyVdLV+8kD|%_2GMHjm9xAXQ8Gd6iPW=%IOl3ON0u zPG{!wcsC+l#akiq1b zKY9r;ihwiBStrh+IU7%IMy>u+9jMiKdKRr|_G}Osn4h^XCxBbDvF0N(tP-3Oz1CEY ztL;k!%t~;EmAZDMVGZ5YU47F!NyaOGr95{UmkzLneGxqzYNB{PkPmM=!0 zp8N1WyqKO#;I8k7&F?MGU3ysgoCjo?B@warRr~@T5nhegb@g?O{53Y>dUqxx^ zQx_5P0|94)h-77|7ko4hTvO3MZmWFcJk6&71^nY5HqjHLz`wj4<&#zOZOX_2hKR1d syzM#Z)MTb(zz%C`AeX%){mR|h8KNRp9;0RO6v}sBQIgsmqMsRm09P}=y#N3J delta 3969 zcmbuB>q``26o)zLy1J?9T2|5pVzCUY9e3ADkddJo8)al4!m`%MP)O|}DVkz|X|$Bf z8;zQhL$DaBn1>o9at+!qVxSO2f&^VZ7_0U@Yewr2*k4}+koK-osdt`^~x*$1o9a-gamPfWbb6lCOTq)O?>8Nm3I3)d(N3y#-qKD=I%IEfq zI+K-4B4tFninl`I3H}>U_+Gpd*&8XFTsspuJPS2t-&7SoG1@klcauhg48>>Dd#j5@((JLiz zM0H;@U{?Jztk$(72^;9H`fMO3VW4u;9nAWce>4lU*BfnZn01C@I`Yw8k9ehDG_N7X;ZwxQ3+Wv=>%#q_>4 zqI`0l5-6jCT=b$VCj33mNr6&J_?W(FhsBn|DeRd{j|K7H$G39(yE33?Wywk-qUDQ) zr{_NW4=<+YqPXk(A+&}4jR`!p)Q<+Zc+<*feia~>gpt3FYa)U&62o5rO;2zUm{=qE zp!R+f1+3vqSB56gnWWvyAjZz@VPWv;E)qb~EB==5cx|ANM&rQx4Zg61u7M+?^p{hj z_Oy%$`GL<}FG99dt)`O3fn!R4xUKS`i!>h(1n`f4*hEi|0RQre&c|ui+mwpcKC(^UB%T8K8Vk8KY%z7byQ~(`CRwYkmNlYNT%EIBT+OY527u9x z{0dHs-yQ$&iV-L+NjwT6YsjlN@@7qk8iTV}UxkfZ!`?Yp;xJX&^g@1Yd;%&*;pGc1 z#G-y}QDZFXuT%W7sHZP2MIYGwbSVMbI*(^gpfjsPBbirf*`GB6s*_6GhWU<0+#rp{ zvhYjx=NP<+&ABDORr8Jfer(w-oVnhOnQh@M1rvZ-xq|lbn?gI5$y(|!)zMmiI)5yY zu$gPQzjPQ>XN$uLs*=T_<#lCR4G_$*r;ZGJ)wE-LKf9b>#JobG;r2Zv$N&m_0QPRA zmk0Cgcg%IQ?#S<-UzHU094CXMC*8M0Ja6AAAhR6y+(Ggh_Ox-~foFiCY`TuzZAmok zl^ZSh3HKeQ7-)FfTZBG4#f6EJ8&AaGKpw=zmCYs;!A>x|Lvl9VjU+_@0GtOT2PRIvkMu0baCSTtfh*^GLlXc@R&1b)VGWgsUjbJ#gXT}eyO1l1 zz$+dklH|ystf#j@12RKkBvmNn7o)3?mXKXAztSQt5%##KcuL>?Sq7 z0y+9W`Wia(M!XGAAAO}C=fj&$csklJR;qTf1gXZoJ@WaCu=uQ$c zZaIWH&_)Dr4t1yms6ym*C9Q0gGVpAOHXW delta 4920 zcmb_gTS${(80NPv=T=)a(}h-q2zGLtbDK&BfNl30h(-NviZ2%R^yOvf3tOCSor_JK$5&6FXO>yCq+g?CU*<5VPBKe5<~tH` zjrCbP?ZceC9khgDu7^y+zq6ulhdy8{p@sj5c3j+g4_2FBL|S+ zL$G%(y*a!wuV3F#>k9w=`KqLl`xI%cYEpeW!i(z90-5EIyC2DG$lc0Chh71SqUi>5 zwINGF+^N*b$&dc><#1qF!BbPX{2vs-d(&XynzFx@72zh#joxTB=HiBj!S#2NNI?0*7r^$%J&|7 zsIW;YjJ|;jIE9Xv4ncRMhbr;?b9Dk(Ll$FpnvbmI%3>R5GJ(pOo{i@o8iP zQHJixQDo_7^%Znxsu!5wUj!=p`LzHi;ZM`6kcE$Wpik3UD#@2~=)3WM(A@n2et0yfst|D;62ZB-0{F$@42ll&kvfQqCsRhtmf)0HNCHX3tz&&n^}c@!is#PY@LTk`!SC_Y$U{iq67d+EQT!(lJuTwZSiG!iWm+ PA^rKJ3050~g>ioXzvc9@ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index e55c698ec4670ab31c3e074d7e97720bd214aae5..bd6abded62b86e36c5e58d3439c21ab61b9ea97d 100644 GIT binary patch delta 1062 zcmeC{X6ox^+ThJ-m}Z<(W|>iLq;HUHX_lIlYHVh1nQUfmn3kMoWNDaYWMF1#Zj@qV zU}2VOW@?;hX1ckC@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*JegB%sZk-6W6jlWFTTO-m*+wMOd%$djjavbj$*SvpHMTljX65x|>2 z20SDuL3|9T+FTo4OI`?7ZC)B?%0iYulQ!o@*OB2*U^-0NTo=#ANtUfKll!uGC(C6% LCQtX`zAR|~kr+Oj diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index ad98337a972fe8ea60192d1d73cd54881bb29a27..f3fd08e050a5ee282f7a413122b269fc2f8fd5a7 100644 GIT binary patch delta 3077 zcmbuA-%C?r7{^)Dp_8Ugb`v-dlnn|x=Pb|JQTzo%)5th7Mx`jnZKuKz2Gxe32;zl` z5IvV7jEF=EmOMziv6~@uV|XQmkee3@LF~%Ag3c@X2b^zzz~}uuKfdq#9+%w5CHJQx zmuy8+uk@!`<+ha6)%0{aqH20l)nqGaDY|SalB#P;N|B;!TJ4OOYA5GhCvN8$8R1bn zs?B30UwDGJ)KBlcvw+x)TD;xx77?4#89r~UsRgV?_#wXtbTvchICX{2oRe&Xzt=g( z?4???ZuGrT>H%1cH?N$c;|*$lB)(>}cnvCchIhNYfRRKN#(VCg)>uDm{W*|Dt$$*7 z&|VJ)r%>zH;ajNn^*z|SHadcYu#$L5dBw*oW1$-7iQ-D43iQgZM?aA1RuXf(I9LJ*D(haNOn|i< zAs>x>1V32#2ox>sytp)rO*u}BOAWlR+!g@)?v43b-Izq}0>8PL!Tvjm%3G~`<9!;j z8)1pdTSv&gZPYe5ai{=I{R;Q&B$256!>LfLr}n)L3eJ1j_gMmGaM?(q_#3(3SCv%1 x)N%XXT_5)GY6-H7i!1Q#{t%KtflG%?Vhf!62EKD~mJUBO{{`~^&-bKMi=~ zCwVoiO&haawrcAcS&OT&NjqlQl4j_N9+%^qqNeq9C=I zk$mC{FFIL26ArF=RQ4-F-euUpC}jN?mQt6 zjdKLwU-}3XE$qC!lEtQ+q~(=nUV45d1onL^5#-qV1Zo%fwKqBJy_2Z2ahW^brxCju zmAJBTi0s=z9dj#3iqOE~3zK1*aY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ RS*n?-aiW>&=B-S}xB!8w6D|M% delta 62 zcmew@^;>E~3zK0+g>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay QP$<#Rz%+65R;FWI0DgB9Jpcdz diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 77b27cde0bad00e96e3453378feccb48a8136ea0..7c66ad84121c48719f6c6495c00560af61ab9e47 100644 GIT binary patch delta 1253 zcmdlng>Ag*W3#8}h6-0u~hf+c$SGwlV?$W#3}` delta 1253 zcmdlng>AoG=rvB;cwHYNhx0c$AP-K8(mt#G71_W(q!d=83F5cWGMgu diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 6a039c976c04d7aed7e84ec2b5cb3dffb75a45ba..4038568e510c9268a9d6f92ee729d6fffc6edd13 100644 GIT binary patch delta 13101 zcmbuG`*VzE6vyYhm&8VPH&^#d8^XjbYcpA*C5dQiln{g{A>>lx5}~5v(xweTOR(Wl zLyIbd8mVo2#N9BdPTG{wM2$-#y%4u*<5FRw&+c|ce$99PfbaKn&Uwyrp7(v;-J|tw zj@Gv+Nu+_95$U;6(-&I9Eoo7h-)6f=kaU70 zAw=i3?Ik07Sbp*eTNnqtrnedr@h@^wFqv{>&F>uI4%8QL35~ zk5d1f2j^P3APJ>@zizTZ{sPz2OLR9+jgG4mf+7E}I)HBN`pw!aBc$B(z^;48; zT{8fs8rDUi)XVE9qtsuDV^Qj%O))67=+nn2HDqf#O6~Hw8I}ILV+ks~wQB~N>;2ui zD3$gFqf*CLFtzL;OnvVVymLl=TaQ+_ng^j}I&uV_O(n;+q14+aH=xqCXU?M1yfXNt zn{{qAO0}0?M%UF)0rzl+3s+ET@x_g3u4PrvQ0nB%TT!aGdIzO;uAYHXLu-elRMYSK zP-@am_@s-d+k#TF?na}z#@|1VQn&v-8l@K1m!s4tkKt#;KmM&ksmagbZi;Pu0#dn> zXe?M_E>r0rl$+#D0jO5#xvSG+#p(%161~yU}J;J1LCTAQyGcTCM0!V^Qux3mrzaKSt1Qw9aN5#R6Q; z?@wn@X6*o)2{4_PNPK%BeSva&#L!TbYmTExlzU?c#i88OZ_*f4`}Htdk7}z&5c*2M zl_Lp#p5iN`X)dt;MC{v?&GHgA6cDo%BOeN!(06(LWC-dOPnZOEiW|JN*P|`I}9ao7PG1$@_YEh9^> z9JmMWGF5{~@bFTa90Z76oolI}NVs>hF3IxkAEL%{R3()FXNkLV(xwF2dam8mc!PYz zmo@Y&PytuxN`nL=C>EAS)S^iPwSPdxXb-UT>Irw>)do6%ZeAh91`d2d=ixf!1u88$ z+o-ID6OazW5V5n1g*lacd0bn?7j0$!t+R3gZs5oeWjpYd)jj?z`YGlnEwn#U*$D?C zy>7!Lh>BL$A}iq9MMK|E;!&|UKV8v8$C0vyI=!Xj!ENlcVQKRTG7VkBL^=eCnr{04 z=RrZbQjSK$((4+0BDyM)ut+g+%mQT<8iT8_ENvDAqXW)W)8R#m@F)f$9ZZ~SS59|D z137g`+Zk{-Z znlP<}_~5px@zPrLCOWO$Ilc61xT9`~^fazuQL{$#xRp`w46ns^{`yAv<)E>rj9tDQY=iOAp%@;C zyZh_@O&)-=BK4!_$-~mC4(&Do6=&(t4*08q>w|(w$dEU3RUNzveVX5`&VQ(|{F})&|Nj8& CqVCQB delta 13101 zcmbuGdr*{R6vpR#7hsWPxq4R$MF(#z;1XC02$5roqN13hC}MyYyo49LB&DJjqAvQH zqorm#YL4VqN4z^aWMh$zfjQogE-H#yq$WDpySvTEzdZXdGtcuo=e*}V@AthQd$ghL z(T28VDbzoELFCN7InjAxnUR^6so{NNBBLf}Mor2z_l>qhSYpCs`bI=%S+XL-<)0>n zn=O;VrsQSL4V#;nKPNNGTG;1R>p?mb-eMQ29Byk++;mJTZgh7uSyy|^#^km|hW#og zwJtLFTW4ixwiCvy3S^OD4QuaieHh>`?u{mITY_&_EEI>2?P0)i4GY5-)_$WqBpqu@ z4pzKcF0~c*SxzmN$zB<69Y3&@ZJRm57nY9%l$8FieUXf|Q3(}(kbb(2M<*jWQ~Gq< z&a^C~#q82u<9Y#98>L@HiTN2r0ix9&?8M0fQR;xKy{L3~_6SruciIaySJTWfC{>-E zgi`;Q1LsSqhqK?FWe{^~{Q~D7CyO38ijb^Ax2< z6!$}^hINrB^~(AQDD~&kc$9i*QyfYy`Q$N54ctteGoyN6PPZswrWklGdRwzyDi}Qq!Kp-4x&S1f+5m z(I~LQT%pq6C^yxe{7|jtNvlz94YEs1W6L??#(Z?f6hCMlR~?wOZMmMxosKW;%>&e~6^rXq`<_6c2E@ zFq+Py%-Vi54Pe?Yk+`lueU5T_#L*y>Yf2ys%Dt6H2`KmUTQm~Yel?iZquQH834JBt zs$qmaPw~|eGz-{&BK{r9V|j@i0*G0Pkq-rS=zF|=0t9u6$4w?95V2EioJwzi;_+Oa zL$R=U=L}LkT7FY*4?C56&ZF0X<46>)Q-_PR#S|!>7tmFJZZ}|QQ0fMXMP3n^gz<(p zm1{pFFQj~q7^Ka-R%i@Ut@Inx_N~Z8`%E^U4ZLQ;IFje zJfpG(PCz;gM#T0m7N!jH;?eCCFSM2U*C6F0+`yJ#WjpYd)j9qvUsFuYT4=vT*$D?C zz3Si+#KbCVkri<4qCsyeNvK#{$W}DbX_#!G&TlIPa2wlgSlWDyOhd;okq!Z(rkno% zd9ZwnavqI_rPp=%M08Xnd7GzLduS=uZNL=ilNyyaW7Y*(SBp;)g2aRpH=pv#o!I+6tg#20#3NB#G>aUt2GLnL9!_EQ$5A) zR5e88`l`D?7nUw@z`wyb9}wdu|WPix=);C{ar5qKOI;~}K}ZL0UQw?# z!EY({A;U(}d%}m0V@yeh0IpW_lLl}>xV2Fag4g0(UwtF|a?sRM#x7qDw!wJmPzsO4 z-O;*lvj^Z@i+&V6d02YgMSGHcVs$^b3#8b{WpR2zFR%f`{uz2DsO83)`ntiWxYZH8 z04gpk%5_|xlxLd zfrVMBnW=H2nW=tCesZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90QRK;%>V!Z delta 1676 zcmeDE&D8swX+tohZAOK0o=K)fzJ9WCvT2&3iKVewQnFcMvVn<(sgbFrp{0qDajI#m zu^~_>(a^v&Q9mU=xmdqAzqBYhb@IVRrOBHZj~bF}3Q%Xz=3h)5Y~*R3{C+q8WD%}H zvUCSeo*<~SS)2PID|y;CPY{e|Bv0$)4-)E|rwMOlqCop6u_`ic-~2)1G$l5t$vBZ| zGuYq3a_cCueT`x-CAL3N4yVNSXKId=*nUYPnG)L{Xj`(7nPesi@^4;au#$rU?Jq2u zCCSw85Gu8~GuW8Spxf*a>cmB+&F2%vH_ImIk!$n$M00Y3Y`(nc=J{DBWZFC#q&+96 rijypV$8Ihuli?;^>*j-v+jU6S1}w&dH~(2zz(bbSpv~`h&tn7tl6nJT diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index cc50981015b76e934a1f2a683e91bf7fff4c58c8..040e8c27ae78ea5f8c8c3b370ba5a3d3386c9bf0 100644 GIT binary patch delta 117 zcmeyW`Big6IHO^jaY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ YS*n?-aiW>&<_<jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay XP$<#Rz%+4l2csc78QNZPaPt5F9CRVM diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 0eb70c86c120dcf9a1c5e49aedadba6ca6e9d307..f4d31b907e81b4375139544365bded64cdd99189 100644 GIT binary patch delta 3290 zcmbuB&1(}u7{+ZRjVlyd6hZXRqM{%uHrb7c(t;QvAWZ`i z1c}x~M=dB4v|tNrM;HXt){medD!ml1JqUs)g+v7pZkj{R`|Ka^`#sOj%saEW<+j{% z+p`qKEG?Nf&RkM^m4u<2Bc`Uujf5VLSqV!uVwS4tMqEv*%5L4%`?S+~AHPFu0n8pO zTYR8tONaZ!RkR}Kn=sU#jfCv(sLa*SP&2Fu^H`Yh24TLkaTl1*XCrf1a>^deyM6vLNE!>T zFp^I%?!l&bg4=Hl49(f&?%<%8t|Xkh>QyY2&>3n#~~ez=}=kFv=;T@>>>X()ig zFZ$^>Fm(0g;e8|zfXU34rxWg3;e4{z>Yl3=erPX5d}69VY2b!x2)^H>PE;Vi+@=dC zyjs6&ine0MA=v3tOI32^jK*;2x*Hl9y9>R!|C@ zyMnk;qEEo1Q>$NK4(t=#%G3({9MudNrhKIUo2gQeJu1l zK_T(-8~MSN%m~LY-j3~KhGqYdUp%hTel)&rDE^~komhu7JHJ7Suv;Yxiluc@1>A*sI4<_P3ceEL_;z4HzL9IAkAiz&=m?TiXeJuQBe?-G$v6|QxJm$q-h|6 zAkn($s0BrW7HmQ72!mkS`V(3Zm0pV19t6RYLZX5PC(R+}efPTXJny?R`^{`_r7gG8 z_998znJfCm(AmCJZ%mJc6I#g7BO|d$G!_W;g@a*3GeSW<9**mpd=%9J;V8dH>jBIh zEGPIt)3y%liEC&@%{O7FIpgz~-F}q^Jwwf~!pk);;SIceb#n+z=QF-pEIDbWdV;*$ z{~W}5s^^9STC!U5c0Sw7S}>fiM*L0?eYp2CmYU^T4@SD6)GTj~A2|-8<7WHZRgg61 z-(V!4TG)e4@i;f%85o)~$39G0@5=|v2hhO&#rxI+<$;sq*OzXdwvMuiJY5!ZyJ^UU z!ms-2H!yVdZSs`CpZ?(?V3O_dIeGV~MpfqqoH3Z*pQzt4AU+&T+ z6ke;}HAy>d2|SPJnk~U-kv7^AoSdS!wglB_GJxx?v4t%!sRRspL-2spU&YQ>cur6f zoV$X!RiaP8rBkb4U=ntS9c5|-evWE}3=4cE7n`n{Jfh&Z}T0kBO*NY_W;>a7vL*$QmxczYY13ONEAbZSgA_UDq3QsM0(~hzAkyh$az@KF1h)8t=MAa zJNA#=hDtyBL7$iVl@=w-bRjA1GF7EL>aoP<*A_pL^$UsT1R z)W1~EMXBe0^A$?Xsa=awx6}oo(rJe)Q0dQ(<)OLmIPoS*tv?xzO3U7dsV7ds)Z#Pn z&dEFb5UsFwJ{c{ObOAn_)P|!dbxBh>Dt){8GAcE-z&D-g^L;2az4a=(u3vru_pq_O z4W;hss6}(Ved9kUwc_RxlzOYH8=&&=C2XBz!<|wTyZ_#70IQFtl|83XD(i)>y1QTf z4yDfMn}+84Tz@l4Jvfj7Qt1d|UxHY&DhwSHDN19vQSP687}`;_rw1|QbwD$sm4M=?9fJ!@e*Q0><-tP1Vt=~Gw&%C)?}K1Q{5@vH`@Gi`d2T|}9W6IdF+ zbY6bcpTv*{C|x_|6}BJc7ALa>Xuc&W%z|>~r?OO(J3o!RglZEr*nU*Y7ct~>0g0Ka z7iFH!W~+g{$9p!ie15o)1=6);EZP%?P-W>dG5iD-I}-?{qpz`NJagDo!nS}8 zg;cYS4O85I1}Cus>wvEtoGX|8-Zr)vxSe?QC}|#Fypsj<#}(|l`$6jlBn-~0sQ4gf z9I3S)x)29Y%U)LK3*z}RhnN>{u4Rp&0SN=g5KzqDy1@LnEmfLHb!XWEple(UAZ)h4 z%m2+q=EHy0#M;0lNEoaQ0>sY7<$o#=D;RQvCBqHW-Nl9ir=_d+h1iew++kJ7&eL1) z554R*ko;4v4?oG7iBH|Cq|!T&*n>f+*G3=7i-sstC)x-k9A1Q5Fv%#LL$@*Q3XOfoDq=#<{$qJ4a;)j%=qd8?5g?i0&5(Whh6QpbXh6c?gb@?x z(BuMn5Rf;CyjLO9t6s1Ca(OHO<+^y-n{rARkgmQpmmie<_&^O*Z2e#m1`Wuerqhqb z8oa6gjQju|J9UR?AIcr*2IsoN;ZI~gWC8x41s4w9d_|UIqU;tq`upg5h-e0rxli`- z_Q>IqY{;;H4kTijuYqD`Im4(f&XD@72M#_|QD|sD?)j$+;=_eQ2=)KeP&(0*K%6#y z+<4mHMZ*plnmi8ae_q?_4C5j^h|8O%eP-xIZ$!Q4xo`-hj#fkCa4--u_ZrIJiU@HK zCG;8YqeFo!i@E`W&&f-Q-LqN<7hmc(C_V6J0sR=+RaA$;TkgNYY>W_X!u zhA9>3NkAWrQ7rKC2yq~lM<^SBDcv=8y){)ih2p6pUU?TCyXgLGWdz(0LOht>O;$SK zzD)0ze91Il!EY4Z;b@vtIl=v{x%;@9%A2<+Etr(XZ&hlOFfGq-RR(eKY-^;VPnFkz z0y={y;c^w2-}J=0?<(G|2>#xsYzCS@k3hKW22O&L$JL!c#|vaSH7e>Oc&EQ)RPm2T z+k;eJbb6xUqtzT>on7xILhMhb2-P2WtD`vC*2Cnvm(_)E&Wo<9NiaFBP2B~PE8Eo;m^|{jiu_E&RqbV+ zD)Qa7OFa9gx)IL#^)9s-xG`MhU*A=4zy*uEuOh#FaFLHZR389j61_bhPWRAb^#E|y z@j0@#lDeO$$Y4rByau=`oMp<~)1xYTE~*MGGHM@zX@6^SCP=%CMna=TX)>^2dK%;y ztyLl9xC||a-!g00fvdx*rOYVp-@rsJ{yu2o$8xlAe(wb>g4pvK_&-&b3kjE9K>pte zBak;GYeQXM7ni=Gy$>wLcl}8C&G2!*vLq_&4NQGbI*FpLALl;vY2=CYw;h^wI&P58 uQ$oFVlkJk006YMG8%E|$EjrSJFi3>)fkzRXdd|ycg(65J@z?EdO#cNO-*ij> delta 15985 zcmbuGdsI}{6~@=OckaC~2#mu+e39a#N@L>i7#?kuAjSZi6h$J4s0gB#jnjH1hk ziCUI%mYx)CS;PuT>vLju5{=YoYY13ONEAbZSgA_UDq3QsM0(~d8m$YI`ZmaV3vv+zd0qH_M#NO@w zBvLI$-c`P5BslOOyX;peyDqm^2X+B6TXo=Cn`xC|pENuc%hxFn9XT7z*(taDq!nAN z0{h;vTTtmIKkM^wz0#s&S@x93c8r>3ONktAzZClsLXOX0WV0kH_6Z5a2;C{a1*Gg$ zde|uGT{qO~^i)W_%04jto*9ys+V?C-MH)Lkztmoty&7q1hxBCb1e9vaTMJO_@%iUa zqJ0^(c^!EkTX6sg*5;6^CAp|HVATMcYyIkcl-g1{4W*ua4bHWtEDfc$Y$!%^z4JO8 z@T1MYMX6J^&O~#a{F|3hYTR~cFmm*8!j5#5I&J4eG}nLe87TE?WdusC-?I{>epMBZ zQvX^#3#FdcXaSRQgu)MO12Tfp0qVmwQlZM(bsCUBCVc?qO4V z8%o{PQH$n!^V)w=YQ^*qP!lK=A2%?5%ED3cW5yLN0u_J*XI{Y$w!aau#tJx;d zp@?eMuwjbp&)_6hU=8qbgJb1#-rK?!0Jjsb9wp7@3%0WW{;+~wbv*qV<~V0b$79$z-j61eIfRyUAI^jvh(y7 z{IHkZ1d@NOHS*(}nfc_+N*cZWfZZE}daXA~9yCOeI?+ZT;qV;Xg2^W747!bJhriVB z?Rw%Qig+K4cma(Gl`;^q-nQ)}qHlsHN>;dSTdmR!U>I_4_^C0{>%d2?&Yr*Wg5*o{ zrb~}tym0syPJCXP^fpp=ea8r~kv3*ZFCh*yOQm#Llr8N>8dVpUFP18SqmG1lBeE}r zZYdR(NtclOO^^8eR_P#`E*D}S8oXWlb%5)ellL5u@;Gs3;%l>|G%Bx=ehvge!p1rl zz&qN7{@5(Ng>;JEYeMWvpMELDpboUTO{xcScJA@UE7D{iH1UdmOG)sRCdB@<@`03N z0r5P2ynGqd(tDxutigb|c!fNdY`>6)BFCC8j-DhR9RZU0?M&H=ubV4(f(9fEj+roV zE=3l~gMhqA=%1qNA)*;fmOk0& z>6XI<*^p@k9Z1A5M+3!T$uz1NmH!?;j4;_{@pFATltji~oL7Y@PH(Q0TM4hBM&UPBpN5h3=c z#6H7abSQ9UQ8!>P9>1X2+^dCf@uGf%(gXi5pdTY^f|T*@9V5aakdNGFF!RDM3@=d4 zFr@-L3Fw0{iWOcSA@-y4P-Pu3r8~#2HzzA6P&_pxDDR+S7u}tqjDY(=hzHXH1F98Om%C%C>fcOF&Kc=INu1(VYF%}Q-DrsV~#${;SDZB11Cx$-hl zKu7Q-TrLCio1S?0ZN<|W!9Ti`jX)FV5eS!^z)5iYsJb2Kc!A8IMn!!9@AT(QD*o@$ zR)5tCot|j;Xf+pDXXpEg5c`lhRP_Pg>S(4_U5`ASeAcVZqxsLMF@df(IoHLbQ&s4c z*Tt=~)t==bnG3NW&;M9W#0*Mp1Jiw|;EdXcESU(ujQ-i6Mk616wkP>u7`7etxGKdZVV^+_qWw+aKXavs>pXAoa96I)q4P$L~oCW(>?G|-3MHC ze5R}|r|w58GMJJOuL7+EC}m#icK5?*ohRV?PppQ;n`ymPBPefvL|yCsEY3<6LJxjy#F}zDQJnfMe1x1if;-}l+ng0h}LW6k# diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index ae3031c62eb5660b7002f3f60b4b3accf6f31a9d..22ef681c56e0412d92e9055806e91a401fe276ac 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#hH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~Q5`G4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7C43=0 delta 976 zcmX>#f$7u)rVXi#h8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#Ld$f`N+^VdB0N1W=rN9%%s~0(mMH68~^03?1g0MF57&TV;U=YS|^|7 z5Z)}yUr(Nw%fQ;h1ZOi*VEby3F!DkTV*73h14^_nm3c`<&~4tYbc4JgtK96Unr=u| yaHVdx3)dGQPwQm6aN*5j88&QWYCljeyO}j#m4iI(n-7$i@{y%AW%H@F21Wp(ZXzuJ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index d4f4446f1e651eeaae703f0859efe288cd7b0d74..f741d56b6ddac79b173a85b0c1d975206b9ce3e4 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%QsfVVZGDnPo<~k-kB)rCDlHsgpk%5_|xlxLd zfrVMBnW=H2nd#&j#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3eW6b` delta 1139 zcmeBrz}oeIb%QsfVMc{(a^v&adHjg0Wx%LR5#c>m#LeBOs$>V1M8Ns%Bqxu3)vixg2+0H&<_5-YW-_$duvYK@0P8U!4*&oF delta 117 zcmdm@yhV9~Kcitrg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay WP$<#Rz%+4l17kNc8QN@ED|i6t1R*T| diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 276842c88a6fb2d556015c3b3192fbf9dba31a64..b1ebf725868bdc0bbaeaca56b4e090a4cb1b3b02 100644 GIT binary patch delta 480 zcmcaKo$=Ci#to^AhH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~Q5`F*1>%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?Q@#3GH&RR&idw~`gZ?0i0Vmhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi85`}NiU delta 1690 zcmaDdi}lGY)(z2&h8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#K}F3pUKemkUMBI6Z2|z^0ZDi;BFvY=jMmpJ>*#UQNDAtx`;ay={8OV zY1I(FO|I6xQq|-{3CPw@GUv#!b@NAgQ8KiF{dqv?AGum9)L6;YYOdKzuGTUgb`~<@ z)ZDO(TwAM6=8%&JA95FN-f1(DjSL3^wN936;Mn}d`I|Ud+G8f)krdwC74wdq;Cjdn z);?Ljfqk=lQiLd3E{LAY*C0B%FGgUqMnx2P!56)muOUO8Oxq`@N^O=|z|BE{_OmOp z)yUEwGnxM`+vd~fxATyveKY^vEDQ3qZf6r?tS8UYG24aY84Y#FvNs4=zVmOt>dn~C F2mtwa_j&*T diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index e76e2d2ce786cdc33f8318faa75eb74c0bcdbf96..f82ea0a95af77182b3ec91fe7afe2e40213ef67a 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~Q5GFtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$W_{*~ zXKXGIT+c+7tur^j6q!Vxtur^fiXSG|)=N^K$<^8~cZ^)E@=7dHiGnHL1;vt=;5B97MZWw+6Y6U*9jjnRSv17nwl^(tcsi3346ZWhA=Uc5w?O U+S67tl9TE_vgB@N-8z#I0CwL#!~g&Q diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index 6b0f35c70af166cda160ba27692b05f3473c6b60..14b8a56103bdf96a78aaacdfe97b781fd83cc49e 100644 GIT binary patch delta 5860 zcmb`L+e?%|7{-~=wawMt)=Jk5OiQAo+(WMIMH+#0(E+qHv%|8kE4fx`qE>5%&&m!O zu}t)_L{dl>9l&b9F)Gr!=|Dw9M3jh9L6p@+brEIFw}w)8`)q%}?|Gj0op%n*i;&?( z$Z*+17FRkd8eN;4?AcbY%jqlkIh?sJuQS(H>8-T8Y?XGa)0Jzluv-^7ea;+*$C;B| zQRA)8uCHm>?)9;tJB!^R4{Q;uNV1ft#C#zbs-C(}O{`N_hvEEm+$9}`vVL<4f0xhz z1`p#S#uAFT^M3O%?rh=JQ;vhqGPs4GN|_f61#f27ViRwfehBNj!mnrU!0J}`n^~n; z%?kfCdj;w`Jf{bA?OZz_B>6<^CKOF|oJ33YY! zQwvkEdc!!IzsAT0in{OsQlSK*o4K|4Ft!U7?k{V>s#bW%hTFhw@u1rPVDfrU_^R>| z6dm#1Kt|FNXqN|-kstJ@AY-?1BV=_YweMG)b(8Za$uYDjNtwR;9&6t{5-#728gnB-*ldQ z(PqG$+3p?#8}9y!(R_DL<|GVdwU6|C>AhNPdHrF$_`&<+$lZC}&>h6JZm5Wh*Rc~K zcVu-#1>E*w7v@^PGd`Y14n@s%;TNdG8anOUGGG^kYkmHG8(Qo2AHM)swJ(M=s;^a= zC0Z$o2h4?3IBEsfHt1f*IX#16TQtuXT;lTP~8ngueJ`7siLWk#33ispDd$NVp@>w0s^U5 z7SJlO;0!SVS7#VjJMI#_7`Q}E00+jHLXt@DB5y2_cXUhv7;=sEtG5Q^O7uUMlOf;E z;^sYa6_|{_r7U9ZV-gF@`oA*oo{;nZL1yJMg8aLTrxCJ08Nk*XSI|0a5!YUlYE(wZ zg_;GaL*Iv1NUziKkmiQS2`71*nzZO{ZxCQ_Zqo=gkVB99^DxIO_J&?fS1 zv}h(^+P8+5$4Abol4}(A-86MZChVQzQ4)LT_YCoLOQ}r7pmH ST;O4d7GN)-QXzkb^XPBhl-L6R delta 5860 zcmb`LT}YEr9L70EXUplHB{hJ- zBlxhnlw$6@&pL!V+j#Y)6QHvUZsTofbK{}l&CFh6;Vn}SVqI5x_w**LZk4~8S%%fD z@=vptp{_%-yFk}-tLK3vA8)Tf(RAl2v{c2N6bDU($}>Hs*hExuOF^|2a;;*P0s~Jk zO2_Jr;B4M1GwUzzzynByQiyKm_L4)`E>wA-yalUTp|r!Du+>Y z*na~VNhNqp9#m$2AdrTPr4kJBirPM;!#etN+a9D|9nEhHqpsm54RGa3a4~=}J* zbP4Hbr+OEybJ6}CXyD*MC+b>zxE^&qe{3nR&3RU6UlMSzD8T?PXrBh6EYm-gr(SZH zFlV-_%fyB{zhX4s)ir$rhO*j6M!xu7Ew;RY2ww8weQNaXyl(Ig;#xOY%*E^YanU=n zy1_#3_^=amE#z4rPa}t-?&|siby!EId|LwSf=I2;zi&lr?f&r#aMgO_NTc>zquHXB zl0?8y0Vs9kz+$@Hs}X+u1tVVZGDnPo<~k-kB)rCDlHsgpk%5_|xlxLd zfrVMBnW=H2nd#&Sj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGnBE?R5= delta 1199 zcmey>$@Hs}X+u1tVMc{(a^v&aqz`Twe3xQfE7c}!v4q+`M%i^ld1#A~sN!Pl$kmogd z?ycXp6l&aqxE!0eotst#^BL3vs+ADsU46U0dN?jsD8`z)1awcR%%H%?x z^v(B`1IP&?kk;d>qC#XuOd(JB4 hpFHiG^AawT7g^zx^Ah+s-$)abA~U}i~#V8TbKX< diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 39414be448ca0ea20ab06c8341cae48acfee838d..e1208c8e35d2da986b3c6f8a15aa96cd2c3255e1 100644 GIT binary patch delta 122 zcmX?Va@1slKciuqaY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ fS*n?-aiW>&<_5;oJVqpI)1Ry$Aia48-&$?}#vLO= delta 122 zcmX?Va@1slKcitrg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay eP$<#Rz%+4l1LJ8PBa*f0PgW3+-aLbEEjIweh9hAB diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index 2e31cd0de35faddd1729ea750dae192f5f96798f..245325cacf3570afee28214727f6c3e025c4bba5 100644 GIT binary patch delta 3308 zcmbtXZERCz6yACFQ6{iD2W4a3{pg@wfzqzCEyaiqHzJH6(+N798n>kWp5yj-eQr;7g|EWt&8~1d++L4! zrPDFXUG8?}EO)!?D_8jf_Q0yzHNJ8>m~WO2!6wKabr}XNrblA8XhTXT;#S0IgVGam zDbk6=d~NV$RG5`W%Pc9WL)mPDx{&UiLz72Ma+s`yjf z6|IUnQ+7n5LMpSIiB`cc)_t*2P9taLt!Pzz>$nz0AJ}rIN~Mp#9Ix5PSn0XhO^KS| z)zZ4W`5OF7gZXK;(KBN1cqpOYt>L7;fLjCYFut?aIa3?|E0hx_)58Ia)Y-jAqXwmh zw40cWN9J>w)CDH`{YEF+x58FZDZk7iJ`R5s zV4@sFBdjNzIb1D*5xeVvqsRKP$R-XinZZq(IePGqY;a;tJF~X|YwE!PJ`B|>U>aIt zV&5**!(vv77A|#=GL9yfSfK<%Es%+yHb5&mu5$KAI9XIU&#Ro|XO0dQ=aF*}#%m8T z{-`qctBn1e!q|@$@4zy`zR8SVJ;XS7JG>1UC^oXAcPdOGX}oHcMTOSID^^)oSx!F5 z;Z>u#{0O7O&XVfEE`tjTU;?BeP{?HAPBRp-TZP!bt5(CzY5~Cd5v0KgX^^LbFBx&k zPB=hXd3ySV3}~0r%(Uz*M|MWIck}e0Z4Tn(Xm+EOH1TwCnL!Shiqh~!Gg!$X9=Dhw z4f<5gpG9!T6wM5W3oS4ens8AY7~-4wn3w>qYxIzF5v%7_*iRAIm629c<@DMWenSf> zDd}kFsO#9&k>yXXYQo-jm`#`wr2#>;0YRKf;W)ch8n9Yv04d>U?rSExzfwnvISM~m z+1jxiE1Ab(XcZI^oABR8!ZaM;1$W?Ce9#5yWPu>h9_Hb|dyqm;mrfx?LSzmn-v@!r z6_j4EaH%K{UdK=y8|$5S;o#6l&c)o_V370VgjOYiw5wHj4p-ehR8?MMIeTE)1QzgM zJ9uFZUjG1G@PwNFG@V4I2_y8IspDKGIW@w=N!f!fEbL)FC~{rE?hrghZVPxd#ERcl z$!`sl-yb4Bx)*E-Nvydy1iZHw!sLcPMUw*^b)buv@2@H#JiV0d?PVdH(hYh7X3XpX z3&|3dR!zaS9`F#S7-`erJup39&#(f{*av5bAP$$5uZ?m(PkZaevWmLsU^@Mly7 zGT0+m@K{(l0DTE$i%2hqyeY2#CD>^4DFKgu0n<_c2xJ;ijESi#jAKWq{Peu~g!%xO z!}Gs{eS~}?hVLDLE3uZ4obVw#0xgMeEUzvPZm1~_uzjtPUu+NfMYg)^Jw7-F3v!c9 XOixA&wFj$f7W(ku0Cd5>s)zCc delta 5345 zcmcgwdr(x@8Q<^l5(xqoR}i>+?pi^V*Rp`GM#}`+CMcpqs+ADDESJ5zF1xsQSHMRQ zO|%kx9?a1iTS?L|*4B`$b)8IFqG^WOHX3xMA#J87Dx&5VqbcA9aTo^$Um3))WW zlFAHw?w)gg-|u^$bN9q2@x6N!hStENN~hIb=2+}0wpnfEt(LMS){16Zg=8x!TU=gR zzQnSmtkf!(%T^1Uk}M_VQgMsNrWUInzt<*{vFhBwIoJV~2NuJi8^~KRJEKDeMq-;| zql1!>*qMQm#Omna4FoSvBpdT)2F}g+d3;nFghgZoOvVe*c`hR2*^KLGidw{GU!SrT z!n;$|;&0-KscNzOtNW**MPOszwW(_G`~1O}DMrIu^w+6s@tcy5rr-yb+!=wUvhT!2 zZAemJ_0rzNsNijZj;hC_us<+Xomu$cjI=Tt8p#!}5IC<^L_r(DAM=+MMaTaX5yUy< zr)pl{*ekVB>Y&L8?0>cCvFLQLlcA3j0?&V9jw0yX2ReS`?Mo@h_s$PfA^E}82r@DM zNO*7@r++y(!w7j#M+e?c|KNl9&`vI<70}BaP-rZ`vRi6)$xR)S*X?lIAN_{pQf2aK zm5<)=LsPUgA8vu0u!;_Mz@q;|abfVuU`;37h@mxGVMcoTztMxNIX$a%#^i;5C84oj zG4|a%{ak-f|Bn9oN|rN+4)j0{dF^x#$`mMUgM3)1Pu)J7Q4$FT-OzK)3N zi_?q_OAdXD2wbA0@yaqLkW_9GXvtQ{BGsGb@Q3MS#;0k)_1nP&U=McgfWrW78sddT zkWQC%LlSZdBxSpup6UUCrnbXu^o&5iejLo?>h@B)bSLbB7c~SOn#UH83G@RDv-l`x zLnk^X(9I%b!+E}^8oeRVTe(ny-WJH~pIMNdi84bTIxEma`=FSk*3>{c8_B@8&2Wr< zv9fZ&{2V;HRhuu0v+85W*XcLhv4rMsPBZR*{D&cm~`qi+H(M^A({5{f{7gJ z&OlkFiR_TbS7ws8FXteJ)fBj+D{zNy-UAJ6R#V{iWCd33h25~0j_!prRBO`BW~0XK z3~{@3ZY9FKWioe5gqvYC?pl*(d@cQaAJj9+oEvKRz6D|9gI9Z5DZo#3^3x&m(A?z!Ckf|L ztoN4df34zrOg2AfMRizDiaKWg`fSqm%WtN-u)z?5$2NOBE;@J=-r|8ca9KdDSg!(x z)68W!X71`bj>%SHl$=^csMWmv)H+4>DY6&)JfR-=pvL7lz#~jSEw5K$URZF1)*WFf zc2FQNn$N17b&Gu1Mn{jpTJ$qaU+)Ghyh&FaheEoCz$LgrAMb}ObW;!RZ!t|f1dFuL zf}I+V0!G)cmRW4LRbPefhO*(GI^c6X8_+ayVli^e=%rbF;213G8Dti<3=%}WeH7e> zx!91-F`?}eZBE5YAR-k7@YIzan zqn$e8_7GvOM#$_+IthjGsVqIaM7sPW1W}jBNK2B{92O*@hOhWVtxtKyVAJ;@1+muW zImLS11zqB~ki<)2iQgK4g>h*NH$*!J;2Ij5B#-`8G(>_<3{Th#M{Tud^@ zW;r*BnynkeiMF19PefmYY`rV;zFpYu27}>ARrapaPfffO7Z&2mNCHV+xLL+t$)Uz{wk|7#L1+L7r$;^i$mqgx8UY3tja!(b#mtj z-6rUjd6wi!?h2o^_smAl+}UQW{L{@e%?%646IX>&=dKikp)b)ZxB9rMzJ6z>*kWsjotiVa_O&cWYK$A!TL(Q@(_cyddk5nns9ui znzi1RY}Tscu2vOj8*ggnY0t+ow`Mt=^wi5xh3a^?3g#%&^hq8Ht=l?7HEj$QyaMOr z(bHz~yMZO$&igi4SWjLtej)35%q2@+S62Z~QQYeAsy^KAakzb0s{?lGu;_)U0!Hvx8J5wu||H+==f~JP5Pt+#kWJ?)$F!+{XOr6KZlPYb#$)j|zM4 z{pHJ-W1Gk8m2GsvAiFz0d`-qLQ(IXRP@5&iME*EXIy3AsB`5613X=97rgdl7G2$#> zd+E+IAQ<_Ra}9e_a31DQYxO6ZqC#%)<{217=ojYT?z8Y=Oy2kS2FgCvzC^dwCi}YD vWtF{gpk%5_|xlxLd zfrVMBnW=H2nd#;l#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0ID}GSpWb4 delta 1023 zcmZo!!_=~dX@fVTVMc{(a^v&adQphGBUJHz914ZxoQgk3GU+x>eqa|f**;fzb7zJoIdKcrzS%x^ Pn;IE5gK|;TlrBa9Q(P}t diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index 840538480e4269bc7efa0f69cedf2e6855685f47..b00156ceab10e454d6d94ed0fff3539c248aae5f 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#hH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~Q5K7&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d0A1^s-T(jq delta 527 zcmX@{m+{13#tq(#h8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#LYE~8_3W$IhOef>6T5lg=ATrGwrR#GWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~TZn`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dawiy-1c_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79ME#WfK_mx%hv44_nZYc?{YCF&t{1BS#IC8$+X>1jCZqDu?e}hgS3m6#>tau`+RBk%@R|U z$h94${q8hfSu$-e*v7Yc%N7MPZQoq5?TG<-HgEp$+?-5XCx3V@IC-|4(B@|^MU=?0 MJ!?C#h@Zy@0234R4*&oF diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 8c08494939458524a1c063dd9e6b3e52e0821803..d9e2dfde8636fa1b682d19a697bafed2a16beb19 100644 GIT binary patch delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaMpyNEA3X+WzxFLVbhEa$;iY3GD-&sMYd%!l+1~e zEm_FmE8gq{XST7By|B54M# zp7XtFM;DBv3&v{&EH~irA8^&YXN;4Y=R8!V`ImC4wlZud2V^TcYCP-c@eYye*ByEtkkTIekpl!YBHq14>t_g8?_%iY}=H7F-VJKACGsd<#z z(^H00Pkek6rOutLL#gw<7g6e_KA7se)Q3{LuDH-z>#qHUO8=EjsMJXC9rg^CBh;eO zMwvf!G71{H5?L|)t{#&r6~kKDFp?M#$=%9pld)1eU5jmtCHdTM<7SXg7jE&tiKv<2@ibn{%qA#~M|@t%66p0RmVtdk9~s2dvbV7t>Ji(T zSvn=PumNmB9vSRB#B#8ogxn(ILl#H+PIduH;3m}|CJ8zKw=z;-rb|~?6W0GF{b|Yi z(CM80o9V>t4=h&1%rZ0Gzsq`zSSccGMXHrPVHpO>FGWUbo?#|*Ho_^wCSq4ez1o?x z%z!O^cetK((K5rV;>U;VAH1e?Di5)eWu(yE$mXk;(~s_K{-n5bm&FUUAA0(O@i=e` zQe!lK8oaAQ)h1DznV$m*r_!WK(=NqWBoOhx6v4gP`tm0ANXeeQQ z$j^_ag7xPdN*B-d@&w9yhfktKs3z3$KF>E`A!uVKKZ+h;$9raa@ih0N%OItf*MVAb zL~@g8kLG5I?dLjhm`HWG2x^u5lSwo<$RB{4Iig?tCBF{x!>>4tsGZ<()N+S6faf1^ zp_+TV6^J1!r+Eq0Pw=mR9*`;?1EA`!HcKy9@#h?m6Dr+8U;oZO0U|uMBGsxM%%b%4 zs~<-%Po$ZL{3`lsQB5dik*`7@q1hHqs<>s+fbR@a^&f%R#X^QAWoZ;ElQlVD8%cFJ PmJBVid{X}p{$BqdA_6+a delta 7878 zcmbuE`%jxy7{_x?*A{7|E%*BtoHZfnC@l!fq;;8M(~J$t$ixA51x68yY>VkoGABy5 zWFdoBJlO?jwy}_1*xX@xhQVl@EOQA2b!dW90Tbg7A|%dP5+S}VbAP~>Uz>ctpXYL( z=bXG9Uows_8LyTwTSL$uaQF*bHu&tm{CbA9SK#&KItugi@{4Rmjy!u^ex2Q> z{^Ygg=6jVOn*>xd)?zurbsUq5P=UszxU{X1+%G-45(^}4mbuAWkt)qtn`K(+RxICu z)MxyJQ3JAL?G}_;pH+cUUtPZgpvoERFd$QAtN~e+J%UO?Ra%@;fGpC}8_#=C>6tD2&^(7;+>TPuy4wM&Ec48w#BWRO05MYC zbKCc#)a&KYT@jwslRJ=86bbm7o!fw1Wm)Akn&(7S4M28(MOy4c=@QmuzR z1*p=}F@zFpJNE!Y^*A)j`onH5^cD=r(yo_Ks_odlH6Zm;Z!bm-$Z64uR#SF%|l)8BUrg|<8pwynrMQE;#SN}q#|H@WWY9#m!yN0U~YFTBA zEFL)#1r1$=tQmb*k4cr9QLStqON@u)PUW@fSgD=$W7}dyzVO?m8Kmc~Ge}oR_ZTi$ zTp=ypVyr3=^AM*!%t)t`*{@jdoDl<|8fZzA#lBd(nlPN3S>LL{Pz_RPuZJb*z%Y*8 z;%k&lyO|6xvpj5HIK}@aqG5{1(_}d_o1k!9;&U%cpx1pY1G_^X8pQb7+t>+piETla zPDyQS2%C_H20IV39PE>jQ)GO|;z-}k&SMccNi~Q`f*Rmd#!Ad|@iJ@0>c65tCD{Nv zo%4S)otXcD#fq4DW~O_0Sf3F~MTD(LwbCc7!a(_@%t*mGWAy%=9D0J7e`TEt=qc@vBE^gmp@j|VKp8jAw4%~v& z63w3k&#F+hNt9;hXF&tyN}Y+GOXQ{C@{Q=DGk6dk);IR+MT?zlY1zRG(Ig(3T-(Tx z$6&`w37dRY$_+H;<_EyN6*eK&BrO^a!a(J(@S`~2K$X?J2h~p;h^2s!M}ecEg!Q3X zek2vlKj&b&c&48xP}Vzq8cjkqp|1CNu>lK$Hg)qOXal?6Gt&#FcrCgNQu=u#s1=7L zH;K+@Zl>5lt^Q|eU7p(YmfyW7zZlSM#=br!}JhCFystJrm=^Iop zM>kKTxd;3TdbOw~l(Nj%p^wmPizZdvG-<$h2C4dwz}Ur7h9+fY6urrs9I%X}x*Sc0 NmRK>V{|A4s{|`umLN)*Z diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 4112f983c7bf142e512acd803ab76bfd3355f159..e4015022ca4e48f1fa3b4b266993daa743f7344c 100644 GIT binary patch delta 1783 zcmcb6gz4@PrVYW2wrR#GWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~TZn`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_V`?lUCW6tK<&VcpHonA#Z0*FJgw0{+S0 zSPIEDA!IWrTL>H3+9NhI^Il`3KzqHwWHPmHP7ppsuGRvv^JHqBoFE*z`I)2=`EeGx zdA)QGCAL43OQS^ld&MA1w7*c9MW)|3Ur>8aiOq3ZlB{H>G{?xzMIxK|%deB4eDo$ObjxjSXj7rU6`K{hRYb}5gzo133+6Eb E0GMe9rvLx| diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index 491a888a60bf14f46358e7a4103707e6b5224f59..695c0ca1625c1da26f7f526272c094e375667d59 100644 GIT binary patch delta 62 zcmZ1|yij<9AERNKaY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ RS*n?-aiW>&=6XgY4gf_P5m*2K delta 62 zcmZ1|yij<9AERMLg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay QP$<#Rz%+4lJ);r_072*xX8-^I diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index a29e87652e779e49e76a749fa8d9156e928a9346..532749158c3a5691ceb0731278273e3fee1997e4 100644 GIT binary patch delta 117 zcmbQJK2d#xH=|*iaY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ YS*n?-aiW>&<{HMuY-DH);Be#y0Mbt&!vFvP delta 117 zcmbQJK2d#xH=|)jg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay XP$<#Rz%+4l4dY@qGPDJ7IC293&mth< diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 7176373038fac4ae15804677597f617cae1b257c..29720af41355142af589a78a452aaa5f78aa345d 100644 GIT binary patch delta 4131 zcmbuC-AmI^7{__am$@x7-&j;Ssganr-!}YhznI{K)&{x-i|C?|_SVWIq-kM;6!Su? z5KeF`L`NW9WrG8qD=8}>u)vDQ3mJ4{XcrB-ut=ffT;1ndJvz)7k95$q)k_BcxJBZ<}uw&-|RfR>xsAJ^b+33++T_gy$SOSD$%@|UuC z&(D(lW#Xa&%oV7@)f!+Q&OSegJCzvXL6p)*QWFNE3{)_E-z4^mg#}XvB8Z6)9s5UM zV$MVydCj>ZOswZ7L}!l+z-oAbdLvRDXx(Y z+)!@6&Qj`kgN5|aH@FdFsfiOsI4MadONobC$kOKu@@zVVb7ARZBNBj(KFQ!B%g25_ z?Wx286J@@PT4T`9uDotV?CKbCOq|L>t=M}N2DW^c!XWj5Om$km~vFHO*e z^hni1J<<2=;~)3K4DKO#sW55cHML;D?ZTYFx*3LXn=ofkc?6KjlruhQ}BK!#wh?eS*ll_I$70-MATR?|*5WRL?SmPs{# z-vS%B91$(3gDTQa>*=jFc#DL{daNZcaqT25V?jhE25Jp}j!$)f5tpdhrDov55 zy|l~*<#ezY3}oZgbv_dVKXylNJ8|LEjSI;f%JdKvauJmjyB)I_!es;(mf06#q=)W7 c329oj(B(0Bfqy1OE{qn8C<8Yaf9=_Vzs*PAIRF3v delta 4131 zcmbuCUr3Wt7{+HcNrKNgivYBWr9pWkL%Oz=W$1D(Mlx+ui0t(lofGh_`?%nPwX zIKil7M7(5J-8xE(LElJrRXKC zxS`y6orSdB4HnWv-{3}!B_~ejeE5d`h-ksMY5zMRmXgm&=SpSzAZuWLPSbD4ZkX#*F`qBg) zNROlytVG{`fPXv)Gq{J~rNX3^S5$%pw+pid8)g{BZNjWU=`lbiQ`R75fs052E_x6~ zme0ql;S=)Q-QMd@0x}J~+-!pgpk%5_|xlxLd zfrVMBnW=H2nd#&n#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y(*z@16hv delta 1709 zcmX@x#dWreYeO`nVMc{(a^v&adHpi4Kj2&Dm!ex%H%Fjp4RE>o0<40&rvENUHfK7)=}#5A2ju#5ox^l891D)q z_s)07wYAi35xKS=^n6TCB6L(v1SNge&DKHl#K;I{sDAd%MVUW#lBa*Ng8|p{?zfC0 z+oe<(ZwQia$o4)nMyDjw^>1gK$;iz`y1wZ^eF@v=E@q7IBu{hngpk%5_|xlxLd zfrVMBnW=H2nd#;_MnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgVLWTu1-_ delta 1200 zcmX@z%W}GxWrHuHVMc{(a^v&adRD`AQ{>w8_K0^R%2emOuCIAt&!gpk%5_|xlxLd zfrVMBnW=H2nd#;lMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuF(a^v&adQnL9~s)F8w4_@Z&qTS&rG_NAic$tQ`rm2)0#3lfKPSv1P*OhGWBl` z;5$O5mqB)GZN4n(qN!Py}m~?J20stG();a(H diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index ad04261916f337550941fe18a5aae441383fa66f..e67f4fbf0c6dcd74c0f33c627ba6671577845203 100644 GIT binary patch delta 139 zcmdm@wnc42A){TIaY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ uS*n?-aiW>2eoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6K2l_>!L delta 139 zcmdm@wnc42A){SJg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay tP$<#Rz%)@mB|o`Xzc|0NC^=Psav_Jt=Ie|itVX1p1JtX$*@68FHvoG5DIWj; diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 1daeaeb01f938679cc25114396077d4f96529734..9c063e245b5d3760b5e2a01f57ef924529ef995f 100644 GIT binary patch delta 760 zcmaF+p6Ts-rVZ|lhH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~Q4f7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vw`|-p delta 760 zcmaF+p6Ts-rVZ|lh8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#LX3q9OP)*$n=YublWCxWJ;cF&t6NG&V diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 040981ab962c6321f94ca6ce2b2dba223e5124c9..41aea85622cbef60000dc90117ef7ae0213af2c5 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVhH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~P&C7&nrk%Yi3o@&=|w`8_Ce+z!Nli1Jfe%bZ)-NY{W#KR-mOqljpGIk)^wQ^CtFK7SgqD bcHrq@C0*NO2cDG8i9#{FWNHmkuqy!ooT7&o diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 739a686391b081225f126ee32adfdbd98a15c0e8..404105bf3822fb635b5fb2bbe470af355a53f8e1 100644 GIT binary patch delta 117 zcmeB?>yg_K&uExtoKj|)QEsGfkZfs|nv`m6W^S2mW^S04oMvQcm}X>PW@&DeVq{=p XmTG2doM>jcc>-fEIokY~_i+ON&GI2C delta 117 zcmeB?>yg_K&uExYVVq}@X_2p=Y@BSGW@ut*Y?hR4mY8f{Vqt1zYH4U`Vq~0Znrdta V6iPHSFiqS%fw7kyZGO!AxB<$=AxHoK diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index e393548fae462dd6f5df49f012ea5f2c3c4747d7..b0f0a5cf759459f87b671c000e25143e8d3e854e 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~P%X7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0JB%_N&o-= delta 1704 zcmdlyiF5NL&JFI2h8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#K{$mZ^_WLP|$Dl6DB(*^0ZE$>dwSJc>`-9S=y^MpJDsRPL|gC&AI%{ zWH@^BLczaeXq&uHux_)jC?mOA|B4?ZS8J|x0XeAwc?Kb+1 zGs$$s^a2GY@$JCCs1_j40T2V~RxFC3niqh?v#ba z$gGrlaY}Ylva_`?jaVuli&-gG{(^b_fZy}H=RKXycG|R^Hl0r~N6Z;nRpJS$-yT-v zXejEG-AY(?J7VFOq&Q-dT~^#uM6!G2sO)kEWtXa2dY7Uot&l5Fdh2-yDCNEW66m?5=xOK%Xw>rF6itp!mO-t{ z^{TQd+x7TWnYP)YOWd7Rg#kf8#GLieOY!SOE z^*>;&lPy@l362A-T@P4UJ)ifnTkKm(a^v&adI8wW-@d=v<{hkpG|1;38snU>E3*gxrT{6tw4(#$kJKAnV;i3Cs|sX zH}4YaCntCxS~qY0D{_=PueNM1m-s-Qtu32nq?eIt>*8`bGIeg&QQStZ*6Avb$n~n8 z`YCd4U8_|~uC4cVmXK-dVhaN@b#8uZluE8vb~AQzwH~&3ONQ3X53OC8$;xgmn{V0g zA;ZSW53O4^dpmoxl4WboW@FECE;6;chs+KlOKa%njOB}Y$2$4N$0j7rnp4}6WYTt^N!uOCbIEoY7pBi- Q2K#iNUWM&jeVKyo0H8Y9#Q*>R diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 6061e473bcd6346e3de81ab11a1fdb4eb38c2449..edafd0c73e5bd433990482077695dfac7de84085 100644 GIT binary patch delta 1486 zcmZo@W@~6>+u+M+m}Z<(W|>iLq;HUHX_lIlYHVh1nQUfmn3kMoWNDaYWMF1#Zj@qV zU}2VOW@?;hW;(f!@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WQZpS?r? delta 1486 zcmZo@W@~6>+u+M+m{DPzXOd}=ub*t3Y?@|hVrgualx&umY+zzxYGi6@XlY_(oNAhC zYzP!eG&C?xoLt9vm<(MX)QmPSVOqsPp4RCrY8m+_A7C#eOS|jl>$OudAE=NJ9*kSJ4i*46GtD^KsIx17L{4WMY_$KKd7A`&sMk1`kK4@ zNw;w_)WMU}cLtNGd%;QB%|5%@$ctu|$qP;@ZO+_(lRR%jwBJ0K%tW^1l{Q~Kl1ho~ z=a0pZY5V2{Cq>xEbohk5T$_zA93Uf+fukIxz36tkA$hh>6JuoEUd+pAN~ZN-{Ynyy lX?o<@Km7nRBinXncg9Q(N(^}J&lsmmmH|fFf#u>2W&l3ezN`QM diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index d10109784fe9f8ce568138203f15a44a2d81f62e..64230b39e7e33112c4d0c90b4a8cb44fae5ce42a 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#hH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~P%X7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY Dr#?u` delta 2066 zcmZ4ggKhl}whiu#h8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#K{$myGYkHJ#ZJJ{^m(c+eOIJYdv|ZcnKL=3z->pCmX10Z{8&Fo{fC{ z2AlO2vd9Rm=}`L(HmfVGW+K!6%?7F`D6+dvJ&;_xfnjH`IaO;7Mf&IKmavfNcd-2n zjZ!G`|74Sm6uJMBc?(7MKe60Pk^TC%JrvpRY5##D`;R*@vXUQv5}WNj1i2{De>A8d zfPDQzlkY4R+`MhEtPrJUglv1`L%JE;fn~rQZqoIE$_~fv`}rB2$tg2I1<&>b6-Hii zLw-6?v-tK$dW_|2D;q;~ff$0haARqiQ55aZ7(Cqw02` zTmDhx44^5iWGQgQGKyvOt36)^tV%3UU_<%sBS#eRCNn$&l`_?ZB$}9wPw9 C^-8P& diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 3e9fbcc3fe27bf4298eb7d9dec44ad03077e5131..05136af04d00895d6400f3715716a3ed1e3bad85 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#6baY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ cS*n?-aiW>&<`%|wGPF&ez$m&oklB+P09Pj=?EnA( delta 121 zcmbOwJ4<#$Fr#5cg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay bP$<#Rz%+4l3u8MO+9pq66x|%i?8yxPRB|E< diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index cb217364fb473e69dc1759d745fc5bf336e8d5f0..7ae08609eef598c32e70b0fa0d28dbb539b31d42 100644 GIT binary patch delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8tehF~OhfsU23lZ^w=Se(Gme%x)_AGtK@oc} z1Fa+NVqz-j0$Fs~>4LzbP$VIVdFf^_y%k~fUO{^Xy1bsxKj8O$YpuQZT6-_dWG~EQ zKWJ3k;o?w_ul0nd$QAVI&4-(db+0d|d)?t+*yD4DJucnn^@KdGt$MRwQrx7Mh!N!* zfEkW>8Lw(k?Z&e8Hj!o7Utr$)pT?KME(rIF+izU# zbsEDJHnDe?mTBId9}lqI{ArPzFKqs$o6QTz<4VQQ0+B}q@AEE!(1>Us9Ah9#=Q>by zdbkNYsfd_9A4XkgM+rsOT$(`9?pPau3P=1WfXPORh`ZNqC|Y~t1AvOA+pweU&TGIi zo#&~02hc8x-am@Eo_=%&a24*yS=cm^qpm;Z;IUnv$i;SZotS?!;e?h&ozT9vw3|oi;XWmSEM&mR^ziSZ+g=C##gO%nLNM_LwW?xG$ooWb~#D5d#GI2Y7TB`=o`jPye RKo(tgx*)J96iG;8Ub-1fZ$%irSJ0k;F0beJ^}zT4Ywfl6T4yiLW-iWV zK4?_*)?Rnm(^k@15ORmS&AO-5U34T=6b!jMCEh}Bsb1m#4O)u3gU}sO#X1GSoFN zJ%+j(vvJhbGS`i|u6b2~y8f7l$96?L8{5r(vG8Wn2`vl1(7v{Gm`Ca1ekG19WXUzs z%77BdGH=QiKda^a9ZEW7cPb}=&HA5$qgP36Fdu`wymh=fSIOovD_cd;sN%CPMdh%a zS?TP!(su|_sWDtPEqt$?Irwl?29>C1MfBOq5>wdSG zKe6OLat~RXSvyekB;3fSdYDFQyO(u~yek7k~ RIor%9F2_|l$=7%+?KdBTv?>4q diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index f3e341909044db5d5057e32fdc55f91313d26546..81aa9745c3625541f07141fcacdc46d00b2437d0 100644 GIT binary patch delta 479 zcmaDpi}Cp^#tpHIhH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~P(-7;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7*fdI+sFyu2jX#?Ri%;*$#SgI=HK2qi~t*5kZ1q^ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index ca4294c8ad5fb6c09625d9a7df2abfbca0040105..9b8f045ac501c7ecf59811177d9529d4b17cf0f3 100644 GIT binary patch delta 525 zcmdmUpK;H9#tq(#hH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~P&C7*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl q`D~(9jr9U~4TV`?(v%%y@HvY+*n0m-GVsj6(KNFdHq1M-uuU&U? pzOvBd9X!ID%hjdq#FcIHO^jaY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ fS*n?-aiW>&<_^YMMkA87=}(@(BDUF=xt<#UsI?-s delta 122 zcmX>jdq#FcIHO@kg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay eP$<#Rz%+4l2V*Ux5y{&0Cr@Az+w99+&kX>k9wO5K diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index f12cc2554d4a3b401d53e183bb3ae97ad434ecd9..11806aed3199e61060204453cf349baadf11fdc7 100644 GIT binary patch delta 707 zcmX>!f%(t`<_+$QhH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~P%X7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-AMx)Nk delta 707 zcmX>!f%(t`<_+$Qh8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#K{$m56RFa&+57PGLtkDSz3>gp=-ZD(dG`ee=KBaE!(Wi<4sQB>=!88 zEYFuuhBr6w7g)zhmSf{L|CO4_N2XRat@dEDw7O5O?-bu`Q+Jw+Jnft7JFnT0p;ewW Kbo1?F>5Kpd(9eDV diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 44a21af1b5b43e25e964ab5f90138bb29ce562cd..06be9c52dd8530e9446eadf4fce3d27912674d97 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)hH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~P(t7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20T<3Ip8x;= delta 1026 zcmbO`n`Q27mJPm)h8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#L0DxuSnN5{USG`|K=A=j!fj~jh?)fwU9imK9l{q_$Pl56yAK4O_7x{ zGsHJ{@@yg_&_LdYxkG&OJ-#+Fg8^*D<`07NDRhIxW@C{GO56YpPl?U`;!jz~4bOTh z!Oe$ccJouBpIi5*7rFZF1VuMbs|e<$M1OT#oj1Aq^F;+Vw_WmJr$m4BEmuR*^=}8J H#WRcmtu8E& diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 50bf62ab0785010ceb6fed0e35bc4c0f97b9aa24..ba95049d3597e44e5e13f8bb9610902e8a264b7e 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#hH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~P&C82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5ddz1k9hz9 delta 483 zcmX?gh4IuC#tq(#h8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M z#)d$lL_-79#K|>`|H;sGmpyhfC-Y(!vb5eJOIOt71U}Wx>704wSsJxDfo}&hnKn0Y g3vJ#iw3wXmy~`do8KnKINL(;kwr6gBn-R+h0J>$5@c;k- diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 14ee14589323aa470d700c61923ef795f0787086..3f6ec71115647aed8e6670ed2939d09f294d4cd9 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_BlaY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ fS*n?-aiW>&<{6CZ8I4HRrayTfi`?ev%*VL_)omm7 delta 122 zcmca7cTa9ZI-_Amg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay eP$<#Rz%+65494}0MkH&~pS+JnZu4~Jgpk%5_|xlxLd zfrVMBnW=H2nd#&T#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OUNi%b5TG delta 699 zcmZp_#@v35d4oHnVMc{(a^v&adHLYPcn2}WRKkZn`tQvSz51=p-Yj!X>%0kG*;5JZdT-<%|yDk$%_1K zn~Q}OlB@N!s0IgFw&ri1EO&yOm{jD?-~3xaG?#Q+H#_#NAjd|>zMRc%6Ivojw{h}C M_SDS_UZyhw0DW7`O#lD@ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index aec68f0f3ded1bf8fbc7df7fc8c80b499ebec6cc..8b3af39125158209c92b7ed4601117d302b8c825 100644 GIT binary patch delta 1013 zcmZp8#nSMKWrHuHVVZGDnPo<~k-kB)rCDlHsgpk%5_|xlxLd zfrVMBnW=H2nd#;_MkaE!ZDd-*M7nL0H!{Ufe#=@*md=>T`?v5<<`os*EXf|jN|6!b zn>Bb3kl}5h`(dsS-#nXtE_p!!GeTnX8=+PTT(Ox~bT*|fh>@saCO;@Qm&nYb!~?73 z`jg4D{Z5Pc=DSTrWZJ&@PK#g>nKtkJCbYTdyCRu3PX=lC`MDgJ8%fQp(A>kbz2BIz GkP!f2kucr> delta 1013 zcmZp8#nSMKWrHuHVMc{(a^v&adRCb6FJ&8GOb}E-L}aanc^qEWvwMkXUydNTlgpQiVAO*WRGE`$O!Sx z8oUR{@HWu>Fjt6gp3Og(ydZ!XA+h<5P%8zl*vugS7knTy9C0?V#Mlv%TM#v5*k} D^2agG diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index f624e659580a3db55425d9649ebbe3ed16877d6b..013943c083f530972534c469c94a7796a4e79772 100644 GIT binary patch delta 1221354 zcmb@vcR&=m-#`A$7Iqidg=N{^3n&)A-g`eA*7Gcg1?-A~y@0);;0+qFVm~V?YV2Y; zdp`?S)bq}+c-HeQza*1|^Z7o1{65*wA24}OGOxUAlJ`tz_T$FWvXyU6$uicJOQ_I$ zM76#n%ST1`s#ZC^XMBaqRjT!>T%}w>uY~f|$|aPKu3W83`QGKDt5%M$T&Y5j%9ZBj z_m+Dv%5BJvvdR-iMfVywxVW40ubv_h5Y6{_(yo#qs8tN-87nQ4loA;X9DitpWT zSY}$IsN_M3`0qc)iRwM1S5g#z&Drxm7mx4fvT!!ux!%T`x(9;J)5isYHXlP>U|yr< zM$pC-Uxv4o3;?Gdb`9oNlyUHy@Cg20oEFqQmL%hBVB*CPn>aJg#&ctB{Kc*gzD2x^ za{}&qe>Xa8JJ;TcYHNX^lS44uYvJB1`q7fGb*9qz~uO0eD{*&xJsbSb9)v3a%l@! z8Qj;KDF1||-D<2o@#~*y~?pSlI2p2e9WwZ+wY+yx`2}W>n(l|dp zz#YZufO=(us zI0GLN=E0pHjqypPD|2S#NjhMgiR2p+VaEFAj9}uVEMt)fyt_|$u^80zE0-*d1?L0< z5`AE=pbn$vA9!kj&W)QJ_)A^wU+a^P*oUnAH+Lz%N69E}BvyBq=BIYi;1~gIP4T6Xg8t>c_dTUaI1?A-n(7>U zLaYP#sNt9Ok#WNKzX~GzX!PrUjZlp*O(xW4LcKUTi%@?N>S<~Q zp{^5ZeBpdTy(H9~`AZ0Ok5DVN3)D73?RqOvuL(6yx|Fm$l|snDr3CU%LUsOW8L7Na zsO{4Q>I|Vq*IGmBE)lB2@9PM)fKbUBHW2C#q1s&#s5OL2{h#fm?g^px1PN53Bn3;~ z^@km#GM`jl=&*}W>4aL;a5tfr5h@{8ppFshb@EY3dQw>_<`kiRAyjO-~aI8H5@? zU7%(Xio0G&>gE&5nIW@c4|+hTk(1?wI!LHC(4SC`2vzu}KpnwUimYC<08;r%sN|G{ zx0|7RdrWMLaip$gbM;Smr#Ds1?mN%`i?D4TFxU>iIgZp zEhf~0Yte){NvQOcr1FIPm5?773DjCb$!Ap{b-9E()}tb!ZV_t81c3sCdN{cXsmmeM z;b+wewSiFLoiz!yg-|P=)F#wJLZvEG>Jah|Le5;&fKUerrK#4CP_qcN>5V{T6Uq|Y zh}112RMr=PI!mb5xlKsj5<<0U)s#@b5o*LBf!af;hQphskjhnryx*cZp|%pre@q8L zJttI`qXKnH-uWSWPUAN zcbia+P6|{Sq1vuJUmMr0Ak>)hGn-&)2ce9wPBcZ-@U+0*@rm(h#W=WEKfe92>fBB~ zeOP(!8Xvt_56qoK4*u_9VKO}Ur)QSrhfMSEJ4Te@wD{f48M2y26B7 z;|T<}em&B|ADtD=ubtdkoYDU!AG1o&Zyhb?<3Ly~jjy+xWAiD{-gre+8a15NetWwa|k-UqS=;o@1gFc=EufyYa8B z4f%pGW*>-!`QwZ=76@51U?{=cd%+D)H(Gks$j(n2i5Ap)ooY1)`T*1JMeg9;wOL zSW?4B;Wg4I1%G0EGyc~Jk$m<=1joceslbbN(iiG;DW5$b7DhmlgJY54Hz)sRP+h$^v_ex5dvUzy#K z-!$Ef+Gdfq?PpfxgBPm#!Vxz9!iVczfZGpU5TP{W(D$3(v$@9*n}FW^-|KhV!DS9 zN)O}yWsNg)8=&g*-+`4_(1=gnBIjSFFX#Oh8Bl#DaRQ`!QCdUHRtU~bdJXK6loX#7 znK&9b!yFVug59uf`~F;(+w|R;2aD?Ax{B2%~t~tcpGv{*|1TA%;lE0CulHn;BH@~;Z#1||={hL z!~DwhMqVHt*B#7DO!Ng;o*%jv zWzCzBEQ4~b#IAF)EF_jYER7`bjYA0AUAoAK1i+I!?zh|~6NqZqJRlJ11W)l8ERr9Z zYyuhGn}xLxfP{OZZw_~Xl5eD-pGH1;&%b7o2T z^~^oTe{cCusC^m4%trp@(nLOBMWhU`5-=0$IbrDhQEWY~ zGk<@3BYx+KR_M%SVo%I=_^JqQC82O>E*i(ma4-1rs5}p`89^*`aaDN~hqV-VDS-Pf z@^Jp&ak6`TeKf*h^~Xf@Bm>P!g8OYvWf@*4V190>&!C-yh)yakX11 z`1VVqh*NkCBm`V8aiEM1YLJqbAVWiv(EHV28gVfs(gJ_6aOIGt4E)mdU6E|J$Vh}P z;0Lc)ap1el`EDqf`~QLiIfvi8T+e50u=2~c*Z)7DOo&Om6v0gX%MlLGDo;ia!Q3T~ zhQo0H^Vc?Zr53^~mhUe@N&kxMRy=k@zePr(@`wEW&CxQve!*(VN&1oa5SAQIQYhB> zcRBHB+Ubk@2bnlW%g@`=3vqpbOf>fN0FWUbD&ZS%tH_UEj`W8e=PkMeCA1DjEoY$~ z^nB!YCFp);xPqUNTaC*mxR8ASUD5Z*%Ih??6+OOto9{gANfC6!W*EE=mX^4y7e9c2{5#bUSP5k+T zc$VFTa0c?N4$lM8x%cIKpQ9i6*dwVR=+CVR{_&wP{DVW|`GP!u{_)Wds|t>Ae8I64 zzI)z8zTj{QfA?1fLU_aXKRyC1+l8*Kdn%F7J2{HKcYGAT^^}}Hc`}jjbYc`(GGm*Z zk2yJnziNx){mFv z2rh|Veony$Ub1p8`MgWz(3%DRKSloE$Nv>586-OLCjSP$`emITPB!}Q<~v@l&F##c ze>sW!&+o~CZ6~Yga$8>+#36_SSLetWAk>{j`rM!IEaAW!OJq}iM8OUQ5X=YP`ihdz z=o!q1hBDh8E(1*q!lk`w%qJ@%>}UB&mS&}1=xarmiWM9E)rM(n%{&=@Bs*E z&IS`X?kA401#gPDTeNsw!a-V`>sM6lDCZsuJ%i?f9K++5?^FYKD!Efq(ltoeaPhuM z0z%5(m6*Mu%%T5Im65Z!QONA4kQFt7`^o>{<{d7Kj1=N0&a>_MC#I9Nfa zfmeHQtt3QV&@Z0TfI=l_g7FDlrXQ;si+X{mmzq?B7fGCs7DLBi4dY=8j+(?>qk?sx z&UFd&p-U$mkjWi03z7`a@k%muD|gKoeL3OBUEC^al1+QLXlk<;hp^g+5G{^zt!Z)7 z$)aN5xuW90OWZTspzk$q2K5E*2KPcHAbh*W%~1%&rBAs(>DkP`xbpO}>+iX(^z6c~ z+(p6Jca9dlrreD66CI!t&`d6R7r?4Vhn_19{|*&d{DlZ8Wfx_OeFB^67PY6GKP@Fv zQF#nws5*)+Gsptbymp=1 z|L<<1y|j3&he%Hud>$`~q7sxDAi6_~rlF#Xw81~aMdjpdT8zbOg{$0VFfT>)fdK-q zcHo6nkygZT@w`HDT~H@{vn)5Ss)6* z=j&#PwqyFuB9Tmtj{htb&a1LTuSy{L>j}|XeBGLBBBKl)58V-6!|fLoh;HL!(tVK) zU-$Dv(Lx4ef$vyOW0ScRxX@sz4%{nKHWc1{BHD)d0U0ku^L;?G!6Pq4TUpk;NT60A zLob%Yzu$}Inh-17Zc0Pp618{{(l@Arazj?W5UL8c*NP9YEax#_5Fz}Ct@YR>UdCvx z2zbvX-p0s51V9%L2XRiZicJXwAQ{$liO*m;xC_31{BZF|-2UAt@h5z~aE$maK3*6nzKG9fr;6ucobr>!Ss4H9 z41tcFExwQI>!yo0FzTN;mmTbVEQ$qLQ~WeF(iSuC*}>7*7dV>PL*dp;F^@C?8ZHqp zWiw48oU~N@0{eJkws<5f#*7u>-bh2>#cJ^iR*a~%;?0IyDefe7D>0W^I^>uzs0hI>=G|$)kj+>-iI+%dztwF&-aT1VflUH8raPT?-%dG z$5IEyyRee(9~N(9Wv=W|aVf^RE)jnGRXiI@Hsz#v11kd;PKnbPhqFZZ`HXlFW}yFh z@oH8EaxRDinKjV$vM{fFxWa4#@x&_s1IlH0bHTpX#FLphNxLClj#W|SwwNVXBoQl61y+7vm+h@KM!Qat@!r-A^)$C96k< zjDUHGl394I(tNn&cf3Z5nj*=@%w3!*Ifc(Jnk$))nTTE>;qbBiQbCBo<&w&n$p-5r zWic~D*GoR*nz@BXh6BR>9fN@B$AwC5!EF+U$JOCm7sye2tvF1N{~skr;{ zfzk^2d_s_vBtp?@=^waWr;)C~_51bGpBa~C?cr}`=@hKXPHt(-Ky+LiCGBfL$DkHc zCGOPPT6&r#HAV()4N~E4IULeKIu)@gBo&Iz(l?B}3UC0y$>8i*DOojt=piL;e5sdo z4pv3?zET~w(1=0O7-p_7{&P(QtR0(}KweyUf0&;nm3jFG>xW5clsZRAAG6$@CyF6m zY<}8J30IGo#$!GEPZT71I7yIX*mS8COOlZ$Ez1~CtwF|~+kPPE(J&bpGHI{|cH^ZB z5vE`X|E&K4uo9kLE?tQE@3l(czt$RQYix-*>!nGUe=bM58vEDUUD85)9_*8f80BdL z3XN;jAhk@AA81w8PXikrkq$5*Of-J>Wt;_yF$3Z5JJMd5Mau(e7LLbV52c4NJ>rS< z4jzu$f0X_hfR3BQei=AaY6bg!#dJ-J-xxF7?AaO=u9u+a)Mb)n5Q$V8g|%Rvxz+r( zFsi8-QweX@^*e(_S=+$x86GlzZsgY=Tjk3Sex;e6w=f_%02~ZVUIbdk_%Yr9K};eP z*t?Bi8O+zbwtjklHWfxJDBC0(uI%QQ!x-=pAlshY4u0+Bheu&>zfzM>Xi4x(#3S^a zM8ENj!xiSMB8Y3)Bo!Kl`&D4{&mt5Hd^ghX3D#A?XuqY{Eyqvr3&pnmIo0n6X3^2j z4LK-0DARyBO_D=^V_mmY`1>@!pBSBk-0Ua@G{94{kpdBuP160+F|*g_`3=Sn*ckYA zWL!6qJ{p3=g-zt3Zs%kT?6BPL!FWdJ!FP8EmI@rJB*Ql#gJI0DrV0+I95O42c^s{Q zwd^uA=DoF3_BS>_Gq+5Jhn+SxWT{w|%XMW3i4)hC{eq9x8_Evj2+luTanRmuruFo1L)OVU7)N`pq{n3fCJX}9zhEU&NmQeqEwot!ij==xOOrgH= z0-?SD2=yznWJmDzy|aaS_e!Du>?)yt?i$%eT;F|@P;c8J)St)^>Su0~y}(n$$UQQ> zPYw)`19$M*W5dAmCdqz4bBek_w@;0GabW#PnFVBDQ>a0m>atoO?^oFs#Pa;(vJKeu zbrt3hYL->=j!rh43d#2 z4EJluKeFVxJ@Vy|pw&-uJGduRl!6m$%a3y)Xr)>WJJpp3ON8R+hVlqn%xx+^NsDPM z<-J&*b9uX5#2_oWwhjndC)Wu#IVW|NFY+fmg0k`Q6dwR>uzG^rz%mVaS+c=cp$XFOWWjQ zeT#;hJLHRKY)*wf#%9)T`9g|Sf1iAyPmU{xWd>gF*vS>MM53ysB#PgJOWsz)Dy< zMzKbi@8R3dipRl%051k8yh_|TNa0l?NL1L-?H#<7IWa=93%w_ei*qL_n#+aa(^-l) z1_oiX4=S|O8!Sf^C#jFT z`&IFjo-I7B_=Os9{dvVV3byCEq8GJr+53v-GC}B>j}^yR9@QfYqnA-)6mp1+J2uEG zd92L8Doa>-;Z)G9@;^$Mf2H;>OFgx$-rsA|cLsm2Nw1szy_)!9_xEbzn#+GPy)3h& z|67$HXjT>fu~b!I)%|-=uK^AHKT%Iu8RLJGs%p+p{>NxI_3YxGM~fA@`ERDh*RlR9 zXmM4X|565tA(D78?arF$zrH-9+8W-sZcd zK#U^54+K0yyCko@^&jPRJMil}e+|ehr7*z^NkCba+_tC-h`P8y9WYuMa3xT1AFU}M zn2sKm9RXff3vvhSV$8ClKz3p+11Q)V7zGE01)!~KWIW1@2)Iu@c3Rbdupr^={w4ul z=WY5!z%A-G725@P-Bi&bz^nR#jsafPFY8oP?AAG;BsJ-R?g3_&JPoPnClLHOzzjPM z2*}fUL%#H+fVM0{xff0jgJuM%88(_igs_~3GzS8_6X1=70f}^+>%21HF!jPRs{=k! z`KxRQ2&NkBv_0S)i?^T|```9E3ybXcc3(gTYQN5>1Gamk=wgxm)?W@trlAvgGoUIh zj=Uc*pL&4x&w!P*c=2hGf!91QGVs`!0hK83;Wq(CnFA{C(|R{V_CzmI(gn1c$Z~n{7&J!VOoX2UDUAcDg~aS)+|>$ z@aTWRnkX8FieO;lz_qlCqfG+6F}bs2pn}Hah4?@dmFm;LK(8SiBnNs8`D9dJIJJ{w zLZCNN-=ze4BlXP0KyReZnp{+DHnpfIpC0%FMd+0lIEK;E)j-fTxe2sZ1jvM;b8Ked zF}2s`?bil2U{M+hzG7e{EV(i8GaWT651r8i!BRaJW9 zr9%_tJ}Qc{mC~Dc%xS0e#>=(NN^iW3>#p<;d{MoX-guEDD82D=vyW0oRm2Tas#wCo zJB}EE{ZmbUU>!L^3ub++*$fsYE8F>bW1`bor9Wc|O{N8cE`txoD=SjrOH5IE*RQXp zD!uF1OEZ+-_3MW;rFT(rFLz&F5@K}(lw3Gl$Duk(&uUz%RFQCYwMSKlUiLOp^#{d$T2a-U78_Sr#cJ5CbeVez zENV7RTV>JUpj7Q>_*SH*(3 zE-LGPt{H$(;sm#KbycN_!M(dmH8|8=wSWz)FMJuN`kiH3LyY_Y;*P820KFrjfqnX_ zb|}G*@03~?JwnxABrvvdl#1nkpch*Ovq!7k3;~7JM7XoVZYio-Qo;?~I7M}q6N)pY zsaDfstr;rxax>N=d^)qJ2xhCy=yeo)_UH=LtpK5zvsu;4Pbj)~sE(-FlukHfc@##B zPqz9mKcQMEA&h{gXH~P=_~;7LVtj5Juiec{6ks#t30c9&J@tUQeUO~vw}6hu6n zq1`XdSFya1L!>xLz7`{@r=EYB2(3by~D zax)H$ec|B8s=AbiLr+yRS-s%?GgU{HK%ZARs10Z>4x&$oe}AodF9axf`jN>gynr@n z`h>7RJYQ5JsctrXV{#8KmU`#uATcX55a}m_@=+)aVu@5QA2w*01(j!I1RKf* zUn_#!U&=_LCTI?$sbNZJ&~t|91;siI&)%1vcQ5W{--Uy>y`gH&{p^0Ox>kx|8h->eJ^x=67mM+C8q zG{sulR4VAUZ_ZOPGN?V((wt}?x!F}NXamCy8i?d^FiP!C@yMnGc+Jqa_lVxd57_qkv3Itm=>MDSmV?yMhUzZ>i zjBXb+i7y>iW$ZGSUR=v`a@EF$| zL~p+ezFEY!95kTXqy)1C+++e2Lzg|Xyz>j~%mIsN0wNm(eLGV&vSPBB0GQ*7^ z&T5c>_X~o9K%B+m2cl{iWH2Tx_>z`w9B&SC>R*?FSKET6a9vLD31$v43`8(DbqtJL z3Q@-Z$D9x;Y<(&ieZ`05tnzcg?N~cK1#hM9nRGSy zpuZ4a_3s6*kO{@NkAi!$M4Go>2}pd0`c3()&xVs<2L}k^fNF)o8gTLVAQQa!HaN`} z!HPSO1AG2hKltH8a0rbe)7PTld-N?hlAaCsQ*WVh_(yD13y z`~*RCfo+ZI?v#}yHnn%4NO!39^ehZh@1gdYSVE2NpOb{YX@t5e9UbPCRVTBgCFNQo zCtIF-R|l6=P*>uJEZ}i@HMNSSlKL+ess069MUC#l5q8T~S4YrdpPEJTl&h^CNxg7S zJ#}eDAqK$IChADa|B1$4{tKI`)9F$yqlKDbSqG6M!IZtWF-1&U+7>arx`R5OVNE2A z%LjU?1HlixR0H*0)DtCwD{bzs&SV|wAwoP%`AzSm-cQ}5>p=B$>h?b+shKuDpy9g( ztT0xM<}U2;AZv_Q$-kwludz4@K@6X)PNT!k(K+frSY9PU_Xg@ibl)?FQ;Wp zb18hWNL^BlPUx1Y$1#k)^dW+Z&j>d`Zn;{8uwd{?^+PGxxi`TI8l2o70^Gl-S-&!f z9#E)2#_9qiY_wh-gv|73f*QteRwtkc!NuD->K#ZgxVU1k8vVQlDdt{PduW5l*VRs1 zG~HCUqX-l3s?REgwq2g9ry@_l2(MqM-_Qo{-l{*M;RB!j`d(dzBGmX>JzXuF{mnmQ z4ZUopD&#(GJ2p6^2^x#=Wxr`d?wY~QW5b(*zsrT>G3s_#g^&Uf$a9WR!@^1-bEHCX zZjBH$&XKd7YK3?LxKr4mO~J2CLvk29B8tv_7b=D4n}zK5=T5=t?L(3!==ix)$VUhF zr|^OUT8r=Xr3dswHR#J|V?(a0fMacKHEcdBBtaq+kIW6(E)t4U=Y_PS#ozgm5wt=7 zg(2@ap+VxJkdm~)`XxneWy?cm_z4ZN*MzLo3&l7TLp1T?1-~^3fgiLQSFq5uRJg_~@Us${_f&g-mC+obSieSUyzEX#uYb|A zt;=gVDkzUNG=peo73*lGQz6c_EW(}BTJttQX!~;)%^fOmYHSg1{WuNU{zN!G-&2Fa zgB0_6YtVyzTwG`Er=j(c12hk4y>pP}oK|T1ZIUK|vM^$r<~3Ews5zP_dfD!D%?5f| z(mc%#+P2$#O}tD%_-#p%#@c3Uno-d5vmg|TbC6bN}Fyd zANqh=Wofn0Kj>9_(@^yK17ShaGISVK?}DzOP5gzkFB3vFREUs)p)Zsm^X@h~QL-VO<9X5xKtp$#>QYC|i&q7%rDT3_D4u6oi zvp@#y_&0`vuhr@ZTK*BGgEOCp{w3$`!*TCIH;B0VV6b?o9@hRCT9sk>1=oEEEz5Cd zgmJX{40SlD|IH_!)$@b3FBk^ndZo3k=GWHyffMUSg~A1#*2a=iU=&b6qFu$v0a&Kd z(htO?NVRBce-htT4VEjkEME;G%pgD;{L^3io@JF)j4)cM9WN5Nkp*j6?yeVORZwf0 z?j>Uch~)W&GV-I&M@A;=we1+379d8Fg%|bGt=g|*K`qOi+R1EI9|zC7w4WI5GY$?9 z( z8d(uwOk-^+){6nUI0zb=YMDNoilqlZEwwW6c!<^r=eE**WgK8*!Qi%9H7wIsTaH;2 zg7BrCb{@-}_=yX&9f6~#R*l|l)((O5yK4W!Qy6)7YDuhi9Cee39!ze6(IG;gz#^QN zH9f4^Tl2!r`;uX7`5q4+Uc9hl*H6yeVMz`t?*NxX& zBzQg4)=vv>Ow^)$fh+;yr?5Ixcl0y0XxK=as{N7Cqq;+c&`B7a;n7*z1V+vG0CVSQ z6(F@A+AK<3>it|+mnw$p51(Xc`!Ki^M7}VQQIa@tC`%jkFCV(Oh}DNE6!sx_Z;6)a zvvO!`Z3j|xIyuZ)tsN@k&OqlT?G)-cyS8Xqwx@Y9Rd7d+wi}D*coFQNWp8aTJhn~i zU@#M&`P#w0P#Y^OhT-*nTC{f)2L(KQK>L&y_aD-t%#EC#aag;O7Hb^UE~mw3$F%5v z25E5MxONjQjyYM>w(RMmws+2GQQAt{u05wc>=ufnUTe{2ZgRHe8|_k-!Ij7|_`SA1 zmF4g!ty3>RzESJsEVqKaT4vd5N3P8<>jFWU#kx}PH@&VdU4nVcI-X%n{0>kDQmvdE z##?mDDXP|?W7)s;f1!48>KZdVbs^pakjP4i9(pffc`Ajufi24EZZXFMx>ya-&IA?9 z4QteWYmiez=LchI>mDh*>y8#pbwg>upZ`HOh|P8aFhIcQ!}={z7w4Pn8Ze6aFD!_# zZb}6=pV>|qN1gxEkGi?EnAKG`h|&4~)eq)b50>e4u|VEa$FlL5C^w~#j&7R2*Hbr! zy6%7kT_&SaAp#6x94%S{ba51{+h6BR@eU8vv3xJyD_Inj4%Wpp>l$&R2C>7@4{khf z8x#qnl61?M{R3k`gmr>B3=o1J2%fA9fd^7`=X_zr4N3e)maGh*(5h{qVdEIuodjLMVIEYAN#@7J-UZJsU3%dA3!i6;OSem?XAUr-3^u( z6}>Y0!<^%~W<^n@JXaJ|XD;{@RsOKxqHdfovibvrpaO3$>(YFPZXHC6uv#2!d$lNn zu3Yyif^>LUM^|Ca8@`2+fCabS(oLeV)Zng9u|%1>_fKmD{JB6km^Gjv3aA&pSkD3+ zTXfA}+ebdcP4L<41~6xjt{Tkw%ZC|}z*r~iVqm3rx><}-+-hfSeU5~?gdeFmL6B5` zgTX2B4hH-LNDb@y=|wE+?Gdl<3LIMR1C=K-{U;7w>}gcPw+cOacuk69ReA%hx4 zHC*3;QJa0hoT_>`98*>wAq4@gjapDGN{>Ey-B53Wf0Wmw_kW0n>Q>UT+)F@0k`7d` zZDsu`MsMl^5sT=9PQ-EM*VLoWfRN((diuB2vwmx!|EdtqK4_^o)1vCfqGI(p{V|qX zK3)OrppI4_3uZPppr5nZ%KURS5aEsT6IA+ifS%>;17h%6gY=(Sw23aB0CE=VL*eHk zdbDMP=&{l;J=*j@ieHlSXqzA@9viOzO9)nQVvL^Umt6>_mT`Kf7i!4Gk`(<;>VT&w z>ev3~!x=;{K@4_>_owP>)4+_LsbBY>_Y8;tb7tx9Gumk?^vuyqC=b;#^t)JjSTj%G znk5M(0&K|CKcf~{3-sGqc~EBQ-!ST70!040f;wf7rF!&b0qmck`bzy8R(9sE(zATL z4VGK4|D9SSY%^0#AcSck+UQikDO>ahSmq6ckO=y`wwOU3je07av{N4!re}Knst5suPW#CS(@yCBQZg8C z;%)sH@>2kU?1!)EL#gafZ|D;koE##=@^ndZ?4BO&6C*mC`aq9%vy)=`7y9wSfDIqK z(Z6AOymMPW6vP!=SHRTIdh}zDc$VGS+HjVEUx4@(umHkB8+7oV_20w>^zkji?LRUD z+6PXGCl!V;%J|nHLnxgy-C9E>7O%Th#gGW%90q^z@tD3MtYS83S>m|}27a&@l0|~w zrrHg!WdhTaN*F9Gt6zjW55|=@poeByyRfjLVJm}rA;P&pHMOml;TYBGwEBjrj7l31 z;##8DO7fZ-GO4HbYhgfl#fgcGF@}mPxFnitqpiH)d}uEj{Mx}#8GSws%iZipLt_TH z!FPyC*toMHoAUUfo1qco(y|+fIZ>d61-%UhDtlmG!(A4)L8~SK3?MK+$oDt2rB-@B z#4wLqX<@Pf?HMJCjU8dwPK(Y_hINemlPty#lT!?S9Jc^}s-r15nrc|VFmM%RRiMsE z^sSB)6AkNF%v5i?F&#!uHOvu#Iu*yM;o0d1^olPjHkxHf^%IKMG7SCb*%;nXj}}+X zH*6IP4SHo67O{2@4lFS+e3=Fy))V24rG^}V2avVGu#iEK7zQ91dUK<2rQsk;1QD36 zb=3-B%RyN9qZ1(JpAK?3YrUbKglGxe-ptM+hK2~5>E)j9n8Tk#He3{J2)6GqtY=l4 zS6Ul%?=s}GMB)G9>*#I+`a%VEKCpbB;TPZe3OZmwOBv$LnAps?Sc(QNvOUSs+W3gs=ok(lI2qj2#)y7!n+TrY!T6OEijRIYmZO%7 z=wd`~B#{RDx*N6h?ERj`no{9xWZ$C8YV|i(plv4(HlpoD1LBq&P4Iq}Q77~U5K#7X zfgIef>N3NJJB)o9k{W(nsu?caV~ppxJMimXBl_v^HFPif5#uI?!OT0w>p|T!1^zJU zs1Yso6QjGUVeJ#f@*<%)@s!cTGV`t|FvbGgMWYHiv?cLrfD z1T=WaDtRi1OLr;Y+&_#{SyDN~Lw~sCg>kVAbV=&2g|Y99qo_3=ePD_}g81^I@h676 zQ~+NL&Kpg3@UoLB7_|RltPGocF&+sJENfDj9Mqi6m8KfB2-Kz}tg_?ISZ=)&Mzg0ncZAyGtOZUWPs~ObcL0H^uJ6jUy>9UnEeh- zYKVcpA5B+T8Ss2ERbtja-7lv5h=KVo^EKA~3pn#SmhpevKywz1k(oc?A)|SqnZ^Au z1_-vABcKX>Ih92V#Rz(}`5v~#M~(RsgD#4J_G`^dPt}SMRvOHgF)PE(%&b796{Zbi z#aukHn=fK6cDu}Hd{W2=kGTs&jtU4XG51UX3qF@LgA7S{GOSd_jDBsm5dIKpKFy({ zHrm{ZWz#r;E_`AN0C^W&QcxRuv_c2Rs|g+4sv&f+wwAdH%cBp{!NpgmAoOEK5tR8x z%>?Yu%?0eRmgd&X*r^@OAuy(s`8ifctuE#(SREnV%qQ^iW~|V|nmBb0O<^0SIR6j1nsNHr4zinmk~ODdr9c8?KyT z&R|)-3r-ed4g`5GN}HiO-8>r4Ntjijoom*B=v^igy!*2m{XTplY`DN2$}-`8*NYq^ zwhi}#H5Z!CV&f?mn+vefo-8p>U|0koR!xbZP-h(lQ`eX~F{zd!LrE4c%fs zhgJJvyZJd5{=zQvG^RMF@aVfYQP$?L>p}DSV3q;p-!LkWT`JNKUcF#W#4I+xVje0- z$KAKhA7tpb^`ZF`*6El(&ByVv-eYqGe17;Va|&+%?v42XKIVQjN228qeDKBm7>js@ zvoQS}Dz-2DCbR6q2HoXvAyGIX&_X(Iq_QymDmrl*G)PH7;qeFyEC{t^VE9D6Wg)Yt zr#jJRDPq#C(_s&r#f{;nIxMFHxP0L*8z^I0%VHY3J<$#vHw%<-YgvnmX)?ZPDh0N- zxBLKlMO#>IXrNFa0KGx&!4_ddA^4VUmBMG`ERV!U$loeip0ddIZ(JK(RK@a!F%SrQ z1BFbbPaR9J5-~-F#k3X{G3GF%wPm*t91erpHkO~5hA1lIWZ0seMd1s=S0DJNmP5J8 zRnT=+$=^U;Z<_*a?5fHH(LY&a@Ioic7737kISOlTPB+Emr zpK?EErfwJyvd`QN1ot|XFberc$_Al>%uPZE z-M3gG7*_6hQAqqe9xUHwQG?c<%r{{9y#jWV{T7rh$!k27ho_0NrrK^3<1rMVcy?9|+Ms_AyfA6lBhPb?@vGe)f&+)X5f_TTFUwS&d_h@LuDcWe(QU zsgD-6jH1ZE-VSJ50Y6z#T9FT@e6gUkA|LktW~s=SR!|SBE46CDkahN%@V(4R+&{qI zO5FcifOP`1ccO(}J&5v_GmI${gVwqM&` zh#ObN2yAl8OxSviRfSzCcAS+A6yXyDhF+vtvwiCbxs;IA0F>1Xg14qwQ7)1Xzs<1D z^bI&?j#UA^-m)15;OprE@IUjcE1849n~~UIk409r=`dZ$m2wta*Rsq@MY+ z3KS2@wzJ4dh6GTC6ali!+x+3WE!HqO;*s2!>9p0V0Wn9dCa8keYa(>|k3CkFtf{C^ z*lnM+AIoy32my1gf|&=bU&LHG{Q0oePl}FN$E{;nhPUrw0fJRy6UTy>vsRW5DR}Yb z!j9*xPq4A;UbeCW2MummS+ctSh4%a=nw@-dgm2w}SZiIpjVA~1O+ zZ3*CIu-PeOQI}s?H)5Zf@Rr@DypR#F;(II8$1%U-ECPo9ZM}ij_3|Isw}@DuUTL*>)Q9)JkmoFYqLl+Sr4yh$omUvz^3Djq|si@Lf@518wb@hkwGj3Q0Hb6Ou{4JDVnF1HX_Zf&gP1{Hm2fq<9TeLU z&ZuOYfpiYlRc(pPLqjn-c_PxKhV4&3gjv77Z5GQSs#t4kDgSJGk7K^w|fkYGn`C|^m3B~I8n z`{t+@uG}U0%0Rf|oXyRwED}hmmu)h*{EBV9Z!kCkfhYmlz&vmvrT+lYqTbAL%Y;m0 z>z}qQ4C7bv7PFK`1qyiXk!`Raw+z;NY12!U%g~;v{uR*X-)@;DTk+e%N`bigB?CZ^ z<(?ESdSja|<&G6~UKOnP+vdy8a67p8vOo>zezGxb(m=jA4s@<+P=W4WY%F`!5Wr0E zt&^R8W8%VB+gdRw%;(f#n#j(w^TrEkgB2w9d`6F%S)A#>djWRzD^-7Y5NY9AwS9(2 z;4VJY&hqIv!X3#+7HRDh8J8`DI~91TwL782VE-7&;DJSqU>G$>{9=m*pZeKDt6yf` za1Okx*Fp4<=&?jll(ChaW&5NT%LZ4qwzICKh-cYgowoLs)NFsXx3j#HU(C(ej&{}z zW+p^_euFadq>G*90|mv5jO=DV$?QLf5gXLU+4Cqjk9*o7s}m8dk-hCq_nnYD8-+|o zHo(4`y3GC|tS*xa+YYsVVN^>ltdML!Ml~WIY0qWTNG@DH%FgoZh7c*EA07N^OknT+ za*Cbl`3~wn7Y?0d-$7MSd8&Ogs|rp`vzKQad*>HF(`hx=j(#o#&jv6l!@idjinV{X z-(_5M&H|Cp6DB;*NnBh6K7VNuc-(S(9cJ*aTK6*eaa|Fvbwd&E}vQe z*ZzVk`lSvz|BfONe7yuAzKYH=1g7>XV!#$C0$X&0H-?G2g1f^XdY_dRCU-6GhI_v{u% zhnxkr4z`m#F#u%G4MrQoCzq%Qr$4fnrOSd-&+QEvQ$>o6vqaGQEt-hGY3;&uE)e(H zUUosJ@G|gGq5U4ZC6A*Z|Gm8fvvM+0@|9rupB@v)iwo}$M}M)qCBnL98|Oej4oG^a zCUqzo$In@S^bobstb}Hn<197kM}^}8b(H)7MX%&2(7_{!6nTQW;zm;V01O~s|Yn$I=-Qw+rr$nSmXGGVKOhqKHtNog4@3#h^V7 z^!^(u9@&e1niOa5cf1hw!$c2R`($BHg1eH>r5RVEFA1t%Q%r}8lFnp2Kf^s+T) z9WzCr?iiTz18=)N8ow4wm0!^db&|C-WUl`BO2%Pq!RPC^vq0 z9W3`dim@gZIGFOMVg$nj$6m_K?++b2d~oVPu=k%1roD5;+$214px4W>H-R$G9V{sW z#)4=_@{y5xg^mf7k&A!%6zhXvqqmNubW}5bbZqcR#TkD)PExFXUmP2K!n*&}v5e*3 zE>UrT*qI`XCt!%e$sALM49?N;gTM1K^EgNlRw|uWsJW&GJ6Uc85FaF1x)A4M-?+IR z>cl@eiM=>S@7&60B#5|4W}cOaD1jE|R?5gZ8#5z-V0CmjneyOb#Xfa8w@_}@hdG(! zfN)c$gtHv;?2df53rdRz!KsnXfh@PLiA)G323)M^B)b|1Ktok$XO=Bu#aIq)LW{f&G)~`$JW0=N@0wg#>-$3KU-aU)s@mP6oE#l>5`DaCCeTKuW5!1!dv(ROcX; z)Ua6j!D^=lESu+)foFxm8jx7CStxiG*&!H2_h{Y`W~VtHaA3bxqJ?0tlPTZ*zAK2j z8bK8imgyYo8}p8ZG`WR?7C8?~2%}(h7Lq6?#A$+w%bhLg67$?jr-XU5BrZVuB5Cg8 z)lQV=5(AD}=R|34;xJhV{As=OrBA-QAjhc%-2=AbTAtK<;%6Ru{QdN7kcglD0FkDMqi zChW|4=0s^RDSmt7L}@W8e)z|Ue-#^t<>4<*ZwfKvo3jjU@T;E-rNyK{qW~95ixbzQ zu#^P5(9TG5w!GGb(qd9H8(k%Q^V}gD!s(OJ-gXz$M(m=vTHtZX0D4e5049dJUi-#Y zMwW}bj%EV(a90~RrL4=vJn?uFZaeH**%i!jzk_)vs-YVIRb1;B>|OluH11P@4&JTm zY9~RErR$fh1QIh{!Ej_PS5FDJoVM5sUNtV+4m7Lp^6e36#ytZeo3~ugv$Dm6D1Yz@*u1hRY zi!RQ>_Z%96#O^LNtkJ=>SBh96o9O+!xco6++E^FM_D=#$ZaJ*!?&{7mTw?@?5Y{0s z;D~tF5ti)U%LcLCFkdZ3ll!}aTn9u*HA@m*EU#N3o*-;D%*B+{lZ(G4yY^!S_K$R( zXZ4w3qg_mSJYm2y&UF(r@NI&N#N3>VY0SHie) zwrd#{e)k;LNmd5>rn`Q}LbTvrr&%$+X1dT`pDgfbq3aAQ#-c?ori2_RA`9fXoG#(n zZ`Ewq2?>|AU=3?P5U^74=vvnU*0BP!QwnCSccCw9WP$#hTr4|zy>gX;ky~6$$!9Ub zovp6(n3YYrtTxVqb$7ZdGR|34rG0n1o{KbD|NApd`F=p1;%W>w?{ke}a~_IsJm6wl zF=9QSrGcU|2@vMz0oT!LMTB zcv0#;gXtwQ_daZzPX6wPxLvIv_j{J*Dbb-LCZe=pnk70nvG_KFn^=6D$vuowSHpzw zbST2zZCDZ|#27)K@4J;R?M53%v*5x=H`+Lw1rsW`(Zva zSEH;yINhv)%h$O#6$NJ8MmM@)kp(B^2nK1fO;Ca+*WH|XvO|5DVS}A+^ge194BqWV zyScMq;U4!dj05H*h%y|sEp|5O(W66CkaNt<@&ic4ncc+{j|}en)g8n#ByEfK3=s@l51lxxalWKwmvK;U3ck}TY@CJe9rxXVXni75FxUC11Z`w1Z4kt*9Es;br*^e z7b|YKS#~fYE(9Qefas3_l)vTP$TAvvu{yGJ=C|U%AgAuYyNj3&)H%?gN-^_0F9oMaRdVg!8*T3&$y6N&U|Hp02ohxzzI( zDGg>SJdIffOvKPk;fpZqOrC%cD&M*jWjxpvC!;(Jxh+JXFIfT?U6&5KSMZ?M7-z$7 zRXm&@I(Dz+LBsTH7*WS_5g$L*^=!w-&GkJ)alO5nrybTrQY%jcOKjs#0qRr@2L0$^ zd5@Kw>H#?M6(cUdj&7dA3?YOtmcvHfJxnPtx%fs8Pqqj#Fs8RBkCg%c1P@cnOBh() z*Mr`inGJdk@Em7l;O~JRmXsF|2EGpQ?7 zh6`jo3sb-$^E_h4`H{k;;xBEt$`m|94m?NxbA^CnrU=^Fg&w9KaVdt0ncYkQ2QT)Z z71eCuTK3;yDsQ=mDH|_lipcikO3!x8l>Ztg_bWz=KHpveSFQC_Vw`@7`2xukVeuBv zD8_+(BFNj}L9Y{{?`%T!oy`j@sS}YYFVCX~twJJ3!B$5-!`WdT-&KK(gwjU1$D8Pio=(8y@r$=4?3bo~IXU0E4nMB1(ejzCjvz_D@ee>L>}vg6rskRhxG zV?YpinjN3Bhovzt_KIQX9$RO*Fq9q7hCf#dL)r0cD5)KWvg6tCbE7b_>^j~g3}wf& z;hbh+C_A1F566U|?07b;*C7mL$Ft$LpTbafJR3%K4@24UY^d)QR+HKJ?%hMT-MWt} zGYF3A7xou3Ow4%X5zDUF2Ez2ju)mpMwhRyR$KP{7zwa?JtOVl_MDjE{N9K&&nRD-q44RMWhbpqSEZP%f3y($x zx!RCL2f{tUZd_1(OaPg_BB%?=oE#KDqKy3-LHxv^-k5Q_83r>QrOyr~Q=SKk$0OmV zpmkNaP^9nlpd$z^nF0O5c4p8qOlzYEKMFZuzOMb=2^Rhww9}ScPml109*cs$S_|xk zE)80RV>bbAFAKt)j08&TJJI5A*96_gOh75b&!okjpx*I^@Goc0D)xi&jX|FUM&#MH zAk1MZGnPNJg&@@QrxM|h9YJ$M^ZdL!XdTWx+#CJDV{Z^@E>y{8+5VtXkxkcMgD^)# zE3qCP3PMecDiIzW3ECvGS#>-Jv%pe`RqtdFYL--quUgz=aQX$7xWR? z?}@ru_%Udm$fo&U7V4(_OVCZsn8mCcHfyR0^pgeC1xBExval!#{g5#0?8&k?34QMhK{a51yu=UPb{IBHOO(8} z6X?%OljNbz`_;FOEB{yk`IaN`Bgfxlc+Sq1_`=H^NuaebMya1K=_iCRSZkD^HiB|v zn5%LC`o)0XM2mdaP(t^Bax;!n$DSbiZf|A4 z9Jn>6qG?naU*WB%CrJD;(^G1W4#LaZ&$A?I%=FZZAWToK@1>GDDUx8a(b1tLjQm-0 zOSEoriG*%>;uVKrEincp=ql9i!<-ewE zmNYHbQ zvt*fQvhTl2FcYRqtQ+4XsOeiJ!a(cbgCd(e+hD|NP*RC?*)CX%89-DbJaP=C=Pp)idl&Tl3>(4k|K=xTcXsYu;4?qb7v9UHzF9> z*2lmwRj?fC%A8FIOpFSqIifg`zOliWHYwx$hRYp+gY<(#@)U@D0q!nZp>}u6o0Y;^00mxZY_DoEaLt387P<)emtXF6-#P zr0wWnabVK(r{Dmj-_9ZX*Y~l57SnP)$q)T#90&cdwe)PZ0f zX4Ygz5MSzDFAJt;1Gzv2$Aj5KiOCjlCYa45S<&Tua3iFcoT>PBug$gKX{fh*qQHOO z`?~9CFg+^B*=b${)1!jCxZy)EJu1kG+g3>FNkRT&v9**akGz+jl9H563+s91U+zQbvA`Lm+$i;gi&@fvn1N%R+U4=& z)hcNgvC5TVW~7w>frV1>P2qq%>8C1IC8Up0`Uw%(DnnvO0QT%<@`P=Y6@LRW&AbJturjydw3~2mWDQ2OuQnd8nq^OxQN0|0mT1=+>PG5XJ zx-8wsBKv|H=!Qf%+AG(Z{?PT7^gOx~t%QlWBfZYd=6z3!Ng`e;A}4j{zVy+5fz-iA zQhMyUgp@q}Z;##LE&VqtaKTCb|(C zGRh4buBaK>lZt#gWFt#?%ku#7Qmd&o<6&Py$RDiN-;@|a52}?w%j6K$zSqBLo96EU zLuv^9Fi;7EWQ5RtuO;A^6_SM>U@Jmb?!InTkkC18DHpJ!;oT@lm-u^?#Cd_R4AAJ8lWlk6u zLN~;gz`98xbVF0#-4I&>*H?tl4Y4KAY;6eL z5L*J(H-^v+u_chTErf1}ErEy~Azjha3+}0v`EzdV3rR#Pj=M`m{+t#^LeeaPBL9&; z=icd%&1hGqM$MkxTv`h{Tn-7Z2pnr~g?zAN^eI60`90(kGepjVkkQOQXP$(-W!J+m zL&}%|C%+G=h1p7J_MmJs;;#^YGU#(iAvPc}@qwaTX0f61w~!6KmLO3@dd~KfIjy|t zE344ulUlNUmgVG=BK^RWsQih-XJS(GLSJXdy#==$k!E z=)(ad|GKOtIa?&de8-WZtS12`SqQvoEeo=lT{GL0$U4YA;-pzml;>pr5YS0hh>04E z3>b=K{k=%@zp{Mc`Y4%u6;A2%7#ZemKbMXIIuMV=QahMBPSz1KR{19k(Oj2#5@VlG z52!LxR)$$e{NI415+=XHuM%*@Q7gLIacw2elVLI>aaP=b_9ZgZYyV1wBMW8MtT~y@ zOJtZSXeHF(Wir$nK_x=+O4$d2OwJk^X2GHos`@$^YL%c8A?FvFpWxKJHp?(e7L`yL zTV>zS{>%-X46-`}slh?nZx)fMdq{>_L8;X3gEHA} zfy|a;vLhCe>32eAB}CToXJp5aP(bZfUqEShQFa`OBE)CeW!YlPbbxB-jF9^3_6^x` zA=a4g%Ff})T!tR^Wj>hU3*~VcCO(q63a-2ADYj8xh995HQ0wxP!r7HmU&*+Oz@pc( zLR%i~s(g@P*8aFecR$L!(CYZ|m&}{1!&D~}&A`e!GzBwi=Ja#zLTd{K8R!^#`QQ5l zP?VEs`5U^0+6%RJ_Y6e_kIRth9g2;pmqG6r`a%d9`PK0hf@_BEMaI#~@Vs{DGl9aB zz|fQb-UftQa&O(xVVG$oeRu~y-91wl8iZLAqW~L7(gB&c(Znq()CaTr!C_uCxavs^ zjce8rvV2cX4n=)-mtz?=$^77Je&|j#n-{G@1E92N=nKqZ+?~y#8%gnzTh2g_nJXO0 z_Ka*_GOm3n{V-2TXpPe1&`eCTsX!GDn(O+6KHwo8q6dX;!7OfYRT-bj+~CrP(9=~o zP1rFy)P;9jaA|z#c{Hs13@Ys@Q>Z-|l9uVs&$1JGmc1>6P7AfN7OF~~5&APm5u7)x z0B8kXJcz)nIiUxvSVV_|KbuRl=7+8qek)uM`VO=4h^qW3nb?S?{#)23)K^%Z?D;CR z3H-LMLW)NlLXRS1Fi`CC0{6qEX2xW@xzu^5nS1c=&`iwQ8rRasQrboJ3-}> z&xfKuolpTrD40EbxDi)9-~__t6WVN=xg=b<_F z0`2&>q49!Kj`?V=&+s|4RH)DIOK1Wz0&f6X-vdFEVC%3m0-(K3SUco=n1@4m5^fCX z4rMN3jW7Y|PVKN2WPeb-Y|vB>>x&rp0Y&f>^i`#9*dC#DP7-!Q@VC9Pu(_D-f}+wr zD9YNo&|VdG7~_*>1TpP_Ra#iFKyFl4SZfE~eBT(u9@_KLv&LbfYn3()6HPs|d00K+ zubbM2^%S0s=oGeID81|!=Ff+9;NLs!iXg0gzp%dOC>A(8%npi%grV|Qvo-@Bqr+}t zbj=%F(FK`3F-)yp6JAaV+wMm?9IBT^UM>kkZHpH37I+em=yGr3uq+Id$os(Runy$N z$^qW6a(UQeMA#z~0kcymIa=Ok_Ag;hPxh(GLJ~LKzS?4-o{}s4VOqrin3SlM%m%c|pSIFmD^u^-_IbGVoLw9i?p#s{zw~3(FVv z_ToZVcck7}1=YarQdlxpaSS1Zv>Gh;0Pm||9(2biH6=ve3fqBcerBPUA?2xTgXLjz zA9#8<%#m(9WzJ>$FbtDV<)1F!{81Qcvj`XK?8`9v=~VmMHZcEr*b0%>cYlN}Ldr@i z00{;3Bm3LtJHpo2VZUMq8~k|I76zumgYUyI`Aq-6&~-kBEy47C{{Xau zj^Dy22@Ii%wfqg*?K~Xi)yc7rz6v;JCtrtEB2bu`*1WYslC!*yMFPS%5BW_j6Tv?y zf-7k(5A=ok-ts3_0-1 zbAse^aemD!aD#giIcjB`Q3Og+ic}k~K7b^x32RAq#L2x$%`iD;l1+I`1R8|&Vnf%3 z%Q3H^m~f;g_9cojR~;chBQF&>JkVi95wHlw5|i&XO_rnH z3^6NnUVp=Sk}97ldf%7~`AV$!F=;s}yvmecvP5Z4r1KJa4VbEzqt-vTjJLINM|jmh z9*lNphCnES9XYc`-hq5-NPT)*Gr1d?@1U4WZhbG83XQjBV|g-K+7an;2XJgDuaBn5 z5w5k8Cy60S*;-DJ!=}FERTLGs!?&=3@T8O6TkIU%y2_7Y5F?1Z9}Mj+SBhh>9lfXq z`55d)Klysm_Igg(v(uPfg z-ccwXSKpmah-ZFK)xz8a^E61X={egV_mY4yXQ(-Qd=#KX{Qm3$S(Md@?& zgykA}q7WQN)LL^B)UT7*LNH-Q?N46Lk=v6OTjX{Suo>NU1Q?(&DPrhK-zHy-3^e^= z%5FK!$;2j6;rrxe7#!Mh&|EO~3OATnCJ*IN%MWfGm$MVqY#d*93Kgp=V9AqnayRfg zBUd9QjUqb=gB_&_2#kn0R2y+u?n7#Y$uX~qDg`?pCcgz2F3MTH0H&#~SFj@;kst;1 zBXk_$2$!$QH;T=6&P~i1j{Jir9X}nEI+os+mtaDg8Oog$J(m0bEx3_e_vQ95^uBzw zr~$7>7HPm8Xa!F&O}>I6ym~69Uqj~h*z^KBuH*LL;!2?YEBR?m%&4G5UR|MMDmJ(y zba0mm*6-!r(10GUx2uEy7kLm`OALXWSR?O3T6~jVBFsNIih#Y04E z1B%$yldNt#(3c#|QFxQ0K!xMXX}O;FcZo4rVO zDD-5+2}J<0FH>OhU6}#w_}fcjv>sp!&5kHmpll?P!6Z?jJia4JJEfRE;pj<4mnvK} zB=xKUv-ocY^oP;s6qp1#gd#K}AKzJf6ZZt)n#9<)x-Go9qM)gA;=c9sh45#JeuDJ~ zyioMSG~F+X*0BAhA{A-*-mu^gMG9so1r_Z%j<9H?!0Z4YSoc*?)kZMV1#9JO3jqDW z#YVXhsfO=>`VAeQv4%uWI4Dt_gy??$@Xb+4utb;x`$MdYvYp6gy_?zmgZriPbt zoXBRgj}r50gta6%DLPD3cj3>XH7Ei~6}Da!pA zf38$eYPzzi$Yw*Pa;im=y~t92wZxy@V7NiK4KqvT^0+lpdcd*ol>~tR6k$DP>5|v{ zDop7JCp#!nZ@w!LVmd3URuKjXZM!LF+wwLIPQ8_7Li2_@{glsz(GA=lr0jut%gbxi zjaOEM$77V|u)YHnAz$QI@{{r{#_F_t2q*g4%0SY2wNe4evy`YU3=9S+%zDiB05b;< z=(bS#0Hcix1VRzqNwq>lHq>0AL~U@az=9U5l{YM7LlIm^i{^$@__$X22D9WUD0Y() zwHPXhvPoH!>~3dBhPPXkRWLrny|vY$t8V1gE~PC@+o3##QA-63P?!MGZvzh~F{?5{ z?>pSs!~#kTrS!OxW*y{{IprB;urnDQHzR-q_IL9j&2zmjk^CFVT4a&V zhMu@hsH-A7uPZV8OxY>z*=jEbQhwAk7=mspC)rt*kxh4%j}Z}H1hXNE%yN73?4I%% z0%Y+EWi0qVP#&*hRR)hAD>JO=HT;<}2{ZhlV3@-`i@QariShCD+T^8ExVQ_p+AC!@ zTdJEeZ1{cwZS%vIGEPZV z!ZBNO|AW&Yn{d=2p8tR;vJW4|NZob}$Bbnv(11Ebf6REG0)Z@)g*(7Y&+sNbln+lC z)It(|0JA<)fe93IIE8}%T{uneR|d~g!qu+y8fXmPTo>!D`!(U!K;I|)f}fda%*1d9 zOqaolGB`rv9Ef5~GdnmoCEPuNQoOn^{D>93EY}O0itZ8K0?UH25vwtsBZbQ*0apgw!JzRG&uUU)9hXI1Whzcy z8!^hBUJq@KxKk6O;up#S5_~42lx(UuG>ZhCjaY#|p}h^A=$?!C6Y*@X@hT(C`YmD^ zLeGRfOm1h|7{+uSM8av3f&nZbfXxib2s1VZ4x1DIgv6$P z_ab^QJ^_y+FmvJxNT86ZNZl5czKZz5NbuO`^(NvNQo06E^f6+Wiy0~0PPNXO{^zEH z3bXn^WotkvAYEp6R87J(s0su^5$vFri>e_N6MDO=Ozi65ty;#e>-|*I*;Q9VwZYa* z-a1fq1k*+Qvrf{yzG^bg&$vE#w#%2dhq_8$-r$RW8%OjFET^oExP= zEf;h4kz-Vy8G!}kFaZ%L25M^0>uxYfWn^_P{|O%p?@v*kKxiNCOjq4ub^kgGBR3mG z_6CR9s(XmKg@>okRgGc~5&WqX|UZRxM@(&figC4kvOA_}^6x zKof|2pz6yAYLCo{Z5=hbE38^iU5~CEkpzhvb5fC8VtlX~m3VTkgBF%40}WRWU7~8F?MFDXEGl8Ts7vc8TW`0c|ve#Z%{A6@>pY3 zqfY1v1in)@U_xAMs79{X_Xe-;)%VfS>E|Zu0gQlmb2WO&vQZ0lINBvciqwr6fl+PL z=oQ0*ZPf?S8VK$nm|#dJHF}k1S7-GyCPYy;^-!!Ijp(kv#4x@uR->1zOuf|j)gu4C z>K_<^S^dVaG6aPsS%?q#8Mc=a3Q@I7+>p zMH|&vY}9K2l-n7Gp_qh?SR$FBlhy2v3h|zXZEzw`%jxQC*q2XC)edlYwpz{<%-&_K zw4aNOVw{fynF~5MSTaw2)`q?x>a$2~gY^UWYq@#`=Hb?#)JAY$r;f$M0`@SW4_AZo z_39IteR&*V-+A3M*bVBc7}J;$yvWq}WIO1#TRoY&3VhtBPQn~~;BdxMYG*R>kxoJW zJfXgUXx9t{D9Uv^N+s-qx|C76ds%JI{{Qr*dXFm(w1CJRlN>R?PK zLg@)eB*Zhx6+GUk0}IkI*MNl&{Z<9nmW3nufMtUJOC=-fPK#m%c zTu6XENkNLkBVQskVn&$+-Bghh=5{k3)2@^XtD-z|4W;iE!mlG*RE6llZq%&+RjJ%2!2`IuICdjd7ky9|=X5*0~X?l_y zsgdQ|4syCiu43x`vnNh3W;h@CrFUd1MlZZkC?~32Vf3KLW|&41v5>lA;#jKLZa+pE z5RHN`1fU4tn8zhfh&;<$hTEh_2d3$&QzApyHFb*^!qKG=Wxf4oR*Jn3hDQ zu*$Ejht;e4BQ%d0}-hSBRTs(q!*d=I&vtq-yK;4D{AS1NGlditdB$v@I}NWk%<4_K8B0S|%S=ssA4bs+rPJZi z`Pw8rA&iW)uMOQ!W!`T_bFPCL`R1pi8LYu3-1<@*#q0=Fd}TSdP@ zLIH(3P4^N{{y3y<5PtkXn94o&@^HK3itC&t+^#2|{F{qiVnL{ftG8~obD%)_i@arP7|5Sn$0Q8L|6>KVhsXxm;f zyO_%d^o`*y(6wJo3j4otK+Jw7rRSiSAU0Nu84(lAq-`}N<}Q;ibw-RUyB3&Y-m)f= zIWJ~}B~rSPjf-O($g9(-4nVCHiEVC#N?D2JMrMB8nGh@rb;v`oY<$6}r`(HfnKsm-o^&&GUYBKEjsfrw7GVrr6>Rni87TX{@p z%;m3`5cG>vUG*31&^M>oyV@II1Mq#SLU;eQZnK{SRjorhdX1X$VA^ZP* zRqT5ta&H(O8(V+~?m(3_6tmJvpDQE_dZ+o2{oT@*!H%q0R4z#~Obz%mKlXRl2re07 zU$e$>tU>H&c0JrAb_ixb%0~!p#j#b%^S|f>{mhiK4p7)7wv;)RW6#*p*pUK-WV@bV zWAE6v7&qs+AF>4tHjx|7~8-h?hzXhCVIxzLQlg_ zH%Rw@Cz3cVcHT@Vf*)tK>Cuoupr^199GlDBr z&y9P-IJxQL_=4eWL)>ZRc^kfqTZ;L57DvvXls+BWwvUTsjdV`uILu3DGmr}`=@Pe( znY>N6xc8WmBS-paVfswyJ}^#?Ru@HZhRk7ceEs6n$hh6;#xQwKoF@snM8BO;ygj`- zX|+AQ817Avn@9bXj39B7upy1%GTSYf7nj8R>-LhkzcA5*t!6{f>bQ=WxJV!7Cp-h7 zic9wzi*JM#XwILuK;3NS!8?w55T z&R|On^BQ@QRafISAdE_}Mu7eGI8=TP{_vQaaXYL94u=NGvPFcnO>Oi_&Z{!Qho#Ia* z%n1~SrUGT&1XDcXKZr%*Q&C)0ExwJ7aD#X4_H4)>ct-yi*thFSBOPJ zaQp_b=oS+H5z|W)gvS@dDnK! z;E2}c_At3we7dV3;Db)_2hj95n5t_${iqvv&&NIDe-ex1ddGh=duqSH6ZsX!-h(-6w75@A9r}&kkr!JlvKT*6vGpphTzu6TI{s*aW@Ktjw z9K7Sa_(9@huNP8H;$p#fq`Y-G-Ab?`KFwB8pJ846K%^}yJKgG}%jWp~R?~zGzrDA_ zuS3wIV~2XAWt(zmax1oOb(p<1el}(_K*uswXI`D<48!-t7h1Vbv-zL@>7us(pZ{qw zORAqNn>l@p44n4Gx3;sIAh2!OxuZSVc{qL>mU2Lpyu=bTntkDpGH?NLr7t2}-gQZzzg z{7CpBKSx+{CqA8~>|=l*?!}L?2#|l?Q28MKfyhwuG#)eT<4WTUIbhFc@x2f&0VvFH zk;vkA@u&o`ujA(v&cXddJnF+Sl*3q<{4M?xX0l5k?nrtzz2*iE4hhXL6G(;tpQ|MR zroobAH)72M-X%md1PH(3qV7#RQ6{@8r*wN2^vF4@xKH;^yP*inH zXyGUn7ZoR1I}61vgA=OJPXV)gZ;VOULSKKd;-bk3&BdbY%!JxBOC9?)VNOC@!K2}q zc?r=1U3j-JAx-=>cWJ_W@!k)s5?mdG$NV-WG()%`B1nqUO(D-`aKBlS7kR6B;vhaZYO*be|7ym;htEu zzL!A9#e$RGPoVQOUYz?VVT)L7@ibwrSgigcVXs(x^eRCvI;rGsLTj;#IUf?fiZ`tM zobW}&-S#CxDgOHQTS6c4-hov#bnwn=8)dKAF5Zyqq@iDL}(fEotxOiyH)N6TZ z%+x)7G$+I=p8IN^h>tz0ra2}S57yK?5{tY1H5bL=;yRjAvDm4;rn*?gj9^VSvFIME zc`x2jRiQESofn}A5N|jUsrf^!_*AsUY=9lHnpp7$YmLTAMDWpSPKo!v)@iO_hFW!= zYkq*@Ow9pL9?wX2wuXMTgAe_q5|uz*2LS8SB_o1 zp!<4FruggOjhgeA=|=@I^1i*MDjU!Y#;IzVu&{FgG&6)|N!snxl;W_~!TbH14T5B( z^pFOVT8av`4g$(FaUx9TV;an0nZvw3&e#;a@8U%^pVs_{70TTA4MW#hn6F-ZJ>sB*y^uMPs{-$vw9zg}pMDeb!2Y(Ss?7|bh$*QD8 zH*zvDVG8+GnWzxdPXAC#RJ%Gd5!tXR>vVwOQ5Cvh9Gh4m>b{CLaVQv73nT+op=~Sm+HSCxOPfh zE4s?5u8EyRs+q-Dr|w56Vm&D7m8cfoyTn1n`u>S5M?CXy=b?!Uk>iPe#I46Q zAF@amZV%l?C;Hh7nkJJHH;MF{Ov5@yCAKT9o1Q2UWw>ifY-Y>*7ckCC{3!m~bWx&0 z9O2GgnJ5({`)ys~P>f`J@_Bn_q9@62=_aI3M%PT;aSB|(^nS`aI*B25I{S%zKm{<=pq3Y$MZ45&%C#GTCo;^%* zZYE+THoW5Qw-V`wC=+S&dt%wYkEev!Pcg)=0+!uPEW_%6RKlnqB<{1Or2c$_u|y>) zNP0rsC{C;vWL=kXSCGC+yiD~o`%NP1%(;(N#EE^Icn_%=0fA5if4KNQaUj!-;Zq{9 zL@ohs;pfE0n1(~G&PlnG2R_>Bu-;m0#e9gJ4kqtywDe_qxUL4gvej<0L}Yj3bSAh;p1^7wKBrG2y`nF(V1;WaR$zn1REqdnUoE#}1l=P_!q zwwz(K9j0CW@7<7v;t{Z8xE7Vej6a+;N=uW-n#ktS+7(y=j$^f`%q*P1qVWO&r%BpX zSORS)Yf*W8If37&YFjZ4q|Cr;VD3yUDvvKG;51uHlSrD#_&NAkcz>=Il|_&fXg6Qm zjuAMv02K=tFVyB@PCD_rOO|SXWOdhBffs(*N-ZjxFDKx=Ry&&!ShHS>S=ZtiF286| z$$a_4TQ+HF5>pe&*sA>n+W=N<(_)hO!h!8tFE+xwunS*z>({CkFP-B+Y!O{+a1RT;GHK>@ej_O(#A0DJD$V4Uf18WG#R#u&Kj9C}Gx zo$(-7F`Xgwx~6S|nVImqN8i-0VEjYN@g6wojuw@|mlIfWPdl9vh z2f*Sl+9p{4+qPCm^Vgb4=PJ7GSlNHG(P8>tIA^CzWX;aqNr&ip;14HV9#(94;i@~w zC!^g47O*wdgxDlOz`H_RBOT4%OIKBz=rHeD>8cP-S3tYr zmO8|{6u}$!wbIeE+$N%Iqr)8GMay+U#$KQqd)qQy9Gt5|&d@oU1Z4Ac^eeF@@_qp}%!xp)7wKpY zL=y>Eh7DG2fXYX+{+dYmYHTwT$;@1%tA~D%RFqENBhh5NHK6N8T@Mz3`PV03Y}I)n z2NskS#RQtN_ZEeN0lRhnXm-XqIyd69LfsDL9n_&-cNa`aYrsUbsrFpYzC-C zXzt$Ou=lub2xfCTg8`brcMs;R1?NB?7IXJjzpA6Tdrh$7hOU7#RwS0Y7ijKY56nv} zPKY85g1Jw0{p~0h&p&iDc`tp}`bI~S_nP4BC*5UCN(+u0=$YgQQI1JkTZ+`zEeVw` zk87MF>ULl5){aF0gYF-I$ja*$&pXNh)LR-M51!&e%Dr z5UnSt#*r?BChi>%lX@j}M2kdWykJ7Vq;*W1=s`)V+z{@_)n1vx_u_=4y-eq`rdXgH z3fBvx9Nshnm+D*z&EDG%w#`kdgKZk5=*P%nII$$j3f(>^f(x`*o3lt zf_iI`XdYh^gso4ad3;UKXk!x1<7)!#wxmDMT+bdz@*+9AXf80Gy+*b#sScJkP^<=w zP*7PCDq{`z2bS9xXl~zHENEXpYk@0Jr0y73U^H0vUYK+}X+5@uP=IQ1u{`N96Jy_l zq#2mRGa?fkmUXv3iDbEtUH7O@W zqvQ@)V^${fg$dn~H?zi~>6MHgmoPXl_|zv^gZA@gQ8Ph5B)J{hTr8t+%E)Az5yu2? zM<+YFBOQ`u>FGQkh)l4)9B>iyf3X4y$CjD*7 z0?XlGfoDlb3e90_0%K?jP55hqaCu4y=D@s}r#JZ!6|IE8*p#}KXmvXbk59RaN&U-- zoQ;Y01DZ^?1)2jzI0%cIrr6NU>9C@spsZn?1!YBaO`!>YP2kl%rMVB*9F+-wb-(GH ziDp#FD+{0&fMIls#(|QWJUNBt9Hq00DJj2U=15$D#vLh6q-a?51ZcN7B?+@D<{vOV zkhwgCEhz)6Orc4DO>lQ@3QYoRg5#S~tgx{gD9e^;3)6>v$%NODzR+S%D%;!{d(A@}Upl%uU|XG3n);Vs>!-Hz zqF3LT)G3w-;7Q7rDhINVB{gPAfPp3fUXIEC%bkQuApimee8^mPTwW?o0&IdI%~EL+ zU=z4>PNhkJP4KQ;Dop}Rc)xVEeXIniALqW!qC}N?;T0-kbWfWil()#?)qJ8w2BxrlO8~na$=z zC{{iAdO9_eQOmfH%G-G9rBs>%*aVxe2qIm%l}b|po1p6RRCeM8s{D~kQvjQw&YM)4 z0@wsKKUpBsG^bcc!V>rb%>(=iJ5nJPFf5(09oRdjEulNxVNI0Y4V$%vStHRuZT;_^oz=S3P?gAsUX<-&A z5hx%#?EyD3(r89tx`Omw8qEl7g81*#oGqj3+&ayd433ReL5&t^sI2~#VsosX@v(!U zb*r>PF4&&;TW0J|XxBY$3tDFs!4Ed~PJ6^!%)Gv7G+(d@rVLD@`GQR_aah`H#6TCQ zoEvG&BG$9gM&m^5O4M`Gyhu!OYy$K&r6n?FTTjy5kx{-O*|j{)`)^r-cPvhOMls2X zWoc7!3>yN4*aYR((`iOv6WG^Erx}4w;N+i9GXk5yJusbS1U5lh zNIK03Y=Rs``fWB?l*Ob+Bj)lz32es<+vs!c;8uh5gN)ST@6%}tU=v(vnZ6m*0x4KS z@aUF)0n_-{!-PKU0{wcW^JT`aebf0eqo!Xv&HhVg%!AVRcp!X})6!2$zsACS$h36C zYis5m4GG0?hM4K;H1RK;NX|(2#3+e{JfLZNQQ6peyyQ85eU_*56^bEu^U(`n9M6WlwN?uQx1@ip*aH?G-{mzvwQ zr0eRqHt^|e`eux$|FI#XIoUWZZpy7w~p_r&}1#JjWd?BYfMpw1B*~eodldST{4dQh-!lk!!vHO{*Aw5Uo<8|&D@Cp=h38$ z1WY(EOOH7aNuM1mWW{lrk>SRu)SQ!n+3-Sv#z6nM8HbSe8v}pL%NS0zPI@iC6F9Xn z<1CuMcS|yQGXiDHG8W?8cns8Bk%8I~%+*(WwLoCn+Ki=G0*}{aTt;XBD1my^_lfW3 zjP=;M2W-h$g?Ir41*I8m@q!H6k+Bh5clpi?)MhWP_{MuOrZLMu-j{(n49qdI4rF|0 zLZltez-*S{7|Y8twj&fs_`}}EGx&b;`zJHDVYO&HopA(B;MBQ{Eli6eFJ%1k?+HNb ziy2a6Z`F|)?$X{WaAk`Tu=-|(GqVE^smIDQULaZnQ)ow^n3E_HTz`-;mC6NOA7}Jn z1JG+PGJ+9fb_UvlgrCT;B_W?OTp3$$a_voqFL|P9=n1sMwa5F`dw*t#ee0R`8Ap&3 z2$cb?>>{K8?XQeAjQ$$y%m{Y9VV`*svpUMe0G&%_E}9m7*pbM5d;3DPTjqN9%7`25 zL)AfR{R9&Y$&qUP3>2tNmAzGKRnF3EJnaG|LlqDtkNiP&e!qJX~N!8>*4 z6E<+Z6P4MWEs7eFGW%mp#n{Z2XGTI%TIOO*yEX$53Q!9mGn0O2%m?_6L2%v^@tQZ2xn`cTfNQ@^b_pg#hisxiHkff%4y`XxV%=JaBMcKv>T=6)&?R68R4 z{qj-a?<0;2e@{7?xtIOj>b&sx{TGD4cfKV2J@iWELH73-w}ij1FBksa=y&1o)$V0J zq~pxeXPFoNTgsaAI`c(siAtS?%Mpb~9n?CJBGPlPvswVyf`>y!5P>Y*4Mq&qAe2sW4}yYY-~!T4>!M%g-W_ z8K4^|duMfJPBQNYL2gt3EO#dN@~K%yCilBpf?V5X3v#ubBghr_bJiLr_lZTq-zP2+ z{;pmo{Qd3nth-F^tLw8&m~N5E&67L@fM01=wja3|+$M{xJejoAxiRvPZOu2&jS2vX=apP{%#bS}LGI!XH`HE%73*ST8a> ztdA|pne3qe<-05`W_a@topL~XlJqdZ8e!v=u13G|S#4 zQohnMd%i_pWv;-1(0rJ75MGqsMs%&EZL?{{KyH@-?X$Ow#pI6Jn^8l&zlT5`wsw%B z)(x{s(((ZzWLMAZeh4vWboL_?r_yfBCC4e*<1L}Y1dV|DQ?t`8)>j1l zH6#0r$jfPVHfDwEKLpi~Y}E2{1q>J$W*@-pAgMqg3s+}XgGp<%OEB*j%rJGy{y!aD zS@;*CHKEZu3Epkb?%{8>SD2d)yqq0viEmU^;R@l`vhUe(2Z5kF*%HAf(EM(8qbkC$ zzdp#$a}bJwFSEf)C_Z|Xo#`wTlm5!C>narcIObdx?``3gGmfqr(6#_?gL3F+jCgTf zNX}r1P>eO^{3bLOsM#pzlgL5RB4>h+aKrvyIn6zUqI^_Nl!)7BVop0p;nznqbF#%M zQdZ_X6mN*%n3Ifo+r;z_G}`=WZ&vfsqd6A2dLm3cnL`rV=vq~{9aBM@$a7==bXZfxBuo$4;@@c@$BpXX!1H|j+0q7yDvF5m_f?_ z1w7v>cc_g(U1pc-B2v$E&NVxh#w&N8lW4PAxr0R?>l=`}O|*KvBzKZ%zDtT+v+xCx zxhpVxMa&#)v8aF1>Yv@ADZrm~eS^w3c$|2@D=t3GtVm6qGkiVP1P z=ms;=bF0}~9TYhE8RXR;#0*_bL)z?E}fNoSOge2JNE>p&oUF^whth$mgLT{ddYk;i=11Ui&-$I?ugof zL75bims$CI3hoUZSLBYvOd-rL0c6_7T+GCq0*n(zahEscHnSspW9TR@b$jlffA4@m zv6f@TNc6d>Fndq#aciOaUi)(~GYJlJ>OihFvL#Q2sfTj+iyVrMT$V&9I?Sg1;Vl{33%&3{Sr;5O`C?Ic-D3KyKZ?{s=N}U zM9tt#Y~C;SqEQIM<#`ihKPuk-q`Z&F4yzfVnAM;~Y99T%3MVMf%%dF^FMiI-do7yp zYknRbu<~D)%}8kfygG2AYu+)lM6kL~-aBLjX$BPTwkSf) z!FgjvvYSWc-4((+teB7&C-QzZJ#USzAi`Rb_d8|+!Mp)#tj=5FY_^BPRG|WbAn`?{~3ib1bipNIv>p-agSlcIWec5sPIP^5`&vTV>#-Jo;&3UJSpI z7w0Mz2i?!xCjOfAFz=nHs?4W(eqt3p{>VEkYR&L5&qLHt@z=aO%&?s6C)+-MsjXQ* zjt=>vzbahwv2CC^H1^K76KVFWk)PuvNO!z`{tZz-AkQy$6Ml`=4b5fFKN7^pdDFwvbq;3Ps^n*3BNw}BPVk6+aWN|ZO?BBd-L+c zFfD~WOz6XQWVj(8la8MPv?9MW$&VFAPcM!6h4!TAYIjdk*f{?bPMlUi0a0%!%xsdt z)I9&NwLqk6tNaB>B22O*xLTASfK)EmO%fb!n}0@Rv#LY>Qj6Hs?3C|;n2C}~-F)tr ze@aWx5&LH~*l>rb++&#TM!2_<;O$EE`xjINzFnwvPGk=3)7m zp?9TP{72*;!V(djZu5`%^h=hU&ET;XvUxZzzZ5eO=JE_D<@HH<<5tz7%hdcnu4M3p z9=@dBd>XqqUd*on0VVktF=LH?VB5ilh54NYaY4EyzY5yHZ!gcU2Ip7g&qZ@$2qe~5 zUjr1Y^CvlSdExZt{NE5gI8Z4!RuNQoWS3cGzwXW-h!pTgcy%EEuBfPchw?92aTkGO zW%*@danaFy`c98I4m3QI-^E5Ko;{zx2eXvO%mlS>9T6{Yz6F#kt{YK3^F?3Z7IJbRn(0O2q4C)o%b&%Vy@jpoP@fg;j%O0L5JAMy_& z=@k+8pUeH=?$`VvCxKaQNBu1%GZAcwi+-TUEX-Zs0m-Zt8BuuMkG!g-w+EfCK2cB{ zarD!Rt$J^D{bVFj0UIdxbdl(c0R1Fn_^BM6R3|4S`r}qdgz=XmDZ-9an^*2iUIpth z{V5xXk@AJ*zT|^c{}R#ZjNGMf48<~>n%KjHK5R#Z^fEe-iKPXeL^)O8lJu`z;GHme zv9fRXV)n0tx?R7xPW@HN@V0T$?c20hN5{mqjgE=v(6)mrE~0}fJUT8$)lL;28{IxS zO5Hj-ig4sNBAY(Rdd%RLVF6Wk9gKI=hdYy`Ze~mUkgYGX6?Btl&|?Oy zWq!g! zPnPLM*}6hEJKE}}<6;Lly+2sD*VnU*&CQN_=PH7wK6cS#&Py=e0ChxE(meKXX7k!_Z!(neNU`zJf`a1AbFC$4`vj{ZA}pZp!-jHM@tYeud>XZCI;Xh z)AVb_04y`dn_<(kYw8^M^4d`l^<(X|PEDr^u%9 zQvFtobaQB#el}(>MCF+(bd`#=dV?5%r)<=1*V_YqrL#fRZ#t0#V~2bdHo`+8Qd=Ft&jtgfw1Gc{(=(^0E+>lz-RiE)I)AVZxh zoEdo=Wbh_MJLvkxBB@~o{Y-Xssn^QJ3NiLUXSKmu=&)c+jNt}mdjTaLMf9_kfr46n z(+t~@>^V$VSdd}(38_Jj;6b`AR3;MLHGex2y-)8(S~WB{!CwXgv4j^#b%$z&hW411 z6|3Vc#tn5gMdINf*r|h=^hx*>Wla|LeD^OoThMj;FVC`FTKuzn8=J4A~nJu>VUi=IymT1;#+ z^9vBxYl_|(Fz2>7%JI(zKT;khuMSD?4JqQdYvv~dW;u%sO#ydfx>fpcUkJ4_UJ^NY z*&65JOxKrC7(X(iwv_`E+Zi!Y04SSwq8rclFw$MKyot8-GMY`N^f4Y3f3@~At`m#< zsv4&w8Y7GhG(4MsNz%s2jlX>FVnMVKzimfygbE(Xn| z&5h4Q<1A`vd@2^_7a14Ot?exA=5{isi;petW<=#1F$*9z$3J@+5zP@O%2;vgccs5^ zF~avL!g#^$;|Ch2V_c^aVe$|oJx<5hQ1XWxmtff#CuKXrrV+-0ma%#Iqw%xI=KWYB z=Iel!lJy*Kyow1>6rnfy>PmZbK28sqVhl(6Du<~FuG5Sc?1e`3ju?lC{`liU<4w^Y zdo43=7JrRgXWT3LZj}wjB1ge@`-0J4ym#_0<10*8LZ#|L77o7dL{6VE+LPT=(!3$z zC~XGX*%zkIA zPina}Qh>u7BPv%gQ$^`JW4axY|3p_2oBm}~h?A$e)&*vpjI%EY6#Mk;E(K!L4MDn91_eZf-X2)_wE+gI)mOge3+zwYZ>xXergof&-Yu zZB&rIz3~J3#;=zZx$xB|i%f1&;6lpBUbkaML0rkIy_c#H*O86v$;j;ms3Vx{$V$;l zPqxSG6{1CZUM^?^XLc53V1f^On9zsqNcXXg9LTFCg`Q;Bo&wC4dQ@jm_r3ya59a7MTZNVkur^e)<+9=SqmKGCkilo;;B4iV93b=)Q8OY!zpJ9dWjqk zoh$eWs|Wk@1y>O(Wjif=4Mp6`iqWqCES{fB1N;nnAY z(YCxsm|#^{7wLimBIMc>UJ{G|D*HmZS)MfunrFGNR4kr$D(r~q9vErZ<55`MMxgrC zr?52^hfo|Zcu=FTw2HuQy?@~rkzcRC!lhy{sBWRFsOnTn;YqO=7+M&Qsd!UtVQ11U z#nBt=BMRLF6N4_U}z!&iMF-9gW9IBBe~+2X>&otRZJYN-DRv3p4Gn7UcyZPUVKh?u~4!fYgk zj%4Gia%cF`tdQnVUI-6b6!y2F*OqMxY38wo@T7g=4R$@!xo{K0g=cy$t~K*^i8Gw- zR@j{4lM%rKtIn+1x)v1mDEw+`wOQELGkjXjaB`_{A-3ZqR1n&guP(PGnJWhL5_VUY zPcHO^q<)1(n4od4f8iU1R_S9+!TA4J`|kKCi{^2kCj?S9kb3D2LI??jBy>n1p_dR+ z?w-2~Euo1)ngzuM_=>2Y6d@}`1v?-D7ETZa6cs@c6h%QLh*(iTQC=10H#_^>J@Z^H z@8|nV@DFp$?oQj;nc4cxDgVrm=PXDF<2~;zZ_Imw0u2W=`kKn}yUKGKV>5{6@a^S6 zJb4q~N*S6Q>6*Ww9PSk$a}O*oZ_M!*6V@cxkq65gclcJw=w>d-_1@C*FI36b_J_+G zvl!;Z7h73g)d-8_UTBgZDgQ|4OI=gmm^TZ&5L(xkXIuroIz3+gq|Vpr_2spVv{ljp z9iA*7d=>age+C?f?8i4Zl<#i}UoNm(eic}{?uGKRx~e8`D}SabEQx`Xk^_|#UGd7FP(zx+t172 zRj~hDZ=5J!<}ZI%ohpZiXU?xn2zO3@H6<1I=$(1R>f!&GR^jfUV^D17~tFFDbB1Tu%+YeOS z(`aSw(N0FXzJH_wmX3wV@|)LIMDUb{%Hv!!9<9i1w3k4%J=Rs!>KZ%wOvQUTyE`^j z%+iJEy{!V4)KFth{;_{fbVFn4QUJ zy zRi(8vPdVV%mj5!=8m6qR9cR5)c?rR_<3rjiTU~YI;IpL4Ay3VCe)!d>V5J2Qn{16& z547M%Zm`Dlb!yAI)NfnxS+SLE`Mu)+>EZRk1?o2~_=Q>4UZ_;{S7>t+C}b56onS3c z>ss*CDb~RP#j<2;ocJ4di#3JsarBN7=*91#iPj>dk#4oC@3!F8&8$VrK0g0eYbPE( z$@;k3K7dzOTJwYmpxE|mkkXciPPQhfZ375nMFGf|3O9D4cCO^DZvf$KL;&SY>CIE7 zSceEC$Qt}bc2cVSA_Wlt@x>HtF_ICywFbcTvw4)WwK`{y zQO;IV&Ym-KRx3FJB#QsUc!e?sFl6lcY1V;AMKE@!i80sf)2-bV^(5sCwRS@CcEaE- zlpoxC?Owl20sj0{Vpv=CPo2ZUy_Nau@03HoKz`&mt+U^%7XEzO=!ydMLIBSVv?YkY zU>sxA_&|QaZf~t5^01q&Gn809|7L4%v_zHUFwpn3B4sn5f3G!%AO1VOi?V{xp9N;O zHM=xjT^7hsjRS+MIRg}^3>JVB>wsWYk~5FXqwBnrWJ$<$qdOyt6hR{unEVY z<_76PKO7wDx@DoYR`n|h^5+-cQR8Ya_73EoAFy^*Y`ppbYo2PycKWcZ2r`D9Qtjq# z;Ua6_fR;5%i)*f_DdmS2S>I4gp%t^*g<}c|)QgG%2E$Ap8pP)(RYkcVrYN zW{I_vx`fhMMCq(@(|K^IwIHySq_Z%Hf4tOsOohJ&A-(KB2BBqtkMG9MXXZvl9&he{ zO-(akak$RTKq2wsieV~zybVnSv?3IyZU(nl04B4Rr>wS)RzF9^bT4)O)A%4+kf6d# zMnwrDVew{-bxU*gJCG_~OW;eV#CP@7=*W-U9^02&pRx9YPlB)xmVbkQi+5UqqOOQv z@5*1i>=S2OzGr1cq$}WA>jiK~!BFTA|GTl~abWq*6*U5K|BW>*@Lw6Qe-yvbdRyaS z&>Y@(ll6ddoL5)dhSc^>YtQlpIaPFDw_twiqP0J-IvNsG(vyIpf*({^Jhkx`eQ?=k z-WF>pS3fP7$k_y28ef`gYr*R_Tl(ws9=A-^N<=t-zMblmCoJ^ZN#*teX(gmVIj~7cza_kWA-;dG#=B zX9dc?wr230o_URW0>&fS@nC*%r*(muMHEeCUZNc{L{pZ77g!a{b6Yru@W-FD1o0KS ztOwM#j90yG&1UUHQ}<{QeWbMEVXs(w*YBcSCb}q3eLI-1OL3&~b#GXEH>s@3B75G}`vUSEEOS-{#%T73Q{XeVjT9-W!bg z$P;6RsdIz*`ga|J`AfABN@o_UVSHWpsGt}+o^+p4Bk=QO&XhP_H+N_|brERgEo%mQ zkTN0$v~s_oTa;8Y)0-iRwc%0vQj?4TH!%V4cu7TQC?+Qjah`@}RX1J3?7N zgZN!Q=-53(I`tqL#AOy3LQGkC#xbJT)zV>-+B`)13ZNwnNZHSec3Fq=syEAEJbh>_ z1l*milf8FZxjow0gx`UvHk}_pU&+BeV@{ShWgc-+5Ka=UYE-p2g?>WK9u{c>Pb- zWPva&!db-6-w_q`zj-_Jg*Bh~wOzMOe-xV)2a1}^~RgO zvc@xomX>X)%;%vGC&ycS>x&niggNN?5I*Z4>(~(+grLbGkhS#{NW?$yT~U)N0OI$} zHDMy78^qv$B6Sn`He2sg0^km0>&H}fbak(@mMUxj<;e)>B`x)UUTP{A0kD{_KkO?2 zR<;!JJWuW0QUvt&5l?!vFrX#xc-nf|Oj3-s#ClbWDAo02D~l|Ye~?5Ml9x@bY|rOK z^=@sME1F=oJx~0?YQxc!I-5SHU zykQOJN58f1VXI9XiQ!dCAUa2jA8XR^nx{U}Ql=dn2yQv3d{C=-4m!zeQ0+7|^bD%) zx_$1iSB!&dyFla_RG)fP@-?Ucp)sibCvSbvTKlkzUMTfJbzTlCwH4^kZJRjca8RAs znGUU2ESOfIIOrE^0y|G}dq!21Po{X`No%6Iw51$WkBF8ysImnK@lW@l62I#WD$uui zP(3UFZpLv?tvm;71*|jW*cem=t@J_F*HkXDKJHz(C@77V~1~?4sAg;uj9X`K@pmM)?|s%lWc1*74kS$-35S6dnoa(VO@Duk}&3+QbHqJp$3$ zSp0O8#-5GWZ8{NC`fzrFa<=0VX7AuGG7ax@vJ}3S`bDD<*z-_>(+ec;d zlJ~72vR^4!q>6m$;}wmWcEiL|Dt2X#Ergw;Xmj7tZf7k*34Nu1^$6BXK%`l<;$geB zu6(RwyOkxFDvsAis4=0qupJUZO8i$UZBls7z5dhHE}^&#$-0qZo_j@`sOE(>Fw_bG zBP@HXXMykpYrdKtD%ZV%l2}}3loH=oY|pF*vGB{yY#CvLYx3%DbEo>kAt$;@km*uCmX0^20-n{DWJakt|2X%Qv zf~^ac>%L$Myy%DWUg|@kxR}WvqKLpx4O3qQ9OJcAwv(2i+O{`@eV?JWy>DrG0=ZcA ztcN_6hc-`-hCGDl*!=v}g?e|)_H;+}KKm#Z8|H0|76CDJM{+CMRy8M#A8BPvV|lcJ&=R=m zSpha5s{{FA9^3jc)YdNX8o?Nj#1=9!$)u>V!))`I2_mcr*5CoTzT#^MlPkW85TOSz z4ON3e==k#IeQpj*c3lp)-Pepwr^qoj^ljg=2b)d77#pUC@c}Wm6+RkZFuBjWL5RS7 z^Z1&}&0)bRgRdWCOW@aAY$1H@@o^z$EI3g$#158X*PuubA3g)mGM0r0C3TZvlO%c% zKwG};)6xjnOL4Y~ir-6N{(SF4YOMMae9%NJ)x1iX!41mC*>aqjhn$ft(Wk6X;HZB;Qj4vGubT4l9%xD65DhlJnV{{ zPqy_VR-+@`7{-f&M-{2hgz>xD+eVs0<=&!+1$^tss2~fC*TgeH`ZdzBPOyTR*Lv{_ zGq3gGn0YapdGYmsR$t3IXW1U{O1S3F^6$mNJJ{B;om47ZOV~~zI^ia-CG6=4f&D## zSSDLONY(5Q_fED>(sr0^od}o7)-n96CtD35``^jdLBL%v*`keGnD(fmS3@FnWM*2u*Dq8d%UUJ?LP^3~^K>oyiHkhsCsw^eD4UE~7&CWcEJ zY(;Tm=GBfuF!e|i5R7%8ZOpt{cD23F@=X;*=G7xYW?nr=3CX?Y`6q znRup&5IK z;>G}BkPnfA^MOb{|84LRfg@}`vbD56E*+$l*v6^PK%Ej>clI1D#%`N=E9;;>C1sDS zm*Bh@>Ccb&h31KVgIx%xrN$ty`vyUg7abjzYNm~g;Pom4udssMT_$Ue`p(7OY0yw4 zYmu(FGTXC?-zi`NleJTka@F`-DhG!0(+zds`AC_gp>y@*X!Aa|#$k>YNhHz}iIdR6 z6Tb}+^wJZNGJYSj+8$%UQN-{tL916E&d3ag3>%X(Xp6Z^y-J@60Y!3lk7j$*FDptH zH!F%ywA%)=97+b0vyOazg|FnSSCmZ7pug5SY{SA0N_wWyUb2I^Nxj0hQBt^j9J4OHL6LNVfBjtoWLp>EG_i#@W;&>=SIf>>| zdoVGmvF9>Qt+iSCkLPVI8Ko|_eJR8(?54&q@&Ty{uF}c24vHFJk^8&>78s{rgjDhK zpXCMducz1w`LZdtjcT@q7hGq{VmTJl3+SafSY(jdEB0iii&TZ`O*Y;BRJ z0v^2{@}z3oPEK09+l@8a;m&2UMY`0wH)Dc?`tVqQzeOGk_|#@2#{w)q`mN>~(3{w8 zd3uKJJ}*PVX~#`7ZJXH!$`?*Mo+c2t39M<735@53H`prJs|2x}cK9Gw911ZNxvEON&24pg(kae~sDGDG>=n{2( zFAER*298oXX4~=@izeoW6h(1_bGQl=_g-%=voyf8d3pmQoGvBr1fs_5W|Le>rikS1 zW}QXMZbqOj$4@Dr(!C~0>^6$la=NujebYgDkK z+eE9wqH{jqa{(p`=Q{=Yr*4KaeR-}V4V(>b*;7P9!4^JgDY#e@7>B|`F`l7-$HK=) z%gKKk^pu$Vmqg3S|4GUL`h_n9#O)Vw=_C2~@{@jlfnt?E$~&^lv;~^%e;cx*=CNq9 zequn(39lHdUW~!9&dyUD#*Fyq7`Zd_1wV3H%ratOatVy$thjS587atUj)1rsT^3N) z)wO`zE;r_07G^_Ht8Hrf5I!vr@_^>ZdrifgxQ<^z-in6>TC6 zGu5ZVLt^<)>uvY2ArvX@PuHtDfL6gd^j}ZFp7(4D7WoYs3;MBf+7ddsa$2No$CI|F znz7ZiZP8b@5o&ELfAu*qxLR6rfQTIO!Gb_1l4rdHrR`pZ>i zLzFOS<;!E`%&mH(?E&^KMTZHRQC|;t`#_JLC3R?wQ#YfQj&(__Oxxz2j0#d0#q!+e zZ9~-iVnwKkbS-(__P9U0OlcwO|BdDMzi6vv|D`3qShq;lFCy!S{JEEGZ>b4!eA>&9 zyClUC+gzz#=7~xHvh$qvJ&0mCJYY+$=RR zjvx88I?8oryKRQTcdxSrsW4?iifdlA^MGJp-+AH2d4i!-D?3LworPoQOUyZSOKNyPuar!evb9$Da|tn3vI*2gyF=_^}e|W zx?`8EDA8!I7f{=jD??B10;_(I3gTte`qBn%iB=uq8vnYjNb!3r4!G%^oWS3F12Ao% zn6ML`iQ{FvA-{NrmUwl7zW(rp-U*M#;mrhggdv%mv71+gP#nQ)ugGf*4!ce73vHtzQ){oUvmc6>8O#|H#={k7G#udNK?(Ud- z7=(Y3V#4m&63;D1fW{VD;?*5(C5=tk9qMzSak%Nk6F#y{^83h*{;`j2rR*3*g6NON z^PwNZrtMK$;)On4qCad#Z$E0Q^1I|lfAlEuc$p$W^nb?lS)bU7*`Kt;3w=9@9xkAP zF?qP3|EaBxwN4;*jtG+y_^xAMw@I|bt1B}k!ng$Kq(L9T?~(DQ>+2~&5l$?ayIL=- z-_>_~4j!wR()H@#3*i70MrMVt%Zhd8Qvg>JyuK?FkqMnj~vDx*X zleS(8TSQw4UWn!E4em=I!5Lb61!uk1B-B)QE`oC~3`jj&@5odCY|&R8n;?T+=#bDj zLZO3XsS--f!9y>gYT!lPU`x3uR;Ix@5Qy|NSZrA^I$?Gte`9-FVV`)5MiQq^k}z!r z7fxeCBV9ATwRKY2ceE{r--F-VIuL0eXz6%xcb%?T08w|IjqBDK zf(=}^ZZCe}x^??Rxo*8nER5n@WjCy3%XRB7qxipPVciW87Op8 z6`y&*_AaXyy`0_QjY%HNnxo??y=cpb_K5}}#gdD*wgEz~z~gKD$dB+!;k=)(&thvmIBOHh zn)xaM2KGg-E}qc%HAKAGn0(0=!2kK(wztF=_B)$^eQO=u+yB$niNE{ot&zOu5*#Ah zNd(}+;Uw-55W3n%xsVYOSMCoa%9Z=~DF(bwxj#`}r@Zp^w8kvHZPVH8&dij>ok|LE z>$?fd_HI(`d8ndwk&i=_{%zZ@s239DD*lB;{kB%$1+9Zzzx-osp)`w5g1PC)P^~A6 zgKCnKZy4Zkf#c4KSml6Zkd%TN4EfT^jT zp?bq}_jXk~!)~Gypr`-FyX7oe1*dpjVzdn*cN4HbU-zGpDg2ED7>VJrS_*rB6k=dx zUuL+&^4-b&!B{P$K?FYv1Z)2{f=O{&A4WOgVt^(Zy!*-Q$i#bWyf#^VIaxfU&|7&8 zKYBu1`1@#q(q<-T*M_`9_%Wo-V223YThMosc~PQPoMLJ#(}5D~o0Tda6XxsFlzxPh z03V#-_R?8O3|D7=5D?57ze&RFCD-s|t%br`qyQY#CI~^ecJ7yg`%BD^mZZKtCX>(f zSJTw^6ke9+%wUPMSgfnUlPswbu<|A5<1%)&159FTX*!74TFZ(sl&&wQ0x8_5FpXM(qWI=b%6 z(gv&SeTo?MvtQTGep-V1xzbV1Q0qXVY^@FZniivazVcSjSwlV5ZJp`FeqyEJ11Z#w znUv6uHzdkck)wU5nBih)MtR#Lnb@3B{^Az`v>qG})BTVvXQtmK%MF^WR61V7t)L76 zagVI^858%ZgHq)w(;>7jia3DpZKw5?qoX|4Gdje{Ql(IoCF0!>OFn5yurC{BAFT8g z_4Jz-8L1xba93t7X~%Kg-$A*>KwL2#VUyHK6U4p2H`oLgu`gKNGwU+d(B zMD+E8M0Ix_#U*E){xS<)$+UG$>fpNm&`EWR7M>iTH!sjAxAc#S97 zcTFIM;Wr)M=&{i7>*fQJ6rAYCwgw1J^y9=Yoao23#)-bAR-}zM(Z{sUZIGDk&FZf` z6k^H-;o&AYP(NsZ_7dwXP`M)jW@w!V1j=w$THEw_V|#w6zZS!pGydPww|H6|ie7`zx*Gi5a&L zKNiE%*C(_p%6g@K;{<=R71q7SQvnSM*m^q z*E+N;55!1=9;Nhzdt_x4g69*)JGJpfQ*erENgKH+KD>?0dzMyeaAo^V+7jdX8&cko zH%JK)`nWFi7o=DoJ^G9a{jHbKM|GhAJBD(KT^?EShUlrF32f*fD2><=>cCVHb@1vq zZ2>cZ@r=f6W<~J8YV9oRMDd{>veM-Ft1ME2=dW`3(&>qV)xl}E)_8lO2k8! zxUf?JX!PC}=ZE;)H)%=onL!|cs-OgMb^MP>q{C>d$APdmD9oUE-?*aMU! zl;vJsmU~HwewOTsG(C@fij+w?)=@cLFyz4VV{6l-6$5INf})mEctfIGt)^;|6lQ{> z82>Sek9I7g51i8G;Ais&!24 zEPMn81^w*8LfXFKR#-4GL5vJ=3$2L5+f)&U_qaJ)Z?E>k&)w5j?ls-m7IS8$3(C$@ z-i!`oroaF_Fv3E^6cHWMu&)IZn1-Dezc39u-B#|m&@>G9Tl_O>T(Ahdde8I$GDp*c zoEz!JM7iOzF;U-e0RV2eoE5l#fd6?mTm*z{xQMbE%<5dQ`X??52tv5wa$?fWO^Kb| zTbq(av6=C;SnR=Nrc4pQJ3;&xHv@#YQ2Lhq2F086v~re`4&^9hTsqn6NF-pWfJx=- zCM1>cttP(o<+>z3YDZZ$@AW|2aQ%}N-R<%Gp}Vz`5?>S>|HjnA+g{G$b)VP^`Re~@ zTUj3>j@H6MB@xXRLeB~nTxVk2t&sq%r;!!F) zUS3$0j*c?oE$_<<&w{$d^OE;Js4e~fU$U>yYLdDV%<>^vIb2DZz&+ZX-d(sHs)~0e zm!!)bkgt|#+u0%74pY@mPd6r2^~KvkgCMT+FHV;`AiHNI1o4cAwUPYHa&42}@1WYH zQ*N>F4G(J;c8M~C+Wf5{ZNfVZ_!8u+>3r)7ZSvJo=(%+M)k-awouho9LL=IFjfu0m zd_U+4JzJ|i#@dNmZjW(w6{@81`3qnz2cMq=q9&!5oXZd5i&ufombBxyt=6(wDdhw= zm5N1sxu{v+HY*Kn)~?YeUL9=?X~*AO3%m@Wya;UuUvFrW-?l*OE2Zk!PTJ;yN41%3 z9&L1$Re7hON~K@za;=~0woV-2`Rla9e$Te^=jT2ek;XPqMo^Pa|1V9xBsJ;xDj4?O z#pNmd@S7(x`HUyDh^wR2_3ikuC$;u$J!MNMHT-QusdD+`F+)ssjjr3$r?h+7=d|rr z*6pVTQDu!uw_E?)Gl+lojP@n0QEz`1e5aa0Mhj~8UqiFu_53H})oZlQDh&7|&uQbY zjyC^l$N%1-rL(`NMo^ncf;k!lFByWV7jg#fnN0&wSj*sDgJ)x!X4>xNq`QIzF_^YGZ ziVS{WD;R18 zxRrcEy4*^h4xz`hmFy#dsF?;qMrJ)FTE!nNL5^t`B%3qh)rsA&*_9sPy3wyt3 z$VJQx_*Z`wqygNxNOy8#y1oazZkj!<)fvEO+?IPw-j<{7h|Fr#E2I#dP8J9V zPAA{b5bt?B!)&HHxW3k2uCtVp5;?73a)0c7>a_OwJqR{~6yx%QGL_HT*4>mkaU@_BIN+dh@#f1VuCr(rLYA^S!j#K7Q|HlNxt^d?bqq_5T zm*a0xf7hkGL>r*Azx^+1;h|!;PKC6}IZ;{P$@+<)A~bO)>wCiUF@tAZg2>J!hK4+6 z35c6#T!MJ-fOc22fdJ+y+wEy=Fl~a15dAY7m{gP*98Y{-YoBNsvHs*)Uy5tv``R#O zg5csxekR|$aC|@b`~{>!pljSlqSkNlOSh5cQq-`7A-9pD8)~@tuk85kA8OMS^}$SI zFR8)m+adjY(iRBoS& z`#Mm9`#LeS1WYA^Ue2{B~+RI5GCim4D7GF;v*htet-GO8#9hyNG>L1T2ms22C5|NTn4 zncZ%xDB{K~Su$?iLP|*7csNVOjg_QWE^9A?5^>eHUJCs&?ZxNX?D&>Y#J0hPAy zAeY#|qT~{LXa}jzP>KjojTkR;_5y17KvX`hWKiqT5Vb*)n&?2hJ`Kb^_)$w_-o%Ef zV*!QeyDCZn`)+hY$ZI-ytONTFkiY&^WkNmVseBKgm8ss{fh#|2t=T>GD9me!!b6gR zpHNn6=IlH_;2S?rWu{@+2lN`+2kkX!AKnlP?|lx|8cblck4w@%lv#Y)2e5vEy9U#< zQMo4k5v(>T?Z~`X^Q%52VVAiWgB*pwlMndd_xNOmskrt z5*x+mjR|V2p4Cm}EX9Tz9UxpdUSiG7ccq=x-h>U<{k}T9^}D{CIZONL>l0Htj>8=J^Z5^z+dCRZ+rpG zn{#1(%H6d;!`Z8Q>LH%j0OE%bv0-_@v9vrB>mJLqd{6p<*nmj))H5CA2F%e8GCc+R z!BlTIDsb+On@H2JGUm8j$C#TTv_H z?3ocpAPSTj&xwvJ?e-q*1jUEz8ue-(69iygP`pNP6dueH9}=rj>~oc7G1=nK)Zxk$ z76-pPP7$4mCA$HCn3nBvB0u@r+Y-)#Bxm8-yiGHER~Alj;#H;v&FpWuP%R2EK7 zb^!vIoQN-43dbTI2acxk-{^UoG~Ywn^(4&}-wk;f>;buY2HOAd3xZFUVJ^Eo+en@p zXja?XKEy(k7&j}B?qSxvK`?_Iku1L2s7tB1fmPG_^Q!-Y02$z{P}PgE*}#zGHLcfxaOm5nKUnmu;0OcpiMAo zK9enz=2K8jB+dIG?UhXF1Z=z03as`|woIB^(GpCWp#)D|Wm@cASRySpGH0lRnKKZ< z%(($RePzy{0LS$*XWCw7&O70iZE@~iEVjgmHZpS_F8C4u#Mf8(`Q7kZUr4MyEb${z zg=W#O3xHc>%%b0WRGY=hs6d!S@A7V0LaSgFJ&8ilvyK-K^sKwU6^ShRk$C$8HqTU1 zWYKqYl3DZ}q=cSwd8Cs}lva~+Orry90dn*B>Xiy_)oL4DWrE}2^;7Dn0KG`5hj-$* zWU!o9N806*fgp|93neYH7jKA#CnekaF%uY9L*@u{x_6%4NoKemQtVsV3Cb>JxW{xs zkC77n^hnt4mAtU%+Gu`0)oxRN1Bu}Sr0jQ6Q7$-L(5d;9^ok*=5u1PRB(vS0DK1Q1 zQbq^msnIzyPm0YUwqWE*Q8^7nkv2Ips|ITmFCOW65)i`_M*MZBFlukWArjpJN&;h4 z&xWuM&N20w3i$BFBX1#wspE9y)%B2%X$bjLGjcybDiaM8c2AkH5(Zo9lue+Fw%_&7R55$ zxK1)peuruUN8?)p;vS90GTbR$eWz&y?3-Q>@qsnqjj+$7el?GA%Vyo z%hO`{&t2?g>a<*5*wt=hGbkC{JTW-YzX>ok7cXrmjg(nM1IT&xr}2^U(D>aHr;)h$ zZs>x0VU{6mxE5J0RIY!Z7N;C2)SU4@A>|;vvsdvlavMV^$Mh*Um_hba>`qf1kliAE1QX+$V-;wtF)RlP{+IioeG8mw{dKiE{ zmjl-WGLgFs$s@~wOF;8t3uy_Vz#*dRM?`nz=|@Cgqvc4))exPx4LW#S6iDErpos)V z#HHoecTn#`3m zM>4${A~VDwgSrgwEOlujVPqE|qR1{#M3Eif5qu%9{tpX(x58fSDaLeS&HeUlHj}a> za*F87q{9tEg>?*jR6aj{7aYd@(@;CU4LCDTMzV3hgvcL8LwATTGCfXlqv@{|5Vz@L zOdepjZ&G*a-LQ)`K>fVhkbd4V^yA4=m6v5VyiCy;-SCyW8|r8|lKG+`GCvw*up3_1 zyTL@l(+!rb1T&EoHxD=SJvMtkb!}&lk}z?J??TO0+|P><5R;N@W9)O(ye|Ck7<)(7 zg*HI$bGo3d)?Xj&!;d)ZUB$Tnbu6SQhPTqwlnxYC-*NWt%ml$P*1n7E+?XyNzH#4> zdOCw&x&(4P#qP-@q8nxyJak`fLE>lWH9`|oVHsiKJVgS*N|KbVwY zgmV3IgS|viCv=r}vnG*px&2q&wSf>d15k>1Z-Kw!p4OPIGSrWuC~)#V(>5hXT?o}? z+f&*7wAh%uFKCF&!(HVYzd&Z`g;6~P8Ju3%Co}J#HhF%VxNv%oiHMd_`gwJ#c81y}%Dt!c(WG#xs*{;Fd@lUpKl-DvRnyj1FAo z2%*e7?}Wu0Qv>X?_wTgltL?k-pu0fYEZR`$63$D9-7QvyR(F%h-da*D*TWw9Upjln zqccyUp|0pAN7M?6%E&a{=%y!pduTa!&#wPP>VSt7CL2Hn^JfzkqkBMH>>etv>>h83 zh5vpZ%+gF?BL)1GGKt+oE0XT%@c>-qqGj@B*d-6xd$DHSi3R^pB#Z3bd>~n~2yk2e zuSmKqws-P@Wa(o20G9E8MbiI4`*1T7VQtFoqKEpaU~HJ&_US6~pN=pXL~@(iRVKHi zC>eD54gqnyeB4BSXW67D6m@oY>A`QMErc=f?;f-_wBCGoce4+l*pbLMayY9mGP%^q*`=)R}%3*kLAb~zs z{1uD4h6n$;yY%4S)I(m^0QHekF>IWW%%L2iVb2y2YS=vXar@`$(jNTc<1lKM(*`KQLk)?r)(|0L zy}e_iky`1?l@Cx{W7fm|u?e#6bafhk6I!wtX+@#%7+TTbSFD?^DsF2=1HNxC+ea~= z$MTJV4}Q`<+uRvvPNBazvUwN&_9pu_mMu7QXW=*}$|Mk7qQzH@@bjBtHNAjPkaHp*G;8vE z$~n;!FF-`CpiOX2G_t3h6AcH2iaF8AEwJu6wO+MrjcPb2YJifjIZrC*Hb2P?~xL^mwN`9!(Jfo^E6rhJPkmfD|QzE zo0twg0uK?1Z)%_HDKGp370jO~6`4PILo9sY4%nkNfzb!N(^F=qZ}pU0wgY$CSFns; zM2V1?mca2V@$g1S8Y!US6!sG0v<@c4GB54JFYMNH`TDWD7_bttfCyC9ccjyLNzo`p zDVjIL!jHcW(+m?BQ^OD5wdb&zlqK|$v?A%v{cqTZnvq~Gl`43G!+1B`9t_VwVLr77 zdcg+YncD)|7x~olFi^x|;gggUn#(!?ahr>=+4u%(E0yh`4fGu3f2iw#m%3h+>ROtT z*ddBwA|x?VZWGn|sp~+YI=2`kFOeql-KvWwZr`^5qPFbK!`^`<*3jO>9+vr4P2v~c zYp_@2ppo9IUEa0lCK>}xU$YCK*zlV%CWz5@Ii`x@1vOfc$a(#K`xr*cI6hzS$9_nr z`%xq!%tq6S1`@J7tibR0KxG#Vm0?_@9)dPB-m9A8MNGeF&`?8IFpTGOpBYz}cRAC|%r#G_)Qe_f1V$a39k3#Uc9= zMO{v4SxmJ&wu>8))U&#!hfsn6d4r%Yk7H0$r0KkVDUJ_Kc!v8!EH3$fKs6mv~;AINHj}JBUhHI|k zp@v>fe~)0uF!S9!c#YwJxRQnUz+Mq2?eTd3PH|cYk1HJ&n{2o-_=H%A!{xs;5g9Te z#ECZ@gz$jnBl)I7(J@$w_)bWG`Z(2_yy@@_0Ye4hTozX~I(y;xeD&eobpgEVXZBZ1 zd||((@z~40wD)n%`P`nMF#mia4hG<60zyMKB~Bi1fIXXKZ&@=~G{u0AH$>#i#~VUj zL5+C4feY?d?jPNfnF))>8z{uB<;NSX2NzI!vZb1zFCS^h&xhGui>PW2w_|^8HXg*{ z)dwA&*+eQJ-ioct$Ao~F-kKDqP6s`RR~e4|VxRHw zU!?BJ=ZO~~0KGx!qH1`TUNKcD(Q}doy18vxD(2hi5hB)oE1L_I%#u z57@QcPKl$kj(aQXC0(4YQdzDZm+Y#-exVJUqOG3{^d@cLBLMM#+22&73i!#t?Cn`} z0U2hfsE7h$L#YMwEecT7pMTqn8{2!W3i#Q}_B_^#QbWyj77%JitU#JkV1YEFzyGn% zWP@qDrYL5B#11dFhrR3Q!T0>^7o@sPY3p?XK`VgIZ?o7)WC z^imxo8mpTr1w7l&(VI=7)KE8zy>&B5*UflcH!b=*bNKBi?K62m(p@e2E1rKII60#w zTSpN#MQM-fN*ixdnk%=3qe^M^E>Pj)W;hGjdz2ok>usv8j}3LfD+j5(G{BM0{|$3A z;!?i!O?wOY`$3KjwwKaH#hnolYE*CNihE60T*9qR8=p~U@5I;L>P%;UQVf_0KF1sy zQ~HpxAu_=bQ4zxKWjIT>cnmM9vyb8IHfKvS0$`z-=d^SLHP#~j(DnVAN#D}nrJRAM zCU&%Pe6Qy9;ZKG-a#)_>~3DNPZ>E(P$^vp%32^ z?tpD`N>*q+yi`D_*4qm{^zRd-_mRW-XoO=an@HQDzRzdpbYs_3u+X=_6 zLEUwuv)Ns~8sImhOca{hAxgDb5R*$S{Uar)HpX$J*%n}iPhaEAVcRHM*dv=skGv*( z#BVM{^%Sing;yOrk;;3-IU4bdiW~?V`tV=l9BtSJN*BB20|B93@(hvWNxe&cjdwiH zPSLhaa2Co}f=m6y z^S(wLQX=`@SVw0Ouh*qGMmKU`DJp*=)se+iN(=RrE+AA-SBRc2>w4PQ+OdoEqHUX? zC$)QD8Rr1ITRHP@8e7hHwuRN{yV^Py`&IY#=Y=-~#PGK1jtDk^5=I4$qY9da3Tg&M zbqx=@FxtXjc(pu`r+fyZeQdkNkM>c0d2)uMJsU--3zbF8^;Vff7s%FEj`X(e9kuLX z+O8?;S}L(CHoh&*(a#gJ_q@;{h_B6Z>}$3YDDk@zD?6}VlqPEGRjR3XJf;MxUs)qf zNqxC5pOfuq%U-6$P%)ng2(_hcx?*0?6?1zh$5ZSqZPygV{Gco51+!wryIHk)j<3~- zLjFx2go&s^?*SH8Xbdnlxsb*QYh%?CQplCAFf|FG)KD$C0z%aiR44~Pi$ZBHBfC`= zvw^f-Q`FMW!0sMikgp8k$(8U(Tb~}FnClDqxq%J~A8D_QW78>Jw3!;Jom&m*iC`w>pN89XmXbZ@moH zDeii$E|h=y!-*C=%i8$t@<0(kV|8?42PhM$w_m*V_AZfXpRTt*Y>vm6+KAk(k%DpC{(IKYI^fbUR(i_>4+NQe($q zn|{2@C|EscLy4oa8Z01m9H#W+W%I}MQ~Jpv*n70&J~oOrYl5m&hX=VyOCRp<6U3hy z>)5H@-H%s|gLL>FN)fd*k80^5LrbMwVFr1AqN4?W{7_{JzO}0HiRB&r_^fJ2J9Y;p zj#^sht))5rWTG%zSJUy2D`&HpX}hMVX`6xFq^CD}ID+{56CIn?6aDz@lfZF&NlBuf zKBs#6&d?Jqm7$)3`G@CD1n@(X8$bF!>BsN8*3p`MLW!fE{`A(UY)TikR4yQN%w++K;<@0A{&LU-&Tt%HlWDuASknXpyGc(h zAT@};Jj?N;`e1*)?gmFMwuF*I6)mDFS|wE^Cv;2pl_g7;-e>&DMBehI#%pR}f4;Td z=mfTql1EK#^48Qnx-9c`P3^zg@gv(!+ciZ~yA15Qrd&n0I+&t<+nWNPHEamxaq0Z<-HvAbe6LXb!+^7kXYuK#<#4Aj^zK`=_pk@58xy3a@?r)86e*&Dx_5LI9mPy zGTep@zzud>aT0G6sXYeB;~-rJi2bm_$eJ8)xpD`{BMZp`#36wE7(A0uuU5hUK5G$- zr5MB`9}-cc2FL*hDlrWKoT@)@x8qQ=M}QjdGk8=kTTL0qKCY#VKLymo9Joz$uFL3D zIRv1iqj<AibE@7=AxL^W6R&Rq<=Er+8l z?!A)_e=P{&A1-!0qYfL$Z+Q@Mui}AZBw*JL8EDv~qVei`CfGCGP%hbPO+9>FC?Y ztTp6OpybwCJU>-6DuIuxb%ZbhH!EwefKX+v*2UqvvIcU;LiP!5hi6zXbC}6|Nx`_p z|H(j(EB2-a&?`;bLixzx$)sY;SLUvEe5|${#I0+9qtHP_KvXdsMC>$pw`Eq6+Vmy>HFtw>{=K%nE6{CYU0h zw*-dVnU;6 zYV{!g!A3~vswqVrs|y5#Drl^(piv;e(~gU56>ZW4-Kez$G4*w*8OL*w^VY0)^yl!) z(QFS8<%#P+M{iQ{sG~Qij@~!x=!-{3MXXHuq6Ocww()a>ow~AiQqribuLOiD%Y`!a zQ*>iGzR9tV{YslPMPcVW$W4~iX*(<<&V9l0k{Uahci93n&iKK^?1he$XkNC#y=B=J zJ~OUIeVA~TG}46pA_n{Oq$wj(82m5~vheN#Le&x~$mWi@$Ef_iQ+Ai#wG$ zH6!}43JOLyHheI@@RB37UW2sS9ivj&BwzL4co`PTO$3_i_LL!JIZWLkHY)jGmt!c8 zcR3zXYX|d9E=O1P2xSfXVg>1oCyc&0@~Xqp$i7gQ4(5kz;s}w;8WH4yfk_^WJYb^4JAR8C@OKIN{kxrx1I`WaXclCGK z_c~T6A*rIiJ}ZH5cRVvKg~z<*_=vS9aB*ZXpYQqjKLNbgKF2ygXv1@-hez@Y`y7}2 zdcwbovixGz)FColQ$F*!VK`bv#_#joYYKXiv(e-`DBWx>eA}&oR&kN<~AFY25s*30ImVV%v#rD^$ zy3bq{FHbZ;5iU>M>$evAYVY>M6h4BmN>PWxO1*CG0I1|mJ@D|+e<1CP0Ia1tO zoiLQo_}r1sCe@=??M-inq~`}6#ru9-oDt!RAl_g!$%X{a%`6M#2R|-O@LM?4pa1xA zaWcEV9>oRT6dxuOuN*CI-4Mk{zO>tr=0dgNR%7iPI8-!u|^&%PGd*v(fYuf)(Ilkb)OZt z^GOYF$CwowM?b_;!vF;Anu`xA78(Bn7kf* zAFYeB-9u$tZpem@I?Nk}%U0|T+6*#*A^3u=I%k+%vzh_|i;FA3k+_9nb|-LIbcBVv zF~S?(OgJcz>@cuBonZQnov-J2>?Ki#o`ai3$<$s@b-0CYP?fluXfSsXy zVoW+kAUfg2_ccByDY4E0yzrc3BD+Ws%b4VYRLyV0WK3H3fj>N7a2|HXgN6eeZikMy z`I--xxA|23tAFsO0c03%{s2qGa6>D}aPtN9CWM#6C*uV(B?(VS0oWyYJFoMth-O-%& zqIj46?wHGpDFiPf3>OgO+h1CPsSyUOD%uD~!59I-Q2@QLETF0@KR=Q+b3J~^F;`(X zo2m==q&87fJCKwgbg&FlzGz{Xs!z)ZQ%9gRhN+M15&Mu5`_dqW5vl=Vk$m2- zGg`oxbE;UzE^=n^h-VxHrVYUsj!enZfA7rw^CTam;Y(94o+5JU!(C4lhf zshpM|B`85khgK_Ttcn&JM4*nFNa_t$7JgHNvz*PLb&<%;I+2C61c^WiewJq?Eiv#z zu^T_mqZ-gS2DZ~Melf7oN;0s$2X-$48&uH)+gpO(>0(|L?aWN96JQ$H4$^+Z!1hVB za}|4!GKoQ~<-taM6dHnj;^yo*N;rsK1@$yq687oZ{O_1A#dq;y_x0 z!S6~(HA5X!!k1-hZP++kj3SPrB3@^RSl!l{PDIpiF9R7A(M(2&=nb*(6RFPOW-toW zuf#0SudSUAu+@|=6sT4gsFs!(0==LMw3Qa4K+jWwb~Y%Go-_a%6v#|Q2;>d1aF*^Y zHiJ>1hrI+!Yv)|ZexiJ#K;P*CeMd_Sfv)HRDI>j&@EmR8o53j1H-(b* zUQ6qWeo`jzBbiRR7%|HbP0Wy#aiRh~h|nRJw)R9_#UX0+;9Dp82dRTcdYHo-{*RfO zh<7>HQ0DOQ(o;Fk``AmgqPSVhwonL;*3jDKVP>%5J>DHDy~lgB6-xNFw}c-X5(*EJ zXn2rt=|N1Cw|91GW}>2Z#A2IA=rxAWm~NQ7CZ-$IS(CoObR(z~Aee3hi(i;-1eZ3H zZmjO+oarmwDC_QgjHL+#Zr6$FMhb!Ggcsk__;h3Mbmwq>sfV+SbtZ^qrs0EBOdjWt5)!*hW$XqH5Px=IZWVih)q#gr!H%r@L}{mvDVHbw#?fNz!%^jA2wVqPU81IZWgOUEs@i1k6owoN$-@+$M zaDHrVkMv6~2J~Sc()JC|PnZNZSWW!nVD49rgBf1^&+X&PefaR17V;a7oyssdgd0L0 z_|~<>!AhCT5!DJ}y691_2p-%X6?4SI3YjA&)4FIE@fEsV>_`e%Dme3mncFPY^Wz;@KD`-)K)6R9J#2IeUr7&VMU=LcF1iJqyDiPR-pf(W1l z6CHmmD99bqG0~Y9Hn6|2iU{X$6_~|5rvXth&v~#y&vR%cndjUHh9=fPpo*U8bQa_u ztl&#;aTX>%Aiy-yxtX$wYaoY%9UA{~4!mKZF}O zAzNT6Fe4CWX=;_>jd_FtGNvg!d*i6)tQ(~*5~XJO6_Y0MqGdn9wf)cM1r)1+YwX3u~;> zEj&u=3b&xF;zc#4spGR&=^Hx3UomxDDJsaf^w=`m9Q{M-qa&M(3jNeOtwXY|f}ztd!P39K|;2JjT)zYzrkg3%j0{p!2{Fn?o^r4v+TAkoNe59mMeC6sUq zM*k6{$(K;-H^7%r(tI_*bJeB>=x}}$tWe%s(8f3&T)omcp5;?8^47lAIhqZiVB{@d zlfKQ=z>Ach^lc_ma2%{V-#QYGeNpWIbLi7x5TLu5Bx;^!E>3W@l$+XGeDT&D;0X zrqqRE4j%-$d?te!q_VT~6=GV;Ua#DUmaVqHF~~|rT`e#I@bj$bul&B%6R8u#Zr+7# zetUoA_fOFO#-sUM=#c%c?r+#HM^g4Xr9atkSwJ!D_Z5o} z1vYY0czt{nzzu#Z|>gITK2l|{x%(c z)aUJ#%HcDTPg+uW%K>uDzSR2KIe4iCA3>Oc8y}_yUUdH9&+En)%?iuMo=UB*^&gLNTQhqhR2Nhv;??5f9Nfa1lxC zYZ2nrI<15b4Nxng=Q%E^?^)mBybd#g=SQGES_vIM1Y;$%mv^U?P*Oj8kZl)}ZmlUD zouYqh>4K-|x4Cp=6TJ?lF0~g(F{W5cVOB&k{_P{9O~}>zQX8O%SmhPxF{e0OS?(X4 zD^0cqLWZ@y&Va&lRGcGJu6`blY$~Rx8L#ZezPud&Oscv-3@#J`AgfIgEmV|KWjno92xX9s@5T4!c%1=TtwE4|3xOeX}PMjk09S)(` z@I68(Hh@;i`%0WheO=g7nY?rq_XwJY!t>xqoCG<}jY)8&#+;L>wX_nc^0||#)kP`Z zn_M5aOL|N(4t!RU&weB@g2|GYCIau7$t%i5Wz?U z&++b*2+nS*6|5+bY+GQuF-d`Jlm;GHI$#>O%Vi@&tnyLnE25Bt86rJQwR4F1Fx3if z(Jw*Pt`7y}otyUwm(QL_Ee8j7&z?-JA!2!V9H~~y!On`SICAV#%tJ{jhs?)cltbn_a?2s#o==_RpF^6;-Jiie;t4)z${~+4 zh`~5}QND6WE7`M3N>N$=LTX=ekWp9ZBLF|o0f$N-RWGIv7AJTY+DE+MQ2U6ZfQB_= z@U6ojIpb1lg#4p}COw)fv-9KDQ4Htzu zZS}a5Ln!3LA%sE>sGUlxy5C6ME1Fvn>2asic-+Zb$eCt+4Xf~NH&YX}o=#c&8}Q-Y z9EW_kyVLYxn^Ug&IJJQ-SoZujH7TkzBJ+((W2f=FlT$I>cFrwu+lfvoz5}p~q#k*4D)f}7u@59hPW}oE*a9Y>Zs0T?c{)|K)`r`uZ;3;^w|e4f zXzyv>;-kH{4DG$cacE2@`Iydn$K<0u<293~4ej}Jf}I(x15kV47~1>JkJD|=>1Qt| zAMKf(NPAXJ^stlDr4(@a`_z8If=Jri@1wnkKcw~)m0a8 z`!MXKTnaLpg)T|o3t7lph`>A_0)IY8oiCo{Xhh(EOZn^p-a>s;Oe7{Q>}~&>TI$o zOxY0P4O6uGI2+z$hE`5jRgMX~1G!ABZU!8!x~{T!Fqm7V)JihGU2svYl&&5pM)SV3 zHj3XD9&FRqQ%;+-{Rz(vKr%|zmXJ!Rng@3#Bc$pIc8|v;SMTjxH3rmZMBuhhJo4~sp3^XjF%OLZ8Ivlj-(A>E_^5_uhfm4%#l=1o&@uaIT=ulocuNZ zTB*xF?T*^9%kdAMlc#WD=mcseD!8Sg*b+a;=B`9Ir-y9x@F{R8I9%k z?L`aQ9-(R*%W+>-4?y{$j&Z1woO?Ywv;>zG1S4kyS>(+7$z|mHP{&G9-KOZm_+VmVfrh|CE<-kH4A4DvtsU73+0h3mqF||UmzrS0>{`Mdm z#{M>L75gitF|QzdDUT4Zz0j_>b(-20x8b;?mX>L3vb&|_Og0seG)+?xzaj5N5g(65 zwR&kvqVj1u6473Gx&pefD$$sh*fd_UD*opwE1 zIv#W>C685dv=c?rfpAVl#^>7sn0ms~)&6vMWyjm1BJVOrV9BOs?f9E{E50!2LoT z$K(Wv7Ea@8gOy(9xWwsmgVVRXg*ZVAaEg&vlN?pVue{l00yq{X>8TLDBQn^O6B7a7 z%jnv_fr#TR!~|MsI3GA1@uCKAHkkm9mkAv)9*)ZyKrxmx z4&)b+F3&Y^)Qt^CFkjC6#+*YvpzqNT!f-kll2$V-4~RS-U$>IzEhRZuos)-bA1jaj z9HfiM984j60zxQ+gY!_zzuDL^NvyUYVye#u^d<}K!{7rQgmL!Z68nL^^u3>Nqg zWyo`TT@CQdC-~mh7{ul$48Vobp@j?W`+XrX^5{u@94g|${;~|d6RtvU4jO8q6HtkTV#m2D6Db(qK05!R*R)Fhx}IoudY0<$;6og~Z5K zog8hfU>uCR)!WfTj(fuvnqzC-J39`DPq|<;oU>{;XL&=;aK2H)`HnZzaBlPA{G97> zjD_S`H5@As9F8v}MrL(`b)*GMb935fZgzHeJT58?@-Z|mVUP+03A_bIBk6*XCWDL% zMw;<<8c?G_%-Gt?9bJ{{;L`$bY{ud!K^|@k#%5)M1M-E$$hUfdv01=0ptwOf#zqU< z`QWDb^4tV)N?h2E&7f;$g(X)AhjF|O>wLf zXL%P&=N}GI%dz(W4VPn-^}q2$`*M)V`v2xFl=Y#-%=!ff!zjHG(aidQLs=h~P}a{y zPRjbPgXz*!Y>uR|{thr*$oeG##mM?~kstm^PqF2R8<$JT*GD)aV~-*V&&9jB;5&53 zGSQgJibn-yclmZ|V4~nRfZ@$btY_n-fD7eq&@$O&PwYW<*$aP>UG^GGb{VjqZ5Ip) z>)C!!b7Tj!(6#xu(9*I-hU2pEn1g})ZNgFq^%%+^#z3seEMbdXvYVlD$0_h0W{D`3}TES-{F(^r99|TM$Q`x+pgd5bPbn(w};C; z8#89gUIVcAG#aA9X}fU{PJ8e!WUpO@D0}SyXgT3@s2|!uc+CJeQImKJg;QuT!|6QU zY+5Yfki`NMve;bYB#Ui2#IRV7q%5}F5VeT{6vJZS#qk23rbFb4$&Na)jqnd{q2;+W zWTEs~p_e(BEHuHl=L;r^X`#`ao-wNF6FqiNM1P9TqJAjhN^SY z-ta%XOrvEDRp+F$csKK$bjDD%z#TDEEpUed7x<2XRZv{uMsrQ&$fg|NL!?a(a2kJ+ z1Dqb3+xqt1#f~X~?0&%#u>0FwOv?LTFo?l7dvQM38Spu(NLg(e>}h^s)Ro-_;OF@n z47y|gvNC?TW2y)n24Zl#w-u827l5T7N~l!ZW|zHJIAY|Dc7?l$3VxX7d@)CeW`0PG ze34@0td;Q0?J+;ho+hSdA4c&tI-vZr*CfYc`>#Wd@XB$NA6*3-!ZRvBG5lyQa{G0t ztg^;YEB0pubHBOH^+ta4OTUzDVi6aS{N}F%WAoxS^j;KBljV$RJ|}Ow&lV0Q_jw#4 zo+_}yEIHjP8pCOuJC4)#|0lAw-pa< z?l8IfzOxBZr_#t=sQ+zHFEAWN=(R$V`a>V;p~GneKGco-Qh^m+6t~*htFFEL@F2OS zdByUgVnE7T{BRa!YALc_#WY2!cRcARL;vFytZgP#vv&ZB^x{A#PLV=ZJ5H?6a22vZ z18{3XJwpRNGNxzQ>T90iDh7`7BRHHBoMIBB7^qb0LvY0vM{8~6aCznm9Gb88Bbdzz zZZ-*ibJfu)u!P$$muaItKU^k14Tp>``VlH-C8N<{_s@bMqS~7ChpAoEvzB{O~qMWf4Du*(K70?@Qi%!eM*^ zyqZbwzsyXV5o%`I`O$+9U*^#3Vbc3A6Ek##nwa5!^ae9}6HIzIFLsy@8JQ7U+Bz|i z4-;j2$)M`uY3}1WS=F{*#pU=@_A=^zqsNC)dWBb8DN`gZZ&*oKf*GA5@u14$7wv+c zL%Au(9>QOgV-JnUEyo@{WEjE~B;0XTa;AEC1Cr57AS#2wxRSDCi&aK4QD%5MWI?p!F{275quZ%CvC zspe4&Qb2>Ml^7ZEvZJkt^Fu3bqS0D37olh^dTE4_LphSlp~pw49118#4(*DpE{%}8 zUvX58{T#tOho0m^qa51Qm9kXy=JH_NF?(im3TF1)<5AgjA8$4p?BWa#D+XFu zk4l|Dno_4fX^NungB+CMJ_t|9dmsk3f+!++9wQqUiUGnC*9& zwI5EdK~73=N=_pm8T2G2xX6(z!9|S(^?Oa3=oKBwG#fioMP(pJVKg8?N^lKEsxaEf zk6=AcFxezXaWo)7N^q$oRUCEt5gfn?4lxN*AcZMWfz&cLW+0u)6_^u9wMibeJsIRt z+mm#U+MZbKm|`b)CT6-6J9nb26gzj}FN&SJM&=efGd^@o2oyU@pN81^Iv+O0&Q}=3 zV4S`1pNO6CVbfIc0i&)WW&nPkQzKQxOzSZrSZ+Jx7%6V@eiRF@j#RPmA`Cny7XI#s z_KS%|u`m~Q6bny}G-4q~QnBy_Fa|vR1{5O}Rvrbv@K1I6egB8c#pSF|;Pm?xqVTx* z5*Lc%;>Ay3-&F$%czuH6;yGbx!%we8-pOr#Un!@Bo>^xB8bB7GcdW(T5Yv2@^KBrV=Hkx1U;$QcJC7 z3PyJZS!R~P1-CIanG`M}M+1byMKSzE;iA~++`>hZn~s1NIp4YI$Q0F)fY)XzTvTBY zgK>T?a;AMUEVaVqxLb~%qA8=U!bJdno+hJJxJdsJPX2oFE)*%cjaHGO6O1`0QVjP) z8*HLcq{xL6MT+L5jYz?fRHP_BTCJJ@#fTIe@K^KEGWr`wwb&;32agUFxgZoBmVM*c zCbn=eMhBV43yduq4Ut8@a|DaWIdL;G9O7V#49_5hA_MC9d&eu<2cy+`<}}AO*E8?K z=*RbMs*W2zAFVd)8%C@3%-f^Y+1&}=H^=I=e~nhj@tM&oIUX3TlA}dhvUaXBCLmdR z#2A2(wMXJFvi8U^xmo-5yZ@gaPQ!3}T3%pQCS@VdD4E11N%P z%BUMY!ypDfPm?jqXHNYD*|ir#khCd*yU*`vjs4WggUtz+V-`aKBFQ zxX`cD!(X6~ZLS~cOcND8tv3F)qfbl~hQy>){x-(zZwyKKTf!K_->`*l1$_p8H6J6N z{tX_aG{HYC{>CYgzlDrV`9QqD!T2C0wt{cZLmb8Qns+%Ey(a7}gpk)%*!aEUsP@Ge zEll5)RHliW#N!QxUDxvohEjbtncGnt?H7^5+G6@^+6x16l;dO-C@|@SG0j4$XsCx-dqw+?cKihc-IQ!+-qvGBwGv4!P|Am?*p8t;Nr&qOk)PabQ& zwx9v4`{nv27dHhru=!*h^)mFh7JBt=Uahz+*Uwf&J{RIF zDR%pHr9l9u&mbIyonMNVIJS@c29M{t{A-o`Y?KC8ADEUfXL7-MKu{*EZ`fR>U#}Oc z!9?SD{qf_*Vs(*vMMH4QIx|yQ7 z=_u#wK)bu$#hr_Ui%Uw&wG;+1j46A4K6iI52VRepMLIf5Nj=8dUyNidRQ?IT)Z-Z^ zlb>*vl@Xns1H@e3h4Rl#nIN3T6&%ymZ+ZhO7gCfYMvpU+1V>Uy;<0fmNdSsBN#L*1 z&8F8jgusFntLw?B= z?{NsGmeOw{gyL9^%*J;cWLAlgBw0Vsxkp^Jbi>l+i{n(q;ziyq`I-^ct7gC)Oy@3^7Y~au8MuM|$k>cY4|4wj$ z0{VK-L%8^`g0r~1aIsCeh`|PL+My$&V&l!Vq%B_Fk9Rgewhb#dlLE4(voe3Sbd|%Y z3eFl@%I1P^&JjF03#Mqvc(vSK zzZi9CFXxbEbPYgKJ$O*SD$-n}wjod{gvWXQT{?&Fi3HQ*69j)Wc5*AK$qw%o1&W0k9Q^y;PH4yE$y3Xd-4w!D@ zOvf>3UtrP)NtApc=VYzT1lgdzv%F}>iBpPOP#<`9GEIoy%(6r>+OhF~%50o= zY|C&2l=_zAFG_vOC*-zcJJQ%0@CD>4O`J2tZmtYUc-tAoV4R;9kjaA2&PypM?=^J} z5ic<6D%S5L5=1>1qO;j`GnA(W^3`M5*qj2}Y{p>{P1T zGC`#}KrvF?FZk=F336*oXYJVM@eiKro@8t!6qd!wa_$ao<=H>W)R(i9oT1vyW|D%_ z--t-T38bLc++o2wRVxeMrvI^jc@Z}enl16W^h7g$Yl#!dwd^2_OsF=ct`;*rX>TcxCo)Tx42VQ)w_C2@{oUECacajSa+KWMcy-=4N9rv~$i2 zw5Xcd-Z@8Pa)HUlrZR}ZID17t7gbqccC+|Efdul z*yHrSy5KT8ARU>}!nxRrn3!Z?jVA$wEUXFsA`5FWDK`uIxR*2F1MP*qol`|0B;a)=valWu zVld9n18w-IS!)^Va7N0|$DHj&2BWSlEC4@G`XqH?bnh{zLrmpe$igO0QWiFLk{n;G ze~c{B&)HP0@2@Iftx&Pf~|PuTN5ktUpXrarGPCmn^>Zv{AvfNfcIXpQ8HPXy;(E zusqTtDfIT{V4S@& zpTV@(x|A5{8tn{`GY2|#k^63&+899X+c!oY z8|>^OR{EhX^Fxi6pAK<$6np(pcUn>DK}0UXk$ViBY`6zUQtr`dvT_eVG2G)5{55d0 z95vk8AT|yE;O^0d3q$Vl!*FLaxMq^W=`7}0D(G<`xYfe#qS)1eL_@%A796tn1!rUx3nWB92lga8Jw+bS_iD|*$ z8eyD-a?i`tf)xRJ?pJh*tn<9Pje^iqKa1e#q|toJa%7dZG-t1v2}qxObRzyDADuWQ zHy>><(HXFY`N2fzQIX9>rF67}K@7h6u3`S>Ur@vR%4BChv4v4r?iqleXY&;0p3hEk zJ}nOOE|iX*nWA3uIL2G(B@bw!Tk=oy7BFDr_5x_8_dE6j8eZ^!o1+owFAUN@^A;iv zEks(I3R>~nl1Unxy`<@ZO3_y13d!@CPNyitI}no+QzcW^oo#4~)L;n2r}=DWn&`#xiA6Vqg`2k!i*Aa=DBfVQfUgR378Ij$nIVc%Pfjsn z6h~4qYW@_8Q6&Mzh*6u7C;q9*Dr*0AIYxHV`b5TVMid^e7IO7dyn1$?^Anrc&ZWk5 zF7s2fO=g+-6;>Pm`p}2uI`n{u}EK|P4MElvP#%sYJ^B%Z{wS6RQ z<1K;X%2ag_v3V-qN?q4>3K5L^Qs3d-DRR)o*>56B8{6|ZIqbR5a|kv*CSn-@WqGbc zCNyRF=xG3<2oi(8D1yXH%PoRbS?-+apXHm$@0UB*irPrP>kkw`sxyeeINy&zTONZ) zuJ^V%OUr#LoXMgkW1+%G0H&T6(^MGwVY_pd=*zpHkHDuHdoKaS=ecegiGzx%JD_ zltuTD~g6EH>sbh!_R09<}TZAWf;yPpklRMR!4iIvuy7-ISsqXaL z+-cd9f!(RcR&b}TNWeQ)tSb0*XGbb9yyHKJTHC=5D zhXY!U11<4GTQFTY&_>=uc@yy< z5Bxx3Mp4=FHD@p!+{Z-8 zcF#K-iz$qca-aa5J(Fih+Y9i(Hk)IU?<|?2d}jguZ+w|17ZPON(`Fdv&5@LOyJ2SW zMN9_I`FyF?(AeJX6)ghI0z^sEX?48)d5E)h4`| zys`nO-8NHsh_+Mt7*LjoyRv z$rm{xGUvJXGpdQp9E|21j)>l)3b+{b!|rY6UvEJej%eJch?NRHSo3FiC{ta;^Gv49 zic61{e}4-1l81lX{c-Kj%#9y7+uOC7LGtd$-7AWMGnsACQl@}BdalU(VYY(4M7{q@!N3rJ5 zfeq!oYIUN^`YCt6$y!}FaP~pZFq^UnZ9}G7NIf9SP@h1xxFux;9(kBu&_Zei4uP_Q z2Y*pk@XX9@AvOP;b5X#nGgjsEOfl_K*cbfXze+7AR&&l13%Ft_!^~w6V+`5<0MprG z9V4t#N&r@#wKLV4Z1#CLuHVnQ(8gvD8kJFCvqSx+v-n&{QEJ%$HcGbxaU_*mX3SKn z1yGFC@)`cxFjH2&;A|MX7XRR>Wfm8RuCqAxYRX&U3I}6pRoR)oJujLl=5-b^oSva< z)BqXGPuPPD=4bpx2J^Ern1H2KGhr-PTGjlrGvH_L>{pz#MffZr#)qaqIsj)+8E|SRyx~9Dl_Ki!9<-{cIZLf7 zs?q<(sv;nnS!&T7H_MoMj-;l(;4C%ufMQI&8-K;klFe>9>&2GAKls!Kb7|<@=IBjl zk}Z5Ng9pj8wVTJwm|M!Vx(TGYIZ5K6IS zW~oKZ@NeO1$VV1LtQI>3%|qd$%Tv6?yy)^K*hJmbL~)BZQx?7srjYYs>PMi0J8t(Z zb~akfzYja@6J-S2QSZ3PlaEA0b{{dYc2z+v;{)EDy2sRP7nldOVBy4 zxkOCmLJym*9uI(q=&FQ%v(@IRH}7jMs(Q>;Vzro^BNi2Gt+$}#VrmT+iijhfX#`2W44<3W4ss5#cO<6@0)XhSDZ3qHNJvmAx|b?f%urfO|J>u z@?(3Qv;EOzize`2*arO$585qkX_2)5cQ~lC&tbNPizF)|=_&mWXA>)!OlPMtM{CSE zqKYVsf6@|%he2jUl(8D30F<#B;V;TqjphVc;sB+1d!k2^w;noMt7K;Qh?nFq@ZQ+R zaO2}I&5qm@L)zQmhdf+y;I}PXBjpzOPuouLPiy#RvS%B7v=ghgv2iIiESc;nWB>{I z%VvPAHJ3Zm`c=1U&4c8*gpkG?dgb-Ib1gT#=PEKs5ycON;{8&v&PHiGP4S<3_|Ibe z=Smm&=O+I1emD5%BmAdKFZd@O|C#t0{6n8ozuy;r(PxFH^oL*cf!1j$@Qc38x6T2- z=(9pXO81r z@AUHg3;3QVy*gSRUvQ#V!xFIKo8D}B3=3tcGI zd_GB!bLZm|4ti)(8ILLH%(o35ywJ&&8#gty$)ADC8d{ST#E?uWdM5mmH(w2}Ci`iw zm&G8QXm9v5LrVG_+?GV!0b3@&*P@&@WtQA#chzW#@zcmrug&p(!<8E`kfXR~23if~ zZ3^-qHA{|<7}8I=3%ZtxWq}zlo`b;~>ObD>R8BiF?#PB9SGp~P$|_q!h1j{5!h2Ms zyT*u#S&GPNC4rsS*5!@rAx-4=mz#7GhXV6^hVg5QGG`YYHDb(=^Yuzc=yxXLcbQE^g5odGwpPGY-zpYIFG(5D&X$Ce_mpwG^JCMV>yOxvVPTVLW z(?VTu1*ASd@6^YKxo(R)OkzoIIsAwazLMjEq8B7&{N(|O+TU~Jnm79@ zf$2tjI7c3?H844^uQGyMy=2*5Q$mE5^P>KP0;*tNzEsdf9&g~PCgVGoD}LlqQCGZO zt29@hSk`~2z0%wuIsWw#BW0ET-J|5uDA(nJU16*;teva2=*~xdcys@OTIacHp>pHo z%t&p(T)8GPrH<@+ZgQAB9_<>Hhcar=0|{4GYd=?Bj&ao$?Kx9gI(iVoC#%g|d9z4L zves&@O!%;GE!pxh*LX3T_k#r3UM%7e%zfJIx$1Dq7dJuD_t78ErGt8p+77+sxp|@R zV6IkDqp(1@clyBqEW~Nee*E1Ed0DfYy2&&LY+DO=9XFpV>lA{6>K=EShvLkI%YW%E zAwMb$({~vJlP5Y{E+cyu`5|0ZonQ+WSAB%7RA@s2eKtd$XliSvUF5U+HO*>W`*0ZT z*&myfkRLX4fdZPl!sVPISBlH{a;~WSOmxxnAdL6?DKv4qyji|_j6h(HgVC)2ju1ZU zAJ3KJSLtnR#-xXjaHY#O39b$zJd5?Er4P+!GzZi4hiA!_cY=5GwkC?{$(!-yK z#(7#U<(Re&YVEv=vo)3DTe%v`<3HL%b4+~uM~R{G%WAHB+BQ;N3Hf7n7{v}Q32E?2 zron?g8ca`i6_ZKpTt#K`ny%9Mv0iOcmJF)pswp;c0Z5H+_^NTEIW%oumb_WZ^@2FZ zyHS+7$RTK^cEFK4CRLC1L#`;3R=5(x_r5)}b6N6S>-5sr4*y8#kvGb@f@S|WR}Hdl z+qwW#G%mv(D#Po!PHJW6!8;nDoVa<+BPnr|p2reL;=CLKzgyqcKR@$PEe2S5qlrCn zde!v{*JrKId0P`(tzo4pLb$O<%~Q!FVxBVe9~-((i5|S)KVs-wSCfw=I*5>jP`SN{ z>$`%JfvFt#va5lZ%Gs0tCUX5{Dg9YObfl@T}oBh06fp<)kaeZ=br`|;?KUeN}H>IN%2N|z(f4CO65nP0iMw1NI_dnLK@3vaGXHC>;_`A^SDN^nQCG*? z0r+|Tnx~GpFSm0Y7RBc?UDE+)#C&zYDdwwc^j;lYO+^hqv_un)iv8O8VYHsFiW2(p z7Ai`B7Ai_e=PeM6j5fLI&;plHw-6h6i%B1v zE%blLaLp3Wa$KT+z@Yy+Zz1~7vg7THX5tiYG3i6Ih5pk$T%*J-j!X2f8}#q<7NQR= zB>yAcV$z3ZFMTR|%4L$1hqde2UI_)<`D!8@pv=-cz;co%Fc zdkuFbMqnRxA4JUs@T-74*2h&Z_AfLp?t|ZOYs1rM+2S$R1W^zBc=s-pa++}n45PbN zZ-H7E`{Ei4uL za6bKLLu9LD`FIT7rTiG2I9fSGg8Z5J)%zp?hB8#4cP5q6L zuzsK#l4sLgy+omfz`|>cH}TVNKQomX>^;E?RYcsD4#zIBybC#Msf8*cMgtlaVNtwj z;D=Ucp^A5Hc?U5#Ud z@edv>?lZNkFPVuEu6^QF#PiONxtBW0!4xrGU5Iv zoch{A<eo6i?$X{L@Mvg4xFp7Ni)F@$w1#24fyhGxkw3#*O!Cm|B~L5g zTr@x{-#$RX&vAJN<+zO(n~ocaeU#(=g}?eNmeZEG>c{rPKe(edMS#};s1W1VWv*86 z?e8TFPHW#V4#7+YpM|)Y?JDPoY8TyVBLs z55K)g4uCpg6&#@W%AFvSIwu#DXIDY8eJntyzN^7(d^@!lLjs_-U*l>O0ClP_s%Bpz z$FCb)#)^x{eWR^wo^v|{JMy8jq5x-ThPjO#Okr*vLMY6EFPUNPFiZoj)nDK}D9k;# zgoU{`mQY%^{Uv+Pbk)}mE>S^lAMa%bx!p@tkXyGz1-aFr1PpQ(X(`BYlVbu>koz|h zry%z${-PlF>yli8+{R6=d4VEZ#P6L7$+Mf_ygFhj5b;_!g*U+<2J`H7`AqEbFT28I z`WBZA8`>oSpzA{6Yioph82Tr7SdH z9~Bxh@K?f88M)0>D>e@Q;Gv-~0=&wj9R5Q?*9T%42U8Azc6;8Bvc0+sH*)x3P92Op zQ_SQLvg_#xA-e`mqFonUGCe*~E)V&ktX#7bvf3I;7p!Jl0fyA`N}@9ISZJoRhBJPjyrv+ za@;9PRiRU%Wo-IM?*$R!)jNH^sr)iks$P-fqRQZ^u8b$)vCg={v&v|-mgQ&+E7jrS z8PI0D$XJs1%!wwpXw{uwf-bl$M=&aNa$34zsZ$CUi~?QJXJJ`Cjw4d3(_yiqag!^G0_Rl*F&O9j zumhZbp}5BgQ_PGGz{+!1wtm7jNdzqi-rksmArrnmeg7aB6Md)ZZ&YQUn1KD4Nm@%i z0B(K(lXp-7^8y%l&dC7wQ310qvVX8l{&5se2JRx52h2-+Bor`bz3O^fH0Cl>z>FAB zH_w|M&{=sSRyN>-DOPsp5c1hB2qB-n3&skuQVxH^HBSt*AYz1cFIN%L&0Ew|s z%gPPomM}a5dyz{?$~cS=i!!#JbY0NS7{fZp zJJ7IB`wZ)H&aiBq2F1wMR|i+r-e0cX=6Rp@CdC~(-oLK)lR^9!-b}>r`w)K=m^gi) z1DMcF^m7{(u4*rlZM^YXDjUY*^#-J=MQ5{2RUz9u3HbiF9RyULtFTB4QN?(T=WQ;b z8H!K(>iMv#XNt#txfG=5-UzYixky1zA-U<4YrYu4u_-7I;SdVSa}TyC7G{CsceN=~ zU;DsS)jkUpaR2QgHN+f_L<-2{3Rs$>fa<4RNwKCC8sXW(dD>}serSPEdK{Ro(qr%J z9P6UcY;isc&D{Oj_$f3WM?onxpTJ)fnond02+cq#zF?x~`#JKrGp?>N6t;~S_R_pI zM^$rPn`2aS0^sJIe&5tQMWo@MiAD{l2O&!*<`i$fiwN|H59m|z=J!y=hQ*uG{YhTe zaH<-si{;57J`%l+4^`;-%w0S&rPJ3wctAo&PK|NjNqg8rxCEjl>jjLTS0VC744E5( zBL^zG;k9|Kf&BGT*n9nr;*&Cd%VuSDe=;y2pxtE;%=?o5@Ow>Sn3kqbX5y$ zhJ9&t4P^3pSC1ZzO#uF)ai!&RT&FI%p0jsb5hR~(nOIBoU>wwooMXOg6fCb^b|r@O zGuu#{b~3(2!BDNo3YmTd4)Xka_G(tXZrHFuo$P=tuQe-Q-r5T`#NDGhV+WoXx~x#w zNgsbExv<>!N~w^T0BZ1bUZF}2$6j+y30vsPv~^aWu(COXjTa3#8F}tOM)Z+!*Ikcm zVe10*j?L+9)SB|%LGosaAvNT|FI*}A_tJrN`mVCF*DY7|a4X3=y{0(it#O@;g^eCN zc*v-U>pgoxYddU1OZp(D{j2E&+e#_FboB^%7sY%Z@Xj4;+L`InSRcGfx-2VO7aU)` zgoT|Eok9EZ;M)FWv_BW8cFB3t}fbNFo$LOC&||P3q@*wtiZelUpv`Wx}5!K5bJEM zVkP9En$t^%pjZ$He#Ah~QNHn=D^ZkL2^7gyqF1s&P?CX-0c7XbVJ^RSBSHr6u8|>^ z_nJ~nmZ_=>S?32=qi_o|d9U7x_#+#BaJ`|4#!L!H>wx3C>_KvC(V6}2ZB|0jaQUEW zq8&$~#MOGG%G~L-`$uX$R?0Q|QtQdz@41Hj-)&5;S)@0Y@rim7t?^2E`M#^VRjB)$ z(<;lx4_p}qhl3dMqqr-TWx1MqA>r|pYABa#5=m8GOIsQ&oWM)o`pe&3ct9jSUZr;#+HEh4C7Pvk=oXkvPVO`zSz!tlgggp!W}S$ zgWA86veu_{!{wo0;CAujwXTH7uJ;Ot1{8SOufFObfzSR5$GyinORvCLzqwX~^GP;d z`RZQZ?GzvT^k^=Re=qE7>7P3ly zZqq9U=#{AHZA3fY4kWO*=Bl+k@t3Q$jIirP0u7|AUC$K#eJB`{a(3kNLY6P64>U)! zrJ%muKGYnIDh{*^2PY-YoD?HJaNWY`>g$c7j{Fs*7cCez&*V+h!fddpIxd>MN_|&g zMX3IkEo`+9esPnP5!GjdcnQyi7nfy!%nX;;h2BBi3M4R;!ppm1a&AhIP&q1Gk7cZ) zt*l-R*GJjHp7CMD@Jr?3({~Fn8OL>vP(aI2jWm(5Qdwe9gq|37!iO%i#4`RQWSz3` znU9Yn^tIZjtK`r~eQ@|^CIRq|HMO>um%m5q{l!%VX9l^gnBLJ2eUw4|RZO2{{}FYR zIkvQIm6}0LQN2}Zsx?;0^zkZsIlsgi#>7Y>9zd4k%SDxztBdPfweZz4DH;M&(bcBk zs6f9aT2ItUu9mMw>(xYQOEbO$5VM+v_=>CPbRC1~XEAzBru;Z1P|?*gri9+q%7$VS zeNd$-Cr_~nIwY3VTUtBND$5+KK|2hX7wnt-p9kBnl)gf9td^gY(yIs;XGc;bedw+s z25~S+;aV-9Ee*rBbf6m}Z(LejQ2td$uPP=7>b1Iz-sC^_S{$fXR#}({3ooA$ms8qI z`Cmr7E>=HKc!P}!{0kJ2wzsR5)b_2G1LE|K;rkhPBT9Y{r@tr;F*q~IGv)LRcIcyw zGBaMkXg>~rVU&a~>8>fNH8MuW#0_td^ga*DHiyV-gsWRji5e9#x{Uz08^*nf|p_NyM&UE{2B%wo>w3NxkvL4`M@`PR{#Y zC})8rtPyuSfczA;0;?YKNrfi2Ck8X zYU>TeK+Ye%s@Nig@C9EQ&4wKJW{)u28ma<6QYuOBY7?7zU!O(rZWuHzg7PAN1hiz!<(CECJoqDGsPTRaju6RtZY!#7)chYxw(j1-~p8zgP zFIc3mQST77uG=b94sD>{*1lS!mZ)Fz0nv=z@)?lrzIDc+ioc{>-binmuNk|(Mh#a4WxB>4@Q(Q;hZ>Tquw9RR?);hawi+h^-&H=Ea>9WX2WAj5TE^STVHK&W_T-j39 z?;9sehT7m7-30KSGk1!VwzWbvz*B>}O{?3QsW}?gO^Z}j@&O_M$fc^}@3hh%F zk8!4rZ<>F!7BA9`kyktDCFO@5^lsvgAO3e%e5|@T5>d`w)+U12G25gE<=Q&+pd9E@ zbKo*dR7oF z-cI}8lyz(!IdmO8Tn#5VmWDtbGYSwHHacGZtGGSSp%Uz;h}LVJ`H8;RX($IDPj@ER zksUqtbeovNK)z=mOL0JW_OYBJ(SR270c}`ELBVH0XO6|Uly4Nb=cRszVm}RN&N>xL zEOKHniQV^~Mn~s`vUQP}1&_4ptM9Oh=lKvQSkeKWp{SH_9 zL#1@VtwVMe)Z?vOeROD`atpx=X=3HEpM!J}w;n9Xn`-ERQ5l5L zf#cz|@_vT_!(@bGZ_p8&uAj7tCKhyjR@q>^dREzhwD!)_ zL{E-HBk#JN`A;g)f^rV)$X`jZ?VekPA8Tcx&zLil?_8q0y6vZ|$3rEU6h}{On z$cLj~TWuk029k>ZL;vlc6prxe4hb# ziy?T6H1}qDU6H2aEWs#Q9czr6IVBLZtCuj+k#8+Gb+VtL3gl|mK^KyYePWlrT zrdhbzgQPH zMtNM0P1Vv&7WB4n!bY_REwVuW+`bfK-S%XMDq=b3N!nV>wY4D^ZS~LF=5wkxf1~W` zc2^MdIbYJzK3^TpH3l%t&{60T-6LM({qn7&S4YYS!#L8Jz;TJFRV{egCnKZDl=(5#n z{bzeK346t*9jb{IoG0n7iDcf{Q3mi%=UP2AulCkJO7}WFNi^VmNk^%^I;v|7pte*# zd3L1xc`=&z%eTFGOcoX$QH(pa%U(>*8sjddjBf5~y^w4o^%eH@pu7_YI#d)JxiF-> zwOo1I11ayD$MwhZsywI}_-YfJd#&VrNqNuvDsQ;vL>E-^zQ_WMNTW z&o|*Zxf?rM!7BPm{eUrU*^ zU9TX%=2DRA!XEeW%`c5{-858}v_l^iRt~Y0Z>ooY8ag>oA!Q#|{s!H=>Y&>kAc4|t z4uv2e;%yFgi2FIWIRr@F9u0yQ-sX_FTVEb9yRXf2c0Xd4xY=MK>_?P`Z&^6YGQu0DsckaPl+`M7$qYXxtiH?N?D-cjDdTVRc7 z+{pmV^ybyn$5EBWI~Dfg> zqWFV)=@>dAiVMdR8I*)hi%vZ*dmYqWu~QJj4IqOHOLrmTDkAJ-6Rh@+>AoG$m>4VN z4!0vYhLbX;gT^w_QB}5{A6zl!TkJx`h~MEaDn|Sc1`BoKG0|8?K(E7-bN>d&}bsVBOYjk-OwSY+_is(o<1)?9uDXEzju_MZrxVk~g!F!4+T-Xv?p` znM|K3G&w}Z?}Mpsbyy!J$}m2XY^%g38TlnV%Q?H$T~$=&&196=9F^Kti`t}YtM!%P zC8HUZA*`p^CaY;BDud$VQU>)0GpK0Opn4)rGN=Kv=Rv)ceEUVcU2HLga-;goVjH@n zmc(UOSehx3GOCA&$2+=A48y26DL#rEqnd(U$f%~`FEXmBFwESH>Y-s&t-?A+%I?p? zI;zYpaIDiu^rqpKz^2aEd%U8L5UaUZWC_^}Vu+Q!JkJqMnctg7^~GWzBdh|>E}GM> z+O|#V$T|EqI4D2nhxXbg6_-x)7P1{^p*KP=^AMg;DW@wF1# zW*Dm1A;|8q1?>*|!qo^d0o3BzYT8^EWo{fxncLz`0pnL9G9+_L+Kln5gnaq9-Y9k} zO32M-DHoYexXZ58JB!9#URpVm15VOBS?tci>iq|VP!xml!^z@s z`R<$g1u@)$h-X=YH>*RD!Mp|D1?r(?ZkFTUhP~)4-a^M%(>Jr#?&8hzoGrCM7-AXc z@N&mHZg}|tA*3eb1udPnt0of%?ZxtjAA3$*n(v50VOI2wbba>x7LXP9-i_)j~|KrwULjRV^va>sk% zI=y;C6%zh@$1N;UTkE_2fcx}!WdH55k)yv|&NhhyBC)5Mp22aSW38}qAKaN4!u(ydpkARCDbq^7vIU1$L5l^Um zoXJ~=0JP9PVJUAh^D#72P6Y`tAIq!f^-zpT)ORa1eyO(-hj?G&hb@?ju^Xo106O#3 zhY88qS$y}EUR~v5j;iu;>=Oa=@n^`D^6|ANR6ag;TkjfMAHh5ym*di5K0dPSn7f`$ z+~)8#I|n4l?~c2hiaQ*P?x5X%Le4qi&aifXjc+&kXl77ej=H>44%ZYd2@4jtI7c&$ zhd;?IkJ5N3LMV-c?&vi}m(9Ibl(!&a8jpKY1@<`JLTS9glPZlj;w_ZM>pjWRcrp;c z=YiKyG)o>2#*U<3;{#H_i}JXImroK&eNrV6ryth=oa>N4Tq%*~!quC|K?X|Xvz}C$ zV~!u6OwMPi;uFqCXJqm~j3_o+hljD*7ZM{|hPWG9!4xI;acL+@`gc9{lU~-ZD_q-w z<)ugehyL^&%tDry17)66F*OtvgE6%bOh3j{i^)+;gRU6g0toCWzLmwdQN`R*a`o>}jx_Es zI5nV?6W&Qhy1!t0@P%uilamq1o+91&tt!$r{9A7oTO7eW(mmpaLOYMJ&)o~fbS{1G zM|xhKbbt!oM(O<&PR<0L)pCSTxB^v};cAx!5yRCsXdVjpQf%Wb7_MwD%icdi zsq`znfuhxmTUoR^3H>ozjYl*~v|5Z1zUu&16s;_*e4^DQP%`d1uK01iz`5QI#Fe5| zE?i@bS5UUe?f3Nd+TUAMuqv<(Wb~T9S0w7cQ%5ZV8>yPm99#O)DF zEV{un;{^<23?x5s&SZKiwrr@pb1x!79&c1RQeG+Q?k~16W@`Pm1#An~Z_n@+3UAl~ z>o=Q}$w6-THp!E;Fv@GIF%T=SEx#Qn(I~HtV>pJ0`S~Uvm|ADKy#b`Mw9>HSXvL_j z^4b9WJT12y<+X#$xVwt(ybtcIVgmP3<+Z)ay1y2Kco#C%wCyT~JGbL`WQ>f9a~G3m zI_nWKHqKqG%!aDQYb@$CKhv-OR7-zvsqH#Hyj4~_Nu{<2{m}NAXtXZKWkg<|fl}L^ z+f}J8$5bv;YP)h7EVb?46Iqd?T)TbW~?UZ@H+HPiE+fTB0A$Nmtl8F*82&2kwZ&Y&U@o>|$s}R|$ zx;t3Ax}6o^2JP?}*d;Du*4zD}RVBYbJnwiZKhevq#W@)BnkRRx^A=LuxR443<)d2ex?&h_Bi%u-?Aq=Y)?T!g{&#J6 zb1|KF@UmHv1V!rpY-o0t^A5-%91*>5xz><3YPf624~Dia5`cgy=aarvG?4S%y6*A+ zvDb5fdQsUj7nYYTpYZ9y%a)-}PTBG}`#JcFij_eSdc&EMq!-HA+!-IZwAi(|%)ZN+ z(lYx8gcwe*4)>2Wa-R^PJDCH}ac}TWwagCYEoA98?sl$XkJ|~ZyD&UK#PfFY`La7r zpVz7Z8CY!>u~>NldH+OGY?Nt%#w)?Vla{1bp136Sg~Z6nW>9%(0s9zWCoUK*PA%B9 zIIZ0rO0g_p)A=3$L;qea+>t*0adB$jsm|34z?J)03*7V5HleanOScqrI8oAbrlIFd z-hz7GxV}?mZ5`-xAiP_#fwz*D*KjRwQ(E>3t;yFrawQw3%g7MVx2+8EeETKNgwD4C zm(I7XxYqOS_hFEDzWo93O(MR_MLe%W6xr1hIAA(?@dE1H1?a<0r^xJ$XM zyS@(?w-*#3e&Q051z7r%1<(vyz;qNcEoTOelHiiNd>y3tF6AJ_c?&rRRdUzZrAmTp z@n%v>wO!0V8Uqz92j*&lI$o;eHvPkR?;Tm<)LB{L)b-$8s2mt@R5`E(narEYfzx>p ziqAlu)NbhjN~-3=FQ**Xf=HC99C(H=Ej^p4dKis1V`4X-;sn{Y? z`vLML?DTBkDp>r<5|P3Z_NXNIc^Ed81i#3oz>;9?&@S~Ay;fg3|DnZ(l|NMnbBT;d zo1KsE=}}6LAMCEKN`&wCc6Zjai@Q{b@I@Fal?Y#-UoKQe^mCur9_>;^z_#7YT&ei$ zFK%^Va7Pq;^~>sv$-29tY(2nTDR1R+oh8Uw&;C0IMODD?!(3BQ1d3kk59|eTZalKXWIpC)%gAa4gq_StY%3f0{i?#$iqcS*2_IAP@ zFG~iw@g~XL-#O$LEYJc<&JcSe#h@eg{qf-i|-+~4XD4SN`I}JTqz{uUvdY_M^)espKZ_B zL*?Cid42y|`Lw3(QANZW7m;*Y86jM!kBqTCG;~Tu#7%j>e?+IYMyQ)M8nCgblp^8C zG43<=4A3hT4G-eXNv~ zVhRn;)=%yj>8>rQlz1KQ_0OnqwNhcfJzfNE z<(ckhME$)iLQr)<5`#b+?(6;;e$GX~OGH;jT|ETrxK~vMr1BPe_ysLg88D2uz_QY) zAckgo#NT!=s?(?-4j{d!&0cm!Tx1?(1bX_#QPqK0wY}_&m=3(CZg?f~r=zcpd*zLJ z?xC@55W;7^CKu7H8{TSy)$wo*-;P^M40Svl!$}$XrxE1Tmb`>r=#cnj{6$B(FT)V6 zC7xt9v?;H#S6S1Uh5!GoiPkx=UR>;cTAbxWB9r=%L5v~&6DDOc4OWHfR4x29W2T-m z+yX<%sTTf)H`56&He;#Cb#6xiMD|?sv7?f>xC@nky`YCFi{hP>MZLo;D%!NDGW$Rc zWKk95^?B|%EF6x4S5({v$x**`C?0zaCFMr;J{O&gjOvK1BQbT*sEq7A-;RkUhGAr! zlrbYTyc{EIgI&nT+Tt%VvbOtjH?sE(BkQ)xy*S(wvQ*)4>DBHr!o}qv%Sd4mLyqj# zc`s%1#``e2X^nfan8>J8u(6Gm30ZJh+N+^0QX9FCRS+-tMb#GXQ*mh%Z^5`^TPzdi zx=YB_4Xxz(-#n@fNa2Y(aa(zW8WAfQ~#Kn2Mao zUe8H)Wo3XIRTsB$(<$&J_UH* zqitF^WbSUC=lw5jlVHBW|I!7*82gQE@TsNE$PWih&nB-na0g6P#ms zCju1}k9I^E*ZA>S!TD@ae8TzYj0gOI z7}0r-b$EE5;|nngMJ-@B&uK4?a%t!U&4NQGXjEHl0n-Uu&8O5+PPM1}YKyONs&oi? z$(Z#^yv1iG?i(}l6UU+XzsoiB*Z(jRMkOt9rTO>gN|nXYaOoTtdY9PGJO~-uqU4Sp z-p4oz`_%#7f1DAMA)Vh@8RGd}BhG`4UO_lIdbQ$Ok6yd(S4Xeid2f=iGm~(DlF;fA zbnRGz&fT}i5;24xOV@(XR+PDcvBSH-hsNCI=w-5nnp*=-E-jb8I zZ4G4P8{YK+NTDi@pK+TN$DRW!ZO`QWk*CdLc7?B@0GU290o3U!aDZj*zu$mYVretN zQB~&tcE6dqW6Y)FPGn4(`@jL*jFgpk|K;u#TL8g4b$`#MlD>~>6dga$1viV1U*%wW zQu_P>Rdj6W06XSxa(2z4d47~k$=^pXrufXcu~Z+@bbws zl@1#3u=sMdRglT2E$4A{0&%9Sp9^Pi)(1H#>vuk=QcPDrULAdT^;5jU`6!LdABY)+ zaqBQKjQc{2(mo5A0_sFA5d~BW4#i?B?X!TPt5Mpw@PFt}rG3`^7?8gPUxv~?+h^#Q zb=IBzs*sHME;$TboZ_&>0x1r2_hCk7#^F~`7>dJ3@fXG6qX%<~!xPWAR|Sg0ozJ=_ zh>tDf!Z`d9gBaYi*Z)ItI7H65;4UP${jN_E-!eXGgY=cMk@x{YWwe|BkG1EHv*~)? zy>EB1&SEXAuI#F-TfMDVqFXIm5U&cBXdyz>G$n#fa1x1@F4!V?B5FkMJvx!-U5co` zIdkrNch24S^38|eKkJz}Q_jqsxu?uMcd=Z&XiGo`U!uk=`UnC?EMD?Z3}#+|5sMc= zD;6&SdXjP$%;aCZ?79MrUPuTz_?4GJjk;t?B$MHG7`FbpWHTAo6!I|{CNANQBfT6k zXGM=_9^6U0h)WnONp4Ct$0f|*Vo!gB=gVqn+X&W}GB*=icM8UY)>S|-p@B`zgf>WN zC=y!#B{HG)rx;9VZ!M7t?H!82gf@N&Nodo6fmp&Mie^eedr?5>5(Z>pLQ`a^2~GQ& zx7*sQEc-T#&@ZXbWr2iZE(;>mm&-r}%w;>4$XvE7i=1s#&Jigmf_BcxV}S%=9#eZK z@|YE3XiEviE;H{5;%b_`ct?bRg4C7?9hB~t~>GUap=EVl^TSP7SyEsQNf z%F3`i_QJnKxJ8g)0Bse&Fo3qo03yZ8<~}sYl*P)l64b}JA=DxZ&RDE`$j|w(pY!1? zp$Wyx5b5GGUA3n1gqyvRj5;?Fg4 z+s0+_r@Z*=Kw0r;u=w+;`17~;^N0AeLtN#)Rs4A({yc;~!;NozNp_Qw)g)vy30X`+ z@<~WK3CSi67asyk&NgOdyp)dD7^C#_LIso_=a=5cFa3u2h0-_rq^JBPenI!~D`K_a z`v~|Iu?lyew)9nguV$Qbv$80EoGLEO#mjiliyKT&i9fx>brpE|%6;(*Z_St}t{%V( z4PwNLd-y8lBYY`Hyvj0G6t!b%eqm8FixtPeh)S&k;!k<8ZH*mA>d z&C6mzgUh7t;*pMXgjT|P?P0{^?cJI83hCL9-}Hlxv&nR+OCM19L8IaE8t(oTHVUaD#KR zg*?~2UKMkQf_^Y9T&+G%Z^0+t>s6Pv@Uw56ChF*$aL1vD@U~3}7-#*eY~qSK5eAe2h-RsZUgD2v{oT(B7|j z2EFR+H*jXklr-_Vj|6`Fajzj!rVd8M>##K5>q)Qbs!(xAOw=`+D(Z@Fr_8El|5aa- z#*1k73oMOlB>GEa8Oz4+Kojxpk8em*!?!7*nEcSmY27|r-;~CC+U(=mX3`RkNSGQg zc5VDGOjn24-_wt$@y4O{DeUCGFf}fz_~kz^^?ny-Kc%s||H93v$G!PKxS5}+Fx_LA zOtCo@+V9S3-xCp$?i=lm!EPJBhAX$Xh1>hG0t8MzyfHqPJ=q2{vO2om-2p}UlU(+p zw$cE?66uI^`L!C#SC&Yd8s#$XQlX@D zPv@Dn>~&a61wE&WTT2fTxi6;657m5{#__{iFGtzylK_a23MHm{7f0Dc^av`~Fv`gS z_C>586$lx|C>cK-ZJ%KS8flc#1?_umBYpNrOy_+I*$1m#v5X2sd{z&+3)?S8q!OWq zG9!!FQ`jd2PCQh-sJ*QXX#5^3!q+BW3+HQ!+WXrU`P51^+(emM-DG@lNl^=~NRRej zEoPsl6`y4@Ud|EEV!Ul@Bh|=~s0s$~IYwdZiLUYb{&b$YsZ%^VNI77Q=w9%3Wmgg( zbS&bj&d7{ZnuDj!PYz>BU$8usLVQn$@17}jH|362_G+>`bZ4A>T!?-zU6zO51M6dX z==2LQ;ojJ?_8gjCJVU18*bH+VaxBy z_z0c{pl?0BPzHasyuCClL=_Q%8r48R=+mY^hOFDnm*GvSV6UvP_LL^6zP-!S6b$+` zN%pgsbx?US+Rs^JcZ|?RkM(_Br~#44F6&P~m8{J;BU&(hN3V=B)SZ!L}oVk7{I(Wjm-MXt^6! z%WXBf_Hzbag6h4P!`WVAdL}XXGn?;;DFcfaeGw$5drkHZ6^aHM zAIxCWOoNSWW`C+XcYVWEADzi3H@8=1qp5hb)dH)nMrO(c_qsF|kNCcA1aG_DY3JkG zI#iyC{KhtHg>g{w=tQugdk#Y-W ztfE-8XJ`AI2&I9j{Hp71(8d0a#zs=@#OIIN4kr-k5-w_=<*ZqZlGvSRi}SPH>?7DD z!X2;2jSe6$W#Te?x7&N~CHq8;&7(AUraMO(3{OL5FXM6RT+zJ!rdFNV$}CNnsZGUg zS$u6ja?NA%w@%2l+>~F9OR$ltA%jEI(9~6TJFMwG%{iOo@lpThT{ym8{ zn9Cb=vCsyOU_fCM@?6y5oczAS-kTMr1lYlXJi%_S#mZ3x3M%-$6x82kuf}Rqv?&PM zD1yrObqrwbX9Y&HyX^kp|`TV#J# zvVTMo$o{HfoLtKTIvLPD_Hjdjb1B+PaMoj&%OI*oF~}M)XqZM6gPOMwk7%MT_jAVZ znKjHYg}p?ZBKyt;`#uzd>;Z!@dSf9g!G=?`X&q?eQy-5BgA7jGG9RDaSs~997z$Iv za3{w-6ZXt9kB8=GluGWN4~Aj5)!C_-XfC(QzYq$D{~EUyOfA8ay4c}Fd6+#aW};|D zlj%?az@0-Fw&JwVJFtQsZrff&yMf1r<0|EO>Sv8FO@+xN-Pe@4SW$YHy>5S9W2-0} z7o%PQL4A#FD1{U^AijUYe#^$T{0phEo1&1S)XHP*Wi)n(lA1dfrDK0vRppDzF1DSEX*z#dnkvX)p+|LRjzn`#bjx!s0`<-Z!)%m_zRCza|#F^sX}rW z->~w2@Rt3u&dMq+#hGf!74l5AB*kEdu~e`A3VHUJNYQw(T6aZ|4mV%Hom+aTi5{2PERjsv;3iam(|;p?WFZzJhnC_EJ1^W|8=EFp2&B5|c`FsSr>io^~n{ z;efJy1ceyi%DO+<-dkhuQt5bT*?#W8%IpIQhJlnT{Mt$SDSoT>KJDgnCvR;qoXesBdJ`5`=94^zU8)tqj9e=sMUS;2>VWUp?6RKu%Y zEL4!M`^esg_`>*R76^`+Y4@mtEuA!)DxFNK)gwud1xLenu^zJmU;p9Ij$IifrYo=X#k3{DipcFS5Qq_`2ow>c?nesiqk8y~_{#zk46-+IZe<;ya^ z9>52GWUrw^dP;iU*_@=CLcXpM>+Wv^ck(J-!jk0dU>?&imAu#H+8rTm7F7bPkyBUl zqy$f~TofUK4sT>w1R9DP85UD4y5*Z-Zdu`X%f?MzO6E^7b4^*PJP5>GlS+AFnD2Ys zB`5cOX)meoUdc~>X)nw6(l#h}XE3?P{BrMoWiL;H+!TxD$f{UTj(n2}!RrK|jl51k zX^bJ!?i+g}rg@3|aqL2;FxV6VOlK5gq_aNX+QT(gkTS76M2q=MMdXOH93K6h{Ug1+ zmq(U#6y;mKvo~N>C>zkFt>)z~FSZY56)6IBzg4+vEtW*VMtck)rM(#a#D>O4(&N1{ zrb>JHgyN0@-u_GNpJ}X*g=2Dr8z8;}Je23|d2J{^lWxz=1l&J~L6wSR*c-Bu6pZF{ zdm(XoimC(_os93H+fAKPAGm7C4~d&WXJ}5nAd~a`OnWsOn@dGw(P{fXa)k0;E9`aI zR}_bpr*pyZ;!29FRP|Qc+cIwug8V%8ix%0zFHct5d$8@+RuO`o&s>Z7!Uguly#FdN zS5`4!ud=scC#(!~sTUPffRFvb-jiLoHnjmyp0MnTLcCo>V)g(M-db(1$eviqgoKOJn6%kzl}7RA!ZYM3kWze=cgcO6H2 zSVn3k$$6d0InYQo&M+;4{T>SSzdN z{ef%OyOd!0ejp)-p_BWEAfZ$22Miq@W=;!_Xr=O*8Ks)+4Qxq4=$OJp)KsJV@x>O< zNxax%HiIWCA3w`cUT^jTPfc@_W-TZU>hwY|ojOXLU>1LJuRWfmXP-(k;7nmK*`fc5 z=9Bl?ll%}&cV{cTS~C|_0bfPAM~y2cH{P%J+aokTDb6td^!w$T4hQWTn?>2kxy281 zZb1>IR~8vwSxnJrfp3CYV1?=xVuG5|E2%%o44q1OW-j!!SNe#qfu{J*k=oS%&QWaL zKC$|lA9(svdntB~vO^V51yk{=-%0zuj}Vw>AuFR<)C_j zqR}>uR^y<`IRKz%Sr2B+O@qkrDilOD9QqX_U7X7ETRs5&D!PAa{ z2}e<4RPps-D!zj%imA779~t&O4Y_vAZdFitPgTS3Jq3*3TXqhnJfBmI(0fWl(|ZaS zy;pX%;yv$+=j{zOwv{qO_iZxVw~1m*_nk1@cZ#CXHphb5=3-FyHIVKTB8B@@k-~kC zs1$S`v_VyS%A1GChHSF=11QXU!+LlKA(oteX3C5 zJ}bl+dqcw7GXBOp+dpoJJ7g;mZ{57~I7hrQI$=40y zSX`Ma>fke=-Wq%cXfZr;s9nA_mht$FT-plxGFeUnj?N*#9maNYvm;bX+><^iAih0m ze9h;~>VkW1x7Wa0=f{F^>@KB1@7xULokxD}Xf53J^s8%lLe9>`*j35_+}}zsuvV_) z3a%ynMBY(=3Am1nTkFf}u#T%Hc%!4OyyN)b&V8%ub=UI9*Sp5C`cwcor8dvICbptp zJD8NFYx(}WU8)Pu%(&g7t`L)XzDp6c3sBe}&mDzAE3k{SXIRTU)ojwFi5hDucFvO+XCWdsA~bzRJlPK7jY%7BANG@oxDXtJri(gB5%4L)XOX zqwiCUIjFu^D+kqA6pf}`7_8Ije$!e8RZ|&_AhALLhf|ekS@;`GCsL{B4mc`%t42Et z+t?8WF4l_&*7D3Vjza7J#eij-@EITG2`3{vSt_w-E#FYr@gloU+e6N4!W)J52xof) z7%l0A6TZWa81DF}cs`z|sADC2Oi9F&ns9F+xj$ITVIe(Rk6b6$(7zRPG-A=~NOa;F zI%*vs7XwN}DHwGP-AZ!Ivkr%69tKT^yJl%dF(-ewxZ{Xk%MfGlm=MOtKIf>%>MItPaIs@=l*yHH@E+bu?hf6o(oD74DiTRF<`PYpG!ksiDr+$yNSKB^)dD zS5Y%J8=8glpmlt2Nyj{1F^2=|1}se5NT&T&rrw0o4k)nrI19I#>v-O>jubYNVz76( z9rzsuW5<916QM$2(ZL9n8Bzz0@r6Ad32;y7m@wQDByKmH1a61glG@yHrh2#z5qA5z z&Pn;rWxm00=US)>K2tr)o3FehOlQAl(e3m)8Ox_BCQvMQltwzfPR8;-w7nV2#|4oDNcqZ1J5}@ayHwiTytyKbx=i5ueW?#=E ze{|O23l`+bsT~*YufqrbULl!nZU z()OlL#|kj)!xUqV#VZu-Bfzn!5LncBNvg4b zy_}`&;p2-tqIr6f;}t!8gG{p38arCCJR3+*BX_oeA8qVNW=z4TNw&M>o@0Z;{ZbRh zyLuIa`;-?P9a#;9he)dl8+h%eP?M6NU{vlsB=<@RcdxsdBfrMFD|Emyq65@2Ki!L;^{lPZD5vUaJw7oxzI3G^u&tTr>c=(pK~ zj*cjuW!p$SCT#Z5u-QYZOCX!|mSXQoo8{+KE<*AvXyIqfRiKf@aBaFc;4~zjHa87d zm4eZ5@f)S#6av$5jVXaJT!d)o3(@>MvkN=~_BGdXs}hmH_}k799^2hfhIO)X(LwCO z?vBSQmBsuXX@}AqiTUqI^OL|fthIA3Ps-IJDGFzeSUJ?fKVUW{d7A6*td%qA*Vf`p z8ZHPHYaNbPp)2(^;F9EMS|8=JFx1(=tGn%@=ZoIp`@jptFMJ<(!AAK)IlP%=e9yjV zn!K54sNJz7Yq@AWZ*PYqSz|v?%V4?a3IZ`CPyON<-*Rcx_+%M=+y(V*+X#1AE*d~y z%GQmtTr||SOJS|$ecBY+|7EbxvB~O5z+eZWDaK^~m&)EOxU53kql^lh z_(I)TD;Gsz4+KKg1Y^BrYl=4IRNzS|jy5{@8p|z%1h-jkxdVbWOSvVblI4~e8?oFn zQZ$$4mLrAy9UHm#4M&TZtpZHTE0@u+faR5Ys@ZdCY#i0vIm*%HXZbD#r;`vRoJn?sm#!ZNGn}Y1`+ystr z2aG;)ldMlPJ7B!&3nH;*ND=8T9@De`Eb9|<{tSKacZ2z?Q|LLDi_v`&g)odFb$*6AC}IHtACaoxN9g2+`wHG%r;wo zmK(SbtXQ3AMvif>q}o+cou@*?DN4JascS3qVX2N|>?TzLJ$u#g>{W`vq2>^E4Ytkl z6eV=CHSV>|LE=8oW{i6qq(dxhh%(hT>R5$Lv5l_E6h|nfsTe#$fwp*rqPF!P;?>6ywqgiRNQgIV!4Pb6mQqPB<>J(&M;Pz&I{1 zS)8}x6UQw!iSk3|y#rkl!}1-9F`f6B;k;SiFf$S zQ8Uo!Gj0SBB83B0k-~vpsT4fFis3WnI;>4q|MlM@{r4&*Miu)7Q*i{UCP)^f%>JmqQ zmooEi_0MQ5nbXt_9j6KujD3eOz&BSolip$`&_3Y7NZF7sfvioBYf^D zVAFeBsY>WQrJ?CP1uVR$wGp~Q2hu*s+y?2Qs(0k(GU(3c* z*EmWteVa9|9|y4v+vbmJaYRXcS6uq;lJuP_&wuP+f(k+hUNS7H5(rCLAPI zz@{Y|P|j#crJ-p_1&o&b-Lxdk)L;cH&+r`&v|QRId4``!z=cD@^|Vd$5PuMriYvDP z0^(b_nTPmOwi$=`Qz-@Jw@KTA%noOpw#HNZcecq>{C6k|@MSAK4OoabLoz4^nJ)>( ze6`6OkMV)IoU2e47$|s*e*nCd-m^A8fZCjv}-vSsK>t;N?H`7|292y`IPwy3pmOTQaX)KZIh12_T z8XH7F;ua*h?RC36M(9s5{w;B`mMA6V_t`EF#@?gtfs?Tr-baAZbRWQ0(P78;jMIkZ zP@7M|VyNkSyF3zB2t?0FelV1nDXeDiJE>6Y z{#K*=TPY?`_l9j-FSlJyU(y{v`cS!G-q?kb6FE73S+z#pehP1ue{pSQ&>3%!f(CmI!3Krdm z2}0Z{nE5L0Mej)j8alMuK@KB8AxqbdRz}yOyjRaV+Ux9XDiFIqPIjF)I4lbw{JqX^ zMp0GS>o<4c(V1}!G{?fqhjnnkP`sAJRhL}{^ zAG{W4+Rh*|iBEURSM1>_eEgmxi6~x6cJKY2;_|sh`BTgRWMC#@#~a18-X&X74gKyi zXGa<*vH1>zn_HGc>K3X{KDhEO*?}f|J8Wlm=@spkLP^o*vU>(1K{c3 zF9c!;ex^&HA33(MtAwXK^9vv)<;qSx^W!t_w#v@e_jMj++Ah$*xBZPrGmm!4bGSSd zgJ&~<>F`F6`YeWGARic4wE!Bg!T1N7jqEXm)uPRib+uiR^$Qe(tO0|pJ5r2bJ$q|t z6Fxz6w$Xtto+wrMtbZuaGtfDl^{0(dKp#WENQyxLfI$HhDaNn6*2gackCcMg&OB1O z4(85sq(rIYkCRRxUm$|_qMde?KxE+<(=otyNWvqF4D zrqjneUSjXSZB@^r0BJ+Ily46@A=pd1^O-qH#SpW_OSj|2}XOtB)1Cu+>XINQD`l7%t&avM@B+>ipG_18@|81GuX>s-GQqSfR<>8kpoJI6}z#DSTh<1Q*pQ@ zTZ?Zj>9n>N!Ju*wdu(`RhywNngK;W3g>n~pDgYC_GDKm5r;_vb$WzG$l!Z8z)IR$+ zdwjP?o=n1k#FI&LbQo8nD3VwW=VVnSGbA=p!9jH2FxOewLN7K6s|yVq>%NHSU(5No z#(t;#Fe1+F;c;sm#d1-E84&*%0r7yMF(Cf_Hv@$34Hgi_-2@=@+**rNGaicWB?AfL z;hcS>P#k^Swcm zbLYLmV!^l(LlOSf^N?N?2r9p!(3iDyQJF#1#!yhnMJSy1hXQ_Uu-9(6rIrjSS9~I- z736>MTGBi!0UvUo3W)C^hdY|nn>a7&KkVfl)^;z+exwBEj-WS~EjI7P9YGt+*Lc$9 zjs^Jmm%~fz-|v-so8MDz_&{__&}!(Xz<`Cjmu6=u8Xt%!g2}mThF_$+Qv)FZ(@ziy z+CC}4wvU7zN_Y}XLc~6Qfcqri-lie}7RAQiW;)d!_cr%^QaMcAuqj?q`gE_~54g42 zkm`Ycs4pNsKj7Bpw${$3VXPNziCdf9L9tgl70X2t=5QXmPv-Yw6ph1qFw{&t0~}_J zH9Kla?WJXE2Z35IXJyu%vc#Z;D%SFBCIySA)q$W$XXnfS1UL`<+DZ^1IQuqNhVhN< zoWps!_~sER12K`yXXaT$xh|qt#zD!8`^2L$zxO~_ryjy~Q88$_ZD_foY#YUxraNnx z?pKON)4>a<0Zn%;sOgNW+^}jpY693hXn-G2fm10oc1EehNWK0(e@O37?2@D| zhG1MIN7I!U32xjdcuDjFHwwCoU${}weSffxf;ArJf8>!ad;9>~K*fT!jDL$61>H(#QEcdy9yXdj|mor%c#y-8=Z0(&74h=6<=r|C(ZO z{S6pge=nyPh!kV*0MNL1Faw&2y@TDf8M59kS@S(T<)j(80uZ@grp-;Rfc9~kM*Nq9PZ8oJl_bXS0%tTu0yn?dkl&!T;oop?C`Pk zj)34}2jUdhxbKa0F4oxRN=vb*op(U4E9Oy*xu{)vKrU)mQ8Yebmmdf+Z~6&1iZw-> z19DMocEI>d42Z-IQ*T)aYN8QORB7X@c@`5Q6pLKym;u=*EiPKOk#3)5oz^3Cu z4uW0%14S$}m4-M2Ej9rjstOpN47kvYru5>;pf*JM__v%%Dj4Z;p&9=l=zF~FY-XVs z3(Zf#Mn83KtR0Z+%mME>o9Qf>^21d{%Y!l=T2hSZ9Opsl95+Q{JlGEgiHBE#qY)1l z=NRRZAQGLUh(zaDA;ua(0i$uS683$n6B<`(D2)3}+bK?sDPW}cRl>&S`rkY_7Q!k# zaEXz5P%bgPrz~)Zksi!6YY)mL1`HKkZklmx?42o6Mo)9T6F_$ijDu8Y;J$NQV<;T4 zqNo}8hXlrv8P2bDc8~JI!1%)mj6W#G3=DQi21f2fWQ1T~gdYkL7=;c63k;)9PKXqn z4~j^0v00gl!mTJEz(`UF#A?$DF(OF;n~~Ilaz<+^4Iz>Wc&~703r*##gi=}7{eNdEw`Bnhs_uV>JI~SE1u=8-^x!Ac- z7-A^h_J;QPaWM%JFkpj7C}T*7 z&my5zFbUPNO2Fl+BEej)9->{tp8!Q^fM_rP7xV&amP=Ijt z9z82^#Uw3j(>D*xZQVBxi`yZhy|>eyS2cEvDudR$W?1hU#hBI$IU=nWcElQ!`jH?p znHRo;9{6!vSmpr`iPlp@TC5j;L|U&rm5bIZ6HIQ6Bf+d^%0=rbaxK;~nqD%kXRcRR?H zY%DbZp4Yz_%m9;)$n$y#pFyi(N5<6Gs6Tz<2%guo6oTP1(w)!q1>HM@7cZts|4==B zqtS6dzQc|u^>l6HYXH-HT!5zweQ^PvA%5WkJOhI0@Jppx<1~Qar|^6)>i)dOIVsQr z{G+wbm25lhIxfIB6Nn*rYU(pBz?<@UFW94aul3G8>=(jauDb)sOF4Q(uDdHeH$OXn zb%S#~yFux2@p|Qme8u(xbX+W-!;XTs{#m>DfQEiluFUgOj9A`6ZFtfqX9HG(BH$rt zEX;upSGT|!Ul*-Uo1yI52IrO(gPdy%&IS3ciD9K#SBf>+1F>MQUEm2`XSLb+JH|!_ zv4OdMJ`UZd>*tN{_bQN!ngrL+8;;2JvuG{X&+iHqjvwL8wmECX92H=?e*TGa5bI~o zzHgh``jx5oX*cBI``zkKxtcaZA&2pn%OuJj7rF~51Rq#)1q2^h5Ex>i%QOCbG1QxD zmvbr91}M$NYS#+}77r^g#h9zzy+`G0cRxkr!)o`@AnEo5a1`nG-J^1~`-vb$OJqHsi zs-*od=um!gv)l(W4cqq@Y1kA>gT8#_mmt0z2Fwg!S`2F}$AmOkkocvUYmq5b3a&+< zt#E?b7M3COKXL`)hxn{+9DROC`Jw6CQwW;g-fLh<9zH8a9+k=7MLFuRm9%vb`Yk7& zo&BVy*S1ko^jcQY!fSp~bXf8)io-a(my(ya;SJ!+bZ4Aju_C4hy3=L`W3NNmZh#Y{*ztKOq;D zgdT+UIE>WxVl`=n7*|ZHU~$D{B4vthP}{%=!Yd{fD24)FG1=~algle6ReG`AbHVfn zuEo-h%30A|NO58bxO)ftP> z86qpJ%dQ7JJs}y6V2OGSICO*g$dfXadaPw8*I~4OASJFd%Gr)`$Hi+V9Cu&uhA`{(- zM{1?1ED;SlC>eUk*+nJ5ZQm@+FOq(Ep|q^F&Jrm<6oZ?LO(__~Bp&x}`P11&QzIr8@S-wf{@G`)ipYUTNiM?-YhK!ONorelRxI5Qn5e&Nh?95^A+%=Di?lhSkd zoeSB=v~M^mok<{u%&D`VX;PXbzCHN?`-U)<^U(mJQocSe=c8$loU7SdN`lkDACAkZ z=nDL|9-k2wUNAZcA9GH(2>8%B9expwQptMC>Br@yPBfR3x+~(>qT{oEbk&dfTKuMS zx>N!1Jy@i13; zR*v$)u~Fs(|02wl%*rSjv8XpC7@t)uaRQ%l1)n2LK?%&2(3lT-E~*IMlik%sZ)wP^ zoWoUvwI$8vOF*qp@U=NyHCbx~qslarf?JKW$+1}oXa(s4OTF! z9OHhF0a8wM;J)$k%;kDcv9Q^1!wq3PZhQ8TY#x<`50p;@1dRlP1vmHd=XPCV-zyEp z>^vQ;CT8d96l2cLx1Nx*^X(LkkD<*cf~4$&z){TTt{j)MbJL~9EgT>cpYf_l@r<`Z zqWM>mt`;g7bFPRh{#bXJ#fw=<^S&4o8GsbS!*&wP;~SPZN3hZxH=!$F6y2!tii)hj zztiLFY{?1vfc+G@E1v!zpO8=gI+PZjRZ~C|XQiLcyHtPiBu`q>y)5fY3DEW(P6n~P z{iNUaL%!_ZN>4s1=Kw7!3v&+8?4(q&=1ISbI0u-jG#7J#$yOD;9~5yF(bz)TQp^F^ zTnfQCbKcoukrr?wd`|?g-B|&Wi$RX?QY!4@_rdzO(d?u6EMSZoU&h&%qQU(bS7%i? zdJ(E;VzV1p-0}`R;LiA?R09kNg%9?m$#bsa0hmpD&efh>{txui&bA8YlehQCYhfZL zk8=!POg4RiPkfpH#3Lvq@v@ zjK+N`V?g+Lc1hzy4#1{fmo)D=*1M?&KX_&-*X40#1nZLGPnC4|Q&IeRTl^U>{(LX~ zWWb-{Df6>u%Qj|ae2O5LjEyH@!%5g^((sh*MgwGqA3H{7W&F%W`Ix1ACw{rbb{hZE z-Z|a|Kl%Q+97#`iwN)eDZhCSK{9b4)P#JvF^f7XxUDu#FMBAcN~fcZ`+lC zp@A6vQ-?kM6e@FD-DsZC$6bWSmUCSV$bJ6Pb5D5Q^@?|WdDm*4y+QQm_(H}A0ikmq z+BJ^TiP#feSs>2(t=oa-9-W1AlP%ez;-kXqvsnXx; z;tptxZO>$kSvmNoYLhLTl%R`J|TMnC!gOVKHU374OgV5A3nub z)^yckM`@qMmNwjP3w<_9#6JxI=jX(a@xJQpH*jXkIWSdZw*>yd&U(4{m}Z_LJY)CS zoIFQuSIW~FXs*8Z6yNu}E1vD8nuyg%zCWz~+a=vGKDQRGZ$HK3c6F-Eo7Z*iVmVHe zP{ysteJx#2v-Joro2!RHDPZnyNkWA7Av_(RI-53_%CC0tmJ8FyOx_>r8{4l4m=aj+g&=EozGio3+EA^R(e`zYi~*Gy+xHl z>wRst-Z-OcqYdi~-qtU>H>HIu0Mzg3hWax^to$nj#u+PhHH+MDGf!1dZxWYL}q__Q_zuZb&BCdYpA~-Df?hUbwf=l|T$u zQ&&AxwjRfq{xzy7f4PgRElVNX?LD)@Es)sP7GaTXpkRUUA0Z7eU6tmm0s zu0siyk)`<(wK>+3ZWuGFu#}6xKyGQaH47!&UP+aOTU{r!Gg(@}Vve@LGSVQH!7Y=9 zb=?i~3;;IfmI=&v#7E>QmE1Dvc!m$@*(re!w$%^kjy&#)#RQ?;JYi?ym-w&mbMi&_ zgqp5Gd_cXh{4xDRGaBEW1i&|!!rhc+bzQqzKEcEX#=OvQrS_Dm3WFsF->~$xFqVh% z#R}6+PFE+5#ZfrUfno&&H8nmYuaM$7T1`rX%f4y?f-yXR7E8V7-z^c!+q!zsu+0E1&$)WHV;@p2MU{g# z?ccQg?5wPG04HMd zQOQQbJ6brV7tGt3+`ghaPc+_R~!Ppo9nP_Q6CM-P5Gb_X> zrBlGTuJsjFmSwhcWKiIGR%wmv*=vPbdMvzEcNIKmxT`SbhVClBor7HU^JSTSmE;Ni zT^LRlM;Z5wDq5hU6bL$MT^2`G^7b3<8l$l`R1b7ii*s^pw4fLq8;u%t%*jXnUbU?5 zILCh+;i|w~v<(i8Uf7GMEWH>2T#Zq2;tf}2GAfL72O(A*Y^h@Xuk5}>CE>{y5TJ8a z0^wXMB$_)%!7x(5=v>F8s@>UVlr#EOX^4Ie9Syr?Dp+WCbq?%|rcrvKnWdpPU@kYt zRYnD)Tbc@E87~O=#!u0)F8Ge)LCO@}ve$6SUWze~f-atu1L!hEqep%Z;*q^|8B*ssZ|Rm+Dh-ZmBhq!w=t0 zss=ep>|R!Zj3>@6M^W|gF*ZU#e2+2QYR28mS-;BNOHK)dhxLzw^=BcEoZzY{o(6q%7sAS)C-IH@O!!qY^C4q=dA`hfac5a^-sr>J<@xA~u9x&i z=lQ-lu6C>`<$xok@p(Ss5?puDm|}40VX`#}?HZn!wFvcrq`0F1pYoZjk=`3Q7oB|t zwm?!S59HqGJbz=Zs~YP=F&6H{m;!|Hz3+eHx}>ouln{A7IM4Si za>cR-6oV-em5BU}gpiLQ?K{^ZmB6Bd5m$ekIzatsYZB;2gw%nN;Qzi2M4`CTjI=V? zltebQ`S>zPx$=p4$60kz|Mb4yQrA`1oGNOWfE(}3D`O?8R*xk8q>(Rnn)w1Z*p;a| zZm`p32FY!>!T!1sjT`JE#4p@nAMu;qVDBWB)L87<^_2W7OPNg9&jHrH-h^eYFpbTi z-N41~R01(1PyOkc7QaxOm+30W=cguS=Qks(M)8lAyIgEOkt3JE0VJo)`%Nx`KV9Kk z$5v1hJZI1RO%`-+q8NN%5it0^;(m&OoMcpV0vanimqIg9D|&@CL)I4z*7qm|Spx=H zhy4!r@vZqx)`0f0#&5wqN1GvoqQA@P01)n5McY|z+6>qD)p^_xkhPjp1kzXkT`KS* z#h3~J+NVI=IIpe@Z16{}X?+EdC<}pU!@>RgaDCJKQ?jIn~FVmRz=wB-996s^H}QJy$6>>(gH zGlWcH&J0IFkHoq5o0I@&Q6nw{+0%dbf}BNN{asECU%McuhJz>zoEq+PW)Fi}ZhRY| z#|5rc?b;arixb0TN@FoGOs5Ls#PIeZ*Ss8TCvAyd*a`}WGKsAeV@?duT#ysPa}F0uG5+-)8Z1N?ItSMoEbLx)%9)&%YBiAFbsI(d$p!O z;{hFh(K<6Mby3a?%TW$EF(`9U&J4>?3{DJ8w#K@w#6>wXd=5y&%<%o#ga|(Gva6}y z64}e?VOz=wMYO)iQ?J0(t2M<~L`2KSZF7r=Pp-O_=mRBpe!WZ8I_x#d1lbS1$p5_N zn#%@Lj9{P3>_I`k>wv2iZxoZOv<~Vg-EghdKe{;krpwJfrew%))7TA<>{rSJ`JcJS+y3R6#m-QSg}rej(+QQm_nW_6lQfp&5{Wax621m7`5)H^ z7D5rYZmx9S)rb|LV2I0PJ>-&1LJEOUL4Wc)AO6tQf)8E`hmzn5oMM`eGD5A`MKZ;N zaKHhqK6HO&=;zW}^;z+8*iRL&V87G?K#V?#_j)zO?MeSzRiDqHVy)M8+lNZljtq)3kS_p{ zZ=TCwmn`#3?WW2Z=a})dDKaT_S{JvSa9+%zxz-2 zg#v~`6Mg<=9@oU(m(8abb5^v1f^k*^1o-}>LLd@S%skN+du|ksDoXfgMZ9WuHwG6@ zi1rC0c{qAWPKfqJv>m12xXe>4cPYtkQTaG~xOO?ngy{ZdIU$;InLA6rRGP=W5SB;3 z1lcD|5DeM<=l)z>>T#$7=x z(7@MnR=9D0X9|oTF;QZ5d?*3ItxqifQ^8{E^GPK=UT=Rz_Pisd!k)Li5~Sxnuh5>C zA&xL!7*a%?h;^S)brQRtdd(|xhFA*Z!|tXASAK#?vH2sm#9Mkkn z@e9-R%qzjtbc<5%WdYK(H>tEcpT?F_D`1{pL?DLbsXshpo^ChjOi|bmhzsKzN|%h{ zi_5y(vo%DHOx6J;r~G(DChO1Q-3QqLN`mQZ&lQ=@&Qgp>XWAaVpSc^b8x-NsW;)Q} z!gdFkO=RlqSD~xEI7H62tCDj8iorw)7)+EUDaK?CXdi1#)eUGfWKid-Ow}OV+z#kO zo1q5n4GmlrgA4$J8VsfwQv*QzG(i5h>Lj?>WZD+_ziaU46odQ$gZ#gu7?VGsef-Tw z%{tl^`L8zk@1hvw4;bWsoMMo_c#vu)dwBV_UoP4R8Q(M*YuAX=kTGEJQ>}R@##9{8 zKE-jvAxOZP&#rY4Jz1VzluACkzPw_6b_qiH>`D}>th>US)pOU0`B8xBv+HXbp19%A z?(NFCWc^GN+6nRKs`vjj3>j-gdE?{j(@6<$u#OarQ_l_pf*KoD1`1_DF-H}ip6G6^ z_rAs-Cc5F~TPueslY?;sw)>iVy~077f)LF4&=_B@@Robt?b6s-(gZ6%2{&UuW7PlP zb~|!$eSWKaLV=hpiYQ(2J;VRXMP=eb{Nro#5&kj7n2+!@3dTn`5a1(RA;3qtse`e9 zqUhj%gtJ|gCq5Uq3kcc>QX+0_IGVX9*)D>?GJh->$1YO}e4PD$Ey&~S?lt*1OS}f3 z(Q(()&q4phGyD`~fzR+;McrZAHTm4yeodZvZ2^OeM|bRXP{@}uQNt@B6f)XzWw#>p}YT5^xlU=g=qoz>jHYqtF3F z;+dBs(&7`NX#y2%?ri+r&RxjHMk`4F&W0&3uiPJa<2u>dnDL_fOZ`Jov81CYe{X3* zcg8JjlJ%L_`M2HNwb)FG!6Uk&gMY6;t!Z> zXk4xvqtnNit>mG0>w7&barmR8-4XgIkrIPi@l$7gS-GSmw=&xNL5o`d-|!Zcmcu-FF@#8+d!P3 z;m*?i@3=jDZ`{Z*Zr5Ll@{Z}}p0BfYM0@!f#99HN(+R2uc@1LE4fz_xKFUEPVr>^s z?d7gBduL2If65CoeX8bWs&MfZ1cmtQ{R~?^AnJ8KaD0wv`6|S`LGF#3{^t$(D#V{R zj8`EBXTDK}5B6TK!RH=pQJBvg>i*bP^d?lgWR8HVE^d;*z)I@EH}Q$Wr*BJ+)XUzK zFF|x3=AQl(rPDqIi`xo-z{HX5t26jPA`w>cQS}6bIxXK#`BFljo3eI)&Fk);SzAi? zEc+IIo%GgHj+TcfjfW(7t8aXy&R}y%yZ~V@_Ix-mJ<2_h-yG>)s}H})(?+=)vJq4Z zG}mj?Toce-)$}?yMe+WyXR_EJuvp|D14}dbVX@dpR*MZVEY{DkSkbZWJM0@uC+4nE z*R8|jOTz;FObcjC{yuwKkJSF;aoxc(dvD|}qTLZA!>B!n;nNG?X6<=^z)rb-L)M;u zGQqtdLTMms&+B@}z2%;zv71y&TyI|`5a>B3rSzvyO5pGP>@ndf*VX}~q&&KbYinl0A?zqm%drPiU*)0y|%F(?2rdFL<#VpO@&1SgV+`YEtd+dcQ%^Ka33+j#( zgR3^c;BwGGG3Kfb(70*?HIVF(g`6>j+@=^5 z0vHssXO32iJ)vk*2((dz?AzM%ZC2>E)w%g^OLvr^7$HQ<&u>qGos$|Af$V1#NNl3r zR=L}Ev>d~dX;bV%%iDZm6?d&%6oJfJ3g*!~cg+E@tRKaqgxF#sRD!v?@D^=~62=<( z&!89-F;?n7k0MO-0G(o<2XkOA%1hfK`|l0*n<)m_e=pe|qzIEe&?)RUbQ{u%U88N0 z{Uw9_eTqT$m!yF*>czyf9CwJ(j6EW9>KbC(<8=VJV+28@k;>HmB;_s=D;-e zR`q_d-gkd+FNC{3s35e2`L@Mqii6>stPi`(PyXm0W}!Ora!H<1JUNz4qXfc#g5drd zce7vw3jz^bS?fNj5{O-t;$|O>U6fjc7-rvv^G12wuXjh-*cyW1*eATs=w}MX?yR}X zi*9mHQ3>QAsh`rq_RHN+KL6|Cm2*)-n50(bw{oZANDcGul6nEB@+t)%dEm)xBL~h5sN?kMULD4>|Y? zPz)Mk-gekssX)PK2tgoTGf)U154K~8v@NDUXq!6MQN+?Vv2#i8NbZoGPe1r_tlr@d zo_X-)QtU-aEy5T+7rb!`%yiq^lZ)yvgH$7mBX_&Y5_1?8(n6HTE2>%|uUH|`eC=-c z4hvYE$mPA0!>Nz?gAcg_J743dI{3oRn?#+-&`Mm}3u$iuBX{E%(>q3mh$0kUJy0O{ z>Onriu(2*PKxN*cWUGJJGAb4wlx8?6jbhC0$t{1#?a6HvjpqBA=zG94AMQw+`WoL6 z7gB^*RVn`0c`i}z=vp8^d#eP(-c|^F-Joo%Ar`Q(cg7E+%kn|-tzNK&{0WzsrF!bI zus=zB;>#cUpCp&%{nKxDyu04)hEZv*$R6^M$I>A*`(kSLO5RtGxp!!+E)|S+ulc93 zEle?DV0c-zR`AMCYYNAaAt;0mYf=o3jF%|{%?E99WGHQM*bVx`(}oSA1U}|yZ-qdl zYKu7W`qGzYpu|ya=#TIB!Gt2dKcEuO(vzvBxoK%jfR~h8$_jf7a0P;=%+>y+IjFL? z>O4;ajcuTk(bQ`UQ?H>I3~@XpKLoZClJ?4 z9at}Pttv~n)(VN{)4%krvVi@rt@W35Z5^r(y0!+@r!h1OoV&{U>_obQu2u9v*ZyE} z?TG7cs21x_B@5TWSAA1Yz@-6wC<3Q28EryJ>Er(56K=ZW*#wG4&yJxQzi(P_-Ys{9 zeCDt>zE$3bC!BE?Ri)tAP~_sAufUxRk1c23$nd@dh$>JHlqI~(STzE+Tz$y+X^d!PC0q^<(?Q@`M*Q?sO6qm zR*{mUYvcbWgQJ$I+4L2jQpB}B#iVOhSz>HhA@J7d1Gm=#_PJK;!Ux}R*Jj-1&og{ zd@J+>k%&Q9V6QgrfevTxG>P9FL zYliYhJCcg4a?yEJ@^~7v{#0HN=U>a?X`#}atNSsOKA_!=`w10yAbo71)-~Al|4AP$ zFELi=arnOTx00Cop?scS_=3GHbF$@>DGuR`dvXY8P>eaawoot*E+D|cr4oq2WralZ zUIjcuEMQ+c(|-kriCNrlR08_-EcNRR)326UTz%S=8u z6FqV83@VZVXR6P594{1HJTFI;=@>ND+0xFu6Y^T zvVTH(>J(cEwwzMp=~)ICp%2dAf!2Hl;k1Y`36`4W`+;u{)F-4u%`F zix2<7Bo|?JF=a}Q*)>|i<#N+)Wr~?zXzcTXKhDKbT%vsI-YJ7eTO_uoWfAd=7vY_Z zukXkTi&-YzA&QGXyd&=osB+)W?FPpU+KK|=+n~ie&s*J>cb>PQZAAcSE%?SbPknhV z+~vN1GAHgi*Ip2~815((T7fm9l>W+REm1T{;CP`y#rv{!3KYZAskapp@mAP)su-3| zovi2y4`H9tma-TPR1s5{k158S!erc+QR*&V z1gZ`qF4XjN3P6Cj=;wGq-0dT{QOna_CBT|5GxCfM&!p1e+Vuk7?X^7}G!{#l`uoot z#CvdS7`q<(fZwU>X&XV?V%KB&tMxopSv|@FyABlh>UjpK+|91Hp#<0yASm3x(@Z76 zbU(F$rwr>w2{1cC*%du(B3S{;t_})~vFz%Q_=ROxhaSkXE7+ko-ngH8L%wmJ z_=0C$pcDV3rk*b~cAfSfPy8Kx7KNNLgxsVU5YkCAWZ=pFBZ@U;0I?ziPyVAHSzVj& zk#t5WiV+>r@^NQ-4=geBN0wpLDAtq##EJ|&|8Gs(Vn3Q2GG3w>l+j$uzyg3i6l=-= zVxJ7N0$@CCi!w$VGNw@s${0=h@fpRMGJx180|N`o09MepC?nI5v58_(MkbN5pJGiJ zK&;5XT7WCGEy}oH$hb!_C<9(17yiInfUw8JkERSDR%Bo;z;m=M$|(9+`n(dw2pKwH zAb1m5eTp&p1KP(Q>j8q~60;uQ@dKkCfVPzN0KYxJdVoUE#Ha`8CxnXs;#G{Zdz>uG zi>&D#8S_B2pp^j^Xi|g9fGS>RA5S@*4We4(6X)R#&&O;81>+NE&}05x3d|i80(^jC zDZyk)fX_4_Skm9KMkRnpR2#lwfahs$^o3FanWhWTjt!uKv8>=*3c*?HR|0~wR>;~| zR&Z{h=R1vUQd)|#g7x4nF*#gMF*tWO%L=R3mRKRiC5;N$be8r682cYSqO3q^h#NjdhkKfiZSQ>gP+Jb|4@oXhYox~96B1f7!Jj%1k<6$jSe6N9jb`I zJ$)<0*oIWV=n%6yVGdOWy`r>6ui{;h3fPQ_C6rzaVWu=h`ne~1mr}uK*3M6;Su1%v zjrZ);*nY|o&AQt#>u!p{Zs0lmc?uRi&;^0mBv1$-iL_&X(zcjCpe=3^sBP7A_?+2z z?7N;)ELXNLa|EE{vS))->8U4Ip9Qk<{pI`MNW_D9({aWZ6oo8t5U7%yljYU3W80>LQRp+re#-oM}AHvIV_mt%RcR8P^_ zA9!A4)2JF4GE=h6n$WK(n?ez&Kfbs0c{aF+bZ`mwB}Jn@7f|)nOn+i!fT?~#x#pRY z4PIj7mmJf2?7ce@qb==2#q%q45qU`;=tMC>p~&jcU9`^QSE=4lo16xI*w_!#%1P zkxma#&gdR!n|X0i5vH~kRs@w~ae#h7WVc~ zFj{bxwBRa=z@Z_E1N415KevBCiCh$m_S-}BJ!#rcmIjyxG|E9%=`wMtQpCu(LpkHf zfVMa?)V9Kg{?Y(QF>fq~qL~~v5{Ni3LTn_(~;}zgDvuBcldY2y;Xaw9FM7wbF%*p^97#2vXqwP6$2RIz+&1Z1MGUS(u{K~XWsmL!0<^hGAZ%`h z7?W}Zj1MrZ4e(OVIJZ+8;@l2zj8?$re0)2l$N9L@P|(l*ETWjI6*|BHrXwSZobKMB zJkbePq!X@CglU~@AtZj$I#&$qs06|~R)}%9tAhOzSuDhe$l_E4W||^Ab0Zw&U`cFz zNU(r3s-hJ37?27C?Qzkx2OjQrpd!%<$srhu$rNE)!A-%!3R*Hx_!*`mYI|V>E5tb3 zRlpb`c(gl)GR6>58;YY{6(YWH&`Q{+v6#W(2Z&cbme&P*1-k>{67SC+<6#`nyuMn8N&Bp>Rp=MrfAH{*9q4L(8{;Uf-^qB6eo{ana1`E zuV#x14dWf$5hYlGP!g1Wh4o1IHmQFF_Z+;NN;EFO$G;q2T1dz|`PKE5YhgwwP#YQjSgF^=m_0xWgfuH#+4hm4zYpz6Z1vy?;3i!z%{+z8k$Ov#u14L*+$&`=Bvp)to%@w5O)9{x6q3 z31ps7Q$Cgx!+5bPo@q=Gf_diX71)CvL7C%14G7-5>ggPS029;XKm;FL^E{u0pcKbF zxlaQTym8%AMYyG ziYW7@ktMf0@geLu<%|OH=>1m;MuEq}_>w<8aVi0t8+Ud7paf`cAQ<Am~0*%X6r#a-4>w%%poRdxAPMYjUMLmPbO zC@aAmA-y}Yb(D{fpmb>O7qSrG#&{gtXC<%!XZ~ZupZ<@v?+%QzXdd=?LV)Bp0TNOn zkU$_1LJFNwLoZ24DAGGuLkozCf`SzlCA_puVD_6uY7nd&O^d zcJFrfa_8qSy#J76cBk%ao7rbKI|K&yyHA2KY>?^Oy6{3&O_>JPb53AChC)C`Fc5-_ zseIr++L)D}%o|>_HT%`$8Bxw6TR6+CIYnfruPD4D1~s?};l!9m@z@tJztJ<0jS!!8 zSzTl$Jjv6lZeS$F+gyzF4IV3?nJSXD!D9u(>qDQyV+FjA$X(DJPFlD;++F5w)r1W)g@&$Q6EZh?y=Zo|A4A42s2RkUg2uY``(e3%vrK? zb}jDPfM-QBZ#}ik!JFHaNqo;=@WN!-ioE)~YVOdwF_cwZUQl-N1im!I+1`GoKHp%u zQi95-K3BNFdWjEAb#9FLO6c*8_~+aDFcd#uI5b|HPbDdi)E5ilro3;R%63TxE46X~ zj5T?qQu!-QobIHniDgua`=A2fxF8N9HTA1kKj9i^MF>bnaqO2p{t(rFg@2^auel&_ zK-4FSi1Uj|K4kxj`1Jxv_4VxOylnXJ-u(LJ&dCw!QLwOIm($lyi{gjsSC&QW2POw| zN3&Fr?H%q78KKA0)talU;LZ|HpC;_MKLBLP}owo9S;IzD98)qaxm*M=l zG!%QybB57}%I(Li>Ji2_3N*Hi-R6kI&K95GuMad2rCn@dS- z++0~=`=WSdmUCDwoYya2Yz*aEm+zdFG$W)b&f^&q;I&F#GxStj=jWDvYZTwu&gl|= z8@=M1!M6>_iss*RbSCqLZ})WYvcq#z`Lb2cG(P{EA!+>E9OvEk?kK+eRaY1Gv|)lH z-Whgv6z&bQOa`1gZbZwIu+ zac_~m4Fr0}mCKV0oCnyq6c60FnE$;axi%*rz=quZTC+I&J?vo~isA(yyM|OB@96Aq z)rpU;3(2q@&fY8meg!(wMz9hjSQ>S7s^_X}SgLunuvCYL_dwgDm%}H^VEi^bZPG{e z_=b5AQGDw2rL`701}?+;ac*lCLq!q>j4Kcj>i*F}#(s9aXtZDT&E1@kz#mBQ#9R`0 zQ?TLt1@Qbvfel_)e*A^xXyIb;pM1QA$gTo&{XKiIy%PK{$yFquzBSxmjh;6}@r<|y z(|Mns&WA#FhDXn9Tv%MaqnFcbv0JEaJ8zvmv-Cy+0qfu}cb>d>!&c>9b~ho+Gahrd z zH)_;B^XtVqX6>Deyk+cDT5;!xo>A5@vlh@y*NYV! zB|zWG;nNGDuNlT^Kg@YAbJD7s$8^PGAuUE8P=bnlG~9V3TW%B!M$=73l`H0!hi%b& z+>`jh==Slv_mml_|7l-0DH7hR_s+V_w;rskujSn=9|5L*!J)Ti*w;jJYrVUGZ*a7a zhNC{twv7a$yq0&nkZgT4KU3=Lns%1}({6n|ZN8%SeR*O5@M}7&)08rkEMSJtgd20l{F;bE} zQ^m-pqGEAuDg%N|H4Q8+a!t@whn}v;tzPSNuCv)GDi1c*H?pa|p#^A{*)PxA!7hj) zP9aQUf5R{t5JM4Qg*!eXomZ7c@>%ujya6neV)^-C zqZ$aF{~ejNLj{v9aap#dYzTgs9iEOBJ4zOp&$OA)8%2@Z%=`mr(k$ExL zL(#{l|JWV&qaCN`5l2@y^h}B2a~C>`*c3`0*Rxu3Rdqs)2>5j4^S7l$rKzN~p$!=~ z#d_<^70^guYM;UG-F}g?m&NWgxQW4ZLkvIh!u+NVTCn;?*N})O!6c0qHOyd7(IV{M zPlVI`#hAbtT6CQ&v$0R>qOP+6b|Tywvw;w$F83jU%UvhB9H8NG0E)&po}1eOPIjc# z=j#tl&4@T9+VIP%nd}UufdYRUPT=3Az}Q$Hzcn?Bw38MXeb?ZOz8eflrT zhZ5~msjXSL!{%}%vPo_IF{TUgJX&H zl~}TLL|8s!UMBzkdgoZSAs8V7DDy*`98FCOWYM=Ur4Ijog)^T$ z8jNNGpQSfAdzo0++*RKvGoCZ>)L6cxdufXOax8b==eYgk`rhnV$7p+Itc)G&imH*OVMUA` zHxJY7YEcQ-Ew;4ds}J7nv@Lc)1LDv-AN0Thwp*Z)>r*f`@*b}hZC$_{RKc>zKoWA3 zg^W7mL`C2`2VbOKNNi2%;_9)bfT-1D_3G8m!2Q^t5|4kSX{clms?1CU>0;WOCO{i(!hGY0nJDp|Szy%ms(?wa)H>1E!y9a#;3P z%MKAYG=NaxCAgg zq7&&@qa~=W+~S;WN4x^Qb7)L#6JF(M(m703-eaqCNFv>3`^i8g=WNyN5s60yXH1nH z6TdK3cB~<$$`ZSYXc}JofPpZ7>tp!q&WD}Pg$#c^bAI73UN-1dbamTDoNX=k8?_3? zz@wUBt zB-9kfSFe!_knPy%+{T(wG-y>BAhS~&i4fy(JFyW7j&%uLw}Y;Wp|Mh04dXz=bPXLA zbJ1#=^NdC^Vs#NMMk-LE!(vw%#Ud;Q#TXXzi;Q8hb+nph!WEMTX)!VpB_b?VZIlT5 zP~xYLk*W~wjHV46sfq@YH6m4%ii}j9ZWtV?5{NQV^||;J-H3nlw6iF!p7;-qRDDkx zn?s~3xBB8|oU3ehQdIQ21}-z2?R9QqKTt4sXtB(&Pd4Itdz>$X!-|X}!~$3mz(cN` z4Q9AJIV;4Xa(+b_!}8>E){+v%l}WmQU~fJP!>)*H{k_kbYO&t5CT`yg<1o@vNDFZG z(s8YkaWbwon%2SPKpA}I3@7tyZXTw@$=U03@COms(n_d{lnVhuL-}r{}54MYngSOr-ZM~fq;N18M;ESl%YqSI{{8BjK-;oxM0H2moEiJhE z264MGvB3^aY(OxoWk7HnqN7@8sZe6tOro{5pQ)%8Efh09X{g9}*--W3Nhi<^6%ilC zn;OOcV?(K1k`2b#PzD4W>S5hb7}R?E9p~E?E2Q#ZOLd9IUeSdXpjj}eRZPLS0qhbl zBMcOQMi{104D9yH{+Q~p;$=*WVv(5Ee2U~}gT2N;z$OibB=V&nINxRlSdU#dQp$l* zD3R9I?aFUH;_PHnLR)r>H=Mp&279(s(rC-A(w19k0S0^a#j9Y?OSA~xes4Hecq=|I zu*hJKc6;@j_*T^vlpk%1&nYw19fLi9hQS_+798yP4Ftwu&mWWq3j9krfg>BEz}QbQ z*b_=%Y*d3YHfk_L1$zuIj@3HY)2guy_GC2<*~MBm4%5X78p~*p7)}BK#AaGn^&ui< zt!69=;^-J#v|}8a1}X7^IJpH$ht4OqAZc;D@=4E3=Akm;wB-~K|Fi{Lkj{MBJu$27 ztHFli-1W5vg4k3q52w#6X?7dNcHC4i#fnXN)yUa7iG+;ir}j%1H;p|mm(KM3sC#!%ikOo;tj z^Du~k@KjOL5%JaOKRXB75i=9W?ky<{B5(d;+2BOF^z@4Z`wZN^T_yyAmRjA?lpqXa`-23 z>QO+*!7owf!wsWgQT}&gb_DVg#~%L&XQpCXn5Qz}jMz0IIgDxP(_%UNQ$u;wtnZ60 zo7WfGL6u$P(YhyvfT-}J3FH{r;{*&9#6YvsSNqK@o_#$2w5!pr4IZq=-+K3WB>(HB zMR0zmRc<4`{SjBvnnG7mEzTZQ)^&|sbIuhTW5_E{5iYb`?d&(7fsznIp?x|*99b*kw>-pZ^VVS) z)8Mf+DvZB%x7FGj)xhc@%T7*|ht=RO99B!?BW_3^AX0d6+@ZefN4s~TT+#MTBn~Hz zT-iP0MrZNSQhLd_M)t5oc^K`;2i+Y!*5O)E3$NJea9tJC4fues|5+D2w>h7_Vo?&$ zspqQCr!rS86NLe<$E@CD0ig}nIZ>Wc>j2V;Q)qhZJ&w@{9FOsaXN>jR6uX~0DW zW6zte4E8PsBz|9OSBshmYj;n~U|$5+j}e6ZV^9-bn(1o7Z_ffj42HOpTypdF zDeTu^0ufM=PpjX*X$TCweKb0mIK5xQ$!%SoOa#ozpiWIgA@s_2jWZEIrr|6%RNcYt zTrF$V&EP0a-%tq6a$L%Qawzmer`~O2Wua9XA07oUWC7pUhHlEmCQH(=*eJz*P!(Wr4^MTH{;Ohd4_9L zfuMt#(3&D*t~Db?=2}~(P>&S3*5)Zh@%AY)zbX_L`Bk7=G;($mW>6KWI{OZgMua^L zL*riGfZ(B|D|)#;vspQ1tzCXR1&cmXM^uE%0cYo#DA*D8n{O4N@%D`O6qGbn`nh_V2*_wyf7erN6~z*=MSyI);L&@N`G}Za^-MHWY5M>enKlNa z*}$jWKv!`Pf)H#Mt!oIDG02r=BA{T42Ep+062%gN#R#MM$Ff#@XNs>Cub$8&HUxor zgF)fL!32beb%%sB1=ze3`#KcDxgoA5CWoTwvorb7p{|bXk5CAQhq~sO2ti|lI@V|S z5KaYiTKU#lEIyUEFPfvO2)_HCTI_4bn$R*FY~vwgndO7a0BMOIE1$KeU_Zj@w=0&I z2pDW!R_fc#`cMSjR=@_kp20?7Ri8Xlk!-Q@uxOW;gZ&J&Aalgal%`=0{L1Xv9AAvZ zyp-~u&2uvN#8Iw$SS1B-%=Nu&ds8`lCYHdj$n))sSe^5gz#E-}q%oe7TMNU3I9YisjBMg$WxcVkrIGAm${q*hEvYytZ=nS^D9>-=xy^nt zRSwE8(_$PxUr5zslXZ}n7rHvz{xSKvR5>O;N3n2B#_#gKN|lkeZ)hqJI|G8_-LdJeXCqj06XL6KvVa!~>$Cvy+GBA!ER&Xl zWa^2+^d?$oJGTixaboU-xWJsLE`v*M!e_f(?M)tfOdUW;qh|vG289iwptFu;7Y5g@ zBkJ({*WE2l^4M{%eBIrfd4f@FAb+%vZ;*+A1Mg+DF7}x-u{INqdaOd`~P~+F{rRsejbpm&0BN#t_;T z4fdt-K4+rpnON8a4IY3SE8Y!-l|Rr|S_5Gq`yy1`>_NUhW?dBN`T4Fg_G>5v5Gfr+ zYY!bA2l?ox!~^|?Y%s((h+nb56(53le$NH<_`!kO+q0&jP)ioNye3xAaHYJ{=n*)2 z7oMz0uvsTc6t&T#cTZY|vUX}JNAHkW`K&Y)0*>AWf*!r6Q3O4D0~;K@YhbC-dqG&V zDc@JDF?9+uhk6XrFozhu`J|D)AJ~nQFb>{JM)?-9|4=Xt-sQa4lGFA0k}F*O?Hikl zVSHP}rlx8H2f)fJU6m%Spb

&LKn!GJ@Zq8W_RxoO9N4mu2yDb6wFk1RQbjeyu4E z-me*Qi4}EEM|n5i_sa|GbH~-L5%%XzVKd-u&Ay}+@i^b7P05gU7VHhz-iUF$;96Ml z9&0Mc@naMX&n8zDl{@&EiyAhIh)PrWHAfopXdKP!r4iZ*X@PY+k$4nuh;iN#(WZq`}v8iqCJJa~tmflQu z7sW>LZl~gHmf}T-t;oCwrnQa_B_0~v;Dg2vh9vS1t6V3U0Y+mFP1D8}nYb$0Cc&9& z`$|}Wh)moP*rAC`+~xsBWxTz@cz`@H-YZ zm6!DVOnI&TaCV9P1Dxs=Qhfr_DycB#*4^MDr0OCdM5<2J*R6FG)?p)QO^h>_HbeI* zr3J8>7-2ONCoS4KC>$GSRx{Eg7DxrKaqyEN-8kx%q|#>mySrRdnZW=D=f!us=CT!( zz8IHdL`DBjqktDAf1S#YCw(2mm&{y{Y*Nt+k~@Q`*r--x6-NLWFpltWh-&=QdRM7Q z7p3!VaLs1Vg+j>R=(^oR2pX4_=EEp5uBu0EaurzYJqpK#8$NRM#J#Q+_VH%C?|rb5 z`-Ilf2S1Kd+ke|k9`=Bd?#laJ<4C{Akwfx(&E)#qU>G!dtExm+GI|egCjG4o*iZSJ zND7*fv_o+VOA=}Hk9Z#D<=Qp}2BT zl%zxaXGaHwEig#6LSkL=z*XNbo8_RS@*ui&VEGs&6M;n?3LA*>AD2 zg1C{ChQ~lWueWx&;_SW6<>e!0 zCA@s(2tW5!O46;_4<_&}kGUqqd?FP2O#JhOXkT#)iPlY>xB4$6paQp$7&KM$0|sx_ zqC+bG^l{giq&tYUR9pB&4Rro(&6V>Dh)6E zcVnVUJ8P);CER3Qv@rrelN(eilD>5b zbBP;AJeoo}$7yv|x=i2x_0YW9q;G|Ey#9-eVq++4b?t}&QYPMUUY1xYuN{ef!F5L+ z`({uFC8x);TsOLiRM$@a(!E;c?JYO(mn9acLw}Y-3JUV zteKWUtl2I@UN&+Nd~9dmaY=lg6KFU{cF54(D> z%QSCgsEetguAzpy?ZPD9c&)u4gZKH$)s8KoBB06E z2Agc2GTCg9O}L|V#8u^ZNaLNq*&a}4n{Ak_8g8~3ZPhshocPYv!-;(TQOLNxqZuok zy+v*Iv9y_eFr9Bd=9*Dkk9tFy=MBmY&2w5ns7Jl3%=3~m&w@`}w{hnuu16dZEdu@E z{B3kW3v^t#Bdn%tRk^1`^T^L#zuVa@xb=mrGt1Gem6h7GAYHIa3*7||eh1%*PrJ_B zo2Nfj`|%;Oh4iOP$`}ncL_ny)GL$CG__TLidDVlzc3opRCTYC$x7B#b!EV+9(u=Ui z^>@Mb6Wc^rKl`n#o>k{+;K%P?=GHy+p7_LJ*7_Lr6{o#Szx-v|VB z!*$b!^P1G%@=7DtGSI(3GI6C**^PsGB-CW*bF`FabYA_{wb#)?qY2x=MMwuDbF7x~ zbFI{t`ha<;_XG3>OzI? z0`vo(9_%`!L>!rc5og%+Ymn!m5qL1Y~Z4?V0P;BrxcvZnD z$Gf^3;c-y$_(Yc~9#EoroH2?84=DEYz@tAQTm;+f9``K~u`TQJiA&m~Gg?U=@%a%( zyY=pgji8G9ysKFz{EBTUFCuaXFzre|6W0)*cjd{YRi;3a%Y6_(a7-qLf^lh;nJJf6 z1_JcjV!rK@+76xQ%k}w{oqN?~8I&W&RW{Xk*S8%5HC$M~G;M$Ypl0f}BLlPi(Rq1% zgu`8CkIUp69q!SN2|)znHGz6^8-8IXh6xi#>6&6h!9DzdOnze5ye9k|=ALQ8g$CVX z+-^suu81-bk}5Ve=Uw!jPcawt;mw2eJg(A8Bb>`QyvUz(n=;Tnoum6>lFus2DXw1g9g)LB-)=6EvH1) zxgem7=Yrrbo(uA}lIMadYLIeMQi~)hJ5wDC0`!833!6G97Rm>wf|Bd4se>m7`JP+s zRQu*u@`%tXS{L&-H&G6Ev=aH7PQn7>gb*;m6GDasFvSunN)|RTSYy!NXaRsE^5bJY zDa-)t@oTRk4g{dhiim&XQ|>Gij3HuuSm>R9LFDGA-5pFKB7yDrT%!u#9)Jgj%z7w8 zpEuouOfcGchr?T8|JF(#uKq*Qf=#ji;u`xGYTwA#B5Ew`TXeuZiu7uA5tC^qaXFa* z!EA{QrWdKHzcc0KWVd9w;S=@T*1=sOyES%+Y+9htWejR9yTlM$EW8(fwnCDJ4G0`XS0L2Uc0zKc| z%S1oO@;Y zT~U5fsh0=pil>w;nJ1+zNS@R&O4FCt#WX2kVVaa;ku<40OQuP^8X4E|vuwDFAHSTy zezH&sCq`z>l7l4owq6&f=Q9HEnRBSwjo3Yj10#y7qQjge|g_+HQBicEMd+JukSX zjqKW#1?}2zY5JsV0~U5|ilw`@^(imv?rz0C*SM-@pP;gx*4`p|cAW0ne%bimA?_y3 zV1msV3`yiqwDQ6=l$0O#&i}N*-f8{K_eQwoMPzvO+@G*B5?9Zi)Ns7b=c`P493reXaZYLoA^>W}iggvyaoScUn2;#%!!EJTNu*UGp3*DXVW|{I^4%Ru=I2fV<6(*{h-ECd-weUf@2Z50`A@4 zxX9hcVkc=$oIk$I#`)t*T7avL{Ocm;LNrqjUXksHfy5jFM;WcEMoBj#O$4Gz@7kVJmVjm6E(int8JL8K#<0|$|s_>Rlm z8%%s0L_W)g-5*@dmMyQ}x#V*9uWTG8hvpdF4$U!|7N9wHWKC?y8_xIC<5iDG4zTC9 z!-Wa|ZnoTvp-tun+hmEhiCCCeK2af!FYD4d$7&}nVsJu>1Va+}rB}KiWCmDhWR(kQ zaQp7F@S*34Y>xM69EJWS&dKeEW*6s{UWbmAHG7tW>Vxyba{}V`5ItLcq#FFFfgl?E z!(ipU(#nYjx89S=O-qh!$KIysV#c!G5~cktcxP{pnr3l21^IB|O30xOCZ^Lk0Wk!; z={on3IynI5JH78W=Fd;zM&T z&uN(>Z5o#ouqmDeGddzpJ#-u)(&N-KPjJGiXTJD_Q_uXIa8u9PmF`WUW}dHCx_@Uk zP@yq}axH-<#w+iy{mfJTx@WA&BPa5hRqh4sc0!%ZJRz9+c#fQT(yQEX_=)0S;^QGO zrMUENbB@fSOsnH7bG)ppkvZjs966`Ft4r0K0wtLK_{1m?(+QN|bOPizzU8^d@rSNK zDF31;N3{o2`A2;e4@!`7l2IZkLy4aNQPq-vmwn!-O5obJrwbJn|irf~tL zQ}$K5X(3lBQZ+xVcmM48MvEuZD&ecvkE+d#ZS;V8a>o8r(*~o6$0kxXxv#MuziGJO zS(^5%0HCnyh@XK8Tg0zfy+F zJwF5jeh1w#6v6{rAo5{|BvQ>p50x-T z$*8c7NvpTrB2R{OGV_SPqDbj^MA2MHD+2ng{Ae2JU|grBrufnHpgfro8A8dT{RU97 zBl80G!;}b6#kYM8suud>n{4(bmm0!E_8OSel$;}L>|+mNEq7QK@I#|o;*ko zu7o)eJ#wi;p}_+K(FO$9M;tnX$cfwrZ7v>c$)DosXt6ITd+bu5=3$rmlonu@dSkD9 zul;wP>{3=f@icUazo^8H{D4bfm-;PFcB$VeRo$gp=F2YCic&@Y&B!PIo0m`fLZJ;* zu}i^U>{6I!84Q)g6>~#t&>Bc-jncGmBLp-s8fi#~PWvfP7fx$f1f4b*qMX(MYp1=O z3WU2Nqau0?rdtd!rdw|Q7pRzTF;I2BW&OXw7YP>wA6OXaKGiPyFSUuY^251$LmBlkSfHyL5Onq9(3Z;8F_ypeE%ykE{Z6@~tN)yj zuKqJE09W5>#}!B~Z(I=U;Qh<2h?e>xKVT^w6rz&6!!5Ry zN{E(PT!5BZObgIbYm}upEy3~NR-%-((X`a60&bPePIFKsZK&PKP*2lhG*mUAX}=U? zC?JZ4T1C;&P>TUg7|IYI4HXPY0J$Ux)AP3Lhv>44*NU09# zp#4hR=>k-7@PxlOc*465og=1oP%kgcs6lKBB{o|U!<7WSwg6P{wFN^)9DtgggmVE` zQF6Fq288ENLblUDz}EUxwU%K+Y%L0@hV0LDi*2HW^;r851tY&r9r&M}y$6C2!~utA zbX`5d*-$_2j61VN{R}?$jC+vdKsclZXWiXQq@Z=M`bM1U!o}gF>Tl1whg$4MO&E4e z@DfhEp6%7upJzI7c-rP67TJ+_9}dJkCnj9JIR)9(uwcgO#C?g0S~n7O3FG&WAzr%3Z-%Hk=`nHH?5Bv z->)G=UL29eq?~Y4gAJMEq}P{$>mL0v2o z*yEHSCfgr{77{s?jhzD)z??;T7vggmUP==X!va@kc)qf`cH!O@o;=pwKoAz_+=W=6 zf0uv-Zf@!6Kw7M=>{103|GT}OHq3zNMap=G{1!f$WuxieI%WpTFWC-yoO9aAkY6Nuuxa^rcXTIOH!Q5a4a5qJGm@ZX>yGg?1 zi~>OzQ2c~-%B50QBh=?8>R0MgMSYH>ezQ>^r~`^Yy+;?%4UWya8lk>PQGZOAD(agg z^%sl+K^;&G>X>plqN@?=hZXg&b*Z9$SW^GRC=k>E#ZMhmF5!Gaq+E`4Q7IQ%Nv2%( zc9AI;sG?FXt-8UlBVG7cJw4sh-WOn+a@j{c3r|VR?&aBHIob&YPyUCo3fe<8|%DEWAVb0}6N)9K*y#j)hB8*cc=W>kJ#1O}kZWs$X zLJKg&fjO67y2;SlZ?qU=96!MrBJNSgb0`trWsIX$H<@!e+fA+`&QdfT<7m=du1?ar z2b@@)L`>;UsAhGSb2CuIoC{FJ7zg~-IhQ`&WzHpbum?}*<8q{zB6GZL+c?XhqEap< zsowU??lR@#tRc~KD$zViD+2ngOt}CZOu5ul6jLtOcb6%b8z@;}K7MqFr!IHiJFAN{ z;H}z#m~;WUm~=7dVm##tC@-R4MuTBIB^aXO*9KTGSDrRR5=j@MBCZ%P>0*F!v!Xvl z+5azyVA91P0$YUv(Hc{XCF(mAqZ*2UNf!ew-AH_g@r!r{)_9;xd^evQq zsvj*DPGR-tdq;ZYhbUGtUj}E&ZGVp{ER;Q}kRs_G1sxIB`z~56x`H)B)3oOonjH#= zVuymiI^(heDv3q@jWtMJM@ZeKNnyeTNMORnkPjU;6Nn3kHLQUS8w^nnYk;-GK11cf z^|etEy#*641{f1A2mS>rCR_|u^mY8e<@mqB7YP>wA9uvxYgFRrMm_E423Y%f-5%1< z>-Qjzrv1E54>D%P^$6$ZD&u1CKtDGi!q2S?(a`EE7w~nRb>XL{$x#;FylW41^R84Z zOe2iyAw7HyEfF4Wms44%_Aq7*tAuCF@T9R4iY2We5-ykYkO`N?v=~SGMU?2(J+zOD zgi8r95qIDkRM9cJ0-A74Lwv;YTAk#Dib_mplmkrv~? zIhG$WgJ7{uTH#d z?5Pqj_tqe|KA7M(Nf6f*n0x_Bn0zs0#lZ-ZFZ(D-Tsi{+CSME$(Q;NVZe8SQ!VG(& zhf|2ky?jdP>S6aJ1tYspd&=C4i6G(-f9bk1NQgJ{%>8o&DK`)tm8APk%xLv9tM5;l(WXRg64^5+TFVi%ViroSN z#%>J+p+=mRMde=l^X1oh2+~~TVIB<99Apd9 zTnT*}(Y&gc%*psQmpK`$clb6}d5*t&$(&3at%{nbY6#IhuD5J+qrT{ln3KuTI8t#d zZtZQ*<&4@w?Reb;DkIYX2#aJJ2o$8QlJs|??$5nsRwk>L%F4JY@ovE>`yNamh&1d=cc`$T+(1F zBeQ_gz>JIm(My**X+_*I8WnNDdg2Ao5N3c8AER^+{|o$|_CZF*#1|`}=QOGwTg`gN z9&<7VI&Q$`38Qr5JDicx_LRN>n`2(a2>)SThQ^4A^)WAVRtSQ5neW9f%*%Y=H*8+! z{#QI}L*!+uuX@!JXE8?+kO&;07hhl2BM`-U<@)nV%zS%Rn#N;QNIw>p~Rq$ccL}b)rj!P{iM~ib*Ur| z=j%2c@FdBX3cDGlf(76iEHK?uuB#CiC5pvVU8-1=2o^or9HT%`2NXYbO!tKIK9TNe zTBOoFw31Bs*hMnk165SIXPscxw21Hi*wZB~MSy9#rw+9-rh9rE^?YMFHfjNdUL`y~ zc3dsfJ#*!UHTP(WU<>hKP00yQsqNUI;eu0X+I9h;Nge|elRVF99H13Q^1MvJxOIH4 zpG@-9M8HJK`=Jmp$x{;nlRV#qLck=Cfglz(L=TnZxrZX_B#+%6^bHJhLK&1Tnu3Kg z5l~Skd1_+d^wBgJ!?yd&B#(g*B%Dg}7{Xzar;w7vBu`fX!MPU3L6YPdLu+DOrMy4J zRmy1r##J!MGpE0dtIVUt7_O`6PnIT&VTUT7I#~z3Nqku2?k|@nZi=R3Dy#d;1<$Rt z7#BRNDAl|B%LNZm#Uu|<#dr$*)k&Vm`^zNH$Dez2l4lnsv)3S_vOFfO-u4ImWtQhi z4UrC0TAxc=5ztj-mIvrymZzqsnC1Dazs&OdP06DD{-9)|1_bPfIUb;jIUa*52HeU4 zO++S*_QJSLFhqsS4X|DS6$~J*j0+&6BCbF%$76tT^P_V-{r?3K%<&jRaPKijql&Ra zC3%c`C<7*W46t+~k>v3XkiqW?O$+v5{v?m(=F86+%iKi+WB?re2@^ef_)>`;gAWG4 z4G6|7OQA=IxbARhc%A6Ehl+sx>dpb!ukNG;*snyQ$9jTKKMe;NpQNQ2u6!(5=ohqW z$ZysL$gZ`6qUx^o;Q-mSKBC1Ku6#d;GF*Ul=m$?{(P!mnYXh)%Sv&Z&AK?*T+(Voj zAoma#3?$xy)cy>jW=9VUbXMF$>=+=kK8Bp=!gmgkE^L?vT{sw`T-X3>7w$lXLKikF zqWfUh#{gs2XTZNe#jKBkir$Y|p9}vDzR3C*_~`f^jVc`(55K@?4!YW^T;ss*$dO*NNNT{0-pg~3#vEnp(jV+K*QR6bw{ zOBwQ`rGg>qGaCbpmTC`*f~BH{!^8-0EPWWm8&!Xh&Zph#fNMSU1zXirVl>?@X}Vps z058~jW01OFYddTAjoz$pw3k10q(( zJR1U1*}MgC?w^yV{{uiYIr7 zOtkf2C1zQNjbwveyxbsN41A)h*rCfs3$XQ21bwyS@IK;-ovD~ z0;eEvRU)(`Ag%q_o(XsQQ`qw zka()XQYoIjco@H9sxq-iwP{LfWHly`K&s8|3X2T2pvGL=5D3$VY*Sa*g^OHUCkQl& zT-zsFRF!KxCLsO@n9jBR1rm#|pZ+!w#J4|x3?r+SsNs4kEOKqX43i7&Unm+bTX3J8 z0o6sWt>tjyGh&%xHRqKRy!7}{drcYl$v_!b*#>2?a$rADUYKh;1Fa*pKQ=6&J?7e` z7;HtZZK8k}+VA&x_uGqx^Siv>w(JrELCCotBLje4*YO60#(cn2{9jOZ9Eeehr4N6qne3BnhX%hMWFcR;fqvd2`L!CtJB zt=YWX?d@kx-Pj!%a#{=&0wHL;<&;1a=kxgh3SN&Jp&m_I?yb+~E%eT0NrVMSyVW6J#o3ow zEYofaFY;D7+Up9!{{E{@i`7-9#p>^zQGG~eWrHj2&9Fui5LTr4oOc7P+ zQbhzxFu%3fC=m%9D8U3yt73J_DXBsAz*|m>{kNQwO6r!=;WB}fB1)RWrKY|I#IKZM zzW*|Bx3om@ADY0iC^!Wonx*O3#vfsDzVo*G9@W!(h?2Xp9MBALS*-RM2c#?p$oVINh38}?DO z05|OOn|N-s=fNRrG4)l_Vw|MltGtViN$Tatx#P|e`{zl zQeGWQdA+8L(;raA>Cd2y8|P6aa^q}hgB#~yhzb)MV7+;Mg$jl9k5LgPfV9kG#O+Ok<-Fb84m18i!mtDjZlT~pLMgh zv*@B2I0d5EQU+0Msozyg8S-OG1w#_~+&jE?GXpG)#b3PE+d)2^0j3fwJquQ2!Y6lR z_G)BzFOln=F5re@wYSO;T&#Ci3W&dp=<9PIDwU4;uz?^}dt0ccPXshYpS%yt)Mf7* zC@QYP?k<(9u$9m_VhsvX;VSG?S`)Ld$7@KnXoGiao!-%7cp4g1qT5pw-XNBUV1qC5{oNLR;a%;^a^M$U`MOtpLM*>T7N<+_kjmd;jamn$Oz|{# z-xpgpuP-zQQrr2)hrJ8gP9ZqjVJo<2;NA8|2pB4ezPPfY_Q$>SyX{pU9(VAgBQA6B ziic9$@bpK#zFL^*&|}`wyuo&FY>XkOd~co29E0zzH{@lXdF$7?&G*s>@$7nPNeG>8 zuDwov8S3&IM_$sn`uZK-OD*;x;UQn7|3E)VZGBs7$`|4S(UC?-@M(^X}37qi4K- z*j>x`nJQmr*1e249X?Ur8Rl2`$T)s`9dNX$1y0wjd2^_u6lg5gHKuE zOX2Cyd#BgJWp@78dt*dF8Fc?XGqM=`&~A^xnhOPlwo`7Ie5<-0h$bFheks=Xl7pf_ zZz<**-uKq#c$SdHc54p!P;Q$t`KmX*Ref%sH_58A8W{2om--6Xt&}y|Y*jd$-HkTu zV2>{2175CG|3YKklJ)DdS7tgxJBilrP%qt8ljZS=;K~{oYx%b*#_)wt^p~tsM2s1GeIMyS#n)vRHUh z;HckF@B1<>)>PCXqwsn86+B3GXpgs_U}4y4{?1FIt3P|&>#*$p<^1eB-fnClboHnA}#u z5q(g|>dK2=_2%(;?WRWY9;p?-utgO0eErK>AkEelY$Kkn_V>n*ZqAIZ?(-q+OY7VP z{CM+T72VlAlrtLc&M=1CLJU{5c4!j6=Ob@?`+*`v*#5)j%WZWSEYVIspq=7s4D=T4V!R#2 zn04ZsiUQvE;$zADyZzqO+M4RLa<9`=0yI_p$RJaFD^2w^nyPx;=iX)(%Mz9TXFW2L z&p!@5@@vypyie6+c;DqK??-m&NPf%L-Yix|+2Y7mJQ8Qdng*MI28$3KGX28RB>vnt z-d?pe){v3>$&=n*YzSqK#+n^$tbtOMejpaiiq&s_>rJ%SGKzQJp0zZMw(JK+a>rTk0QMl|i{`pNoVj)d{HyQx-UYQZRK&)Sb$Q>dBhwiC(EfpzdMVga z_eeF?DNFf&^q#WV2NdtTE%jc21+~=Lmn);INBrt-U_mHt>TljcW{)D$qMgo#vlHW$ z-*`KsTa^~2B=PJ^j&}`g`_ZI~rD~Nv|z2@l+Nd!7+6iu z=69*EeLVlq=dk#_d!aXm-%?i5n%zK{ktlu$8GI{7$tZqo9p5Ilp5lQ)+sGHo){T;p z_ieNoFF1n|jJ!W>l!(YXlwjnYLk)NkhP_K`XwnB2=}%}el7&bc<1wsHo@e6>Tg@m!| zS>{{a;3g1%WnJ8~%)AXY);m9pY|JQv%rI1f9fnj)X)3DA3`2!rEB@<$M-85mwS39k z73+&nTOq2^?y*n+{8JJ>$^u)G7g;5h9ds_P?W-()e~V>vDM|cbqPn5)Rkn&k?M#z<#fr$a|+b9yo(N+rxb~A8H2!Ok*d&c{IjNm;xx%#v1v^s`Uw~pr1M^`js zTWJZtA=)C@cid)sDO|_MUZY?UD6S(a^78Go^Gp;Bi_IJ2isoNE<<4eDLgVcj?+;DR-)<>ThPVtS>R z1aua)(HP?T@P+3ccHcvo~!7VOPKBIUEY zL)2gWcEu92KKM}vUsmed%(m0|x}~ljBeQh|7lBoM@=Qgt#rB3pySyB%XP^ZcLj|4< zV~GA<{cMge1{N!n@}A9eGWf(%u6x)C3f`FOd)fYA4BvZ&D}i5;=i3)?c1&Gf)Gi`L zKr!oPkP#9z)#FBNjppD5n;}1sZ}n~&EzgVGKUyADzqi0QCz3V2kT^dM5y=Z;PD@a1&Z}^HRg^ASDPTDc?$=!O%%y5|FMc-g;Ao0 z{d@!1W1$eX_wzM3iKD_V2iJ`Nh54S?m{9tD)ZdrG-VeqQ`W6lLrSd*!qUxC}un`)F zr@g)jg_S?hS6TyMAp0{^-RwcWK4x81`1$#+G8Q|Qc&Oh(AW}Mt)*de~Rr9JtV#G}8A2 z+dv89xVL1KZz0=4!7%QX^Il6%*W*jBaP_x0j1?o`wumRks=*HcE3b4_nzVujKXu%i zNI?d_1n^>USPlk1{50*{g}xyc`;^LngWs{S;+R0pF;ak^HYB)Al zX5ndNac6Wk3x*`}FUI>yOfWXsvSNQRTAMU*+?_ko zcbnaE9IrFUH<-1ewEV|B+FRqojJkQ_NLppiV)*M*J!S2Pm&hIgVGnlvyU`q9`xbK}{_ zO|ZWarvq2R94PYAw~UtA@*61|Tu)ywApZ3RKPP21_wNxxsDRWV*$61ljgsE zT)_NzEFgP4@q9FYmVglRcdDN3^Ic}KKD4IDL!C=vBe#dNIrafvr ze}1;F4I4wT(4ytz!}N`*;{z7`XpXNP=@9CCxFG?Ktp)^}^Y8X{6o2kHUvvAC@%-3x zzLsop4G9*7li+GC!6Wm0t^Yp~oSo;JWU3ESPbTlX!pdTIP^Mzm398t+qACayK;8P! zsA&0$1u)GT%409=HeNP+*7!iP)XDg?k&3CF}QJe6>4ygVYh zRit+<$fx@t@C4tRB)IsGH+CJuHo)!3e6tN+}a$6E;~J5hRZ~C87>0?8u>ZV`$qAgZ137XD7s-jZuC*iWaJt>gOcGjPOkE^7<{nx+a(!&6uJq9b6s8_*uLEw8P5+a~Q#bh*1R%JzefF$x0oz0A;rgPALeRZ7-|L$jKt)|{Hg&;c zz{l_Nz0N+T$f(5$)PkL$1^8+EZ1OluoK2G1wggBZt>kF1lrf#?kxpAUg4=o19Vi$7pM7awYFq!x>4o*b^A_pf9 zgHvmszHxG+>Q-BQS6UHMC#zk^bc%+%kjaz7j4u_F;{I^NcS$8g zyWvehKo3{lHO1c{Hc@X(mYb;klmm+YS~w1e4e<*jfHHsXz6niOO%`aO)5=0;Yq0n( z9E(2;7XM_S_$kst2~&u7poJPu3DeBYr^v(Z#6pz^E=slimPfmEog(ehozg|SbPh+i z|CB(F!EYXb9zI)Om<9KKW2hx??>BO?bowH|QBIG0zl#j^Vn(hM5bE^P&R7kr-+Ri} z+hRA++PMF_mO`*6;{MM7qc87&##dn9J!S2)5Z+u*kx=J#;dFjb>zwhNFON*gD%@po zLPsyf$hozxoAVCUZ^qi-@bHNEfV}5^zD>hZ@U7+=tR-ZonB~rCl|9L}Ia!8uy_k;ur2iOQwe1 zhxU8LcTcE&Xx6K~v+gS%Qn>3<2;LXJ4zc(}gatX|5Q4Ms zqN#E>+T#u1W9%l1r*}BlPnA2IJ7_WPqM!tKQ4bg;Vi$EiFMr9u8@(E8iQVWPT1%6E zMv*^2i;+B(Ao-7s5<&hMlRR!me==%`?dVy+7u!(~KyOE5rh(P{Yf6-2&%jAJ)-gIZAFZa9?5*gR(PE?zC8*>SqeRe$65JtPEtSO` zVwg6>9pWWmfEqhQiXeB0lfm9_prVneE_aA41?x+u^6w7&x~5$uz;s7AmDsf!4p5A; z*ng<3pky&`pH{EdJ3`^TDF(|`ls;|<_kHL)!!}Yduq{d3ARu%@Xkg-o@NtTSp~puB z1gD>irdEqj2`zSzR>F1Yo73cu@J(8Rvk&eF4KVJWzM3X?gx^pEy;t~xTZhDQ9-iQ+ zc})1nX>td(5?WmB3bk5lS7@-q4TAx}h3IRFgZS3&#4GmVPm;u32J#o5>@hhd&-q1%yL9JZV zac}4%1!@~f5Nh+SS&cA*&3E(XLp>s!SPh~6juMk(Vy z(Wr>NhAABbj9R^{wZe}e_esCTk02kNCMWjo)8vLKX9jU??A&byM0IX1(mK`6e)27_ zA_l|f$e7X@N>Ol?J#a=C?;SNmZl+dFqnoLs8FDjKL<#B5RK*OrnVLh3aqZ&`$LEq6 za_s}%UvH*>4Q{63uii|pnjyCet0{3*;^uI~*GVO8L42*VyAAYk4O>(E9pby#T{Gl& zv5!*@DE`iH9G)lQ!;?}GKv{04YO=u1)L~_z4{EUZZ#Wj85*C5&W=ISDp)B+lC5{&Q zEgbQBGv#KASO_;$e#@g>n$MJW$(Tt!PDCHlc;%m=qCo9t>Q)smZ2>vlOBq(dy;LtM zEAFKVXUK(YTfh-}De!mPOHDGki;sTC3kdP|PQ2`qMl?h~7*Y zV7-~Tb|!A7uBS-C7p$wp=)79%jC(0Pku{b97lRS{p#eeGxQ{qjzarg!a3)WWs>ozp zYY6Z_7y%yF0(6hA$Rac8|3Lt~mD)d3Zl&I;A;2491o%J;fIF%Gs|7Zmo7;l#$V#iv z?_(7i5oc%C<&}T8Y|KAm6%E-BHN-d_MvT9-7$;&X+WfN}s$0iaw6>Vh5@IN}e1f|C z{@fbRDMW35;Ye86hSWj2hNg< ze^Fg7{+|@Trq1HqQYyNqO%ng1i~qp_;5Rm&p4Q)yJx9xM7jR>fidydigu#<3>!&Gs z+yuPTv|>)r6qcIV1RL**w`r-(1}iB&%ip-isQ=@;q$G~yMuJ6 zTtq)POYRP|mTGrku*0>Y0l`((PqXAA`ukaAXE2mXgNhAwO2r1!61_7pz^K@CrPxf0 zpcR|?Pm0Y6tC-py80=6n1A=2zKgB_8dq6pizn_MVBTfMw1*OIGc?2xC+c%NjM}@@3 z-zXre@x^knQ+4xp6{{?^o7Tjc^KlB%Gp7N@>1*kiJ)-#h_7!dH{Z2ljpdyF8MNx77 zeB+9H71Dcc{oq)9tPH1_n=@L=6Z^F(MBHIP2uO9V=S0A8H72`kw^&OAD|% zzoK>R1kh%Hvl?iIBp300TvEon!mPYAT>mQ*bazP;^r*qSYdGcuHS>R=KAy%g?5|Jb zOr%V47i3lxr*TY3;55#he?~-y) zFZ3-*7mMg&yG=CoWgNlKH`#d_+b~B z!+!}~_Xk~9A6IGM23`HLs;293%OGSLEyf@rlwgpsolzo!giwM(NRY)(zb-%1uVNA# zK5$C!=0VkNLq?K`XY}6zU`IN7HpbPEEqwtpV6TO6%*KEqlO5#E^_mt zi!Vyx=~L@wv+HTGRuSs>so;_(Of%q;<_)lDjU^35kV~4KF1e%;)#Z}rF~R!{7vC_X zqG#Hx0!-HxyZ#?*-yK+0u{`|lxk-Rz69|D&LlSxkAql-nLT?EmO%Wjo2_(5K^iGf_ zy=O&gDAFOJU5ZqDc?yW4NL5i$6i_UP!Z$m6ZqDp2JU;mS6E3qmWoKu1W@pQx9fctc zUh_WeCU94N`*zbOj%LsX-|w6i!km;YhB1G2&brIqr(n=ea>RQALW36t6M~lre*CWg zi|i7`L??DZK+uW3m#!x?|Du)9v)>&mJ^Ni+VuUOT7(IK5VKQVXISi<~jMeb$A$;mE zpCL=dVKQXd2i+|annv67kVRpKo?U@p$Z`klNgU<=1wLXT9uC8EF72o^*s!EwvSCTI z#0XgwFgEN(yg3&NIRpYy189p1Phb#&^Y?uPU3Hlkqp^1EE7#fG)lj!waR)0vW zQ<1QB3x;7*a{(#PlXn{lh$Qb8fI37{lVZr^odUt+odPkEcgHAYbX!VA)a^I@v#cr) zY}#BeO{+K{>jgN1Pl;mFuE?fcAq9HVekUN(v@3ekD28mBI|N?CYgxvhR~(ephACxu zczxcWtY)lu1~F?GfNeM)#;2UIp-C@g&G$m%{!3Y{S@dJlI5-%BFhvej)QS5_ozO$$)GOKDk+RWM%li@7+aKI>0wV?TQ0U${7?mK#2-{IymY zg<}sR>Yu3^%*uM3?WZlofTDmvbk0wCn;ee$j=oZk4;>48tQD+TUD;cN1&JuUaL#-) zLq-%=-wp`iA-1dq>;gqL{Nm>sGNd@0K|+dOJ?f@LcZe|=Rb3u`01M27#=0hHgKR*i z^!8yv2WAM_bGByl*nf$fK=qifYvH?-Br)j)ddaA1%poYr)f8 z1((L6E||`+kKLx=00r zzTXKZCVcn<{0cK{l>)&D-%oI8lDo|o1gTY=?s3cRIVufyRrM z4Cxvb2zq@5VtD=Olrnk?r6Q^ox9k)!wyTFnyU>kor4+HhHp%|lL<qhRZ)VCcvSVBQmsY#kVwaAd2|&~!(pj5u^;bj~manRH|igk0#z9*SS+ z$R2{3+)Jw#?B%}7^+j1ZURK7=9gDL{m{?g0v2FBZr3gf4J&!--(s2H{2{JjRln5qJ;$jlr#u3irR%MN2=V>*A{--+q>$Di@LkZIV zO(_xdp~OWW8?k>)R!_#P#83?SMXgdvcicrU*44UJljsI8NzSY$seM{NPe><|E^LX$ODQ?cnpNDDm6qPbkRxzpdb@sAcHV>Vr@jbZBeLTs;D9220#1<~ zBZg-V!M?_yl(cZnwM0ezL7sV9trwTgST=Rpq-8bb-oHWxA5BjNNkpzf>0$8awLKu= zeDC3`92Ja#VrQES6g$|QkVpAmW3hH(foMjx?Px}|X#tv1&i<%#T6?>EUcMtOMl)(_ z_hClQ+U0=}=m30bKG80%D3OvtE5h?GnRa<1$U=+JiiY{(FxoEnKY)XAA_&;vi6HnF z`uQ1cfn8eXA`iOre9?VP(lx9TXrXm_ijJ2z_SoflqkWVGDkt9;i(`gz@VpUlz+*28 z2kiaYKtlAs(lOZk3Pij}BX2&v`)(E-KK+`?g2ve4eYm6dBLxd%)V{X!b>C-2sR+hv zQ2)3in1OQclHwJ4RFpAb?+!nZu?i6M)=p{N{`imJ(rPW>rS6wY|jX$URD zCiQp7r%k+K#j(-e5b$Xe1;KdQE ziqrrb7OT+?FhL&4igh+WpS9o2-lp7era9@rndT%dz?o+4mNBnsmmG4Yxk8J@V9Nb4 zD}bkM7}Ch|Wbh4WvG}OGYpOZ#kWuIZ}84LOV9qTivDKWwlg^W4r(TE~_J7`I!v5aNGc0oT3!E##FG$8}aEsWcBev z+<5B9=?yFQ2E4!Q$p+uPdfyuYP9O?`+XSM2FJ9?;@;1^nO4Mxvxk1ZN5!bTi1mYDd zj@@@hFkRz|&Sp(wN_}Jg2p&%CALow}xBY`)bl~*ifuv6#k-o6-VI&31ZT1M2vj@=y znLUodxYuV7k@Imz+|ANVtTSbXvq$^kID53G1^5M=mxjxUV+bulFPu8u$EdaqSLcoX z!{xlupOV0N15dZk94=3{zCw#}-k9!-!xDJ-Tc0=Z(>TBZ=M9Ae&KvDP{KHulf+%gA zHk6hEB%BZU8?q7#82j|&zhUGbruc_<$JXr zHtY+xhM6=AGqJc4WC&oxVn(2S#n1xuPWfibMXloqX=I&gF&bI>5k8Ep*9g_fTEhnv zXAG;zT2m569BdgO<6s*tM)hU-;xKlEVPu8pzJU$K!SJtfGJeqr8L2Lz#8LbOzKE|f z#K%Y#=;8F>DL%%+`*aQmJUHy}#o>e}2aJUk4md_)fP}CDrE|~<6bR;T6$s9(cs2hA zMK1C5k5Unb2Ig-SFj`P8=zC>ogjm{}Snx=93o14eEvOhRKnv;~5xPLDHd0zp4O%R^ zz*L3zC}WYw8$DlSkLTI`7K}e|F%>yd8c`&rf<}Z(@=hb=qNfWj7Dfc$FE3=`8AtUV ziH2k>e1Hv3R|*^Kiee*WS17H-u5gEh^Wf5!bxZ-{e08C;C4o(%5*qWBQX4yER=8!T zNvma)9W)>E1|sMp9YSwjo3OKO+1e54)LyW|a8j9qfj(3WSH zyrXu>KD|r!Q7YIaQT+oG%$G-ksN%J>tF#=sTznLlACU`oiSb|>@WR0j|K^>sJfmr& z__Z^ZXy!MH7$f%gfB2w^7B8=Fgp4xgj3`Tj29$7EdrF_vxL7T%y3U}c8-q4QmbVNr z{YRVuc9^S}s`}uT;K>b#xWWzXYK?AJN>`y>xkJMFh-ga}rhsvr{}gTM#rjb}2jvV; z38HE@hPi@{7PV5fDBPo&LaCueO&BFN3MbGKB#UPa6tJ;Lvz*ozAstgHB0g@?C}0$8 ztWYh?4se1O264f_c>LCQ;f1n)h{6_bl^3y3SZ zh|l_^&Z;m{8wJ-WLaIcw>l6XMtZ~gp$KD#n@4RA9K=ZtPbxeZklBgKLQ_K3-VP8@* z;>M2YbJ+;IrS|qH+*>lmq0~I;RGCmUF^XGDG%HJF#zU7iM*{@6mTHM#xV2Pkw6CqD z+`5*-UUrtaDb{kHwH5>lGqU1ixz7-Y&UoIwr`%YY+!79GrT*GEjMs^?WU?NF1=(2g z!a1}1Xt}Y}DBi-^P>Kh0rv4t<;L&ntY2avbI%10Vx)a>$uFZblpTGF3r3d5Q5tfdY zJ13iHvDg{VpagbiO7oD0mMFGYDHi(!P>h*={y1%w`yP*CxR zWxpiL7p&#}aeKzyNkRqa2`UTy+J4F9#;pZ7r z9)rmIBSRBZA`r{AVW|`q#-Gf3s})g*Rv!&*uYwDXTQ+JV$MWubEFIWrN(Xc-Kj96Z z5A&|*oU!t}4JbP4FYcO z>VO$H9*q+EQhWcH51j8g}a`I@+xQM!Ow6PTFl6rDNDFyx%au+XP`B z=gV$OO1o7#eLOT)l^rAE^`h@(L=3ho*MIj?AM$No!I#p*6Wf!ug_iEbW*A#%3)R z)YN7<`&%qQCiWYZ58HK1w(Axxz;Drme+H3W~RrYZLRi;ef;)yj-7oVhX2;6Gjt zOn*wk@M`tOORpABi_xpq^~It2ctd%G$tqxjUJd>=l2tv&OTW{b5*L0)>*0&|Ktp_V zJU|aUo2U5b*~aJ`#(8iU<%`2KPY&qX6b?AC+|o@!=^Qi#1%k;c1!5$twkvXpIYp_6 z=5kXt7d*Z<27&@{d@mhlc5!@fFvKQeA$Wn(!vN~MfVcuEda8MD|V5qoNmwdYi+08!4?st=1=mrnb zz`r<7aa-iS6XdqYCmwV^^g;JaBCdG!1IXbZQuHAP5&MZ64nF$v19Y^o?el=6+cw@> z4xC7A2yMHFfGD=TZMJ2!iB+LB#jRy6aw58iNLm1!8MSlM%$2mp6M1}=qcUqsOL2~C zIMK%}+GZk-1?=%_`^Hr%m1(TT^zU*+PUOw!L!L_EiF=10RVz@&xNy6&qKQ9`TwwWz z4Wwma-B-~-*FRK2(8+dN*@;q(MJ5)i5wE=}t1isI(A6zbC}v<52=+z zUl|zw%VNt$Zz-5BmsmbxTWC}8Z0|+_(K*lC`jjb{flDkE`KQY)Hs&PMW%ea?WQFFX z3Dniv0~1N|<-eqYI9jeJU)~3OidXdBo=B1}*S*)h=2q88zWnPQ;U1WvxQ-e$2}E)w z6fiFWB}Ve4oKh^3BT$UV5s<1d`NBiySzHGib>U+tN&1Nj0g>E+63n}#C?!DJ6w7N4#zQE(Oi#hWYq!NQA``OP(! z(1-(~3QfV}34lv8cwM#ATFZ~@Whypw798NrDEq`27_^iTw)bmJ2z$+X7VNiqODOGy|3;6Ib3t9n3-k;C76*c4WLg7gp(FPc9fQBNlVy0>p0dF3vb8T3-6zZFSSUy2 zHGl*9ErkOHe{VoL#Hv#17!3a0A^NIP0UN8zv5Iga0#qvEsuJ@W3fL{LG3POeU|vHZ zg6qRo6cr4*4PW%*z#wHFLK$#*sG^IsM*d{EJlsRc6fO_7UA`3k#$>rZ1Vv+B!x%;S z?I@L%SRX17%xfG1WRcf6FiFpAT&Ggt@VPb_htD-yVB|Iaoh*mXLt2bRc;A=c#imf> zZl?V?Sq`5+DG4L75e?NvVx!6wH#0Xya??R?0dQS|0VXzp0VXyS2Eqj4?2l=er2Jw9z+b3y8}%lNIyA9O(%c zD;S`1Z9X)}>mAUQIdrnnJ>l#eIb+PGba2MNCG*}Kxn$l?i_vQp_+oQBN3NMCf@8!r zGq6Bs3;*Jp`FxJFmMz&=DfG3TQsbieK5)7_ESml6!Qr0d;CZ^D z2v7RN(y-8*n}M=iG<&kZMRVj-ssHGy#GtSd5mQnBo-FDh3r%?Q!bLOD4F)1@rb@}% zd5}%=MYfwNxzG(Rn&Dq#(L8jjTr_8R&`tA27mgo+Mo?U_Xa;f^d?@T%gjS0qHG^5DYD0Feh5#4mYp;bmMlv+dmg zqJP6ptc#-fx$BlT;Rx0jI4*L>yX9_8Z*A)4TznwCoymM0K4)|CeyJa(BnYDQ#Gm`U z;m=><&#Auf=Q#WsmAMu^5GSr1iE6X4$}3p>%BajDdJ!VSH{|}4`L_6TLj1|@34id* z^GNVlK~)gUJS6_ydLI7Zhqhj9JrI84i|Xyf!+-d^Vu5&02wx@IA>J3jXA6pp3wL;L zuc_ET$9?#M?9hp_s3}EH9g1jo%-X zOrW|r^ZGq`@}l6qrs4eXrK>^Q|MQlEc=GjnCHZ&1SemA+^uj0W$@%2}VM%bVy=6%; zu{Q{1(XQl(BLYH~-IO`UVV0UOt_QF5o24i}bH|d*KA<%4Yqwo~wLHhpQZRh&wk;3d zKDLg)E3bXyW0uXoX4DnZGNMe?#9*kKo;AN44c^H-rcBkb9ORTBm9J!+Vx`tjjc)*@KmeGhJGTX*@nQt&7%s z8lQU87SCgTtQW+8``hwte0u#Mqni#JlTa^iaMMOHLO3VQ9}-*^y4`ZrlMM#Y5c-{xNzEr@)I2uHcUXM^(4Xr$yYOy zw3gHOpik3d`GtQhpR{R@W6K2Sl};~~ z=D$ox3guTjy%@%euN)l4PtP7ui}_C{#s!_G=M_!UWnM9i7GvHLN-(b&t(1tAC6r*w z@?Y5NC}Qp5Q=TG>7&j)Q73)PCgCYCz zV%8Y*fa!3__+qyzER~jvV93;;=RFY1BKY0~|7dtxsFpb$mjnz2n_UznfQFR_vetgG zF^Pr}qV<|CB9_Md^aomC#6%$l9fm!qSU8E}K%7Rw(5GE_YOwW5a;GkX4PhRfoFO6B zaE&c-W0f4SxKK!aQujdRyGvMqWa}sTc??x6uD+aD+^>lQyFnZeq%aD`Zs7nVWe-GAtQbB3}^_3Rp4LHxF5Q!I(UW` zA0Q@rabX&pD4a4#T?73P;OwHke6H(5Cn5aer8%lMzJ_13aquP z)mcM|gcs_74W?-o1d-WrW88gE`6y>rZR=PQ>q3b@t|^+Ah_SY2Jt-IkiVBVj0_E(C zvBrBrT6EDG$I`qaX)_?AT_03Y#ag`A+MA8>iU3^fvDS8KeH86lthEuF?F$J5Dy2Qb zm@65^tf#H0cHo5gzy@`ladFngfouzgpj-wlwKi6{K(oL=mJ|;phNeHauyF>&mDY~V($822GWIW} zne^Mxp4TZSeu(!$V_7NGI9AA7(+M(V_QOI^002!92EgIcH&s? zMyw`9z_y&ofb0}t_2_QRP_d9rNcE6(){J7g*lg)xUF`*7+&F7Z*3}!r)|J*)UJyj5 z@aA=`ff|fwLEH?DLpXKK)wb`I*A{I`Fp!SZ8Q=X7Vlrtqa(16c3CcImlp9 zmbc2Xwvvyc-kb@ac!z`ct5dDHTG3g&;UH^A7C6h@BDW2)zQjT)7)>Q`79aYOwX=%g z)}V5-K>@R5^7JM*&9TPw61^u?@NCMBnLN5!T9WC!sMOlC{M<|)-!>!3d>X81VDZ{5 zdG|FzbUc=EDUXX2=He*}e`j!-6~4HUOl8M4WNNx~4(m<9u!d~O7aa;I*19i%^$0Gd zD#TBiN)aSnFRlax_DoA_7Nx$r;>ly}Q0upBm{%T+Gyng1xMbig!}>k%+FOpPLXpc% z@=nf(*~l!UA0G)4T80JoFCguTPTdQlwoYqQt;ig!1K1KU5c-8SQFVvihxs9qW=ql3@Yhy%wh=be;ZoY znU!trtg*ASI!t&~_{y;`P%luhG2xw^#RrbGHdnE5!h3fl823$zg>w>+m%dWrgBbfp zfwOtwj-dgImZPl^URW42Qi)f{AQF5^3Gyxj3XKiylpZz6#!sfVDeHv}PPLWYNeISw z$5_Xz2!=))Py|II;p4!Gd$teRw5M1&u7S-z;~+>?5DYfYQG`M^!L)s`urF?nMlL+72RI*r&^n_y%fQ)SE%G>uM=Ok_R!c{v^uISzfy7(`-p-I)niYglF>EsM>ZI>w;>glalc=wqQYIyRoe>XOY-KGeId^Es%eiqn{g5{>&s#3cr zUqS6^d9S$73c7mMydw4c+ADlO*f6Qz+14&(`q1C3xH&^o5+M@IFJxkHDH`ULlUM48 zIWy;2X9ciEv&pEzaP=7qFQcwEob{>~P!T3eXdDvE`z>GH5^ z4BJS-C&RN-OtX2+Yu24=eQb>7Z9eJY<;>=n*1!;+G+Vly=4-7j&8+ksVkd4x zI6-mD4?j$TvtiR9I4a5IlTKeqSIa5tPlO!3M!VHPIdEM?$T*&0R)+wDT1L> zs8py^XY?NH5EDB{YvQmzK_P`o)DF(!N&BqzRRkOeO`f;6WoIcC4r@S2+z*kQ!of{F z4W)Ya&*44x*z57M1J-A?TXT59A!`MG?f^`&ciqXF??6M(Bo-~t;D?ctKtZ-UtriwA zmw-`_J0Q6$KSt)krjqy1P%6$5{WwR)+m#Mk7i*R03K<5m8t%l*Rp;vL;fEXh{fA-J zYf8b$zUo~5%n_@NDF{LjB<|BYF^Zc`LEPs!3adkxJdQW4_qFFyo(lYxqp;2!;KAaB zxjg6?xSbbhiHN10{Ft?^i8(0Th)jnA*dv$*T9`CZXt{~oT&k|GDsJ}IcIszz{X*ZO z_H&+V8)TB^PgXq5`2E$e;>o#EIxuK~=uk{uHssOwinPLsMfF{EB;)b=6qVpHMd^yn zo1rrWx}`9|fpmjiDJ;ly{Y63`KmLLB8!cuY-}s@m28*3XtzPUi)t)E! znVQTK`%DR?X>J?p&VelVycize;&u$b|BG*W_p3wbq1Z&pL)M z0e5w+*cM0*>ntEN4PIrQ+>MHwCwHU9-G&9=0E!1w-4nk6TPULTg2Cs`uW%M40@QOU zy(71OT`rI>I%EArn*kD>wMMg9lsRtMP19AmSgKM@T2K1a+WBder%jp1)6YR3aSG*& z%G%(rtciLf#_7sRZEdqKC&l}}QPw_#kD{!rN3+ZGOXsco{4N7iZmJX!&8|}RsIH5; zx_CS`~slEP&v zxX`WoAu;-rZD>Y@CUuihVj&ItV`HZLY<5KNYg^00XWOk*S~@`cfP#BapmKx zeb{zd6?#M8+1xx|?ra{S#kjKxCAhQsu2Ld)HlYM}HeK}Lwe|k&Dy?SFzo^syg%%@y zDCv=BZxN&v2=Y*%kWcl??9NIrAU0-@4_zR|uR@Da5ux1lowWsvR|*7qKvBq_emTA; z>rAT|rQ4Wr71>xj5jJ5-&E8IcGkPraQk)c;l3`(u`J> zyS^jl7w-C&E`uAsmBfbce8CmBewQx@;Bhh5()`9PYuku9LY;I-jH3F*Enf5otEtq` zVDJY^%uli@3KrR)y+*0wH4^Ku)@>%XgTjrOVIKtpbNR@C8EVU!K|#Zr;T^9S+KvT$ z%kS2awoQNp;E@S@}bUh^+&Z50XQ@hM`r zIcKCg&BsTXNyKHlsmSR4J_iHH+N^dDScE*;w@Oe00yojD2DtR zi#sHo|GUaoohe|npYE$|vFv?HUUZjQ5zqPW^|R%uV8dv?qWFcwO0A7VE|sy>SHVcc z%>;gaTynRL*vqNp@TmH5=oPWtw1Yy$L#R!Q+M1YH$wkEQv0FnHVYi0R0_@i6i)6Rf zq$Sv`RTs%_O<3fkTT2?)6 z&?3CVSA%M>mneDcRi!p|$mL+$0F?+%5+f<9(V?FB*r5v8TZhhkTyof<3OVf1Am|U; zq3uI$p(eJSQpFD4EIV{FEr1TK&GWnZRW%=96aZhm53IpX(sJz9qk6Y~=&f73m$FqO z-C9~sGn-|%QeJwuUZdoVZr!|ypPZ3hA&8cWgA$CA5d9p^|6AJDRRu%WR^^GWm};>5 z6d!xl6aS}hTO}1=j#ZJr3tmiy0ZO;%dq+tfehj%mY?N`H zF5_!b#t=ou|M1ga42&dR!X@KkIXfua(2f+yon}L0RE^>6aAH)O7Qt$iX&sASlvz9mgrz@g~;&e1AYInu>4cn)QW<_bq*f`TX%B|l%s7U_jX zl^9!lwu;vFP6PZ<8Gb#+7NycaKeFq8qd!W7y0I`1o_I_ecVlf$R1r`W#}CFcex$gq zJfBj}mcq_HCN-R}sIIxNe^avPw0MrsZ?=H0)$Iu%eoz8Wyum`3K*X}(21_lTI4z)R zxc^cB<29B5@e8l91T2-WKfEdq+2h#@NDV;V96oRVbAoMzw>-e+`nDx3Qcxhr2jywx zlnMk46)+Dl^{Mgz9r-g2Z97>bLKss3TEbFsK)j0dQ)o4?Abt7Yd8u4K_ov0U zJcklo{%0yBVtETCu)OVR(#ea}Kkr}1hUcr0a*4kJW1tjYdRVNWiJd{xKxbFX%)-uT7(8=GY#Yi4XfPA=I`WIV9 z`no{yfMT5ouKd09dS>0F>dHTq`zP6=Ob#Mu;FD55rX z8E@FpR!7A`hmPz2l@v=jbb$ct|MI+TCtFDs3){7mA{4R-7DBml|5bSLzparxrK39m z6jo#f_<$CLV^9A^5wOKjNNF8r1kO;7E)oCeVoOk^L*l)=+S1uK6roT=(XjAjTTKohRMOx1Fva$+iB+W4ag|YaIW8N^(gO7L zam%HzPoO1(oSA8+?D9iry~6tHXQ7|Se_JO+nKMReCqdfVm%Q!s?#4^Bq$TfJ>@Y%(Q)!4j=0 z7dWr=v3;b|M(_m4~t=eiH$MwocqsBvA{21*w@Vy*0mwX^^`!l`$} zAzFeV_kO)6-h7On&=-1Zm&>#aWute+my|x*D0T&4U{_EKxqw$7xPVt6u3pd=@V`;= z*cD1`?23T{Ug1+*9DOX?l52584 zg{SiPXI-ldTdtSkDOUes#_-gi1nZnDje;`Njbb|GVHgEq#Q!y{LJ%#*;Ymrz(Gi(p z>%bH+^r^o5UqkV+PnC*tcxKuvsQ57HSK*Vp`<3E{Y6Mnd`IJcE+^V7=rFvPgG*B4e zWPXa``w(K_-MBCnRWu^ERNETt++(0Sp6ePKOgZZd@orXFm3&7D6slO|hVqxN*=DI= z9359P`p2@rC=nlxu-YN-K&6m(VRGM&bFe_}KDv~O$Uo0v^Hf4Kzvh6w-inWb|6VpE zZ56U8Kd$0q9|Ql?aEMYAd>LwpL{K8df0PlN8eyBR5UqB|9BG-eT%{jY^^p^AejD9Aco=mL%g0|H z@a&d0`6vuN{&IhrsHcDJT#3VQT};;oB=j=Y#kF4rFs_U1h+nuauJfwTb#b*E+Zb=_ z;%{Y@2hfw z-1AkkKpsJ>fl<}uaW_ZAm|m63*r~J>7lL*m^6{|dY@t#j)__m~Yrrm=i#%?RZ=uzY zeBv9O3dtX!rAU6GPW~;WM39FP7kOM`CXyPu3NxR5)qRcm+-zGFxyGdR31)v$;c>y(e}N5lC1a^DIGFL+aw7^B zgISAR!P6JPHk*QgE2O%jE?t}|yztUc)W&mu&YFvD4NWYCQZ}^Mhk~UR;i6rzsO?%h zcIVM`ZYOi=Qd_7>1+_ZND*-KK1#h;@wn{}X+Bu$LVLJg~&T?C2F9?apHu>|*%RvY8 z+_B6cC-3pyif9$hO+ESoQdLifkrUW9N)OkLn*{{dj$r!u&}7$FZOu*WZCVqZ*vS>> z#7@!zT&;Y$LM|J>q9y1c&aaT`#_KC&U<$**ZQW>ess7E6lPjbPqipoR^ggAJJ%_6m zz(9{eG308+9ilHB6)^S?ZX%a{jSMezD@sLlEB97ID4~E2!>U2?3k^%HjYML$Kv3mL zMA<}c7xcK)Fwv_}Lr-@MIz=o+kAObK9`fKkTZD-Xpj1V#n)>l;Dl5hrcF! zbtEmpC5MCGStkOY!Y2zRzxKbow}gyP`n@K*m-5rQcNt}5bT43F_fibmy$S>uqYA{; zv-)Cm7bTC~tJKDx`T2F*U{w`3;!jXiqh~$wv1b)9nupS}a18!&$zj(j+9b6%|ur@=Fi*)|R6>A%g%!0@Zedkc5X2#nN-O2~je#0s z`$`$VV*5%fzfx>aRg_=*3a12c|0-;ylucV%C>w5FJx^<*Y<=8hYvBB9w=LAnhSQq( z>X>aM&OatYA^w<+R{@X@RX4znpIy z%*P+Hg{Y+5L=Tsv(NpxW!!{?oO1a?(_<=$Usjuo%D+t(D-1++3CsxiIwuvemHv!9g z5fH4qF;Bf#BFLm$RUgBua05&6cNnPC0E^hZ5vbQ+1z-%+8;D;Rs5e+8-(jO0SRBdG zS6^J@uEOIogGO}?Pb#F;x{y+94@xUv7Lj9=U(L)zFY^^AZ0*V*7d@(T(cA$KRpkvY znW*h}S%2A0K*Y;#&vy~TJBmLy#s1n2@n@L06p;phjF;U+wb@wZ6)Yw%yCE_@e}u^2 z2nvUQe2<6WwawzkndqWT_^OZNpYVD@g7E@YqWa1bnCcPnZVtZCBjn8-DE^EP2QBgZ zX1LgM!L6L;B2q|vRlEY1%CGKgT8FPY(6lQXFBJf3U#-HIHN$rK!SU>3!_(4- z*sX&yY|AoltP+pv#Pf3>+ggX66?k;v^XV#H>l2vn6s|oEjjYTkePU~&X{-5F%^t`6 zR=c_zG>iQHv)Tv0kk$BzkM{Q}Zt}AymdfG z(cv=+&XS+o>S`>NGC|&${u)NX$Xir&@s8ysj>bjt0bfFZs1QJ{wVF}cpQpT(7R6I* zb*jRWe z7L|S>6&_$-HmtlVm77NNsva8QjUA(g@Q+8_{*+%mIk-5VlszhwZKM*4=H=!Ut?suA zpggZ;Ky{W+%h3{d_!9oGvGgeq5T^E|oobc_gfg-GcG1p_w9~#=UtZ0xU9&y!m0|MNu*sn`(@kHxY>K`xoQe9XZ%y+*tHDEb zNU6adP?<0w`+GIdu9241?8)aK4s%cfzxuDEXfS23znQ3j^oexA6VG@2PN4k-d7*9F zbz6*|R%MO;dg2;+p)Eh7XdvJ5qwT8JX$_zHUV0_=VT-9_&tVfNE`)DgdCsjT7RfYLWrG)nnyryn*ao&87{Y(4pBBQq|7I)B z%iXbkuB~6g@7%GqVjHOxVhowq`B397sYWrGNB?Gf{t51A3EgR{*6Z-fB)qaqjqqtA4x-%*pMRi@<)d=J(|FoUd?yr$=*ZoU*qr&c?!b*C0 z+af&Yrmeov*Tj3a4o|AD-`DWx|Aws7@02gQQ~Q-PrIjq{OEp+a?{n|j`R?$(L4e*ex-=icORw&u>AbY*A-U6Er$+~NoC)+2e98selHERnt ztu;`lVijvgMFw)F+0SaL*2dlpZ~nLjOSfT zY0Unl{L$Widz8*hJU-A~A7}A_=gYx$weM2k#{HAe;-*`?_+48Kc8iLE+6!CfW-vEp z+ivLEyFA0Ok<}2DTx05KwWn2GCvQ0e3q^g4h7JgH{x`&KHu@|Izr?>SZQtj&894J+pF29UtyBh7-zHz` z+iRFy!LmMO_^mSblqb}mId2`TQMW%E!Qh8sIHyg3Y2x0k|ID97A3%|^IdGeX$ z{DQQdtUbj8E$SzSTj$A5)MxT|kAKoj^SD7>`mh1s>-ID17L3a1&PLN}xZOG2r~%Z% zd7XA?{n-Lq&EPyIPwvUCqQyuBN?=d6G$dKl64^Fd4A?dJzt!wrHK>Ezr!Kj7c1Rn} z-gK*rZHzJLjLy(fWON)#R@qy!D@uvjorMw?dEA}#rCxFO_n94z=;8@L!uY1#F4&>= zFU2U9+@md<#|w5iI){qta#J>VJ^V_@|ru8S1or_;v;@Q-5c zHCfyv2< z#*Fot-p`-~5J#qHQ{ijR;;!m6T7vogDeHYCh32oveG4=6IL~g8TszEApZ<093_ulM zX;aw2UQlfhNI1V)s$cJ5S`jy{qBtJu+D@f{u4==@=A;)Ys~X!sP{Bqz<|rkCdsLL2 zJY0vTkrXiQ_oah&#D3pkXfhl<exf!naW<}*7d$+9+R+`w3@AJ<)vv3H0ec<#S<`+L1N%QeHXuj?tmu8` z%JPM&wuZh?Ek03`%$*BVEaAk-B%oi>RkR|{LDb3ebB1@YPc*StD0z{vF;54no)75k zVDQ73)NrHcH44FI;4{S2H^_vQf`F?#Ojzv#EKFGCQ*!ew9<(!(V!8O>7*G)I#5(FQB2oYs z?~?P(ZKI!K4Jip=Ozk8>rcD)EnA^+jYd_A~P)uxlpXcl?SQiQwGMS+w&l_1M!V3mI z@b;oRhSp{yKmWXaP%veoYwP=;w^n9$ieYFA(7x_xudniP>wf*rqtYgPA@1-C_Fme& zjq-)KI{ob(*<#8CTe1LJf-l6u4`T>m+rwY9_h%a@82e+vMiJA>FDMW{Qdw$t4wQ=N zch*MvLfp6k_NLl#U4~BvKo7s=PSJeQB?J6WWT?sy4Yb!_pHnc(aMHUBRiq3@RT-S$ zr`pS!*kA5c%y(UU;fKL@>PwKP2;4*<$nvgtmikkpw+)u!Wj8W2>3UIm2P2!TA@&m{ zR+}<%GuG-}j5ROazL+(kNZ3~chuS-{L<&Zsn{48K!(a`lAh?-NZ7*DKNL(LgKhK_{ zG;v4!MuxpLOQm2m*SP5uf=rwE%uM@CHzfOrsyx|lk7mOu63X}7CVnsrY(nAUCZGP& zrlLTc+DkOZ@N>?!*z1|t97-9b{N8GRhAp9BloBWLIh%Nn&A!?Vt5D316br=!g!k?C zBwq*zydfNL*k4c)+}c&oi{6b{`|Ax#7~^a{+&;y`u2D`nYhT)gv-TxgfG4Vd-=v?Y z{*xBn*5c48FAXG(j%E}tn?DdABl3^OSn-XGR3Y%=;s9H35JFAw;11Ko+kM_t#; z!$&izAh-gUCLpdAfN}UJ50o#yf4f0J5QmS}zV4&Hb{hSKAHZFS74r4J;H)D!E7#G*#ouCwW){!R_v)ABL{!9ra z9PU)dObL&J&2v`e~lwgMGPHJn`z)P=4rxVdZ$}QhO@yG3T&`p{ye0wqSKZHQ7VvS3h*SumII zm}Hwos~Jqj=}hL*Vq_vpM3!xZQX=R>i9)~QYWotlhgLJ_@6zd?pv6cZO3tjYcVHhY zC4xSbDD;0_YahnGr`3>t>d8SdCY}86v=qsIgF0%?%v(tZ<0}DBQb>M1KeZHrl7NCQ7joABqdn8(AMXKV(>72CndXwi47U1Z`+v7$R2Kd>;R8q* zZS4kY+iSng%07aO{@J2Z+a5_~YU!apNayIh6~Qt4+eG11-Ifw004NMh;Np%6Ki13P zWIbs;jOx2>!>GO+Ex>?kC`cx9zZtXy1FE!bJ_4!{+hjlmgFxnf4Xu@wD(?oUBKNDX z!ysLOocX|BhEF-}Xrfj`tHG1~w~sqsVvDI{XgXrerJ`WSh==+W1{k?@mAcnDf!L70 zb)I{}Za1+5lq#xd&oWjDj2oC+t51Rl3D+ji2UnNs;KoE+tDy<&;m?A zSVWSrB?aTkxyE+6V5A5%N!X2Ipa$?N6QE&|kfMp$^=T?=oN($jD>D05maNY1o~@(wP>ZXi7FW>%T(s}o zt}ogT&>}S1J==YZ?-SeQsvS&LuG)?9t$$@`mEH-IpT27Uobti8-u|LkkW?nEE;k(% z2x`r4ceG|VJ&53tS8Aj2;ZuYP*iH2h9+whM9ttJY{|ZC@IC<3i)P7ZCRd$fUfgKRJ z1I;*+7N8mL_}o5+HKbrP(VFk?VNGp1-99$u)*cYFa!-RCKmix18& z3WBiXU<%Qb-Oeu|WVKToz?pi~C^@}TRQc(UUoO}?XfN;JjlTjbp6*V8OnQ3qGG~W0 z>q$FgQn&L(`%Bu29emeCdnQ}?2z)&u%iZuVUb6qC>*q%oa(9^5C+z70? zYG0teyMxDEv*)t+AAw&@s^Dz{AJenO5Ybzx=*Y;zRn+nH@$8)cjUB$i_d8{X_H;+u z(;ZrX{<_#s>92!!5)%~T*;Itz`3kNDh|7bX=ln|V^y#zpbnPA8A}LF1k##6T!y*9< zEs~i+1wpc^Q@2 z5?YL%vEWgSTSYqK^X{qzP8scAHMdbU4_0j?N56(uX>HI<*1+xceHY)lhGL# z|I7ZT+V{fBO`}A=wie+pMi6K3*_X4WR6;cLg}czu7t#WZAU5yPBZ#fE2wSzuSF83K ztr8JLSf(*O#!CZV2*=OurTK|p{E7rqp47!?WAUYmh;sUBz&?r2y8x#n>t)f6M2Ea#oitKi?UJqj7 z9N$(^@Sz7&OuNuonmX~Ro9*%`l|?;aAHMxIOuw5N8gP7KC1IP~DQHGHVlKY1fVh^6 z#!f-+-Eya(uYw?aN>6_654)G!7=r)^0-Y!jF|ibDNm z)W*BzRsqO}*OeF0+9=~(BBQ=vuz^;>{era=g2s>g1qvA5r4#sxpqkStW6l1{etujC3%wPLp87>M*k&lMfKgtk)I4Ftc7a-)Cms zuY_ZWXJ)+_-(A8ng|!zHT9^#s4#=t7f8?yDxMXkSTcp$ z5?UovsG_<|p*sIkt2u^dns+2PFdFHo&uaO?<6kGJcwc2)H;Cgigui4t*J<;Pt;6j3N|#;x`4N?;#iB>2K3k z7D)HCnigY#vZBC8*tHo@g#Wq@gA@Fhwj3+Ujc#oU{6{!@g&jJ3cSty2FsExJwIXwYGnQx;xQCcI`n~`@HP#WaH2;1j&y`}SJ%y_25oJj*X`*gN?WV32g%>Kt9TLv- zZ&xVJ*L>TlDDPFzQI;tcuz5F(=HWvtqYLCgf;51Ovkos6$Oz_nMRM^De;)yHnT!#^ zj0B;@S%=XIf{0*-KccBQMpH40v0+nLCMALq%upo4qdqWK;E8_E2buO1%860TPKtr1 zy^YG5*U)iWdutD0+Q?Cly`$6>BA$ALh^Gw^osAs{5ym*vk69n1Ry?4>QKD_r(9@yNG;mvy=ZtghF zq6G!lJTEVs5Qxrs-q@$~-s{F)DaCVQAh(S!d{IltF~$)-#Dzx?u+BcS-d^d#M?B-W z$l8+%;!O&DU%K^P{qD(L4vsmTm*A`u8{oZeKclX3Pi3@6-P9>TF(#ubZk{iowa}r@ zF=|A&ag5?E8anWFlOfuAxB=BAts&dzfeR(ZmiZ~ASOf!5jKRP&@Nd--;rwVjM;iNz zRx_BK*O}a)#V8<@Ad_G6SY`I7QY@H2v5SekokD8R4k(N`5}<-d#6i1Fzn!vIznvoJ z;gf;Y_Q9`&z5Mk~j`)ar0!$;0@`SH^F%a)p))7c91BK>xSSw20*k;O770dy*9`_S2@(E?mcP1+~dQd4LN`q>HleE8Yf`_P$~LG^O0&}dRI zxsFH!RN-tDcIa2!A>eF#IGU>!!P$0Uo2fkLXFXAWY1k!%Z++Gg>46{3ae02|F^Jr1 z)TK5bSTrD5sIDZxxO_ygN)DadOQ0rkV0qv^>AP`9_A(`pYQ7-Ve1R6Ant#>Re3zD> zns573^8?>%*597EpsQJ7hiX|g3%3bswiO8(0Mlvb?oQ( zh9yy=sG*ko(GXkG0?<%2zdEu@V{`BQ0lZcFu9bO9C?!z;cB-&Rmj5?P=l9r|gICp_V=1)%q1YwEh=|Ix2c0 zXPj)P{kW9y$gsiyyXmA`H)Ulw{$|}MQS7EJ2XGv9p#@?OBR9=lNgI5C$7eYzvouGYoHSi(6e1uY*%4WLEl{JJm=qkhYloF@mdWuGuhW0qFrw#}qa6RP|zi>U}boy9NrSpF# zIp%mmV zilx+2_B%xZ#p|o6JD^Z;R`_QpxxpWN5af1s2i85&u78Z_U}05UH~8XKxNf)xEIrl@ z6icof-gU}#gQzao4b24qYar1KM^eOP0jBGQ_i0P;uqVDOlISLMSHAY;&?j6s7zz(& zEh$}c*s~jjgOZXXQUrvq9w@3aX|^NG#9n*^mY&F?SR5H%nd7)%Vp)$s)nj`F6_+bh zC=$+g69oh(6EF?q1mkP8B6_jhgXqO_X#q|kyAH|;B%hYx1hV6x4-aTa7+Q?G_w?1C{`4U4$2k9 zo|BGq>|aV0HFQsE=pHRV4TT<(8VWlEx^@jD)KKw5J~R|@$ft(%o6+}l4JqtUL+%hg zU{%0w8fs1@Gc=^27#dQ*sG&a$4WYN450k^z%p`3hz{SKo?x6IxHp&O>FH1mN_Gft8 z+0cIBZRaWokgd~Z`BK?(sWPqELFsO%VMX2DPN8(r-A+6tMa+WE(M3dedy3XX5swoQ z^&Qdkv=aK;Pbmadh5l9nqcQxX8^g~O0gd5?ua^DkW(;I%DJ56&3LD%KRUp_$r}YLO zHyVu2Qkf;tS<)$$^bR`9*uwxpXIW4DLT6d;uuo^XeUoE>H)omix??`;C@8qb13JsL z1fp}EH|HsxW%1pPn!-hfPcD;B`Z&4JT;eF-z-HoeG@+2^oyn^uZ~uF#>G z>u4E=r7ui7Ox)%S?{%jdb~z3uHi|g7A7`{gcjHP+PzetXIxHquj#70~f}RdhP|=OorARnO)fNz( zM!{4KH{Ov}L?_ku2)gmMv;gO&{zs&f8bC{MUg~$mhm#t1L^>%jH0j2TR_pUpTR;_V zTw#Y!N`V+|Tmic|shLzVP*s~;2Yeo#0u2|X(81|13EKB?NNW>p#=uu2IQsDI6dBdC zS*m9EWHAD*W)Q9BBMY!&956tJ6iZcrjZI~>0r zPoai-6hipD_d@NU|89OnI>*`o7S6H85$V4xzCp$S8eTa8aT%WBzZ<_H{dZFZLF~3Q zGP-bOhCmliXLr&;=)x}w!O?|Z62H)eUwXr*3-AA_W4$*Q-tHW%>;Iri zKo|Zif#{s)Eqh8AK56`w7#^|3QH~e?+%cZ{9|giL*9DrF-_s8F!a39LsC3*FC<=@Y zeZ5=esC3+6M~UOE@4aq4qb@pbU+fAUcM+iD;kYT5blg9`Asx4zZu8&hBF}j162?)+We*ENbj_N$8rq)K@!`nkE zwgy$BtU;Jz9X%`&&nSc)znprT2s0lHSi~v%cxG3s8mkQ@G*$ zu0Ra$r-0q&_uEu5oZoQ~tDqPYyaGo5xBaMG#BMoC9AN2V#9mNAp~rZ14_n0`T7c7D ztz&Z9t3yk0+N;4$U%*`K{o+HzV?MQ{hd00xwG>JTqn6wu`a)I#yJ@K>C1PkvK{2$X zfN_!y(c99pN2msxLT9)M2EJI#E&~k;XSn#NbcQo2FEqtz0%DkABc8J+c%haDD!_+8 zl={M9tbLT`c1q1@sW62JhqzKy)*T|Jq|hNQlce&iwhYy#L09R5qDQt zI*os(3>NAWu8ZiKP>A2Sd2^NijT-?G-?(YjT~JRJe_j+XuJnUH#+PkG;cP4*-?YKX z_?E2TiC?lo=I|w(|C7%W3{c;xg%4zu70-m?YokKE%wFQpS#hHtZ}YblhZ*sFX<2b# z1J8ZDD^jqS$!#STRk$|&S$L^m-w>a<8N?IcsuEdLs0zq`%NM`fv?C9H=!j?2g(gsY zlffWF%!=QanM%M=K@6yQgP%Nv!0*ef4a^Q&UOf8*TS|xvp2-nQ1O(ljpUkFE{`}>*_)lg8_s z%>-)FT$dcz%~e36yM}z9@P(-U8T=WMxfVKM(y~kenLQ%22>!1omSrNt*G1JlkOTTV zw`le}^S?l($I6&Qp7DpHKF?oUKGM7cK&N9%mf`tz$CWQCWC44)&KFP7I`ECfvY%lU zP5=?KhtemAJ(MM2UF!b}dpH}c5S9-Pt_jNih&3S$g&bXZYOwW5!l;5(BkSF8W&*#~*`BcDd|X+VvCs?{e8~*!Ld9zwsolkK!wjCJv8OwBWaE z$Cr-qXgpP@6VhbxzCyrBGL#@gR+Z<{7FjG?8o zD~SJgu93Z0C4x7@>(?wWL0;c%6 zEk#r}v(ayq(}v59*e@GouQstb$`o6iV$A~IeN;6qx}%B4Tuk7*}$LJ$3ItwTgQ%y>2pvg42{i=iNDG}vySv@SkwZ?3A6Io!y-+ z@0ftlyv!HSS|{Mm%FjSq@vV?o7cGt8eNSEO&Sy8b7UvBTEMwU<%0|q4W9N9Xxoon* zFJG+uUW};?IDYv8j0lTL`Q;0J{`Wln{)lY-HL!5vkSxBa0leksqh0god@sLvF|M`M z;o%GT#fywK)>Gk))|uTFrT|Yg&16{wBxYb$dH;1msXQgyn$Dx#1uay88jALE zsj}PlbOPVr+1j4{MT?q(ZW)3?e=z+4K7Ik}0>%_nLO}~bw^Tt`qjKG>ud{So)D%?n z2Wi*l6pexa1A>eP?m8%FaajV;cv-?_wlzJhUDyy>%oH-f5K=(VC`4eyBZki^7{MPf z3jYtnSzGoNEoSoP2LELgjr;+F&QYXb1b@H?{%|V`TPAH^NJ@flr{*alk3HqGJvAzS z2sD?O$o@rskA#xRM0VObZmn#~={l@Ie%WyNKCK{=3GH8mBI3W(=H;ijP{x;NTQMk# zIkT>!JPm7g1i-Z%#4YMqe}AG2J5Q^HOQzYc*|ID*et^*|)>57QLGid+`t1ilLA=;{ z%tJ9$P+ZjpE&1KKwt7uw{#(H$LO=h5h@A3$^`w~f9+f;pwG}yapV7OdAaj`le4sr~ z`#;b64vI~;|mJvG7_ zsj=Zy9wxm9ug6`1!4!e_I4?IT5zME5o(u_$sLmn0<0$K3ed>C6VP$w__8cvpcl7Cj z`sDR~-0YS0d}_C0b;GHf1@V(pA{*!v)^qC%!^*G;l$+_)OV=At{eKjXPW_%gX{-D= zbxR>^>KnsLslu$YhIiHn12en^M8$|Cd^k0V@lI8c-Fk=ZrzKq}ghlKa1>>|A69@a( z%V}?s!}^)!5>!g$3@pHd_o-oNqB8Svo-jFwrFzImubyh(w>Y;IS}R&YH^|IE0Q@M% z$F%Po$F~$(6Imqu*WGK-UD*aBfnYkPu__GNAooWCH^?WkFj-LDV60c)Ad>~Py*Q?N zb2K(Ks(Nr7KHl0-&)LAYjJMWixn7LgdozlXRc~!F!pE+>bXRPHF=W_8>s~gR%D^TX zHp#k$6;d!Z(X-E3-_}O+#SWN1XH2$Uu}p`0V^(MM2Dv^`Sa~#%vD#FWz<`HeD;WUY z1+Qa)SBmE!r%knf08fNb9puj32Dvjw5$0X$EwDc)?ow}~XzT`?puOH3)Hv2F6Lw$& z#&(ZRm-R-i8u|}NV_Y|14*$VjI?5XNpO$+-5_sKd*1Jpro2ivQX=&kXYC+sV`D;3) zS`>P@H)k|(Kf^|;FIoF(tlUQ8y=bG-8_`CkDZ;c-gN@QgjVKyzl(Er|jaqK>Yom0e zF>F*C{v&LpNJblZLgI^Ny<#n+sU@+JB{sSp0bisnoMr8xvGG({tfW&`(n%3m$t%mN z^|ZXUF^FpuqsoU-G*)u9ze>LAvy#__C8z2$X(gRTB^Ak7Nlyq&W9M3jF$D~RWIOgf z)e3z;DT6)`{5tr60!H)LRrBziXDku?iTRL8I76ADiB3rqouUZSMEAi&(T=DTrfnh) zgf_bC&qiUJd^rNz=r*;{DZ@sJXta?hB!O3X9wNH}#)$-8_pD7-LqjPA(NIBeS?jCx zxY=9d<0jQv7Nv*zka5G#n+e_=QNU>J6CTz+|F-o?S!a7)u$#2Yt))*;$>! z_|<}_vf6+6+Bwz=YzZwQS{Xh*?O*0{{|yZ?adx1{#M!}sO|ttdcEDEmge35Q_pBqC z0>)N<_dRPpc7Upit*#WrR`0OHT1llB4W{+OI`Pb;uu8fJlj0K{z1Pc)`F1eGi2d%? zIMg)Yxlwv(IGt<;@e_r8T3I4CL%vK;sl=i-la3)ayLGl%=DS|~kUez13sW~@R_!4h zlU|BCM!sUKU75z6<_^eAfVe^T`4VJW$pNIvvSPXwb8q7=1V@cwqjkW zBADYECm?h&_$0KD$Z>T94MmP?<7d_{*(;RJT&BEE!NSihP>{d8*fLF}07n7`#qd$QAN(17k1vD2{FSxyBN=?n zX8ywetTovhst6kVw17~9e`8eZf1u%N>j&%>C6PPMBO=BggYQl~&%>;znF+u3sLXX`d{r2Em>ldsOC4*6|0$=fy9>!;%vcjQGUXndjDf#6CKI3vaR+rW5n2M%Z5e6A;>7b7jS58|{^|#k!j9pk&xy zX!QdWY&O-7ExdLOdk>ZB-?92uw{q0#yx)z-Lixq*)*}JITcOw7s~?ogio-9p*97wP z^?rLz>{cHE{^YCnCm-GT+E%{my0tXZs77e~N&-TSe^1u$j$!;uyRA;vh?3zHaLk{9 zkFhKYHjUqCE3dW}woMeOf5-Ush5cISpqyg-PadxlTJ*$zYl5cRw(>p)tPNNJ)eRkg z%!6$Ij4#{I`q4W0kz&+{t^BQnaKK>%RR+yITR^DUhs&A`*(zhy`-iOmWlJd8zY^~? z_(ZlaAc!Fbe3H+uH#nfE`B7`Irf=QKTOR`hZl}W0fH0`~citcU7%&4~xP^z44*&Rw z;eP#AKJB=*GFwm8LQ|geG$rhei8_7X~d3{6q zfo+y}zU?VnIX-5)h4G4~tj`5h+y-%B;hwl+ z!g$Cpk7(Ai+hkxUOH~qPjcp+y)I&>elheNvpsSevE!$;T$+}Uxf5onPXH$-1*#6&l z3gx*gTb1Eg&spp6Mdz$w58B@Y$Ym=iot#|P&u+_# zC|FFc^%dLrnz9AuRRR$7FU+k!HWgEvgN3Ao^4V9d7c6I?nz=_T>Fhk!3mf5Ae~oa% zS0jA*o3;NV#oM0^Z~mDog7yyD?%~bHjcOe=?0tB3t0AnED5dW4Jn95Hal7m_AV)FZ z{c`c4{OTXpt(L6quzfwZPAtE?v`-vsNmW1_Hs9_iHgwqTJ2rHCBpWu_&X3);rm!Yd z5wu}HPa8Hg>Xrc-iimLJPwN0?r*w}T5t1)jJ95W~;mvdqq8Ko;bGcAn_OA6*zygrS zPxdIN!QQ5_(Rgq8Gv52Yj925n^{GcP-n{Lv*R)k&^QazZyDtTVM$F%g|$tuOa)8RLpnkfd4c)m|L-ao+hr6q7j5MTIC zt12vb2k9@u-kOE43bZwe@mdi^^ToH|5FT9+ava8TFGHj~9`R!cpAuw?eH7zc?t@X< z_w8Gr!4I<=qxmZcMXCA!GAeo7aNTXUS`A|jXmuXhbs-tmMyn_6knHA`QxW3%63^y*IqqaAzuv17guJL1>{b`0RjyN|~6E9}wisQ1{xmxaSZw+Gcq zm@#Iery0AF>OHwbMuAbcETh(@5G%h zJRt>XH~5cnLaGkTSH%gbT9A`-pOEsA1kA6wS)7pi$s=cohof4>+P1RuRB1@>R^wy3 zrZnk5px|71{At#srxR=Ns`ufI-RAMOolM(F{22TZu1t1MNtH&xBR#iwh|@(0JhxTv z#;l}Q>0Kk9Naa}(;D4laE=#8c#c>s_rdkT0I*n>RhVfnz0bN-eT3)Ilo?Lihr#!;b zoucvd3t;f{%U}f~PQL&KPuGCrctmLC>w$yWGqjk=f4sqeCPgEEz##tx3P$h;jKcrp zB-=Fh87*e=Ut#cHOVP+5Fvx$Wf)V@yX z0>;G}P4jViTLDX=#Z3MscS+ONplIX|806nb!3fm>iWqY;-pc>1UzAcXN~#`iTKLwuwDE>Wm~JHTY`!P-BXkeK50L+ zitTHSjiJiQX|6cxGM0jInmc9}|FN3wMIQt>PR{T}5Lv_4*ara~rg_^J!QC3Rwf+c} zdlFbccV4nuK!!?zBXN|i-lL?oYm}O&SZ^eijW=<(QwSd0*&-l#YzLZBJVH@)y|%5k z#?I1`xUY747w)T_rU=|u`}mw~y?!4YY}beiOxsP|6i?XP-Q{OC8n#<*r417tje}fp z8oF7rK5bjyRJQPM z=}Yh(`@>><(Kof#W2^p_K7k)^YOAQy;UD3KD=i)`tTl# z5I$TK+}h4G{Sq{`aN;Wzk4}8SUt{0)@5ELAh(W_U`(mJ+cQ*_F_K4 zAM=+ab6-7Bm`NO`Q_O@ta1S)G=z)rJU=LIvyV-tTN5 zrP8DG?%eHiUU}rIMtfVn&JIw9(u4O%52gr=!VNpxj_8-cR>Fa=QZzd7MSr&XbC2IB ze0Gm?;Iot)x)g@Sn7y)L;`VwvaMWHu4qSGxJhGxVundhL4E@(z7>4}%Kq)TdH}n!# z&!4asQkV}178To3P)a+?txwnz`0SL1)%3maB82$pVs9z{GXg#Q2^g{$KN_V97}M8Y zQx}yHUZzw=dKt6>dKtB;^fC&$Qg?Vt(NEoNuj*`uqEPiADLlMUKx6hA1>;<2#$I0Q zDcch&fo!g)Y=!#!dwEtNMA#1$!lO?&;A6(JRDFr8Wt`VS{8O;Z+I=PKsMUleWS7_t zVtB^+n(_HN}+vZ!1P5#t4;8P9Q?CR`OjgbDf z7OEOJ#ufIrJ;p97qD3|o^u{Y?imkY)4qYKGF%`4q{|z?2G`XGC}IaR)3s8aQRBEly)2sU!?o!}npp8cq=yuoiw$xIlklpFD&$ouWm+ z;t_eaAU^*|TYc|SqI3573R!qGd-6URvL;i0?om)*wogWpk0@G+2v2`?w+s`}pvEvX3iu#y;)|N#M6eLYGv)=5TV1YKg;%QV@red!ua6s`PmD zYKW)~9JUZ|qWlDtPVszN`!TltOy5uZ6dUNCY@mBo7&cJv=ACBgrS{7PDnsdTL@BY~ zPmr&?-*5B8?U&6HN4dF<$W_xH+bz-Cx200W7z>ZCe@fsC+flZtzX)hYY^g;f%BjHkvF(HN){ z2)6hgA1%IloNWbLMis*rU%DT=Hg@~`~&)OFWYkb(eL>O z^jR})byfN~pN*`*cO40c<56kwj!5$;R+62joFI?al4tfD9u`KSSex8eY)w>dc-m(B zv4Ap?TeIB(<=7vT?g8BFuiDzG+)Ues{OIZU-nN~0BA}*9kFlu%&zfp$fqpN}03U&r zqj;Qa3oO{h8Q_hO?fG)pK-Ppx!0c2*0dZxg@TJP~uh~{uy8UR}uMc|N<+4RZcyzc^A70cI9N4($uEiHth@qhm6xXD)?SG{GcN~Xw_2 zKk|!j*@iMj1&;}!QFIYi0B5{Ey=|M!PE#&m06-6wxy%fk24tn^W9&?aS`7cDS7>Yq>#nn+&3Pvq}VE0m(A}a)-1-!ZX zT4X3OP)(^y#6iCJ`p}w1pT2J!th1JsAGVZxLDS)&T+no+McfkrtsT#rXT!?`-gAJS z2Yt-}Jk~VTr9LeW@=hPw9`~WiBC)!&9+cA%yKgN>P&@3OeXQ3V9hwwGewu*4=y1Y|a9B*(%NGbnAHsdXL~~zII}9ereZk^~gZSIM0y`v46DrY-K`Ye} zpBc#b!M2J;3sTo{EF2B+!f~1Pwg#*u#bLLLJ}i?U3Kev__B?rm?NK)3%yteoF4{&= z;kXsokV5biQ38N-9k3qGbxv=zEnyvKIb0sJIgFEsHWUFvQjXsLuzb{W0L9>pq3>Zo zv!W4)<*W!S?cRgqQ@7YE#ia`fn%sET7v%BX{|PI@JO!ulDew0z&NG(;RF}&S9cD`%!l@2H@H|aGrC1+I$c2KU11=OiAqhNayRDn5EUv;@9hURC46v4% zebzZFXP@g7jm3wP*9eHxBKS7!PoS?zMW0Xz#N_j+zbc;hWoFoYtgjzL5@YhYk8;Gx z=WavUHKwvS`Aj?ls<|8;C!cWwqA2_LUfUd&N(Bn}o+1H#@Dzy;JLP|LgbWu4-Uuw`8ZKyI zIb6&GHtI2wDncX<7qyS_cTd{dCVeE-qoc)qs;?L=it7DrE3dHzini*NuI3bnOJ?zQ zx8C3=Ug`3t#LGpUd=gopG@tQKU^D*h&$f#E!aIQxs%RXkD!&_;#s*RbI7l@(%J2UI z``wB}9Hd5Huls0&l*_ZiSv@Kiho@&L1Ov=u0l@$R&4r&U8FSY5CVPh##PR9Pqc}dj zNfDU7!h<6JJu0^-zo2MLUwz8g9uPU}Yq6o;dH6L)We%&hAX5*EEI%rf%F8K7T%+O6 z;lZOaTpy-rjAaKNB=9tliNrq@C=QI&*FhfcRC>$9ZPCA=g5t!;Jui8GK1g23F_afh zVBVJALF-VABz2*uFGA&M@bi#SA~NHksPKR_x*{v}=#7d=Sgaw*Y=D}g*b zNdf=jNs0}}jFS|byd=OYVE%2m$Cm^=O+h4x(-hiyo_5(*m0k4WfA&HA|B(EBIj1n0 za8AW!=$y@uN#|7j1)b9qlEB}&3(l#4&BSBbpNJ!hn5Y)SDGWXtq0pmqHx-rgaPBwm z+YYgol&5s=pQLkB1V$~~r+n%snRM?%(ZaX&o31V7){8!c=e{#4n1_BEScR>pBz~BD{AplYl?l%0n?lowT@?sk;)Mxq zwg_k~^vOr%tZ^cY4kEdHi%P%&?RNoj4QROF+7+HNUXMM_I~^TbfyEyuZim*7KJKTf z%NQ!}zQQbmHh1IqDtL{|a)txgWy=>A1G3w#m%XlGM5!)cz zK7uI_Y{FiK5!xJg8v$qf%CrP$`gA5o%wf*-zZBKLnf_Pe7tZv*I_`I-UpvnJrjMEa z|3${zHMYmYBt~**2LT&8%zWq3XZqFo)sjo2`IJ<95YK5C6wBKs+7GjHM3|iEr$s%H zs)518Q=li0lS#gI0<>`r*fMVehyT^0xvV5Dg>(1#6K-aUcfvcGzm&4~W$Cn-I|-!M zJYl@TNzup!Ft`HfpkTx~a=_pU0F=cQM#m)kEH;D|Gx-lN_!m$#@&^p?kLTyh+Pkr5 z6|@inXhle=Wc$n(T289IOO;2V;3R(yOv`YwDYG!$RZ?=mTGlgt3 zg#1L&C`4eyQ=%6YjNlI#7k|7g5O~t7Ma4Y|?WAmkSc(>`HI3&~h7T*ICviV7> z{Tq#qqi_tPJAZ2y$ltDI?_qiFq_JoB0xg77(y4rEDZf+TStrH#QJ&}asTvz5NL|mG zCa2k3#ElgYw4w1PC#b-at_Ifdp^JN0>ip`^StED~>52G!Q_Wzxr2y*ibJqh~s(N`;$tbH-2^P-A^Qgf; zLzB5eF^=8=0)nGAbThnX@qR;ln#Ri0k~k49`!h~N%Tk27d~Wo!Tx2z&Xq<>P_}S0w zFqJ4gr6VZMYjdO#i{0SQlBw`{;g~??z$ilUiw=7&X zPlbw!W%F}hvL^eJ^@@}gPGuQOW+6gXuxOanZtCeww&wap7<2 zjf)lvJxQ4KM4zcNf6lqPYHP6q6peXbi}W` z1bpsKz&a_wS4RZBu_G$x!j8y*o9Kv&k6=esAb8(GftX9r3sgnygGxc{gLvOU0izEW zKjrdac^2Av|m3ie_Hx+ zdCJX<#_dl_-^!tA^y9WtnD-_69(-*(dxp1b=^zS&vA3v|ck*lKV@}I8u+2-bxZA?hRI zy;2|PX21;HjEa$N<^f6IGyB;;WQ>B%1(ImzJ}@5aRcl( z*(FMiG4q^swR04Ku7;232L58a5F7jp@ll*xTDUgY?&Iuw^e-62Jh~-55PKg@Y`heF z&M=W88BOE~N#IF;!gE9l7>A^7L+qI>gKCB*QVODps@)0fqSB*-yXUQKev$Lmb_y@o zacV6atLi;v?F!cMJ!K`+&;&WZQ=~+*Xftg*zt#-~ zgYguBZ8j^uO;3IPFLLC0gQBs?;M1Qzo9sWb$vnG}xZwwhEufJf6V=E6BE4D>j7{bV zN#Mgr+ncHyf>%GmHc+LowY*8KW5A&mu&|C+C^Ru{7nFcWn0O=ntkn+hUtge1(L!gW zh0ag}TBv{T3Eg$euk!utz+XL`TI1J7`f}>XUwt{Xcp_Z8OAK_zFpwe_4de+);O(7Y z4h4(`s!Mf311V+Do%SKbS3!K?(%Mc&T>C3(*Mz}k$GaO_^L^;Dkz z!mn}_HJy^1tElJD>fZfp4)FHwUt$3jM;1`!WCt7mt2|eu=;5(`GKzYxpW5(UcS_e| zpHb~_{j^d*TJxp(uX3`oOCb;k72x$GpZ;^$xBtNHY;BVuF}~LO17(O` z>s>3b#*u`Tzsf}AC*ZzctZXvuT-?Ex&Amc+BbWzOIXqYOo0 zqm6kXqPC^pnIImuxo7iZajWlJa+EJgDl#_48-QhY23}>28-OQ02?7LDKKo+Za{R;B?afs>QSn&QM#hoP z&(Fwd%%@=R#gM%DWWN1#jRl`2%Atn{<>6VUuivmQXBLX}U|U1F;C+=XueHEF#8Txf z95!1ppcG%55>%h1QZ8;8dbP8>#as3ctQtj|FTFlS!EWCbRE^%Yr>ImywHUL;#u4C3 zeCp~dau4?e~by&NnfQg9C(F+I-8{Lz z*v@@yp72%mgT}G%X{{k%8Jj2H60o7e%(owP^WzK+yC<`+F(@hEaI(E|3pi z98d`o=7FI+^CNpZOQmx`{M%ZAO<5I%k!y;rS2%~mig!Fs2SSXeUMQH;i6k->;88 zC-?KMlmHj*BW3lyPasV=Cl~It_QnUHhM$uQ_u-TqHUOqJ=bn?3l-DU5hwwT6ge^QL zXSu2{d_x9=;Zj!-CYHKvFy)WC%LC5I*w6{8D`G>=IXPe1MN6WcwhM^MPKz_f)aMsJ zw{Kv-(1N(Te3C+N4vf3Y3fP>!+yB}8ThIPN`ukL~8ebrseUx*(V`FBNZ@vrQ| znF7JJ+)suPwwp%40IB#821we8i8;&w+4MYsF+esGzc4^HJMT9@-dk;7<|{y6{u=TO z-2?|$KQ;s8lLTz&Fmvgn2gprqBw=ix8P$iMm%G1%&y%g>7krnUYLfK?!Q$2Bi-(mUK4!KEW*gU3bBt+x--*i{OLc-@}QTG;tf;$9m* zC3LKhJ1pI`+%eYt$IeGN;d1u=_M=7L;KPz0{G)20QE(i>cm zImAX3jomThf}ezCOCS+DI%kEJu8m1N2$_x~MiQwE{72;3%23X@;P!+h@He)@OZy5K zhd10;8A|DK)vXl7h_ht}JRqWgv7?u~ASb8^7vwR<%{%R%u$hz}TIfY-p%*CvEj0V> z;iEOfKuakW4Yb&wfmZl6&^y#XFB%3?ZY zFxut?58M22zx@EaMfss^Zb;kQpa`@Lo`Q?IC`Zkhi^M&}sHsKpwMYGKZg3ZQI4FUlp_uw{lnU4Xcwio)~8s}7+ReN$;$*X-yRF%aO_mXVVd}c(K<@av2{El z3H-(pyPYXuH1RcQVhuhXvd*49ch@h$GU*e0K_-246W+gMV5oi{Vv{(T_L5RN(b=a7 zh^w>Xqy;aYEHTXSzCs|(0iTufZ~m43%%Qz2$c%)?0?HH<9$a7>@|A-@*J;r5Vgdm= zW5VMYEsYb1!(KY?|JnXM`;8XF3B+XzL6^k|gaQT+$kBr?$?HrZmx#Av>qGkNu&>-; z%q1TUFK#m>-4nqJW4v)JO%ZqY7kd|`KtzK=C@>9h*fao69+a4klLtC#kmfTd4{by} zaPrVr{KCmY+e>~Y51Y>Vo;-Yc&c2Wh^stGsy6Q*3h7SM6XkWr1{{}^vLw@9C8APKm13NO`9HfU|_A}&{1`-iK z*9eZvkY5~0j3NKVB{}3Pf@RF4s$d_-AzvwI4*AWgW;m=V1(6e%ro<4Wc~JO8qaRmHJbJX{Cv1rOIIxi^KkSe@1%IuaTU@NLqj1>88CjQ^cZ; zJRu4E++BOVS`c#uQ|>{I>0_!G<_cyHZyTnli*~|;@Cs`joBCXqQzNhu9+HNkO7y#x z6`Muthrzox!R_G|YE(@uc(t(MK>48DC3Q#4Zde=*<)ewqw>6X@s;Z zZX@7uq{I^(j%ZjT<}in&g`yfb94!*Ra5!3Y#qV%5J*?p693PLN&z%3Li_3bVZIkxse5(T;mQcC&!(YS3Jj^<3e2= zcg|elZKDdhByAE9I_`W%Y9um-N%KR;MHiimD#*03D-;L4y+hKcp5zy45x4-+fKPd@ zc33=t8fFr8Fk3z7DuA)ogT*gw_28@6>IurL3Pun56buk!%j3Vt7cBIZ%7FJ2-VaX} ztc;-ra)eJb&16*xNKOt`eiKwfPrfRa`C0tx#Q4yhGNg>5?9644bA42n+Ugasv#+2b}8dQ$vM29p@=uJTU7BRlz%1+7s=PrQmgqYqifzbjKvTc3JW9Gf1H)Ksvheo~Uk z67v&|U;3Fr!E!7WU;25Cf-yTh~b2rM!AA| z$$U`df^O_K1*3XUkViGizT!nuk?-1{RfUCJGy4z6M!R-Zrot5wLc6l2b|G@_h-wFK zp&Te3$9q>RsKY8yrZ{7`dZ2V@f>PY*1t>jIw7 zxpg4X_?hx!dIB%gJi8WaMJeI?^v(F}uOf;k3Ia!dw0Ni`ry~5pCtF%x6W{I4jLSEx z5-Bkt2!{4}%lBZfa+%o`ANvMOnU_DkACQW7X$@BQbof7x?_L~~+VQEG+1UxS{}@q5 zba*o)<_q01Bt9*EVMu)Xn%{x&cun7t@U|`J1@=6(1I!JK(Q66;8#>JV_|YTX+yozt z^Iy9rDpy9I0CtAlrv+YC;cq*F(k<^@gR`TKprJ{x33X_UnMCvxV^M7`zHY@QrO4wR;FsqDI< zm6&^86%h1IXa<}rA8nWYHVgR;z^=s?&OHMt#69=qy{k%-qX`zJcQ4KxcgU`0Df3$p zpU^Qom6fGrIQcB~n;#QY{Y|dopxMn;+~URs)ytZ7G~RZh$^`L4IoZjoB9%L4KWWKy z>CnPUhsXTs&|c~gPjvuo@VmaXc-FMwa=c^5>_~nrH#_F<)C%vE-NdaH&W5$$LgHiMOldcq5>qcHtz<@m=S0OY5XJSscut(XDldIE zBb3+5EXeXTMLO|(5WE`VVKXBzyh*@@N;6-2_`onnceLWKWEaHn%Qa}K=})H&%R!IuV}`BV@F9{eQSpA?MIr`DnLhlxHegOp%5DND?_L|zAFTzwMP zxlBN?^FmeTv@W>GD$+8TMo7MnX@q2om@{KYYfHoH#sS^N6eYT-R-dnWyujc42ajLJ zZW<0oa(7eszTdFqq`3SL!3ynVbkyYQcy2qKiVxzQdRmhC>>T(mST8CY2Yoz>0%WVs zj4s6}nLHUdyF+j#ebjZn_U`ENYz(EwuZoR$kmlpB<8f>c&7=2cmyPwMIBpLq8eks8 z6OzFDoo{7VRTaHmOOm=^&VpT+>)+znF(1uWw~(HW&G@0HhPxT(49?(Ja|@=j@0HrY ziAnY?g}7s|3Wm0=K7X*KtbX9Sd<^#>CBo+2_aGzvESs0n=H>7}b-5(dM#fA|QDx>~XoS_o2p^h8z$Ad;;u!I0_aZhiBVNfH0LF+{O8mlzSL%k}h_~|vc%Sy2zS$+j zOM7FzgI%MdKHUpeXsoVa=I&bVX;5tfHq@ES8;Vj}=7wv}J z)^2e_UOFDzyI=_$KubaIfV@Ld-Bc)=IlQ2Lm=|))L0GZ&y}?tSE68Bac%e_cR6)?f z6MO^MY>E~0-}yU&;2p!K3(CicFBr}Y88fc&z!7vC z)MqbvVbMZ^e-}CtL2k{X%nJyK|V6hbaw=M)!=t4#tVFT2p983Yw0O&(a zC|dZCtKr&EghJ=?p@ytGErU)3Y!xReUr_KG8$*jBD^zdiMj!Eqj7KxQ z=&-Q>jREOhivCB=qc1?t^}{G7DwH{`AXWcEh9iD{1kot@`GQoq zl;Z!^a|~@Vc<5*%k7~m1QHH1}Rfpa5^c_JA>eOeYDC%$h2F&928)5z3FTz+sIhgGa zSm8H(flca+VaL^AxqfL(pXp1>pw9rc;xjiV7fj)89mFQWU3B|RF@|NZ7bpYiO=1uO zG=|K%p6L0n7o_q`2sUgfMg22}S!{6qijtzx+*#l;Hw};ZZY6u4EQ2XKbQT~}oaKKn7d*$qrUH0im#{PhhM*@V9e1&LHSu}g#!0UW|V&VVR8?!JekB+ zQ9-ynl51;STx0tweCmMFm3i}W!Cl!g3P!!4Air8JxU5Qn>A@z+!SyWH0RL@4>vVQq zAr;5@({>b3)vw(4lODW#o6qSzEQPNO(qh8Ft|a-eI3+kWZl3_rq^Z#4WJ+*lADUpU zHvUf|SDW}J=`LojHug_Hnxy%zapZfh|>=iF*SZ@C*oB`!zd1dTNY7ugLkl~J475hL0G+D8!JJ< zs2~*N3$&1_Duu8?SNqRx5}2E5Z(1%35_clfHW3M#X~ z6oWahJSpAxW4)vA$ejloRrq(Ij(Q}hl#~quGI{gatus{N!ZtCcZH%&Ah0KOL^J-}5 z{I3f_5)@mxE6g#u%N32q&dfXkK?`I-(nfsgddN2gl{NM$Er}`K<##Z}yPP6Kz@0y@ zb!C0S9lrR+uoSk5V$mc&Jjf(_q)9viZPxMZBoYXWOVP{k$j3Rn6yTVxJ%2}LYcEm_ zFk5@}K^pvVM`mkjqd>-5WNS@Jn;PJY9iR!m*wO!Fc4bS%UqO7%3`=@Po|z0_a6gznywU5>bdTPVCrl^dMIyz9NFLPRA?9gvToXszcZKh2-~$9&4SE@CMX~g5MFjK96ou1Dvr*s zly*D20yUkz``?pGXIJQPPk8oU@}#Tb?M3tU7r>|BCsKyO)3veu+LnScY%E2%TpgZT z$=g~`p1nqq7~@|>^LszJ@HWrdR*>=F=x%&YZR}m?=U$RAx@-UCDchmtzo4QqxPR)W z<=6OZdEw=xmVBbx^?!>j&=|Vg0a|$OC>vp7try!_!?Nfjvfb@A{&rL$4Q} ze$PwzpMHdg-1Fz@WE^t~=NQrz*`}*|f~%|UfCbUjm4fJ|DaT=ZuKGRFJ<-dRf^IKY zpr)5M{d;oh%=jOlMt=@`?wKj}+-w!TM9H>Kk&2DC8U{hND+ zyMN~;bhSUBn|%uP@OQUR!{5E@jI)@NARlKjr@Z7J_b307Px&6R7`J@s@``xVb)w_lf?b z&$#a^*m=0SDIMJ%v@qTMKlcrHU*aWnkw2l!eG2t(cehZ(-M#CK?!E!!pUkRQKFmw} z5B|jO@hRTJ+uh=&w=2?3Z}$XOXPywl+Z8an>%HySP1y~qH3oR4pxfIOsOjxN#e&U* zgl}@`?Fv15d-MBlZ^sKe@L;o8`{HHHd3QvjI7^>%M_$HkM8)6d}rB*dR)V{ilC1zPNN@WAA4(Mit{J zcOCT@T>|i^u#w5-^37$Z@!k#<3vPQcJDpJwN6TcxJFGVy4WudR7vp)o9B2wW0z*>* z9FM@zyfB0=mr=|kFiS;U@CeNN;uju)c^}xGDy$T)+=!6hnQZ)9E005e<#_I8ODJzY zt#1kM6EThXV9ha_edl2?#iK(k%@F8DEanxf?Xir75d zQ;e^jI65Wz&?HtCJx*>@fuF?WR)8-(Q*WMW1 zLY0m|;@yqGPqNljvIr6uLD7Cwa37UI%kP0!IvG5BFNiR%EIWfq`Q23u0t9EwI;z49Piz2(bR;sji*SsNqM zTBz}<6`dXmKv=4-s)T`RktMsL3dWgnfl#G|K2XEJVCfG^clt807u%sIEfRuT1%#S~ zr|k@Ouv4@k2Fc?TVg^YCj6t$?J(gj)sRhpu&aTaFQ!231;0M{rqN6{BQ-2ELwL`K~ z%bG?q((zO-d>L?0a5|$PjFQ?>Gy@+H;HZNy5#Wmh{n04K`Dn#+M5s)p9n=*nMZaJC zePa8B#&DcZhRG)47lz3uy5BIlq=duQhgJCVB^^gt7r{X}9(bbLfF>OX)D;XL@pK@E z(}6L3{g1&j*wchNhDB{CPY-n%7u5&qJpBb{JQq9W>^WK#!(`O0&{SOy=2^oF>ajUq zXgonMS?5|sM+RHyg~rX~$v_T4IBx!s><(-dE#uxjec*AyPYm|!DJd$4>^}kacwBI= z7ap~9k)QNJ3vwOMCsQ2t*%gZZ+x>GvhIO_;H*z=;&) zmigPgbWjZD1!cHsIL%Npn{sd~sYAOBuIzY>b){%Lh2d(^ffS<GAk{E zd+I=qqbj%-{M(rKclIukK+NmvVFRG$%zgFQl#kmp{^7p*On3=;rbF(lC+7N*g`;>o z-5kY@D~NDnv4*3BzS6>11v+B+yJvzsCV_717*6}ByeKs4mSq(CO3_;Evgbs?HxAZP zFb-`{Q0}rT6fm^4=Z~_>{sk38cG(Y8xVg*zGXk{jr{9$WczU&o#yu#X5^--`HI$fXc$HObjC<=Xs4mbiC{c(^04YSc zx1L(x@ubF{qNLaY-JyoKw+=td8sanweQ6{GyD4yQU7--uq*zmVV`9-cfTxsoW+mhj zF0KxE2pX{S#L`89jU5RZn@dW_z4ck38Sbsa4_}%srC_0%J}ZE0A2>=eg}_5GV=#aD zA1EgG*0*|!v1|mzaBm%cn2LGGG4|Hi{R262Z@o#n>;Y)wOCSRG*5QX=5ysy7xd)3_ zRc2Br;#Ee&C=O!ot;Yuvap(lNx1L17XzKVtKJ^L5vrHinCMawAfU&hsMHyS`%_u+U zO~%%GBYv$p%nZz}^$b$Zbemw@S}$vEt(zi^t#uH|PnL{|<2xG$uP*wwVQ?3X^(DM; zm)$Zf&{%}zQxs0Dhe%C)Z?hK!%0&o`EpnUPRK(ai2cdGCU6C&A6ysI4myjv9*?FH1 zj*vvfaK@AwsQ9W$f#ccRiq2wQ{ic9GY%7*O0A^LN+<>b|j=$I{S`gP8pMX-h-hdyb zbGedrmi2(1>L`)SHc~X2W!;0!vRj%ZoSFqb3j|y3B;*=<&O(JwFIh@4FBLFlXE_J> zlgG1D*afNs?#IBx_QFYgH_h*XJg=Lhj)x8+Z|7Tw#mj?BTF@Rn!{Rt@w}%G>%kB2a zAYvU%7ly$I;xpQpgbU!_Vli`PHZ!R@Zp?UB9W!_7ARiOeb-m=*_9wrYPx+X-^C6$_ z?&j#HS{_$dxZSR3g-bwBh>^Nez!)kpb=Qw-EkcF2Alz>ECdc8%`uF5Ab*Iqd3iLzS ze=t?|Cins5r!4b@pNVDY8@7Mc%pb?YdZ z=so&({+e$)9Dx+MI@)uLT%Fl`DRN||VvSrK1<739`|v$HSFTQbo%iqMXra$XlNgIo z8d@-4mq=%ru23tc$hZg%2nJhWt}amg!bK=pR^;j!&DF`&U!8Tp0A{eo^34$4bsg98 z9PJZg+?-?oc-r0yVRqhW=0YNrisRDbY*!FB65Xf&{XgY+Q-htz45KBP`s{YDMy462jXu>Ros z8FlmOXK*+w3peVAII2uWP2Bc{Zw#b~M$8a@Zmfqtm&G5n!i&NbCwIV~U&Wu%hu}|v z_%rVa{CQLS*?b)S;MXg^67NOhTi+eTOMv*gY%lQu6FwrhQoNdj&-x5b6pwe{8!_VT z31~R@BTSv2E{r}w{J}RD=84<7cnP|?ICzYQn7{wP{(GLBmBasI>#3n+wo3a9O(g~<~+G(NO}E`rKs$1 z#{n&Tzc53fu)ydIVEWI)bE=s>UPT~bzE-SVnCz>A0RX0S@gDoMBi#bU`8WG|H|Dt= z<6`)&ryWh%IJW}u&fm%I&JHPEu{z%6fpAsfK zyo75L9Ig4R3WH;dhL3Wz)EFlffc%J~L(+T!LE~uBIJAy@YW0cnMGeL{R%&c1C0(VD zOW`H@LD*(sS=MAmGR?$+|f+oSK>ml%}A+%eQm~Y_8l9|PAgNF|BxU!5Eh z*!a=hF*lq_he`9G!~s6Ne#s+weT$;ZNshjnrF#hM)4XXJj6c>M4e!rq5A7Su&)0>| zK~5QRmht=lv4!#zFFFGGU(+2W_?YvpV|mBD!$Wv(@gafyr^$|&Et7yp+66e1J6SP| zaPD1g!u+@1OW1nweWLG@V|8f3RhiI&HKseN@#K5`qWIIj3m@hh1$5~ay#KR~29`q5 z>!&S4(ir?Oy-GBB>{|jtdv!qwSh_Gvw}$Za>~XdD@#{Io`O4=U@39q>ScHVwj-JFH zo5ayWfyt;4IgL5-eTh)LJ0Nq$wbi@8zX6b9TzRE&4LvtRWZts)qA$mWC6Jy0TH(|V zMDVo@;`{UC(;PE>HvhawYkq#>+=Dge+3^BPqO?1p6*8ZNeH=jMn zks4VXSedWce*+s7fpLsdad7h#{WAER*nFMsj0oi)PIW}`o`FNdVg$9^dtD)Z!GHO+ zoWb>zg2ex5uee590s6cCV`t$svWuufz`B z$*zzBSP{a@7!WQzm=~m~Aof>Jk0%u|v`{O88IZ_OVz|6{V>>V=ATGrq15$}ksj9au zieKQUsIls__?!f12TSEpBM$;U%qGAwbxM`cnwG}^zp_eb6_!cyDQgP{=}klZjHGQt zaVcj3hu{mZ4y;aWU`z@thswQHMd+MzW2-X-GBv$0fggOw(NYCpTQMnxm)bHel?|gx zF;wPK#~GCg`T|Y^j{_5&2A-tc+|xk)n7?{n2*r6|lG(4qWxt|I z$h5Tr!8S_kY6;Y*nT?cp7^aK!PB^a|H?kHlYH+ zCT#SHV}{DvG(mWn+fVbB!?B|za1B>}Lua8f*Haw4Fspph0QQ2ShX@SM3J3`d8C*Q< zZ&@S^FfFhm`wyi+zkN3hJGl2+;$wd8ZAXT_qBysPJDchY!uak+&g_KwgaeV)Y2CPN zeJ)tRt?jd6rnZ=wIz%WrhOq;l+7_k%*D+JG+yHe~^&6Vb{-7kN?r&0E?`23aX2zp~ z{fE{g@hDFE;pH&CX7jk3>@sC)hM5FLyh*r?4g`^3I^f}cN&s!uf%v$=`#dcYU42dh zzw)JHDXT?!dJK6+24A7<^!~Uk{S39@0cl0OIJUh^Y9%ORgxTJUr%hZ^e)`@gvceOhV|2*&a^qhooLMW!q#*1H= zHXF|{ZI)mcvsE~%QY;_WDK6)PA+Qvrz2*h;GHV=N6S0&rIdHL`4pV%Q_Oif_qV)Gm zJ+A4~gL(A#jF4o;X7B5DD!89XnqD-1kK$5vxSLJ_RkDkgIt|0NK>34_cW^6-=M zRU+qcqJuM>_uJ|S=11=juFq?2a14HkEZMc)j#EOl4__ab5<$G5J|wQFaFe5~#!e8M$+_ck0ikn8ss>qu z!zDCaga1Z3ToY^X%gkJZ^N6hvl~;5r8xc;$8;fuSWHj_6d}#}0+4zannsG&^wmDwZ zEQ#U9N?iOfSK^sF9T)Xx;rwLc#M-QRIPpGAk4z~A2Qr(4W6nogOaN(CscbI`jJ< zw`KgqUdPvL4CR1{ zinvm*6;4*_iGUO<^*H#~y;6?~H&*Hm;zJXCxIjM0;M#`Td2kHX@q&lnOtl6!=6@b? z>}E%)*0{>WrS(Aq25VyQc>R$&TW_A0Xb;7fsPlzYXmx4!@=4wd=-8dKQC)Y|24L5?`58skXZ)uCLQ+ zQL#MMYWgUef5Oq5wV_2(_!ALwjoqDMaE%R^sgnwuu)!1~me)F9@JN+Q;X4Zk=CWsK zF=Rd7U_Fy!kTqbC^#Y1P)_`%bwq7qB#y+DZkn0MA>spFIt^)JCvkBWtF~}7#F0NqV zUhFI_A!se9BVhRJo$?s_gQ8I2X_FWakR@-6DiKc_-|#PNWsyjT_^Nj-kGd~MnxOD` zGXo*@Jbci+{7c}`?YEXnX4FSyLSZj-4UtgD9o9RPFFNli8x4hxTtbCN_;o3q?>z5F zOFA#WG&t-hnqVrS2*N{Yja3s=t^pOJLh@m)I!mWu3=7pFMOaASWskOL>VpbnLrY&& z7#kEZ5F6U_`x65nD!sVd(VJhbFeDf zkW;9Bkupcon-qm2IH`InQsyYmz2baK9~;TDt~pw;@uZ+9Pb1^t{0BVS%yQPzXGQW! zvz+zWoCokU@*l7K1D?I^7e2#2cmOZs6P!yP%*&liN%FE5H8}6_yJL#}LnJ@^yJINZ zK*i3PH@hNFJ=dl-+fKpgL>nUIl2s)TqnRnKxNMv6BgN3rI+02>+Xm(Y;xx-OMS@te zT^0~*K!~Q8%USu~_?AUgZaXYGV^M%~IXkX?L!yk;FZ?i3);A}laPa{~OGUurQm-<_ ztFc_eEh@KFZ0=c4K`Y2~bCO%2wuDu`m zqoSQNeb7&t6Iqc>{0HlkyquiwEhP;2Gvzxv(n$Ou=Seb37Wng02fJc3u zoT_goexd&eW#2BWD;#5Y2^h!LNAu{C&N6I0rInfM2F0scu7La$UMrbhqj+?;ON6a< z$L($_*G;G+xTa@JD5Y`*6IA8>O9a-?S47Jos8kBQP=TN+zb@_knJHjsg$jIo87F)p zC59LUn?fmw^y8D9?Nxegid}Ek3euw8JyPUDi(V`1tgf-vlqojC<1w)A${$lYjAA_6 zpnr^Pg8{UR*#>=M%)Y6QfU=|wv|c=_q%(>2qNHXMJP*>b38qmzHo>!$>+Bf!h=Xm= zD@L|~!q#kq$75t0K;=xw!ZuJKXv6Cjog@xvaB=2#uJS{$J~{)7de~6WiesSOPl({4jOKhPbl4T2IUGfRA=WrLdb6 zkCwVlEv3b}Ej4GOv#x$6Mh3@2hDj9mXc7g2wTY_XOkfHagBwnIE5#D^FgPg%kv^@% z*mRZN9U-&>ZfoE`aWmC986HTdOoci0RHjT4M@;{36~8e3zZH0kQ?si?-WAjT|79X2kj$5TFeEDx!N$VI#c#dH zD2seQ{4nzU>mf%A`TnN+1mE58$DQvN5R&f~xO~jEL0%e^5r6iI48p;1k($rruO9la z`uv5dPqJI0q-#lq9R#O6zsK?DsWanwg|-lJgW|dM(gZlVSRZcp_Ft45%6=DA*dstC zNcyGoG1bddO$AL|9}QbQ8MZi#ikcEkDj1_LjA+ZBY3J;&mq-3-Jabuav|cV=xITO< zbz!M;mfc{3UA1Bo`O2E(N`(k3!G6LbK4-F?%`dfw#dl`Bi+SUCxu4LCKn!s+2S0pD z(6yiN9qULK%cOgbfY5vdmCdikO^oB2Zzh%C+rMrc!<%n#Fy61DGwUJp$-6r`J2Qnj zY(h-142YL|4&f9P%=>-Y*v6~3s2av|J2}UMKPR+&LHwBx<#&JAxJ|67xUs~9Y$T>^ zGXtzO5*2PnGXn)LTfR;yzW7OJhs4Ij6o!rSMG16Q_+hwfPCUA6o%y2pT=?U5R{<@n-0`JuVby|yY*@D1dVeVx^d?(}rl)7VW? z0qKK(2nbCSQZ2~FPjG_V_$i)1j3NdAEs#h3=4^&%FZnCsp%1YasH)0CesDyDQ#FhY zAO&Pt|KTs3yM-2keX8h|S_yE7dbxFomQb{)zjKIY=>h;eR@qIdvN%?WyFO2XMZ~S1 z1)j%-`zMecpqc}nh5!FO)~%dqyqvm6Vy6E z?gZ7SAI*5jmz*$&4|cX;(riJMEnqna<;lZ_)?zEE zcykx+V}JJipJC73j)5^2E40d*>%9~CPs5$fAK9=`KPMO068QFfn3{Y*)k3>&6A)_G zrAFocBkfvr@M$M}SM&rW#FgA~tuT|Xd8S{K<-E&@F496~rO*1S^dDI1I=VH1zcb3& zCAPAsE+-Orz-VU&AJS{Hu@m%&ME)@w+mb~klKu)S)PXun^y9as0I_pyT_G~v>g?!K zB<9DI3ZtdGv^!>6%5VcQH)_D~NNz1aijBS+@UMHLuSx>h==0Il^Ff9@liR4kIol&X z;6`7R!}%*4<56GZ4DAR427_Sae&b(=tvj90kJ)6xoNV#=keUAs*!Y{V_4t+Yoq~Cj zvCj9{>y#KblIA4JGqkTHl6}5UyoxRJD297{>uE9E?ON+m?8^yGc(z=$)nB_}!4*lmi&Gqi{JNt@Gnmcykn?jgpMAfAUZB1%XZ$rOV!0D~KSwI~MJ zNANY1ob7cNXWT-}rlpW`OM`P)ib2kRLCymy206EMbH*LSiL?MR9cwV1K{3cwV8jmM z8x(^~$GVx~2I4AOK#*EKDPe3Nen(M4p7sgSYOhFx;z4A8E_Ba1BXTMffjomu z3FMaH&_uaqxct7ea*UvnCyy@*@$g@H^7t76r;%@kM?M%BkLWX-hrhuF|F z#}MdB?fB%3W`=CtfS}&S!DUKHHwEKL%1yxpPZqHz z3uCh_rli~yj3h-t3a(a)l_Z;jHA>1&!J4F?+!Qo<8k=s_{sB+i6l_saZVEpB0G`HM z4VnLdCvFNp^#ESRW?Og3E8b_F`R+N+CyA*IJE^9|?YIe45~gLw3J97GBAP z%{2D^X!{QED2paw-}eY5*+4pwoLk)yp4ZVaGKynoY#U7=Itcnyxup&Xh z6Dz2n1wlaUbnMtbQBgtv+1b5&XYVfl{^rw7ih>~t4G{6uZg4En@o}9nvBELK{IR|~Ty%lb!I}D8RZaR6D#T0;O%gLT zv5ne~Q3+sKJ9~0-ojXk0DnGG8THdUvFN3j9-sHH%8YL3#qhT5(D#O5!P=+ahdW^Gm zr}Z)x1)IK*h8d8k8>T~|G)#j;X&8+a8b&KY#bVY{YD9>-}2;xRTw~qCz z@gHxQme0P|u*7*^z`{e^8Wx&SE5Y1%>0{-iS+yk6f`H*YR>gt{7f|1Gb@KSk$II_C z>n8DPPn18*>IagDv4-M!Ndm$Fn_<1Or%Q3P8I#0!MA_r`ylv$#nYl?k_sMc6%cnH_ z-e7d#haZFmP$ya|oWW=(2zCnI2KG+Ue1S|f>a22p65m@{-kpf3DsprY;WSYT9@RH0 zF(s%mnkF%dz9YbIu6e3_1iYtCrAEJTBtclW&)B30S`(1vT9YKRTx%%|v{_~vjn!2& zd=sFFgcpoXm~^}|NhTfdq-0RBOGVQ0S&#%XUeD2bF?1NuRKel3B>%{P$uHo52}q3t zbS0I5bRBjKcWMV>U{zV%%*5c+@@(lBInbP&$@< z27xGOpTV>qhxP$gu^5xA8wgmSfixDDfg+QofuPj^2GUAU!yR8K-^jG$fb8TlN(9ZM zK_d~!PR`=#ua(ydpyZzx!=V9c__cDBTPbDiMGt~*Fh>bLEXl1L9(DIZ zRl3_}=??Ri&nC-h@j;~|jTL&aR)X!re5F=w7Lc(&EjkO|0y!#i)@f9oSSAGM3ZTN>LeilxRlXe^iC_;L9x_BsVdttEX@ z-k7~Zi&1N@r{H8o+M#&AN}CLVgle(^-9(#wKQwv4GcyZCYsCzQX=2L_)VEKl^KhKt zSc=s%#htEOVHxkgCFOusta!g?G3*oYPFF@MaZB8hq>2)^Q9BQv&^=sa$IdoDar-KGNZL^ zB5=ed^JH3&^WN2e$81ije{2=0Y8#N3>$xiUEcfxbDTvSYf5&H~&POx{$8e2}e+*|W zDRpo=xxX;-1Pl2PI*&V6ZoO`cHo}DYUW$n}dP$TJ8@1*`5+5Z_1k!S8gJ^(eYGyrR_MSi=6^*&W5E?UlKzJAhiD$4n=4P zVq_p|Iz{_qsR!)eAEe4<=ZfzjKb4gRU%ZFA&}BEm9q}&TmuFSW0X}?U1886_<%qLJ z)3hok_4a9guejj{t#Rt<{YGiBag8WVY+TtLVPX9CgjbreB3g&t9eoUrPENASFHXIBFm8YX~xgZDv#xtPdmr67YG{?V}6trEAFMw zgO7-7By}&AZ(;8e0FGhJchY2dd0(0gFJJdt`DAuB2gmAI zmmd|;PZMhJ{)CV8p&cosSsDeyKxY!~{yXH}o6`!UoRls@&2^p{+>pU*t^wqs+D9J# z-;uAZ9$q)0Dh-Gb=}RDcP>7Tw$Pnp6X;z3dS>VVJ=`10D`17VUr5TZs>W$;8PB`QE zePJ_VQl1xJG-A3{6!^4(5mU$x74zr6b#{d}*&L(z#P6IP*nHY3T)0B6=oV(D#klC0 zpUzjAaL`smz{vyCJGZCH^v)d=5qxrrd24zVBLs&E5u2C=N?uT2#97#tyzgSgYc&Uj z7cn7nYl766A=0E4!$r!YLQtx&IaG2C@{Xu(uV%2Fv>Y|GDaPKCy+DgmLp#%XY)yMf z00QtzwRov}9+Ve^4eCe5dN0+q7uw9@>AW|y-^NZ->NqG~V)lIY1ue$$@FYB!bJ5vI zN04*+i?hP`sYv@m^Y?TiV=bZ8)3U(wiFo@$on=7#6lmiNU;A+Bh`|v;P$}%abhQ{S zjtP$~lp{U$1b$sz`!aSjZ33=7mWvWxeZWX+#jFq1v%`7e2Pru20XJl*Js|wBMgS{j z{T$TeI`0KqkF)u+RVnLrXrPE$Ltn+?h&wan9&kg3+$d|Ta1W@J;2!SI+XkjGtr!hn zRNd8-ou#4(gX@5ZADL>;(~A**f4P~-F8u@i>S^`?A@HwFv$topGl{CI;NQ5JJvjtE zj+g2G03W}uskh(1yJb3&#J zz?9Hx=mjc1HjYn9wx`@x`A2H-j$sy{iWm$S7-M9kGUZ-j6eVTt6_#b94<+&Ev+XhL z1`34h-s}E`)g76-F99oD$7`&hpEX`PCOrpkl3>tQYcV>QR)P-lU1K;9suk#fLlo&a6K*ayHiG93Yj1IQADLBX*w29~-8Y9F<2hoZVA06c5e}In;qT~A<9MsB;Y9Pmf-<6p(u4pE$1k|)umkc$86KWqS25LAE z6%J&yvQG)X_i4!Z64|%V7M&y||Nd#F4gKl-R^$ z7ILIjhql)URW&Nhil7Lnsnu0!YLnEIf55y`DvI4kN%(iA=FJU=pl~e8FDPzE4^Si& zbe|}(S%S9q9_V0y*JgeN@^rB`WM?S`O8P}rl3pM-ec-Pq*<{|TE9a;)4futw_WZ~* zgeX0O9o~>QkT`;814#a7>#1!SMd8>R@ziuO#lUq8@Ys8eqe}<`JSLqR3Zb$)+%VNR z1T1`dG?WXUUKATw1>G7};o(J40gKYm3m;1#Gke+l>#PG7l?wC(QJFlv*rm7q4^~PA z@((gRw~ZX1g!h}J4f(}B_KhK6vAZm%Bzy?PeeFX65cIWfinORE*0LMjJq+c4drtR{ zfZxLX%w^bL)LvIxr$AfPUYBk%ERR%s-4}(3xYvD2{KCENOYm7Nac-RMb;YJfypen% z9^Qv^71YH#Q#d#NLO1`?cN!OdsMEM#%G0>HZwTVA!9V`fxT1ud#uas?c!KK!P{GGy z#1HXUOvnG~JS!d&&D4*H!O`v+;@AqFfq6)5#~y{)ig-vyvQG=%!+xHcPVsYb@vsg94KGb{LP&<5}pneu< z4h(UFQtFA4YS4%Q>djoroSf-xk|oddHlq~8fMPbvvL18k`0vCV8%epVqr6&?Qux1k zP!+T>ke^z1vJO8t1)jf4@0S+mZ9d8#W|~8?_@-+Y&oHy#8f}gENqo<@qr!R3vG(I; zc@~cv>&jsct?~ZTz1M(lU?0O*zB4b{ygo~w=sh>ie&hf9nNzNbmui+}@r(&@MWu{# z7UNm$-GPRin36&$?^lxwTS49{%N$nrig(GJf< z9m?VpCb?R$cPV4*4C^~oRmYU7@UZS(pmuy!w)C50@qGL8lX3j7vRYUCv}}ML_kjhc z+S{;wR4mlv_kntRLpAL+rN_U1wQpc%w%&36D?R>YF;jZva0I$9Pyf6_INv(M{-xO@ zo3EH@Z_b)g2`q&+$|k_A5AiALs=Q zvUz1GJm=DY$|kfLQ7B5}u)=GPuov*9wINxRk}X~H&DnMj8%L4ESQOJY&=jM2Vf7+K_4aEM`}6d3RYDTR~x;d%CD0b>mw z3%+;0{S@1*3Fd!VcOxl=#^J#KFP_%*IcPMW*QVbv_7tH`VzwcemhJ$PiH9=763M}TImpWk%A$$3qVDLcB?lc9RLYH4Tg5( zXbpyTp$22GJ_$~Z%oxv_Q!pgmq>&`uiPj)#s6o>GXbqm3ZNd$^eW2;1yl084giWSU zNcn0-xs28zWvD^Q*U}oKe6^o49Pv%y?LGFPj8iD2e3zoUh1MWts6on4(;B3Fm!I;o zYhf3=p8_D!HxqGfd9W87-vup6bn#@mU6jH{-@5`1k@xov2O`-u##l$-c#yhil^X2yDDLX_l zU1!`+T@7R4IAQgm(&B_QKY850nXs^bRp)!QEvn86C~eXN)ki;*aGh$um6 z)mdSR3G)xsEcp>sN z!iVl8_mgstJ4t|)J4uQ{c9JJ32JR$ZYbUU9#`9c`Ys|Jy_{qENJy`o7Hmxa}9+Hi%GicK{UAKuV4aH4_^!?ldw4h|t zw18(IoZuMZbP^nJ!y`Dm@3HSP*a9jPI^x_W$`Rp5fFoi6^VTLZfO$Ku_6IP{n`xWw z23QfX1l3{0@`ffdVtE6_wIY_=fHnH~c3O`<{x~JOyNT}OKo+Bu8d=aw@9$Ja_QI=FA6y_9Li){*VgR3?m0YJiAe`vH630DSQ{5k4LC6UE2aSulRn2km$3 z_)$Xro=45Tj4V0s>MM;7Z8c_kGJN4!Ux@~zwLz5TFoc5DQDg@R#x2*4h$v~RY+#5Za1 z#Qz7%{2x&qH2-`4_QpU1su-%&_Yr}q0jdP23+aEC5Aj%m1wqG;lx9}stZiN}5U6EupC3y4n0t-%-tNw*u$Wdy+HQ?X(_!_hv%%?q+`9&B%9jG=b`lE{-G{ zQ02=UiCt{l#1HZD#O*Vdd6gmc3XoW(?F^x?*C*hPYW;3?f9`|R6Uat`qUbdP#D%01vmfO}ZaYPHUhKGK%L z_u z*aY!58N?xu*o#fC(&TOmXlZg6X|wUFuE`xrlRGG?)!UAO4A|R_(|Xk8$Aqf+rKL&i zZa@~h8<6GaubtDy_Lt8jMsv~_By^b)ihvh#MIIg&J!ldjg#AsE&oaq6WfDzAXcDai zO)~gn`!!4}woG!5W|Fs9A1bA=hS{UJJY3y_)*#*E(`L70S~1RLImaO4IG#e|x<>;< z{7;U-kgpY^T$KkF!e=AjAtN$o{1(Ah#Gmn-4Bb#<{7PWiiy6Na8b9$AQiUiX+o?7@ zKfB%{+hfgP)UVwjgFQhp{1GwZ5y4t5i=JsN0%9$NO@26KZ)H3r>QeBjIkt(S!|Gefa;tR94}uq_Th57Jm~J@-#39`h`Ex@k zF+@rQLRRu<;cuVXD?){*_J3wS$!g^Sye}mIT}9nm4|>N5t_$njfl{gP=ir0Xpa?9dX<79>6aDh!?XrTLk*HXNo$Za)c8naNa-SlK&lrM z)#`b~S&%B!Ak{cpgH)l$M-^|mH>VItwMm|e*wGrKDr&?n_kOen16572U@U# zO;!1cKiHI*tAb4wQU;r@$|b=jfK$OHyI`CMZTr>UGNrC4rokqYDhPv37}Z}wr4_-Z zwZ?!ejx|}GrSf=KP3EGsG1m0*Z}xMnf)-<}>2^^AJ~X&Dmz2xk9ze?A9z`L+z3V6jZgr>S%ivxx0tWY1g+jpKo`wJmh(Rfq zh13VlwB}gBJ@zOiimPZm@%(hYjPUKE)i6~~F?Ue4z6^he2p^~wBYYOyI&wmOG#?{; zA=p@9z7O+dnD65tUhh+0pGsaf7^i5MFBD5WxvRA-Kq*Q(O(_`bO9Vd=%k#SV@~Gmc z(GEC=7Sn<_ANpnO7RoQ-M<~B+3iarhIkaB*r2*mPXotMpBqL94TWG#%G!y_S{M5Nd zIYtZVo*EZ)Ppt%(lK5(ZR&0gf#!@M8DXIY?{_?u;YJygb?tn3rc`alJt&GwU?qJLb zYz=%bfw~0oL=_{^SYRAYE5Y^ep*BOR3&K5wAu#9~m*m)Nu+5Y|8e*f*5bz_EA)fac z;ze4IhS(h_`Wpd;*d+~toBNH*5*iz{gjOO33h!5Gj#>u$k}|X+TtCoa?Dk)_;M+4C z^K=AD_qLW&_hBtb15x(|&qxDD8PcvS&#co@Q#+Z^)HQeDg38v!3g{LJl(tAkvGOQ$ zh+@U_*RmaU){Yiq94@b=d}uxpK|M6zFBHO7uYDNP5nv39v3j95vRoqkqRT;zjMEnpj ztYblRJ|c9!u;^e63+UjUT9XdkKwaK1Zz%^HO)co=S_uvq4Uf6{>iWa*=Do*UomuTx z#91+BAB>;c+R;4(KF0jh{{eo76RxBX_?v#1k;z*AJwCLkF0bF#5gP*Eb;{M2_4<2! zY=3w=cu8Ap7LHx{@Ht3hku(9G*Hv=~pU~cMn9ZVuaRi&zN=+s3BVYsz2=y#$C7tpH z3g~xA^SV}K!E*<|Qm=Hkl3wYixRzIL0UEvL1TZmFpV-BK$-v-Iiaa4@adZx(YhuqD$w zzpcCDITqEL=p9YMS}T*lj{uWcAQHMF>QE~|9l8r0iq8?ZH^awu!^oWnjKMwWyV8b?Aj}3j4G}LP~RJ_q(Y!P)b24${L zt&g64mKD5aGecSlpJMITvxjd(FtylB18$dhn2;S{$_(V zxW!><6wM!{Gn3m8;Ud~t!r`I($rK5ND+v&;wfEvM$8f`Rw&6u19F3TpVxV+(D&38i zbfqI5P06ybv7E#gQT!bv9q@s1T7s5}9p$)_t)s zf3;&Bi);(UzFj^>xN5bPLCCPSG6-2IzRg#%BB>+G3WCiDfW?4immshX0bm%g91#Ro zY=K#UvJhG;6)o@w%6@C30%a6Z2FgyhA%QZ0Q-QMU1?S(|@YHFJ+>~ELF%6WRCMuJk ze!FLyW1+!rq4J7I*_D2ijTml*BQo+vLRX!uT2G4P$BOS0B{;G`+x?d;`M6n*JJ_=n z8i(zjZPoM#KP>CQ;us!|AMY--9fEqCpWdbQ*yrDAOGcz)ZRLn`eOsB&+1FMEU3RvW zGm%Cf$84eGm5_27VFE}IVani@XZy!9ibujs3n&`yH%GOTVWwaN zoC$9Tg@9ou4FSwBC}pj10Q7zp;?!D4!c6NZQC#U@m}yHp8D@HzR>P1t#oSD_yaWCa zVJ2`S3^Q45)#c-L?PQoKn2i-?daIobGrb+ii!Yw-=qy7q?@LBD=;AcS6pA0lm^6L? z8d0KY8j)}6fX_&`^%gI2%r;oH_QVI#J+Er7+!KC;a?fO_NB2yn_2{07?TLFfZm+v% zLVM|+SGAY!sgXzb)Jm`iVq8fpw&F?yDSMoYH9*A2*EqFev_Hm`CbpNcjmeY_+W%_W zj5+WJv45&%5A^~kB@Y`J@d76;62rO5zhCw%pS-|%H)W3oSOp5sxNmS$1g){c&f9$Y z-%jgM|Bq9_cL(VIVWt07O8>ydGB4_1D?$C?qnlc>6-+u#@lpR8AmZbrn_97@|MN=! zKT$fU{~u^GE?234_0T3Iuk=rgr2dDjA6(r4g{UDLGun^CRN!AC-`7^ILOJw4Tq3vb zK-7b)&=#VEOl0Z~>);NmKNM38w8x+hq(6-7p!bJ<@Xn<8@KA4xhHKoTjuE0mUS zEjn1j;S%{4ii5)47$BT_Na?3Fj;5x$xdTt*j%I8NMMDW6pb~DkBrLecksE8ddYoJ* zukXN@-s8xQTu(w%e0_OFIP4DRt#f4Q90Nv2)tY-LG0gF$-tV|M(&%Uz9vhd=-@V__nAIZX*gC`D z!`C~8F^V9(jZRJKwyMSo2jaEVzBfwynjD=_?F8uJN|5cz(|b;hNFYl*%N^BDpob6< zcLF`dFWd?A>?rSr(t`?uoVXX70Qb}0bN8-`b!sK;BU%e?+u&DP;D@>wS_|$9!bgR2 z2MXf-;2;0JP*Fneg^D_H9^xwCpzei=AL3ppuiWgo!n;djbM#w5VD|gOH3YoUaFy60 zVZQmK(9maXjmXd1~s95q#}qu(jSv0bq3M%=a9* zp(c-f+|k>70-nl?^ThMPKg~%JD7E+!f<~}( z=|@L3Hcxbv*H%waA@EZ)$N1sZ5QbU$eo7X9a?|)L@hDK=%t*>u-B{I%lsD}9S5_M9 z9kSgq!mx#PfQz|7s@bLa*awj?I;kQG=pi+E0#DxF* zz8zxxDeVrQyoc+)?c&1|LRhQxa!0=BS;wy-``ea(XGy;FnyIn;x|~H}ynjVhF5mK; z<0tm8)>41aWHTuSh2gOBU$L*jyM37!%kwVw?Z%!Vd@y{nwzPGpcv7gCm+k^bdeL!$ z?I(5erMNdc$-v2LU_f!}5ThKQ1%aIk0K;Qhmnaw>C%PB_HfFEmE*96BxDiHcqB_g- zNSU+-35Xi;A(BncOzXz-X*C{of@(bKE-!(D2X5Fxb z)27dwx~BA5P^$Hw-Tm^DAC!ui!ZXbE&^K;?toO?=Lg#<%`%}sM#m!T~qXo8n*>1Ox z@7YfL;Mv9bDZ4~5?YEn#>F{6`_S~0gqeRb5*%*lV0tLaf)6%ycZ?XflH~>=(^}(1& z_QQt=j#5nABoy438ODnyPpi%&YWIuh6Nf&T#t)tCTZ?a8<4WZDot>?0pMx3l&-ES5 zzNFZ=hxoK}6@%t^sDS;P4K%}-{V%63|Nfw(SFF`Qb*kuSXWsjeV~Q@982wU%KxvCq z6fCw2adupvM~M>LJZywM_JTW$FKul0^iF@*(a>PI6dd<}O}oHWCTc)Z1g*h6;EMQu zV{Cn(I{L=Q4Az&{mv8#O}ohbIItw+e43*v z(@HR0v|*m}1GZ2D6j!AVJ?3i3T(lVT@e8}~+%jjs5D1tjtq6sXvA~%ffFM@XmeN&d zLz4|1@STqxd)PyiW`F~#(?}X7uEiUHX2iy@A^cx_!F|&r=P`r*kCH;8>;j0~KsI0PASw&-oyL7Dtty1A|KFn%$B{E?$e4^9Ykww#D zv`Ve6Jo1dAp^gA4j)uIS3l^?(Kai_P+>Qb4L6Du;(3mcwH@Y|iWRE7@1HSU8MLVBjZ5bPWF|M}F5Z#3x7I z?J7Sxq9ce;j;wfdelNxf2xs(3K){FVGz9D!S_$@y3+Em8vrI}NU`$Y<01Xp;G3h7A z3oM^v;-qxy;PfzF>w;sN*|C6^U2qhz&J+fxp7sS*jKF=M!Z-Dtey3JG~&REPkWB^p4n#gF?gI#^Yn78;>M}ff>Q_+M$%>@PWGRXp3gOR#szd1TEtr*)I z^<&LRwmS-7D|>Tf8@7U?VOwvns;&11w3RdNkSGJO+)`28c?CW-%ct-%V5Amd z#Po}45k?mosEdS|0HcT(C`VifoEIfZST8IDni{q`-C)0UVPs}RH{$C!ZA5mf!j+P` z`6qKcqE)M#Jk?Q)k^l=1!qIt=b$T+_Jf*jewaPlY_PyN}^*|?vN``MAsH{Ng0 z!bOqwtUVCL12#ZZ9ayvICST&fF(6 z`!!=f(_$Pd0pX*3S8E*sJ64Alu1r>=JMlN1RStAp8|7>o0v>0``XS)?Z7p5x0}%A_ zN(uiKl@5p4PqO+w!dg(8LbSD`vvXJnS}G*70UU4FsNbXj1f7+-d>YK^RIKw&R!oWF z=yq;ZNd!L?=k%E4y7Q~!VW~QS!iW*h7{j|qIy(giUuJZ-2J^iYL+kSV_O32uL|0!o zDelgfwue`DHRb^$x&qb2#u5E><&Ar4jEaD(sCb(#5{DQWBTmq^9+o3MaFe?qTSuF+ zqbrPpM4^=A+$tMt4_nT4*3}6x=xG^TY1?1$F7h(boZBcgc4=HGXis;EO@% zz2X-Jq4##jAasIDM1Tx&TMpwkzK#R8I}#xry{;qQo8s(Q7ok*y)<^wL2r6PY8h)s7 z^qn1f#%j;k{q`Xn@y|Pg{M+!);?j-4WXYPwrK0jythi-yX$@8Qh5$wh1aRs9#6RnR z0lr`;eqf}!;<4dZ8dt2Rhov9_y*@yipq`~H1>@EY+ ze~=QW6KblMd*y*E2uT0MB6|=nxC&yT1g)wbPp53jN9l)VIcHp1P%-VU@1Ks~Y372u zJnBhD93OH^UQNDoUcc&0V+Eh6AIEPjw#V>_Ja~2glWb>%ExiZW+n8Q2l0wQa)*DCo z(nikJk==#-J;gu00T@45Z#79JXIu9mpR3nMsonw@@^ke+HFi#@doft?r2+yy4}K`m zV?E^O>W2&F#qf_m5h6-RB1F`cB3o$BRi#Nig#BmoA!*av@keu;GnbO(7U~(Qdx#Ik{hp5%uvaVwJj`zV4CZbF5B!8TaE6;;Lwt|(CvdGF%RBRP*VPQ;8~&Pbg(FaaLTg7-8C0S} zD^l+A?0;m&L|#@otsY<5WLi`2nD)-5rY*UrN`8nR;)Tw&uP+GaXIlYO)VrM{{87C` zUfId{w5DE)OjCThnMT&Zoq{!^oioq1n_g%)qju(awaU#QHRnGDK5I6Xz^J(rjCbZ)D5KS;yVXU@oF8>n2C z&hM*A=Z`3zih{`IS#S^>BAsjic93Iv&Aq3~r zxnMqVdil%Y&d=C#BAQIXE$tAEyYW(@V6k3h+ zp<1K=$OPxLtStpY`Yn4)(RrZ)NfCf`)LuoMvX!`e&DYak(5uxGRC(3ci2aDM> z9acn4EQPDr7c{ZZ$_*Dn4>{Q$Vuz^xb>Ju;dN*m`%N%&X}LI;-dqtkB`tg42maGB~_=V9h&qxwDPIo}^6B;U6nhV-fraaQMzQ zIaipk7s~6MZ_;X5Tgb4z`C4HWQ}c!bx%_Y}&kz#d9Rtby0|SlHBd7No!t z?^{}p-Ri5VIQ&wmk9fcV?|o_}@A+bFOEJeThQQPWyA* zEm-Z3?(W@Q?ohz@xVf5%qr^95|QKsls z?!L;a;D_Z^n63TgE{HR(qQznuvIz{##poEmY%Q;IlNz%`qSoD4CTew9k*M8%w=;+B z3Z!nh`J~%mGorzx?X?oL{nKlm$JpDHf|z5-!a$v)rkK!J@wig!dz@p;6MgxLdz{_b zr<4Tt=Tm)ovwNMx*eP0rTOw-`tS>cx4E#gr`QyIgqrLIoC)YX08Q%5loKG06RzIRr zG;tV|_)Hwj_pWlrCa$@0&9XHj=xm5pi2(4ex8#}k%j=!}`O(|eR-xOfBL2VzXC~7C z(W}mh;^q`zu!JXr=WKKi*5T2-Uu|?2u>uPJfS|r|le3u)jnr|FEvC?l`qT%UlS9Bi zb`Nx#DS`0Kr~;~`Pg<1z_sws}_dW>XET(i&%08Q&4XWaLGldpX+JLKc*vj0Bao?y!vQ|=VLVZwvsNA6($2aVUJ?tD{ zutQW5?4bKWc04}>KLT6>k5inX#n?dw26j*#!`DIC1r0;=(*6BpFVzwJ$0@4!C!BF9 z0tk4VLPNlAs+B-D3s`!4<03Bpi|7QjX$V*iPHwoNloBRA@B#?EcE&@WV1V?m0I8nmopK zGt_5Hvt_VbX+6%sH&)f&yZZZQ;8Q!{7~it~a?dflzqF&q3hk(s;Bb3%m-8O>H06l{ z!=`7P{n_)hSadn_>HfU8*V!ciL06S}w^w6@){lJFxs4s6G?CSp&pOw#qqG=V9qG?M z+6{w{j-a#3mX4;eLaWRK&A|9=ToPOF7Wne?xmCv^jNbl~euPz%KR+zO1ed{68gT=N zd2n+XElSAdvJId60(|6=z3AL$%Nqcla!O<-YeCVh;6hO2;9m$PWD&|lvv}qrbAaDK;b!yzdFJACu#Gr#!OuRU)*#|h*&Tum zF-vQ2-2a@tZPh-2a-MIxnz4@vBaT{nuc{`Tv6`^tEoVNN51L39J2ZgrdCS?H9ilXG z!cE)Tp!#+VZX7O{ z#8;hg-W4*D@Zf)xNNCBEYmdz3bxt|oV3|TT6(5zakZkG{-?1o_6a#<|u;RaBe=BQ2 zsFSCdLohAPA0)E}zn^jLWQ7zDBh@_z$?QSFAelYDv_J_3!?5+Z0I>O=!*pw>U`TBd zP=T}nuk)T9eGwN5F(Ysn1;>az)L_Kk$NbQal+o-73Wii4kyP1pv<69w8WBye^VHym z>`hvY^r6~EAN~*DYOEe!H=zn8VI;j3kO+#TQv?}FuQ$kwq$dj;8A<;|{1SiOw5Bv8 z5)2+ETrrN{7d9g%C0|t1z@Hr0NqA4kKj^WRL>pa0O(K;M6n{|qzL_*i>w9o29ArS?e)C^+tp zel1eFBlux;Alx10-xM~_7CTt2eB%d`dR*2-53a)D(+10B4LCf$i4!?k?v8#flDi{~ z74D9-65JhCgt_i!1(YWmu&BDLDPQr2^mepe!C-!*Iy^WT47UmsOAvj$(eE3B7o2SBd6 zKRc5>O(D@YwhzHUCnji?eUTSebG5;#VaLTmt<1-V$U*1sA<_vnrsxD(3EsbXFU8fE zX~mYJPg7BZq7x_}G{`sR9!hl$4nYK`)}Q_!3quHrg_W4efkiXAQ13uX2i|Ua+Kcy<_3yS@diRkk-AS%NsLDV^fYLfY9 z*{%%RtpJ4an%k)e=s-7D#prH}5zboB3LIQCKK{Wap&g-2^ohZg*2Tmk4T>#`;02b~ z38uWj@~S8y7HRF>(bTotW}XIFyV$cLC;~R(WL1s$PBsF&0p4G+<}~$&_R(T~PoC>G zc9asutu@|Xu??l}(%oKU6wB)?8a#FjyuK1o;c;v{T8!6Mg5hy!Y!m`sUSH7>^r1(| z{vnkahsHszU=3eDX$sNs`br@!Mac?=@;h3)`UJr1oYX~`U`}{@rG(N9SkKNHD%Z2K zDGV+SXAG^P=PZT_5jL-CJ)15!(%0bW4-QY_dwaU}u-IXww*^pd6`FdSH=?(zo6X4h zdmdc}^vU2+a~fsWr8{Gv6tI1kQK9xi0E`NC5Wg@g)M1#sClo3w1bYf~Pw1&0{7^qv zfs7rgjkk~d7C4`ew>990x~;LLhrB1$L$E0j|9mcjPG{gB>zm))PLNI!In30v+*l4@YP4lSQ?2 zc-b$Fnz3@xI8!8_%Z71$+G-IgfjTkJSIoci;F);Z>aLADYx1LmT^|>PBK|L41r~?c zfjGQkG~CsJ-!>Ei+>T<`K!dFzjgU7$?h++5217-WfpxrM@z5~&fYeq>0q<8elgDv<56Q>IqWA*1J#$b<4Y55&CDM_K@d6OE1!#wHZMc(8@V{0<9kvs zjsg<%o_ECasE^#W_^@%VaaVYxA9VyWPc*+7#!JV$Iq_rS_{DK4AH7RjHCaIa!Z zD1rY@!7hubQNW|mxZ3kQ-`T=VrDQ(;O#N`)V}|Rj`Ot8_Vx~Qj_nqmAWm~BirVi7Rz(e-9s)_5Cwiny%tCj8%jS>v@~ zb@^Ia|5p8$^0YhMr7Ud(?aBW88cC!W z0C2kcFXgBypH1tw(AAOU5?&WCdQIW1T zlK29W7BwOplw94N$zo_V(uZn|{vPq!&t?=1={FiFwbFssplTcOVi&}13uy&X1{95Q zv!$-yY$63i%HtK~d9(&8j~A2^xMvwWui&AzNFMNfhU zuyDeyq)ot0Lft^jZ4?AI#^E=)_Oq90vA|5VFx3SSim7r6?@}y`7#$QP7@w#MPT|if zthvRNZLsesI0pK@9;pI-@WWavShqaFMyaDNHAazo3~bm&k)=@dC>i>BY^1!|@z+Qh z())U(4C!g)F{G!JU|e@!g=+qg1Ez_bt~3-Mk>v36!Ei}%Ce3WbqdG-5eNjTMd^4}wmqXCzg+#+b}Snc(12J_e#=*V&RHXpQ9>tH(&!SVOBV z*H}4*bn6WO>vN5Ine-8UjwR;u%YJ)mXw1Cs;th zJ9ip_HCM(^1Rn>ybEhNd23JokYK=kP!aH|ODNSUBjcG}XkyX>N^3Gi_0$$eW6$%0G z+yx_G9~l`60q@)eBOr&Fp%C!SosOWlUcH_e+|tMzCH?l-vHl*0v;5~{WxxHLqCvkM zW~(y}Leb(Ndh|HL(HagS#}Tqg<7BE7_5mVQ8qb$b2+uNsIL`GzTt4yF3TWaJe{CpD zl(GdSS1`^mB|hsX2;fbXKru5oephmokM5Wtx+5svDLP#tAg&=avex)=aI73(G@aw* zqm|$qBIA&2D$|O=DHpKYsX)S05-1EP*0+3EaM;BI@clFYelQvt-+6ko+10!sz3aNk zV3m}<@D%fjaeULKuH*<>fqsIY|9uk-b;O>{_R(s~sIOCPy(f)|)4v$wUl}KTmJ!eefh>9nkd-UKsPSq=7&D%Do*-n@<{2Nk;M=1jpqxD3 z?H- zk2vjG6@Z|#QYl%D6^>(%f@PJTiW|!O^)s&Pn3wXvvFvHEFCNi?AJ$kV77Ki7a-VG5 z+fWaqM24n0H2+(~{2xm5+r*Hw>ZynZan>eFhE5QL`=9lpGWvv)|Q@;9YREl<~FVBh%pg8?< z3W5Rt(=P|1P@I0*FUHr*l*z2)1fn{OWwa9|zR?6vzvO4vTVxwC0rCU28)UFi6vH3y zHiu0h!}z2LBD2s^^!Oi6!NPy=1Pn|h3?R6K3!Vw-J3-2szPUKU0DKVB+>hd_XC$>q zj3pxGx>pgx9CO`OKtrxO*_-gatFF!5I6>yRLqmdi7AEUHAwz7T7%>t3PHX+zN|MpPC=3U$BO(nvv} zz;Jv_NuW7vmq-Jo(;C48ru6fFLQor{@wv2CurL7+gW6z#1wYwmvO)@h()U!9N6;Fi z+*44l%g^0hJ&R4DwMZH8e3Y$lc@?gVAJq*Gm!ARW4hol35;9!=#snEI7vM5nzDh`Q zMhu+xmMJGiF%6gRqkRU$k_TRN+jGu+4~a-ynwke8ozg-qsW*@QV1G6t|#%(hg*KB&m%#qnVv_2g@FSpqhRP^Z?itzAHVAOA&km+IUuL`K zngb@0&NXI|zc*l?Eu19#Y#~LnHjoQ^WEatT>}2yP*(Jebv9|(Qxq-Y}{8(Hso$(+- zcTqwQScGr~3G!jD(&V#xRf|coS81BUUZs^-DFv+HurSR-l~@{%&7)*LjXR)WK0leX@QY!2m)Ho!3cHMCe5vYG(o-!!V790Dc1 zz56zHQy_{tXR^GZqVv!@xk@r<(&5bhSO@newt>>Lq}xi1aWLL6ng7|*T@iqwvr;$2 zG*&pC{H8k#pLn)rHSe>X-Rli@m~ujoIRJJ;kAWYdJmzcVG2hT?%VWM&wmtPjbc_+; zFrO-i`IMsi9VT*$a+o?(2xD}Zh$+Mk>re3yP3SQ|6+K3yYI)3o$+GKf%|VaRN`%LF z*Y$LV8>|cEk3r+!v;^(ZWeT6v+nuVzq5;uYMukGa2|*(sFd?WLbedclh3;c)J|$GYVFM&mfqYFObg6xlweg3>HFr`@=u(wnS#&A* z5#Ul7+1x)x4nptHYRjeeQR{yMuw)Q2UgxK~!P$U$U^#X8KxMhl0aKjmexy{|%?Xs-~rcsiXx+EM_Y4&Ge~$-^6L@b#Rl9>`8v{ zEVrzjBHdC`3A&|LV#PFjQO@WC7}Fd`i_r&qO_edtU<4fbt`3EOLCs(UoUY13A)qho z2>M{8zDA`r#tLfQLTO@SFsQkb7Gq;>nJR;tI)cuso(%VBtk6lffoatw89mPZ1bd#6 z7oKT&c?&pf!MwBrHaIPK*?4!M?Fd*Mw+`>qdbIjsYW0(r)y3AqJTO%r3i3{sHrB|a zjkOY7b-Z-7ySpw2_=@_n)J~vJ)`Q-+OWf5BmN1RDBKEVGX{w*WkAQxLnWkK*$1agi z>#;pK(})*$oaXmpT>LejCMWvF6b;7hVYZ<_5i?E0X_eJ=hfuOtPYbnS1LC*@1mbeT zRt`T<>kdj2rM!lcyWWx#H*A6cZrB3FR2#PYe01**qI(aeyH%%af`GWR)W}*LIcAzP zvZix1vQ~md-Z9HPi)qE^`-P?MT>i;;If4ndPoOYhN}IU40ekk(O5F`Z;Nz5YindA+ zsTZ0Eta6Iy)<_K?Ho+D|3%wS}|&M#dYq6Ja4L{ z)p``h(yC7(v{poaROkDXC`1JJ-+&FeKe+!4?9fDT|7j6}5W)SWw7D2`St3e&2E^e0 z_7hRt%yrX2Kki0sJw-tM+)MTIu%(}s#g6{w-BLdZs|XsQk74~gL3e%$mrS=L#H*g~ z5lng2^KgKK@OHk#z1C*_FrByXxYOBrih&}2M@9U@60y$`cY|1KFPtd{=C7x7&k}bw z`bvM%yFjF*rDXho~ zDFU7k0cj>JbHAt~fPc`fylUy^w1qg^ee=`QaQ^i5?&GY461D`KL5s2VB{O*Ec;P@#eN z<=fnS>(Yp*&ru<4DzEyzAoyV(=SA@g^EfZgs5*}Wt|cFUno!}sD`Xz$-+f12UNeI$ zNv-`iL~8IS?f~n3NHqiVn@ZsvA;qe775^VZ*tr5uu6#jwkrYk{5lTOwA@3zTw$g29 zmnfcyyBimI@qAe0;Jt(kGh{BO^3JFzUa}&oBa52}Eiu()L4=Ru%T~Dunm$mx!jKaL z)fl0S3w)9ti08joGb5oY*+L&-{|W>Ripf(FGA4guhK$Jza2b;yBV_q%27l~scW%n( zqPQA}@B6;NA=-Y7$y;}AN@y!EvVJfSeLMkCk@ZESNDiU!OoZx62SJ~{$T}~-$L(Zy zQfQn!Z-YlAa6be;ELFq0(_z~RRT%$zgjT_z3#*J(pjPWD*;6y+%sFNz7h4TulK@EJ z6YGUFGjD@3ar9E7kF%#%g0ttjb?&wSfWEoUxLGmnQXFkApDAB&`SE^tdxL#V#luE@ z?rRkM&>EG&aq(%)!o_E1#4J)RW)tJDz@|mc@;43FpMT7h>(4(ZWn6z|0a09kHlkFm z^=E@wWUbL+mRx^=yO4wd5Xbc=5SQ!Een1n~p93gOoc9VTxe=C>xc(FbaQzu5rdof_ z_0gRlM0Yl&>(uF*ARw+kHL|$=98%aV$55u$w2r3MO3>8d4?}1`E4K0l>^`|r5>s9( zg|QqPeu;in#G~(oyP6b61~)N}@HA~4u4O5pMT~p*x${F1!7bV(*-R{NjJj|np>(y9rzK@L90v`^amW= zF%G0S*cbXj6MQ#>jgfrE76{^k60yVfDwQ3!7sUcisnE99lL;F()02Tx5+*rT)(>`{3AKr6=hiVaM}Y~mcafvG7b>DKr|e;cUw-%$BqDfjoV-^ow+g zh68zjpojzcKw4!D;J3fxL{;lx{}JxhyGhAQuF1AP*E% z4dknRbk_vYT}kO~(CL~WAo`s~*6()-$%LAvaryb_`m@QFt|rj&+3ft;N#lY|wqKA^ zCKJn%Hs1EHyAuubi`hJlJDRbt2rKy*@@G`=A1%QP?s4RjF;QhRPEq`q-*h);T8V#F zVKwJaZxT}r1+;{OUu0^bFl1^;q{Og8Q9z5BoLXod=}QRZU*7(8`w3dV?j#JOrFFnJYi@jQH__PJACtc#jEn2*_`-V6h zga?uih#kq18ThzMO`!;YtK>VHE=lFTegrAO<3dVo^@nrh<1U|&5~vdcLB-%JKH%tW z`iVQqVCM)?@z{#`Chpxw-G%12bL2O1FUL$s;42$Wh~|mM+#`*v_=02ZBvHHSoFg&v zTS5V%gMaQ#=kFhLKgeR{k_O--EP%1Mvb=lBHv$9qay4YYgSO0@f5Lsc$#N(*e$4l) zQ|@7`H7&Npz5TSitC=%bihJs`+hO#QLgvi%mY;D)8ah1~oqO_kKXu2~ZA|DXotA=l z{9x<$T{5#pr6IP=R6qiD70+1HwmvWa%sFp9-}^X23R2mvj&TS9gle@ktS$c%Jl~ zd$<`rFOa5sW$v61B%ZJT!OeKh@7-e1JwT<}p@7+lY8o4;CL*Nz&H=zj zFRO^>B|ieynL$*W`>95k-W$(1{NRq@+kSFKsP=TE?Kx9rd%!<}+9O?{$pv?}gmnTD zySYdF@{PGLNTl1Nrf z72lB%7wgUc#r=xO9weX~uSBH%=DwCaMvL)E#Dnwr#ou6$9gHyIcXttcAr!)&zr&Fk z4FUJl57f-Ab_n441C6U^vv(<`bsgcIdARbAtqlC~_OW^5Y68Tr2FFJ7vJYZXh;`dY zeS)kTE<*w|h&5+_x^t^t5WE){J961Cp?UvU74NIythS%`jKADjA$f27%l)p-8*Dm= zOg~CYY9@5YU6(vR8}Pzs^bhcTz&*ELpH6Vv$)@Qz!Z~lZc^0Qt;VNpnYsF6=jBd^c zR`YCN?dB6-6W&s{H7Oz9!k4D)O7vb6<~eJ!-UI|+WZ)}?rG@d8H9bz-;Q2N9OSxg4 zSuq8|y;hln<(Px!S7FF;^ZA1Ao&p|O-_xJyv8QZk@A>?}a8G}ob$}ifC~bhyW1P1< z!jo?r_K=F~E$M4W^2zwxo}Gs64rtD@%&?|x1#J#)^KP%ICHKx38`I3SmC>m@J=)Wr zv}T~>cJq8bJKA#_yO|Qj>9wz8Ft|38?4eU`S7o^(?Wy4AOOPW~(ns zpO5u)2thC-&Qr(^hbH)JoTr^4xXgB%&{`SqX{*x;P_=4Du-1wbJa-!AU-S9tx}H2{ zlo9W;eBg3bnu{n4=>tVlYroCsrS(0pvfpTH0t8c_!Gb-T==s`Uji^8{`lRzy`>NOB z$C5p1ERWWq*1vD`Fyn($Jaf&;YTS6ddaRD0JJgfG|4i|`Z#F99@27(Lt03Pm&6CMS zg(4qrEA3Lo_oR8cnBB|x-VvVczhN~a-E&y5>X=bAt0yx&E!mQ)S=}-MO#Xjo)nufn zBadp}d0g;&u>qJ;Yg&NPhXnT_@8pJ_7{lCF#>=xj1#CN&=ydtr4f&~Yt6N9VQcQ<# zFXM}{J-Lw-UajWe$@cVSZ&D0g%>%}~MjpG);d~>{1oK!KAJP~Ue}dwG6Xx=BHT$ZxLX^UH+2BHKCgac8`f+|{)zM#s1XoM6ed;xzx*Hff(#(}79 zo@WGWOLQpOZJ>}A?&T=Bg?N-Qt)x#Cp0;@i~8W0>p!0Tpw(8WC%MmY2ZZ zr**y&Q4U#!T|Qf{;0~1wHAtL!%eI=U1}6q{ng!*tFsb*vsQcvvZRM+zL~L*AL`-h z%o;2teb1Vz(iT?Hx0)l*0zS90Je<3l=4W&F*}UkGB24JzX&*v_3t3_Ojb5HPX77c( zO>YpPFti9gs}iADi7>B^r)x;YFZb~b(isPMu2K_q7rAlbg`Oj9E|mv+TYAxm2>x-Q zrxX9KW`2FszK~z+3-)qSKudRvs}lSMCHRsd{loc*zHyC-^fRU9<}Q?DttLZ&^a@my z9=CDv13cfE8-YoPzE&#f>quhZeE&etZB_NP&VxLa>^a&>(ajRPq{QlGd|Z*|0(+Cx z;q$?%)|TrUDT9X2_txv1$A2E|S!W(y$X5^XIN5PZ!s?odBRuulXS7c5nmdaStcVJQ6J6`Ep7m@b zEw(1QjBzk36)lnzou_WeGXCc)5y`w{yeHK*eUX~&pkBliiDV8bS^xjLWDsL6Cc8Ri z0qPjCKfW~q*1b1TAyL_7-Rng0H?Q_YvpZ>>uI$_rPfn0OXtYq-ua$UKm^UrrBPPNM zQmaNa?VJevh@C-P_8hsPCLb`#(?Ov6)&p~FuPNo&fDk`-!{+)r#ej|sw~IueM{73D zfBPnT?x?Cy&Yj|!!@i^fVW0erln}4&JJoZF{Y>iQlipUJTqSN_}&uSJyi!HZVI0IbGc8%1>A2U2&ThcYsSqvLLIMb7_(+kkX^&uodZQM4?Gq5Uc z4E}I+TmHOrT|VndWkQv7A|;keyn9PMH=2Vy>8nkzAE5Uew22>DbB@oegbh?< z{822QE}#{R8BgEA?wC2QSv7UmqhW>qN4cHRVPQX)(S9+;Vk!O<4@Mi`7tj3?U__H2=HsQ}!{Mms&yYXiq z{v3dhx3KJE&WUd4*e6De84cSdLO zIg39Z;?KwUa~^*_#h=gd=S%##h(DL{=NtU_4u7uT&ky+X(|GhufxmmHgZQ6cllr=m z_Vv~4?koCqmj4;P`~);}w!cdyVFJ{8JAAx(q=CxlN`b!$LyN<-{%hA=fAoKa{%qdd z7+2g3e_G;?0e{T+W5b`;_|p!5I>JY4yQ{M8*J<0eC!`lLylagP&-349xQGZ(L- z&&D4EUZ`t{KhNSB-G2Oe1ONLP{(Ox;7xAYzUM1;?KTqJ#IQ&_LKL~&NVzAtCLHIs~ ze~!VQz1TV3g+D*wf4|3{3wU_{7(Rt%8$U7ri7}6jaE@xSsCV8LoW2o%{)azr;g1~~ zNelio#Gm^3(+~H)H~u_@|DA_FKjP07{0Ta++*$F*i$5;-BqF(B;uH|V%p^paNeEIv zh*3ZYQ9y`LKnO6CAP*%0znKK-nFQgP1lgGc&zS_r0)pR6zzy&($QuQ{n@JFwNsyUI z5Gf!?%p?dDkj~E}9iN$p`#h8MmkBUKcu4k=2@knA54+)Cgok7Uf$)%QMqwTX^T=ic zVIo=TAWS?QXX2;$7hz&I%r(Nqk#Qz2z`t@am+rzJ!ov~x7vUk9jS(JR!fBX?)EoQ< zbNDy>vE|`J1O7aUKab!KVd~TP7h&qF_!nU+apMS6>tNmyrV^`6m|75L>Sg?k@Khh; zY2J|W_%y_Q=;6#E?a|)|W;p>Y6R{0B7;&V_J5z`{8ZvC)=^lJYQ;ZL?r z?AliUjY*L(&V%aEu5YW) z-hbM^NyuXBAWmYfiFAdtmMmw7SP$u*fkyRgGFjLL0611>vtTsyhJc>Ib~l;yRA-7Z z7)S)U9eM-3C_Lmh30;|z7?UnHT3JO}S-=8&j@jflS5DAdx`Iwysw}-w0{^|c z$-hS^Wa}j~gB(n=M%PI*)NYHveRkrsjGV31Z+m?Ls<3BXZM1)j|5;%@+akH7wR|gV zF>Ys*Nk`UCM4h(5^fwt`XnzCTiYV5XKx2O@oh2Mr1MRyVR^eozWHON;ixdZy?Jugl z!|!f+8dpdB%|zjF7XD_F3EBXl zF0-FAMU#72osro}Ps+7VMP^f1R)bcSyT^Y{Xuwv6QQ~xH!3KYALC0ngk=@zFSOOi} z3)3julc?D~zeRAcWr)~Xo@B(f3;ct{w(ov_$2$_#mX6VocB)9n#B}KRCa`WN_WKKk z!ECLBXu2l}(HbWStp=Xx#ow#cLOc6pG^m$ObYYX@K|^iy)B*oh;c>QMit@Amk-YdM zUd^t8UOnKig?c{cuOI~3f&}j=EZzkY-sJcMY*v>=!=CrIWOP>myx%R$z|!32Aj}<)vdM%oyD4Lm zjph!fXtFfx7-{~HDXC$BQ&*NvE9-LD|Dy06TN%OVGR5dJn?YE6?1y$G(09G>8N~5R zUIJOpoWyDsHo><|Vr01j{1Z39u*Pm=1X?pui0*7MS)*t_38B~gHaUPoBBcjk zZ%85=rkBX`ultLHF>H^BfgL%CIt3$TIanlXzX2jVl}#q31psveJDe$+ERu~FkzCA_ z)DX$kl{Kc7wRp>aT-d-?Mo?NSp|qCGAu@UXn6CtS=54>1e|{1w_YN$jy~vg!8`ICS zQu+EM#b$KE$~K`Sr;SyX%G-oU~gR4g-J;k+g3EnZ0G}jci~>9B=O3bNq~V$gRC-S z*j=V28hIL)6Cc5(zE-0y`rtGiEE&aCL?mOxWHjy!9OoIq<`8xrD%ZIL9B1~o%nU&u zy8Y?0)zQisJxZbGUjn_tYW<98U&kZwNX)IyMPvc=&y`^{ls4#_59GU%h*b>tc7NL=pQKTVxSSha=V1( zb~XpFyb~3C3<_q-2xv-y zo0PHnI&eGliGNha)fh5we(o30==1)&gF_g(3;9 zE0B~jzE6*2^pDT{Ih@dz?Fd21J_Sws0*f4_`{Q;5da zLd!1uI|@tLiZGeD#c1pqf3~og%^*~I&y?ZF*b2}U%o#>uJDX2Pw3#K*0ZO8`%7~2_ z_O_;7Tbx89DPw^|qPa}vO8xx$TmP_()6k7dL&nraBfo=lXdf}fi9&K`DH3Pd41&Z1 zKZ0Vv*zi*UWuJAFL!SC2YVlX6pw&P6Yoe9k87iRTXB}nGJKuw^{v!)aF#Mjy@NbG? z*3L?0(fKR>CJdTwD4J)J(3CPxT?d+iQ*K&DFUCH0B3?SE0V2Q7|IcIzKhB zIyNVUY**gu$Jn(O>})nc$LvpNCf^zU!4{R^^LNKyHPD|w$yBo~MG9I|h_{qc+fT(i z74Pac+$NwdzxbP>I=}cg3d7kh5nMbHE*>_A;4<=8e{0_FM;m^HO|<}mja;xbdh z<N#yF;FO|B(gFEB^$#X|L{LhO?}ixJOA+K2~oE9WKVc6lfuY* z!Jlw47_m{s9>iHdl1>lL+wE z-~I-STuMi>-}WQ!AOCpaZKhRvax!6lq@qV9lDx_kWjaU(%zLl-|KK>(_b-1PG`m_E zLq=(_6gpI`OjDt($jB;Y6FjDS;U9cF1V>3G3shA^Ds~sEm&s-(MqMeZGSDxa*i*=m z)q`F5(Y)AMXv!uN+m(UJW{4~0<*~EH&_JsBT6)By(=)}Ed}e=W1#PRSua1tD6srmM zvW*g)`YLgHSiSvuR^OQbIz^D0;nND%MQ zQWrQ?`IzuJ+ee}(Pp0e@*B8*fT{IRIZXZRwx@_bcA46ib-J_ zzg$T?DAZu`l%9G&ih>NBdg{5A#gQ4!0@7G=va*;X=-G-0<68viFw%m}0deUgbY@dx zWt&tL2MV&X3PqESX*UVbVc|}u5(X<`K_03mj>>Sw`uAluv9a(7Q=IzP9;tsGHisNu zA9mjmlQ4-*CY=O;?lr`If($^>$$KfyhNbW1hVeB;PFR)HO0m?fVm60pS>HK}%Akg| z#a6;DHjnfTpmx+2I|wo;Mc<@@%qVr=6lx|>ofQJ=Hk#{-$Ayz@N3h$-2(onSSq4eQ zvw2zKbS(vKrW1En-=neZL+)aOrbs*2u-Z>{uCL%ue2YJqG2mDD(-BWI+TqVGJko5( zpCeca58_WIF3jQ2Mf~{!K8d|vTwMXFY9^_sfK*XHzzYay0Rbx*pH~XDd&KUG8q?Ov z5KUUYfV)6iCv$MpIvLkV>%?S{)`^ni*7HgQ=pAj0I!yP^z!n>S7y7+{*h{F1x5ml# zWaS{;2&~4WKpxo$9DdUqfvA&NgvV9F{t~EqLvb8;1{E|E*Oap2MjSz8xKp&3vfzL0 zK{WPGu}bAe_#eD7(^J~eYaC<_E~s=auMrfeBi2AdBXM-~%E`Tl0@6);_#tr@VDL@* z#&_f5-QW|yX^&IlH|~;~8 z!c;eR_q@Dn8hN5koG%<;;D}AH8^S4sW72!K``9A*J{%f*;f~Dca=Unu6JBF8$-%5$ zt;L1H|JY>Eb?FlSqBi0<{92A=$rs-OgNV29YiGeQF_TY*M0a>ij)Y_pj z8hAzx?Zs^w!f$Mk$YOH2&Z1ekEd=$&SVR_+e+x#JbrzrGR3JKZ74^a$DiG++u3|_I zpg>4k*OYe}Xc;}(O)S9+P1#DR0oR4v3Pv`W*zTqwwDNB8oE$*WR&x~skw+rW&nxP| z_X?pt_kds9o2{E{I^2W$eJUCj9{-|JRze6`CRYZ}JHZlMG~82M#S6pPYOqzmBLSiMC)i}77f=v&>afQphe$Z9 z)0GhXsHtd0C@@wIprF+Q6koaQfvCl3wK4^*h9tw1TkX;3!huIPemg@ehC9QOq2k;z z?6UC(X^Sn@xHBpZ?Eg~qc5E^%!g{AMz93!7Rs>6MBlhDdaxicNDhFx#*Cu{6c@HVO8MtUiJLgSUYJVh&K-sI z8K~JRP{i`E^(1hLsl*ZxhvoFV6q+?gyr1tJMuzDHbc5(xJ>NczobMJkK~oCF2B_w6F^kU)qg|!*y9lq~hFKm| zPVnFe2q-7)AGUflJ(t#rP>x|4u9g&QSdfUC7eY#Bo#^^1-}U2-%W^1IvRNu zG;%3v#0bMsj7Urv5;O-=tvOn>DTALH!J7SWLlsixw%}-=0<;c*IkG^koyk8HLGM}u z{adNQ*p)D)Zfi1ik%(u@(d?z-0WMm7srU}ZKMjO_BG@lWt&XnoI#8#N#JYSZp!>{7 zJ%&wFD4V!P;7NS33S&ivLQw!I)fbZ_nNLG-a*R*?`YdeM<^f14EHTRYg!jqo;#2OO zQs?G_zQ9=0P+b=!uIBdPfcQ#5KmTyJ0soZ! zvjiX0=pR^kEW_N#O5&W7h%*^0zeJqt(`pSP7;U#&T)_)<@)@dPmozc!$Q>Fd7gOds z2Mgj#)8G+6MbAZb`4=_Ixcar2vQ5q}b9vB{Vl4dY&GZoUdA zp%8P@bpKW{DipJofbY^rSj(mmx1~5AHP|i=m6rv#rHeHai!pm3dMN{(;1>MCC3B}^ z8o-I@Qai+th3A=~c-GiQc$rNhEkB=+ig$|5lFGu4PHvf!=!MK+Z{egG6h2;*eDqko zcT0AQ9hj5HEVUCTprO0Pp3GVXYYpgH2Ajgb)i_sJ7k&O!(I}nV5syi-M4O&_>AOzL zFBZKdl$i#pG3!PAmXb^gQ+dyQ;>c?1dC|A`iE}t1n*pRd00|*^S`rer0&45nltgn< zS93Qet86d6-88wjw#E%>XsZqK7&EuwS@Ax8padUN)&VR$QPvLAh_aSTxRN%sW|vr} zOyfKaZB<8uI+hxFV}B0RiMGE|l*O(t5j zV;VaBs%Vk}C>ncKtubQ0)d>}og+s}*&;;eaE;islRtUs7+%FA*I1PCTfrt)1D&EEM zzbYi+C$<725$BU6;`Gf+gf2Cr$5Fj=@G8uhx5U$06OV`97FP&OrURNX-My1ZVMs9I z9nf9%yy)e3#D1AVM+Q)-yB8#Wu@z9=Wm6K(!7pNhFRJmYWtr^_IEcmlI{08QfBXU5 zxCXoKhdhQ|1@DXdIJgN#;A8sxI15kQl%c5an=&8n{^?rt4s{%e;x<&zi{baP0>9V< z#JM=!65}@HwAhI8FIP_|6I;dwTfySS`q8NB8L^0a4r5sdo&Pe>Mb(x5Q{qdMRs(A- zM|=z0qA_R1SGl(cg;1zn(5ec{@zf1Zz-~Jy2Dx)_FnEz}nOI%bl`b8J)pDix0;;tG zy%-;Q#q^XuG)rhY#IY%ibm%@7*9fI&KuS#R6~19*sdFs+^$2TC9;8g+R4>`GqX9hK zx#k2TtMzf)8nUW`yo9Wx3KzsI58}ZW+?qa-HiWUR_kN*G$zReO?bMJ zMRO$EPrM#;M`A5tI7PD&>Q^Y%U?vF3of3^kM3G-C#yGLz|8 zy)D63jJo8{AhYIbV{vPAvYVJS4@Vt860@{sWM16)n0(+FStl|hyZ(uDZVn?wX$W^v zPPpflgk$vm03{qSb+9bU;it`%JKk~6RzN7& zsX#eII|{UhXmvTG?xcENOa}i*#*T~;*qtnu8-`+=rjs>dW{?aQD1FKxiy}M5pcktL zHu1#;+Do&yWl*1RDXjvAm#=GJ0&OkOUYaebgh?#TqQkWUb`-4@$mL%s&|a7=AFn~n zn_LV?%Du^8K}v6ur8Ds+(`bKXWLUVYO0-JdKqfC-!tB=&+!|6}Wet#-E1Qy#zZh$? zGC=AW=aN`a-B(~mOU{x@Z^ooWdXB#w2AF8>;5;(@Um`zNm>QsDK671d9z#6{YY;BwQNE}4V zW>y32PH~qbUnnkv5;q}_)swVM~A=z9Q;57I|aVv=gvm$I|n-RbHYehFWjJ1 z1}yOv)*OW@KKyabQh5zv4W+QplE2RP%jh{1PNRRb^G<#`(6C;(wQnxqR**LbM&N=x z3{^l%7vw=f_&puxN(XphM{+GD1X+H62LB@G4c6gbWX*m({zVr5HsD`mZn6>o>J3iX z=_#So7&EZ(M@VEP9){rgT?22G=3khtJbgOiU!6W}gyvs6Uj{{cZmUrFS=>G`*7z4R z9uA@fONys3$5G`)sCV`DYUmHK zPe*#I;kLpA2K2Zaj&!w)O<^bkhg0iB*WVwg z2n)1qw@7atD~iVmceBZ{-VWkB7Dj&>5*WbA!4l`f9%8}B!hOd=dURCQjsi95m@3;@ zdV-%E9i3Q6kB&}a>n2A>;R(K{g5>CE-2|PabEs@((ZkNbI$l`FR)D7tcO;;s1E=#y zjr7E3Ayb^89XT}G#T%H(30s&F^w4Nue13Khn@otXr4Y?~B(O;ifQi8LKsvU%;W~Rz zZA2i<2`Aa65^VU0O(s1!Sx6thk^v}sAe~x$H+>Jtnb9QTu_PyJ0BMxYu2eb_7p(jo zZKdl(ClY1ZB4jhU^60= z!HLX4d&dVxCjsQ3(K(@J!U{Ej(-Q*bB!GHo-gr-Gly%|>qp(8_>VFdhjpa}nrJRJA zNe5?H?vrsPb{O>aIm&~x30UdiEDK8y&OSXUaGB>nn8O^LO+ZNpXXQ}xgR?TBXAaJO z%c7Vd@Xu^A5k@FT56;RU5(j5X&1Lj~u;kl0^x&)vKtZbqDf`*p$!MjUt4*til403{ zv#sVPXvJ{HnG6+g5g(lGKwD%E&L-&mXd2i)DSA6D8I~BIYI5A;-oU)+fknbdmZ*4f zR5zSSNmzUMMMnD|a*Cp}ntCAw4_VhnEoKG+LYS$AjtJx!?JPE#@Gv}=9;1~3C{%bB z#f)u~@}d2#!1r(}P2vMNMw_5zp$ZgUO2}dBNycy~7-ME7fgI($c4}S&{>WVUO2R>m zOU$)W%;lbkJg5gYBFGV@S#txw^88t;g4lAx2W$mo8vOEHcCz%oIY2Y5;DDsd-uWtfx%&hU$f#4aKdIjIXpRj5i%)HRtGr|N~gMP19` zrZkA!0P-kNVR@$!I_jrDDW7zpICU9?Y~hJ&*bgDV@Hcml;P*jQ=XGe$o!jB=4a2-+Vq<_j~u^cyuVCMqw}?qNEoBiKs{f*rz*YY4^*v_6$> zzfz})e=fs+JWsi>5T{sfDQS=Y9IXQ;grW1rVp;zCdCE1}1WZjOOkzzo+V`cv+05wR zE5+Yu^4Eaa^5e3JI-1Ap&{|j4QnTq_B_)VVVA=oXf` zVn|%gZLc_{K};q+^*KMT+(hcF^R=01g1m%wM}K)UP{i^5r3zx|-G{A!n9Mfwl_t|P zKc&f3$A#`6sOQD-yeApYUVKo2qMz-dVpNzUM{(7$KogE%sz7luTLD3FY7&Z*=HG+~ zYnU3lfeP%{!!}yGBQMQYF7X{=QIsw5Ek6bajm#II{8m=F5>?wu6mR3{WEq{ z<V-{GGu>By~dd75EaTrOe8s3*?ocBM0UZg zYm9RpAunMfQO2i%Pxzq{e9S@)Vd07SxO;)pLUvs6--^ITwDotc#G6&L4$$ALZDEVxp*xn}j_$q~cog;3hsvXW`tEEIPn*Q=S)i>y zi<2sBeJSuG|MCKD;aw32(GuR}fU{h9r!S!6)xQ~8{Z2v;!sHH3GQn(z+$Hn1xr z<0`|jrxh)@8nB^DbHn8YSuKj*Zk2j#Pu*Ks478y`$k42sx-mfC{{#n&)bpZnRvq4R z2(tYpxJ>&s&{~+mCKKd?PoY}B1zO1gaJRD(M2?*~XIs1;f9^$vDidRcj}`OVfdKeI zV(eV;7ThllW3`bInmXl;qUaA;E$3gCDu`LDSJ(=Owc7a{J$6uE*0Txrlfg%pyz1BEpxX zMHaMcOM#f}vzWXNkIU$>={;t<+hO;ZTyDMB?sD3E4!hfg`t6xHGkvKw)`c~A-6FDH z!<_U_nCJ}YpkAFt@dX>jrP-Q`(1L=eItz)T*%^xnZQ;GzcbkW@nfuJQ0ZQ?)Kkcb( zwR!*FjNsiovHMVBGY2bsQDP@A(4aXrf-myJ7ioKS6(kCIX%( zQNo}RwSz18f<@YnTkSZAmgD9EtmKYcFD*v&P%`4iS71s>{kgssm~4Eq@g`N{sJ3R)6)8ncW61CyTT^uac$^qs+6I^XGI2)4lg4(6=5ssYRisYES~q*~728AM!n3{e?PYZSa& z)p~V|gJ~&^4)B#LO_{|S)~h67AhTXKt~AZ#Jh~n?x7)u^nh@n9GoFZ)0UAnUG#Okz zi_c(nyKQER+3GM@&2Fnh@9??|HmAi)l_qT|tTbE^=1Lpo&7TA_b0sP)S*$gtEL^M{ zQ$#JUOjdH`h85?oI8*+O;=GZhIImHHt0+#O6)4W9X%uIW)U8iwH88G#;?(B2AGNjQ zVI>IaZ3HdJK;xPR+oHa;Le*5Y#2W|G(vlC8wB$7{e!Q&Y$Bk=Azc@p#M@#ZL|4(4R^fN6qJLTkcXO*Sxl)WZqSU|Tv@TE?OWR-z4&w6y z92lf?Vhz>NC8C5w=h_7~aEH_A&8#?>Om7%ei!iFW%q7@}7IQ*M=G?g2Oo(&mdemm# zzfhY$5*%dI=2uE}jRD5wu(?fEv%_Taxy)9J(QdN3tRA1wV)q&hE}Nt_X-g5csf>2D z0XdledF|@x__Tmd)v6(h92Jq)C{rFON10!>*z=Q;JvXd7u?v%Uu7C5sa2KR>&pIMf zpNig0?;bqF4Z)-usw(wQO9UEBYXHxToLHZKcd#Go`}WS(2!1`pJ<8C!;u0}iwW^It zRrz`ZS8?!|e2h8YZqCpdvGIH?Bp+Qh%;*UbFW` zwTQthN_oj>&|b<34Gr>|^j4SK;5OPE4ztT_arq2Jr`2eNNx#)(b4v4?w55m!9ZzsZ zTZ3MZNb!!Q2ECc2L3_1WvrEaE8`hxxan9VZ1~DcXVjbNh4f)LI^EaiuiWZgWAAEm4?S$7rEGTG~=rRroneHBU3;UXZ9T3-?joNt=PQlAN@0OEoOmXuwNm!ERVh z&c!+NZ`9<)1l1Wed5%(DMNJMo6x_$3N}(p-NZmRSSCbze4%X!OuTrSV4@wx6KPA>GsJO6veycFnl_!4mwSB5hk1ySC{hN^pESQT<489vB9L0|f5>-K@Z;}n3aFU0 zy$~&$5EM9J3E&&oI;dsQXS2NQ!PVI`YKcDR-l(cNYl6gdXI=ScwAsRqz#63Cnk zK(VFLKq3j-Pa-oKJx77bL8Ns|w%L^6Pr`?6KghEZXPA@(4bWVFaAY<0yy)#>@Qn=N zM+T6-E0LI}ww5~1RzQWFO-VEdzsM$8$K)HE(z_BBm&rGA%P&hnE8X9+kOxXbEm9-Y zI1+r6Zz93RwuA0u;mIEE9m|yaL1mXwdD6HQt&R#glc!V9i=lZBxmk`p(}IVEzPKZ? zvkyef$StHnY%-CszRS?X>A_wq0OYOvJQaW?GlT8qJ0Z;GC~EDeRx8;FOih;iRk%-{!`P-^{$|{`#%ACK$V)Ikx@r#IcX>_0{g>Ga z2={j+aeu>2bH8C~G~LN)_U3<7pm>Gtq2fg5w=xvbdkcbFH~}4*3lAp6#Jfx}Lm`6T z&q)Y=d(#MN7zTU^_&dRbo0bVQk30Gn#PlC8x z8glE0yoB7Mi7SI$xMDd|m$Kl5srki9o8>PiPNd39+AIl~Zjdu4>UmI#Smk_-pZeaB zgy&mwJdd&+RooMJmExJ?q(?8W32rFOeMM?geI_h1yv&gp^?7l88AtI<*o9(xW8fX! zn)1fLtHmk(gqLvdV*-3rJJQn`K}th9zV>qYz*b{9!yJX;SB1Q|jK~fe{;@6CE`zr% z*LLGhNqsWYI>3#4VOMZR27mW*Z8z?M5(f2tc;m=upZ&oDJU?i;wlDW>95C+7;S&Ok zFK0m97Fezub}6Xi>n>MHanu z$17s{grDnHuM$cTrOLv8KER%0#YrsV2G`yUGCa{NnD1+l^4 z5L*GU8(WenzE-06jr%%j@T{PQCwXS%dj+1~u-#Nh{v{cnX#6X|C>s7s@Hk(3h5VRL zi4_d72(DL?aJ{trzqgUKlF=jz>P+!WlW~R8b8Q8^S66W1C_dEGbA`5oXG_7-?xuBs zg7a?%&v5*Z71|2kI0@$7w}ba{{HPV$x^0NV$aI@o#Owxm$roo^tw^cQtftVT?rche zq0yDcg4KDU2=h3m{t9($FZGVCfWAi1>Am1yVM7Ygj%uLS;kI^9W_?rCdw4+(|B57> zvGM;1Ze2r@4^p;)CX>sT-A)FZ@%%>$=|0O=K&1P%6-wKAP@?sJuF3Z+@Em8^+nXzk z#(e;OXAHwqE44AqguJ+LH$vgF!4X^o3Ldjm*(^B0PgtqMFLUL8uf4-CYAPNML2-Z_ z#lCDG70yjAMKRgAsr_+qXjyIysVR+fGeQ!>Q7g5an-MFib8{bVP3hd^u1u+F_u$^g zbmyj=8yBM{DX6wqPPNrasxhlmD=5{HR}iD0eH|Q8k~@T}qFcP?L=caJJGfQq(F?Sm zG4NPUED%V^+in{)35|PyRV#EQ6mg*A4~yla=YI*7&Ol?^7L*Cx@=?7(H zgw}IHl~s)JkhO|7A1<>Cb=YJ)+sc4~Xv%#no|8i;=5`n3O*6HU#fP^_h7NFonXOh~ z<}a(kVq2YN<>d+*_xr{wXnvW{`&#Q{lgoy72?N=-$vW8pCWWza%gTjDR#VT5))qn# z|KL#uP`OUVm7rJ4*a|2g*c7I@r4>Sd3i&B&6trq=s9qz~P2ABtN`Nja-O=p6`8oWW zRq_eSO5D1}AXW@{)WnlP?6XRt2YLQEse+i1kFpgIBfoZ)(#RLD(lYYuXwaLm>Ul8~ zvy)Lw>!N+WO6j6qh@%)=iN{eB1=i@Gq18jJQNhlF^2l91)S3T#mA2P*r^K&6Xtl86 z-n2&OPrkxxZKth863EJ$q49jyYHgp*5(m+;LB9f`a-Z$Os+0o>OKW=nflWz>NR0Yz z(V7aOswk%pXjjkGkQy6=5^J6V*krP5({nW{svEM%0TgDWlbXa6Gx9)I$jAv}l4>2f z8hxb;eI|@#a}>39QK=Ok*bJTGgc&SYqWAOIWYYT?tI@dzA$Jmh^!UyiB|rw$jI#P} zu9pPCzP__Z3C2S^ryGWzQGp^$$*-ybbZis~$^jGv=%zvdx`dya&png13>JwV21D}A zYPlh~g!`poNWO$TYDhrK8bxn!8am1GCDzF2di)xu0%AzMTdg!CU#|Y|4auNn6w?}# zR%?`oq&f6Hjv~95gMxvbRna>wL(}=Y*JxXghb0DeqxDeBK^~WEhYwLl_`z$mZHOlc zxR)U`i65~>+lGvcgJ{{1&VZxbhBRMuV>U!jZ#JmLB z369Vpo!0^f1RP$k!GVv^xXdnt(dTd&tp=AHjzU|}xHo21iOyfV{-Mme9ys7>GW%S1 zz1iS1+YNe?-tKi+;3S*V>OtJQp(@ey!qnNE&TI47jb@k2WAymUF00pNx0%civ(s*| zS`0o*bZYgb-*DM!TDGHeokG2JW?$-Ncm2FX-`M0ZwA71Y^X&Rwr`d>h(b59c79dNZ6>wL7fh z#%50E^O`&+kHO@$yL@K1NAH5m6mFZ%VDsATZi_p5^>K8N%SzoSx;h|aOxtF?flC{r z!_S8VG_ofg5p%osX1C8{Fk18`v(aO90VVBvo6}>o!o4O`>8>SJqvu-`4auzQu=&hZ zIHhiJ8h}4mz~AI{`s@~$#cDT3SC0rC#tbp)%|4^U;IvrGdJ7!Y^}+=yz18M)xV$b) z^un+29prSW+k{46nq|E2L-mS#&!{m9O(9)GAlVUN)W z$4;z(iPNMvdksdr&tbLO+%}KfYjNqF(N2Aqj?K(UeWxpWq*>ugE|`Wj*7_g~J^BtF zn%k#qw_Zcjh@@9pIwieK^&e`EUfq78nl24K2)No*=X6;0X0zRE(S!OpY$m%~Z!w!~ z9*f=xmkQj`PKRcX0im?uv(rY8+ibU*eGbqWkI`u{yG$;J!veQ;h}yWZ=FUa-$N%w?I4PLIt72GnRXyWDoC$LBEGjYgN* z1J|xB(FK>6fSE|s=9*up8+C@%&7n1U^N4!2Y-Y7FdS&+L0S|-8Vselqj{7lmh||HbSi9F_2m9c)n!TWa zMm*-3%z8L83m9S1Jj7+CZV+)`)OBgvL-Tis45;V)P#v8~Z!#JTJ}^lz+?Z{4P->sY zZg$(O4vWz!`4qzncEjjpx0_%ja#`GUftHo*sb$2=RFs?=o0g$q+)HlP>u%6RnI+lhp4!PE(kxNDC zG{lPOSoN&bI3ec??={td(11r_(8CQl4=@I9liEElpU(*QcOtblKuFnN2o}%Wd|W?M~1s z?EZmP*ephO^uo{?U@z=oMvdU(y3AfMS!Pf(E4V2(kW;JMXLVu259;NFq0k8T1g#*5 z7-6_@>jR=V;WCuZ;Dk__BSJNzJ9Cz7;IdM;iu!?NPuD0l|3`L*>g)6t@I=93Z~|>% zcr`h!CZpZ$0R!Q7I*e}0mBTw{!3bt{gKy;qciyHq8@*1a(P=b!EM^B-HXu7@N{#68 zdy8Nwb~v3L@N2<5f*T2j#07)4)9vtpVReI}vS!>oa1+zDy!sv($5OW`DcO6^hZ?mo z+U>as2hr{{nd}a`*>1FZ&DiKU-9TBBQSXGY)#H*(Uz)pT2sl_p8p_fz$Sqg1G*YQ> zD!~}1qL(W^l%>H6IbWL95FL9kR6^%5nY>`$z^nsXO-6A3V8&$BySz@YkQRG%SKkvL zn=Y73xhyWY#O?E%&ENsTeF%>UW(c6CKs&_UQ3#VZ;wze6AnsO|#SU(}$!m03VD17+ zX>fohgP0IX(eW%z(?+!6tx&(TO~a_HM|Zs)Dz9_FNa_Ty6y9gB!uSNVGJ%e}U3!yE z4_uX4Y4!SyMmxBM*hz+57?ogbwzzCgv)-#W(heSeZuVBLuEzy~ip37@C*bcfIviF5 z%re2aIBiA`>i5>tnpo4;!&s5JWjdUtYj|8O@Du|e;F z8KlLB`$;Xo&I28~o>VYqtu2F2j8!p~CwKD4UaVV#y(b$sJ zHLt@2Lnll%oZuQb^xy@77wk1T!Mz2i-6hFdnyYA(LHb!IW^=)m46?f9ss@BeC7A|! z=`?h+fvRPr^^2EO%Sw$DwxA7Bhd>CtMwoM&4Q>;7$*}4H%yYuRhR+M`l+S1PpsB;? zR0dB0@Vvm_b9uZbn8!I_HAAo0oAn?H*hEE-w3@Mot80d31Xv6)`)p>t0X#Uj7iQSN zX#>2#0P~$6p*E^#w$u$fk?y-tuFjgeQFP?#-Fo!=ccC&m@K0eu24;dDXbvvmx2Ln%zXF2czOOT5TqHod+h`Zim5c1IuVP z8elAUTcht*DTJX+Zv+3y?l8Jc4sf7gfPk?MEQ7@Yi;ym>9gSOrB$qME0NMq-He#P2 zY$uEm20L6rcbP#XECv)B7OE<#SemBwXi3GX{j$?E4W7~NP^)I((ZdyXX=Y}%I$#8V zd6~g$G&?L7nA8AQ^>$bZwZN3?{LmS&ya=jjf*}H2TO%xbI$*U6ye?Rnv%-xluNPL^ zi025NA}m1KU3LrDAGZ@2>vVZw83e=|Ch=CX2pJvr?DS1ADNWg`p1O`{TBWXI^IB7D z!9)&LWMLZR^nw>?)H}eDH^52_m;r;qlUg{f$|aN3Bs0c5$Luti*^u+884sdYnob>dYbF2IO8%{te9Nts z{8XC=w^s6Rt>m-2E6QQ%)=Iw02EwhC{97ye%9r47t>oWY$=BFFxV4f`HZjwzdEZ*e zzqOKoYb77=AKY5WXLmqut>oWY$-lLdZ*<>U$tMRGZ>{7f?H}A)$^ZX$CI1nA+Zyu9 zUSqX8pAoh5{+05Is-o<=;rTlC=)rJ(fLwO_h28@EtZq0^gFKrrT`EXiCnh>V;bmd=uab@=C%BumyP- zpdb$yEy#Nbr;pDo1x<*H8s~k4?>-Q$KE}UDnA}hBFY-3ndHjo9dB1>v4S@S}r>BHU zW8C0+!#ikKQ!$H&7Xf~+A3j=||C!RYYn-ly?p9AcIu`%=Or8mj;S-Im^lk^-Rq&c% zkJb&F&^|XlF%O4ttPVI|V$|dK2^NzRC}ilgvNqbuUAP@Zdv2>x`3KxSAt(L?jfaD1 z!II)B*;9j%!C`{Qi_jZDC7wnXx;&LvO(W0Q^{L)SXc-`Gg>OgI zg=(n;^(;qGVcVv!44j`=)PwK;H0pDY*i*QdZRP5${9FisVrUsMEIj^2rL06{<&!Hb zg)XdotYwt5gctI{Xto*>^5=*xJWrUwCMR%MZ4Zy)M?Z}!IKua+fSw-~@d&fkK^?8b z{W0jA*5M{{P>lW^i5}lhdz?qGL5JJ*t5od~rpg2x5DA91s7-h&C+uWOkc+TPg_UT9 zTd%XivhBlzIpHW6L;>GK&S6s$6p2YtP0)>49Ixz&6)K`*74{j0+txxpPql>5h-s)k?cv`ndL)dO zqf7XdP=SS{w-TE?)?BE@CKF;*Sc_in8tx_sNCd2JtOoE}x9}J_0H$6}LLhRI`$n`M zZdMs~7O&wut|g|tQQYL@C1CGNhNXehKfNowisSpjO9J0c>5dN14repeXsQM!2D&ua z6E`#}4CqY;fZp`ZmjMU1_oe8WgSNreLvLrZDGAo1cI8DY`jNZP1pPI5WqDM(SJ*0q zS$g7|RRO`(@SgVHAnWz6y7>s#(!`4~BbjLO%wK%GR`%y|Od)SVyfz}dB7?8B zPOfFu*Cm)rnUb+i$&^2zkzM6x6ik~RX@u@24dnQ{r2fT(t}D|&1%90%D=u{GJ?`j} zW5Ydo-o1|8;m%PT`re>C8AhuB2ff?l;PCNJtRpwKRYBfWg7lpb{+;9V*O8msOxT!& z$vztc(Ym<(5CHqd)_jj7ns-{4@&Y$Yc=8B@hWxji9PYshyD$-B_KL{=pTTfPw9OMP z%m1(jUC4{{=GLL!{;()7su1L_ZcdQD1tx(z((kcd?fA3nh&$3!jVC`OS5FuWuoreL zYR6xuu&S=iFUhcUTF^fj_6vWg;xF*)8L|-l|6?6maOKHbk_Q?K9h9&MnbbC1bW@+BOKH-ryjEhruaX z;rrzPSgaDWu-wL4U1%srC_clK786>k#4kl8O8Wfua#v&y?w9(=H4C!hMx;^nmjz*w z<2On0(!)9B)-&+bNInI4y(v~^-awzV{>F`D8U*bM1Y_^sqm5*E`K)NM?)SEJ`1vV?Be@y`;lz2dN1M)ONRQU2P+aZ3B-7^kcN5i^;F;{7niRi2~Mq&)MmYDaWfj0w@7iI$Y0!C;9712<^BL^oiAGFno*4JikV*3g;w5Rmry zIkFl=6(;5<<_?fLg=u>8RGLMo#JoW_gHkE^4La1X&EBf0?Qi)Z4rUhNa8jtT1igk! zU0Y4-0uk->d;V2!F9u7BG?oAxodgydJ8ca2N*W0r9|zNt&=nh$5;`L_ck-3oN&TLj z8hc!E_7L-}V?{r1{o>4=g6f@vS!d=0k$W{JI*&dOd0EKV$Vd&D=-kGn#H)?2d@yo> z6Dl!zc(tz{+WJt$E7W9@6U$}Jha-KvR!p%#DMAjkq&`4!@O~heYJ2cW& zXvx+@#+OPPQRiWiadH6CG+A!z$O0sqCd+LAN|xJXy;clO5s9cQ)`Ywb*_1dP;^Zw* zSZ*>)Zdqn~11=A(85oH_+ga`r+(Gq`$wNsKn?J! zBQ*>fb7WOS=#)w|D_VPaq%0?FR#285&{wHZjVze$8WDLzIKYAeb92z3ouLzj{`bYY{G>!6AQVNMzW+@mp&VL`-b@_MPCv3XXDO>#kG#<8Z51$ZWp zW3N3HxmJ?zwTbw%ssq^z5_fuR(i+IRZ=z4C8gV1aCsmtnN;#%A!hPnYHQSpS)Alja zqdum^2^LZiOjHnz8PXwux`#Lr?Ev~zdB9Bnc+ z(l~?Pwn^LZibZ6PLr34tk9@`RF9Mb2;eQgNpddv>Dx$>ZrO>9#v(if_kNEH=rEQs< znn4ql47%}Q?P8om*JF2UCC6-%!r1((VBb&L?7JFgA6Ykfe0F4L248WrT(8S-PUs8O z>)(^8b5)|w4O`wc%H3QAOA@Z7oz%&gQnzM0sW4tP$fCxJAo=-%2rPdLR3JHkfu~4z z*i1yA+~6>vPc{|d2I5XZ}K)mGd4kj$zDu$M1#W z&DfqO63OI?Hfw8PXGtfP&^iES!1Bo7nf&I>+PZg763iQGA|o>S=Qe9D5akYt!C)e0 zVb#Ntw;0u12x!#~bR_||7@~`$yjHv|mhg0Oh)s#hZM50O$kUu~5i>bvMe!a1Gc_M3 z^^b+W9zFCWbFep80`*(NxIX-rcu$o31J_vAH9~c_Ms{#n6guYl)MlWmXqMWd6wPb@ zy=ab2Ml7vp-n~UBn%$uDanFIBl1EqXh|JF9oEX;>^PLG2TOOwMfOziQ8*!B29>Z`0 zTB$6qItUSH2Kw!bcas5NXdt;2fx;4a#07R#zR-SH$bln*2Nn=*p+(-L|A0 z#%01a6~e>m*p#@C#9g^v|p zm;Yo7`sB^X-101dwDP#J#7k|3-&qK<@(2)yw_85)sk z)4T6QHV8G@s2nP>f!&gY!VY`}RFB4lH{_t>;_YrEEWW+G99GfW zSJiq;e0i3j>070h9kwbjfZQ8EQUlM0J(JEkq@$p^Hv_T!di44H67netq?tZ2P{&y&U-!^S; zhnJ!+C90|ZZDbwq-KIU!C=&98pY0one2MLq1k4V^R|JY`F?!g=$u``45poUf9ckDaVRz34a!zjul;hj=*8LmsnV$vE)?M zn`|;x@$$GJ$TwLu+lvfW3vKA_pCckFx>%}$N-aUloVLP;%3AoBwxI#P!|IBxS%n(c zSL-sd$Se|Z`oyKYv07k05_>9RyWAq*wmlB5^aB5;Xi5uUNcbyqiLWDp#|&~!2Apbf ziS0^*{P#93EmlQ>YO!io96w_+erdJ1`*x)kcY)5w?UYQ5-?$bz$q(JGt;KeUF+*q- zpvCict;<7mxcra!vD>xPwqp`ppFQgw7%mIV|Flj8bazJnKt8lxTZ?9<(LS~PKNoFpGHPi> zTem|g+I4nlh;}q0z-9+;-=QtrBPFI-XdN)S*-<6GUTMC^4sE$ENP_86H-Anke((-$ zN!}QT(UN2%;3b#jIy?RgNsb=9Gru(i`2_^yqO6#CzojObWDR|8DYN+bF{r=J~;s*6>Zuqzq!1qLSNod>(zCP2PYIl zg~NNH1*P+2=a_O~aX_&^b&PU9X8qT<$X|eVlmUpC>HiwzDrpwh5A;yk{A$dG{IMPX zxo&)f(NNhQCeg~W(7Sc=6FWP#cP6@rQDYX=Yd{uMl)Rw+h#`M%X|6S{2(~TF0re^P zml6|fFcEGJA>d%uND+k9ypt}fXXA#Hi|RFYrWE0-xZg4RdQ*$)pD;p_f?lKL^ctz4 z7qgx|oYISm0y|DdA8(i6FoT%ylL+g+O%VyDRd$!$>nycPuAGdpWkOcmDQgsM(J#Lm&o_|Z zW40%ofv01$uuI9R%w7Mv{mDy4Fzwi!yGuDX-@{_asuP-5Z+%tNd|>{2yl)p7pH-I< z$4cyR(|Tk9xLOX%UrMKu#zFb3`H8!UYEaL?`S0*Ec4?2;!8nMP<_rUDlIy9%NGA0u>%!SXGZrHxSY zq4|UP%L3@-}>)mb{WP`Wy~bXNy1ar+AUYk>bvF2$&8#;AWL=R+~>+) zT#mQy*4~O9o&d=)U2{Qr5IJheU3@SO^uq%8Tm;^u{;IE9#K$? zF=rl1F_p1%&$#@0CHd*QwH@(Ttj7qg103wfZ*cdT0V>Q!u|&Nqz$m zS8E5ldK^YetwWSG{HWbZE9*(k7pIahH$EVK7H3R~0TET2nSVt%$F`=h4@L<|nZdz> znufu-Qjq^l`5%}HrQLu>{>je~{$SD(*$wz%H|jV$zl9pave^J3>|q2n2ElC{UrS)y zKnj1qomQtCvS`HB^=bH(2~+djE{Z^HNA6hJn=>Ipka3XpxJT+U;}(#W7=zImZra0W z%DntmsN%f*^;|DnPi!pi!PGDWuhaXFKMzX`@=;sOyDBp;@-`sk6?^ZATYn;AaNQ!*t_yb71*Pa4Agg^AD> z?W_@~rn>hzTB5}7d$fj-U-l@E<(}V@a@_a`3-7-gH-<}{!gRcOTD91#l+31k86A{K zX8c?(-yK$;rx!e|I!_X%es!Vs;7J#p$>s0gt37tao)$=e;PbfrBYU-nj#=?mw1l%G zU?vyNrh8Meq!Dyj#*!N!GA71(l4{6!^6&hY$`>=Ou@-(UlTIys@m}=hKlu)Ug;3h- z#qow&9AJ=1W3P)9#tiIrQ?&ELf*k%$I7HoPa-CS5`Esx0eyLmSS0F24wWDCQO&tH3 z1Rt~3=NWivt>50OwAQce{m-rSIt7B)W39{YQ|d(7eGG;&oxs+bzjL3qI&76V(|}eX zS!&+4Pg@;!CxKv7&EK_;sDs*tv)pH6AZT31v^trM^O6tqWdl~A56oervbb>Fe{ZV~ z{tH_@nbMlE)e|Y9l5O>q<)*oY@(cHAyZWz5RG7a{%TCYPN9=UDJ0l>?ug*yiJ|^3g=C&f0wIR_pA?e$X$(YLGCxR?%p+--a!|>X z8#mR*;#{HU+ETkC7ZqlN*van>@66%t`{j1hvOg{X%9U*+WF_n*_HKuwYmeubKwHO8 zYl2Su2Bw|4kK@pS_ou1*`;{dk{Ig%ndj7dz>E(Vw38r-* z^;0ah|H{iPFLmlBj3;wN&xj0xY3xH3t)h%7$|N#wJGq{iR4L|Q^`)-eP3w{zU2X^l zOL6(EaS|B0d^QS$rMMp1Dh?(SQ3lCw7)c{qy>4?^6dDw%#B7PRil+2@n*#6 ztrO?d^_Wu&7J23|5n@iSv{;bAb4ts$Tdoi6oR1gaAOeb4#M7DHmA|%@S1!+ zFM^oYRiZoB;2^uHn>L^Y-%anMOV>0B{@LpL>E(0=x7p@|7ZV}UsL^cqK{!GP(FI|{ zAY{71XE4z4w5x|gfb}|FFAjxlut6+qh~4gk-ns1n3_+G{zG&ZBOO9|lgIRCV+pKN~ zTMJ>-Aefxj>v0&35PseO;R4-Kgt0Vj+G#{TfYol#X{E2LHu!CNy)3H(g2Y3lN4wn( zam67Bn+F1ZLZ~;l&1Z1iqRvWFaj-YL&254Jnl`Tif4Ru>5Sz~jPh^@rQNy+OR&v2KEHWyhrKJ{3MQk;1YRdWI(bCc&1!0GAU_wwG zBLqG+TkQrjggFMT8F0{XpUnnOZ~JUCN_BQwkj*T;$LrHuAat%7;zdIoScvB8vH9#K zi0Y}gT4>DpEC_6?x4HE=HoFJv^FdT=pU>oWxgoBf$rY`%dG@zlcA7>VsC1&A45shrsU;&DrMATino=-R|*1P(v$@Hi^S$(io;B(0Ud`?Y6p{4m*xh z4Z)(FMnD_{8v>Q$z@SpxOo#z%w;90tK$v*5!RB#5%x{Ou>u`IFZY#v(zW83%=wiC)-^AW)>q z2;mkX&1!&9iV#Z?sP3^qBv9y^MelKu$hrGx%-GE798SAiZ#6=kNVCUmwK*XgDi~0Y z!S42&fIy6*>3~wHnnnf)@0p#ZWe9hPBgXG?!aVD7RBemdqldWHMk53-^?BVki0JG=S06_tBH=6u{+Wt9 z4&{sCDW%e@D4m98SjDo@tF32O)uq9T#*DX^94?2~VlNI&Fl(GW{-}E@G z9tf`vM#<#1xP5RN3j~u!*G<#10nIke=#!nMWv~HdA&hlX^Ng}OuhaB@>^*saP1XP1 zJ2aL%B8+`zFtWzm7gCf;X>9Gqm$%APmM@`Xmzg)-EbmzkN>N&68Oi%fL<%K)3Rxnh zWZy&lKIfc!-#vGG5B2-cAL-4x_jAtq?4NV)IiHWi1(N3s_&qkL8H=k7LeWl>6V%8S zG~o*GP-}ekglEfSVn1s#JFRwb%AkQz3ey6W*P&c6kOAr}(-P1bZm7TwUftya^KY}6 zK@V-%G<|leJi$i`HSPl%WmJA-DKR#OlR2-FdQvd>Uf*bgoM z>diVJ{4&`CE}K|p$8Gof%pkI0)ooyV>=1~6tMh^R1Ha)C%TsrKcS4xU2nK)_Za=sN zcnGCb?NEUp>L@#)G@Q)}fty&!8bZdzBL`5qC-NT6N;0w?b$fNH3C(>XuTmz|1$J6p z;F)kyd$SV?lUrRDr^oJrO3tQ$kNRa%)1a2T*%fetMFn~DxxrC604-C{Y;%K_B2T9Y zSV%wSGC0J(sKWMc8fjm~T*H2!IZQeTJBQ7h+@HFVk2qqjEab?1= z0kmjBR;JD810Mu>;cx^%%W)xBFbY1PtP=+d3cF#o+kK#nCa1?|vxDLVA$B&otwF09 zDhQipmCNvZ17^@NP)@rU!b`8$3?9*D@qjG^{~tRs2z|k2B^g;V9!UlzDz~sAh6&m&ZadTy57^vL(b;CRL#b^a1Ueonbs1I&F-?A#$LV%KsdO+U z7Kr46P%0V1DVGVgZv&dy?w8Tv*}RF_q$=tOMZ6Qqs7gB%)6D9SqQ}f6NFmRc1&z?A zXGfRK^!t5Q3sggPdqJmMK^OtNn;npZNZI2t(UR+#5RQR?hls@vg^}%MC=x@=gUG@%&1`kpaWLX@xO{#OtP)^};DHLuu;%GB0YWhnJbGa* z22rjp2;LYRHUyEdjIcqFV~wqPf6*7V%NS9CQc3f^2S6bx^rS)qn2i8OE!oENwdSs3pNJ8nD`tXm)~bH zxm^~A$Ki!2o*G3l#P>N&U_9+6aOpv?GiDo%VT2>OI+_b9oXTMJ9eREIb=AOvH?5Q{RL;^SWMD#adZtjWP+!Ha{vAVe@LW-!} z+!KlK!Q9*vxw$7Iu40nxOwgTi+c(IDE=1% zhA;qIF7$DHJcpDHdjkI=WyYSwzeqm*r|>V5-STPtizF+12LB=lvT`A#35=Kv7qxFe zy>|>BSPqi}j^_LxuOoVO$+kKvXyskea3xUOWMjjHGgE`cF)Yj9l#42YIh?!V%^ntqDic zz@1^6NrI~*OJmLF=G~!!z&Cj7jl?e#GS{Fd+Sw6F7LM5NkMnNj1mQDgZX_?zZS(V7 zLN&IT3?_Vr-kzVgKnb84tCr4K`1DyeJGzXoG{sDiENwwf7dr)f&W%B;2_4AJzJhZj z#jK@ybvWSxww)$BT2XAS$hH!k9{3F1`bpmX%J=2mn!WV^$}i6QpArBQAzLQ6SRRv| z8_^v&UPlUY4*QJQPNs^L4BJ8nFI*im_TrMfB`JLVXSDniDGVt?ne?EP1vzyXpe@Mx zW`ddBXTVwmQAX`P&-+ODj3pq>z?&XpT4X^$PcP5=L0HE;qZL?X6d$F-v*5TcR`uBO zZN(=!{s(=+Jgx&pl8|pw1 zUsmRGhU{^O`p@>vR6?j`H$!K3#CWjtm6-;=h`*f$q6(&-6gzD6IWhH2u|ruf-qm(5 zxd~G2&`x1>-Nc7lSY$p}T$px0gDP9LFo$WUm&xz{oR%$=Cp1snX?#MsY@sK?gcfLF zY1zV+)5B%?SifKLKCa3S{9N{4jKBOu3oDLGY8Q^7!!k>a_>^jbRiSyAg(qnK zu0iwX|1UI0XwiIxYk|7`l^4H2CNy1c%*Z?78Nbc0$k8Iw^oUEDZ=J{sM2 zR0c^z$s~f4N1CoPQru=h#a3>Tsux`?o~hFd^#cnt@?TARhe4IKX>*x&YSZ3XPHb8u zd4f`LFeP~@n)|`1!977NB{G`26MRQ+f+Q?&Q9r*y6>bylWMTbA8E96&5iOYsysrbw zSU1$TN`6L?(SOkC;#!Q{UaeL%CDl>6D`dV>Mi1cZ(o_Kf$C@E z*OT(F3e{FHs?~npxHjAhwPswnVa-Tl;i{;z>62KU)Yigc~S5Q-D zkSv2mm}GfMV&EFmiZ1zWO5R8kPfw-s^nklcW(eEx+$AH3mzSBFnHE_n;TI0ga+;zo zDI>i}UTTH7@8(vE-P5mD)PqEEpC*kl4RN8TPh7JG?LBC*TDgl%{mVZVG zfFsZh*?QT;N)0Slv|d2vC-PtAg}Q97a)g}CHsit4@QWbeq+Y;d$aD9IbQE|x{}G)I z_CB58QE;d`;Ol;Y#ypchUj^_&_(7qg;$2)F1m4~AZ2olRyYi;WGYSA4zr*a}MPllp z)Ti=0(n>K3^i-sA=#d6T=Z#omX+@x|j=dn|5XXF>4E#poX&MB6!{M21FJd)%=Qrp0 z8Da-gz<}5eh{YHO&PG`>diWO!0|tFmNZ^-5h##irq0d%^sBi~!E)0nF@^ z-$4nW5`ylc5PZWzVs!5dd>;epQ~g zi5*A+U}ifY0#I)y5dbFhQgu|tn=jYSV_XJ{6EhL)GK{g)sk)ZbTl{CGdQbgX7CScM zK&)o}{OaZSp)1uX2V|4=g2!Je3DV^(-7?$)9#!z>H_~xt0|8-W z{;Ov(7cz`;m#~~5zKqacS2Z>h-+{84KVK%ctsvjS314F&kX)3kARE}`Qb%EDZe{F9 zIR9=HfJ)xCCzN-Am3LITIR8VVz1f|``3r=<*eMX_d5&q3MGk%u=eeIa&vgBlV#6Z& zHcqI#N*CLjY%?(jl~*DEr2J+&0K{E3(*x){Ils3OKt-M-B6-*;(m37*L&0bQAzKZVZ~;U$aEhlM8=;n7uUm(XcdLYJVA33Unj&m{i+ zP0hA{M*i8@lQZ&f)$&zt#`IpGVoQ`KZ|)q}-;z(88jo>}?NH)2PU`6`jC zhN@r%IEv2vuPT8!fG1@j5c}X66$tVHV8z?{gUaz&R1$HC?SM$cA&o@ryJ3k)f}&fC zqF6Pr`Ikz;Z}O!vo{iv{Ecmhe=I6i0@g2ktB*|~jc7XBZ?nL|N=Cix=jlMKmJ?S%w z?tke&lbG1Spj-zqGpS!3_@#Ok)sJE-ucAmd;NnW>hDKz;?MG9<=`fi*exJ?j^5c8A zCb)JL^at&3xTS=;eUcx_O!m@j$E2Ek!Ixy)m`On^`?W_zScv_=N?L7_o#!!Icvu?cJ`Z2SyG&}EFrN(TUnB}Yz^EQb!3`$r{fyF@`K}+MwARTb zlNrnZmEZQIaR~CHIHk?B3*gVf2Mao(g|YnFXmrzp*0egoe?~066ZKjY8o(d?(m49) zsp+fop8QPQmld68H>U#H_)r1!=hVfaH2%z&>Rd@O_x$nxh?UogPBs83l=i;X0ry z%K+-<-$vfY0w!3R#?tCqCn;~3y6Dmjnapax!kMZCs*l1{v<9tZ@AsxrrxF!D!ZXE>& zSJ185{D&*D(8S}Fu2#oDAFlrQUBUmZ*A*}fJ}b*Gv#EB9;%eXy%r3Y#?e;s&kb48} zlUqGboVo?FfH>@sy8#k5fIG;~O!5|L|ILZKXM13iPOQtcjNBh?yuBK(l%ci*bB68b?8_A$*+vvfmBEBG1>(#mHlABLmdCy zSH@<4i-<-X27%fCnjiL+v1Q*82T_;_#xHjRtdy3$%~wRuwTy7VTosJCe#`zwDU&Q%-9cNR$)A@(0@H-Q*sk&I0Lxveq zHdL<)|3?Bob&SIp@##wqpFaNT`b@dOvLjYlGt`?C(!XYyE3cX|*k-awPX8Lss~sxR z0eG%XsHpi?<=TVt@jQ`FCvnI6IW>>rN1B|PJ1AweR(3lk>pyaL?=iA-@JrQay{{2DeTh;ix*BE=k@?t*hHnewG z7_E3J3I8LSX*DApy z4}?xv;QzPAINa+bPW#g}@o-O7`EwC40rppFyom=<*D#y9CZQvnq^9e2ZwGXUla&at z{&s*!vLh;z{h=lqvtIm-l1#fD5CesXr10g|8jJn=;+)E^C3AuR5X8P}8NSw9V~PJv z0|OF2G=*=vmWa5nf!Zj+AhRcwp|iB-0T@`rA6ug~-oGX0%P(raT)(`}iZkX~cb3OQ$(){_!kTnxs>`9q&@{HtOIl5cyN?SPOcu$GXA`AXIkQ&jgW znZDXyi*GxcNToYJ2Ze7wR-yVKJ5zjugi-1DD5_eO4)zV9GW@!=#wvYIw0>qoP4u+o15EP*1ww*K1H{D&KUSvC2#7 z_~jn@4Gw+EyVoUfYVkphoZ9UGjaB}NMyAgtzTdYm1W;JzTnhs=PKdv@9#( z5%!#kW$2lk!eOBv!Z09kT%yR8j+dAg#uz;Ha_IR+`p@7kvWB=%bp;Gp(dMVDQ(BlP z?w<9ej1U!5ZcE!u?%|=M{Cp8!GB9&lc)|>{PHlgS*BJ%R`Up@1qyJ1ouB!^UYgtn7 zSf`Ezx3d_skznlN$dEmiKbb%$o)9JA80`Zb-{J|O<*6Kxy1f!2XC588o2$b#aEFUR zbyB(8<8T>BRohw)(_fDR8|lQKfTS|e+rBPgSi;homJDQDWa*G7zg$asS_K-P=>^Q= z2OsbKMg~?B{vLQHFU-jIT<$*@2iS-K1Ja<@$;2{>CAh=C~;QDX=eFJd<#wevy~G;d5_x4JkZRu&dDTQ9 z;>Ssw#Q`acA)_`V5%&dx?qDDQc_YnM$nb0mTAcLbWU`mY$4S$-#<9!=QTgxuHXh5U zK2A3Kmh46|b=Rt)ZgWC)`P{B(ON-H2Ou@A(fKlAj+|b9#Q{r^6mfbk5dsA97Zl@=u zwNC6pK2E;;t#O=^l1gv8453{l{Ww|ht#QOsUej0dkCQXLHD16}miogS(ObX_0!o18 zRz&6o%zH-7yz38OF2}h?mn{0WQZoA0Q-Qg85E|lLrz~m6b)0&v1#Q-PW1ID`IHj4i zi})9`()Gr+sjC`>enDH6K(3#ZKrn6fOP9_7w3G&Dya6M|s2Oqn_UFDhC$7c*^tb{0 zb3wzUvqoHsbz2|Wmcms*Th@jWoQv>^bFTCq(JWxqhnqq;--lu; zoCU+_pNp6n2T=t2%xCk8sQoIK>_Rvf!MKdGguTXfRy8Imoo!(P_FB6_#YQJwSL_Nc z5ORSCab+Y+)jmuM)6?#sV5zGA4BjG3)wwG6#_J<_3~IlRE_V|w zTkkAKGm_>#vNSWNeAd$UjrQMInp6MEw#bqqalv0s8O6lQ%W_VFMSSUM+aLq0 zm#$`b2Hi-zA_s0O$VPXe{4@l=Oz;^DlOuk4FNf`j$eVkETHeeX5-wu(QMwkP>!*h< zDgQV^iS8@xELCf~p>cG{A~w5f!Q-jiR3(;^Sa^cvC=HfF|G%)z*TZsT-GXcmj)-Ai zNOu%hva?iSxm<}QS;?XgkB91|6nV~yTPEa{6=+9cj+ogFTCL&iN+Zt3UTazKM;U%MWv%Y5{x8M(?vz-YdP~zWlSfQ$l6y2( z>L{4YqXBn?(qf-F3O?caqY3!>qq?Kmes{r!GW_2Ocz0BSG2-118s4om;vGxqYw^BZ z`Ri0JCKfWGRoMla^DcL8N@UE;ehXAb3P1%QFVt_b+1*gM#RBDaoB?aVk8Gkga9|tjtG{YFP zyVRw-hZr$rkeVUaZ=urS9Jv+?bq7|HYuRdJxOG^UTZfFe75iUK!RnfP%4TDBwGiig z%Vwft{YNe7Q!uU;Uv0B7w|r`l*yYg$@7LtBHyg9-^*D?XyZ+W?*P%@`W;Qtff4!z@ ztBU4iVNmyjf^7cD&C2hkj{!Z57NFfIt)!K~xi<0O z`%&ai2F6#$be0O!ne0q)xXgSGnL#ntd=81dIIEynS^o3Q#@6zn$nmAfoFiFFRq^g6 z_z@WUKI6*QcpHzTK9wtV>tBAbg*axei~6z_lt8qH5B^h`P#e@`@k1TqAQbkC zzE@2w>y~6tJL+X1L~uhOlaU_R5M1ZG$k9BmUBxoDlO;Mb;rcVpgJ6`bLKMv4qiY3K1(>9b_m&^ zVyOdY5oG`mS!ax)=tW=W+WaK4d|6;L8NABR+Wj(n%nvg zZZ)W9gApTIWHo>Sv34gA-DNR@Tm*ekV=riO+AUs>!{fGEV^!|O6_1l#Y{dmCq3}Z^gCMoxmz6eGEnV zwp0rbD3bwoo}u8n3n~YiY*4S)?F1LE2#mPd3zt;2u?3Mk@|tWaqX*S$2^{qWr%YFoR4Qh7u#zO)RrJcCef z-R^M1w>1mgSc9sjfU)0Cs|zL@k?K>D0jWNC$!oSd9Z>Zhu!g$LRx{KEhVtfSG~kxAofP)#^sg`%I3b=Mx-k~IdZBqkXcHdz;qHfJOp(}D)}$}^*t z)`>0A#}9>tOk8N$ZGlNa!Bi+8ZH7{*ewV}J1H!tYW_fJ(y`w>l5?=?Dsv;(4hN_|{ za6N(4nN_8={fP3 z)M7PT0}h7^@+JF$jqZ5O-yKjSH}S|e?4~+rBpTQO)p_erG@)5b3(99gd3mU<4L;2e z<$1kcs7CE@1iel$XXc>Q4Q#v5>UX-lVBh_I5K3^L9;gQHb9&59dyLyM8p?G7 zF`zo8)d~0iK@!|%AcQ60^8&U(a8fo>AU@W6>4XottR%zQQEA=j=8VLnqSCWd&4_p@ zv(F3$%I*jT9Z*md%GARgOm?s+E;|&^mP>?#R)Lmzq5LakpAJGvQLtkchcoDMfeKk| zb~NyhDb;Ch?SRYbwnE8sw+U)>!z-YH;L5Bf*mX5~yp~w|RtU5z$-rWzUr@#bgF2~N zNsg*%3#XIuR8Z^OV|C%e*>EDjVz+zzF379^q_#lWb_bM${-&UsSY12uA*L9_I&X5L zk}yf-dXfmHN-dMn%p#T_t&x!or(SuYp4p+MwABfFMINZ#jIE`~>bHP(_gEo%^LeSB z)pb~)WU~z_Je%Bhn;8n&<66g16c|d%x{&FeMKvTf^PAjIJl^hy5DV8zh7zp~JM622 zy@X2Ko*4JVdq=s<#6#MMw}PA(#zR`+;0B5;8r=$YafZufI>7z;?ckn32%uJN5UMr@ zEFQnx=XVBRBVVjl428oX@UTPqSa1t|;I0!2hzHyzsO#$qLhbF7gCN8cLnt2vv2NJ= z_xYSqYT6CTW;59#K6HcAH9>fMek;`VO)@O1(i)jFla0FS?L}rp9G3%P13T3A4mu!~ zwb&r|3_@jkpC#Zof$i|)kO3klP!B(NP;hciuMMVzIpTn*9Htm>yUj=}3qF_241l+S zc*A7^#l@%d+)ybbxwcpVO_30p@S#GG!kB@lp8-4IIoZ6?21XxeHE zf}Fas19RF;E-0>T^T4@J@UdP9k}Sk0Ey>H9%Vh*%VDMA0#&X%fXM3Sswaes!wGY&a zH=ARie_-#E3>rkU8%#52CLWX61`~B$Ucb!(N4hLf`Z{1U!OGO+bq6fqh#?wv1zprO zWcY(78?1#*VE17m3m62z6#Cs(3rMmZ)?oLCS3(_cSQ~o0zy*s3R1Z9yEeM6a!JK#? zYIg=1@0*!qRAL&k5)bOJq1ltBIS{O@z+ssfhXr{az%jWX9Q8x`2T(FEU}A!>0j#ad zXBEv|lCPQQtNA9PQjErJV6(%v4~tkPz=VtJB`I8G`Jo&c!S_UU1dbu`$X2rQhqI3fM;29# zI4&ognl#y*5VnCznDENm<8?wz4goCeYPe$NkrTjid2sOV0zq~8LD#^&dF?)n*#bKl z0jTosjLq&#B3$@Bdh zCbG*dhs)~l!F*sLYsXg14Tk^%AXXj=topn@(FG^@XcmjCoB&~)F5iG)zK zyAe!GB|lcGm!2J+o|yz8yqVS*6*n8>K(j|r>~(Wn@aDE);@!xb+k(ta>dkGzo7;jn zw*{Ha=$qSuH@5|EZVRd}K*nxv3ntl=xw$Q<*^IooEvR=d@8-7P&22&5y~vx}f>{lc zY@prT7W`u3&27P(+k!W@1+Q^iuuI*s?Kux~Omcv2WDVUKhPL=YMCRyemE7so(SmN_ zq8bJnpistJKh#A7x`!7Tmbo9(zk6-8dDahiq>>~+(FQoDaTV6n``t8X;ua?_io%er-+C3R=zz^Ai{7;76 zqejBX(@-w-4*%k=L%D09JX9$6G^C^s<>J0Vxww~5t{-kwg>r}B_g~6Qg*oCYE)n=M zmrx^$f06RmlkhK6(rz;TMaptb!M{jppsDy5NtTP?SB+efXloj7Bo~*b<6rpr=Z@i{ z%i$dSaKv*TDs46*gNG{yKRp%RUXGim;$Vk(MWb-PR)b$0fd7N@Oheqy4Yjl~`P^_; z4YuH&@O1*d6Z?V|w>fArIoxpk%mN?l;8dU0@B7MSd8Ud8s zD&vhLfJ4uz0dR8UddqR=_&jc>YLp`EG{yRRx#60;kge`CEel$Js3ZgPLnt#h{17_4 z_?=1uZkNc8PU5kX<>s@t#wNWOF65Lit7eq0Gow{QUV?8%{lf$Ju3J&P0pS5c zceeAB1>UUzFG$@|8Mvqe#}->ZcsQ!7{|Ow5;`;e)}j4EZ55by z@_wy@!%lwMR`kN)a2sJpf`04Ley3hzzpuR%E)+@=^jDAeH!pdArFBPiV?;|NoIOq z%i;U^^;=PeSHe~$s7l&0DRzoU;$!UDY>UieNo^W|3M?Lls+<^J6J-spR2glm^r=M< zwlO+@#fYIsOFB?__7zNxSmvwYG)}0^w#%g?8?enpscUaThew1xN`T1Zl5Esvy-I zlDzOs!n^Dfm9X}p2(iP^6!0ba;m?FsETl^M{-Xm4{HY#WzODEq$8XYSQg0n7q8#iD zwA6SJ_`_VDBL$1E{!rYIKSso;Zaf>npLoWSyHsTZ_#K`>KjKBMSj8R1FLQkA_w**1 zbd#&h_e=-mCfA8=>YH4@Z=)BL4Du7|qe496DpkW@$T(&j+fZ^Y0{>(A!#AL~5X~oF4w5I{(S{vL$0id`}A{jySbm$vymP zIv}%Ri4!m97P0O*%L;mlifz#_C#RfV-SeOSGqxdrKvWPZ-^M;nG6N0U4bNl^LzQpO z-@so|DcA)To+#MC@6`&n`}>3nrjH6yu*8axb35W%l~hAny(gE6ov)SOk{23m2XrJ= z!X{1*^>S+5ATjGKM4d?*AakpM&H!=QS}?gS{}2V%W%V68z|?jx%*cN= z?P&%vR^&ZQI~Dn-w-b?XB+sjvPS^2yVVQp^!Ms}N08^pw@p-s*RsOZ@vd}YQnsmTe zsh^Ty$QN{AuSMzyYo-1Xe(`qY-QZG8Fav>~56>8ZpSm^tKEFYP2ajSNz4hUWEI5(( zCEL~VK7YH>)!+o8-bnu$OqN`W9HGMPT2f-12T4#~2|hy+l&=Jr&e_r!W&9Anke2p? zOcxNaP-#P*^!*inP#4lVvpwN0Ulu8nej=T1kw=Wp-Vx5@1Q(u!f%;A~k_v+^QO%#i zV~irX1wVzqMH@Z~SKvQ_W&M*wa?+nu81I?__ zUuK(0bUyG0^isQ$b4mal#W9BJZ4py;O0jPH!~J+6!gfd&MWkB&bhep{6ZwHwt5*Wx zRrg%QyLiOOPqHasWa^|T0c$x-^y%(OziXCfoIBey(zbU*FDqdvaiDv)y zgIcrq{*cg<>0?4eMT2J*j)vD732D#oMmSN%v2b^x)sKLiq!&b7TQDsQ-usS)pHJ6+ z7VCXH?B;|A7(iM=N_G_Ah&*CDpgyS4$?!$tDHfDS*<(MVS5AdL5guco#MkPm#XhQF z(!1OTFV$AQs}hp+dJ`Da?A7YAiD$xBIbp2+IA8oCkCOuLpjml=2FjPohCp3Q$xz`9 zwhwtj;OPtDr}?ozqSB7TGju?&UI^z2rTU<~Z6z;a&`q|II!e$uDTFmFD4_=c)Vvfv zt^`ogV}lVrP`gU6mWiRu;WeDFm+e{}@i(@ajJWql^p?A1w-P`#;wHTj$+dk}C}fF) zUqnr}>#1qW^79+=X*-k-xWWz@TAj8p6`sj@itgbHWBeT=yricMS$LwSx9w2tY3h!I zda92K)l-9KACxJ4E%A~rX9X(dN47+-lr4lJZ+McD!s6Y>l&5y2qA@-8G_Tr(E(hRm z`3+#geQ2TS`-;_>R)$PhZ!LU2{c-(gqf-kP2qTzh)c>?w@vcjFP0@U?s57?%9WPhd zQs@1Wd&Zgsr1Spv@`d*+-&cvuDN$tD`Nbj?3cu!r1&aO_jHr()ww~`2Vr(-J%>_GR z>1l;`s32q?^o%{OgK`LYo9ib%fD5-3W~u;`p7)FnD%44_$jOX>Uqt#Z>PY|8 zxeFTd{7$9tU&Yfha8j4y86*6G+Y6WSbwqec_-pQD;EC{;*{K%(%R7w1Pkkha+&9vH zCLvgchnX>3HrEn<-oI0=-uJ@n;~27OQBlqQ`S+rG8Wz3~o0VSJCzb!tPIcBJ*-KU6 zsRlhudxI}X;f%uR<@o+P)oG7pnC2RoHyamTO65oGRHr?XVRGUy#F*%W!%qQ*kVB8j zg?jJKgyAqtWEu{$Ei!9kVRK#9k(J_eTbGWW}Aune7qAqXDuA71W>8zAQ2sQ zMC7p*o)o@g`y&oyl)dmSH1oDX5+0KgzT1h?9fc<4yP$553cs*pH!mok+ z9b!+C&NXCvq7G-5TIW)C{rfuinikijMKQYWQsbJ#;>zk=tZ&=G>NWVjyNoq$qR6En z?E^F|N=?h5?;2$tX2mFx zrlEEd3g0mb!2g<1xJFom*&kOzaOM1$yHM@?!q&o<>=WX`dw-u+A?pjKS(ZUbf?rLc zySItog3X3WGpfdVhYJ7Zg+ok-)VcS5KA0^WXPb%Q9omJ;7Z!e@13>Hs_Y;GO1Tea& zaHtMIi$jYa5vu9|kRV<$C6%Gc6S>J^NS!F#qNPlcPWAPv8$QYATB9v56v_)dC!Upo z54FKFMzifvh(aEv;F3CbWx{p3*LR-Ui2+t{E^ z6Ui9wD0by=VZE|^{oTZ%>XLqr1QREH?+I@-Ve-LUB&6?vN?tB0$H@Ib^1hKxWl2t$ zkjb`anXrIXt~Q@4JTG+F4bS6Nbis&hv?BkF=E9R~GcieBcB8$g3rmy$Dhsn%M2{W* zS}e?GTB+#FkKC;c9ERg58JL%0@Qg7pE6x?Z$RiP6vM-Zacw%2h?^fHFVW|D?f7`yS z)*_cwJ{8T>9P^16oN8<8zP(muep{8_UoC6oU%fpj+(Yir6d zeOyI38T_RL(mg?f!Bo^UEZ+lKO2e{(y!vkm_CYke5@fUZ>Zzi1PH3`+k!;l`r$5A* zY6LZ%ZDHi?+h>YOjiQmrvqfJCo!Qaw#sdHF9<;DWkxO`(eIiFA4>Ha2K=6w!T+fz; z93CUR)pcKr?dVzb6esj&9x{8|L)m7cy8ZW{-+L8JFaika0o>s!nx_O%>G~~V2`m;5 zs_Sfv7PDJbW%FRg+6-kLf|bI;JxYb2hv#LW@E^f5M&TR!i$?L^i13oauVLYd!Y|sR zULSn4$7p?^j|B}V^q)z*tNag&=bhU_6raf!dzxY@e;Oi7eE95HIyW>T3#an1n;>}} zq(p#hSw2W00SU8wkR%0?{6Ib!nx;GHTO>{QZF|Wl)C`@|0y#BBZVP*jiVl?DtNsLa zn$lLAruzhDjO25Y79AkxIz=&%NPIgZd>{rlSm5EFy=p6a*Iq`fSSyRRd<2z$E4@(k zJ^$2RNovz^=6bNgd)s4XfrEvTEp{q6q&@0xq=? zr@Kbt5-J>A^cTM?0h8KmK(4-2G?YJ_fJq%C5Mw5-)-Y)vdD*xE6>E9u@|kS`MoRXw z@35kGgc|!8*2-TXGTCPAA=2=Rphx6va62?>SW$aa`IVwHWd|w;@MxUr%phc|NPkN3 z7IAG)YuVonZEi9$n}1-R(gECu=P4niI%U?5&R9wp{^F~^jb0+W>>nf^%N zmGv{~@NLnvLKgcZzL6_9*k%d9x4!6gC4frro)&9~vGb%KgA2YZIxTc&JC$|*3AUMx z)%j;+-&o|<0hqP9sI~B%9)M|6QD+?hvWxYK9)M$WQCl4VGD27nfb3!^a8RNDtRDJs z`Y;{s-cmGCn8S98qy9{J6pl?Ux54*DrFk17(c3oK%Kl0_^Q*0Jk3zp;Qc@LeVeI@P6eCW8?Q1)!>EkY?nkOFAGCW zLYQsF98G~2>D;ssWNvS&A^7p)xxhyF*18oUoCdvT7CHN1T`fmP8P2i>x5 z=zetw@#}u-&*GQXH5feWdA?{H>bIweeC8tpL)dS{laU-67MQf=&?1?D#%T8W zqQwsEtrX4VfJq_fd%AKS8Hqw6vvn9Gw zs>LvA?79DdI`-VlVyK8c+ocpc>+ly37{{J5kvHdQ9}s(9&M4kjhp!05RqZ3Y>+Voi z7b~mDFpsqw9Cj6lzzitTVyeiNW2wS z!GjH$K~EJwl>sFIAp54@>UBX5OS2jBJ=&pyf!X3T+aaGV+TRwg>dYz=hLpWQsA2(i zMVw|IBoy^Qi4iE-;BY{eWYV_H>CKu#N z^Lk?YbGAV;(Zqv7mh=JRi@PKlkfxa5=P9m`8HCK5P>I07*{s%_<~U41Tv07&R)o*ZLv5Y+q{_L*6OsuUX;b+b3^$DsMO){ zJ0V{^AOOjXA@MLxINGl5^p9}*>qLWEX` z0muaJaY24t$fRtC4B|FRY}EvWD;-z@7DzG*Dexg}G9>1NystLM(+f3eoF=CmnXhiG z9$Q%pr$Y^z1CUS|GWtTsgCJzc_d%JO08}9Xj^P}!vj-MKvf(6ydPyqOOvrega8yX5 z*$Ay%Hu`o{c5rcaDkSlCwS;WX16xe1kr{+C4J79R5Eg28SRgIG6SAV({E$!@B*&hy-Ap)$}pcqBrVG9zED#n5#i*VhsiL5)T)h8=7McbbkG0Z zOG68W7e9Pc*={PEp@!d7HjS0Ker3B0ZGW@4GT-qR@+Cm`KGY7;?Xo@+kz^e&y;WRf zv>{V#R`I-=`WYHhZ$b4ZLrRFO)}1P(l2v0oPY3x+Cr?M<7xd&i#nu$-_hO!o$KZ}Y zxF*iiQM1hC+@?R$Bpuy%pv*bNS^Vd4Bxz1@OTNP%G;mI_ojnx8oNNO+gMV>PA?N}B+Z_&mhH^iL<2<3<4)Dz)lzSHThC;bL@%wUGj$!a;F1c0u zGX6#Gp1y*Akt;RB@h@`8;8pyK9Ah4Vf02_=BjHz#T=LOz6mBHDU!(D_3$Rs*({f;< zLAKf*EMDaVTG* z(ej*MXf_UmXCxa(|I*@x!V0E;dedha(*k3s;IW}Ql8ral&392vFH>}e%5M~2*44SL>|?M&RxLd%K=^Y()% z?epScf|KnHFTrn@yQoFGfM^T4r@1Ul%@!A7`5h z**hOZ>sJ&HR{~(dFcT4TPCR^V6NzQ7EUv@}L)oEJn2A|B1|{#1WWUgmgrzEBQEb?k z#krgiQIE-RSIoGf0L81)Y_>(FsU#E)LA$g$Ddr{^s0C%)2ka{(C&gD^7sIvkrEI%= zSbr7UO!g1(i!eC(?(;Z0@pbXzwUt|lik{?C{M*z$@kkXW}EITzDeC?J`n6#agc zIl@4RsVo#wL_63P8EZ*9o(BPCZaBzEDGGm8ZuS-68K;O|L-n~Z51v6k%A^$Ui5*Cr zeebXxkUg8?U)6gydA}yy?9)euZ1!d9Ka3+LnQYz7%NJW=LiYQ$++ai-dqHzR7 zKuQ>J*Kb6pncNt%?U<_VUNTgW8>21%2!+)(R5P@&G&x2O22(aufS+lnnF4zJMw4U6 z6M9qIX?#LBQNXYS6A}|^u#};B0%&rK{NH3{Wo-2v!x2exjA;o5yrKoA$3oaCXqc08 ztIl05L~>)qep4#?VoWguMK6VCvZB-67@I|SNzXU1@I=p-{-)OR(%%y5xjrg%Q(ymC zjN?nX@WOeP+vIyloXa`Y#anJ{2iHQmI+${jTvs|o zNg|B5MR-ZN-(um3bWc2_mhN$fjJ`auRAlBszC7qZgSX0n)6E&KLXMnM1jp@}GPY%E z&RBTu!wG2Mq*0m7DYfrF6qK1TzM&Y(#~n!~j9Lv#E~Xt|5Hrk#vG0)j7~(gFs3vzE z2U8dhp8{YC>94;Ce{eWfV3DHdP1qKAOJqgt%|<1V2_x-yXp%gfN`FIoVnM!uk!$*y zEGStR)%l%X)33umk-v?Z*=7lVe2Z29VBeS_3$~PxgGJ+7gfpVzUp%1$|J3hF34I*T z%RoZA!!t%gcea2l_ya|FNkaRv@I*qN`CToc-GBeL?eB$_C3SgW8cS1|)U()TOzISP zk)|t9K*;F|7O@Z@2x9(1lCEId?=)S37W67kSFlzel%y*FP?D}d0V>aPHw#Kc0su(5 z0tJ9dBxdOeCQjeLrYktZb}f&1nQbN`p81`oD^LKaMwC*eXoS!p5Jk_oDOsAXAN-=$ zca>}wn*6~i9tn3FF)fThzTCFt`E>nfv5Rd>R&&BV3?Q>{@gUnwFumswniNI>pu%*i zNLzM9F)2(hwnIWuk`$&7+f2sk^#@G~qXfXaOfM_m#Yth{U6K?=@vgkapQr%9f($R} zCWTRSph9Yy4pP*HuxQFehhM}8e5q$caJC6<5jxqtM7}Gy08i7vgnSIoWD^ow@^Fcn z{h2XU~xwC($Kd+x+F;skBU)H(g zFOIKtSp9ijHt*X-)>J$!Mo2MtH?XmM=3({cbs1*21}5{dl6@TC>ahCrx(stL4nqtv zzGbhvt5)tX{=81_sxepXPyLb5-?H?j{+4ZFq~gMpB^!(^!cR|?%oCmi3dCJ8wg{O4 zrbX^a;@wGfa(CF9uK!YO*fS-~Ibjsj17jNU*k+=#qYk5Idz6ef0+_A`fO?knR|2Ti z?y^X8c8WBqbM!wYBYB~e?Ufi5oDe`*$~N!M9oLyVjK24jtk-#;oVi)A^Zt{*lGe)i z<=wtL+V^9f{3V&33P2f$T+u^@oY7&?)3T|o>UuqnLrBh!GJh(=5bjSISgm1KV9LaX zydUXP!twP)P|1AMWrqjTPaj09 zo+z=P%IiklR<$jTqDj=+0T77WNY;X&!1E>V^1c5wHX!L@B7mN>3pk%s{6a~6jvx4^ zu>q;4hCxmHl}zNv{Ap}I8pT24_M?6NxcUrc&tS~%N4=+xFUQcm!=Hri+FL^`Y3VT? zwnY{NiP+6=fY_zF#GY?N?ASL0OEz%)w+X0i70IwRPVG8_OW+LbPYI~qS_89vNXaK0 z|7QYn-y4UClN+0BhTLCa+;SL7&;Pe5-SJu}&8+KaG?eaHB|7P+LSR(l^+BiA#Ioa9(>ntxo% zgnPZ@U>*MDqsCrwp2(IVv=4yEjg^e6%NHCq_KFq71ROF<@cWWgb@&-ajoo5y940Qz zD$_9t@KTzNo=5*3Ij()GVulEl#EWp zqk&?PFX?7vx(KH!j$bLMr0j}>>?DKF-E3FHcEH$Mu9k$904kJ!(n0ytEs+9Fc!KSZ z43p1CItu?`o5?Uw97D}hBKb-H)i8T?hM^{krL`;%@QbYe4{9^%G{cF4_}7jpE!0>% zErZqnD0mi+Y#XEU4@4@Vy~iq-L$z*=*!efbo+N|yI@=R5Sb4|P25ZzYBZH-n4vpmX zpGl}5#i;6EJEtgbRH3|{ov3QhdmTkt-t#8r3rx_+@{!@?`NPM^7aiS5W=w?1xc>F*b_p*U$DK<2F4k$EY6r{l(! zzPkqIfs9CI3jgeJV@uyV4r65LZ2%3d;j@mbMYiVggnX%vNyG9b@s)i&#@sE=ZWH)- zIH8o8SlnO48H1|D4mONT=7eH)bYg2d-}c`Y0%Dtqttmc^x;BY)lrpO-;qaxx5AKMx z6h2hI;Vn*pGdGTSlmn41&MzBBtimz{0Bmt$02rt<{{O5dk^6)ViZ{eA?`|6Dq3lv+ z_Wm0u2}9i~%_7T$U)latAAJVvL6L2a#3X%1n--`u&!150z*Ri3feu`TXK@{9jOyMQ zd77^y!b|3{<_QL#$Xb~bYFWE{{NFc^<1lji=CL#1Nrhxbc9JU7ct1RYuC%5x*f%tu zL;Y-#FHyT8qkBFgB?%an_6J zP;eBXXwcR+C_E^18`{-6(iwF%jZQq?Me|IE@6NHnDU=fo$ zb9$t;P>pS-QRGQJpfhUx&kc`uCMQUj#nseojX zK=(!T);*Da=!>$w(v%&jEbG=d<_sFwU?X>EZ6wVV#q~m^&WQXusRy2>ft`GsPFTtm z0s&yQ zZDPOx#A>^F+ajnP}|J6PbRdP zZ()@Fk0gY8cVE`y}@)MeF*IIxlZtAsrNiL~J_ zYUKM=Vm2LDv+4Tn-*e*R#E{cy1L2CDcj4(w3fK4O-be$Y&paQ@nyfryu65dw;h$A$c z60xWN@CczP5r?o;0YFEH)t(x8jZ;FXjOgJw`54NOL;uaEMegT>Eo`^4kJ!mJ6CbhV z6tc{S%u)g1>0O->X(s%s0D$SG;hrUvUk;fDFGyFyswR3=Z=%;=?N675L70=?unHCv zL*0H_85ZAm+SuF+@C^EqPI{l68M%|=n~NPt2EPg00WtX1POA;RaQfdj_`GpyKoQkv zRj5A2&QxXbAE&4$viM)T7kQ=(wfL*wi#%V3A9~t&GohlG&1vvyBSSy%^pyJ1HtBd= zwV8kXbV4)V9pmwj%zPPfc6eEpz|50OVslkg{6I}b#?HS>si?K{F*HBYD1~2p+Booi zOq|nKv=1=y?H5H*3cusDae&)P1Ji9uq+$yH`)T92_W3xB!mcyhJgWd2??m;WwSDCtyIAL}`x>L%w$Wwq{WSLj2 z%@8MMuo-klY3c^xX&FSeFTyj~)S>RHBkTFF2rpT>5DQNvDkwGYP@zi3}Y{)$_Ru(WUG}RfcW}MO10%@OPb@wUO5<@H@^J z+qAbu4sAbUWYe~uLFTN2Hr4SMYNNIUQ>LzQI>t}%r2mmsd!3P>1XhiZOgO8Qjq+!W zW#d+O7MBfn)gNoKJ#xMb-{h>ZRXZ)tsS)i1=p5S>8BvyZpEb5>DPqq@#q(>5W?bdzEXw#ZvP$_r`7|XQiL4h8`@Z~Xs`1gtq!bte)jyJw zrG!8X6cyjXfzntdU$>AHB)zRB$B7KbveEqYLQNnR{JYwLFFfFnU#BMtmsmcp~ zGY_eO?{WdYg_S+W2n9wn4ZjFFLbft$qFLu6HC4A?l|A7Ix$9pLA=gm!gai1$&!X*r zMP}#>{l-P`Elm{wc!>Z2?Jq?dsQ~Z@lPh#UR<-^?^+2P$ze zixg+6MZFW-BGV6k5%1*G=8$TJNR}+`Ii&^ah39GDoqE8txCLsAzP=JU#19wYCGRwh zg(s@+Kc|kvdz>?h!}YPC?n(cdgkd|3q5l4~i0NDvrXR2~Rk^2kDW+QYw40AkEXS`s zXY8IH5?S=sIV1P9>Kxr$nTH2a`=@u$B@DXX#*=34;C1gu-^++lGLl_Vk?ew+WK7U~ zmXb^-=-yl@3d@ul=Z)RdL~%~l&JzIx_q4KVv}{?v$$4Y<^tuM-?po1qWq8+l-SINqmzOgW2Y|znR(~+J}GPJPm#okSg=CDn13KcTyDewuaG8d|ENny?Eg@uTj(@Af}z( z2rNEN?#t*w^tvP3PWVs{;^H0Ah5|bVJ!e7=c`RcA;+P?F$O8t8G>Mv&pv1Y6!_k{r zP~r^%;N_;#Z&d*JcE$n4yVw!HyC<7PhbiAx(QUOM-Oe_TmTL03 z_E1GjbhwdUf5Q@;XLJ;)mo@rJP5t~aid;ct&orJZi2RiY#~V85=Ho*SZ%jm<3yXL1 zT`!<*j%eqUt#Ea{Uz>S%-r4{zUxZuXTtT(a0B5u&?>$V@1$}oEZE!|g@f|OqE6%8y z{{uo~S2Qc7-Gx*%aN_H=(2K5Ug;8CBjGt=c);yH^9c)X4ayycze?VXn z$^|$!O^^@MpWJZr<6k5jKmh+Dccg;&7r6=12mc~x0iVOa$XDdP_!o)lQgiXoBM=bd zl(E5=&1kG9~@iH;-FV!a!WtuD8^IDX^>;*yx`K|Y*0 z=$~c}Dqg-n4K3|7PpCQ^&ysi^{0pY2%^swDg+>uY7ijh%gJ+OEXo>Iv(>2MOQR7{v z1%@T@ND(lt>%jSSVsGCc?ZFF6m{&-3<$CY}4R<AS3R=1$@~Ixw|xNcVbqa)Q6+1g#&CqM7z&F9DPtY%r?u~UDPS+;166tYdS?6 zDM7JzR+UG+jgGqa0?DzQ{u9%kOcI2X_{6?>BpTy{+y0U{gyj2UHP~ii{%-pV-Q6W> zRRYMDLz?OVH18U9s{mlSx69M5LZ@31)&G97n0Lrv%8(ShPVC-p(T{nd6FZbV0GXlZi`z0b}aq%DV0hX!bRj2v$~Mb9Sk5*R9(?*2>enNBhY~>M!6rR`&OM{El>qVx`_%v`Fcm~nizwzK z4{=%z!NZ)!_liEI90D^aTc&fi7JV_yq)Cb@UL>ZI$^9Y2-l2uXsWz&|Uh_nEa(tbO zG!wzfiDR=Ef;ZEH8Zq)dCQFeHkF{Bf%n4@Zq+_uC(72Ipk);Q{9Eg4-#bw1Q^hmpY-@4f(35W&X$!f}iP*uGEiT-qu8Tfo&$ji^N~JAl!g~>aGJt)Qas#i)t@WE9O&`oRsLDi^>)9ER2ij zk<{naXTme+2Nppj1Nq>7(W)u@=VAx2MCR(uc(@`9Pgcn9UR1A;XI`YMK!XJ2`k0Vq za=O7Y_n_!|nfjt3GkgE0DtDshgQFvbV=TkS2F;&Li%fu6&6lD)CtPM8s-5v@$`2Nv z2x>OlBKIiGW`YhshKENqp>CKY*^5mVgawyYByUfHk;RP zvp9S%N6_nZnXOP?%zf_LMj{(zF2+30wel__=~9_^nPZHr1q zNAvkrm&j&Ewp@5kCek}}S}SNbaI!9QNogDO%%3(4)JWh|(?y-0sHoM2>4cLM{r`=)qSc8FJ(2J_9423e2y+m}we%V+z zmQ(aCmyL9z)n%d^73H)1wNSV5(YiV{deZ@+f2JETi5Y}4H)w_el+uiDcqyf|n}Aq1 zzUD_>Hdc#ubVkEz4~$wgMMZ@GTYTAAH#VwaK{uSJb8$2sWi=j^hS0cZQ~YNG{;kVI zU+U^9=610cOm)3)SHl2ZP#5MitJjD@z0?f4esx(Tap+pqW!H_X%TA5D{6JY?q%Mv? z!0Wg8ye2PX*|$4f9=qRbbwOPNyVYcOxT(4%dx@yasRZhBfTDlgP+g8_)a3^wZfsL? zsD5{}YYxo9u2Yrb(>^d63T z1cS9f1AZD&Qy1*C3JkqABf5<1fuXwVy7h|^fRQ7y17=D`lKD3Yn6z%aE=*Qox~^X{ zev_DSEt+xl#x-Lq^`w@ zt1sDGSTncIASRdZxIb1F3M+H+FHOdKEot?(wyhl~$VNho@sAUl&uMjR zB^}S6!-=!OvG9$Pd!I%Pq)Z!k+D9dN^yIuhhgOzU%JOkeA@Cxeep5prBo-}8xWnMKGXZ!-~ z26)x+ zeG;9{!HGi*F0GkQu;66Pyjw%8@2}jznmGx6J&f?1?tzD*`eZ9hTQn$J`<$Y zhG+VsS}z7)&hEOZ{!lH8sZZpKn|1+F>YuS_DW7wd#HM%XM3p&x)gX|BaBb}-=)gPLcmJ^s`4XAzrRB!oCln^2 zdqJG;WOHoV=g~iT{zI_?NwVH!J0RFaHP{tg{r4p+gi*Y~b zYBqZu4v3oFZkyW@a66oCv)3K)+08+x33bigQjnGS9lsBe2>SR{vf$KpN+qKF9J#89 z5t#M=A6M18G20T$&1TFT$z&zHJ+9}Oq*SK=EL6z61+{liVs*OiE#(Y!8m>fc;$63( z(zVh5=(_tEBAx8C3vfNQbx}LVKXeQ7{C84!ChfAUn^OACIE;KH3$^_=+7a!U5lutw zzm0a~pS}f|Et9(GvgrNz(5QajN%e3>KGlYq1)!_H@d%USsV)@Pfp?93P%Xeh!J_Mr z9wv*k`V+RL@kwocCl)*LU9>(Y6td%~yx5|6N37T+_hSFknwv-Xj|d&*LZI*CfenI@ zIh2(&7-@`pZ3YooEy7ENW+e+x49&+t+2hlzGPIr}(%N7fUY{`Zw3_}ipaTiHNLEeh zBi`tK8C6iLU#34T98EyX^&&A3v+t10LVs_IIym7H+pc2720hp+@Ifm5lTk1wk~o5$ zaKhjv|A%O4y8f30)aA$MWT7F)h#>xUkeS7_z)2DogCc7R{C^3)XNtc7n0ojI(WvQTxxqZXF4NL^I95_d-sN( z{G^RaQ2Y^>QCcLDg`F%_TDC==z9h{vwF$&%b~H5j0Bp~SRejN(1JMdR95PbH_|L$s z8D%XHCcT`>zsyr@my~q~MorRoqO4wC?E;>G7VK^fv{fGmqOFlx)pZd=v3@>OgO!_6ZR*E_jO;3?fRHdv#D_YD>N29wLO10X6Yzg-qYkf4O!*44`NBRKy(Nyfb2scq;F=s=H^Zd%Al7egDJH-F}AZeyW~a&+}Au)x6p~^3u@S z0&>Za+FUf^@?9c0YD>sj*VW?F+_P)@AMxvXq9eyV&ONLMeyEHfyy&Ob)lMMuhSrYK z;ZmGNqmaCEeeGpO@)F*RRY~I592PYjM%t~EqodLoTsI$t9sxIc6WjmQ79Yu*W#TzG z<^gwJ3Inr%doZB20e3z`3{}f4W%Jr3A79J2WLi)!^ApCh>e&)m&$wFjjj|YxQ_SLU z)ENo7{VpVzE|Ss9!WS>J^J?32_aq?M3!~ zTs_uM?QIHD|4kX*psqE;NzL@y-Qpn&bMa)r^;lXv7v*c4qt>_%Ju(Ghrr!U~Q12Jb zr16|y8b_Z=4or!I>@8>r^|iK-F`0)A8ruc8%rTlQJh8T%EAEYKX6Am|uc%!mUewIo zL7uK)d%oNS3IThfwSpj4HZyl=XX#-`(=D~v2sfC^==>CfMn)V>=TMp)I2}%0&hB>vJOPK_?GJ{d zVZYylWwFY=%ZjtSq?Eg!h9uyLj20;?LJD7>q}VCvfYD+KhxqOkV>@#0Xsa1dH-W4_ z=Z-E>a5@He#G#Fk&9plHy{V213CAPkaynf!9PCVno>$wIJbpF{2T=#shJ(|N$1>ok4;C+I!BQT> zdGRR~ga{Yb8f|N{0T>w%SD@@pUp3lySO9c2vN(G8yCWrxBXPgaAA|e7HA7G>Hq@^GI2`}_N znb({b`bB1xi5IeAo2}FB31OR5(B-h({N7-|>vQ;`4qM0p-^4Z#7FxeV)=XZ|4TtsZ zxU|+{htwB}5IUmtY@C?3Ysq{Nx8L>`GnW3S*ZZSRO#how`#+PIj%%s+LFFy2e2{Pn z*)y$nnqgL|o-;mK?tynf!j+^vU=juXrVx?_V^Lr=6^G&O!HOK^FvrQHc&4EPx&R+j zY8_BH86B$am058a1zi86|51-G-z*-9|H;ifuGBasqI90pB(qN zSPbaS@!Or+xUawED|y08=Av$|NZ^H(s1fU}q;aG?+KFV#4Yh65Az6^O#qy~V-F;}T zCfzcIM09siy3-VaESS5{;6a)2wYg4}s@H^-HAuxxL-Q;ko9C zvs>Y%k0NKBIJ@a1R*~Qn=b~JbIJhUM(wON{yUU>pPR9_kaqPZ~v70LnT`IHNAP-{^ z+u~gFh;6ij(L%Wkjk}DI=~tP!%TqGISirV1*Stnukpj`ABphAUDRE>Jh%PmgNklJ` zqYvHuDWM#R>pc5NT_;D_dwPMrZ7MJpx&3G%u!|IIzf%RKL~bownTOZY^e}Sdmfy-; zTG14UnY6w(m)6^6(mGnFblK55C2qbt9s8k?*l=Fylvd_msk+b^@J1q`h{J`Ig-F2V z_t~-Q-R|*(Z9%WgPbNNa^Rl8)mX}JdsO=^OAqlf}g}Dk_r?oN*-!5*YPa#hMA%=PR zSkUw5{LvK(I>+FTI8LvXIn6nwRWhf|9MZN{<_@V^MM>_0cSzzR7COE-1CDv57cF#r zMG8ct;~Zrh0j*s%TV*DUm3mxUit@VNS39Zcn?Xt$&8Dh`Y z=8~#c(CsF70ZDals(o1;(%Re+HD-VWZ>y~kN47T4^Y2nY$euVqjdN7x16&(upTJ%= zKMga(4;An&+!7}l@$~&YlaJp~+aySppfhD|>BAeY;+yHtlN`K=?awFn(n6#Uh*)e0 z@rrA8_qO~P%I2bB8)~;o^*jhW)1|UCIca09 zwV=A~E%&8#kt3Sz)HmUjvIFqJOs$+CzRcvC-j4PnMNZwIqT5RG9G=NrDcGm&MO$j` z5A>*ioLD%yV0IgRlsD2i!m8=KgC64!nWFO`6e$^ZL9q-%kCx|a^$+N zjBL55cCysH4aYyWX|RB6;WSO*-&6E5jn2ti@2$N^kOpwC>i4@mqX>xaPCh|%?)|ls zMajd%rq6;I#Wyp(@U$T}?W`SP1~AbG;Q9w@FEaxO8UZvuSUXk=z|5iju3D#bwGlwm zuG(2z07irVZ?!IIi4nlFf2(aU0AMGjtuq4X{!ndL3!pQB=ZrYaOn~QkrU+ljGy(Ze z2l4SX)X$~u;1PhM&p11H>EYV-;#&&5Y6q|L@XQYO;G81t_2r75eP@%`+U+!BY+E^tS!?5u&sd)JXyO%I*SKLZw}YsRW1Z(cKg2D4&2%D>8_(6}7I#RD$^5ABl1 z3p|AkUcGO%!;7^&a>P$0^DyT}MK=GD`@r^z?Jw7UnIrxpna4Rf%Ec0CnEcmjg&Z-r zt$D`PDFtH|jUIqZw9zO|Vm3|(T$TaD?r9dUvS70(1(Ra4?vCa&0NtfAg{hCUHA`#%-d3O1-etzmJ3vt?&OWBEu|_HAP{|xSufNXF z?}KLgO@95Nwn@xwXRh97DJV5>$52ADgiTm%vs@l|ykTuea$EU^9`fyT2hV+Q2;D`O ze$Zd+hTD+v(U#$g$9WlD*MEgg>;v1G`IzSpYKOwRtH_9;PJZXqW1 znyoaWyu4eVZ%OxvUo0HBHBa=OkfwEBNXRuWJ1>M(BCrkzgp^h>Ba;Rhc zOr?!v(w2P=Zm(BsH?U6ybNn2<>({z%UByZ5&3)8uicluVU0@0x)V=O>6g08(&dm9I zmjQFoS+}Yy`Qm$Q9mZAm1+i~xiVU|{pQ_wjF`>PgZl3|cXnl|ysW5eG5WcT9jg=FHzbu&rn#JXtPhd6aYNoU!PJ_g^z z?rN`}9&i7vNWJSANc}iNtv)hStEBgwx|;;?u!UZ2RV4jeO0UY#tNT(AJ9IGDs|Pb+ zHeFCRQxJQIJ8ee_qc`PpM&^TZC!dO3}%=)kPkM58v7kEX`@w~gW@ z)wh{yRH%bqqwp1@)fd*h!7vlb=UdVyM7BWE=q(+LZ`f)v-Gz#Ke zOS<2dWXcVRp2_0rbuLlb%DtkWJKk2r%y+}S)J*OV){PgWhj>_4H<%r3a7w%RW>%Vb zr~~;lT=$3;K$n@nYcv=u0`bFhR45bGflPH!?(6u3X>hs-^dE|s$xL+s&r;63Ke>Cz z;x)nvq~k?(=_5;i=fOL!UO8NVn6;DD0jQbrWMxc)JXsk(1Ep*t{({nHoW#g<3RuRc zc&eYz4e6*OlhgV^c!uuMTF*W)!~C=BvN~@o9Q=izEcQhGpvdU-j;ZW}-jvN%1WxHl z_9o-Q3LJDG{naFcI$GLAe~P%OzsHo0e97rhHm=oZxmKm;8n?)HgUmI90QS7=>dwm% z8fjM+`{hR}*CfQ{e!%Xb|5x`+j&Lu9lh0W*%r{QUfSXlQH#|ppl)@Q*z;kX2#LP3- z%Mub7K^R)?y}?>M^Yr35`s~A_V%LFXANj_bpOlu=Jt|1w^5e0>-^5$$e9|GlnR%CQ zJCbEL*Zs=?VBYkrMoDctacZRk^ju!ISPP(YN8uEz95g*Gfec;@0208>Y8va zDcpCpLpqUv#s=)ui9Elu?ji#yM$$+Fu0O3sN78dm-9_ZU8*U-4Sbg@1&DTHddU^mr;w4x?-jMOBuCe|ciC4YWMm&|JjZ%6yi7a2+kJr|vZp(ldDSO7F|V3`KOIf) zRX0)g6q;qB8z}OB%Bfz*X_T>3WlY0qbiA(os%IMKPk)w~mg!GPQSF1h$f##xEl8V> zZ!S$fw!Tix5xaFZ&!nDJkjwAP3MeC8IpVO+=3(%MDL^x4+qp9noOn1xseiVV+7EiE9lftruVRYJzP7Ki zt*BAP=hPm+J$CfRm0%VMkcLNpe9dWts#mE)HSVt)DOStChDU#VZvZSG{c+#+x@X(o z3L&QYBpv_QQ%s7-Y#JxkbM5l&P`7p_CH76_+`$_^8+4t*iyro|)dH_W2Eg)RAJ;xm z*QurWFvMtZ*vIb%VEkbp&sz-HHCH}0hZl={*azQ|4tL3EkJN3GKIS<=L;T{8xR&(W zs#yEwlD!|Cl}{EuT1TWGxL4(?6;64quAlT9-^`|~A3Bp~9;+K|0N{EY0PXV9Vj?QQ zuE*=fY5{Z;(*T8F9$~o<#kXXVP?ihLzq z_H?>!f>_W+uA!>gUS1b-t?!6uX{}F=f3+?oh&H7IRqu!J9WcG`)x9-(*i;KOs%G}C~y^>cPs4Eb~ z7rU4TTkBPHF?EH*1!-;)8;_LI8b1@TLUv+lO); zgL_x+!d_6Y;QN!OQ@$m0guT@4)Ijg_eDgr>4TAwv0Tlv0^4aTkh3U-3Fy4E|pbt6T zTlr1hOKoRz^eKBVS-dxgYnKmrn@LJOM}`hNN^71x85loPCj+mJLgvCj zaUiy+tYyU_ytZWtnNz!6t(i1x0HgeYh1NwLAR89z`V73va8u zGL3|~7wC)o%?d1?K2N6{3h^x*R}Qv|-B@hwJ5;W~8#LVB6fz5nay!HpNK+^k>Lf!w zOwom0OL{!D&r?YGx%SS&~$!1!*1+%VMMtyTs0v z7Vyn1Mw(YZmgL8h1_10L^fg8R?YqW4(gNsXDkJRJVW!pHVr7D~h3{2&nCY2Duq+|p0T}x_@UB)YKQOf9WXn57HX$0 z*Y1Y?8!t8(lOfxo@iSFBrcn}&gR(({k=nkimQ<;$j#REV)(X$iU)mnk$n5u$*j=r} z6T6y6W|t~58qn1&GV9w_j?6mJLG+PXtFD$t+JYjj8qG09W&uuzvat-8F>5v>U#w>t z7oJ@tv&eRFYsSM%^}hl0~}avuoKTDoJMTZk*cXS49^$qbm<;jwAW#YTp+ zad`Gd3dSrvyGE9c7=ReGN_&yDV9wVI=IFz-ttrW{@GOfv{FF?Z9V;U%#>RruK7MfO zO7magTGIZ2Ts$szSzqI4sv-SA4M`2NK9?2Uu%32EL08+I419pr(|(nK4P%(!4S?nN z>bg^6@3d{*Ev@E!eAS6-m+NV*yXos`LTfozF~ke8mC%o@KQVT;AzC>GuySa1_UW-J zTMHfvYA3eWa@*8*?QkMj#cOE*$wgPfDdvL?HUO1_D=i7CUsfgMY7J)VgR7pKmzN3= zI#_yLHAuN;;?$?%8M;wptNrK4b_vxoxa!j9^We;-&j8c4)-erN#2CADV;W?aZv0H8 zZ={aCBMGfG0}t&Nof~BW)2=)nTG?jCX4amC^GsN1CB2Q%>M@R1)6nW4-SnZ=Mw$G~ zV;gu1W_Z>qzP4 zK9#nSJyT*1(&5>v_S}>`1e8FL&E!nZ2!iGjQ$X`6rZjVdjHQF{mq-oi&NTebi}=E0 zAo*%TlILV0`MU^69@Z8lFFz8Jm+DEL^H-4^I0lj*G9-DICCQt~qNnTnw|(hIsC_|C z?XK>Ykr!{ba(cwKq%AqQ{IXbgK{`ZnPy;o5H`Ip=D_MK3B=q2#Q{N5M_g*_gJk*^m zY<^pJEu=1am}NFqm`(W7tXM2dAn_Ghvu0>#(*F9ykows%hgr^c+U(e6l8;B9RfXJK zOPUF)JDcBHt_qzrC)PofPT}6wCv8; zQxeTGFGlJII#S=|G1b+?-;zm9yKy!1x_UwE%NF9VJzTwEWkYWp@%B)99~0M{;OX>UVZ+FcJF4F=&W;KGkbf@)`jUgUi3 z?RBx)Eyd=&3`^k!24GyWCU)t?yo_Or=rVwnvo$T(RbQ^U$q`hV`fTmuJ24ZudTD0@ zdoOciFT=BxvG*r4?~1JwD-?KjA{fuZvx&gdOK(4Az04*8V=Cl{!1$R;;mJA*k0f84 z2RyX-+SM|J=?OrSugxG+H^s`yFBc=syM?3EGo@1se`Nmz6b=zWV@=YAgN%zEN45Z&-#m*aX0{c%LHjR@i34~n- zUhX)A{B}=ly!3A#L*|@5LN-61r42RtMly!;^e>d*RYN_Ghi8UbUZ^)z zf1#P78WSNKs_`>bJ+7q$nni4k(3`b{-ozuS3)mLPgr@CP4cOw3#EM!98(2^28OJah zSfEI1eW6+8c3Ytwxh3EhldGg9@v6y(N0 z@~0R5^(OyGCWToy>#YSI+PQg^OkvvA({nREW{i^AI}Rx8)Njp1)oC+Ftmy>3u}D8b zuL4Ib%$XOZJVEmNspY5@`LN-s(ZBNebvu;ka zLch};u}1@epwHzB;q;1t!|e%ry`f+@==27X3#ZrIE)+#=9(Oq433;9FfXn6c_+2>d zKjgzr3wCGJX-f*7Rvr|Jt;chENXMPzoFbf$VKpKNl&r9k%fE}YFLKy@QCF1SbL__L zFAlfQ?TXrL?ttHC3)rI3WXCaNRSKUqGMJSG%p88OHx zD6}4tZ2z&|M|S^{3>ac7b5x8OI`@*^RaJwFd;7eOU^L*sU2_2sRKezp`dv<&!-wVwtcYi)g~V zG3e-Z5$I6JA0j1Hmtk2Suc+#1TA+&-8Qew?hgecA!j(^i3B2!u-!(! zt*_~l+%GL$A@qtmBJLo#=nO!h0e2`E2nGXo+;tT3`U7Om6-)Dz9ojE_ODMJ;+vX-` z<<*~E=&>GnO>m!`e3Mt-uE^tv1j7-p!{>A zh}YxsI=nuwE8_JALLo;W9CU?T;jqKuqe{73D0JBzk%-srwMD}&pBMMV*&WV^E94D8 zeeu$q=axSv6j~36i_2FzvJFRe{8+EpRLE{~*aJBKKj?P4{9)XN9t_)T4hO{JblSs; z5(fNs7yj>bM4Vw4u1)vD{=)8v*B5|abbE;X@T*;tv!AZtCiHSg?JjrJ=W;mU;G#A^ z4$sEXJwA`m7qGjN`+t5F#+PMKvL~^^(aUm3Qhffpeq{GQYC4nO`_=awVz=8l%L;oz zkIfwgHEvfhf_n~}k#NZ4a{B#tThyKmoIx$iX7>cV0o-%o2zubj@S-ak^13~^9U&Tt zM#=g)&_da=?ADU;X>G+)6@B5T_U(Wr#{y1jSx?=!FTc>5Dl+|v<^9OZQ)*fi`a*7} z4Pvt6x*0e4j(hEW&LBLZ$6<3g3DhVrIeppAi<=cjeGzzXD67Zka)&*>0E`khK?EFj zyE_^pYd){fOHSOlWTj9TbVY37g5L}AI>M2l0~YA=*lppE%Wn6RIp5dhDfShz9^OZ~ z{Y=g*4pvM~OLHIs@DB_R8PX_%CKjzD@GfHPAM<^I1n3wXBqn}(d zrCCu3-U3Dk3yb2CMU3HzM!lH#JRry!V5E0Vj{Z5e2@?RWJ&WSbi)a*j>W&2cE_*l{ zgfsSqe14CUz;5%Bue`cst5BQ;fsj0pWgUCkQahPCx_)30PHwiladx~f2$vp=gabj$ zW{4IdE(8o=o6L5ZplH|$_kjC?!ahu9&Zy7f^xANZq}_*?!(nE4e_OhAn^5S6#o3|( zzs(+U`JDkjraNaCH@Z24PFpBK4y?T!p7McpTZJO)(fu+t*#<5-e_dZ{f1Svqt=1LU zTpmxE%RTez)a2%JIY3!7Y!3x&E^jF6cLeQ$NXQ!udu^eRix(PHG#re2L4eok!gZ{; z3CRvq^m^O~TEhP1n%zro6BcBVmtAXAh;yv;)vbNoVa+@*HNlOs`uw77R3TRBOKq@u zFMl)y)$%#rJ{Q$Qmk;5To4Q(;JLE~)`>&kStO%i#$BPNTg(=D9kJy62biIb9A+a2{L890h1#FVnROr0~+a;2)IHBCfzV6s(&30EQh9IF2w9c1?+U8lb{!&FI3zU@&qw`Dv?)~k#QGc z?{)TUgMQO{T@WnsL<7+%;((CT1=WMH!D~4~o^UXL(Uaw~S70*mU{3RS!F?N8OoLw+ zF2=EYoDqchA-|Vk%Esfsp|-!gzEdlQ7h#64%x@=i2CplCFR@3Q$W0LLhFy`U9~8la zyg^UI6R?G&$%RX4Ol*vsys#D@Ztz%mwHiehMLcl!Q3R#|^anOUPwgHYIOws5 z;LD;)ewJla2RSgmeo~?3paGiK*htO))weB-;_QCE+Z*<~JudidpBsJg zz&TYC$F;=;hN)+9hr#-2^Y?A4EemUqG%K|Sjca8 zc$Cn~h3iLgX#w&^Th!$P$zdA;6hykXlPc=LY=y~Ju{NaJNXkM;`CykJ_?IAJF(heT zuixj8?NXkmvkgrIB$7qhMxN6hv-I{pOIwonCamk93)k#-mbnl)P-BBDpc560ChBkn z>^AT|?0}*HH6Q#jC2n@J!iXP}Fnlz!H8|@43^M8uc)bpnGX$oPZ|4%#)-0vu2@p7P5f{$PR2#AFiNqLiKEZTgdJAK>OC-t;Au4 z2y&55dp+TRkEwJp6pA7owb@`&foSrZMKyN_y#h`g@ab~6f{>#Np#pg1ghJSyIN{Ti z9DT>DUkQcQW0Kud*PUHtJ(y26G&Y?fi}nNqAv-h<_7DjowMH4k?u~dJn$I-WNKlj+hIqF=V9Sl*W@dUcW%a1=7a^JG2{=T0^troS)!ppDB=kP z0F~TZybwi%EThV0km4+(vVhn|+HbD!SLC!KON;|?b9vf1FND?7CQZc8`ffz9Y`+}}|?DnAB6LotWE)-e9 z&Y)e+?56*H$rhnF%dk;4ofT&p)=k#euJe#D1Mx0h?e>0`Up?Gr8)mZ&zW5r*zzYOi zWnMCS@Vc(Jz61W#0(*2-o~Y<$VWYx%xHNFH?6}H;^f#! z$Zf}*98Rv;bvJ@X#4A>U3TUS(OU3kib#;_19JHy1R-A<(aORQ~0}F8JEZHu9V(qT5ISNe&nirCt&DzJxunvIqh~yKIW9&#On`7O~@s zQNP0(4kCTSlmg|1_ryHoaU;`7E-YAwf}{1I2-gE2)mIc}8P!WV&fRAte|&_T&4zf+ z=79tdW1v`vQVe2NWIRrUSKgqKgN`n&N8pICA8{=L62u*-iu&PDkhnwU&L|2#$vvBP zJ}wkONgaMvcHD@&klBU<5yXtlI5A~-NTB1wF3DHg(eTWAV4oawL5r*gB^?(KJNf!x zed|K_u!uVpfN=pme<0us1>Ih|4F%AkCx8oEm(#%M$t9EyS0wCpMEy~C4KGRy@V<^f z6v?s&iX2MLsUtAAusaY0<9%U2<}wtN{fNU5grN3?6ehp!O7X1l;a07#NKpq6pi(a=284$SD#;$bh$8E==e? zB%B_fJ%W(K>+(UnXlgwAqnhQy0&BSh{941ZSu0~i`*s#yc~rwHa#>SFkk9lb?N40V zqA(f>yTbNB$cbsmn(0I|t@q zf-C8;WTozkgKU zs>p@17BylQW?+Q>@a~aN*lG7f+zy-98I_9&cQjjx8Y)V0ZV>51OpFu(VL8g$0h^z$ zKsbVAQpwV8$yd&eZx(uaY5MI&(GH~^7gjL5SPwuA6_*yH@IbzOn{-p6#w>%&HH1Qx z5v>OP_U9!IW@JSO3~Ujn9Vsxlj2ct`g-917#6ZO6gu7A-`!+Dy1EmLtQBnwoeOO#U z#U>aGc_N7E`4lbWc6n?;EN&p8MwaQ11W*z~VI756kJ}>`Qj4>UDi`;QvW`ka-~HFt zv>>bZ)t8jHJ!K9bXK~2c;RwSHS`Pzq&lX$eJEInO#IqEJSJz zQQ@L%IBS%X{U~Q6o^qnnX7?aIK~9P=*%yew^}t%7l0loxZ$mv9bDG`h^POnz zL8BcLn#bvZ7!>#CwgphnfEuD`j361|4Wbdm$xhJi2t{S@FO%X!U}+BqJy0G9Cg6`a z18&Us&}76RZkd!jzFvoFtM$lkviIQK_QEU!v(zkQX+z!qGOuQCL%D+%sBlXsDkLcG zzz1U~CG3dU;K}VuaG&LJby~<)v$LqRq;wX9=*vn=b#KF;TCpxn?d_T=HK;gRQ$-eb z-lxoMcGTvhKmpYXSR2atSQhpB!^lY7A-^wqU?*MUMG+hkiWdq@SE~@KQz9MCD6(lR zLHlLlvIVsw=m4?`dd(mv7_c+o!7>3Hx-E=FYrj*895MS@4J${ES%-yaY&^jMBe6J}*vLr8!HvjE)y zKo{JxGr)r>3&w`UW=zMji&N|Th_l@I4~v+XuJESY9|>cr!-Gf+S8`*`MqRi-BIEK! zap5E81{cH#JB3XnICEl}Mu`f`R!BOtjIG4MQE2AmDiz`mR60=J zc0uugZWshck$Iwe6;AHWTS<$LS*{WXZOr5lPFhP!w{Vt4L3Pn&7PbXpamD1RVJo^6 zWub~->0?ll8#@tD^+48))GUaw5UAUo9#lk}QD|EdF)~Q^d(rH$N3iDui3=t}Ec9c6 z5s4V;NGRCRs&Z1E7x5F0kBS(d5Vm%()7Q85c z`NQD|UByO@1MS2jD`HS|i|s9lW-#mcu=W9mWA}QJ2Y!APIga(HPSO$6R<;44> z`Q8xLB(TkfI(OWRgKD-H8*?10d0F2*oy6KaDj->eqAMOE?y=HF-C|q7npbLBKffpo zLCms{>Z4NcL!jtz!3MBIfvpt25Q=mGEVv*@dF^gQ%w8;LpaufbBHOlyU|z@|P)l?m zUWQLk?isrDcA>}vMUA+9j-V}qhgco8QwJLXZCI_cAw{N{oNQFqqk0j+QKQN-EM1sT z(laL(a#^GpMzVsPNI=2iK`@9C4JO=x>>ql;C7`wwgqdN}3Q|$z+eqcmMwf5Mo-XV1 z2q&}p#NG`1$4Wk9Zo zkJ6nN=^(ATBjWL3sR=8(Kn%4EY>320OSa-kcM4*=2sT<^s~nbUP`3;CoJa)x$o^cZ zjT2a;4ZE?GkXB9u)TpouM;9U-sFNWe#wJd=Bv+heRF6_u%rYw5H8J|zS7{!Nq2zs^ zD6pWcM)v_=iNpmLgVdj3yJ%jrxHY!G6}s)10Q^pe2fIXFZkS#Gs0D+x%pLS1AHz%} zZvlaqbNG>{BIU$8sPILxO%pCM4ADAWsZ#z{p)kwfC0GP2c36+grYyOTKgMm-7xHl# zxvk7&<6=eZC~{z{6-uHA7$bHcvV2rLo#8O{dDy*VHC=(01AFTW-uMlVSwyF+h@ggN zrLH;~MUZ2~O|`6FP-ID05No4rmrf@BEu=s=zMJ^?Zeol5%g1*UtGlm{?yO-v7R%(CzH_-^7Xn|qJ%Cf4m?KE9h+do0ND-Nf=PX>~Vo z&CGbdcwVvj)gT>=4ngi%8J|*QeP*;kzP0u1Om3@;&nepY3ywxs&a2KmF8L`k=g{Un z(z0%8S2Fpscy-tLCa;r{I**$a4?ClE%UkIy>sBOd&RKbi(24zPY0DE%m{55${#G`w zAc0>Vd^_ic;#@M6EbUGfUm5S2^XacG$(6(J9n!LwkbA<)AyKk--ungQ{w@a!TI7mo z=|v{>Inb+FUFAlR44xHtx5&fA6f4J(4no5aGNs@^H}R@sa{sJ&$-w#!c+lqBnUQ%z zu8Pc_b=B2%l~3oPNxD1`j9fls=G?j0MCR62K9)xg&5GN5o`>s$SGJpV&DEFBj9is^ zT0vX8k$-eM&_i_eAhTB_dWeI1keb=?0bSn1B@-*#gacPyHe}`%ff=;3*LsmhXUF@s z{2GUCugt%k-1c59Kc}*?nB1}=(RBeRJz-fTD8ye%-m*$c(lU@j|58GhRbIv3p|~$& z=q>|-^fyIsStUhhS)~IPLM^Kt#QstwmSJ4_myWs&qv7v0l`X+zdLaKT^fYZI+Xc7M zpW`un93DE z;}4;~*u~uI=r4ACcbxuWS0^{nU$1l>fWHa)lif4YNPn^0NSf#`cJBFY^w)Pd{QatU zO%4={R7FE)k`8m@qorN+5!255aRm5*4X1%P!Z=q9A6~hgI3$AD%WvyJ?l`-;8L^BMye_G+KPJI9bx_fs+ONAUpoO_0#^})3?9DpShK{Go`4c zEz9OAD#9LB?kpy|KiXQ8OS{Iw=(S|WpsGR{h~@&$ugb(}T?F$e(2O z_Fe}%lEmV8yUzI~DmC;M24A#*tf^1TFIh+j6M%B1_7$1nfhDsrrSbc6q{$pSv9G+pgtQq`<&uJY z^Q2LmD{}B+GBKvAR3Mk!5Pi78J z3z;b5^+}}1YIcR-+ zsUQY>%Qvgtab;B*#}8K~7%A_&ZS24YQeMPB1QVDOp1`hxAa?r>uXvq|TK|-%t4yO- zE|0W32)mv^(=)=M9O~!|b2Yc&px%m%T=q)cdEW-3Me-W8eyP&8zafLe9 zXgHEa#@^5{(@Z*N?uf50GS&f=182#Xv-CRmf%7FdMN&0urV$RVg(Kk0ozMuAXIDHB ze_A?|gVQ^RRkEabaHg!Kd`o&T715Z1sOGP%>LbjQIbE@c?8sd_R*LeRrnmKQk_zFO zEGgV))SsL+zv_JfV7#Cf@Zd~Pm-W#LD%8j9IwE5d2$fM5@@@xS1{aVqjbvo*)RK8W zkEiZZqI+aA)0Yyd7m!shsCuBa@Dl4OeF0f7BbTySmeLD-%QRqCJrrS*Nk!Zm8G0r zMXsQO;qEIdURU*ykSthN^)Ep@iIKoxJC^PvFV%N&00=}^l}<5 z%c=S0fvY3e9hsnhQU%3~ysxo^C`MjUBp6uv{;7*f1)U791(VJE@myH|vJCr^?Qg|D z6xS;7sy|-E!!t9VpTV5DXtD6e#*{EyH}Q?h@^|Cs3DV!`*eUHt(3+n8Duyb;CK zi8PdNW^qjaz9jPBxLXS_r#TJlSKCjN%8dXfejM+u1<(dQ6%&n+qmg2MI#SfAg}uvN zvx@kZv`OF>jc+O@lahB==8^w=62IIudz>}-MmK5vH2#D%m&cpU|FgN4bnoO}pT#fB zH-46!@Ok_)L0ZlMvH*b7@yirK`3__q=UdXlsl?35)bTULO?|b_eFGiXBv4zAXV4kd zF|_TPJ2 zor9ie$DPCdNXFPFUiR8=1`?|{FX&|$({SHFk14Cm4V@b%2+~X*HeE!U!#6W^nc1Jz zbZOXQ25_Shz@hwxfEGZfUi*x&W9r4@o5`cM4b-cC+x>mSt%`Q2j%E`@%S634;2Ec0 zo4YmmQAgLQ*KWQ8=4$RCliD@#u4Y4jv&_|)2BakJVD5?Zvi^^J7 z&`ER45?0ILE<*kicxY4e&v^>jMZC1;NDKYDdNq`YVv7MR@#<@kcvT!!M3aM+9B>IR zQ;Hk*iDJP3{RPkItm#k&%%(mKEk&{a0BWA}6^UO2wxb_UY>26LbmD#B?7|aeOaXeX;m~0;+hj>nP~kM zJWEelWY)TdnE0#$57nPE=)Uo7cyOlqJBZz@(flpYIAhH>CPALAjGw9GEvDodR9fLr zWio%!k@+K!r>@faolItCrPbBg(3C6Wk@7@CuXLrg&}jC$MUhj-L1v}ac7x#uY) zeW~?3YhC@CVy}jDP@WNEj<(cVv4m43Yu*W`F@jUM)5(L(HDnB)r8Gq2JBDp;XqzL1 z$=>rCrWwxnZzu=_u4B+*Q64{uvW=J7h@&pMR=k`N8nbybpVMtu!yr^7 z`2jorV`C{9-My*>IlQ!PsI-TF#=`5r41|EV+B)cABX|~VTU&SYX3!~Zlr%y3NvoCL({WAw);D;T(#rnH7aneSR}kBusLkV~ z6S)qk=MsO(5b-yI{(9HdnG$F0x+aJxDM+g6#0VZqo!j!`8M?}JTW>txFr~FPmAM_;CKU+{#P)^6uJ1qZ+mdfv;c=O7C z^bV_wf+JNG3y!VQacrfYW8AvXGMQtUaWm=lU6m_2{pE&fLUPE<4Yvv6wiC^Ro;eC; zo8|7{xhC#yxGP6|1RTGr_H09M_kS5Mm%rXnkR!gx&^OLhZcf2yoD(OejcGB7Yao%Y zYNnbZD=bOtao^7%g=-c)!&L4TH7s>m1v<6xtjPY=6t14;sb`l0(y})~PiZ z!BVGY;+@I=_G4||B(}WaK*JpATz)iG$eYBqq`g#f^1mBgq7>vF%CTi7-vXXZ5C)So z|J$%y`>Kuyn-x0vvB=()Tf(JWZ|TADiv^bVW%}kpr05gmQ)>px4p#MDx6*!0JoE}Y z<2>}>PaDPx;#Q>tHLKdhcfdS!?O?r*uNZ9Rp?SJEL|9s7{7fbBVRH|ykot~})Hiud zb#D4Knbb@-efzq+m1-n#)Q@50Mw`2M^IJZYf$UBvV3J!%OBE zoO5#py-9M4wSB>%$?e4sRddLMMr~^c|=RTdP`27EVEU`rd}70i?2H;uLKMIyYFZ z5XWO6C)j*T8Ylc>e(==h7)~3b4kE7%s4f+M)oJ<96j>8L_=AkLvi4M;mpCkTF4M-T z9m+WHNsC_{E@bG^4@1nHpfL?{hHd;zrEe0Y&p1p~=p3scs`~rUJfb=$I1l{l@8IYGk|ZL%Vui_6S1>x;_d%=%M=_f5RhOuWC$+zZ~N;B}AO5q8H;eyr*ColWvh2hd z#H5X0Z?P8Ka=qY=!9g~rBqyiW#ukwri#1VKTD;2k8Gf`epz#xG?;H@DSYWr^3}-104;!StOG`4u@u~x zSk?SLF>-H*f4#9(IER$m66uxoi4-jp?^c0lun5Jwk?~U!ZOPoxi4nr(avy4-H_%`vte)Uxd}J=-`p_p!{jOgERj zq9Sp-Am-Z4J=~BMa-7%P#`Fwv-kP%#ZAG!0&D^88GhhnNPTVAj18sELHFjg8QZQz2 zOti^y-d7oV`?0lPKGF;37~EJt1-*w6Y|=c`*s_ysFokvP9OuQjoZPEYvX8rfI?*HNzP&j?8HQ~}_$T^wR(yJM_($P)4 z(F$2hIB#^ixK)8yJ<%o}UQRh}dQY^%_Sbu&2&K?0+G3Qxqoedq9#fqwdQGM@(-l2A zHBr(+{0Zi9f1RW zz%_~9qVxL$EAz;J7E?jk%F~J9zAcaRSf23a4DFLkic1#t7O&__ z)*O1UsKxErr?>K~`rr0X5=ZqX-!4xK63=&#nuFW>51xP`i~bORB$E8hkN-cyft2)v z{|OHH`+Yj>vPz7FzgJ*?@Ulue%(BW+*i*Hv@_hD`_P(r=_P4C^BglDKJL&MaxeSegFSMHtvcR{*m@sml`LMJSlwK_6_*lYrr|#94*tmx zyYUTuE3*I511-tl&$w6Wyn-Ud+!p->|DE}DxAqk|IJnKBeBEvKkbT{K%^Ppn$&@AW zwxoDnVwCg{H~BiUlHTN-nJxa( zl$a>K>`0EkE%B6~1*6Wd7Y3C>u``sfw)w%iueN^xa_p<^pZFozSKHq?8+-x@y#re9_=Juwj?%c0VrcRl9cbYM`XuME(D3!NyAlKZ;58{f=Spd;>Rr(bt#09b^TCU}ZWux51m>+aVc zN;DTmyNmmXJ`HwBCK%&Wsivc}A5~o1Ot^I}`AdJ^JrTFi@}GBCP+}A(tl#7~9?#_P zo_!SOc{DLi6lW?OsM%kX?|@~0XS?)q^mw$;INId$S;w`ciN`ORm!GkaX-TQ|OG^#di;p$?h!5%5yNlucGwc5;dS|jN`WK3`YTq#A zEFWXDxJQjw6m6-M@uQ5+#<58{j!gi@W|nsbrN%I^Zuv&y$5!GMZkAYcA7iIk_NI(d zrQ8Mb>YDwDs@7sPxQx8I%xKE^Ob5d44xIQz^*hay7k!iXx|w(@qhL}`qb`0^x*&6& zPV{Uxpc31obeoN5$dVGzaWnV8eN}h{18Oy((nL9{Y^lWc$Wp1xcyI@e>Os-$sW^_8Ug8`Z_+AHOF~ zAx(!7Mcns#bv}9Ik3=^z>W%7_6G!roU0$i@g3v;!LuCU-h7)f;v0r{w`vv zM_*}58AL^i^1(}qj49UihP_$6lB{mg*o+K#tGa;vPi!1Po)8+lk`LajZcmRjfc6HyQ2J1>*iB(CW+oLaQr4byEf#9?6R9{R-YECx2 zSKXQX(Y(<^O5d$6C2QWT?n*-R&rQu6JCaA3+t-tWOF## zL%ld(I7?$?OJSucoN)?Ks3^qf?RIVlU9QKnXvXU$`}(JdZ%MmERa3p}BRcY3ZsWDm zRghrX5zul|8r=~Jx_oa(V(VjcmH=BnQ(VRPk}i?2qyw8oNy~Tx=%4&so5mr6xLN5y zHS>*p2h7aZfKA%P+hsU()OgQ7PZNg-+m>bgOyypMj=CeU^H&Y+{AHd@&EBG9`^LV4 z_=SZ9o}%wdY9UgC}K2`@l(!`=ytu)YU|RDfsTujiaSE`DUizFZ;-p^2Q1+ zfKI`mHB)di(_S~Gkz^@fEtJbw^T#$mA?5gaWa%k{CvYvC>fbZ2@iLQV$ss2H*1X&u#1}h<7R-sNU>$z60jXR`~Va>_)U$)Yyz^k!x(m&r~{pl#kE|T+sNI zS)uK$3mbPxukmtVE3tdI7LEh6E`mNAKTCddQDah&zTg1$`rJbK5}NNoUafIn-1wt( zhzCutUkJm1fa)2Tk{t4r{g*WE)B@;KBiCpwrW*X{Y0^}dwbOlLPE~`Qd@*2{Rx|oi zv`jRkH=df-7>5U7;as^&hj8Qy1Q;b2w^wkxdo_c6uN&gvfef{7faXD-mAY zmY1}JXh3o)&tK+w7r1X3A=+UL|Rab3?RtYGaBo)06IbSIz~bD z(FqFEt#Z)87M-N-<~gmKuJ6J#PExN|HXah6&`IiX9-c{RTZW|WqLS*FQ+Y$iaRv&z4>u28#_Bst4qLrx2?Y^!pClIJW+a@Z>F9q2QQM= zEf*JSA#{%CMujE~4o5IUEX$O-dK^87*Odq_Q zGlGMp9!L0^bPP7~ha!CfJuy9P^7=m8`&sKLLR>_3PKcHyS7wpw_dHT_HBCy%;Z!{u8tiP@KVaLWYYGua%} zFRebN2$~quM>4Lm_v}yZ9a%)_$@{0m4@TfzMZdTeY@#`wza*1KCamE+4Z@L0RIInCo?88AJhrbLeT zIK$aEa5*IfW9EO>$#M}FLj+n~{Xc7=T(1{Omc7kJQW>D2M@BFsE-+E_WMcf{Uq$JA z&4}6}#`&q9I8~w3Y>`Qyit$`5AD&Q@-!xy4T94v@bybpp*#Ld52bf{{WqmAUwnIvYN&?|w5wxl^D zMWVi>xvHq?R6)FPl({*n=YZ76eIQxbTXx@Y^7T&-v?mjbo92?wdN*|;6KyqZ$@Zc5 z4beU*5$i^oTis$s?y0VmH}+}5`rQV`d}FJ-B?V(Mm={!(?8qa_)7n#)q?b)1#IInn#7%%`l5XN{F}}s4$;v~ zOyVb5*2ZS1pZ-5s1Ut^dc#e@N6;75BRj1`K zJfgbIQ77S<;k3NW)^vJnAwYW?LAH0T&NmD}lZuq4o@6#PPdQ1Rnop$z>8IwCPO{X? z5ft&1ZXMIqyq!}c)2UfuTTIKgwR*O3)AK5sZ3ffx@KH@o&4nGbD~kl-R|T#6^%In7mv|<`82T;mLXbZYU6?)3{gVglQt*!YZAojh4?7(!8sqcbq~mKeU|i@GY6h zj5qtzT%0#r8+Kex@iOtTbMQJSR z6>{2R{7jYTx!FE57kBF@eU!&k=VTw2Db37%E(tb$(L#K0w0Z7xi6Wx6N1Hj=H%7}2 z_6a(O-oZW$ZdpwHNs9EJbFk-gI%MHs={M$LhjOiUv@JK+j@EdV(hf}tX2<1ChXrwP zxp~Capx`u6?gQS{J*#Oha_VyPP;6rcOvzPEUkPFb!`V0#+mV7X3&r}CGvSDx%Jo{? z8Z8!*X-QebOXe6{Yi&w2M`F~E7#TJDj(Mq0Y>O?#wvZQFe_Ynv^u2h80# z^~Zqjc-!!NI)>h+pSRYWXDH6R=2#z(W0W~Rmr@*NgJ!WNWto6$Xy+p+Myy%Vt!Z4F zG3FNC9nXv{y2Z^+r#BZykR4Yx@dwYQs}pUN?@|477cl78ZfV-sT&Q4!({q0LgJ;ul zMS3`HYx%7Drb;mxt#4W&3YVn%$vAj6-I*iRnVGeF#>m#*dyL-NyQ9Uz+6yS#c$po8 zwYN~v^I|@rr3vc^ZX8+o`aOB%j=9%2OJ162^5sZtG&pDzxzkg9b9mBG@{LC!t8Z_* zqR6^*JVySE`lJrA=H#q9n#M{G@CdLK{Ow#zTCbAA`lkJ&w1;~r2SLyAEi4GyGlty0 zp=rDJU0o1#fkGQUnCvh4mh|xW#e%*|bSGTQaX&ag_$Fly>`uflDMlvY&*ylSGKc=; z_DxOy6I+edR()HH<=~m8{4PVaJ|AP|DUI=$!yn^kDs3}N&bFX5ihc!2HNEukNa~!V z6VE_orjvYrTT`T!c-~mkZ*MAQD{?uTtdBP--*o7XygiFP8eTA*4x;yx&asvjXQN2- z7I*YsawexZpwYlfGIlM~v1^H*U0hmuqs%UYv=Rr1jchJ%9BUr*{9QrkPPq^GNSqz^ zW^?gx;IUcNS3M*l4TH17`ZO1xW;h#9ULT~!(YQfwWB%<-EaD1CK$}k9Xf2Z(y-be5 z3+_w_h1qbvv7RS~zSwlBApOb@$QF~>`C#HWt!`9^zm6pfUTV5p3!w8OKc+_JpxHLx z1ur+Pl)7s=)wajE)&JJCsU0! zc1h=_U^Fg?+vNN)MnpUIu{X@v zLmf$waha8EGm2O1D87Y9RA<}EWr{Oxd-~T+%bJV#oNR8}S1SVAayB|{{84uiuIo}?kiF%WNF-tY5R3ddtc8q&bZ%^nPyjG|~Cb~gb6nb1oi7wPCJD#h~J5JW&liePUDymnOlrtIE6 zySIBme82yG{t=Ivd7gRtJTp5*nUmp1??3$}Zh8OdYeKLK3!jmJHxZN>*-;r4(}3== z-(R@q#82HU`r|6p_Muj758?Vxx%9^8WctoR%!AD+Uc|zl5B#0^LdiZ6rS$<;qujAI z8Wz(tHtdeAv_AZfEftU^KRM;11t4Z~IDM+{hUz6tjP|lMtx>W8t%J0%HS8xr3F$>j zIAs3LF#hnJW<#qv<9$m0E215sJ!ZRbkE4YbCFVHkZ_$Rbs#uTu3PdXoj4M&5#^A4 z3xczde7TP{-#XvNDBsd2pT}hVI$1@Z=&&XR_f;p8jr$t&)_~Nxc!SHf*gK$PpqSW~ z1r+c~kmAi>O6rK?C}!n>z+eh28NffW#|D-R5eM`&P9VP5qS+BtViLzN9`w_PA6*be z=|gm1zOWP8SF3~uq{KsF2c^xwtiuvTjI#WH=OLh1!;++GXf2hqYv52%8SWd|ZkXo| zs`=o_~GEg>blyikd%2YUKucH6BjkrfuRw~kBt;*Xk@bW;Op+^LoiPmv)3d=dsr z6rOSQh?2Ecd^0;!gMTw)m+id|$zlsc=Rk>q*txhx3At?V2B-v=?R^c4m22~E^yQcB z89@DI1SMUzrv=ML_4@(sv3}TPd!!$B*`8we4JEljX1Ls7iNYSvk1WYF3e5K+OZFR` zlX=-xaxjRk_ew?uaI(wx7)`Fr_SnDNFWVFQ_QQY0l*D=!$M8G$s{cg}xD|%su)l9K z6VE2%{MeG=)w>h!3&~?P8=eZpk*1Oc9dcvHwMSm3`PXd(F=fnHM&i zIcsKzsZ+B$Or1AxLH4{3S?TlBJ7mqBnlpcUZhSv}4_{x>SwSwLhy10)6y%;I=Wq&g zDG>#%kjHSQWtw7`GFLoqwJpIK^Dovoj z*wW@i`ip!SCin17qCeSMXgdAHM$`=YiWNw8-jkWRLXsNFlqm&W$aVVA%T8 z)ujjO-~oe6%+BvpO6m$I1oq69y;`T1^g%6QF;hoKfBaTzNpCfPMjiF^)IpZ6A|M@# zSY<6XAXX_KqYqnHyDmOg``IWoKt%!(FwlD#@2D?q!q~e#q~sGc3KkQdMxsfugt0TK zKQ0_rvPIpNvJ;^Qv6*`>%!A0TKhvS7%EU$enX`hc?-bYw9aw(#-PQLm{#u z*9l5M>&h`Dxj_bX?Z%dTfX)LrX6_*hX~|p!DsX-|UE#QrOM>_bliWaH3~BBVjF|`( z4p$hGt!^x_I36lYuah?~Ygw12^+mb{BVZ zqIAQ+DjisSw|jkZSaoVi({j-!3fQLrVZlBT8W&{9~;CN7Z|jx@xZ zf=fqu5fB{S*Q>EFY(sko>D49P`y5FOGeJ|WNUw*KUP5J{fmWm+a9mG&#>MXRff7{u zasCii+Dr9H(L2jbY~rDlE@M6d>C-_dqHBBu zuM>|}PA4ElDvTXiJ(l_GDrk0QM4sX=|>_Z z?KsWu{p>zSJx+I_R2z)biKLF;A&cAWSc^})(nN1@l!QPYsE0!YY@kjWq#dXe2N^B2 z>2tvs+Vtxr4wI{EuJ0h9dGwF9fbZ%nv8iDxxi+~^UR{um7o49#g{DRwAcPL?IRV`qNVi>Z_`%{_gY}1hC=5{FopzpRK zdvK`ndoDNkk4_zWm$nNOe6WyI>UMfU5z7!sEY*^YK0JwJhuc6$PtntMmEQnJVzGLK#3kI#(yX(@U1m5S$p~_E?M?OS=6$L&L3BrkAxvqPHv|q z6ghn>(KVRkA!ho-RC2+OkV)a(PD?0owWKrE3S5tcrIV2`kHW#z5(-E=7l_JI0egdz ziLLD!1kO~)5r)aRTXzGECiJRQQpG1EJ)Ow+16?6mBi#|=*~AAt#PN5Bo4#y@`a03R z3=6`mRp={C65=VBzRrd1{aX+&R-vykZg8pf&5H%$b7OsFxj>Bc^|G73Y)1NmvVD+% zGM!5MAp=SST(+h(3B;0s6y_xEu_U9Y^m2VMGKEc{z;{r^XctIA=sXEkOhDXCXJP`w-2^Tsoln*yt)l~Dq==2LYf zgBUWwNE2hVns|s9a?hoT2ZRns{`HNE|Aseg6xI}d7_B8l&7mzpvz zmM*R?{^>zYE8Sp*T`B#fnurD)tLbSMjFFnY(5mU2k(&N#=y=ZfUIl$&gAu6vU^c*l z*wJOMLF}0Hd1+;RanxWIJHS~4#lBBULKr^SCn`buX-@ZCtWZqg9Lo-A<*jNV~vq6R%vzd5P{<{iJ%8dKK8mFy{^)h@3|@JS3^ay zj|lA0tKi5ooodel=3m zKMftPP%;0LtOMB3-s5-`^gpPM4DJ)Ah3LQ_RYC}gB zAwV~Dq!T*+W$1X#Wvxv64=JLhYIX4tp(9^n;=w}40nNT6 zd7kJtB?q?LEKNJl3{7K-*HP5QD|-X03!U-lh`k=>na@f>OyGD(_-OU%-X+zAK@`rz zJoB6zT$6A1-mE5!qj383%x_&FM*50P(?*a`!mzII{L={H<@4|nWHXmKNInX=wA>>I zNj?^fxbCDfe|)M(S$*dlKkfCaD^yUScvuuc(sr2gG^41pFHIX&3XLRFKxq4yQKgzh z&%aAZF1s1)2ZqLar$$*>E#bda80#*HuG=nS4e~E*q-i5?ceB(FjP!9qtB;3>EL&X)d63!6Eo$pvE%`wr%YY%;$kKO+QDossN#+pa zq~s@w-boyXD=C@pK~aCX!SJMHHCL4GDnN~ze1&ilPHS7H{|M4}0#33Lu&=)_Z5-^r zboEa|N}ZYyA5xrL+#sYJS^9lhtLowg z4_Xxw*XlZ1tIpOxmTjyq?(v|prfx7D@0I;XPSkkNQ@jhtNKa34J%JUlS%lO7Np_Qp z9zGO(!o>|j(N!)g_fVALwXa2h_#2U&Q79TMN#Wdh9ILh3_c9WP4l|A+^`s4)3QXsi zeINRYnZsD*&>bA3WSHVD`$BZ?!0JL^)p4UGY1vfghVABrQk5beB5r)^(!_(LFlm1O zJZ|iE(-Jn+5>H`{deG7+NqUD|TH@;}uX)f?x*H5nVJ>>m(li;yKui1Gw1f?`^iT7b zc~r&^xnfXbIP(Y)G`xp1k8lqf?+)5GxjwlwrL6xx4^yC}k{E)A8wHNW!?l6Kn-HNJ zJ_SOH%3lBZr{w_R5 zBV5*S?fgB(NJRs+Dtd^JB1i;1SSm85_CF6Puej;&q@n&stlQ^TUASVbzgZHwAG!4R z^`?FEsteyM`U9s<75x>s!Cfrgce$GIr?ILmE)XMCU2;>^Nh4ML)41|774$!eE8rvH zqj<}c`=W5&H<#4`v8DY8gV^$M$-djo#C{`KLZUke{zsC;V-&IecjBJ3ihm~t6QuU| z^qze>v&1%pmVX&rPD(UAL~H?~TC9i)#FxjpsC44X7q9Je1c_Tm7$+u9=?unZj)Mf4 zfUEmjH4x22zDA!CzH);(_T#>_LE_O7#)(P8x;!P{OhpW4?SQ#L%3Ly-v_Ed3j(J*j zJVYEhB=PWIainkE2aF?too{t@^_8KnczWVB(pXn1k_;aiDNRMyOXzB16&KMf>Psigl&AOS1oBS&fzlwn*_?g`2-LFT{!aW)a0 z(X3{!B!n3wjgphxk=g~8VN_r`@gt3p@h{`YG>M#th#x>gWn4lac9d`l>BNp!9nJOp z#N!_9@xDZp(`An@cQ#+}6W{S*k0H`QDg~zI0Q0X%yyC$gyUQ>ddjyOfBjD^#A%e%RE@eE(yk|Z)(g4c|~w{pxTF=+q}n`~|? zel!3Nnrv<-E+2&#Pc{$evxW$_AUBEZD=omy^cOqe^c4NY zjZzsQJ`GQL^cBAzg&RL^?x==h#~BEf>Ql9_XLgdxdEs&M zQ~~*pR;0i?oVv)o4Ee)i*5P~8jv(A~u{l%p9nFsqs6aKnO7lupuk1<^SOO$)=n1n0 zb%LF;Ye(WiiPBnTtr0t|7V5cCD8CkA;!^V>ZIpisA0nH#I2G~$WisUf7C#nm8KqA-kqTW#JOWFWc&PnwUT zry(s&bh|-`f=L#giHpv2qj+4_T=d8D)|zwB^8g)YXX}oQ#;3y^jnOe!qv5j)=M#3r z--x}u&OAUw??F&@I!3YEZaSd!G`RE44d&?r`UZkBdcGKqH*YjgMPI-gN>6@nb;gi#DNr!hy?n>`;4MdMHA3WvQpFBj zqiyD%C>$2ELpl_q=*PPjD zE}~>l*kz7XLs32WD|+b3^-yCBKb&Wv1A3q?L;;eN2aU;xAHTe~+nnel?i-^VzYJEu zdg~YxJ!a*!nayVfbOdstvB5Dqpfrkws%UVhalct%HP1rtLiEf|-x@>xrisdQ zG;Wiv)9;p_cLh3c+sr$?&=(LVv$|uI<`L)?EM`_m8sf6~?Sge64n1S;hyK<=h+mAs zL-!M-a_{2n{ls+YjRp43tdIcYA25fh0g`?;N8s}Z%>7YwEr1`zOa@!_cyo0eexXi) z8kRksc%#VF4#jF=DRl!5nN!sOOaN~jGDo4ldH}-?o7?IDthk%r7LC>eAnY`fKGKu^ zhzBk})AZVfAJrmONMEK0ARHrUzgDm#(Pq82&pm67Rkzic$YggDai%|KzAKuyE zZ7kmZytxqBU=0&n&I{)0=w(>Ulu7_P95?sX0Vq3e9)Qm20rYv%T%-ojP@L;dF;7I& zUo!iWx0xYQM)p@@@f$Cj%g|S_MuT*^4pQo&5uQDCu6ll=To+J(99<+(u41e+ju^b0 zrfIGVK%|b~Arnb<4Dr}0^Jr0QCn1oJA-0AH*fGQa@_3l~_FP0tJlq$c&k8$>7-Ud) z@-_2wM)|^q*UeYacuJN$rm=is3@A}}CcoI})^$8z@Z4wj9THmGv>d=lNwdO1mT&gE8J8~c0_nmwLT|Y)%tbL$a7{vKwmd{9Tm>{xH$c(p&(A8#zrZt^i3fku7bFvM1N}N5+-=daCV1orWUerr5+HkyCSN%DaMF8SM|zWH zt!ysN)ktp^WL^`ErmLifLob_mi5oP+TLddS4|2Qs zaB}Tq4a~hGIfh=o8_Lf>?FI+e87r)ks>a+2SwFOGPvtN{vlcntfy5jpoB*Htw8Cu{OZXzcuHI(*_YDMYKn%Y6o%yoS2>j0X=GTxJ62vZG+6zh)@jLI|GA|I(VNgjzsy$hm7$qa= z6g5P^rrG>CHLtto1QDI|fS|S>0(KR}8$X(VLgyhUOU>S$fP;QEhoX034axdvpwD0l z8+J(Bn!lJktJ|{dbIvbhuKcqeK_{BnH_eiQ4JQ27YySDbm$7?&F7OfYKl_OdH7)@vDEE6Hqd&VG?Guyi8cks860) z{EnrMx;=B1Zh~bES^(QKR|ya;V@1--9MN(_4MkaQp{S*~4%sYPTwaLFyeuPIf3%QX zcOV58B5HO!atj?GYQ90vIB!dufObQA$Zby%*jdfe3hjf%Ob)vz;>79}ry79q6XB)5FKsD^w=vrT`NT zzfu^0^J-fxMjeqBpPFVqYGVrHtN11tkj zTUg9Ywb>+mKfsdi1`vTa2U?<07d?RBAj?!YfN;Ebuw@iV(F4e7K*X#fNtwz|(gVmZ zwlq-#u$+6YUfZ-rmM!YG40-*=mUd{h9>C7VmPKj+CZJgtI(1iRK$g!3O)MsLdyS3u zl=7ZkW1HM!~lCJ$y`In1D`4Eb9 z4GP}f%5qR_L>}8!U$(DA%v?z~LFr6N*fw3e!$E*=`JN2+ZU4pP?S6y=ij)AEXSIMOiY3TGUiwe3=K;c=!G#UB zN#$}$x$SVkhbs&6LSnPC6Eo8zqtmlvOo@@{(UF<)ky)9Mk9mYaZV--DKp9{A46u}9W_Jf za)}UrhfQE8g(n0mW`;isqajgYO()7l6<8 zU+;%~=bj%#{~0FU@!%DETxg8E;w?9?IBKNELs~UfvCTqHkLz4|e31BD_AmUZZH9K| zP^%1PJGy?gEG#2B-V__3ZZgHkXT@ZjVlv`l)8pb2z=gS)LW2CPG$kXH>lKxEpY{o|Y@({tV**~(z+e-)3#2b?>$!I97W6A8mOdOkH>8%50O|kSq*?Is;gDp`y04&*G zs0T1K)sm_P(9GLEcUhJ~JG*5y5)VwXtnl7Wu;MMhebB%=m;A)&-KB|W7wn16(dG@Y zEERWTvN>9S;(A|7$hT(lPv4sXpdw3tFYUd-2M*yE(=2tpol2MFC%&1HJs7}Nn~H_Q5@uY!S-4}mCDE;IIIi0> zw+4PH-O?3BYoYuoW_e9u8}2dQvc1uh+w-?C+uoWl?x=d!%)5TnF{B3xR`=Y4Rofl! z9*q#kWT~fJBPqEC)2?Bha5BKKY1gCKma+cgJP84rb|rPT4q(K~@NCvKE=xP>8b(Sy ztkW7O)3kf{)GB5Lt=(@lOcD2LIDFazhr87r?pb2FAc`+293Gxh)E_+u5il0_xv{wW zp;ez}kmf@%=Y)`^T0ck&NE%6r>e%Ai{TFYo;(zNf5OY4vC zOMqTkXQ@;JF^B8}+e`GcT~83H@M}D%k95Bs6aZVUwbj{R5zqt`PW7UAe?8Dc`z?<; zpDna}Euwi4R$1;@0*hJPn3s)*7Lg%C1;B4f6-$|Y-`AI+rK_y=-o1W^3K~7lANIjU1*~*j_AOfE$CW~cnX#u=QLtJ`gV2Dl^ z)*Y40Z8uweJITpJcXV3uu9=ANn5H1&gIMS_X^R zdteK4@Q89thz>wmxuql8tOXDj;1$J|raJBCT1opd{q}*lD6U_1FG3YAYrQ1^x3`hN zbX40`B*YxHk;PvX^%_|Wl~gh30c3Hv!qQnlmta3k6+M3Su7)Q#EVIxxSjY5nDTnWN zRzYcK7%tIp-ZKp>`+=cM@pQcW8Ow`Em<)_m^RZy0)CYujl6dy9h=L#(W5{{PG987$ zV#Z6*WWHI?9U!&MTyK2tFfoZpJ*db9heLf~1@|BdRCa^_^@MeDR}n`oy>w_BP@LBr z4buaNK4yv60bs!{M-QOovz7=ofJQN+C85=y%>A?uzygHNHv6`D&T>P<=gKX$#Qo%a z2Hitb1e%kn4|$|v-DLd63zos^X8ZJ-T|90XuWoisui5PvEnU>j{-f9Io0lv@V6$*M zqX^pRd$8a-WYH3Atc31qcrfq1giT_+7Q65RNd#T=@?Po0RHeeLUv562wnh-;m; zyou^g0rt+aAU{w76qNLeWm>3yos4$|7S2=#I6ryCa!)|502)4GR)3v*UV0Q3Q+*0# zwd;r_RHyxcPc36mlD56rY6`CWk0n?Kz;R<$A2d`CV8$UWt5i{ER#JVGp-qMlh4P`c!qfo9vx8d3*7=)Cog zWpYiiTtXm!(AftOu)KTI6z$Yv%@m^#I{Iwz4?6mFGK+iMS*-G^(sP6k^-EA^Tr6ro z=y-o*v58+#FF-1q)Yvn&3NEEOo$lluwC%)T?u6h(74VE_D_8B)?=Op0h14H0Y@r@^b`G z%xu{w2$n$WxMumI3ZI|MeBN1b-69GoX(|C$O?|q75`g&LCnV75*EyHmuv8b(C;-Ua zoVo2JSj@uqsHr&fGs|pufE}Nc%zmz3`^wKP->TbdobWA4@Q_08gs?>6hx}pz@SMAa zw#9$nTNNSfV)}NyG`xe7W#EI`NFDIOFTS#LM#2#eFT3DD2+v&bsi|5Q+&0z71@)Q0 zLO(}t1dx|PqRiiK?)+8hfmaC`Y7e~ZVo>XW_t)7PI?=Dh4TYa6!)_-)72miosp!8P z8S%x0dzN}$0y%f^6L+jQ-LF(W(pA+8+$(=so)m>37n}!&^mhS6hYSb4czdeW7cUdV zc<@E23+{`sL{WjWlUN=rRN;&#_yGKpSNS@Wl1qT0FNO^SB?@9$x6QryK5);i+F;YR z-TuzhYUNl&*#IHm2Oi*4z8}qi#ccJmS=~8d*i^GTTg=XN?yOl}ET~~M?$=QgGbDwd zCwRfPyq|#9!45RJv`G(^9WJx^m0uCi(-4-e4IHUc-VT++Vis4P&cz9J%a^DDG$~iK z)Y-0Fo`dcHSQH8K72mD(%I}~zKm#7t4%RQ9g3iHW+PfcZD6dU+#3$;Ncf^(c<+ara zG}OdO)V%7M8kQ073@HChM0a7oEbp&qP~H#y4vQ%{-n1b;*=Asb8iXwwl{75BfqbU{ zYhyY;+o;?s-p$32H!d$wLuts4m&m^L0AycpQhroKk+3sH_KA@4o+tqpGqPzzPPPg} zA$tG>QOJ&*hS!9bZ&r7tAv;kbyZtnex>p}`OO`Fh&9w3O=H-QG4x~q8*`1{hRiJbW zSPNL9n4Rp{N$yWWw8be?3L?Z!)6|*a2HLy9sI-pMfl(>3W%&!SsZTsFoVSEhZOlWlAPi$v(R5mW)URHRf6`G< zt=L=sqmbnS%YM4z{AT4QOddk3CAOK)EFRqa6V3o@w$3$3 z$3v(Lp#~q~llgCwtOn+?JT=s_zXam4+A9M1>F+(TcedAd=X8Ghdnc@+(GN^h8%sig z{qP}rba^=z&@l*09xRN&VYc#g^b#zlAzC~(9bdJTcTxjrI%}%e*#ktrX4Q!KflZEc zVvnT=pQ#P_2BpX#=3OIoAm-&b%Ks3_rDePQ#k)VV>^ZZ#hGoi8r4iGbqE$n;YNydsTNltGP847rj#+P~3U7$@Q-q z_>&*EA+h@m4|aaaO$^w+cHFB*IXbe?^#ype!*66RfQO;^Ceib08jN>=IEYCHk= z+$tTPj$RSq{OS4fdLlXq5MuI>=xF4GCCtGN&Tzi|VtGySsR>qTJS<0&B%3bi@cgm;XQz5(kaH~(s=ZRxx8vF59Nnay5TH?o{H_E39;xzJ@ zxX}i*-C7tdd|G}*T*Bn6zk}KA0x|OAVFX(3$K8llJY+>s*xZj{2~hE%^X0$evoDpi zF9Vv4`_Mz0>vQh9Y>PuD5OaN9vbN-vm>tG@1zMYCndGEPmu#0u@x}7!8sc@uT))0j zJ_KEX2$;FP;byKUiJAPb&Gno+i&dJd&n&IER-5&Y%{6?MvAJH7^cBLUCAPtU7ctMWaC81ZSkS2WF4Z>g+J6FbZ?9=~35A#`bP(waT3!Fp760v))gH!fOS! zzYho>XjqgT+EYNV5IWQWp$xLf(kwY3{M^-gQ+(NjHC~l;eVn5p)_ADz`p(WB-Ko`` z^F(^d$6nTTp%vH(wv-gGP{BY5zB}g{)tH$Bs2KKUe;F)(jw=f-d1u6 zRnS~wL-LTxHl+B25@26#`&g$1>DM_c`&gg$LLC4g|L*nlr^VAzEG%Xp6UaRjL&Xkr z@tT3wDQYNk);%0I8Dwpb20$pb{zd@y4I-nnsv8DSGIMEbG)@noG})S<24EjK7+o_V zfQqib!PaOs6zk^cxl22tRS-&|%ULVc`lO(SApPW{V%V5f7jVIO*`_j`++7>*MGg=z`zg zdIpq$P7jZ?P7BqqBdu8O+6W7KJ_x{rM_H$eU(dzIM_D_fZvi%bej{PDHB%iVQ8T}8Jk7cU9fie= z&o8D~)5XepxZiZ^7#%1^=bLU&j7|c@wq~pP($E>DL#H!srj;x%eg?5J64%bM4n^O= zVn$-y+1BpjXY=s1*(CI+pcHd_WInKZW{w0v6G&ooXyH>$C`H9&$S>xuo#>;rWEdPg z*E%XRF*_?U%M_a!myneZlbMyBkR6p66CE9y5t9*>m>K0vTf1hqcSu}JRD5J?POK?2 zCnhmEJ0mVSG0~Jx0OPW=A`_kUx~(V`LUUphA~T{RqZ3VWaWPp@@rhB9kvY*hanYGM zk#RB6&YQ^>z8Au(=r98hzP~;>G|F?2IDEv;7Wl^f^#P%Arl{xyaxC7Io|zewkR6vn zPVt%&(-Wd%v(lquGo4AZH_Y-5j?Bo)NQlcwNXRA}nBt-mqoQ*Xvl4QmqcU=`alP+X z1U=V(L!}Uso)Mc7pP7(ASRvRFqZ4y7O|el4iBYl9ri276)ZNv{c_?CsRS2u1-&mY< zWJP3%$9|)5(y$d#JK--^TU&>ih{UoIV&gO8Vq;7RQHgOev6&h135hxB+1WW6 z&eLn~Z13RA$gISugv`XmOroRsob-g4tek|z1XFxsc2qXLF>!4mVruQlOA&DYkz ze{HlzL`BC&n&LY~#ZR68=)CdGmMv=^)+{F`IwK}KCo3{1Avz{8iikavoUl%aj*p6p zOpi;%H@8{?oIPG$GuAt_iVF;I*__RR&K_kO3WPk*>dHxIMtbg_I(lOA;NFi7nplN_ zMyXp@A;0uyY1~6TsD3~o6s!cVv$5?2?;T#n9S(Jg!m|8QN-3VqY^XX zBb|p+FU;}|%}$Rr5tGS^j!I0ANlYhJ7@0s$q{k%^%Z-VTapq4Vj@C3MF*Z9ZK0Z4> zBbKN*GBQ0QIxdbFb7D+F430D(Y2d6|XYEHsx1Rfq;;vRjpEx~yLnPk&!upz_kwksb zrl|BdQ=BQrl#!U29u<{kN{G(Lh$C?$+j%~qknj+h9vPpN6-P|W6dRMC9-9%B5uF{A zkQJF_$|nDE-b`3~QV7Y)%t|EpR**Omn;4UxVM8421vx)dyTzpJaw#gKk6PuH6igucolZY1_ zlO7#Mf@S_X1-e0Tu;x**2~m-Wi5+82z{8?V*{1mP zj3^T!D<(dcxJEQlLTqNFDLOHOT3bcTBi*`p`ICw#iousTH(!Y^J8)M=dC0EZ$$gQ5zW&m`hO#uQAY58 zBijFsX#Y2&sWV0onb!aB5p8hOm5Khve+j}P^uJ}>`S!iw`D~YE>zR4(S55ZNn-G%k z-U0ai`__D;WrwMMTSo@zKlj6*Qeyi6T~8^of4M)U)8jc)Pc)lQ^GzdiAzVu2GjPD-|Y?14?2^y!ZCpx8~x-)oc^1 z4ZkXwr!WGcw* zOpZ_#>&wC^{mHuQGN2k$W?4rsc^cTBWVkrH^PP`7Izt{<+;q(_f|1g67Vq339(qC-z z#whxWePkF-f3YRRG4vN(ZW>E}(YgPE+=FBTE$%;e*CH>XS-hoHN;rRa>XRC_*L}oU z+=#%NQ#lX+=2TM5vIf{U@n#U7QqNY~e>x?Ct=G|CWTnCV;VE?!{#7GyzVz^vQ6+nL z>f`#h3bYIKz?Uv}fD+O>`)-;y-+9;HMpnITppq|_9wzdW8&~&%8?QyhKgSR(!wy~u$n&^5hqzP+W zz+cA&*xkMd+S<;b!w@n1aI${^zSPdv677dI8k|AyIGuCa+r|j!T?oZQ-lU^#koeXD zeC|cC;-cHNXI*GQ=L~((HK>n0H7b0MvvL`&Q{ggd|l+drL2HTkQ zS;41k9LWs=!c++L!RnfecIf^UBwfRvuv=Vk_{?~pTyOu?vTUYJh;89c$UMq(u2)%hvj>r zmnD(7aUIZy+2_)*p0?iTOIXal)LqA6CR@)4g{CR)c;zi3H}h9^7w>VJKz6IZN-r#_ z_~8$vT^MY;=(yo*PL~#ohL(uv|G^ykMK=w_va-N-F>m>+7IK1o*gCRU~ zht3O`JAeZ?(fD*1TT`#xCsyLJ-g%*5L!UkmY^zsWOq!`Dy-R8v3a5P@#e*p`ULWaD63E{R0H!eTZK)}Ce?DBfO($4;}2 zS3@zE{$iS~8$yc!qii520L!P_+Nl9F1m4ymkbM+~LI*a#bB1lN(fFA%)AlOrq9wyC zVUZ7xym_q)PI=SE#}`%;T6*D07yW7l#e!ncTj*?Cu0fr%bha&CMB@RVW;ji*F5P+v zk@JtPute#O{9+$nk>=JzHaxOtke*ni9v&Cc-VKJw`J|4A1GXVPVu5Xbw2ppK^L3iAy3%8L&u@`*eC70*o|G#E3lY- z(muY3e{fd;P+L;cmt^_P4cILvPlW_IE0)@Jc%hFWR%P?{r?8lH_VFV8%L?0ZH2|S* zB>G9O?aY<7Vs%>$Ve-2kD#F+vU|6E4QZ|J4?uIZ(Y_eEw0}U4|fZ8D;kkoM-*fP1O z6aG4Pk3YUVxhMf2eA2c=jFB+O#$bY&*x(SnSeq*aE;icsr_T!C2drNwvl*vh^Fc<3 z34{*yw!g71US)V`+nMjQX;5NP#w;IUln?%RQ(Wce;qSfW^lEbH8d zkoB8xvVPrA)@4if+!e)}9%Ma7V*k1g1(qn zxL{mj*6iE8!o=*hZ})X#^d2@@LisX@8-}^l%Sf2(w9jTkkxvl$%SiycM&rb~J?&5e zET)mii!{WwYOD@ZLukTDp~RVrk_QMUTQ$08;|hKBOq|H%sO%sfM+q|+S4NXM9#hWa zqH*FP2~-Xu3m_;9BI!?PgUIM7{`W!TDGhUS5b(5jcpsrd9Yji9%*pU_5UFFgZEPyO z_=Ir~DU;OlJjX#!6NLZA79A{}dBQk;RFm%IQDENv%(k?tc-4bp=el5AhOJ3(pC!=h z_)$u9@K0>oAnCzf#EO@V(yuyR74M*iOMs=*EYK@pi4R`-*|pv~?u@H}$UhWEP|~k@ zpcq)*9q)>1E%fV1E0!yLthr-}*))5Zr~4B1IN62vVPMmVqz>dt=c-q1@WR36wh&P= zYrLY|R!hvA&n})2la^>LI&q1SMeCE#heiE5nYHgJYdW_}C@ikiu=u2wMKF0<$yrn; zPt3rHk*@QrI9F4&EYaS`p$u3*O9ofA#OOwjk|q2`j`g$??Ts8OiL^Y}ULGY{j*TP; zR&gT-Tl1IHC`;-Gi9jmPs$}+&MrN02_XcM1KF7xoOTd!^&J&F*?s|zoEisM;y`@`1 z?s6PN&@rJE+1_Hcr7RjesM}hV@%cp=HHY!TDQ@io1dsxYT&q8|%Vh z6diux$`U_zv*PzXYw8>o71UG}H*e^vs;fj^JwgQC`>gK*cwpO#7tx@lpg(pcKz~r8 zsEzz$v0ysCldFa2R&zBM{7`q=QF*YrIF(6N83c1^X9kv$N$Nnr7}lZU(Q4vK34uHm z=0OB(az!pbYFz;*SD8zV;)XsGJZ|XM$zoWgVNf2)+(trQ<*4Q}IJ{v+6t4T`vO3^t z7Q2f}8Haq5W@K!|-{R{_jm^J6((@}E1<9z%^G2QVW?_F#XJ~u{dGF%`?g-%8IVIv0 zxj~;ysQ5zs(u3Xabb+Ys9`JaQ^4JN_Zk^{3PHEYfdW=p`)GXTzg(ZrC$igq>H@+S1 zT+u^7{>wgCz}9nIUMt#~GQOSm{>x$)E@REyu4GNGcm zmzcrW)z@n~7mO;1g0rrjm-7_3)pD)9hmsNxN^MG|3YGd0$%CIn-UMP?BzdSJXvBHr zo9F6vz_qd}PN7|}dv;c82PgpwPs}EB4*fdPisczSy@?5cqxsbP*sCoA^N?h-nK3;*Th$*RV3mi101bTojfQj{SP-NPy68AFP@DKa>++; zSfX?&^F17g*MHg{e>$V$SJa6T&gvS?G^qnOj#=ISTyCyd+yY5Of8`mCxcBl{WDfe0_NE}lg`&Cb38=cr*2nt@DkEp z;)a)BDsb)H;BtPfz@jk61?P6z0#*&6U=}g}&-sRsJ?WdgP%&K25#UW6Mw7tF-Sif#Z!K-xMs8pIQCw}1@sc6lZBz@SKxv_ zDu$xxVT~*O4|*091Cto|XGMv4c?JIN&x&d23TQ(@4BXY2oGdZ*A(w8C=F?jST?Fj` zPV$me6C8WLVy<{+1-9R>ScLuy8fp=zNQi%UFvQ2~83L-A54A)H4NweZu!OH#KHt-6 zKqR{dS%H$-gJR;FY#gHfQ`B7BAsDLCqz+Y}EVjcEMLy&gOL9iK-^D?0W&4WErh4S7 z1AJH7yFq~OMCx2l+{$^in!S!Fj+PL}0e%ETzyf^Fe63@2$~Ve#^x5D6UcXLeF^jUO zAK)cc3pA{*fs|^Z{3_0>dz5eDYyaI>EYCNdPR)>Xv@hQ%xR>Vh>C^_=i8i>eBGU2@ zG*(ceVbJKAJ7!glM+&{C%%3rRyM(RlN^(X(YNV)BmQ)TfqN-$eStGL#v@!z=Oc%J! zbQV~bHMaMyF8-WvJb!veqUpaJ2Z`_f!|m@@7pt!{o)dlI2D7=fy+d^|XeBji{W;N3 zE*Mov2Xms^Tsh(uH>zlkY#AL4_paCnPDX4Q=Kj}mW zM8IRr;VAoDG)fB^s)VOHI-u;G*pAM(qV1OiGzS8+@nFVE{CliD7tMe*G%W?OvYv#N z#0j!xJ{TXW{HU(;uQ>Zw0Tn?owsYyF1p5TE6Bd)5OI>l%3$<%D*iDKhJ5Pxqw}lJz z%J8C{58dW#c`Bf+T zECIa%D)=j{uab)_yVwiStFT7Hb)ZDWNlrzO3cV6&*~3&&SBlr-#og?`q90%%Y{vT? zC{bEFKk05CDj=^_z% z=z|FOtwZC++B=HqzYvyrj`E7)Jy^G8{GJqH72n6E0@6&!GxR!SxjH04;Q<#-wBHTY zj|H+hHN^SDtpWJhB>RaFk9*RSv1#^!NAbyY`(6~a8c2nPZLf~2eem+T*V6o@N1w^R z6}h?6`LK4NSfNvH6Ljdp~i?YOW*|lqO6sk-E)V%?67G=>QdASvTs*uxgUY zWUK`&0a&D{m+u}EqzALC`0g+gfaHsk&6F5}ptqOQfuPr8x?MoRNe(Z^yq6$6i+L5R zwHf)|)kYb)J`+6X>DS4YvCo~sDudoPgbsDk`_jdsCg|abagK)04omFk$=0zajU!)$ zq}#taA`G;3MXjL^~d408r?B85EW%rXs81H6AQt*4qDLG|jKO&i)yi_#}alqb5u1#y*Kt z3hX&(EUa{jY$rsYXQw~_-PTl+Nwkf@qV`bV@HV&96jYi(bsg>{FbZoKDLizSyJ_hJBL+!AE86zeUL-dx?SEj`((oH z8e_-%LbiR5gE-!_V*7bP^j~9~a(wRw^DMUaCqA~u*vEcy!5I1&QHgpB-Iq^#^f4$} zo^ZetU=VkA+wExR8d4&A4ol8cK?!JGbC3NGln&~&!=INApUyydZqBeo!AO2FW!Lmk zXVCPu7jZe0nPSOHXvYSYyol6+ab#Gjy^*(wB?Pi1Z-)rjK(bkZQIpC(O zUng@Hs^Lx^2;BC-fFzS#nWi!26D}5IczHKylGXmID1Pk0lv_x8`Hqi8{j?*ANnx0E!hNWW5jY z!E@s4cfj^%?Z?G&YjO5-_7i9V0AcO}Ca;4e!HrqV*JDS5whDUwe!cj-y%%{v9<<;m z8t1-X?}(PcV#dgVwfK)0>}}NmbTA53=03?%_jA_r^%8vgxIIhUy%x86(LM$3fjH@k zHz0hl1i6zF?o~`M%n7L(fQP+gzl4r@fJ~Jj4{}Jccr9Jbh{Pwbsl7Od{e!P;ASeua zs=JGJ`YuZkDuo9hSfa>LR?}#A_mp0!`Fbsl+DZiaf-+(dfj%X5JOUB-Y=y7*_eaj_ zr|i1~QCP>Z$YJO{#KOYRw}j8zyWmE!PuCiSA$?wW7}Bqk`OJ3bv&s>*-8yX;YP}Bd z2}e|X=lY>QJn412MeM!KcvPJxDLjeeAv;Yv-XJf-4SvI(hEvZR>O_By7l*H7V{A*k zjj40A7;50!j^u{8+ne?^Vm1@D{^IE(7obsG>PDc|ajEq>k8ue~oW-S3SfW^qtb^q^ z?WOG<@egm?&!SyK0_tc}ybd=wW6#B#U$oZ}r<1!*Tt@=8g0>1)eCLe)1#}qH(T7P# zq8DHZJIX=YkS~Vqg4K=L;g1_drgrEZErfV@9qxS2-dhd878IU2XYYot=>f1?XjSCU z2m_|aYa|UocIfo@QD?RDb{|2!zYf=V-yVY=DFC8jdlUX#$L?PSF=w5G>o-#4T96I9 zV6P#f#wu`is9G<91r_jhRsRC*x~klQAXe5@e+K+Y>#F7t?41O$M*;riLwh3Xsp^wH zkJqh0OLC#qcPCQgBKhZ!>`O&7P6e(ed6NV-N+NkUC)rnt+?#Owx9ky^erfb`rxf41 zYQH6}EWlT<*^|&}RZo=A6>fwUNj)xwgx`}sFyQp>52oO>&s6KwJEeXfSr1I1`nUFDUZ@#_WrwuC zxn&PSZDBE;Z2HlL@?L+?eA0P06Rvmas5a3 z$*T)Koqp_MQ#&`=^|$@;YT_^JjT3@5Bvt;%age#m_G*r6)x;VbjHlT*++e=-bqua1 zHrPN_qd)rJbHS)af56)v&Kr3Owx)Jt{>MZi9;PQy&U|_TOBC~Pw)c1ZA)wwHNRd3x z&{%fEntTck5%4S)mMAD?Wroxwb|!yPA^Ql}J6!2Z9!df`fp% z$5Dj{CNZJ*v!!j{R)w@?+7K$9NFkTEN0&k zhBkK$6o1`-_cnJVsi8qbllXQ$F04$+Xbweoyfj?TJ^v4Z+#(D?z z4Wz@iIqhuW$Pl9o@t-XmIVe`uoq9};k&v1St45mC$}txW@_;N>Le|eSGR+<*nJ<+F z*wFMxYsUhV13P3%@zZS_lh909%(R_Th)1<`bW#Iov>mUjZTbNQ_O3{i{9+?iS9g!+ zkFp8HSZL%>KEQ0HWEptNa100p?|CJCG^M72Z_5aO< zMnjc8KYXatuakKlWytFlHLo8*0yQgWmt4GRM=A0t<{MG?m7?;niF2Z)sGm3DiBV0G|rAwT$V%}w~1NQsAm3QCy|RIo%b z6X&>|4u7(Bd?P86g91ya9s?yxb9}v*V_FOSI$4G5^;F2749jM+P)4Z?+J}L?P9$|; zlsfsCBTx{RO9*5uT>=p>E1kSiYo!x68d<468{A6u>tq(UX;_ra%+o?|1))QIQlXr) zsO;U-oK!eb6XR`%6Y)0|a#G<0WYyq`sTVhDPb!oXad@y2$R)QDSfVJ$*u9O-bhbXZ+++0X2xV*x`+~Bfv+LExl4#qco^4sQ zT!BM`Wt=O;bC?5?IPIP7NUkNmx{2+2)!p~=gQUw-RF_T3ox|j&w(!clN5S;qWm-j! zB~M;evw@xVq}}>jw#lPcl~BrM11FaJ5O)iFB~eL*T9x2_)d=nD1??JgIb`_@++ z{NH6woRjA}775Pe`Hm7n@W=JCJPndvYw`I@-OY?dBK+BpJ1V^dl4fQ(*ufJ0lMemd z;I=>EXy8Q-X~=LMPC5*80jow#pgcc(dKMv@opkt}=t(`hzUx_YKWH`g5L;v8Bocq$ z$Xq-~-!GhgD;!=`&0qH6wAsZSo#XQz)yUQaB4?LXu?ft)&G_Y&j+tm4tYJxN=pmA% z7QkW}P`yY)oL%#JI4-^0riL1fMajBfmHP$)C?%{oD_1*?il_`!5^q(l)J&H6o(v*Kwk=-XbbW+yf?0$s%)Lkv8-%&%NgW7t2MQd2cnKeJcsW_P z2;oh?RdyCOYt7^N%|^L`J`X(d>DS5ptuf+H^e$3IJfX;#!TT--Cr?ilMOnu?6mS?mVmx6^T%oGoTF>o2_QbHS*b6Qr|^i*SC? zvCcw~R`B&VP{KS}Is))g5Us6HFqK=tcn7Efzf zlnu;NGJBrTp-yJcau$^#S(VJ15?B_+=Z1yaXhX*Tx zY;r4sB|z^_SsgdS^esph%8^?9824K?$8Hq7g%m@B3Tq5X6vQ&{d$ss}fSPv47%_4S z&bB)ypeO*sVkcN#d0+CJj$8ObNITG0LC^2p-{)`~5c_VyLn<9BQGd{oei97F>wZ~^ zu-`L|NR$feSVG-@3*PyRBT)^dS?IYSk@8s8q&N@lck~p|T-c8?{5%1RS@(0d@O35? zfTsJ4Qui}GcduE+k>v-~!be|N0wlTjh~wQLeG71|I_k(5jAk&6pLLux+FEk^S;zb6 zKag!UOuw=PH+4FOpjTjxGAlU=iUEb!oFq2s*U4t~rN(htEHr^b&_I!;bTg zc=5;z{MmWZ-mwBlzV8?zwqA|bz3&(xhONdI-*+U7!=J>>FOdJouEldNI7Zg!K(?|J zwwZ#{f4SD0ykGOu7X0T0N1}LO1CGDwm{`L~R)Y%{EWqa*JLZ$>UpC^vOOElrKakl= z;rR5)=~HLov_Xym_|LeTwMqSq&G_;q$2jrW799V9W0!9OVuFQzTBDo&NEwZ z*oTDb8C!AohmIk63yAUxa?8jq?&O&pawl#@rzfdWD|{Y$AXAT-jy$5Y^cTCfe?9%hu9DtBf3X`g3+XR*@7PBAi(Q7aiT+}zoj228 z>`ZhK{l!jIY@xr{*^908SG(2py!D;g8*+;H8|Nr<^eJN%RWxljK*vW@%^=^t+9^P}>1?e!8`~6l-#=FM&?Hi814L+ja zO!Dj(lPf`q%jVYaA%4Hr8D8_~V*>es4}a?Tx>Ydky)pSSFSnF*N#5w9B?a?xYw&;3 zs@yAE@u|;<$54bs+TY>BZI^|JWSVd}zNCql^V)Zg9s<78Z@HiIy{{dky~SSJ*zyW^ zoGI(!#hpKJe^b2Tv77bqty>P{--8mw*rUG)HSUiyshe=i8oEt-oXMz?JklvX{DZC&zq24M9hoVA82%8UcK51yaVp3l9Iq@tL=sw8Ql#ZVE+}5IwsUzx3?r>Uh(y zjyh{kCK0-;VaE&UVGx7!}2JEBm1!SW1cTqwR<-veO<`e5lJ0f%uO1#5i12sGO=s zLJ6y{2uFI1#}{u2+|L(|gY*T&_xh%al{o@Rfc-P2e&$s<7xjR}Og0JI@geWZC)5BM z3L0_I#8gcI&8dM2N_th9Ap05UOC&z=C}dN2B0Zgs)Q`o)wcJ(s0Xk$F*4{M zYE)*6E4Jg|K17r&Au_tY1VkCkF)Rm+ECJ0GTf_M^D-VizJC3SVxfAUIZP>I6pbX(C zi>pS-zH8?tZ>^3G_!8s?w&RJYG7=qv$l28AB~-ZrIbkuI`W)Jhu^-W)3P7W&P)^M= z4@QmitJ;-)M08ozm0Dt99O0#^5o%N~iCU$4_Uzca`jsa{^egO>8RC!IabaNPUGyWY zVV3I%s_cep76Uhv0Gz!VR4x_N5L6(*W}0#ORb(&=9MGupH53k!vLM#Eab-u;1{Sj* z7G8{BYh2k^4Zw&?Xi`~(Izs?P906eaAyhqRXltQE8(r*-fYd5BNq(^*za5Dp*J1xPyBQ+=PF<+xU6SMM|>!I>pXN5%9E`|UI!(LiQqe} zDszJj>SnjD+=YGvaD1`n_MaD8qepfC?_$yBw_<$P`P3*i099CsLgGZunW{f7^gV4W z$r=5IJ9LGf?heKUqC%u3QIg%y;BUcYcBr%>lZsxowa+y`AK@AOBBD<434z^J{`Uu) zn~Nzs)C(a4Y2Q+U$5t@Gx3PYtj^L3OX@^Hv{vn8yB?R(9NESrE7D7^YXcx2lkrKL0 zX|N8W&kA1$F{l$`Dy>2KCWlYNR65WuC{t==p*ujy|6}jF|LO+-+tppS}`_sq=h-7{M* zd3gB!_x_X5&CGny%&Aj$iq13qVsU5|nN+~hw`|Zd^N1&(qlo{___S)0;zmVD!FV4$ z09Yq2LfM9sc~7^Hy%%W#Xj}8`2<4~|5CW9>i3M{NeG{OHD@KIuhAQauj{?9DpBHgM z!cyQ@B~GcAHb+waBM=pBaES$!Mcfq)(tec{nILy7xP4tD+21&=wvrnsQ%U5d1+|D9 zv9M8EIWnw(JSM&N!L%wrvRAO5POpB`!1JKy38r$`2-s)jfN3U{dPc!TSP70kUj|nP73>C#YqwOqu*hC; z{|JI3L;9w5l}dBC)&Z2ja3;6xi;QynhuD3kvla{gN@tx1jb&@el_`G~8)%q;Fh1Lg ze7437HGHgl3G#rP{;^KmKl30t?P_Uh5Tz7L9&Vc+fzJKvI;y4WD0z|H&2fDf@tfn? z(Ta@QXI=t<1^JBEoHkrt0)o$YPuo7jR(!NI8&z0Ukr6#jY|BKkEjEe`jSv=cu^D#H zC?jCJ8F(=xVrJTv>}1ct&+_`CW~P0go!of?!g0o}3C+=)1G*@0s4d;XNyDPsCv(#p z=9G?b74&&+emP6r?L=BKSx zne6S0!bvo(*Cq}}LLQhOx0j0K$%eEFQgaU1!buYhXW^vkVq-XoT>SjQNt_jH@LV@$ zZ5VDFjUdPsQZQ@ybg;jETG|>(nn_8SwpiANcQ?oup~y=ts>t-i`j}7!Tf+JztZxUUh!ud1x&?qZsZ8wsjEr#+8YDkQeAjqKW@h+B&(Kiq|@l z${5c&lF+5bjwBzX1R2j;v%<&o)_MMXXVQ|hDP3sYfdD4@={hUPF<*OfA?=Q=^bLaj z+zQLKlv+1O)3(z}>g;*GRD;yVVW}CqxUrC@OWj}RYT8suUStsa0!)C3eUeG+W1qX& zM`olIlWaVMEYD24tQ^H+We#!}rRb)niEKZ25bHwzK{wJCOG+l9z`xm5znRuWxs8+A zlsu@>XGJBgkWrbySfvK69Ja1ta>=CxI%S2}^ zMJu-%)D?$3-7Lu4chb(ubyU3OjByyxtRj4w(HV2*R&x~)-41&tV8(CUa{*bznhK56|0*u;Utu3> zx~dxy_i!2zYu0y5UsF;(yTU%!%rs&4jY-ceE`QJ3Y#nP31Tc27X6Fii+tpNFV7JAH_(lwT=YN1`0Ia^c+cf0Zzt zVF*7jWanR-O0DGKr#LFBdp!z2)l>e32-PM;HQ3)~YEMg8#~RXfe)`h}Loa5B2!g(! z!w{jJ^eQTS(qM0US62qNE*RuXmMyLrorM+x0S{?)M4fG zk3;z>f7U~xcG60b&trnO^-vxRef(;Da0Yv z;ckHz!R^b%R@2&yqoKthupoZ0khcDR3s42s1_m7swUd4l#dgmqHWZs~bFo>(rd(<1 z2|1-aWc7yhAZx`Rs4dF5ikTV2r^CMVV>#i=9N_Ack(b98w;T_xGU4*I@A<7oQlk}_AIDlQvkSYhcD-)0C%-u*g#sgjN<(p8V}jVMJAVDO900`Fxf zN#n;Sg#|D5Gg+N)BHX)oGCfV%kLd9|SSx={YoHv%$xNdASCQGL(qlw`K|sH&OycVK zsv=G?H~SxRyyj1bNzl{{C}{sgn`INU??E04+WF6<`{g{V`M^^P*g01tJPX+WS;Yc2 zI`(ysd5PU-Cu>IdGKO`Y|J`%xAIeHiT6G|jiN>L*k7Hp1S&>^ItJmdDRh$qhw^te0 zHVL%Fj2qSkTSFcf9DBbf@lyIgSsrANTrwuWB-e4Zv8!vn+ODg^j3EugE?F`-$~q59 zF^di}vuJ(Q9|~u4p&jDaz1aa4*~S2EXaJFS+V%7(NlsgBKbnkEmGe2L0hpSZ>9Ztx z$7=i0r1tuyj;VViJ&zN8X~TkS25 zQgpf+wk=5-JH2mM@Isv!cVyMw^bJZ)L=J_$dN`Sdy_%o#uqOZvVed6n8n}AyzBt9) z>YirX<`2=3%~$k!Bq?(>J-6I>p3$azKwD9~`}ik_ckg{B#=CbYKU%zGUfb_8qu2I; zlpyQ2)-14q_Y`>#~JeATROLHxMneL zTFJiMpy`qFaaD#|=sbdDXoxF^AP7k5%PFaT*XhyGV|=BspP?edwHP z#E@noj=$yBYp7-8r_c29?Gg<_3O=$N-0Ejd|H|TyAt6dNRFtqgR_l~@bXRKQ zWOm1DMrp^(a<#RjQW-}DGs-`%jAJ}Jd1`{S4s-lLVQkxmP?@23ysFv(ZaaVY?@qYm zM_Eb6q}jQrC*>WDlwmlToqI}NOBO{sx`_Zb2`m%kn4zR%0PDK}AXjj_BLb)>HmtAU zkd#j`fQjO_XvcOLP>d&`T?U>qYS$;{Wp_pr_Qb&vjAD!d;QMNh!FGVlR)CNij&>rzz|##Yo|^WXSA<-t;pl1ialU;Kd~nnr1d3$6n5Cmc1y99cGf$R+$y# zxogP!298cSN`Po*RvS$og*vK*q&!|rYBY3|l$)(1Z5le_QfUR#Q|7^Okm)IxU<1(f zlmqY;aC!$^@<2*AaU56Xn$WYehThfGQ7tFcD)bj$2CfMx+{|$y zr|ev3ycJ-?|8y%ri^6GvX3}3!rTH!Zu?X+scCAzI0dFJ0%;N8@b!2ZRM>PvTsm_ir$_wi? z6{f8t8sKPW#}x~}nJ$hX-*deu=|iNpk0 zV1y=4TCld12w+`A@@tL;O1urA2$>V#>O~pQ9ldLcl4{)?m6cXmD|@4xqo(qD*2=E# z4s?ea%Z32gq~oBxCB#Ww{Eoop}_iBoh1Yp_BfPHi8mem-}O&;}T` zp^DUl?Xz$Zw!N*~8;6;Ja z{>Gbz4xQ zWIrr_-jbzvIaHe{yoI4`qL8$~xP;OjQi3d@So6SV3f6i4v11&s$>fb*j@&XtQy4*( zCr{pTbX7KBt+Bz+knYZx7iuLs#g`rfy1O%vER(&CYDXqb3^O(sSN1aPQptv^40!HnTAI_8; z@ER>8@YoFHvBSowDz0!OhA3UJ9N6ePz<*+P^|%ryz(_{n6y29pKTOPHby$&}@{~t^ z&Q~P0)wB_`b{kI|3VF;E3HuPSe~sfGS^iihp!wr8On~|0o1jK#SJWKt6{-z72N{u5N{Rrau)S3?(A04)f*ir$dhnqv~mn{XLFC}SDzd25%q!u zf_w(RjPd0xoPzWbk?!!=bv&sHobjZr!|^T&8_%N>TaoyeHkb|E+2~Z&tR}Q*BGs5v z#9z+oXr4{UzfmvBw_DHkI%1S!IGOro2oxl-r@NOH5%8c`bEOh4%m$hHHk3 zHqNMz%d#F0$`0G&NEFMm2=T)fm>nl#0E-X+n6nkyC^VhT=kITIe6IAy02YmJ`W+w3 zfEvBc(Mm+ICcTLPT9e-W0wzF04Q#|(|4Sh8kp;ki?Mp{4NkoXn%c?4E$8H;)kvBV-9so*6gpA!D;ow#lMri>(Kz=KeTN&Vd)X%1;SEAf5}6RT`x)n zNbEttYf&lhCWL2E>5q-ZsPqU@f{YTZIpL!O>pcIA6ONIxQlHkXx*)hW9B`_$iF7^f zXs*=3Im~|&aSHPvDBJ8CSossmf={$jdgHRp9qMfImptQ0ki^2wen#QKS|bXcb1WCj z8uZ%1O0R6TQSZECp`^?*QJubtRJrJ=uS~}|`dfo5aWdl%00q8vylw*^@9p8ijF!zy ziGrrt{PPs?oOhfeKV5?Pr%)Ml&dQfTWczVtjAy8f*|GpI@Z8yoXZp2^biCr&tz5=L znP_j|6k1IPl;Ky52!-|8*sn%}e0dZ3>>4<;0GO0Xml!Wit)}EiGnxpW;KTfiS;;4Uj;j8tfcxY=P`fJF^Yujdj@ z^^;S#9T!PTr_{XU>}^MeyeQ515l>guC{=CsH zEyl8e&jXaAQ_?gEC){UEE<&dK;_xd^P)VXYX^wP6lDRb$SPUp(EG$1sBgcPr z3>T>z9CWEFQruQPoX08V)~`0$A?r5TDbFV9qN_Ee?Xq#TdXUFm4eT)5Kkcz&lq7do z323hNDkeZ(O=?E=-f|RCx=+?FJ*$^)=V{hla8I+&)AZvraHx4ou+jV!Xou)&6ETPQ z(g5=H-;N9NvUGc|`a)IBVom}k&F+_H)F%($nO1|GN}bb`^c=srC;e5MoLVqmksayw z-nQ37>+TcBPI)I2wY9Sy4M6OiZ6TmVXPcNF)Y-7WxwGLE-Aw#TW#>^@xkDANc@%g> zd*x@Gvbun`os>>Wz36m{McEg^$1ge?DcKx|0_*GVz+IC$oIONEzIc0W;$=kFAE3@m2FDTYHk zM5h>nS;S7^U!KniCyu8&?7iZls+(-EAB0l$(*6gvor`2;EXpMM z#CH--X7P5ci!@4bt`Y$SZ*A_b%(E)HqMoy!SQaiV9;U3bDw|&487Y?48{)SDOl#om zDgxNrWA28|amo=4VC!#*cQ(H!L-T7ia?TM^hVG)Ds#h#9=Ha0@MHeA)HFln{Q^uku z&To~+xG^mJ{EAX^O8$(d&SSFjq8sVX5Pq~dZeveY22z47^jY)4;!l`$p2p)8 zlG$iN5wg3rbDNzyX1(HEsSL;RW$GA$Qgr_POWQb0hA87uCjUTuYi#QQ$_F@^`NlXm zS<~KGSp+bX{Ik9DH)SCPFq3T3(fOqesJ}ZpOPNvr7M+|Sl9FbEk;4(d>5=%*jI5a)wXZCjxfTyQW64O&6Xs*8F ztp)s>!Zu;Fq`%nrv6tvCwqW!!{l(0y75&A!tk(1wi7ucL0d z&uwA|$c{W5TPOlv=Y`JtdX5e73eChpPIv{i4|()5a1uCTi{79a@a((I_6~Q}FWi&1 zfDH-hF9>Vq-DYAD9u-G=)ZJ!wnQXUNpOMaq$_!Kk-)%M(r9ka0%#QT1-DYG@Y@Xcy zEu)=PB>&3M&UTWr2o+|7&@xarkLKETCrpojzk2sg=WnvI9z$6GTKbN2n&QOC%m+^m z@hT+sUFUFly@&ktuJeotr5=T9&C5Ti3$?P9`Na2}2b3e2I{Rwa=zZrY9NOis@-}I2dsm`?`%D_n>n+i$q z^1e{woan4A=k}7D6P<~Q;??bhG~McGM?Ot+#j@v4bbYAr_Xv_X9lD_gDLL7>Uyk&W z>yu%QS^<+{-$@ovfw4$6oXk3s3SK6mLV5-2>n!D1Ad3dF4ar1i7`B z9Q_bDXoCv!{;S1D&X1H%IGI)3##F8P(9X+QtJZ&asx!BwjKqW)o4uQER7myd&Y{Y? zIFD62(p0JXh|bWbS4!V8i8KibYk_&Td57Opp&4|CpH4-6C1w#W!mRwykDWV|jW}6f zt@hw#%2x;!F$9vHV0#fQ{vc`ix`w{*V%6 zEN{&U8_Pe1&Hff_zCUw(dD(4X(}7!QU~`kmX4o2MXIVaCVDk_rz}WPf*xdBYY=+v1 zAaa9qbEu7tKiJ@ODu2;tspAtqdU%Xdbk+LvY;^XMlw6xpaXl^-#K|l!K|vmu1cV-! z${P`KuFXVFcP*F5?E4xhwK0Ho@Bnzj;Y<+$h8}nVw|>kMAHj5VI^UL*L`)RA ze06_kSDdWRA`&-~8*W%UFrp$zoCn4|DJGQSb-pJ9YMR%%z<>&zD@w&E77+k&#^YibM>oOg6K^0~A)8Ziw)U1>0#Bp37de zxJ?SKLMsioXhUt{(+%EaeuYf5f6Wf(hmtIB;Q>yIPfsub=D2q^v-pG#vfdy~*E`GF z-Bw}E2n$c4)_ML*yPfZaD3!J#Z=)+TD6TKI5F0zKeSN=kDC`ZwP{Zh`G0tP&3Z+TJ zy^wGbW>C~piyG=F?>dkYn#37-c|ZeYtrehB29Oc}u)tn{ z^lqC{McHZz$aJ=6V^)wl))}`Sl9&|eh4KMZ#myqa{G~88~Qu2;kFsZ^J6i;_|u@j!+mG5P?l*_8WK ztXiMI?E1E!6s_axtK7yp%o|dV4s4`6!O0q+VO>`(3&6xjN!f_IYVHb3!EJ_Ws#Efy zcGhR)s2<)bd3194{14|(nm>MiMXnN|0rU-%g zSro1MowKG`R15RD$n`4 zm8+W)Wd&f{-vt2eNy_T+<6ZT>V8Pk>@?&e)IHe&b%Iady+7c%-_8We|do2NAsB4^6 zU2Ivo!5y(R}c9^6|Z$vlQEukRKve8 zc2ontc!rKDDmaH9+j8hNaOlDe&$ZU=K!-5ldIpuf7` z#r0{3eEkdi{%W}i^LsZ}{t)>m)@JMeYGVLn*I#}01@EsmnRFYKJhj?3@*y3)d|SNwo;Hbxmoq?#M5lQQ-8B`a^@R?Sr6Wa$*1z9{?H+c5M>@2JszM z#fO>V&&f_salNe^!bI5?7~M6FSV7s>wiQEML*#G2BzcCqMktq!B#P)Hj;SOre93O% z4n2#?>Y^p=TUz&FuD}et zRchI{2W=w#1ctf~jWI#2bVf|V`^?Yge|41WRY@t2tJM`*1t&8_mfud^7~{Gl0t|{g zX{ilZeTu?u(1i-WsI4cSvkI|n!+59dVkgp`w#%jyX$yIJC*q&~w(F`S4^atdy~rR; zfb}9>wi|nqw%hG`5oZl9mwgb6T{J~ z3s~T6p7Rtj|7j4je)K@zAzIQCYzPK1|7|B`a^^$V`*PVG_EMJAmjp`fV8#fCRnC0m zx*^xtVK3wyCPQD`~rDhn_2qJQHI*EmTT3Y_b+%bBh=%9}Waojw`5gIt*DdRHvVhOpyixq2xd zVE`M#0-*LMuAL&l5PeFhLctB@&x%c$?TVC?&oEUM(^l*t|IBe!QC8p_y&0QvGHV6^ z^38QcTL9eYYg#FXjDWn9vNq#=pJdKEgeEONEB0L)tiJ$@l8K%z$=?J#zes%EN|R&hF7ZzFA{IMc%o zIw!6~{XG--D+NLxD>B>m2< zLHlm@A8ZW`cd^c>hQ-ooVv>=d{=PXG>2kFu16{6Oa@;Q3nc^#kb#)BVD3I8VE~_Ur z^6ui3$UjW(@CZ_Z^i5b3OgEu8Mc0jgyN6DLl0YV6M>H6xu;`Ywi{#zx`co{+dH@#C z-^T#j14v1ftJ0)EKB)p4YL8KQ#_b_bk4a+<#sjXZo&#FJ1gu};yOcJ>CMqq0JUuG; z^KWydNwQxhphct2m;j4Lt9G$ygg%fjV!VZMwZjl-mu0MW-`9clJLNuCU%i{M2 z7Bg`R4IXk0vnWKPZ+5tvOY#f5?OkMss+)f}4TwZbc2Nlx+-*N3n`^@C+T*Gu$q~El z?S83-v9tR>RlC1s68tp=v0LlM!VhNll3-DK%kuFe*K zvPS?g-3s750;3V326i+k`Y0^@F0}%fMGO}rfLrJ#CEqt;S`-q_{D}49t+!M zuea@EW}(^FIF{J4+iomj%>|#e zTIXpT?l*JDyf4_<|Ll8=V+nbW#-cVBp|@<%$1oGmx(Z8j***5&dsNj;DNX}0H_y4o zOLC1p_TGESh#{9Rxc-nE?_thsIfl3pfY^;8iUV4lw93FJ9Gf(cA+SvO7y_s0rl3jr z$}>oL1eY?}pfZ$8$gn|W&j;=gNDW_RE^>RuHwh$ZHf&Y-5K8LiIM^L&@nv%I9^+P( zp?iXM&X`3WrErQ~p?~-_*9BQ|(>4UYLDFNj`Uv8Vl|Qnr9H%o~^(AE&#zwz*g(oyRd4_1`n&& zd77^Bm>==74y$?eA=qrv^s1{SDe%?!{OEx6%mA;3&`Oq-c2_0ae{*#wbAEHpk>GC3 zbFSX#tvub`3aL+#t>d&{$tu3AyEDahBA3g$2L^r>W%sK{@YM-)LFRm4su(G-aD2EW zQSGfmooMxNcLhqSBY8QmJ0J0dyNmOGcjR^Fm5%5{7d)JZ-*MF&8Ww1%5Tuci;Axnv zt_Eacwho0wfw)eR<=6>qO= z7ODE4-D@P`ckJ?A1Zjw?6&)eZ=<-jpxd%)BliA$sBx$5dOLP2Tm=<&V?)!|6-*Mmb zcl=gnZmk_3J<+xV+97gF0^Ay$-rp*hyPyO|Y(R3>zTRF{lbe%(;ncOs}!FL3+q=Rb3e7y^Co zU-ES(QtJ;&ivtkBArV*G0w$W<*uQ?p1^>VIuPd@DZ4@Z-A7J4Td8Tr}&NIo$NOv>x z(TC8tMnNG@1eohLv4j0f0Hlf&@ot)Y;r3hJ7#l1SzdM-y^tLmPjOvIJ5#i8*i1&O(JHTNCm z6O@P6h8E&vwl?(10rE?Aw^sxh<`_Fv-f)HdJ5p?nyNRSYF;zAXS`q7xQ?}w{R+;kv zsaDf{P6QY#+htW5+aian*ZI{1dBAMd{OwBl>H#rIUZU-?nbll?Jbj4c?^N4eCq({D zC7?ygUoZhSuDK2tD~8Dn;4s#=Jz2BCCp6Z18jGjQELw+2(9T%uJlBwO=y1L)^(VAN>~-U_N>WgeCgu zcid1cZe+7&BP%|d%kWsF=3~Lua;qFN`e?;NHa<$gN2`)q9l&=k)`zhy`_;XHyRh8i zkiFX$P#>Oa%E`jo1GsHxKY%Mpa@Rxlz8h)+GT#MYJF=>idy<^Y#BTkGvWx~MtJ}Iu z!&Ng)r;w)8rbHlr$;Cev5JC_U0!guFgKai80 zdez-WNrN&^bKTDmG1twbU$!`x2_;v>lnztiB;RYmBM}jL(X*#v3Hao<03Vbu(>+@S(uG=%@F&@H9Vl_ke4ZWaY5vr@0OzUYMW$ zdWiWcvWff5CZ4OCHZw4n6*rAPY;@CF(0D#t(D3Rf7w)FV`h%NK{nv6qiQN}t%o__yb}qUn#hq$5w(mN`z0U4diULF3QN4rEI<_L2Zb96jJ@(qS1ns~_99nE^?QR|3t=1~Ufv7BT5mppEM1|Iu!9?{ZY66X;{ z8Wv_$m6ZM1U4$%|=I$YnKVolC+g0Ouj}wEA7YwR12lt%e4&|HtuFrG7Ou|2Q7b1{W zPW}YGsEwZ2$#PL~uZbX7TLnt6hrHs5{har!0M2gC`wpPRId9T)(#O}&ppO$Kn>%J_ zb5qIB$qO2jj<>+@zR!Z;Wtt4{*mGj^{4+3G=%_J%0fR@`^|8 zEG-JqqNU{rAv_Py|LGYNFpet#MYpkBT;}LDmHe~F-I#n?5G-vj6na{Sn|;(6;>L2J z*p2>7fv%`!F!w)L;?658J82WNQJi5Q_K)iC0>vy0rb2SSAPDWX-&<%!JNXh*x4w{a zLEv4Spq=Hy<6$$}-)5z|lq~18Yz_pUpM z#!&eU+-Z^Bw2*?no|GYb7sH~6VfRMKV>V9euea8{Q6Ky~+A24BC;6xkIg?<{N6A=byRD9VRK6K}0v= z8AbP&mFOPqaYsu38btRO=G-u=cr1$Uuf1-6cDdMbaaE?sal|bX-3!N!qI-PI?hA*t zWU?}=_{6}Xt<$45#HPoMy>cUHePDhl^vVyfxvP;=U%ShZKIfoUzIxQ%SAPAteXqPg zRn=>pBJ|4DGu&M`g%Ri7gUHFR-Q`J*Oc)6cId0!SFEx?r^R;`W{63Sq^}ORV4MI+* zSuV?T0kAmlXhbG`WwmsQ)scm1$A)LnK^oTq>X<+05;J$qAI$5uKNoSHhK(DguR!O# z7n_>R%FM3g#+8}RpAWC@XW;cGlfB&wW^YwV!*lK`)YPibUv=c1U)$T8U)6f{ubBmN zd+SVbk!0j~ce-5SYkMo(X##_lRiNPVOhmclYk`D*5tm{S$0n3UeWv)XY1B`NvlXeU~>6aU@dt*qsY11e?%=>L#OUDp>O;Xk?u*ex(G`_b(S zwSHECzoWr+1qa^IVE>ul(U7~IAQ^XIqr|VioMhyh^KtUgEcdY z4Un?Gx^58Hza?f4u#rI$v#mqVjyJRNhxCNZdEH;8%PjMH65#R~(>V0>`)UF`J z=_x=J{tkz0K&Gek07BDKD7ooChW@2Qrl(N+bil!1{RxdhR0r(%)nNLIT??H;f3cg0 zhR|Q^sP|C%iyi+OMt`wQIK$yru@ts-X9P`TYyBhXuSf9x0iMvvslH+H3-MGQUzVP- z+3~==C8zws33l^3dN!li|MYA|aT5O6U8?XTS~Z(L(qAyRF~6N57U9M>|AhK>hFvCm zJ7eV^?nR0d)xdARPD3eBI~$76Kf&J4@bCT89U?0`Pzn0-Oaz&n&C^RcfRou>WHH%2 ziSmvU zaZ*`KTf=X}>o8$(?kH*Q2!zU#? z9psdgq)8qSt$;E#qcCsAfGjqnzv5{vDFoNYM79#AFzu0(WJo?wtXP&-URakwQC|7H zlO$(;&nuz9_@9#BGe%PO;%amS9Kp%7_Pn$pcq_Y$u|M(j@D?W{3V0Gr2-h(R)C_V_ z-vim1MY-fH>dzU1CH<*)8gi`iVrKNalg-V&HjVtE)TvDpyI#>W=b{L0~bvvwj zigYaL`A|d|6!=9u`!-P^SM#GQsm8`3$yVo$8;6T9buJC}Y*S|8WOn#(Vgz{b0-Vea|IIo@ zBFcG2ivTLqNZq|+%vCW%fay)Fd+BP~affszhMCBw<&ik<_?8O$TIQ<`h^%QJvjzury=xXh2#5cNxBQyhXGV3pTpC*s|OS_2xs;IJh>qqm}3-yr*SKcE2SK>YS;Yxm0 z*sF$*ua1oJO*4!!9V!qCFipBAcxEb#gcd@8K?FatAsA^*P?O?JuqpK2fZg8pMYzQ|uok=>Xp_;;gs1aH(uj@(VAJ z$}K&m`~{kOn#)Q)3}-#h#Fn1nN+?cdJx`;TJYDnB(jX`{3@Af7HusbvJ74nT6REIq z#N(GdPNfQ_!mKjiH-4#=2e#!3^)kck^Us2rYCU8Q=TN+s37Lki%Uf_A4gly@42P%oQ7sS?};?PdIo%Bw4Pqy z*sVlc^T7<~DLkGQdCbZ}^af~#_z=%l1ZVwgdieED=mvE?&RpdB z*~!Vk95d$|o&}Nw&QjCEZ+EhUT{FN)(O#Zkq)duxKsuD17+S_EoZr+?c8fD#eq;O= zyp{{zyjvH`9YAYFJVn}f{(ET`JY$r0zB5`hGDw@0>g(xTtY(FwZ`O~AsTUJdHN1A+ z*jjb#)~Z{*ZXGgdWyoSbO+E+1&ga@o{mAyGIb5I3}ify8Xm ze{Uk=OeQkc&P4o4gFT%kc>z~4`kWhZ#>Cv}+XQnpE&CIOcy>$jdafu-Okopd)G$wi zByZ)SMwg`M^^^%<0i^P+&BRvz8Tfn9` zyt;u>bOn*UqdY^Rtn;80TZ*hnl?QIoakQtQ{13 ztnCmuvAzYEFCJYTK|v+t5O3jS+0xR0hs(!kl`LX+VpA(HAO6>Q z*OM!UJnXDK{703xw8HW6|H3kJ8q4E@hwXZ-$)wz%xR= zrqa;HEtf?aFm5>vDi=2&>^^HZZn2gi|AKCvr@7h(1_rgR(6ns^#qONvj33jopJN;v zzHx+2^Xwwzp(k1?3;CK}?e5Gdb7@H zKW0iDaSAh~*5^pnOwSOpEc0ZxVA{_L&~}!mvIsEP-rQ%jy+sDquz6SF;qm3A8Kh|{ zA2&~WeQAr_x^OLLT^~R`GQR_}J;UIlP)0$szEvU#u)dk+nDwDkH6KuIl(E>eWg~R9 zXUjTIGrrXZ4zpr>Uz?2YDCf^?eBE z3=7WmCi3a|xkbsU1)h1KxT8h(+Ipd9K{4yeD14v!wQy}xnRwPJ5$BObvm@SRQHoB_ z-*A!VYgws*GWn85ou!_dN*$ccyr9N;a$qTVtpH$i*5b=N&6L&{pskiFWa~0dMY+a# zf5tM;yOM}CIK&p!A#iJ1PY{Ju^!CFqHZ0g-Fc;_Yl6=f#LTk~T3&L>>nD+$GpT z#QIg9jc`;#C89aSbdg9sIpr;qImd&q?H+cXkE3kXA*|WqVc9xQWA&s3tMp!E`3nQ5 zTg672HZ%G}PJ3_gguN(#W8n0pNCY^ACk;eSedq1^9&1Lj!sJcLWFx~SeDr^?KIjRw z2PV(xJNw_9Q#}l@Xab{1PulbeVKK>d`o<>Lshb?vKdx^7YEflc%z%1wosA+xQ|Fc! zH2={;wziKw^J9o@cQ$+6a?%Ckz9oI|`dDpOFHQ$mD#EsU;3n76AY1WxgpT>wh#`CZ zo^|r%3%0Y+#O&%*Z@tKAugCgCaSwotyOdhe!WJirn?YMONdsm{g9cn3*@q^*nfz|n z^zkU5kF3PI+%o74Exc;74(1nMm~^$(R#!i4_dJrn38JO~s{Bp{)YNmQr@JKI2%@H9 zMhvO3+jBwwC5W2BG>E;Lj+@l9l@+!h9OAIV2ZuOCcNPC1dp$j5CHx}NE*tR;i1xNn zD&l0;Ifh>(;RikCEdXpgKs^h9zu+NH14%@%$=-X1JuymKj9`;Js3QAU9)}1p^r6*N znPH}~VpFxvHlOOhqxZ=3$UoUo)+ewob)*4lNaqHTx(T7$2kdzaIvR7VQ}2=qJ4yGZ^V!z z-+1Q951CBy4N-bfd^G^ETl_f!Xz@gjkIUQK;Rv?Gj$`ALfHeeqmmbd`XaaM`ar3SpQm>RHeKcG{9^C|OzTdWMUXg&o1ZO;> z3C=NVrJdaTlGuYZp-l|ZgEZs~R@cS+?eBUvO7a^j5zX$pi$uWgT3#~RUBgSy-|m)~ zIkdJrv_tnJviE|APr=Z{WC~}~!uH7Wt#Ac+uZLiK4K6^0Tc-0W8Xu}-F|DJyRDq;q zcq%-H;ZN(IJvAidFs)gLYiz;mBu-{VMhj|2<|K1|_PEG{|9J9>1Pn&D$G5B?BWt}ntp#>p(!KDm?KxNH=_uYY>FD8+Fy ztE|9fvi2{JM+6uu`_ig1wpl9kZ_gzqMj%RWS=T%C9ad0wPR?3Z&}tSY_nFO=-`FcB zUKYLb61QqqMO2JiF{Cq9U zJ5}C%g=B93APYDKioS>^3v9`t^Fvj=CdNnjQ!&X?`YR#k3c0DH^|0M{eEZ-@Z4nm#DX`-Sot0~iydDtMR3 zfXW*U^n`Zl>k@gdV(HPZ&`^*>^ynETA`DJgz)A|#32k&midOPo2)@TM(M>$^gz6-r zvUjwSfSU!aeNAbKQ^D$1m_oe z&ax_Rm;hlKzFOV;zN`$ySk|@?IEA%s;8hY@6Vz@j8$s6Agg86N3ed5ZcZCV?nljI- ztRv1_MJ&q9-O zR3e%;gkBejfH%n3jo$F*|A9BWZQxL|=3w7XnqN11LlbCyfJNp_+9L3yu3nGy24xoC z2BSN|I8`&(la*?o|CGsJ#5cZT3v zCRTGme!zI6$<)5yHF5=&hQ?}nkp{4uKf~yrIUwcPx@Efo-Ie~{^VyX|TDN8>Y%Fv= z#k*SRij&z`=+qGJJUKCgpHUD{hH&V6M)UfT${cnJOc>_v7S=Z*Ca!ej3k8yA}t8`r;YOhQu4zR5{YqHlam zT8m*a;sM z@fYYa^;;<{c-65a@ojIHr&hf>Wp)gC__nt|SaRLI@yRvgV{69NPKxUr+b^MC|Jt?t z#?`7FmmHfESIb|p85xnS?0~+pb&~qU)`UF~$#Ka8ViNlG8xWUNr(ezZ0WonkNymt( zCH$wlEdE?7n-JSCu6BIwAfMX)M`Oq?Df}sw)*?;4 z6JwrM>7(C2s!49Addr0+*R0boc0kRTL0isT*G>rfx#afcRSd2PF54_dojkquo+i-vI;q_Kl5= zkB_5ULE`K5g>C(GCrIs>gyiH}Nd!t2_q!t(u9u!xD=D~dMr_!C;I)#Z9p6NeJ=-T1 zB7aWvMpdg-D<-iSY@{zYetgyNa&`L;NQz6Y)xU0?TD9T^)Q(F4H31W~2E_MEs2vlh zn%UEKrHncW`;Osda*DC%zn1+PXvc-ihs7v~1h^DMr~}Ed3P8^)J`6DtW8N z#L%#(a7ALPFN`L$D^IFT8gE;lmn@j$edYf<-2ZpD|L<`Brw-S?^yH@U*bMvQ5PPgT zPWYT#gjC(^O|v^2d4IF_Sg7@FA^b`hHY^QX3B&%gxDsYz25G&`+f@GZG?}^08!eYQ zPqu9HM#+WGlPlZ2@i}V2(!tCoZ;{y@t~Cis`6Pq9@rC#00SjT6Fg@i@IEOhsr4;Oz zo1Rjb{iUU+Ln-*HU+=P!jw#rt+D-HqJ0qG#f3Z!t>GT)dxa*+5*vg}m{))d!?{Dct zGBziaBz@+Ug^PR-dOIk4Xr4B3dGw_>QQn#1Z?fH6T9Qv>(6bXSkvZeWXIFO8a(n`H zf~-E^ZI{n0&3tjph_^=fOP-$s*P|5N=`C!x`c`kJcdByRSX0QY444+e>0uJP%X?S; zU9GM|!4)s&G1XQ@&T?&k?uOb5Wg7Sj$)Bm#_GpiHw;Z0ynd=j>`Ncf6tiapUtk?F* zKB%p}u{ODGCKxvMRW6yh5xu27a+|^j4Wj`x8nbwe>ev7?Py1 zSLTrSce30E>)s>V$_2@(cU^f*43h1Ky-F4<&mBTO{ZH5OIjM8N(DDkq_=mLo%KK@% znSoZYUsQxM2R-|>KTYGt7b9=Ho>`o<*jTVSId{bSGWqHVEMu-f^{^xF#g?KJOm}zH{OEe)){Yd$TyJLv`R<``O8c)_^fxHNSluN zQL}RL(}qH`*qhC(&v{dn`?z|xP5ur_(WT&j@4R=WtUN)Pgzd-sE7PC!tv8pf{Drd& zZOF&lfJt-F{Ce5zmX%W9K}9TH%*^Cei+#8Cx_6+g6vH_Nq6I97((fStpEJFeB&8OH z(rGr5Ng)d;i{`I>@0}QmMWsuC-22`;Uulb}GI_N|DSB!DPdB}1q>zE%-W4Bl_^F* z2oNQw;^veT5sdl*V__MnM?diH7R$2lH-&%lHc&QL0Q{SN@(z(K5X~NWcKMO=5pg_Z|9J_rxDSda9|`?IO+GBw|utCkWSJ+Tw7kbib}v@&XQ>I zFeRkE{OxxH?q99BppTrh$dzmmS8|O`9?*Zpu%yAm=coJtf|7nO*pPhwySHRv-L1>= z#+?3+ocrBdN5Pfz+nN#{d)F)f;2N15*Z9LbGXzR=H~!`i@3D})H&nj`V%z`pcD5i^ z|1a+)CF}TX=Ott-jFxltA5>LFll$UW;Y%xmb zJlw1Xux7X}W=mgR^ow%W8~QOwTOQ{q|l6k^iMJRrwIL% zK>x(UpSMz0B68DGD5>d;%rr(~I>6tcNfbMc;il<>FjhMYKCE{3i`9OHHi6a7A}Fh! z>66u-Ppds8<^~;(4I&-FlIxKDim#Qt^afoLiy=)m<|rsHx9<3rWh>3{+-viFQ>fq1{(^u2po@{+2?=kfrl3Jl`ZU}EoE_@{(^qr zeDR)Ggb$z&fw_0wduDJkyG(ZR-h<-4;YtRofp_XxQ3}+~Mr4%WZ13#B#q2Wk`(~H& z4=m|xm0kHA;dze_Xtl>L!c84hVR4Ey$u};Wzfrhvp{!*8Ugz0}SMMVe@XR%Pm-n>^ zDf+#7L0>UUf_A!6VX}9Jk6+NIw?@5;OrS=u_ku6%zF*`T-;=XZzTcHtOpH2wA)SJH zL0C0LonK#985P&X2UldTEk!m)`~31t-;>@-T8z>P6(pH-k3jf_bxBHloXkG-wECV* zsN|b00%*)a4N*IQ7Fle_waUJ!@`&%rz$(6vl~F>CB7^FMV8gOT*MF+2Z@r{U!vrT~ zIwMKOrK#1FIXIbdHtl;-y@s#32w-O!R@CtIQ9i=}Hg*C4yH-Z1!5|7Xe1GutCbP@W zOv)6^fnI)wQ*@PTHXR9WX}TtHhYH@+R8L5K))uw(IUVgtmeGsLhERMp$ThM5Mi~n!1CK0CO7k)lw~&(7SfM;Uz}x? z^zybnyh?O=n=a^AEvnR-OR=Xo7G2(^V_!F8*-@oXu_ao^MRvdJo3Gr%Qf2Sh-9{;9 zryfL-#*a@53tnhASzTT(OsY?tFkT6{g&c^f|EIstR8;cdWTyU*Tl|JM0YJ4`R%dYx zXHlq~oA2;8zPplK{uVc1cEg(vd&>-Cl8F=u>0P?oDNh1BLFWSX3)!08qGKWbHJ8Se z8Ff5h{I1;q@_>%E`+jSC-?x(7LnWYo8&tYs0_S=a%#Tz(PN|D@u0)H+KT%hrpTXh_uui zXopg+ALyL6Ua?p=E#Me!hd;efOZ5R+? zVs`ah@f(~bh<(g(UvzePB#2!+PpxB$nJ|Ul^u3==p2&E>#|?E%5g_&#feV;$6Ir8+;S}9?a*`G9xuyNzr}}zI z%1^jTHuxSs$rq{oj+5Eo`==lH;9CF~TGCckDXy2bBnqdXmT<2~>_jhbfWZp8qpSFj z%)QYaUAoP@W>EpNd;qgMx+-!oy3SVz_pku-JG$Iur;StU{)mi5zdx%9PG*v*`y;gulbomGzEWPQQn3{Gaf<+0mj+d5c;FalaC zH?7L9TJLKwmNj%wr>)x6G%BrmsD3j$)_GRk3C`zTo>_!^|HI;;Pnl&b%qfNdcq1Ji+-J5*JC8at7@|(Ci(3OXHoXn(I{SImG@Fm*;T3G?! zb%IER8rYJ~>sDpQxO|huvIg>hHCQCN_Td)`+5fSKH1q;5=>mDQ%ojLqqMW6zvWcgsAy1E|RmEr?uxxe$-DMk7K1#*Wv}f0 zUL+sw^u>}fJAEDGc$JdIa4k%UF&uW+$Z#=8c{YY^+?I?Abw>CX?xypGB-(&L5T)y` zJ@5KE?Dd66N>7}{oNf$GVSdo_E_t%gS57Qzu(^EdQCTc~?sSg*zCp6`F{aAunTJzY zJs;mCdk^_GT9jR9RW|f1Ut_VXp-tLVP(qus;0K}RgRShY68X5nM2^sA**L->$U`Rb z&WhCL@=b$be24MOFiw~Z zhbk}(MDs%)kkbdE+A2!%6TZT^g6r+_Gmr?TH z3p!#|XrqzUKjkhui^+Ln1hVRd%uRQAQkPM9gham2^c5u|8%)njmikgZ(Gw%&xu6ld1(tC} zlKu(b`O1gLpE2&N7g(kRFiag5=h)uoT9gNZ!o>Mi@8BwY!>Gci++Sygg z%cq`K9e3Zjk~$W%i9>*Y$A5fd;FkXT_I|(p|FQSp@lh1-12DS@0g@#lm6i&jL%5zh zdJsjy(5uo?l_=GMfif*h-tFw( z-i04u-+$g$KcB-V&(8DAJkLDOGtZQr6-{t1~hlf?N83_wU%deP}BG^A%i+ zxP@qy{XVl4o)3Cxuoe?l{CXA;%P*pQlN7DwXJMOFI-T^e7|C)0BIA^k-YGTe-dF8- z;b+|6-f%8=$`g<2lxKYVQoN|6!d3YQc%QX4g~{Gw`?7(Ju-gzgLe@Y?d6KpFLVzz^4jAw?2SV!=K6;cjh>4{T5?IUG7 zWWV!oJLTWFBmHDFh)6n1A?XaZrHYhhDwWhXrCDFa`f4b@_NxDsrh@oJ!sl20r8FzA zlJ1Y2gDX*{G*hu|68-tlWZY)23zU1iuG(n$592B2sqBnGWu;1$F)7Unsxse{#s)h> z^Mm=jSN+Gc-lEQKQyvh{R>WKDRpf{YcLqn9T63_mk zUBjRAvDp&=`^BZ~m&Zs`JU0-;TqbFXpIMzPsgd<5PUv=xF$8j|qfO}|qtK5<<0(~D zToAgM+^^RiEo)@$ff}~%URBOOF>RV7s)>!wWdFieyQy_6CybQUA`iqLs?p-?$d5c| zcbfH5;03KrI3LPSXpZhQx4tRNW$VTZTFJ8*j1*x3A|uF>AT&w4Iy*67p_NGc;i4E@ zq1HN*6TV=If+@)s9M_1_v31g&owxMXQo$C0be$S0NgG*az5;xyc&!@Wc)&Y}kxNG= z?6_h-Y2#sdCPi)A=O*hhj{jX`;2E4QvkXYsc3o4Z>W8oSn~17QKr=@5XP)lasgUkb zwnD03SLRYN*BKGnTncq>X`Rn&uKN!?d&F*OMp?iV>ZMlJ`+UZA|B>gQ56QXK)^U9I z>m=}~&T}1J5`QzK#y~B<=_BTPz{xGESCldA^O3QP@iErWwVl;2OaSS;xyz%b`i(9@TmOJsvhIYs=3L4CcC<_*CdRmw9 z<8Js57Wc%yd4sZmV6iLz!JS4iZ-qwlyCq%F6YbsT|B>p1C zYd|fJ7=xh~0&L(uV#Kg@>t|gSEbPOb>`gW0!(fcqI2lJW$g>#6%FYe6u1^klHZBte zYH~R4)FA6@;WxH&vTgM%gJBq-9Bh3l&d;;)^EW1-PMhY3BEu&us@diavF_yr{treh zDTsu!XdFa19>wQa7yBz8uTp+|u2my1Pu?axnQOf#q_O46Ye@C;t)D|BNAj)BWV9k-2SHzE|V&AYzp(%>vMQbYB^P;tl@Vtz%yl>Og=*jB}Yld38^TYo@ z-5L}>BfKJGfp-)}{(+ViSf3I`vQKd1Vx$EHjmZ4vKhU|_pJc=hWy&(Wir-?e?Rm-i zJtr(=N`SpXJ@fxS7lv8C66Ui{6!mDudgcVK2cOJmwv#=rlc|n`UKS&@6CjdfrUygF zWRA9yEhTdE&A~t9p?4o{v!6U|4?JT+?}|}Y*rC55GVp}npI8PY^dA00xrnd_jp}Pn z^!J%zbx~-prvA($<`W7rcSSAk!bklnmoVZ_{}KxDj7ms8V3hQ_HHYV$hzvXuHe?wP z31j|L4lcr<{stFy2_8kdz6$9cB@^up?T`;HJ-i}%=sovt9lE!^Em}XpnuIieei)0| z-CwVzf6l(YK87Fur~grBplHl5QQk1>Z0b0zCAvQ5{pOTIw}H+;0U^rsC3P_iasK;U?EAp7% z>xvEn^J|PYl}=6NixoDwgEb*V2W?|Jr~z8J+q#cGr7*$cEIl#7?|n>g+y4tDI0;Lr zvWDfA6q#PLCi0#|^vX9SB@sJhu5Ygh&w!cl0@nD+R!bGW!A<`QSkuI=PQB@G0W0Mu zUBIe}D^V_BRYc1sLiF*o0Li}o8by1EA9zzaIP?zKJw24&^BC(`2fh76*0GWTd-Y!^CF;`{ z+mWT#le}V8dq2^aKcHJR!Z!CV$mdjIC;}nw#wR2K|xYA{pT>7 zyU9|JRISYy*4Md{sQa7N1eCl#s2-Ct+*4~6$%NI#w#{5)T?L=V_=^#OG%EeTpmq_n1s_ra3F{;+LltyK|_3s;1S1h5wR0B(jzO_oJ z21+clhVpyh76bVa^a)f#-z;PCUTe!L{L)+gvy6UXFMoQ=UzV}x7Creh8CRmrGA4kQ z0(AH|tk(Z6&FC&R5J#VKbj3RrR$*s*RpE$-sm^@U3ouF~>*#?cY(idKvk1 z)XTIBd6$n(9}e7q2bBHy73v#(bo4Hj_n@T;j>U z(aRUC3*`i45FD&lc5#ahE#zh4r0+0clv>$!EjOgf%SsJ-M~z_Puhx}v0+Q2&w%+iT zFrOtLIZfteYhNCkzv?n9x5?yHjLScI)yU|CB zL~8sV7EQDW1ZS>U8_Ef!tmwEJ!LIAp-6{lR;r+52!P9?OPsjGp_8qWzDEW#$xZ4gyb*ZD+xmy--as(8=_G; zWsQOhrd+Iyl2hKU!$)35bN;a=Rhj`?L^GbrMfSmE&r~Y70FiA*6Ex)h*=8YiFr5hr zgU+Q-lrGD`+@@kS@NXm>+MZf~IZP##QwuN+b5&t$__Khl@wUMbc}u!2hRB-^?Jz_( zlru0y)`{C=h{V@|jpTZsg3a(h)NS;_QI)YOAnYz97trw#+NR#MZm-PuxlM)?<^r7T z|M3Exdwfw8vUOe`9^Df+hiD%|P`U3dIPxMio6Ns0-h$)rA-M(TjgX>ug+itVatlt} zcm@Ntlk_zIHro8e;@Y;!m5ROyM)xnl(A)Diz0zucP}D_Oz|bJ#%y)#M*8I%d$Wpav zl$QWoYXUTm=ETX+94+(QQ>~W;%wo9f}jPe6;l)+ z1nkkbTgEg{A&Y2S+(!6YL6*rwJ@sRY`uPy_6{`FLS`ZC_u02E9R&hlgP2e=y^JT!iBlz2C(%A-DT(32`UAPUB;z0AEzC=*5^ahK zExr6fSF0$D=ez&I++8A()$=7Icb7Dh-fU7as4ir#)&*<{Hw|CC@d9lcbM=N)hu)8= zR#)L%0Ay%GRFo0TOe}g^c!$*%**Gd>Fp_zriAhBZg*nVK`brbIO=BU8Cbl@|A9|aH zjDQRWQmdb!t(Mh?G9Ead=Qk5oc4nNhqiXJ(jjy`nMkCN?a(z&8`=Jwi5S>4}hWca(FlaKPYs zhMyCe>XJN)lsPI=lKU&3Q%KpDZKa|sdwHcK%N9{hi-z+2E0UNQEmw64W9f;M1AL_H z_1IFz`O!c#O_9~FySAx1-iVrMi*kjPxN)8cOWgG{1|xOv7G2TgAmJW{ES&BZAmnC`m zTP=!;g`m5P{A4Jf*|KOgZc=)yqA_wRQbP@vfP^L}`*Q1|);?uZkgIi3W1+Dc!Sij3 zI>`x0E_|#_Q8S^H8o{Is8*0l56l2(%G@!A)M_>L5YFAW^7kaTw$r#?QeNj_k0E;Hl z^tx-?+rFqjC#O(U_LgsDQxaZzj(p`EDY#iHg$?VX%)9VTnnNF1+0fd(yJHJOSXIl2xuGPW}RvgKK=CNpEpHPt6 zr;LJh@G50te#TvN^6y9_$(|FG~#U<&f76LOe_0X$VQkWCAMe>q8aY;0zWe51AKS^g(e3 zCm2}9(6&_cfGchwv|`b?fk99Z&G{;{rksLksS8_}G|q4j^$RL)FE1+@(hxO*Zo$QE zY<5x`o*0%e&Yjr* z1A<8#mM04`0(|q%g0G)X5$Y(*2SGWs!`e?LCs0Tth?3k2ED1Tx=_|jiSIM&4JWcV- zLMOH@BvX6pVP!NxTU5}_abpQt_QCgDad44ce6e)G;VoRbpLqBtJfrb~EEVJ$i|g{-N0itSLKVq^yzJ+;EgmW_tS~OmMU|{X^yv1KcEtyUco|oGI!dz3rlM`Jq*L~16vJ;f z{Jw|Z5AfRqzrFDL5q|sNw;z57;CB#yhv0V@en;SU)V4pv{$=%`^a@qzXHrqAD&3rbwb@G&5(GhIXif%KQ%<2!yjDefborvrAp85gFrH-#qIDJCV=*N3jjw=) zWZ5n9vQn;w)Cjs~+f(EOWSmGo$u$ zE1<|b4(Y_pA>1xML1sTZqd{iQ3$q)d8+rEQ{3Vgz6J##3^mvw(3<&t#*Q>dCqest! z{lrLERw?NJcBKk5+1L;CYwT(Xn7Tytthf3zPeg5xrBylo@+hfT9EavCDAA&7KaP)J z4%|j_M0B5{Flh7IspFIMrgU9)7JRxi558h*%FnT6ryFxjc?OFPKAdT?pl)BiKegOK zDZ@Uj$v5Y4cd#d?q#)2q?EI#riM8RwAsO$WjQ8J3VXh@^M4q)5q`Qctfg>oG>xS%2 z3zOqM9_G<}H4w?0z<`aHbA1lk{uB+vqv#HdIX=G12Qw;X4(tw~D)&7}V@n=xuf*|h z5LMMiXD?28f;oCC>8rQcy4NTp*koQe!u}G+PbGvcl&9JxLeB-SUP3f`l>HZeA)#xD zy45O-V_pN5=(4>PqKwJ*1eJrkqlu_3QDMJ#A_d6_2Keiv{>nZo=b(&QCw1|55+K@yez#5{3qX-Wj2{|4JM5?->A3bTi}bu-M@PO z{qjpKGksWtze0LQ-FrreYPduisqQ@&$urh_j{57FL&~0MAMg%uwT>C;?HH1~J!Zg) z=cRzfcu!5<6RSN@&vPJj+*tcv-pJ!P6To@KijC7zKHxle$JqyS{8NN5fb$e82~nH& zD|(^A;r1#>Gr>NA??X5QaHA<+4*uMzIg#1NjcNjC)le4)LdZhhW4O^P-rjl?H&R}3 z?CFF+>vkWg_vAFcJ=y$i`(A!kc|AE-Z1{3-PmX)X-kjrY<@Mx8NKmOlb)4`Yd#x3c0R@4nG<{c(IN8WNgynD99Acwb6U%^_GK-N|0z~GgMJl-? zzBQE34w9#igK_14QpW-CjHZs@2@O!hTzhYRoJj9U9p7N-VSd^&84v+d#{odEo;s=v zL{mrgXC7g{QwaMge!CJrs;ZJQenv%>hCR5zdo_CAcCHFKJl}3XVGBwc2;Z_Y`?<<{ zE8)+MN}o~5eRDciIN~DpSd4Gq?tKh#FR6=rQB~Xzu(-!lH(Aixb@m3r!$%PJ9u+rC zN?|Xec9ZRX-#KF?Br?ab7)fR{;A8tXp>Z(d)?^l{V=-hl4`opIsX?{mg{3)f2UUtC zr#dIfDage=iTmJlOnsCTeB)p=d9nQ|Ie{WJ9D7WUJ>}c0;vKl-gXJze7Prff%Z`C( zjLXI^v!CJ@i1Z$p{g9={OG+sd0TaMy#{h$W+h@=FimQHaM3^-B*@-sKvu7|#>UJuv z%v&#^H4DLLU96C-k23rmn4b%;E2@SiuA*Wl3t?#u zdhoeDU#JC-Bx@MDDOF_#Q=M>a&v++?s;#jn{O>Z}dJGw#R+sTfRT-OaJr{yjuY=Ir z_<0DugC0TJ=c%+zmp)lBV2;9u9-5=D7%3Qe#+!#UN7=Z+{tYKg#VzvW03Jv|N>f#3mVq6q|~a6#UeR$o-|gmApMt6?>HgLAX)mK$ffuBEbn|Va$D{ z)xKNKU24v6Y6K0p*t^OJ6rnO$y!MXOws=CxW9+om1%PMna(JVfM9`^LNM&j`a< zG_hGINEc~k6bdcHiK4Pq()5(YNR9A#P`t_&pX83~c_H4h&c0$w2h!DkhPs*1WIEK5 zg-y%%u&}vaB=-z;Yp_@zdNR~408D_PZYD5LAL`TvqUovnGmo(K{9l8qKIAdu!O0NS z@xV=Gmj*tP^1{9`UfE2})0(ni6-Jkrr?nVzEn15{Kg*P_H|h1-{OokSmafi}TZ*jC z{7E#bzBG zP{sKKFk9o0l55d?GGWDDv>`3nuM{XC@*t(QV?-IaP{Vo(<>jps!X?-3(m#KcM!8cmuv zeqO_Z-)&b@O8N(*n&zohZGWVcWCimhNd*DcjoXWN=nbRXVcqz6{gR9-{3Jq10}}H| zKB+GTC<&Qn+%S|p8*Ka4fLkz!FbWW%#&{XY%$w=c0;x|^`anAa4B}lX2khO>SikHz z^BA$KrPy9@84|nV)P2Xcwq?l}PWVAqqdZ$&AaRmf1;^WB(E8RTv&u;XW6);9hBP#_ zP04dY8CwZX1d~oN7+-&0h%eZUwheDv;^g3~9E?t24v>OIWRx@%Zn9{c7V=jrqdziA z(o_gC+n2NxLaH!)JOsbCFL_plfYeY!jo|zfCGV>cknF#)8bQM+OZ0LAMWXt#sAX0q zG*M+SzDio=d%a~BzIzpUpzDI0uLE_4XI_VGfYx>_xyBcW^qwsB1(qIXsa#K# z(V`@V*=+1wg_^XVcb?RRpvkHFGf#55)>pvBDCw6)sXS6hIgf3nLdrREDc5x_xx{Z$ zNV%S+CsHm{N;wBe)U$7OAs$6QtFM6NrVS@y>Z7ta?50vmgBGm9e2xZhJy#h$>{?<$ zi&nzI({)x%cHxQ1>VGHvWl1rW+&3v^1*fAli}5ws?T;aDVyLRPwL^*ND#TsXvm^uk zFca2d4Dehsd-atkEn&?{T07KFO3BLgD3b1Z3`w)qB^|6PY3sfq>BK1@=^KwA>1#fc z4*s_!J>o~wm;0BbSIT@F&W3z38IAgIViIFwtJEc3t}5xJ=Rndr(?Qa0k09ySK9VjE z4LIQX^lTi9k!%>14k-B`PJMq6O&nPAp6~~5o@eMLW85_cBXROXw=!~x{OZ|*N_e3{ z7(=VrX7gNg&2pos{Nl4pt_o2sDcOe%4?}s`uoe~0K7o^oorP2uL*AW&vYm5EUXzz4 zV=OrzXJQG+(hD#}-7hXoky9u}G|!#XvL=&v`rG7{e8dY~WNhU*$9Zuyl+ltCX)MN9 zotJ$LQT#H?OJVXM@kLy_pCK_1o-spW{eqH>{JSE(XGomH(&ND*c^F^< zbm=CeAuBySOQR7_)s$O`tlR7-3RPdXxg&P}UeZYQb(`6% zI9}8|8%*fbg2ng-(>jW~b0HKore8(+mUOmsymu?E-A^zrf@e%H?J==r2k#W=J;Bt@ z(vwy2?SKgoOpAnovki5*9wnqURg<~Pi*R2sS5-cMJYd_bm~GsZ%Ut)JlCSw%BE3iE z>Qxz?k=aHN+EplikfSKArSl>i?*YZ-NJm_1aF=upBTLGm}A*6tVP(+ znz*o}U!qQNB#T*>XUfVmn6vUU z2BY3=&NJ%sva@q@%^EYDD@WQ1li?JoFlh#tsLRjEF=}#ivU73`I&+pKFVCE#O*fe> z`LL;(kCwHEJ0hz^OgYXa2d+6Q8%4}_WR_cX*0z#*Xz6@MOp*ouGZ=I_gVv%k=yj%S zjm2!#X6NT;n{@hgjqTi*Xhd+5DPNP5W6sm(22<9amnhNE_|YmRqTI z^{SUp+`5t`iKbjjPQEG2Y|PJw+O>x4-25D!PLrOmG3M&c=v?a=v9`i?j)B1mxkkNS zpPO$qua$${%M7*WQTg_%++>e9`I^mKi8jyXL$%bai2{2Jv(BK&HD+al8uCoG$oAMK^YprOozY^@Su|Qhx=x#wt;767mFfonZY{<4~vb4Fz zJiR7c2i~vG%0)L`K{aekmpeY^5)An{S=mPHu;7LHmMjP++35zoR;COgllHRfs1sD0CF*p9yY<>y>tjt-uKS?5Dwgs@=I z=jnhf$E49^f&94VVr@gdp1cOaNx<53(B}As+Jt}=qmhHB=)5i#fqr+F)JE%`nIR-; z%{kdw8i-Jqd=M=^AA*!ltIJ6@rE5&NSvj^zQwpJf%6SjSHfQJL#oRfm8tCWzQn+1_EN2|>?WM}KmIhOofi0g2q z#++l;h@P{1^7Fw-IU1AE453D6f`KkyuQywAwOW(bke8z~!!uiCo5Cerl2MxrV+F)U zoyKHH&rZ+IHfuDNe27^2>G^uI?Odkg3YVOf6|mZLv}ClSM`GX_QF5P;>Z46p3x%c@ z3k;C@Gz|%qmb@GjID-ztbiTn19gAPmGJ+u*;AD_7+XiFph~PxC5d=wx_qj}Yd4^n_ zIokx`BuAg02O|ay+dEf(xsyvW8MQD98ns!unk<7x2mj!4F&~02j2$M6ZO-KdcmxYv zAxarMMVl13J`0M3TPe}CD+@xCEc)DZvnDSuO9veRDMgl1qccFXhr!d5pKi2m?&bhn zG#YcVU?8?YUH~H#468aVywI7KZ81Xcqe0+kha{aNyMN7*?W#=S}piwn#I5jWe~v)W?1Ia zA;S)=5$kjHsqIjI#SV;F+VpyJKK_H$%fYwHTWzX#L;Yn zE*&sgS_od%KLVF4r`CL$Et<-yb@N{fG-zk2BQ!DBm~KwbHCZ6a8}f4@3(V7I z22EZTSScNtA*Sb=w2+YLUSm=3Jf81Vcl<)__LMgRzeoX);(#psMvW-72?g@JjUQVn>@qNG7!4Zkjw$pFyXE zVaE&!I3x~QqaoX1yK!q3WL8;bGvr++7^MvP21A}HTcr;@=txIxx2~#+-bi(H z`fr-{-!$#NX__>t`)`^in<4%;P5W<}CYwV4H%Qa_B>@z=@$5iRet$ zx#UW_U;}eTjTex;ZCR~}OUOs68Wz|AIkf;d!oR={{sms}Z+Cd9aB9JEc#mOf0cJ9_ z0FyJH$T|;y7LdCxFJOp#JL4jT$hDcjV2Eh&R}7ICcrRgyyzg;2yc&SyFzas^3EQsd z+@geum9dUsN7U;5Qr5#Qjzg9ChqMoXvo1I?gPD~aoV{rGhqlxeq%LnU^f3q5zROYBJyvaTRg+D3GWHGpG zRa^!HBRAi6M=7Tr-O}Id%perYd+^a4vqF_f#=1SsRite~r9Jpa($=)S`HSOJkkCZQoNIsz%Nz}a2J8bOWNQ{f z+R-2qk_tx~pRy^an-MPD*|5>sOz5gc_2%!6!9G+^3R!ApGd4Rr`jkyUx34-H3a_XU zjJpQIiL&|hQug=M%J;htK~Y&g1zk_mnBX9*QuiQp)(uCloWOp=v03;+t*lBvHKqMj z7tJ~0XkXo*MJl4YXv)4GA9mBR2wnc!5z5~SC*x+S6p+$rw2g|f^|_5k%oLk zu{n#zt`P(U(SWHF`YI^o*;WtQezro??tx_P;#8Jt)!;jC?V1rQ=UESjB)lxN5hKuVo-Y2iyT*m`!=ll9M(2kDOGeX8 zGAo(FQjv5M3Zk(4yBhngXdz2N8jULo!gOcv?@CqBMLyWoNm#2S!Rth%AapC4)^|Wl z4bC_es&l5H`co!``)luZmJ^vdf`Fe|oPQ~*#Y>pB9W9(8oN$C8Sq*ELTrk!J+S&ib z>gY-(mLAW0;=z$g!%e zvz3AXvV10EzeGJ-W*=mhk}5-atrhAZ8T)lmGbEYaM{jP;H;N%MwKTP?s6Es3r8XHY>DPKPl(JtlV-#2Wk`PP2(z=CI=Y2mp z>?^Fh0CTZT@EjT|&c)EdPR^J3BO(t^ggq$d0TFg9U;;$gO|TsW-)r&r6?k>oXoOXN zX1nyPGldiG;D&g@CNZ5`F(|K#vsk#rKEWFjlJjKNRp}wRBXO{+b8S%dSa!iOK2}*p z%~+Js-KiC7vQLOZkL&I<2x%;uv{jsrh zLnMmf;_X~m6~`MQwz|EXt2iN_DMCY7b}UNm5-l_3>;r#Y@habZsUXvY-_XwoT+H) z^AOv&uxKn$5EP_$Dk~{E3O_0f^BZE3V}SFBKkg^h2)Ye&CXia}Z->U9cLzD^3s=<2 zRU8ccAZvueU>o{1*aw516N9S6!A9)E8nw`(A)>aM}mfZqNu2eC`;3FDpK^ir+vy^k43tC zr&Z|3)(9g)W|HJC%~Z5Um$%9Zs(Kt$J)`A_I5Ju?H!DgtnAK`vhs%kSm^l$35w}ty zrsL(Pq0ZS=XEBnoV<2MiB+DaX;H)@l3{3Tmftl@8s*nwWYiavb$E5aZ#B|k`f7!XZ zGXE_hRvinUQlq7cA!Ffz0QKgp(LTypI9zQk#Gm`*FO%w|vG5nH!vJI9d3a98LNeXh zJI2{Dm=CH>=PaJVutIei6BrDy09k;+@O<3AJs9pB@8mh5F>Z)wFeH)u?9c&ef{sO# zzy}3s;Pa&*Q-KajimJFED1s#DNvPcfXEK^t=&Y)!5+VxYb~7Hg|K_UoANiExOQPyC z-$wY-+OQXKLj&|*9&I+{GNk`bzU{2X^Y1G9Z<3q|^xrVR1n9p!V4!{#2^*ZeEu%BV zazf1#h0Kq#w7j9Z>eBLBuh1SQcoSH5b&~DDbZ3oVw8pT!s*RuFOb+Jv5~cXuIx9t~ zm11vxPr1XrNvmf&w^!zm6GESBuqDFXK7^+iI`x(LUkRblB}o$DPhLXeE-I@RyNCjO zRxj38r~buWeZ{O^$U2FvUL?s-9*gou&kBe;xHiU?yux{p6Jl#9os76l0*fY21_h~; z`BD(KY_6o>V{4!dtDT(`Re)15scS{?ree0mBz3iY`nmIkib4+`u3c)N!5f^7g)Zz9 zhz?H*xh#gHcu*GhUX7?=qch5ffZc$7U5%7%!1`A6zFJwb0jn%4Zon>5BOn{FN&>n8 zyH2fq>{rggJ|d)|#a8%u@pozj$yR32x=8UI;d=sxW)UE8o}x<&gT>a@*J#^ z*twl*&>XBI!$k@wVqSmN=Hz*ya!tk@aUXKQXwU{{6Cs#=K)SmYi@`;!;xeA7-V1SC zoxRWrb7Z&*ZBr#JRMTXebGV|YT%1r*oC-Aqi-R*gX58>-fi-cOu9f4b)#xWV`dEs` zma|v;3-dkfTvjw`XrOS-q+-{HI&B#dSr(j_#_nVD(ASQbqjYIIGs`g><{6@s0i zp~2{Eoo5;gGt{VN`~WjaWi_ej`VU~fi`58T-UFSkBzRKTq*nHcz0N{KS^3aiL+m-3 z5@_lrL-~ZtB*nG=co~9x$H$?Fuk*+u=FQykHP(fFk!h-{h~0JUofl?{Xe6 zaGwB7fPvdyGhpJSE*f2h@bj$ILFZ|qdM(BW6?2cY$JL}kp-E7K_=Pb89CBp7Cmp86 z)dx^z8a$U&X&ZXPxt`-QMJ66yc9JszU77$BK$mI2Ks^caqbj_;UQhiQw4Zzjv7N8X z<=)3Orj}|F^eQVfyT5L`>~QYo`PoE%n(wGi>7Eih?gPq*-Iul5k2~Mz$VR2@*m37< zj$cN&1xSLrD7o3nPCD1~{ANNJAPMU0CG?jBO(P2MNrGOj6)*{sbp%O*;$$d~MMc;q zoNJy2!1~AG^!9tK{Z~D>hJ}pS%oV87r2A5?L}u(Ax({H&qZe=bt<#a zPK{vWFR;)f6CW>uFe6;<;|7HSUk4#yrQlvblMXwj^ESD-Sph;q7CdJ{LcPn*x*S(X zd3YkicsUP<2txrAAR=Vd{`VuotG)u48xhvjR*eX&S(#-KA^xgU+l1SV#i!>qR0G0T zvD0=^KC*zYA??_{7#a}1OgmLdZ&bCE|r%Vt+AVJ5hm8Ojup}Uy2D=Up`jI3z6}RXF`ez+4YEHDMC#aO=1ER zq%pyl;>D3b(L|MEP6k&~QHR`(nu)K{$O0G1QvAd+bam9RWkOfBHYwqImO*>HC&Kn% z^s(xkFpzmj4n#8E+)`|Yi~&uSWGIhEdgqlHzPA~6;m5|yNB1$f<^ZnzDm-UgIq&sj ze{uYWA`_1<&z3U*Uw#WP0etyYV4yy_tBXXEqrJ?>+Tzv#{B49n) zxHN;nL1LnuNdh+~Ik%`9@ zKb129SDXr%0IoO*7^u6Vx?FUqRDb5_>z{pPF4q_LC#w45Ua!#XZU7uKw~@4$|Cz`i zU?O};?6|X(QNX;Hze%_S7(d?#p(BQu8%=!q;G}YVv~nd6p+6rzO%&kcqk9tr`lzfU zsE^7}9*c@VGZ(t1`Ww2MEpjc4Q-41Ml`e9v7dj-VdTa)R_8M;ly8W^1LDe4YGx{cO z-A`Tph36PNeG|9p+BcpIg5q?*X6eYQxJ<6PMAV|JUOHgQP?FRMOI%<0m28P?cMbK| zkl|Qe$~==1CAa7tT8T_uyf2!Qzf@i{pPqy?%U!Mc{?TZ}a+i@GR1=k19jQTWKrsB8 zc}NdDCe}yI^3F93(P5`Fq0M>c%)BWHWvy`4;onI@@2zmPm^d92G_{~V9K@SiFbGxz zrxpMU_!rYpEx?ph3rqy_4*vJGf=c3R>5Jjd0@901FhtIMF2xX8ie82x5~DxE5J_;B zV~E7`6&NCxQ+Xu@L7n97a{LC>-j%L~+$MB=rR!_12yq)-bbS0o}4Z9?x*>%Q6f8jFo-Nipbc0i%wTVn-ubRDo9B%LAc0i1V-0F_qMpw(6s}uRCHuu%`oxVTa;v!6G*U9xv3QK z2bL%NeDer&^x4u7ZUM#KJp$O)N41e6^>T_HybI9HzXs|}6tRCdAPyI`h(XtSoDAW% zQ*5mt3HG&0DD4|)?S6`Fv<|T0$6CjVJlzz%19yMpZ(S*{JVF#Ya;GbG!68>PcZ2@j z6HAFLhI>E}!Pr_CZv%=jbi)c=@DH}k-;dB(c3^(iZ?_7yoTZ$O+B_M?7dsGwK`7A}>*$4{l+OV1j-JhbbZi3Pq zF81*BK|V#-Z~%IHR&Njb6^efEJ3td-D5Qus*dc!_>{Caq>;sB^6?1*?UF z9nvJUvaS}!LJlMVLM=t?s3I%e^G?+wX5!eL8T2i9%*-i<~RHR1$NvljpE?d zdyKe@Erd|SQ$&3nxW0R-G?8mW5gM>)N@Ajjca8#L-G9YUsn+R@S5u5dK0>rWw1|FZ1E5zO zb#>yCMa*0reL8DS>-lCPMuVg1CA+IF-$KOP!3~>U;>zSZikMOyky<)jt@vIdrX|+o zNr$U1pCw`%V*>#`HPF(SbG6Zs)u#o1xcDp`TY>4AD~TT`VrIGlv-OzkIsSbS(-TLE z=BrP)=I4u;KXIf^+ z6hlvA=rD$QV`v_RvN7}lhDKm$9fsb*&_@`WilIFiT7aRO7+Q{@9TPFQ34^mSv>iiJ zF|;2;^D*Sc&`%gTkD>1{bOS@bVCVsciZK*c2cT;hs(~RVhU#HxFNSm&T8*K$7+Qj% zXX{j%SfSuc4ED#!lNid!&{_<=f}w9QREVM782SK1B^X+Sq0cb18bd2EWW~@-4DG_u z?-)9ap*a{jg`tlz^ecvb#L&dQF!%!o`MLnD!cYW;zQRyEhE8Fq5rzgTp(il3 z21DI2v;ji{F?1e71sJ-3p)nZRj-hukGz~*@FtjvyB7loAxCkTHV(1`-wqocL4E=y1 z2Zl;8^fiXgU}!mpu3%^rhW^3O6%2)>0(1gH(HPo^p=1p0!ca2|9l}rxfF>6FiouQ; zc?LthFmwb%Ss2=eq2U<1jG=KD`Vd3!W2g*6^D%T3L!V*DhM|oZI)ouuVd&>4Bf|2DTYGp0Wc5pfL`Y4h_+{)x$?`(uJonJqOdAf+y>t&84L;!8~N) zdDmBb4rD%mxLTsw6RU*q@C;s{$>7@)WE*sQ#R)V2Og(h&Ik%C_Pq_Iwh-qmpy;q+Q zYnkg)%PhdexC!y7$kMLp#4oN?&W4H2D7kfTC~pO>_1sS(U=oFPnootHZ)$LfsBJ4Q z4xRYb70GX|H$TPQg=zQ(Qb`8CwjSE`oI4S>i?F_Z30R+JSfBG@J$6-@0o}d~T+5VP zPx*4)wZYv5#a(e}_{jPw=4_6!yLszf3xGpjN-_pK zHRaZzr5B;D@y$-9q7Ii_7N)aS)JIt_mYRYa7C<)<*(Wx7Ef($k8RmZnMXm0mO$G8u zH0;zV0ksTq$D?kVS1O|!RaS;_d!(i^oOjpvSl0ZEQ{7Ovw_d3!&cAMneE($lX8wGF z@P#RKT1YS&R#Y0vU6=SW{q{S?iv4!EzTCuy)Hz)hmEDG9qHY6f5y>d>1{FOLMSK8l z|MVZ1iGyYB8@?6+M?7w*aPI!f@vi9H9am$%o5(biVLJGdr{PEMx{|m~s+>Eja|V5P zMfdN)ipY48^H_%S><(^GC9}UStqysxTAN>0=d6A4WLNYs!W|CT-O5^M=iK8V{2H;2 z)l41NN0tic%tKc@ZiOoQW$NsSp)}=Sk-{x9buvt^9`H2$`WL}9(Dm*cLgB4>wbmb2 zXP+Tpg9&oihr^4>_g(FIt|1LV!~`ckby7fy!EOsoBGs7QRc9)xWP~Fq5={*~6#=Op zVV}mb_oyTRk#Zx$VCL3jezLnOW7`cIl7o^wV}C>??^kl`xIvWZ^DNW*4rnvDO#%Xy z1fy;@MpZ*QN`oq+?LU@=a{UzSd;7BYsH7^o_HGEowSA@G+;m#e`)oxX<%ktsJsT8) z4(*3Y-Fu2U-uA77h;ZdVX)|ssgmBW4sMJIcem#w8Zl-e^;@^AL0~ub(j;DJq!^p3 zz|0kHCd3_wV<(&?nSH_49CIc+N2N50?cEarGu62gN7%bk{?gi?A37 zfl@p9xCsr9hGq}MEurHq_Xp~pdb}?G9I1mH%KHLF9At@(zm9Pyb8zJwmfc$>Z2RkC+h1wq4SIyzmN<7KZXMrcjY21Cxdko+O^OEf%&u55k_$qks<}IY zprdNLJ98EAUvyAr9P7RxwrLM5S4Q@DcXdurIVM+nG0MZQ`-rk=G$p~U;hITInGvHg z#)>0`QhDDef)xy5S~<|ebxx8yk9$s)Vc!4@!&g=gMO9OvF&{8or+K*ATbznV(`&+g ziw{4loPxev1adV`hZrzLwWfE~YqI|U;oVr*-IDu;sl?`~}ND^H{fE>sJia< z99$=t;<1l9sBm6b71Z?)Ap*VG5Lk!fhdw!680wx3*2#40s83eUD*-)+#gDy33tg;%fPEFQF7%(F*CmC`&L zO{(K&ldQ2#aFUgdBL`9H_GaM!pV9U$A?-sz8-+&PI1z?wxvGYvGaJjIP)@TGk=!S$ z?OaIO2}`^nznR1=9xB0Yg*<`aAYN5Mcbd@Dp3DpImILl0Z+j0lb*FM=q&VY(r$}Sj zjPUB9@CY<($HyUjP*a*!!Jbi?yFYqg=QeQnr3Nxw?lh5yJlLp+=bMS-jVbwrHtxFU z`u^|`^!H_0WQR;5&9{qFQDk%I;*_THpqJTgaTT=2=&sH`Co=6znQDqpM5D9&!>ggg zo65q_2gz}j(8J5FP_CCM`|dvMH;(}e8ay_t5*qq^L{+pS-7WA_#5&%kbzHZ3>PYGl zA)pVofPqd@Wk11(Js3dG1vjE=(45RFGTzKE*0heUjdm`Lu1qth4XTXSsxj_@mKM1y zqJ_7XN2BDoriSq6MD}HrJyH15R_+?GRIH}!<9?Xx-Br-x*6wKV!gDR5Gs2qDaTg3I z5{*0!S#{X=AJ#ycFUu;T-{(YCLDk+o9?Dm4rWkxHHlu^Dyf3jfg3*z-?polJguR(% zpBx97)7h_1R7S~PmL;Nx=ff+Zvrcy?Z&b3^sj}~aj%5Jr7b)vJmNl8nRO{}pfi|{x z$MM-phJ$?>F1vWDD{?&HPJszFY3p2;A!O|B_*qIeGkn>QC~$op^p*4PYB1a4=Tuqn zlskkgrc8IRObeqRMc?q0yCuI($@yzPoWVJ2p=wV9!)uh`6_z2MYAyH?_6>=bJPeJf zh|WYugrSFe=(J19IxhOD? zBvs(_mxrR8a5j}jEHt3ss+dzh}sD8kxKTA8kpSvE{$4kq!p(oRZ zZq2=;2jTNUe|LTUEtXH!=iE)XH`VyO?w3zrehJHB?(^=3FkE}YV4AW}&VqCyh(=Ni zP>*Moj5IA_AS{_3X8Fz^2*dONHNHPGe1Q+)3*AOc;el~cjm2ozz)K#5hP~`I!5)`_JcW=;J=b@by9wWsAuAo`)^Z&P86#B& zK~P1v(RvLxYvO4W+Oan(3Jo9W4&e(JJ_AR%lc29~^$ed}KYVbUY4c}P4CV6y!{_iw zh&9uce5R=LA?lo2Ga9~Z@hY@u6T_#|XmHZ?Nnb09o==)co zDMyto4ym&sO{qF9I)OIj7Q?6QYcOyBQ_1Ig06tY#L??)c3u>Ypqud=ydx~ENK5?k~ zaG8puF`_-s^b%OD3GEvL^0$(RJHO#>&RLYiCST$Wr6$zxO_+cWmWcPg2@3`Tl*Ijg zh(QS^^ut(C+uIUxyK&GGxZq6Q?6v&1WN zJow-S!ixzrYvF6D;<5|rhO`L~NbM5Ux(V*aaEe0Ff&-)l+>eNRlX^R$o!T`f83uAl zscuRP^o1~J+)y&Os$`(W!(Qu2Fzi*=OJ?-lBv?L;(JQxoA_*o#S^uZQ#rpXc43B5t zaX01DeR#lEd+{n4!-F)T=ey8^febkeyus-ByY9yPb3Q!!`tTrnIP;#{z!x$+hD~<2 z;K%!rk5wlxym!1JnmPrBxaABF?tOP7eyIk-bX$ak9gnlTF z0eGTbQ=^!u^WA7YXkrJLW05VwOrMH60fsg3XJ*4FIzl3Z4ZGRyy8O#NghRy^<{P|z zMXmg1OgK6+2V&-2mP_-w5CUiUaG7DCBl0;`Hpt%{Nuf6A>)CW4tox@Bx<+h`4Wox0 z8yHCkqRDekrShppW#^>;#+#drngr9m#8$C!XwYZw5Y%WEOmgsACYp~SvV{w5B9Uj3 z8i~%ffV{n$jcDLdeDVZT( zW@MteU=4+{R?@A{be!cy?fH zG|?>|Vxm(?$UZ;uET~~UELiUD0E@*Gx%_w{6W{Mky7Ww_DmXPHbhW`(Gr!jPB1uFPCcZ0I^!Xd%7Jxl^u}WFkeGCZ!$qc(v5;pt zdemJBHQfx}*HPr%f#nVQ?#X8;nYEFa5jBGr)YRM>9Ut6A`qM1GCPY&F9SJfl7;+yYNmDBHO#9o^aD?!+%n_nI&XWkohv zg>{R(oD44}f-Oyqi$ROGf&_LY+ry&xz?O&)O;r#b!RZ)5GnMwxKo`FG^-fwW539LuaZ6N>87A|E8+wcu>t;hxD7=6 zUMboxNi_aDNqyu@&mTMDYM`&bhgkBrSjSCe9dH_;0d77B{Iy4YH^@y8dlW))_AGr>Js_?0kVTkxyVQ%&6Xh^@bN@!;P6`|Z!A_ilH zzbO>G%ML0@Y(e{~HcHv=@n6DM6XFiT4i<}MKUX~l1-*H^I-L23Lab(DF+%j;s1|bn zJ?4Owyv`!~r(X9WgYF+>mX6{_A!W>Z-{lgrmSQ32cVj5 zE;tu4TFG>TI#W=1Pb3@%+gm9z{Y=TUaNDUc^xb7hRtjG}AB|pqxq4-?KF=*t*6~Sz zI_jT~R>Bd0Q!*oIcmH@iYInxnf`cPvr(~v47bE!MlY@f%1z5HFiZb4$WPJKIW!w}E$*fTcwfYF!-t;1L;d*5iYt*YC zC)zsv0?FiATE%H)6=A=+dvhn1?A#JNID(ULNgU*O@OhF4{OS#WVB%fT%}ee&e9czW z_2W?1ud-hCn0R~GLV!oC!&gIdE`6_Gxjuo3ahG}YA#nVwJVmuhj&UH27kY-)YYGGYc z;dm}Nqx-6|<)diJhePFTmeKUOy9U2nWWT~6`$RNxO1;YHK%Y~g+%hHS#p;|}`~i8l zQ{-${a9;4Idmt=uDYSdQhZC8JzH}3EVMtWCL^zu&^%YS-^S|5!xVuV5x4n!=HV8V! z-Gu%=>(-H@R6FONmR7gPdxGs+(~)V%iqqo4Hq`eU-9BQ*kQS}!!oq1Z`!+1d_wkmY zCmrB1v4?aCPqsL+Thpzs&8J|(Kd!iDw3uDJFV)WlBM`4Hk?B%hh zH8tbam{NxdJC!y-Lry@DhMig1sMpp?LA(3FNx}bzuk!$ps_6Q-J3t5|kVXk4Bmn}1 zk`Q`NqYESfq_-fw7X?Hq0aQR*5XjJ^NfVJ`c~Lrw1wo1^Yz@H*BF%~l^8W9c+1=UM z8^7oIUd-Klf9Fg)bLLFjZv3t;72FEfPj%;aKSDNtC25xw8v3eezU7-r*p>4y!m8&9 zr1%GCjR(@yeb&ZPzq+5oQlN8>u@J+u#$wIDnn_0mE zfiIlO6Pi;tZ=&Bki{lvbiJs5(KBw&ewK+C+XGg|hQKb>m`XOAI8KSi^y`Z36D)Vkc zLA<30PyfrORc57VC6HgjTFWwn()FzIviIvSez>)@9zU?BTrIwtRSM)e9jv7-Q{+p& zBdUohzC{pR(%Q(fm8hF^s-vWJie-ZrqZGheU=@bEOuR!TesMB;VH>Yhj9|X=U?7nqS$# z&w8FU1@#dI6pd8u;|}iX^SESmiTo-DrBDbow5_?6*F7#r_l)(a!$r@)={|p8@ zLw|NP{%p;=j&rs$T!^qdOk>6zxKe>R(nLQMKi(P7tOQfn^M0MC*(rYJPGnV{TE`Z^ z9!Y)wmiht_#>c+`eYbpG5YG=pRVqogiv6i8{Tt+{Jw>NlFjKYo$~ahcOyFj?Z6^^a zcat5_@qA(@YZYUII{ofzPhyOx(qctn?pAe4@@m6kJtgSfb^72s)^QllnlZcl2lGl@ zYjX^2N#i*>6V0|BzjqcJe70PMJN$wv{ki|3CnQ;0VUmyNZ|d~NN!DjAyG@xp%$a0l z<|SJjV=){ttvb`4$G9-z_bMeh?PK`bRK%C&BB+IY-q6~V1!8<@w7U`+qB&C;QZ1%3 z%v}&2%)J(eWf;v_=@=fH^QmK~*aZA0lHX9}Q^!O6v=UW9`Q5R$Fjk+?iq}&wLs$yE zen9OgzQ0_RGW_BP*0SvB48FA!46(}h>W}xJ|3+BjfjYlm5&XAXz{stTYA;o>o7bSR zklOp}A=|xHZn4gO*`Ez7m&Jc=Wv$DOO7;gT8&1Or_CKBTjz5Qru3id^+fB*&LFIUL zMAk~<_N|UB^v9BM8<%EH!i2r05gK*`U)jXkkyCwW)fWlRNw>DKU;xy_>bKgtjPX=@ zfJSj0cNyJ-VaeG2G-d7$=E-=-KdfjKjyU;akIM^xjI7*RSUChSp@MX&CPbp2H>Me} zeZ`QX1&ju?RV*HD?%48YWE@#M%L0*-T#*uh!Z{qzI($pR7@UK>pq%v0W_#15RKMqO zP=GXg^H!tivO2=(y(Nfy6k=>A>v*ipG0T?i##5OsTig0txwV~vvkTl+1vl#>p$$p^hZYmU)a^!(PA;4`jzCr{{d~B ziT2!BLJ_+5K#>JmJUbIx1r5IkQD!r8UE`^LW{{<*(JiJ9KhVS$%!an(_tTANx);9E zogw%BHrle=`>_l#71P&T47Hl`J>W+!mkC&+$Z(c)%Rr_Jdt_N;ihs!*?@k5WI2IGk zCs%|UcSH($UlA1RNesPb7$$6^HOsEI%>_|9Ciby5U^gWGdj;RRuXU8=8&lr3|KJ_y zXH8_~5qUH^g7EgDBcST?*yhfd3ttro2P~w$=FtVW7j{~y;bcs14}guzkknL_3N^EM z?w2todD%g5>00Z=7XCzG^#;Q-PioJ%o`ii;fsc-q!&nD7uq(t zSu?1%dk2s(CiJ|o_c>XpPH|$wo)!w^9mH0v!_dN5s(PRrg8Q@x;t#YId+ildir>h-UTp8XP@>Z>F}0+K zN*z2phV$_wVQ(t%^rx+Av?-#4TSE3I>pPZY`d!2_@RM5rW}SblE;T)}s}NX3~s zD3VXBHTQM!*lUU_H=SgSXFp2lcZ#xzdDh{{{bQ>NTYcS>TwqR~Hx8>fMozKTX5~7H z))&@Mv_8rQ#Ayj#hX&59Y)7r-1$7iHPtg?t)R`<@!ctTi8eLs}@0r-jJm+96W+mb3 zvQ|2=xj#{4?lfyGn<%m4R4g{LlaA5+?iOo#Hd-f+@F!v)%Otiz!qzG zb?7r*DA@_LOR}LaDz*d$fS%##09XbQg{%Loupij5+R5^%AzV6qxqn@eCiOI-Rg-$E zlWs{c2Oq%SUudmlxhWFxgG>N0SoOQe+LL{&t6T`KbnR%uVdr9N9Tw49w7}5LqKN4G z39nd(uri&sf+^iu6ims^9veX|*}eoVIZblfs2o(p!K|guY39$N0uEY^er|%~j8!>D zT3hSn--?UOZ)mH=M(MoaMesW3!5duPnWvXTzp3Kjj!a;yb$J*2 zHf8XOzg7$Ojz`%k9edm#3&(ms`%Mz>t3;T-k?f9+xaE(a3|qLt8o{@G0Qp7$4KasH zi;>b8J~UscRMPp6i^M)2BYb9wlE3?gCL)ce8B8f#cr(3t-TzgM&Yv0|kl)i9fB*yu z=%NcSS~QBMmI!pBu9AFTetSQ@I|)e$JrMUfookF*jAG{}s#F!jS<5t2_*6eQjM{XB zABej{=e|}bxuHj`SWHkE-sm<{?q)wODUEf@0lewygfM=wpS6tTYa!-KT};R#V@h*< z)tda;#|gpwP7E^tf~lNy=5j{FSF6m^V$iL#F2Y@Stjmx|sX|?c<)JD4FLQdU?J)WE z1(?;lSTkc^K7&ai@5t3j@zG$d=;3jCn8G)-b&<~%k&aqNIr+q9kO!QfPZ-yM4`Kk`9Pwo`b z3hk&W*?~on>?f%I|!7cCBnzQG!9d>K=FNB-*`w)=8E?`P8?~lrWyka3SmJF}gI&m~a5Yj8+ng zr9QsU<_E14u`*OV^@TPxhf?(I-M8U0jF!+58Zfrxd*Tfwd94D@FXQiQqJxMg}D)_Ufjoj353(#)Bj1Zlb%1+ER&I-u9_2L+T(M zB*SaF5V@k4e9Jk)c$&eKdP7N={T${y`L71N824TPS5tm0xi!HW|UO5x<~$dV!<;^h7XwSn4O9I0 z=J?}ZA?h5(w|<5)qVrgAh3I+20;uHN`A~_UkHB!hkxY-|D}N8h4r`mq2qov$B~}JzrjL^+I*`6^|)rX@V%(u4IT3*)~F_8gw?Y( zCoB%D-;DE;lrpFBd&BR*>n(Ua6&{Uckz`CAO~XF{~qD<+^JH7S>%9 zm_nr%(D5!BDUP8tsO?lL>U>?E_F;`0`Mqor79E%3k0Yx(|Gu@Z1!vD0xG4&b5`OPW zjf(tQ!8qG=2@`Am&?p8Z=5F;-)r>C}&lpoTv{9^>>mgZe;N`fUuZairsY*k~$$3bRqNz2nnr#_xX9OR>gNX|0utfc(wk^By7!)l1NO zD0D=Fdn4RshQq1pW;n7_+y8}~nlEs36`VUGYYPu-mMM6qIoPNNYd*KtwCoq$y$W}k z#n#XAhAC~QFO5tI8Z4QXL)pqe4hDhj%eM~IzU+TaIYX6>EdSdOFYU{PmtbEGyzeSU zLbTb@-+Cw(hRzRKR>Br%iC%LbGv?T-{YasNb7Sdoeqm&7z9IlFM+NyaoFv7IiNG>s z)$e+#q%G0Xfp~3o9>#~mFb^!G`1)FHjHel_WlxWZnNrI3yyY1JP1Zp$1(+XvShFUd z^jtL@4`VD;n_$Wv>&KmSP-(PZ{E?D)&Rud~oZswnmmO z2>H2=BrhNO;w;j#IFM;X2#(A8)D(W&4^EZ$#ZX(km@pCrG1i?O{yXNPxlflZd4#5z$oel3Fw}T8Q6h3u%7^0ut_G~CJ#r6 zF#bCOOG;3IWf%?iiVWa_2dV))_nlZijksAi_7huErPwX2s1mhI+0 z*0jCDKI)~|So}tYcRM{y;WHcpPGPd&CA^ap%j>SAzMvA1Yd zI5RK~tqO!N{_k;P5O*K}%ggG!R|1C_zx&N*mc>30X;vu!RllCCF-w=o6a|SDwbO7M znTMg&0tCMjkhe5_*`&9}u#&Z!pJZ#qCQ9Bom6rq+lg}hz<#=gqaT;w(Mg+`^OgT`j zeC?$C23WeWLDJVM^xX|$)Yq6Y5%)4@zs)M=UNlsUl<5kh)Zn4ffwnGuvWvy)u*(`~jsbXnS9;Mt9 zQDf6}>@!7RC%iE ziDDh$nS@5X%pedi>clUKAdYN{Zl+jY(O{pzooDU_i>08l^z+tL3lYcpJ<_Rvd#U8g zq3x1I3G%i%8j3W>>SfkiO2JMcj}$Cx9*bke=C$(aU2%SFE1UF<6%THbUjZ}EF<_~5jEPo*Wze1f-{QIw+VU}UK1e_+TN+9K7(n$HAr8&G@Q8}aCxEPA< z?kf!LkZ8Ho#j=Aqnyb03ui|Qw(igkJ+4x-Q`>D_ukZ``Cn{6s~^BU<_`kYgJJtmMo zZ<0_qNv!4gO)~B)jL))cbFjx#%fnkr3UBoFm_Xv;7MK8jxM5w)&UJ^ms@hK!e+=K6 zjclhQGf2DIJ#4d$a1=fDbp<1hr`Z0bk>BZQOJ$johlv(n-ioJe3ydg~2@h+4G~T6N zwpHwfethTxC)Tz4f-HS(i;d8e323Sxh?30v+Pbpc{rJ|W{b{-VY+!JuMo(;<4M`>6Y8VoM z_agZ52X#t{D+FpAFR4y&O>XIFQU@TTEgLAw{Y=O&Au6SzdYYrY7!LkoiF#Q>VJFeN zezqKb;BzD=b|eNC3v_I*IkwFxTO0O2iG4@I@`|Hvb8%UerXkk5nk5z`mcqW3s6rhz zXRK|$#igUL*3}GEW<0bC9U#iO3_mr@r$l}n53NcYPt_tQ$?uQ$EdpA9`RqhnQ`SbJ z;Ar}y-e`bXyNmzUX~r+6*OQaoIE2ENj01W!GS$#8Cc}FgE6F%B&X@e!6x$4((4e7) z`k~0Nd*|hP31TXnOWtaoN1Db3TuY(Qr)8y1UhYRGC1*}U@=r_XDIMB%Iy|xCI_iiA zMV$dmu+bUdJ)@)Wu8V|iH=gs(sWxTZc9qYt7D}uDY{uhe+A86GHp>*ZEzK#g%5~ep z{L}=Sy6UjhK;4a=aiLy>JU_01!N@S~F`VSC3P6SPoSQH%I36gB=X_YN5+D2mLKJn4 zm()Hafyks4<;hdCY%y3UOhg!MUm`Zob~Ua&1VZtmdl=ecC(c0M-edF}jK~)W(n~st zZlAf;x-gbco`*{}F5a&f$|uc5kYc`0pKC_X;tO+a)r@;Rjg-Hw(^J=D7u3bO^@4cn zgL)x+$vlAf>)^c}FqI@Sg1Yq@13i;j6#l8R0O6lILeMP}LG}58+KC}NzlS3XlQ>%L ze(%j)8VyIigwbH+AklU)GxLH^fg#YA!ed{yRmP5N{G{eFZjygNx;mC%9=6UV4v6y3 za&}#a(Qtc7#yG%_+!y=zG-zvcsF;#nY^%ejN**R?e0hj_^|6fCd1K6ZRIj!yfqt7M z5A!k_Zz8A`Z2Z>n)WUF3Q5R%2aF2^D-s}%CJE`%ln#&1D;xVS#C zI)8En+QXN+xC?ycix`feky74%vLzA63gp52VT0YhtEM|r;EMHVCST_l$D^by&pz z607oCo1ySPN$e+y2)B}+ji^1a-a4_TKapZ0m-7)5Su9~MOBkKwK#9J}Z57x89hNI# z>M~O!eSI-X@7+wqBIB?TIL$&{BIP^jLvrg@Z+lLbkeF6j?)bIL6<&^uy?h#QM|h z-<0F0jr(n7!5tqWhC9dpaL1R95M7Ngy+1@B>o|rag-Sr7OonTS82bYh&NIKY1>tCO zbY5@RLU>$qk~mF)+4ZDcg)lX~zGyc}vviJVtypok*WJGo)_wX-3*1K}e)1i#Sd6DK zB=qkPwMWb1`Fmhqn&t4VK^Pop+zb1$paH64FU&$5-eYX##Yv}T63|bp61snh9&Cun z{jYE!tLI`kWEmC7d-O1c=NE|Vr%6-e3SpUh^P!Lt-Wzhw8IMC)4Y)E!oRyefVZXdb zeTDqXe~@du2XewtQD<;j->2?6Ly2*dqj=?z`r%3vs>wHft5B@*)ISMmyDfR8L$;Qz z*HGF}uZu~$22UurCC;FrJiAw~ekh$hiK#rHkgu4oMT*JfZ9cHYv-v}5!@VvB2Vzy> zc@g!acyjsrfxOLOI7hQgCCoIJK!xAy2nv6{%(1gCM6AWYYxU+`KBBMC@x`zZ6eyi3I&T0%xvVF_m-KTn<&PDJM_`N?~at zcIxv>ClKGFviB*J^7$F4$2ljFkYc>*|9m{OC-}jm@Pd^(OX|-!1#DAbAHkY7Qoy)i zqMT9C<$0A(^~>;AW=pC_d!0EfzOgX-f7ll2?ik zI9or6Z~hpbL!Kn#bahWYc*%3aua)JqK7p5mZAQL%u+W32P6P&nI+3+T%ft0p^3R#Z zpRM^j&$y~8XN>GWq^xQ4TzSpDdsLgd=Z`@uP#-13a%?v#fY4{tLxyuz|Z zVw{w914m-^*QtH{sgx0?FJc(COrgG_Qs-R4T**S6^`e(W#fQwL;&V{03m@QKRZ&W` z^El;V1NXJ-=L}ID`MGMYcy@+3YVZFEp2#kGN&wc{eEpTJ0>)I{G~bfi;d^-t&9yf6 ziuv~%;3Tht1~`B>5&qE)UE%MC@vwGSDmlzEVxzQA{=pu`qJ|3(E^@diCnC?eigf|y zhiiUY_;8PQ^!+BgEsC|5-)E@bqcno~AR96-Rfn_&#Blyv@S#`a;LHn~Dq)jUSTBby zl8x6nV~XHB?}S&gS#mb29BP^4ZlcXU+R>;iAM1j@w@%0A7lB<=0P}QCV$Y~p7`}A& ziO%_`2+s0CTMYY4a{f>`=saujN!KCfR~>e*2-wYHT!P)c!Dnzd2%vL$>3K7LO_iq@&Q}^3Tv*&f} z3_mPxQSHfh-GFv)N$MVzigTSiv0XZ5yB|i}K=$rW;MgVSs>(qT*5Ze98iw*COQ6_S zI`L8w#KS*h|6NIb=_eTN;v<#pr{vDQjrwmHsg=RM{wy^0p8TUb7-i#Va)Z@CWzk(z zXysA7U}D1{?pOg0lXPm`k>(|P_?|5iXC4rBuu45y0<{gRKq{~SI;(FHtoMIGz-75$ zEm2viU*k3`YFHtW*Glq@zoKC+(y1>MK|TB%4Db;_eP5-*HLA=DM>Z_OlV52R%y<0` zZ~Q%-`gRf2PyRrL?0+$Y+bFeLrxMZVYH<*Y^GHYIV7_@{!;*a27O?Ym_9{QN z(Vo}bw@0%xlKhEE_8RDm7JDrFNavk2<#9_f0RND{U(JDq#Q?mg18@5Qg{25CVUJ|h zM+;vxj(4}%smBiEs6B0Pkuo0mtv{@6JQZ`SYTrg}JEWvNoMlU1H-+bI+uxP6m&ctx zX5^0MWb~R@yksdmE>f1{=M^%Q($A&rRgJq5P1Jq1NN6Un9AuATdn9z10wuHN3bHrG zk$+~;t)@^i;^nV53FRAJwggpc(!jQ#>W3eV9EO;R>QBsdOy`b;9kH zSluz2DM%P&ZVIv^?D05*hNuHnDo%Uv%=+q>UPWL=mbb^?f@H!hQZX)J*R+@6TPmTJe=pGA zsA#ILlOHxL#lw%H?OoHUPE%?o-x+1E&BDhDvm7#3DQ>zXFD=MXX3fP$v3$#ej1oMC zH7hB!4j!wOOsTQvCG$xYdm>Af{MITT_do>m3w!JaAM^ev(ZXBk)TaJaS}S=s)}F-1 zOX?VvI$@DDm~V)&*Wj5$nuYW8Yup--)Y-%Q+2lu8u4Zq<)=750%FezHjmsXlm&xDO zEQu#qhx5Nmr{)zw&5XAwljy4VfwzFy()WNLT4yYw_$39%>`!ADdtdWRevTS zLw8B&b_GiL8P}#!2tSb0D3Cg6<9uC{jM!8pK9iSjV2@*8N&F=RFPyUm_PWMVyC%@H z{{f9`WRGE(6cdN;ddiACm4a@KO7owypmCKtxF8zG@0!3L{0F>R6MF@gG+r2ly5kjt za3K@^Wat3o$fG7`tO?^a6HsHkxe17F2KQosB=%K_G;GKl*eI0GvcnYi(uqBaAXaOE z&S8-xzN8Y#^EJ1p5=7QwxR}~Oc!TBV}jOf{r44^Pxtm(%UxiM}EA-8q3z zIqm3cTs6>+y{;>`MJo8(1W$;K%+sZg_FC+UL|i7sFutXeJ)K?D5nmL6xYOAl&x%bH zh4I8hp#@I$kK~0ZE#vr)PofAO>9D{3VYH5|$`oLu$iWDC}x)!0JrYin7*3 zDoUoOD<;!ko(+06Q~LlzwiKdphqEVyLD6(L}La zJdcMzWq*fVo2blN;Wv_Sk{+h;0Vgd(#4V(%~ynENqet?9O$IDLcu?KUGW+ zo~V`V{l_hFM07tW*$DSB7}23*{JYfI*VsoE#G^K)mEn^MS|X(W2&Fx~FES)?l2%G} zNJ=`ZHOaU3-MO5D!vp)FsB$EGkYr=kOOR0yC3{kT)b##3woeh*4FmA@GD&d zG>RD#zVd9gRw}zj;dv`D<;tB=g$NQcTvdaW|0ehq=6K=ijfHvncrssk6|-3$jq^LY zs|Ezb^D?8`MCYGujW~yq>nBWw;G_$)G?0*D6YLGyFUS^~DuiQ;WDs{vu=lq7Y>LFe z7H%Xi!@V>SBU)4(vKe}#{A7~764tEUAB$tk5_tFVD1TaZOqB>z?m;}doV#6KJKUx; z-*T&^xULV|Eye4;lcv>-rx`}$Cu;};LvjNriN0{ha(N5SRC_kY1CT2P?#q)`H{yCe z5Y#!S;Zr=7o@PdGJ!6lvEEPI0R&)je8$5K87w@lv)OvhsldB) z>`$`cI%}vOi`u~P|6zxD%GJ~|d~hzJKwJV>t3Xc&lK)CdB+u)SQku`ajBn{G5kIIm6JB@`nQ&i{@2KSZFCi0d>8u-m zEUNM-?b3YZ%NU}>JR^!c>KVPrlPabK@>vT}sT8USG*0jW_ zF=ZNF+_~Ru!MN~==)G0?zn4)mXEVIIpr6 zD(C9p+2&wUxy;G5GG$&;wqjtjfRQf;R7t*8AY@%iI8R-V@%3A}q&?=6U228a$>UR;xVThRK{QXOY=Mb^PG}z+ZSB_|*cx(i}hFXi9nh#deUF z>*OWoWNMIici1B=rv&-9O7^Xe7j~jO9?`+?`+><|{JIO;-Vw}ODiii1nLBr5WOGAD zeeZ`Nqk&=z;^P`!3(0@b46CXdVZaqNT^RPr=}OfwN>TJ_mr^QHXp5DfuGNh2>3YrZ zn##nzNM9#OZm*IH_rg?W=&V#fmb;^Xhf;tZFms*b&uns_{ErvN;LPvHtN)MepIj0Eiy97@VvL7^aaU3 zr}BNYF2iTO1H*Ji=YQhICvS1xyO=_FD5-y`RJW@b#SeUs9&Z0{@JDjKX&A^S&&K^T zf9U*Q{rIFmEJr-6J;SIKX+dkAc*638@qc4$@~!(Y$|G0LYdN+Y!sJ?Y<0rpiU7Yb$ z2CTh4ABpJsdPY27UJ-6pZ<3R4>8a9N0GbnNehhOW2c-IMDRis=4>G1L zx?1*_GIyCWDPKmNz+8xH22bB>Y%BC+H;%cG8FC;b71x*7N0Ay6IF_rX0=_a8fGt-G zSn21ev11L$(8J0IC>%!u1@T!Q+IwIoQvBjOy0REgGmMqh(sd_w9Us|Sux8JRWz)Vu z&sebxM@C~S&DLgt`5!~&2B!QZosV6Xudv}#+oAFsV-YgdKb%(Kts$lOraGyWcyMBB zATRg=b!D)rhyl6?N`kwZl;WG~wF}@IYof)jlwz0bV!ibSFN--JOkbMi*CJgQ?Lb)m zxxFqsF6l>fdTV2iKjvyE$Exy+tx?oQ*M_N0GZF9UA}BqF&LJ>!ONzLmi=a4!yJeN) zh3TmgJS!2C7nE<`o67k{mqVuWkMl5{kuybYD$g5y;WiCk%UO8AUI+V~=AE(o?svii zbE`mQk+7^?=$cLGfiecxUW&jiEglh`&T0SBcA?(&9M}e>$!cvpFqhTpGG^eWN;raB z9yr|4Ow9FYq%lR4$kBT83dTtjzeeTRESVb>rpH`TmwI<(Dt6x*vqd22Jt~w_#QZ~&X@U-Dbqb}s>=S7%s&(+jgms9qCq`tN1Mf= zb-v7drcA1U(UySN@6sw!Y?J~jh)`x)a# zF2JjGuxF&p<8IrNvF%u6V%xD9bI=`B`_qDn3)y`$GVNC<$&yN#vcW^YYpgo2AydG-Tj#tsSHrbFGC(HvKKYtW7V0bTI7J(7JXp%-+hx3*^g zgP!r6PCjE!Ml^Q>dn}<3b!hU3$XqO3mrY>ABbbc8bn+kOWNNt!|Haz5db35XsLfCP z=C;-DJc#8Xy*rlVlOLlasL7}N=~FAJ^GkpEv|5zdB-T&ja0rYCNAdBr*&T`-xU%^P z&M;VWjh3y`#OlWL4{fFRvg;j6@$;pw2D6tXeSt#POiWJtwIIHyG$vSbbs4kGWgIN- zh+*$Y@`0kr@jT=L`t7%L=pH{Pm0F?XxfEV+hpi%vx|Z^*egIG5Sjwz9=*Ymy5BDt& z@0~DMi|!E$xW6v?N+Ho#vhi%)pXvGh_olBrcenZW%?i z;X2Lj1h&UgZZq0oon}-U%W8tH)M1lCkWg4$O1^JGm*^a$!esH)p^j>nQ$#zi)7Gk7L{Gu)AAxkK<-nYT|Kk-O?aInSE{m+bHxOHPA@ruZ)}MQai~*cIdeVzKLveG+;PUSMKT31DJcL0 zC&kK%97IHFcP_`v{@y8^pS&I@Z|j_InwGgDEwixiRrLoJ|KN;a?@2*#>w-Lvwh)xu z?pg>hs4!Cs+HWdoub&_q;B1yxJ|kDf_N$loJLss6>;11b;TJ!-QjS&46{T?VphF%W62mQ(9r~q@QMtY) zQKFh7jm*CZK7@_WeF{(`$y=VoA> zxYCuIl2@CPsQ|+gP=KFHGLGW+kSEYg%(l0lBC<49$HO6YG26t^n{ z@mIDLkK~i{JJ;kFzC~rYZ;Ho>BWi9?jX)t%jlj|VvV=vgsC{2)o3V+G3asfoQ7hOl z&UoIlx}$|MRhvAI*6#2tzc@p9PLgAXr7NFO&(WIa%`Fwcf2!+f!3#SU1R2j#`I26C zZ-v`*6wQ8)L?`#R%L?~`@v7SFpPOgwId5jn-BNa}YT&5Jw#*Zi?KQr&4k{ZyN9%6x zsK8J5>XN_{`*sQBLo$&a>y6+2svRd8bW$TC@*Z^=L{XMZ6Y5sjp|p?NuXm}ymp66< zuxnE1++FTQ;?#Av&GR%6()o)fjwFWDXlOMjX^fBQdaNLRwz&g=m-o9=5e4{SM=_Cx1LP!50K!#IvCw}IiB0JYXX1V9LLu5G8NIoPXx|#=B-;h z8n8tY{E`kPgNN*i<8^0rt<1C9fQ~$*Wcemwt|@&&ilZ`nPtxDk>Ey-MPjxi5>^EiZ zHDyjtb40OkB=efi%q!QN{=Ej?`On#Le#xZub{OMaVQI=k{>a!W}Uh z6c?zeP|<5FaQ7PSDkyr53&oT}(jV2zti)4~UkPA&FN(U`CJ?8j(=F1=2&x@k`O1q% z-ECGpVXWKAKWdm6$@fi%xqVw|zF%k#QaGnr$)L5U9@*q_#Yy0fpP#}+c_(WpMTmBY&j-`9oB`p z+htjvH_Xx6a!42PuDJ*@SN7qKx|W{=_(vT~vnX$kaCEkOr!%jcGs!+tA*A&~lB@0RXXui!=hDz#A=A>rKPJEt-6Qds&Gf~)`*L&_y)&y~4>-u%buuJ>C2}u8a3pLOGbp#dS&doH1b_BHRoUU?SL;$LH}S`D4jlEAi3@aF#n${ zT<q4*)9V(9}#norUq&ElIthQgJIn5Z^c3F_3+)v%c}L zD1(u7cLuxF_Kx`D7l}T<*fgJJPaS{uxXcPXsYmy6JZBWvYs4(lN-}DZC`q-w%yW!m z-4}@pk_mQ=s~tptgh?hG%JVHMNa*m)T4IG~7oFJ2pGetoc7dY>nU^95J$jefT zMP7m!&S}&W`cd~Vp1rHEB5$<>H7a1SRyxHNi_+1t{gz^6(n4aJs#vU#PG^mDPI3{P z!OOuJDLKP5P7S`<+PySiZtot*&*j%E&2n_?ATO3m2l+|0^xZ{b0ejnB;)Gc$mEZwA z+(+!~SS-pWd^av--$oF%ST-*fF@Ya;TSNGmR~W?a9RT#VoP>>!@ff78CljN zf}fw=0}fC=jBhFVrth#az<8R$ioN1nDe^gn->s#L7P<_#J!}J?O^Ek}HZq6qS_j8; zjD(KVq3-ceSGa0s&>TM~S;eaxU}5tmbd?UJPKa_NtxeAw{Mts0Eb>h8%lz;ZNc;CS zw6~8W{-ln-dlqrJ!DXGL_<@gm#_|LCJp=fVZ9Pize>Ne?eqtVfYqDPj*iV zx~&UhTOG6Do0;XykLJ83+YpJX!Yv!&wO8i%HyU;~#ahcaClzaajQWwYt4Ce_`ly}Z zmWsyjs()3^cp!Xr9NgA@J8B5(B30?{WR-q$sM2uu{m`SVJY0F8AyQ7LL_ckf=hZj( zMALdN@ziOgJB!bK_o--pcc&x3GDj%;f>hQRVgLZkI2oI*(dVaGp40W5=GBu;UE*7X zf7^kTVkm&$84!E$3FQ`iJwgDRe?Wv6LtBqj(+HiCYy&Wryi*%{YGbQ z$Mw951A2NYC&(Qe+RJ@DX}hJu_N{mdhm)l*HSD`;`%;#AqLsAXBjcbWnvIki50e^C z8j3qnX|9v%TK2eJ<#@ff9pNlzsn&rEA_3{FKehn5&+>$Kerg|L_}SZQ2N_#~jBU3g zURFYt#vNsBht%`mr7}v%w)rW$8Bf&ybMSizn0zXgJuQ_5Ae?($%X=ZcYx2KlqqjSy zD|=ijdt|9m*`j#jA-H44fWDivJ70RpQG@*^+4og8=23BWVcFh+{6gE_mH6-lIGXN` z&b}qsm^MS&GcZLivY?~WlLZGl70@uh!C}WB)@T{lUl#Ncjzcp3@GYf8JW&(==@FDt zFPu=g8Y_L5iE4GHM*;Qn-B{K#tyH=aFx}FbhaGZ6ml(9#9ky6A+ZD)LI(rB4+sBah z`55nx(1_&K#U1L6^|D{~4&_mwA}43*0%n>Cp!)RN323^1nP>rfRaLQwEQl{T>cACH z>wA~s*ES$S>7=eVbox$Hx^a|VsSh#Aa!R^QrMr7IwAv3HjoB5QdD)Cfwma;!BMSX% z*hz|zq@QrxKgwU4JR_x7>_V=s>4BktF)m*6?KYnKDvYE+B_)nSyVag9l!8L>qC9Y+Tlk|`mRFS&x%4?6^5nBe>xA=HFHd;dwYkNvG=^~Qu5HO!zaxI~ zZO+w=ry0z*__Fxn0t7euNoa2!ip;OX^M+hQJiKw=l48CLm$;B*UwpP7o)({eT!{IU zmnD9Ij^Fnq@Y$(-1Nh{p`j-*2S-8x_1V7skPww{lZ{TjfBk>1xynFQB5^H(PpnLqF zr1Ov8LFYmVb?H#j`DFXP;r!zFFc-Mx#YEk!X5`7N%u2p;igDWZb$8r>%n*=mu*e5b zRj(Jz@UNqUX{z40)G~QYtM_n*{0&DX)^a63Rr{(RGCKi7ffF|!^|8`N<2LvY?ms_a zcspvPsA9v77iDyv^u%m^C4O%>D#E1xeX&RU7Dg3Ab^Ks+JoTl&|BSwLwZublU;Mt? zj^8Wqq3OAnW zO*fO5`yHK6CxOFKOJ5wB1LyCUE5V{m6K1L(ll=Y4f5LvEqcv2-QcGVZO|~9**rx=) zIKOXsUgp`pfjn=Yt2AzaHxn`5PXrmogufh>aSs=Xz`{#k5vXEKaPPYrZk;)<>OYQ} zxc8lKSZ(QxLvRNt!sQHz<{#(R3$tMHrAbzNVh(Qj$PtU1KnRS*mcC$j`zp)VZtPo; z&Wy%g9%l4k{peK7nm$G?tG!CNl{Ht1?w4#!=Iebci$kcZuhRP9xK)0AFu_tS&Z?}p zg!NQm&esM+tci1mv22~y&7VbWv{Nx>G+Tflv75@`M%^|V{)xh}{J~FG!q{w`^}Iie zin>DyXDxO>>h+d{QAlXq(L$_V`D#E#9`XU~$;N}&`o2fU?kWP?uOu!jb*-WeRBjc$ zo&1)4sFt~|0pYw;AQFC6r+($7(s&de9=oR)y871DeHW2RW-@0EzE2aE&QG=*U69K&Jyn4;zf-3wf;v zM(~NjSfbe6_#GCv>D4OA+V&v zamw9&6`ZNKQXEg!Ub_Mhi*z>6ciMuC;l|*rxP)f4h<8MgByYSU;j*)7F=HG{!QSJM z&I)Ys8WHN)jN2^5=;qI|&K62l=u335j;fdO->JOBkgH9_G(K_4&Ta|Mz&6mmwQ8|M zUK?^X-q=A8<&+t;1t?Odb6m~k#h-X$X~_{2pPf2p#51eMezL5@6H9}~OdK|T+VBx0 z$BZ|gon2Of=f3I~UF#fvoHjPBBzB7?82?ku_@B;rIJP+ct4p}J&2Y0JN-RoakU|lk zT%qyScSPs}7Z5k)E2=od*(Isugm=;VoY$2+yT)iy>RJUyj5C(~DhmeNl#GI*MF0TE z1L%*`aK`YHv1nAcsfd(B|3o|rT~N1tD9%}zRmm5{T$!g=a<_D%(K(2q#q#VOgM#vN z2bC1d!z;=ceY@&%##3>5h$V~`<3eL)V^%)L0MG{0NT8N!~F5<3os9cQf;r_^ zZr&jH^tGVj3FdceJDXe1nqoiuZ!C^Udktln zSr0MTm&ycgqY87o7oBG8_tspmLJ433krnsptZfDx1XBP9>8&8#p7e@^Wx#ezw%r5H^(a z`{@`2c!3n9UXcv5H^2+@F(i0b4la6e-#!KK25dPO?O}-tG@j2H0MQRObqEw~0W*hg zr4<=38BhIX(7Pq_0Y7Kf#xdheH- z?-iPF9E$nm!h2}6|E4yuYLD916hPx# z!$vBx&<-_0Y{d7a4k^heWZ-_8WF4DW1orceaG{4uY>t8@GYDz~-_&kM1V7OU$_~=0 z{r#!bW=(68v&gX1oZ2<1QWiyHbT>qPAQY=$y9Mf*$+VO_p)%Uo_p_vF;O#879_4&sT- zb?>eXn^ftFP{{zutv<-JhCK8_sX*Gh!7l4cUX)6HvEH{FiVbikW98<-J}`gAB~Qkb zZh!nYoeW6$ivyg4EltH}*yYeI!=S64aOwu(34iSC3I7-v;O7b73B+9hh9`U%Kl*vX91ndw;Q=H{ zY|e%hvcRz65HD8ZtQ;iPpJSquZ{~hcnZj~mI-U=y*UYs>&ZzV z!Z=O_?`2qAdg|-p!Q%FJX0X@M0@PLKuMNkL&Z#hAaDAC+J)Jdq?uro!yvjiMMKHZ4 zbeLXA7Y0J6`$gliO!tb<^hz4FQB=|`x7_Bo(Ks7!m|L(YILM@e3->;!N$Y>Zl|Jx$OLao~kC5uO^zevn!Jt?`A-dT`_% z_QT0=LJN(b)Vy{PUBoo(8$DH!qFMDGIIH5Mf`g;n1|pQ-pXD|X1g5|~%CrKHyNV8Q z-=&daV_q5gqHj&drrKF@OvV&hWOn;M>rAwyDYDw=vM_xd#OqIUw#PweLJeO!HrWCRvaHgR~;gwsiV(?oM-OJ8tS;9EW)jl-N~IIH6<1T%@)h+Cw@ zEzdb?VGov94n_vPawv8&X(nP9t4-@hRNr#x*}kcunnz~TrxDW>lq)P;fYP2s!1h#dk!3@giXRK z)ZkU;xN8syw9FugADxSsTs8TVZ>h!_Pvs?`(VIN=lgL5y(BJpkBrXBfxU?`m$XSS4 z+0$cU_|IRA3FL9}v70>0R7}?*#B_6J^A-!7HQD@4;u26z3@tq%F>x)`%R@w;yt zW}3sv{l#IlCHSD15F*$wvuLkm7&G~lMed3p#!ucG6U?)|Mta6p#wjFkm`dAeE{$^R zg@w*U=9GeLx*%E=m%Yf@34MuKIxhbQdBn2xKTZ+|fc!#txb zuo;Bj^vy2p2w8#-Q7`Q|Ne3e2YW1d&V}t^+C&X701)r%nR-E346PJEMsqb3~N!TJ{ zA_@CM%p`rh%-NI;lQOU~#8(C#g-tT%v>9KEugLE#=VJ$%%D@H@O$N5Op<`jArenb7>$pb@FSynr}ASto-K7vI4zF4uvs+U zI>Ve{`6IDTkMxQPNnN(+5u11XSzSI=ExICHy5zaBKhmFI3jjyCMv0GkE zl`iYXW{+K<9C&)%y>K3SZ$dDypO5fE)D|%yh}wH|^e6GzW>GfZ8`&cd2|{*Ld3_?Dkw37uxmeCc{=msCqP!-xEfD6G z9V2QpCBB2DqpJ{P&7M~#%COa5hu|BT1J|U&fP{0(fzoqE)G)TtGpDY!O)7oGo28Ti zt}RGn$X3ztg88M*ZV!W?w50Fw``c^sA-_%xq|N!IjCWL5BfxkdBP}{T>5EYT-154! z5^F6*w9rN5R>DmBh^mvzi__UdlVY=$RK=8x@|mm4F=BX#n-JDiP;%TImP#eKkL zJj#sUcVY;eFL|qU9?d9S*yU`2HN_ef3+>FH^NcWAg*Onm_((!e>QHi@AMBW1htK^J z`%M1b1*>*U#~(Jwlg=&Pbf&O-5`SCAQzsL<7v9xRI`l_hDA}3ATd3Z$LtDgful0{& zkr-y`y0QA(sLtl!b1x0c*zV&Y)ZQjs?(ckE?oUqmyWD3_2$wtI9Dek3xnIRYAD6p5 z*5@QyQ?t=gs;sXWkyua0w9vU&EbXDZ2l>?27!sgkG< zYgK+nRes>lD-rCNjyp`srn5uad~IG%HCGv4@BsJD+>_Ybgl*4T9ztFDp5NPcHJSq) z%X1H*q5Y(TfAj~V;$-nh53f|ilJSH8L#JH%btTPoqCElgK5$lK6<^m9UhZ{aofSJ1wV#o_VaLk#` zrs%AR{w%s{f58dnjEeoKLb%I%`AGEKD@rd8Rxcc*+@qeRD)TZ$_W*56!6PFYc^&c-4XA(TTT8bB(cgFD{dkRYP4#lys_<>IS z-Jj|$o=KOBh4ICuu{pEuc2V6Ewkt)C@~Ok=oykF1y{CpOE^xKlX-^-RmZAwPrIrKSub>bWTMAAF- zJO&xpB+=<5dbMrEY&z_UKg?Z%Ni2AWD7R8O^m5C-Q>-|Ty9Bo`V24(2#ddhgjqE&Z z7unEd(y-<>a+JiHA$m5Eo~7XKdAGkv=5^EOSE{f+JA~U3UCCJk%Rn{j+I@#7aO8DX zW=eghOMUTa7{|St9oRFvmXoEH6RODWL z-u7zc4QJVlxG^e=RoW@C zD!isG-co^A{mRE5kJw3lCI6wOEu_Ny@+JL(po_6o&4t+XE9Lq9#j_&9Gx3g3pID!e zA_N7Rp$N{MG{lIoXQvTjkqx<~!~Jij%nj53xkacvr@b_m9HB z9*2(x@wn^G);Q}~{Ny{z!)>%z(4oxO>FLEhF(-BaS{UQIw{$4=IM2U211tUc4B=+( zF{R^LT1lsB485byn&-cp7xH@)em=5HK}g;fO>CsK^a zc{so1a;F`DFix|`SwCVHIY|EGoAyBCDYmineKH6qlqzB0EI#~STBYPhhheFb2G73f z?0^MI;;ApUNm1NPY|p@c-JhK0utv$t9<8(Ks=cwd&;yPz74WoI0H61>dk}-{q1^pJ znSzL-v^Ddb&b01HffmCcGGB;Z@uLns^MeI02{NQ_CK8Muv!#9sUx)U z1~-F^!H04x!rLad?G|kk@dIBTtuuM$ekaV^ReeE;0V9y@OUIm;q*I%O&Xn3GMQUgF zR08-EX}m6zoIAiBz%S6#?eM1C(=b^v#KjEj@dRJ_02L0O%VSgip7MM><$$_Jx`KZT z1^@IWA5hUGS+ayCDo|{M4&q6VQIYBxPyLn_)ZzypAv=9}MpKMsgCwrMg2S1eK^!_( z;d5^}OY@MIt_ARSm)OHBeN5?3dFYg#$cmNC3Nk1&EeH6}J=SPXM1cC`l!$Sq_@H90 zT5RJRqIRGD_DVda+@WN1C7O^gxU1gqteTczEZAC)<6aID(&iFNzxg(Q>{pbt>vsHJTJWjjiD^&sDZ_AR8lhI1ppFnKy4cvG)A*wZS7y0m#!IEA4xKS<=;UX|Oq#gb z_(c~H+Oqu z-g0PVS0gsx@58zDB%RHA)3^0szA`IH+LYZY=I1CFy&Zm-ZT^^{b6q%YD%usv&Z>Z6 zRba9|^8fcilE&19?GGU7av@~+OTRc;+-YEO;3Bgr2}!4w%c~E2+rAj zotwsU{VQ#&xh46&as?w;>$$?asfCw>cT-%{o*@QZEXO6^{pfKYPxU@487fl{Uf-!=YGkfTP$eCSxJvF5Jpn@Un zvivf*wyS~VqWEnorS2@Oiae8BEcgG>9%XrzyXa=nBBXLoXsT$(6yc#=F$T z=}kQVsusvY%J@ZwYN@>ZW#zoOF3GM&=tzi{W^*q&Kt}?Vlwz3pmVYr|!-xB`aQ<8^ zS7YO-GvAafBSkQCb*e5J5L^OENV7)BhW{xaAK2q+hU+%9j}Pb{Z*A;aWw9yWEpOr) zj;TuRyUY4_B=ka4S8Hq{@@l+kXh8%&x%%OvRZW%unIfox7C-?u&eza`|9 zcJ*L0{Q%R80Cek@*O=dX5(T_jrDS(;rLm2ElyyZ=CUk|D_Mr-3-CXJHgdgB&5rDW% zS6lYI3OJVO>de0J16(TtaOAngwd83sf&5^57*P~qI3Jr06IOz+?BdgA7{8tkBdQbx zW#;qU(ZK2|Ux)N?rQ>X1?Q2*n`8An=u>GQAExTWIti^6Cm8#X{E3J*Qi429#-^S=X zhiFQz7<9nX_#4>ZV2tjCervwxi!lC2FLd!Zrrb9Pvq%XGR;_hXT6}09S4~7z-QvRd ziaxGHBP8ql@n+MH*Y$OEwtS|1+^U}|8{5FNk3ZBu#>paB#o6Cg%eekTCNzxS?C+|N zjknsz-|HXWAB1``*vj`k?TQI$;Ip4CjE7~r8t~+9!-Dy>A6;Rr>_MJ8(ACiRcjYlx z2O~qnc+en>n1Xos9zG=;NDqWb^X3r=`^-+l_<@DX0%eU!*CnMKs=?q_#s` z?GbU)BsDKuQnpJZtC3H#rs%>Z9_06OT+JB%^$N=!>S~K{oF;5^k-{t%{?^kd>#aI{ z(?MQ$n5!wnzh3&`VQ>tN_VIBH)_U1&<^j>gp>k3ehe!l!5O$Tru(^9``{gTrEZ-X9 z(AFl&1qjB?)hG$2e!C8O>bJ*SS{NTX7)48qiSey4nK+n8OYTEOrN0jPSWR3#t|1J| ziFIO@(LNO+mL3R)PeFK$C$?s59K(QODYC}N_z#Z9h8lZ3ebZ&wQOjr@Ho_O?9zl~* z-G0q$N(LGJt_C|Y5&hQ^`c}!{MQ?jDm|Ei7lh6|P>EAY*>`F3Dw(`xL-9nMjsu4k! zw>|kwdK4~nRmY^Hrox~_uG-l9r(w=|G5r2iD2apern;ji$aS)ls0dV-?4nSq1Ah4} z#odIv6v?-gyB>w{!d*TqDK1uJ18+$&J9dQHknUZ5k^dz0t zeaDkzOLe&51xbo_z#LfLLh-%g5V<_XfFW`wEB3Ct;KF&ST!aCi;Fq5Du?df)z`x(|gb^?0 zy0TbJ<;!tfTyeOtPWv+MUC&g2Xf5+m{vDLh3g^30Ep6#DMZ+|DAi9G#;=jo!jN{i= zy6dT;453dPa7D9e3c6sc>;HURcR&@#^Ot7O%6hFxPpjYgjh zR34+T_h{^iy^ zq%FpXdS;V7<4maP^(3`fIAKLs84dNwX4Z-SZI&E~^j(mU8#loV%}i*9$r?!47hpw_ zWq;}u9Y6d^rul;vVpg|ht`Zc!09)2d9@$chFj*>mB3o8+8aPVrx4qMaLUt$)blfTP zjf5yZwHTY6{vMt6A`?nELO#*i+tg_j=Oaw7IUdP_Q8=ra^@(JJN7C?Y-x-F$pGZ2u zOlQWnmA^t)wwrB5SoO}`g80M*w-%k~_1N5Hod2YdGy9GANUu^JwOkMO`Q$C{^I+PU zT^&^71!$jKgF1uE6vr-_y$w-{wBbp~tV?rZ&5tU?Bt+sR=8c80GBV!1bM>e7%Ti3_ zOb4uIk2F1>z~DNqTg=@0mlZMFbSxzq#zVRI0ju};6b8RU=8^U*iKBV^+%O8YN#mD> zk@1PN7+{^m;D@O_dTy6W7=&$aDm~%POah3 z|JDExlb+PfD|6HI^_ZB2X-SMR00K#TO+jk#b&9^o&lwFJw>*}}9BN_{y{^ zV{GC*7$oo_X>f5Y=J5%#lvZsJt8f>0<|^B+O3tJ%xh3~j!a5V->nSDA{ZGlqjaC^4 zgZL<%S@4J*2^0Afa4E&{^*1z!QE-s$LlI}XuQFGIxKXfCEI;+&aW?9?3;T2bL#cgi zCghl><}#crx`p=c#^Fi1PxwnqP6J1YL)IkpjHJ$P;VbKL(%#_{;kN%FoN5qFbgS7r z0UrVknTO-{ai8cK{i!amA@{1%bni8V%}pA9k;-U*lHa55^ofe-PgTfRJnoh|xd|(? zBcI3}G~}?)e{uj_kcm-sx<1)E6MhO|{TzH^=^&5AU}|zOp%i|^aOM`Alg=(-T*H>u z3ObZf1N*Nh-(f7)FXz6B{qH9weL#-cJK`Zi5^&auC5S1Po!%s1qgLQ>>R!z&ISug1 z-O%rB!!q|#_^3vfcpz;(ic^^SpNQA_L|pd4&sx%zW7wk)Wev7%cG^LQ@xvWi*Vdx7 zWAS=&5YFg$vyF-c(oe?|+B*h(QbIqY1V^sJ^kfmfa3C$nS1KHT9HOj4?|ZJ-CdVdZ z#WqB$JZh$S1=#V;CmJ^+$80J&6$zTMvAj7B;w|Yw+J6c!KjS`;K8u`Lu*2P46~nN) zzjhj1v7c?iL(e2MbG-UQ_(dvV>EcCaajKT(h;cXw!vm?txrFZgW4vcl_`{5nK~Y}# zV6wY(Q84m67Vwqq3jE`+*r`xkoo$i9<+5#ULo;sRr;RR}n)S~3CiVGGl%7FOY9Hu$Y05-}Ar$yk0+ygZej@l( zavC@^d?wIb?V~2u=yatgC8&3^gv{{VOA_FLMMA$^b0lphjWIew|ywgx!)BNhwuQrkAi zV;jzxS*P)C1XmveRdY#=hDl-b;AvuWmP$2K9Ah3&ZT*pB^!^3j@&J3RU;8qlC!U|F ztpDC)y^QD`KP7~Cy|7sy_9`I^KN^&(WuJJgr^0GN4a4^D{~y~=%rM$J=)*U@)b|ax zzKNC z!>g|qrMA(xDpgxt{uNX9n!PRh{)SWe%c-rqC>b&JN|{Zu%4&)fBd)<*^8X{DG?rBB zf5AiV-{Um@54okwDWf;u*Ct*H*?U6Ou zhCxTkFb-DQ$^S7E`((mLrp2cgK9O?H9a%urKjO{Re8b?mFgPk`dl#zr5<_^d&0g0b zb)?tq)aK4iW$ptnb%Ynreo`8`&Y_O=+MC+YU526So-f9)lcEmB-Ee4h8|wDHxWPBV z@xuw@+FpjmK51z0+sEY)A%n%8lTAEKc|Wza!)aG=$4~9(`05h{UwRbClNv_2JB!m^e^}GZ z-FGrIE-YbxP{I)hadwGkV|}T>!R;;020v@BZo{l9zp zSC(bQ@mJPm|Ks@U4Fpmge-%9GIYLB?`8$8Lp(Bmt)uj?Wja?lslT@WqIn_S6is>O{wPpD5YmQR4Q>QYWQ=+5tCgQY#5k zyE*QDqU08G>P-S0_T>|(Y7YW8=tX`R(54qKT{jybzmxG_$U#SrRp4< z$rMowIY!#WhZR*z;00hR@ge_9yb6UEQ!6``*v0=Xrq<*uZYis>K*aeIBUV*f8C7X+ zj@jGGY|HSR5AQa0Tr}0zUv5q>uk)hT_5eR~%IY3@^VPGITF3FyBNs^TN}(}+Ol{6n zF~^~uN;y({?%Y|$^ctB?8{LD#1L;t0wSmLubn4lXUUIOM$E%C;_vG#u&O-(}%GqW2 zD42_-Kankg9M8b2O7+U4AKKalkCcZ`YxRj>bFK`+?FzoGs+Muw`$WNQj{@=8Xi@Rm=ncb%!v>Bej)RVrp~V80P$xvI(~}R*O1voTbr|?{%jVP1Mp}kguPj?E@sk z*ctzH#ux}N#8VOJ5WL{*?PzQ&s@6;`>(wB&qPjLkl}$w$38E;6(Mocd?_1gCwhFdT zTaj;FwK-j{Y5FW$Sy#2cD4B598clL`I<3;)(o`@v4k%ZiH9QVP11V=KwDI!PM!9T8 zEj?>F9ckV&t1<&Y?Y8B>{B`vpIOeZ+PvY(Vy%2O7*2Rc(6ckDjOpil-m0R!5UrA0 zg}fF0Jhh7Q|67GDoN|Y#J-l$nV>bmCTSC;n*r=v5rQ`qBBXdRWNl!_sCy?Z_^rX~! z5EFwseo`gTbG*OW44<1$VNW3S9iXYyy9t z%Bttzf15AZy>5vb+kC!$-s&!SJpGzd%y>qBKgTbIJPA$F;enE2v<~#xmqA|m{Q-{(eppo(W}EF*;ykwV<;&H>)Z#cJ z^oRuwSIeQpQx%H7h80q%S4TS4*Y=bxIYO<4A5-*bI59$P;58++2K4fOX?Q#m&&TyP z4gE)<;%icCK>z-i26^P3wP}z??y1xoa23U^!O=0!cvPW5WI&)PWq_b_Iqh}D=q`EU z^xJL=`R_YcZRYT~V7S^n$IMxco5G=^Q+R#H1y4(35#uQC5iv$c5s|R1VhV9aLr2gB zYZhCB!_m?vZ5tiUQtN1J>97wB$A}c-JTerKw2h3x9($$OuP4I;F0#v&_yYTk`Ke2s zYm_)UmDTm8sEr+a?BWSi)RqXV;byW`diy8h9s1yvTl#5gNyja__`GRq1;o~*62D@J zOYfl)?>6F-SgDL@yYg;jY8QcLnd73>ae=fuLamQm52;lCZKy;yh)VRM42X}$;K6{% zKs9Hoxgz%Ce4&+>a+gsCWhbKm0Z_8%AErY9n=(Q8p!-QFdh!qjbs+Mt;h2MroAu=^}vBE6JR! zro=MxR-zbrDNaUyii=S@ei^b9Axm79!$l?_H}6C*E$fAa$9XGQ_a5`(sqQF`S9qqGWt z3>Yk1jMR6G914H26`91yTiMMhqq3b*dSw?QABDd#6#u z(kho3rBhZJG!E?t?XW@HXwddB@>Sk2%Ajz799T{osZ)&7D_4xvOGdtm#wfy9xyIN> zImReZ;p<)yT*fG)q8jKrqjbtaMghtlM!6I|83X5QMj4eOjC_>?2Kt3j2IVoMw8}yw zwVsiW^1Yz(3;oB98W2LQW~;0-{S^d{#&<4oN)x~^g*%Q3uJIr&XRwmN8V2hbY+|sL!FC2a z8SG*39fJc54l}sP;5LK14DK^{$lx&pm4VLSDT8O@IUMpi|ND}`D+X^Eyk(HY;5~z6 z27U<14U<8|mR4oa8USH3TsZ3{-}1Y|;68{(bB7(4?AlL5oLfANv%-%HB^{>%TS z!MUm8V33YM1_nM1GBU`_z<(Kq%vC=VZy6;cBNB>utjchSl5xUW><^=4oN$W$p|o$5 zj2d@VlnftFYV0(xG@N1=8KsO*k(y{vMJSW)No7ik)U*_-h!m-rDN>Uz8wIkXjZ(fy zk(!z!H9bWtVn&MOtQ4u)DNiRY9Z#A1BAsYqCmyB5rbwMikvfwib?ys1t=JkvFfIl0Vv5wI6sapI zQv31jV=eq-KqXS74yQ=5V_;5p6jAIUB5X-^5lm$7A0@uRlVYdgNwL%56h9K8#Cv#B z>_$APICv0F@sj}srbw|riC`i-m?-fqo)o(nPl{a(r`Y90iLddb*yngs>~lE9J}63@ zk0-@mh*Rw6O@;_|N~!YLMWxDOhm|Ue-B+qCc4n!v*tMm~Vn=6XMHqIn-?Q?JEcSw_ zve+l4%3=@6S%wU|N>7S?rYFVD)01K^$|`AdV_N3S?OA6y3-NX*sLu60wNwLfJq}X?RQtY-l#cP8o@!y^l`)^LMON|mo?n$vn zH&P{;$iCe}WGC-QvA37h!Qe$|J1;EM!xyXNGT*r9o2G12}k;Ah8_ zy=lE^U8GttN0_pAdOAF76@zgP63Xd={!wa4ucAj_qVgvX^`rQ2S#(K0(kUTlI&GC$ zWVKaJUZmbj)Jla;OKNUN8szbhnYC5UAjhek1%&eR7irHDwXDCns3|Oqn!EIR2@Z63 zQs7dx6An@bEma$5=k+~55F6e{vDqJ_!87tLomi^&si+G@*80%MYki=L2I93oQv7TK zT3p!+3!F>TdYL*0;Zir3scmshyil}S$e$l);0VK`Csf%??W5KFKJagxmqg>D!FZp} zFp8u=m)gRIpGKgar2$BJ#nVog+R4XURIMPN7-TM>jxi8eO6xhbjb6uq#awEwrly3t zU8S!HC*INISgsDoFI9|MuIBgJK?|3o1YY)|g!7cJTrK34eDLFPHJ=xL!7ty}YH9x{ zgSZvXicrN#oxes2u7hj7R+o7N@#>#jD!wzi>_At5pq>Ezd#6L2ouGEB)MADBsQ~4> z;p{_YXTSorrhv_FDzhb0%qko`-=@>6ux5;-UskD8@U5>=tI<^aEP(7*G*76qkJhYK zD?~gr%j}*B%fk(R089J)bT0ytU@;7&z=jg!vH=T0Z@1(K<99PRbv3g zjs<8r4j`h%c)-~c0E$lnXfzohqBMp$7S~Pg+H2;5g;iG z?*_gzg|!^W+MCm}mr!ow$sa2FLze3t4EnEy0n(HLm{}$R%0FEd|E6ugnXOrpcah9| zza6s1bOK1~0nj%Dpy@z>eS-jY4h6_E9H8a|fOS(@bh{~fWEQfHeF-pb5kRhG0JWDh z2X9JQ`HfY`%Cnx!zqJ+r*4@MD?*J|w1gL)m;O#M%;8hA5;4qdcq2h2^yxK|7E1m&( zdKDo20f6ffK)eQUN^0}dw|l(00+}}qx{wm-eT~+m^Hh+ z;mZ?!IBUL{rDjIfZ9mR3wq45j9NsYIYm@#fQp%8A0GkUk6K|tgRj#7QT3HOhs~mt{ zg^8<7;;Nd+T7%EWAkWyeDV4Bj3YGmfOMi!y(zP)_o;J+1(G*q8t9aPcw3Ilmj==dbd8_&$USBtel8=m%s{Gvt{aHA<)HDl9Eg`| zK)fvnI$|K+mLv6xfgT%(x8=xOZy?^5_lX`qexXAd%a6Xa%7u#*w?QowaRJY@Y0(S) zhJ=m{2^&2=ls{P|EDAs3oN{*Ml%uP8a&qOAgDa<;TRG*}$|+AWr##4<@*H!@k(E=P zVov3f=;8A!ryN%~Wh>^C!zyQl99B7%Bq84y7%7k+Sa|FTj2FmHE2o@MIh6(SKc7%J zm2Cp~LFJU=DW`H({*M;OXH!l&nsUm?loJP2oRcgtB32MTo}6+h<&-liryNN+<&@JXryNGjld~wNY&e{966I9*;o_7Bh*O>!^W+KP6yNU@x9Sv!=~Nc; zKyZqubc$TCkIUP zWFXIz^`%pW@jN+Pny2s}o+n33^JECmlM(Ec0X&b#Z%vSS{LYi%J5LUkoN}f#PsZ*% zIZ>K7Ua91T^CbizZUx2w=JC6Fv)U|}N2yW>%P=LsAL=p=Z|jtKK1fcF=Vj?#O1DMr z=HYe9azkiVf|Tx0SCJh z#L92fMpoj-Z`2l6qRKY4ft8rHO>JW(ZfsLqTZtmu)uvWr^mZHDx$SCui<19a8{5!t z)m9eesGZ`o!=|A34mG#Q_MWEfP^(ypgFDo^R^sm+Y9%XCb*Ea}N=)9VR<;t~?^L^5 ziLATSc2;8WF13S|h~1?&w-WxlZQ45QR_mAz{+=8B^-X{;@46fO1h1iu{sW~ud#o;aOHcNw4J}Hky=ud3MqzJR z|K&u0tbe7U&^>BNN@|hC+sCx!EgjrzQ~6=9+St<4be}aW-qO5%w!*IOvs&RT75vT` zFmEaBJF8dU(y{NrUs}n9!+!1R6U7|ckt?77)h99-D z?K^5?OLt6dZ8ovA;k-_0(*m8nOn>wP{xh4HAA`!_&WPvx3{5=BU&~4}2Ig{4#T#_y znAOfVDA#eT$~S1tajU=^boRJ4$8J#G6V@C9n>`VKLhWwW@&=WRReM+oXRPJ!ZqOgG z>Hv$<|D@W@N}N2YwlgaxmcJj0nyen?u2|XOR>fktV!saaqU*y@u{TGu7N-h3@*vp2 z7+Ntj|CH6UF{GVRL(D>AsL5%yua($-S}kuT5=cL7d8y6x@w7E>HdEU(R?}>zZD-W} zrbpP!X7qQ$thDppR)#FFtW2VcXVpQb{v=v+Rvlv{a-CC0TZzbX>I5s1`Mf&OO3Xj6 zPO=idaW)0B;?%Jgn=mp1DtD zF5{HT=%)Mh&1IXa{8!YG7G=p5t9|a1?^PRR`c-Q%-KU?gS`B=kdS0_pE?!fIn$;7- z#vFuUF9D3F_OU}&^&+YJb+x})awMI)ZWR_uRc}}ZM$+~hR+C3kk()NQ6*tvUmV$s= zRyRe`yjwQPzqiz(7Td_%>R>DJ__mGG`i`ntl;d}-QF)dg-?66HS*mqc9cZ$hr7d@@ zS#_4O+_M_uEJfV2RG+29dukuEyLhpy6uFOPcz)lDD!$?F>RB*2<5;&dKTC)2tNpAJ zf*;t5Tkt>)vnanKVORR&V<=suno5&$7RX0>`2s#>Z%DbTRj}wkxO=14k5+HQ)60iy z7xP)fOK~NNiLoEaD?x2RGfo%wGYgKV9gi&g;wjr>YbeCijK@~9$J1|*t#LvRn@A7l>6j2lsoHpFIxLTtq}7%I5))>D3saP-8}J>NmF}Uwv5!&o>tOQwd<^t;T+#1ab=+bk`t1qCEFRYQdfR??m8hio${le;s1vKoXjqT1$ zYpgAx`ajuJ@A}C`$@9wc<%lwRW%b4adSa(EeQo*w1+?R}W%W|J^jhs?R+e{n%81IS ztZy^KVyU0gjLgLfn+>*<7QC^FT1rW8EF+duub(aLOX<|l)`(n6CEi*?VktS_TJ>8> zzr3}v^-Q!T^-?;VXp_mCr1r8bn3`l6zKvEUS&!Fk^dZR_G}~zKJIl6hbn~6n&D*Ha zd#jtb(Si5YqG%iC{l%u>t6!{nw2glGMICB35N~|3%s>O3=uAs~QQJ_tyaoJC^S06T zWUETssM@bqYi*-dzpDLA_aHh-_J)oxdpjsR9zI8}SfZ#oJA}H7sXqf4v!i`qB#p<# zYMTF>Rh`xJ;Wujztfoo7Tf=@eCI7BYG3{DS6aKKV{ql$PY+a2AEAfcxkiT1X|;z z&9xF`9Ja&}hxV04X_i)-X(g_u)n;3Xp6RriW^?h0hw{?J-AI&}UK>K!8(JT{3CzsToZNGimOXZ#3o1Y%^zMW?P}x?1>6~HVdNsY!>|Nr@5Etizu_d=HBBk zqK^KWdyBq^*7|GiJ)Gk1CZ-aNxngGqcY1~0S*%OtsXzoqv z4w{xlb8qW+(6ua9p*tvlR?WTT+Cf9I+GO@-)!e5HJLu1>ntQ{ugPH|u&CF%}4jwrB zukygT=I-+7>sFWZS(&0-$0rqeOZY{p3dPN8oTrb0Ry&-hCfTgA&eNi7S`~9diTtYP z(C7cgt^V_$E%nLtGMnb!lqXY}>{c@+)9~zC19NoqS)I~5Ls~rcys1Hctt|bsxl({> zNisQdShY^3RynK&O{SO}mW|2u7;JWhQ!+u}pv;st7Zk4T`MHmKNt{e0a$4g&nU3eQ zsn3whs%SE`&1ExwX)euuaFR^-a%uG~`+{;?{gq6^a@*MU5 z@0CKD`@AcevJ|!rf*yr!J+-#5t<|3uwzYbR&ouV|U^0#QOlxRP3K`Bf!%%XWL21pW z>W(2u8c)?&dia?&U}C9w5zEcS($pfBABd%^MXV-4NO4iEwplYi(^f8pLt%pnv_6Lx zOxGXQ$Vhsqp3!XeSlV7xD{UsC=y6fYS2^iJQO&)@a8mzbR^d)MSj_VAPRdf;@}o`~ zUEJzwC&d-l+()TSs#-#GZ|25!>3ZbDbSXG~yabLDmuY>l!QnSx{J>E6*2hIl%3CwkMNi9H zlhQ>sDp<4HMe{0nYDEbZY}G1TQEO|rcjhgWxA;y>Ihb2!M_tb>a?#_8S_eDpjk{od zbDx$}25+xpb^YC*)I|$Fw-x^AbIYZ;sAMHuV|`gkYh~BC><4K4{TXYlL&3i{uza(N z%2u{Up^Lt%Z0kO?vaQE!RIycbaTRN@x+t-Vt>6|_E$`!^ZB;e*8vz&jRny#OR4y7@ z%^H#}N~or}&yZZyvbs&%rs|eoa*r6Dfm#^@>4FVSI4GcaUILKyXZk3+n_2{ z*LtS8XmnkhZ71qlYY-P@tY=3dRkV~_qb?lJ*|nk z7ZLViWx&3yOgeg!U&Aj;e|U(WtTp_ii|W?5o?Phq`Y8o(RE6NuYUyZqS*?swP(asa z?p1<|iZrku6H?H~&%uv?(DDs5e2nK()AatKV?sw*XDu!|-N15cF3R1|)_J8 zL#>;=0yCRHZ;jTdKqc6r-)x$zgf&aq5432_<#tMEI{rajkTfdzl)i3c4dH^MT6fb8@_iX4v^T___i<|(6=G>QLFXD<%cv8SzKPY-C#Xdet(w{LCunXH>%nz` zE;q3r$tS2pQ?0mJ7+<_mR(%2Op7(19`QD9T@@X31)M}X1bhWAVAW5X3n_4OpsYNrb zquEM{ta9I1&=KfNM@zbEd1*$~)+OBCoJfB(vlj1()UCPI=ZUnox%ChgExmB;tTg`G z-3obd6yM%zl^jQhT3NFuj(l5N`r}AxZ7px&=t^tLjl@ySHkM0>qiB2L zZ5zv`IBMP2axihUt*zF{Y|}Wl=`5}XD5VakqnS;)O+(w2cDHF9^=@Z1KpY)xXSHb@ zeQak<_&93W-s-bB+S1+{=5h2_dt0Sib+B2xxr0Y_Oh?Uqo*GBt9jyk8ql+Ca#}r4o zI$7>Cj%IeU2F+Gl*U9p1TPdlNH3PR&)6Ui-d@DuS6AwFU70gk+ma=xSwC$q`U97t8 zqbXgi8tkLXU92&%kIHnlYQ2xeBU`ocDEl8@_N2?Hp8D9bl2*bk3Pwd@<;y6 z0E+6aH8y)!@|W=4wDp1M>1{Wy6rC*FC6{T7Q1{}}8tx6dZE1xIYo;yVvMmWYsB;gk zo+%+&>zJiv0k=eDzRzY@&-dJvg9X_7W~OD5^^{ri7G{fae(c}Xhpsj1ny0K?suV87 zDL)i-D?L=qQp%U)lv>4TW>2k!SuM$m=lgP-OQkmkZScXa`6%jE*Q~h>Q-o!IDX?rW zXDFo(0p04l7e+!p0*Z3BA}#Et)iceN{M&r>ZfRvo=%qEvXH&PKGV-(IHl9q~g|+D2 zhOTAl+Rm>2<=q`5@!^h>uadEMHD{J15^hjHtVt)TU5U*({vj6JgEvlnrZF9l}8r9i_{YH;UK zZtCag?&q$*Xv)X81_yNFdgi0{KHZC@v|}vaCw$VG!b4!k$2mQ6m~AAo?>d7xs4J-h zL2P$O&uJ%4=nCSH?nZxCSkWUVz7y3wV@mCl_Q1mB&N7;kRmC{*H z_Vg^8*WOPj`P$`1T)UKhq9?W6XQ$v}dUkUVi;C|+RswM=Q&dQQ_xqt|ie@Pcs*-i2 zQHx8Ew^zN;NDv!^Q&4}cu06jKU+-Knh8y~Gb6!b#EBVG}|FP-m+va!}NUg5V>hAGD z!Ze0&gw_~GANp%$?7}U^A;0?g^t7rogxmM)l|My&oAd3_u@l_&m3Gquy8F_b6S|+> zxG%w@p2(N0oKdE}UX~?gJtF2OiGGqpl#?at#px+A8{Ajf`h5zz3lhpgzN+iHj&=>U9!!$o zmv8UBTF&_u>E!G_8Ldes=j-{U?t++#_|1^5o| z&#T=Xow&Tu=lSh+{sWRS64!&JpB9#0V z(W+AYZhbSQsAQ=vpdQ%5RQI8vXgkmOjc{{Z(Q4VXb>hp&54O=UMQdU{OoacZZOA|T zt=qiH)S*{jY;$Tn_DNBTi{Mad?)0z~dfwMP97Rt{(3ChggR*iLl16Xwjb~-RF1j|% z+P_FvIA4BVcZy05*IJtvN&X(b4}Ip6yQt6ckP5BjZgSzc1)|aum!+jiDZE~Y^*|N6 z!uP26+@*3Ow3=ocNdC#Y$d7nPUyQI;5|ST@+tx~f1XG{#9{-uPV?B<0>k0JZ2+jRg zPqI2{V43)gT8`AZo3=~-T)v+@U^KuXhgo}tsH%up4KH^T4? zG^Mo<^$gd_nofjoh%0fpA8wmtclm<2Q6P2(X_Owm^j)~t-YiP8X7lxN4cEurMJ=fv zR-f88eVehI+p`H@B3P6uxL7WHN-x|lH#L99nlI;|n95?+R$ zjImaUl0Tyi^7mGynq##_=ID|9Q+(n5eSL}?Yxyt9ckmtf#8%8-f}(yNl*eiaqnK78 zkHe*SqaixCN768#Z_F#_+EIsbS_`uv$r{a<=d~WRW1MxSB>9PapT129`Ht6`*!lbL z75gd!xgwv@$)ur~DRR8#euju-6TW}Heh?iVueCHEQj))yujH@7m3*;{LP;q?^(Sa~ z?AmvLtb80s!zO4|&4D1Y0ep$SBrfqA1ED!(eWVwo8D)om=5A$Ss{sxraw_GXs5Li7 zp5(8^&3~mNF8mwKGKg>e8_lwvo8|B!Zx2qa!iELoIf(T>d6eob2a}IE!fm2gbExtkBgn$2YFT>nd`x+}-e?ZMIIK~bsaj*RjYRMw$7F0nOoky? zof>Q%Q$3&C$q36~j@YP!hz(((nd<0rF()7AbU!SFrws>mv_wFM#nae5K!x6uV?EX- za!XgFq)g+i$E;BIa1e-h5*t^MM%_xAHKhT$l0Y7Y@DM}!-uI*HrBFVFBS&VxXXWla zvZ#&bV3NGaq)*oxnrjWoFU9dCThe%oKG%)$RkPc><^TvvEr&OiovKx!_HWasqu?8l z{j1w~S|Kb&Nsnk0u}HbhaVbXca;SVc`Nyw5G13VDB?D48Ar(&6}!v|a~7rjGqu|00Ftb)Iff>w ztSPauB89$w97MZkYwjJSaHZiOn`>35!z`;j$=48fqclRejnNd%Ygy%SERM3WChebP zy^E8q)y#6L0r`EYl`t*8#jL>`lH+NLkVclK!%W_XpJMpZ^7N9`h2wX8+R%wFwfbhG zN`7vH^e8nD$z#~$-`Uc%ku@#pgBYd&D^ugC{v0iP zo&9VAM=}hlHl&(ipae2ByeWYUOifBbZC(Uf1{FURJV(prZ6w~)ZcpMKT|pwkpuA-z zyKz%H?2#8WY51+zz&pS9uCf zpqXD;)^Db@oiBa(|~i#wzq>X%n=t++i@t3uyFQ%lf4h=}By(ok*D0%Y~+=_+p7i zN#*I5lB;aN_tWfDxp-p~5zW-exQOGC{cOJ_yNIdL-`lC7u@-fQSby_`oh%nT4Ati; zbe?5>GDRR^8Z2*--wjS{EA*SI)?nd?DJ2@=ydIM}Pr^GpL#w>0Erqm)Dlcjcs_~u& zFK#_lc?)7tpVns87dxl3k>&M(?x^UQh?8Rh`o`%9BW>MM#)+lOz09 z@QWS`MsR$VY;Fy*>>meUv+EI- z?V~}JP2G5GCp}cz(-~Cvp3X*9JZ7C^vv_~zk;V25fv1MBxj(a$WshZ0%{`W#`h`ce zwXO1~mR*%0E4vo#s%!s_0P(We1j}c z<|UnI=OQhrnGptSMHw~-_vQ!m!c5^~MhzYn?hcAY)S*PnW*8pYKWw;!$u9I695!<3 z$bn&#qLs%tDR8kC7NEgGd}2aLlOC=1jgNQiUZ(W` zr*AY&*-3+=wE;kvqP1Q?#a-H9ph%ZC2ko8fB@BH}*;ff?|5d2qd)mwBUd(D#^PW*cW22f)mQ|RQhh|(utX0rm zzl@~qRH4Ase(|K$kY40pC*9jl#LeK+iU61Mv$QEjDSPzIzS(!o|MaG265Z6tzjqO+RhY zvViBWP1;Z&=24nu_oB?#vj&lKv)0_m8XM?ES-RiLL2oysnfFrNE!s$+om;d)2E$3n zJP8cUPUW|1KHj3{NdUFmq~SO3CkAq41P$M+6@ko>t=br$cU(^CoL)3Kt9wPXcD*PLjla{_iGbioVf-^@;j5!KjcgvR&n&|j#jon%ydc7Tn zKBp|-YG3+@?7;k9bnUCaLUim~jIQV8wFBMoociw2!VHE9g}rEDo@{w3*A84>3g4^w zVJcqTyXJFFHByULI<^6AZ6*YPlfq*rkmFnz&0F3iM=`*56?MwyYPe&Xhej z4cM)9G_r11Lg-cL>;>rIZnXb%Dz!%&1GIXNHo;&hTfvLo^vxbbt@aoe_F44AwXoX7@bO=u263scJjRN}h5XST+3O%fi2fBAyXmyVW zZPyW@_v;o*ku6Ins3z1`5W-uN)23K^6vL6>~rykda zAob&Mc!o>V^n^AX=(`iz2%ti-TEEPq^85Bs`F(rpa6)TKk7BiKpeDu&Q=gNVbvNk3 zNv&zX4WrhjZi{2=MWJE2ic{vZT4mJw22D8ydvDOYQ`%IZk*87l8}#(FHW8@j8Fau6 zx^1AgXSEqfT|2AI1nO{3ivoIjPFnyp@;o~32E9Ema)aXFxnt;FoL1MDgD27EEpAiL z1=KBuzPf-h5<`Dp(7ptkc2S$<6%!MWzQV6z$Kwf+U`TpN(G`!w>d z);@rDfv|9nVc{&=`!H`Qx_%!nIautj6F#Q7;sx4pjbY#^qYYcrsV@qaq8TsX9!kH|^2xWN zl<3P|^zL;~0fd3!QMiWAzJyI@Y4}fCcVFI3qk@-jQ^a4e}ToP8_fk2_OnJn|NN{i2a0)%Ha$y~5@9($rEj27 zNy6g&PWu8MuA21@!#mzE;3uO3WAJ5lZ46pCp4z_0(kGtu_n3I`H2N1U2FNE_TMP6} zve0V&ilXA_*00)9ph3UEjClI{H%UeQt}R3={~y|XpsjyMs`8&$N5#|WKjD3TprF6d z06!SzXS~A=FbBU(nf`;;$#;d38*qn0KWMJZoK%K#Ea6ZuYF9)r?@H3cj5b+8oBqZ` zSwZdp(e@gQfB1m$4<8R>nO`wGfq`8kRv{0hHcbj|TeMTXz9f@X?n8UG$Muh_4=rRHCoG2xwYH zN%>{cqmWvYNpFE~ioMLFHw{>77}V;Hc-c`j+Fu`qZd*#bGwX}NRM!s*meOTE6ugxB z`AcS^Kh!OyhydLQgbH%_wom z9a^1DpMl(<>^cD*$gal#waKBc0(zB0UjyXK38mX8PcC8En+sLkMlEyeD}kQpmQ+L@ zeW@QSRVH^uiviG#zc9s2hiYO&EiOQ}!+y$;nYs&_#nt)_HA`d)Az2-5ce z4KAo301670%mSr81lO`0`n+I?vOxkUjw4P>WEM1TOsjT;hNmudWL_dj- z!hK#+j|F;PQa=ZDsFZ#QXm)A+CQ!FB!jikJej2GqW%W3qjpYOlE3cnN>hlWvDWK#E z`dOgE6(u$0bNwh%)hg+Sf!s7zIT2y$Ij z^+`bf)i4pFX+br83XpeoL0?waXCviPL(rlc`j<#$t%;ElO-pO)(}1$n(!T;C0|nLA z=LB*QO6y(dZwA*evay~z6d zP@q5S>mz^$H_&V0+j|=u=+!gsFr@tNV$rri%SAJqm-nY@4fW#ar5#kcA>BAvYtFb9*Xw3XHYBQ}9`D-dt!T!xiWyLaWa`ucvnZK%w?N6sl&vMIo=ojp zqF%{#xTQW2D5w>TOQt!k^iZG|tt7K`YZ2JfS|5hY{B0z2W*f=;v5g*r%qDI1en4B= zqBhCo+fE;nnaxmEWXEylitNzN@{v%M6$ zs=YqQ5WbunOqX+0KqoNu>7Zu?)2I$&?gJo$saX)1n&FZ=moOxB_#m@{BZZKEq!1;w z(c5Jh8a|#IAYCV^L3k%I{dOl&RkyRQK=HQD`cOZyt#&y`0#NuIJwNWN>Yr1&&UyxV zS*0qQIirg-(Tgtn7^Hf36_w|^>Z6gW-c275w5yvw5vW*qjOk?B&>gNcnF{p~&P6>i z?UL#59++UsG`^=4uJ;sL>t5*oWZK_LO32?^`gBTfX>Yx^9%|IMaR}^d9AeaX+~jb4 z#768M5Q_W(p+=1-88uGZ7sEA~hV~U5SNo!uVyS$HUOywBOk<90!zj@^=>=l?>E&t0 z#~N82N-W(AL2Y8GML(DtONaXDqku|;qNihNUMRXamR^Tqh(=MF{(7B^e2fiMN1*CP z1UK10Jr8};U$5llq{sdB&H+w?A=a3WUr>iIy%&x6ShElqjtxK~IjQNBS3Fsx}PW@1pg?P*)da8x937S}+{F>Y{&# z>*IjNjzG;_^uq|r>^f37FO1YDXO`3VHy6<0Z!XZ=5qclmK1$DMWJ`?F;)@hI64?d9 zbzi6`9u9ZoB3C$C)J5q=>)}A-N9z-S-i(&aUSp)p>tm$M`eP-vf2=+kEak_Ebz2Qo zaJ&dC9xpoo9xp5tCWv(}CkSW1i5Ol8J((z}4wIzDmnVtN29xy}hNa~aQGs%abaE^# zjh&|Z`t~0`XiylOmWyhCfet}qeE}EjqWV+xIY8&9V2yy_t*QD#poFPXa<^&dEEnCL z2A}VuUeonSe$qT`Gvde|fKH9odsFQQ%wHF^jgUH@ix5+4&VXk`_{t1v;Jh=X>hotx z_5PeG)f+rZA8Y7)7X*C(lsH1~ooU>d(4jap9L%=1{Zb!b)aYX{cs>TxUZ>v8uYc&c z0YgH@4*dc%#6^W>W2zyRYPPifKeJ_|44fkd+?a#;=b}1aVg9*j%UAkXpuBS>^Q*Zc z_iiq{w~KnrlgxATq_wL##ndeZ$}wNB2bL}da?OV?a8afO`Xs})3^ia|h8h$+U#}QY z875(XDg|pIvtUiy`<32}iY=5js=g2pQ5PLpD4kbs5gO+ytzV>f^nGfK>1p@qZzFfq zV)X1&dbJqO%cnFdQm>02tlbr-OV7KP=v91Q7&_=4{k#N||1`B(s<+K}+Q?mX&zBmk({nG= z`(>l+OZ7&eXGa3Rc{YBT-q=6UVB2UIKu><{lAW$^YK1GCF?wmbeyCMW{4NDmh(;?V z(w1mcGLiDQ;0zMU<$}9Pq`zEnUWwE%27Pp!uEgl=18y5izc-YQr_nKb846jh7pDl) zi-2nr>C-YZmoflvkpQUeDm{q$&25u~LcT`96%Mxv0^jE47}vLPc#37qZQ8y9<=&=Z zUklpsHO2;lPF7<1&#$rIMdDD|hz;-}!K?Hv@FH<^dL<;|sL?8Y7SQ=s`ohf2t7OM( z4**Kspm(BmYxQit144%n4+&wJE2}YK;;7jg^lu!UTcb}kWQrVuOp!yDOg>PLt;GzE zqblpr!Ev-_9XcnDa4TocqAq&h2EoDh2GQkHF$)GeAEuT6pdKfF|Pxk z9j^B+>a~x)`xbk*ebi$I`fwj5?9lsrn{WN7=}x^`04HEbf%`J{`%;IOoj;@9JM}t& z!X`l@4CKXtn^=sR?a~7c4hbJ&0FHi^crntyeUv+!e40{`ND>BM@svaZIFIOiU{VxX`|PzeL5u198!QZ?1&<9q;!6t$7K}|)%OcEw*AK~#I6Ud@-YP;$-tG>N+fJrE;O^(p;aB<;6mrxS`^t(atVaQ3S2>@MP zY2>$-I1^lc6ETS}VSsAXpbiJI09n3YFPPybx0ZvB@7GKF^8YZo)qQ%mU+fxM5C=xW1uRSd}jnR5NRu7ID z)#I}qOmgK+gKuo&Pm#!xv7IR5FqBHg^hj|X-Jb@!e3_~PlWI|UOeMs+W z*dP%i48Y#NWG~)5z|XKl;zXA95GkHsrSu>KhAV+_52k zVvt0I0N@=LTA3@u40+vEmEe$m0}V+I4sjDCETmwVL0HquLy))-HH>zjKv^6MVwfON zAPIxWi?fpkcK6OYDP*$Qo)Q9bawxqysy8>dCE(+`VcaE6jU0*ZC_KU_kK;RxY>DhB zG?HE))4Lft64TKsoExPEA!;KXCDrWZZ#1XGbud74HaD7+<2u}Rl8BBmW7)BBl+pJK%5+liXqX@|7z{ikChAeI9Oe*^NQ`vTSaBW-KcxrIo0ED`Z}Zjx5(yr#!|(4{mW48t9pyf z!X_~r9W`2V6-Q!{BheZRVDJ|fdwGf1@RJW&D-x*@^^*2n)2A9j5~INYLLqcx_JGnf z^txWv+q}&~TdwQ%d^rJAUf!p-*Yz=(g(g87&l73*4Si;ycV?sv` zi-x{3!k8T=bkPcvq2f0~#Rx;i!+RL#iP!YJbh6Xrf`Ot!f;$*M!Nk;TGa|!EWD{MA z1a~lyf<|W;RG1dr)-!v{wWA6JY0YiDsxK!{>c{((a9i&eC^U)jU;x1?1i^fiY40Fk z8hc02=KY9k@xCA}x}(<%-~^;IJdkx{3!0fYD445V+S|OJL}l;lp9gRPY?%zUUIyFZ zyI5`tn}mQcKzUs(;%5|m4^IW*kSLIkC8_>BeTX3=@gEEz)7vJqE`Ep)g-?7Om`%Q4 zu1Gux1Mu}s$(JXS=$6P32Q9ge152YYjs^J$0FiPO`Up$U@(*-h@7-MU^0TPk1HHO0 zCs3vQ4`{{%*d#Ow31I-i!7SK<>Yp7N1a~52i3~~XL8Bh(Lk$6m31I+%0fxYW@ml`O z!Y<(;O$Ji0NBT%V$&o-10Gjy#?ngpEBwvC*7(fjkT3l}A**7x)%AfY-0zE8iVr*;gPVATFa@Y zrkD5L#ik(=Budi@`EmlL)qg-oG`&Hf&?F>;fmm}=!xFN-j%Ah*B^c!9R_dec)r}kp z1F5rz*6VsLQvnBn#sr~fuf`0NLd_|%^;to>1Cwd!$Um`vjfWMu=&+#6H zdWrP-`51k8qF3~O#(D6A#!C5_8R!9VDwbC(-56y8KwBuqR?OUq^mO56tn2zIjxW_hlsr)j0qXU6Cgd5Qiw{F2)L zh$C;wkywv5uQ;az4SPK{m!VNYJQzS@2b;zgF`AztC}AFZ64{h~hKxjZFn|nxJlNd^ zBvy==t_2!w65zogm1<_o9&Ub+#i%WZd_=#egco{WLso)47^ISoJLT=?Co&T70YGb> zW8wGbOWkZD3G!e7$vX6I%J{rg{UO=|AGQLZ655 z=)dQV&l@OG68XUZDofD28{>lvmp-3|(~ay@_Z7S?C!lhcp|ZWfw)&M`IkT`yEXXZC zN_d6oEte{n<)A#T^=dRdzwYhhG{hP#d$%_it?fR+ho-;Qi+F#{B_v~e{#q~R%L$aQ z_yOs!^INQQzlz=JxsN`v*7AeCC<5v$JiM{Z3(4 zV|$E1h2oxQRRlLCltv$pYzP!vin4}RB|;yG;13kr8;fm+A4<5m%ChKF5&VHvxFg&D zWgy-XxQV&FXH*k@PTf$)()y2};#zT5OM8q!r91A4DkX4=r!@L{1b?8A)>w#d+QDF3 zaj+!I)9z2~qCRk2T$0tr9wU%>&pqK^nl;4E`d^}AUMXC2F#>4^?!k9}Sre;L8huQH zKTz-pDptN`Ok!|BR~4M1b@J9kZi!#qk1v-c~%AN!v=Ocu@&$Sr%un| zJs(D(CbQh9a3h2bw)(fMO0M+L3I0HVV?J{Tp|5Zp$%{TgxiCVsc>zZ;5&GKX>NxSk zi>xO4Ls)5Cf}QAnZ)TvV_7e8x>=lpgY|h;i4PIt>+fn+!X`=7TtZ*4wnkbgM%<3w0 zHb}A)?Os97k1w-&N_2dZo!Doe*-@;2mDN&aIXqe1f0dOe(;rQ-6Ade8Mu@Ne(aLW! zRebjk+147K-T|{c z#f5*f>N+EW+Fr=cA0rOGgOxs-rlgQ|sE1cf(zxRHw$s$lLG5U>kLk zj2zx8ZrG^b$wJfj+ld=z=XVnq%B$TZY6kTryKD#+Q5DpQ`aG<9=1n`He!r-L_@{ze z&lwR^-4LpVf!{~0>O03(MBA&bVxX-WYDYO{|18>7QyYnsw(1B;E}ato71f=xz+X?> ziNwg2?S+$_I#{C8Gj?K9d}g@VVy6y~S^E7hKG>;gGCk=JXsOSV7UGs(HAob51)9|> zv$p7J58X!fPJxz&Jy_CE+_zUp+C9d`kA5oJR#HbhU<8`o6MGD*^%SQapvm_usUdpu z3;)YbwEY^ME1El~T_x&s2X@QqR4=j1L7hkiD1mojY_t+*BUeU>fsSf->DcRUJKLboOLgT5p6Zb`6Wp%lXw1c&hE30WT^8B$F;H0jUk)cmTp_97b?m9Nr_(p7VR!zHBJv>PE@ZUUT2&n-QKvU{!s*4z2pmT}WKot^V!Nw4R;IUx^ca^l?jqO?#^Nv7&@cS-I2Jv` zHaE4cGa_j2*Rr|YWpmrQ!Fa4(4F&||$a#y+{aR-C(CJ0PFESeoo9b$(ij;0EjMdfI z(szfAxLF;B3MEu=(2J;9nFev8hT1`7^#^(C%ca&D zD58_r)Do9H)NonSJ#S&-sSc3YZhGs*w$#i3G2c^dB~hWTUij``;~}yRa!MmI5g;rbRL-dhc%B=9_k zk z1?fd)n+^5EpT2NNQI>uY@Cb+pe@{Q?GeU;?VzHmvSw@bAirao_FB!>dC`Q#$y+v1l z*vry4Ld^1q{(pp<(Xp#uWQmQ9M9o@iZD&N#{3mjdw824AQNE#RzuW>krmr|V(^N-99i81^ZGhTWI!8iXX9sVJ5UByMhse2Ml=w9O zh73hA+Kb9{V02T&)EV17L`E)l5ohYCMj2_`Rk#JJ(fS+M{`rIT;!681VIm_?t>c0S z+HdoK&Uzig#L7n*HAUM%)lPf}R0Cy}Hr@3iI^z3a(LYEvN_4xse(jho^~7I6>S#ME zcjjQxI#`W%HDe{srotwb@7%5r&S|)bvlDl^Ii%BqTu_rOKSb>(kAu5WCxG_PM0!6Ma%kXvMjjy1aY{&nkyrn6tOi_y&xki5=24+)hr{El0>~Q z^=Da3<;i*xX8E?Ys28qIljuC4UY)*+7W#&27m2z|(Tht1zY7ygMyQjVF#^5NR(5&kwJp?I!le=PHF<4;`)lg!v5nN;GGo}6;$$Orsf;+x z6ula&+ht_%Z1K9Wx<%&fJsa-&LUuP3e>G7PW%|LnqFYn-H%BV@`?=85ec%;ITTtan zXr?OCr_KWLsF`|Rmf^iXFAlWX(_8%494@Sst?$=jY76zUj6^IFom;B=q;tq3XzIp2 z4McD&HCm>hSS6OXQZLHL-lgV|k*Z!NV>_3Mgx2bN8F{e`lsr|7ET>?ZUaV@L5i8EM zRp-fcWrewWlz89l^}_Uc&azGsza-9bHQ%?qn4bWjuQ z;0-Z+te+;vbyS0$F#?^wPIoS+yHP}TQEy6Tu~RR`dq3(ThIfVg4|1-$ zLoXg*-4`VO>Z(qbSyt>6#%}8OGE#k)c-Ku$l95-t#H8+OoQ$;nR%CWp)Ac`LLmM2{ zi?ZNHk>Z#^4Yx-G4c+@d6dTl7>G5Vaod3t|Z!DJefU6^A%G(R)oJd%;BfzK*up<5n`oDu;wCEhRHw*XB?t8)v+;pW;wq!KLwe!U?m%a;yq7vq7WCU8 zQP4}v;sdQaJ>YlCeeOeX_ z@dtO>iTnYouQMWOeU5B>8{zlQA$QSmpc-UH&aZEZ=z;1)8L0_hzztNtkj1#%fgwBT zaAUDx5Zu;~b9g2QDylnWWNDUIHyFn6L##9Dskk{*HHwWx)Iet>Q02d}N_dYpR1FX> zhp0h%^6l_MFSg$PAw(F5!ayT5?x|k*<@^xfyeM6n@>E}r);3hut5|5dT`JZP^hU%F zQ+qmN1PZVCkWT)QBBsU>PcaTIYtn6jMP7QF4u{J>Wpv87UV1kThwUV^q(nH4P`AtU zCuMrNy%*0$z*(8nePKe}Kl*5Ev1Ft=$YDEHf6d9hTxugR$+*AT+Gw@CJwj-P$3tO= zhWlpn+4R;r60)P=WKQVpN4*Fir6$SPc_(`@ZD8{OfK?9nJSO!A%;?Zws9n?9mZ zjM~SJGTzpUr7`MMnf|Pjy||zFsFtWZT8)(G6ck0HXUS+aPJa}exY*Zz?V~%bMWa}F zGC%_DYb?8Iu(;tn%U6UO;1cQEL#-p)79Mi8qg(@B#kE*(>44xaZd*H8R}(;I4bZlA)nc@=CM0)9P>lX49Rk280jwQM8G3R0gDgt# z!$4O=pdW*d#RLX0cqYLh2DscN)G>qseq;+^7=s-j2#hc>>GF|CG=q-tFD#HJhQXgY z0RX2eoXhgB8OfE?X4r7n~;YMJx2B^cP zYBA-DDwO;M1NeRy>zKg+zTQPJo53De0(0s3qdMBkJoDKFKIp|fS0IqBP@M_Lk9o0K z>twzAp)Bc1(x^Vq1fIf zf=vwSK?zX6Rs;w~+w90{f5?-`6Sc@fEAGTVp1eg<>>2pnPnANyh* zM;Pp=L*O_A_}UjePB7RNMBo<&wd)Z${ijK5dCU4l&an%81&oFK&H%mvM(_uNurLCb z8Kg;YjRAZWj9G3nSS7(<3{3E4FuL4ja-boB`wXf^5XfXOO@b^2773m*xFnluL7?J( z!S!OHmS-BE{ZarilT0s@>BU;Q;@^ZalriWh!Ak^}u}D~B7K?nX0V?ueEv8tSQ}R0o zds`5A&%m}N08_g1kx3^c>52}%2$Xf~m!Ld@k*&zXmcfq_*fDq`fjxs!k(9-O!P?dY zDibi_rj$zJ%r4<=$fXK{brQHTz^|O4snr+^=t7_d1ASKl?hJ&1fG2|)J>>D{%_P)F zF1`$WdJ*tvpzBSbHUs=N8X8iE!MA-01TnycY{8>0f}6OxDDecKJ^~XG+I0;${pdhS z4`;ArFo6gLZHEwO%;2E}O&PoxNgmA^)Ez~jC4fsPES!s52DZJin5YPSHoB3O%Cj|x@*3=(M9KO?74OQQ5%43 z2uiWYKHCY5*8r8MXffsJQc8|zP?0r;G(JFJ zJp=q49ctOg;4jl5BAc0b94D}qL7@cO8Q_w;P{>XMD{$*kFb%+W8lbJ;t;LioCn!0C z0e-g*{`(M^sD!Ggi5y^;UnMxiAm$8t{J;P|V~0YHGO(N@aGZhomB5b-+W$`ACkBfz z>FECV7bedyk;^Ft!!Hv!gJ278?6oTde$@bN?C)9(zj()H{lVb81eX!~h6SL29C%!l zKs)|#a5{ec4(YcTto@6?UkrxdCUA#=`yB#*Gq@wceFnH7FckWb!9Nl_qT`R+HR~R^ zWU-6QeF9GyEO;tpLtHqa2C&vde(V1pFD4b0$!m zL1#Atbr{sFMj(g*t}hJr)@2Y-oj^SVOL1ErK>ZM}zYR1(8yl|0lzHxyA%X$Q3qX;L z8BD7~pechl5;SM9Cy+c^GUyUSAd-QpESN|eCO#nqq8MD4pgn^b^~s|ngEI{YbY>6| zL7*#xbP2j6SdCln+=V=hCXLY6_tIjtWHD@P9|rAOQigsE>{<~Rz~Da#1~KT~nmmRu zINgT8Fb0KfO+-d8S=OFFG=r}?5Qt$A+KE6cgO3u#G5ESOd5l9qG6$38#wr@1ZH=cG z-TyY}N*NNhbj7nLfn)}oC78^hXD{-Y%Ain!X$)5MCXX)}{42o>20Q!O(DUakCb$kV z^!gkI*Cd$B02Ld+<0}TIhY?u70M|hVkA)0y>0}xAW>6x5 zg~8d~A;6DbdB>2GKjRfW3n||4+D9ZuW*dSPjo!t5q0b31FAKPg$Wz#WC zHYxT@8vRTe92m^|g+OHl`>;rHoq&r5sK}~XOgVm9zF~XUMAqjz;J~?Ed~V=1TcuXN*;j>?n)4BVuI^OLqkFkoX3rY6{8V^ zYJfI2Op7TiZc%bW2CwfDXvE;w69P>b;2P3UVlxCUv5J|6^7w115vn6niz!WtDMK3u ze@GC;;7}QPv}b@TOhX+V83fo7=*(b~1YHTx^{>62T)MN%_x1#OFu-M|q12uXra2Pm z&7heRfxZmxNzk7`sWW*DWDs7ZJYD|=GjXp0g%YxSS=MwPz+whhIuZDWfxa7oR0f9(1eP=Sxd(xj{{uYKXtbq#rTBRGu*FUpDo*sB3LcK2&BG8pNZ>Gopd>l|k1+Wc2o!mY0WN?I zz|5e}Gy*3Oti)Da{DQzQ8lYC3!WgQ)D5zf!1)S9YCI70$6fe_EO8=e7HVG~;cr=SV zE;1NBo4{oTf3F~LmBFC(1gU0!V^aF@YP+X>ub zfU9W3wmm?w1~)eFdjgL%KpUH-#grL)DESG4V;S=J%Vtu#ms~6i9-JYN$Kc*s0{IO3 zoFh=k;I#zB42J(k9;FPz&l7kKz$9Bfx+3E1S&FEc#D9Z0j{wP^;TlA7TVx0 zj(_TaljVtovrAk>0uc<7?FcmfAFwCTlmROKK&j0ceBnr-C4-HX2}Ck5Ep{T(hKW~I z0#OW})*#TH!N2YVIx?u~MW8c-cy9t-8K8C$w5&UWMScW&n3$k+5V-VY@I?@T-V7=R z6X?rejRgG}1k@#ufeemFFqlF65b_wR0h5ADdqcg$HKL5FM_?oaT+JIiMlska!Dt2z zLdjzcgH;lYW$;ph@eFX~ZYb2GFsag*NIZihO$a11z}3MaPcnlY%?M0pfEq{OF_i)8 z8v&TcK$YN2D}dt<*ZKyR8SH|Kdjpt-;0ax0`V*jig@Deh^Emm~KuVs^zT>ApRH#Gi{P?4#ezF`!lFJ~|(hQLY&qel~1%^+(MfpiAlQwXd@kc*Yx zn?Yc`2Cz<(vJs=_FumnWO5dUZYST6?rZ~=`M{ZNMFN=rSEgFnBvT_w%M;}Cn87ItR0j7>lE+g9s0IaP;tGXqqJ0??HK%0U6>jsV6ituv0mr~zt4FNm3B zI*LI-dLJ!aK`kf%{TQGC6o3H?Q2YtNAO@)P1YigQly?F!i~;I80T{vH%fYZ95Rhml zDCGnoh5?E=0f=RQ8cqP>7@%?!fN=~^s|mma2B^^lU?Kz5W&)7#H{SnJ2cawzkR*0N zEhYey7@!mrfGG@6i3vao1Jqyw@C5^uU;;3m0ZJ|bn8{$W2^P-=GMfpCECDbvKy4)e z^BADC5`g&(P*e%P*9=fo3BV!-sHOy92?Nwo0jMk^d;`VBQlJ{#d6f~mx4>CakBgk-=0g4s@IKlvhiU1sA zfT~0Q%nVS82*3#js6GVXX9lP|1mGk9lWZs|4*@yNE+{z!;4A|a8v^hv1JoA+@H+$4 z69RC70qO?lMXpgZ9I->zv<1$BcU{RRWn3j%P90m=md_=^Fm1p&Cj z0L6j;{LKKhf&kn{un}8!FtL-0+^s)4uC)gonYN$0Kp7UCkH?X1JuR= zP@e%x;s9vC0L5?sgfl=98~_pb@cak2!g9SdAWhH(0kyoD7E@6529jGaK&2Z1tr(!T z4S?1RP|XHFTLcHN3S4vzKzj{f6(*&l7FAHo2GTn-KoJ`NT^XQ;4S?d0O*S#8=ikqsD{V@NvxYb2xD+#NsAF1C)OO@FfG3d;u^60X&Dm+do*&7r<-{Q2&^;n1XsP zkUS5;H|T%Ujlco|eEwU=>8RiW85SdeCqwvdtr~%)8lVc6VGJHUX&GPiU#S5~UaiFx z6m5azbOxx*0$?qID_B3Q+e>6U5dc)eMlGhG6boe7%m77L0BmJ|x+?&-BiMu`ZiF>^ z0qoKMmH3?&Q&3_Bl6T+3`>#JSLmyb57sy_8K|mSyV+15`u-a25ePDw7}zg5NYi zMV{AU%D`#lf04n`L;_bBfG!HXf4j~EWKpolTMQ0QCUBbp2&16K-wc{eCGdbjPg(CH z1clhnqB-QDYJl4L)Ea~S2Z{XI!vF>#Zh~Mi1C%xaFpL4Hnjjd-;KY3bF$~&e5*Wka`C|g( z2+;X&sBD*l1m=8D1e^6G1JE=07X8@`uSjH{}eQOZ-o&o5Zphw1iy#JzY16dO!``HCW zO#mEXaL=2-5e6V>f*!{ifS?J26AZ@5w*P`4AA7J=g3}t1^FL=Xnuh5pYXT+wrUB~V z^IA-)Uz?IIG64A!^uNMjQy_us3_!pHJ#H}o`4R-TCBXYHLwzEDv&+#?0uLBuH6-we zfk76cB6x%i2O$$IHCqGJaElgGRyU^PXAD5O1pNz5Oi;K4NC^YbD?#v_LBl8luNY*s zC-8=WsWX9h3@&yd@PR>NS*Q*^fmd!o!%Zk*g4I;e2(`ST7E?g31e5I@R#fJapgP>F6@OhJ(nNUlMEj{p9{iFmLJXq2FfHv>>8LEy&#^hprZW&r9W z2m%>2pFp54gH8&8`V3Yi=;`_&#$-|wxkNAku@Wq`2?LNSLC~B52$djc#UKpSS^%^` z0MpYbRYIVh2B~x7t6?H3cG-Y36?sIfwF?YbOwiIHM1CijtOQlG1w!)R}2)n8@@(>0w$nl0$Jet zw^$>zW4^&y0j7hD2^P6b1C+c%iz%RCg2}5H+}%K64TG~A39MrPN+y_PBZI0tOhmRY zSs`7vGpN3cJa#d7CBgR$+RAojAovLz4zea#&3+9~!w+gP1vE`C`3C}Y{DGtil4I-= zC`0U1=$W9$1q8>jouFny$KNH5P(!b1F$Dxn zFvE2QAYTF?C0Mz|Xz*$Bxy=C7OEA;l3_!aC!2c!S^}R+-xr-VFg(F0zrqE-n3y$0m>FO{^YvcN*=l^K9W3D)7l zU`Yu9R|cR`f*#cwfJO-dcLbyuf(j)7yfi?Y;bV=#`47}dFx_8ES3sKtK>!1gCqWRz z0CY(ZgfO_RClJa2lu6JdoB`;PAZUaDUYn9C2>_GQR3p@`=2}b{=t>z{F&O4fpbZ0% zAi*NrG3ez@pd*7Y9|Bz%G?H1mGq9QKE1K_B8=K(GZMhLJkt>7!GJw~72=B@O-U4C_ zUQl9iSO#S>xF`dQ4Dg$8aJejln=*hG=Lj=p@U0BsO(nuoJPshlZy_Oom+lyBkpaBR z#n>eoz}ruZt(U=48LXDU9vSSG!Dbm;lR>%+mdRkB4A#luJkEnbq3{+HgVQp=|L=p? z5*e(K0lbYxi2pMIL9PtW$)H3Af5`yfs)Gx@^@U)o41SOSzV8Hx?<66BH;pC?@r5A- z_&x>#d3j%qJ{s zIKc@4&Pqa%4S@+lob7`EC$%8Jxhe>71_}b4X@US=kz;^!JP_bS4Fott0|CyXK!9^2 z5a84U1UMN00Y2hGfREu2;FB^0`0NV7V+`Orh)-S+#is!X@OB*nyeo$Q?{Oi(J4Oib zE)N2{yMX{NrV!vY69T*fL4YTC2=L?y0iMnvz;h4;cvgS_kHQh@DJdzb6(=N!u?N&9 zx;(MzfZ9U$Sll_FwkDa$m8qfP;Q`e{Y^}Z0%@K~a%@xa)Tag~D{384gsXo;jg-17R zkPOSPLDG)TlG37nvd0V?KBFS)d^+KcpW(EV(s}ErG{k=Ar&0f^ToX(r|F04LRU@<( zzy$KAyphItea1!Q!>YagwojR_XmeO~u;212gLSnIt8OI2wlcL=n*T}9w3EN+ag+8~ z-ENE0!>WH;dzibXwn!(Dc}69#eOCOF82*FWr1D-Z3Oi$^(4AGoszL<^ ztQ7Ym)GZE=KjfJfeU>UesHKTRM?h>Z{0Oug=D4Y@5D(( z@TW5V+{bLeXf?y1G58aMKU46h7XB#k6RcD~vlsq&;g2u=G=!g(qf_n1#E+d29|sE; z-Oe%x{H%7->CTAwU)0cwc*RJqEw*==Q(Gi|$f{_Q>Mi_jRBye!e58W-wXGTeF}#X^ zX#U|!YB0p`T9O)qF;KUiy1tS~I;rYO#TW9=`)Zb}Sb0)))TN2dC)L1;cy$2<<%YFY zFUX4*8IVcVv{P~IV6$*KrFvAv3r?z^(6vzg02YWor_?$X@PZ>&_{^$rM;9GPpVyz# zUx*v0R9`qUN>8c&74f12bu1rAb>OuJ+J4h_mJf>0RTR;uRiEm3m7FcFk`Ulk5`sLD zc3SP~h}$WyP+H8IrVhe}nfCF2#^TI7MVYHckOb{=P%bVBu7drq~}Tk{-+MY>e)0PG++ z|AXFg#veCbK0wht`Bii8bLyi`Hkm4{J^!RWh9mV)nq#<5|D;LVOz2SKS)K8(;iDP^iMT==vO#!ZD!Bm8I!n(2&#pu`Ch!=<7+#ahGNd0!2N^9)gsfv>blYtkRtdQ;HhOIF)FifSkz<(-$+g)>*ZFa~MZ1Auzv%N5!{$;jj zAi1tItimqt7&A2{K4x?S_@i~+C@syfc2T<6*5qzA2k3Jscb#D)fKkJoYskU4*|2kw zIGEsE!%wDvYfPdYrj@2G9}hJ)oGxqbH9fnw4;E&G9d-k~9X0O>iDQ#!=dPTd?I#Cl zsm|zvdkt2BeC^_iEq^dQ+XusU)3d`ctUn{W0fxh8WP8YR``H-dFb|g-pA<8O%1xh< z9W)FdHWf=L{E(IWPP3ZYfZiOj)gZqot#3hhPg;9Ha8FuS?KLaPL9^CZM$24%W_DW| zK!c8Cx2;57*3Qrcx@@~r%~c#Zl1(H0{*mm)*kqTZ*|bTaN3&~slJgX49dhJ0`<=$Ff6^4?31z*O&TQuQOJ` zzOLK@_b-$kAD3t?eCx4nI{tn>CJTFbOjh#N8uvV&?T3Z6KAs(bVeIkj+88cAo*jYV zFUMu2mgCv9>3(Jz?{3bn*Znef_C63hld@;gAXz4@Yi%^E4akW}7Hib3e9-}b`XZe*0|?~Y&vHQ`jAa$&gCDZ|A`OT&Ez>^ozA!yb^=`h@(02e;{1g& zFj}*=f^e8*??5n2TDL$cOja_Y!q*y9st+BhOLE$*dqP(82 zS&<+OMl40~`2s5xXG3dviEU5Z9nFjD=ltFWOYb!&r=jfUc?JRfTxYEzr%nYL)5qrI z&~Pc4lS9L+iYbSNRZ~+Ab#sgi4H&;H2i z+k|S!GTLdo=C2*lPMq9Q%J0)G<9@4^qTJu9wY{-<*TtNbm1X&j4Nal^KoRra+f(%J z`L~1IC(2#f$6N2_G^@4(3q1zvSW=7YBgkTb-g?2^oXym?-`HCsu~mQATj=m8u(yQB z!Z#SUL*X?=%msN%(YlhQj!fBWI07l|!r#N2PJBx%S?K(=uac!+U7U=Ax5H2iSsy?X zN?KhqHLH9UTE`tMo#+Vc($qp%?Zr(kbY?ox)Ivk&UQe66KY-VXhDMnwN(GU7k=-Ru$0tC%0t|2%ZsBA5Rn#d{!i6?2j1#Ks?Qj{we>ej=C zTCL12np^t1VRg%TSUSq;Iv55+b!~;NlclZfSwEwNu2Q{?7P@N9Gg=x|!?&8OE3*C!dOqb1in=X5<{u)b! z?^0}@t2Z=?EZbnsYE~C5^XxU2*VLQSj$7#Rv+cMn<>qnOk`Kq_{-|rV(4pPaYzg(n z3039K)=&ajwrw?QeiT~f4Q5NlM)Hi*-VnWL?XsZSbQ->%Z)t;@>0Ds3p6E{+Zot+x z7G*Vq+=O;OIaePW7c(_wGCuNAC)_eT1usA8mAo^kvXkU^9}NlNG67Eo@{R*;s6#O! zL?*-+S{y|i_`$k+6k3|fVH2q{w!vZJH!`TY*i~q8t%ftiin$ML16fV`p=G{OXt_sY z^ZP2fbiRF9CAV=UYS=f1O;Etf0d;*u^QyVQa*uDtYY!YD+df#_4c0CA+o*%8=&F$$ z4W;7jv*NF4)&$Vkk!&z1-bgDNq;AMcQHn;{;K}*$ocd8_7uVe47O){}jk$F0ZE4JH zDeGNj*bMbH5;rqK{Dt%Cdal&xW@9cLU~i1M)c4JM<{ISCdPQd-cqpU{;UDWcVgHM{%|5#n8b+4GGR^v%tsS6iBU1}N&_-Gn(ydmC5;hk$ zMd+G3yNNSRvTB&S^v?CFD%&4!Xa?j?Qf(N0GrWaFHk*73xd8WOOdw zFSLlwtt+!mFes3Yeu9^;_F;Z{l4^WFymYFja1A$^eEw?yPjq-FI*pHuiJv+?npZN03i`av^`)&hzS9}2!tFjCAA3N$MQXfM z`CGFJL99ixrWBj1)pjjX>A!Q+)R%+HyASxl*u#K8^8)PIT^WLIa{kCaV+z!q9cbBu( zgy|}fJb*J@mDs32bI!56sAkv!K}C6ya<6nV^nm6!5)F&;Ld5!_JO_z;8u|eaBkamg zMR4E@fb&LrY7iy_3Af@ry4i1CoJY5eBZ~9rPIFdq9^F=F6z6%hq`mjVPz>3ea0ua{ zrmYf6X)g^Qw6rOorL8T=tJVfxjPRh=6UV#*7QkzJQ&Ml8u|FnN`6MYid2-U|7#cwR zO7dzC!*_|w^$h3}vI6&M)<96VkgSP+1*@*Hn6jm$o(G&;07r=EdQel#at210e^#&{UcY)vTGr(K#0bmr)m@rTIN6YKHE@34nGe=Z>YAq(2X=yuPz&7=x6wv%1{Dlf%`f0hF_npz{|F%_x_pn zs?;2_3BMLSEoPzQy#U>>rr@(|+GWCi$`~F$Y{?tM@ow1vCHxal1 ziZ8(yURkJFk?>MlvYs$yDy@IuQ9xQL@DNB=ieiGyaJ2Q=Y^-Y@_~BV^x>4BOI-gEA zS6k-?%ai*x!yCMOJ~aAS@4Ma^9dQtQh*2p<4|y6fw2`@z+vEpOuNXV)j3dEI^r_a< zy&ttZMrTac+Iq*C&FJh=7-7qhw*Tx7CP5nZemnaFTHHB=cfF2&8ffF81BQ?*iA_q zJ2gR`$>G$Ii5s2j+HTyq$#LUirY24P{A!ZEDW9HGPFutLP5JZ)Re7@v!#C&CZBx?b zd^+i@+ngUPPr_Su#*5f{VWQ+!Z+Z;VZONxwvvynZJ6NZBY>dtER9rbBC4TAzn$OdQ z!OkuDbc|itl8-0HwOjMuO!&_P%5HdVAiwUvbWF4E!P|GqUcifcY1y9Dtg7cVYaf&# zQys5rR$rLym(2T5&HC=PX7z-3_c9e0f=AOVw&quJw#ld`4jjm*C&SAJ@@by(*@668 zvDDEm4V_@4D#843L{ehh_#~PJhQ97<7=&E12ayP#IL~HeAl61vrbh1Cf7?uUCH+p7j0cCoBKN#%r7rmxE0JW zSE*KTt-N-?cZT-*i0v6!)+wlNhNVC}#L75}hokiru-tHYQTp2T{i?}K*9@=0#an!Q zkndgD>hjiD3l9;$^ZmNW!BIzNT!Dk5o@iT~U(dyQW?QW@K11p+R=F1V!+%52;Z&$I zHpW3xGdeaYaqNU~@W2$En352k7&l?u_|Zv|wG&@68)JLz+U*B(qw+id$mg2n_DZu( zz16J#?=|a1MO&F8MX`tT4BWz+Egl7Z>5;Q#NC7<Bm_i1$64z9#Y^hFDKm% z6Rmr2FMNJ4zvRCR-`$gyq7(w0D%3+ms~xXbU~r`jQ9JPuCOa2?kkS&tf2D99-`DL!d(^b~kU5tkSXE7`-@YUHE>A9)_P z(-~{)tnJN#Fa4z^zzz7sUs|`}+kR=4z(@VkItgF%ORFt>#!ps?5?B{|NBEx{;%NqVXJ|zyu3|#uCwPI9G0o_2Z$SI(wl0!KKezJof z8$Ln@&pk1O_&aNf?v?_&fofqXpmW}EO99;(&#@HHZNP48{E{^+v=n&DEk39--h(Yp ztu!TNG~PW8j@GXD4|T>YOsQ;5p>v)#f}iS)1(@hyP1G*>VnnX2*_2x#XGC*l%P!~2 zfmoVbP!q2ZmGb034bPL4i@ow>zDW?uGwvxH<0U%dj!l{juc@N{SHC!vS3r+dck>Er z$vfpz8>5YOi?9jA5#&em|9~ojw4Q<-g0z}|4uZ6nfdGQE90zFDN{~E|Z1rHx+7B8B zk}U^u18KR8(k#<2pl2ZAOb{}VR!a~pkk%WvUXRt-eb6e9saHXyKw6QYPGGe_mOxqw zphqCBV<1EztyB;okX9@x4}gX53P*$HfP|YtY(QF3pfVt>;UF&{tuH}WKw4`+P(WHf zAS6Imit-9N4hHR+6T^MYWAh7c(2>~OsgU|Q+NscA4#95>%kUWgYIsfSF}~7p8is4;VhFRX`Hx%p5x+*p)T?7!Bm_=TF)7xV{Ys{azr zdJcjE#8Q+{5HNt&hV>Xx)7;0o@FG27c|{clYd084i^RN)5!J+*1tTiS8;s5E%*h8+;Vr3oMJO} zv@u%XXccYSL?jpKNa@tc=OI}&`S1{V!LYYD0?9d_~G3wwx zd%2q?>?vxBrElL;L}$Spdx~(HcWp)yJ$$yvkR`@t6j8^Dj3T<`oy;hrlU;5`QJ6fr zjkYtU*;&WhHz1ZEWfd-gN`kbCKpsI_3qTh^TK7Q^L0Wr234yE>W#>`qnCj;h!SU`ayIg?K8I3iY!+OneZP=l@B0| zKvs$}@ws_fSn)b~@(UVRO#7qfz+(A0VCYD%PHGANPB3TfcOcGzp0*524d<-Q+zP4) zQa+(l6|0q^9CWA%hh3`Jes8R&*k(J{&RjCE_(~6K*vXy6bQQ|nSsW-2vkQiYu!B8> z?u%mUQ%UHqV!Cqm+*KSt(#cS!;_L%Go%x79w~Kvb%d3nnp|Kq`w#0fkz>OwNk-MRnoAg>dw!|lddI_e+ zqp%7`YGl&1xXJM`$=32a=-|-~8z{=w7Q1>`X*Zp*H&Q+2n2?l$Tzni`;z3g?#`!wq zDw!Ua5*s~cf_7<7*BLh=mk;&8r$)o&ck+ZUDSy9lC3HBO#+A^Es*~eN=)FnVIN7OH z##^^*d)~nG%RAe zP7E;jQ%bfitVF}0v0*&aYx+{56P15iiStOKTAP1GBUu;9rrYrNX}-OKS-H|FpF1;2(g=N>M7qzq7-su3eQ$ zUgnHHOZTtGP8yO><}JteabtVkC;!m4DWQxW6iz3U(N+{El+jIzS7KQcdAhA@W9$b_ zgsXF(=Tm67f0I~7hx8ALWi-qEG!YhKfl4YTmC-DC$E330*s<_0%~B&|6#SE|v~>41 zE9jwSbyYPh7o{qiz; z3EX^nSv~pxK1*@74u-j6Z*M0>Kc*-L?agzRm!;4-=hZRI^Qj?UdKOg%&u?HrOi^k( zn_C?(>qTd|)T}b9V_#NTa0m^7EBqQ^9td?vMUPXU&_NbFKG(Fvy`UTZg`e3+En7~r zUI*Nt(>3q9`*Rv9Mefi2B4`}6(-{+CsL~;M6l6Q-gAK(4^g5*VF9>yzm7+ujo7;Lk z*SX0}^fjc&C-NUbnuEUYn4+ABG!JX=yn47CtG))f8H+2aDUUi~cnSLw{(WcA^BQ&K z`NZ&=raGwZWDw+#${mf2Rx3q0*2$bX^7#%rea~C-+;=c_zk;8f>_Ubn*J+(pP zh(SsC?|;UL>@}q4@JRNCv&a7~9^21lVJyH2@-1vsNe>eOF2|1xVbVdts0lXqYN<$e zbdOSug)JOmVRL&|1X1-|Vqtn}Ep~F}Ft#AV$Yz%bV~-}N* z3uP*TLcO^nyR&cb!Y~6nyPFa$TN9yY-}Sb!p*_`$SLa)#>8av=gL@^8VaxUkXOG2| z1WDUx}bXa}7z{ZwM2muS; zC7IZ$%O%;M9#LS}s0kr#WJDNhR`slLNj57!lqmsrZYfie9p2l>w(DYIclNB!?&@Y^ z+~9IpOE;DeM5Q|{NGoP`=tvz%i!Bhd&cupHpla-xM9bnf?fj5JYmA;?5~Mo85t#2p z7nK8o(G&Enpi2cN6dbu|3}t(S+87UD8m#lM4|OgAy&QpX!l6Pbu;4|S9ymIw zwIJp#KUia9A_ZDM;n~AM74B!2|@uCWQK2m+4ZGjZSa}|393IiwGoy z11wk*;Xnnh<3R4l`gw5Jmjuci`NUm8>o38m86!9nRHy+vdM=d!X7mIDd!j@bQ`Ea4 zcgKN@!u8#U0viJ4+!GaSKox{~DAY@EG5fx^j`$>a)pIGb9@lHIJ31S2yfUbnZ|#ii zC65Iu&_X<$J(8ed>$>gi>k?{TN5TaIyR(!lJG@^-VRDw}KmVB{c{cFWu4toQ|Ko&; z6`mo~8A8d=ULw?8LTzYugHW#tHE6*dLKPBf%I5+?y(iRuc_E?J66$FKj+#d(rX5Eu zNG9Z{F&vposN{tY$%TsuRdFvzZ6ws3?thTqb`#3D{{^8g6DqdtYeL;4)X@g3J6u=FOHfcO2*Rfee;R@xQqN);nAOjxtcpeoG}3 z>-<5e3_`ss$5AeZOZ#`;Ys)Xir?LOl}wCmA*WV2d9iPm&)q%g6|oNvQQTISLR; zQ#p|Q_L5M2Y6TN&6QRIij%Q2L2_LLDGf<9;SWEhm&`3`Z?QRPr2&?S+~Ac!c~| zeQFq?ej`-b?Ij6yn^1WdIO-^&>=#Ru-<}XEe_(AwT_99pgF1v-MX1DX^$4|%P*GDj zY7eH8CCeUiZ*6)IN@S(}Mi= zhEVYbTN3IJp@vn9A=E2EC3il>k%tM{Be)g$F`H0bzqTXPO+sZybRg70LN%?;Q4a`} z*oC9g2sLs^CsK1gp$>iTL8ym>8W7%#P|pc!)$lPD0He*`NG2n^2Qi4I8Dk0#VgLZyUr)K)^33mij!`;|~F){Z4qKA{%s#}Vo&p<0&XsJVnv z+Q%o8A6FA{>4^!1T1=>mWhWA94WR}P=ctc_nv%>>J2-0Je{yheohMXC=Np9jgHQ>z z$K~SRekW9XLhc?+Z6Va_?V7#Gm|RB4X@P_HVrmJYZdYD*22(2t72JlS?i0!|#c~$^ zwv%r z?jdSqYGAL#q(n589Ne=X+jdx0CX1avtQ>Qkjase;=FS2K``54#3GV#or-!l3$bRgC zH7<7K@b;{Eaewyc$kOcRDM~hZhK3DYTY`O^Zf2s{p-U{lajL4GT{Y6gRv6V!mewDS z7e50CMz#QHb<>PYI(uYf8Mgh(GHl4&Fnm2*aa3PnTL0JV>y?!dwwu+C=_}d&P>&>gqs^>@H znHie*O{~ULK&+rj2SX%C1q)`^WfLaWL1N!yzh&#$q=_na)G~z(4_BD)C@dUE`n|N0 z)g+fDa$ld?#n%j)A4H-Wp&-*?l405Bu!DCsAS<7tXH3x3G)+c75s+{(NoJ z>J@h9v>6O!W7p!gr68}1!k>LKy*3iF9=a4)N#!Alt(m?+b(!tJZk)-Pef7ku$ZRcG z$t*LQyVQ&?2}tXYM?1p(!VM+al-W{t+opQN(idknAPfzfRUTEt!yv9!iD=|fvPZ^> zCf8>%=W%m7|HS1Z!b0QJ27=Tg?IGD)u^ zCM=e+`_nQAi(cjSS!a^ru@^U7pD+}%Fo=CTy%xJ~K{UGZ1_~=;SUk6tu)P;X%J6WE ztJfgazb}-s!O7vM>O%Hex|40qS`e?;Cyt;-TeFuI>(~V>{{1&ZFJf*Jz?3C&_IA30 zIm(t&@Zi-6}P(YPt(%6Zpyq?riuPet^UtgE> znL!)Gpmyc>KsIrmg?UIW!pi)GvN6AwM!lJm zjsH~zYH#UHdemE_Z$f9-!J8BkJlVi%c(bWIQbWCe)y8_o(~o~Q6S9iKQ||8P&%WMN zf!E$OVj*vMR@~b4Umk$t>t~-~J!?y%VZwxB7EfX@2db4u;)4HGtrWADE!-BxJR`cm zBUZhvo@fMXNd_Kv@Q8t^GcvLfSz4wCJ9I>Iw%Jk{yJ|-e>LrvU_F323G7>!f!Hq=i zv?A}pBNe%X&B|(nbcv@!SjeBoJkMG+8?j4|++rn((1=}f@V&;U0IU-{L&DYFtbG?6 zBAbtru)DXB>Ie%@nDCFGAo9nZ1S3882?+Zm7Xj^txW}e~^8V9A%=yQ>M zDzG^Cih?5$UAvn7wiVZOvafO~VWp$S@DvC)HW}1Wr6sW$yMtwT9)wR#$EQZHQMth~ zJQu>JX5v$`kjn9N2%TW__KyTf8HG}|$-Z|$*<_K7J-2rRdwS1Au(bmsPV5^23QnLx z%-#{;T+?)NhP?<=*nRsavN3zc2UL!aibxvV2kGP&w)TOqK%QABW1k-G&2BxQ0zo@C z0#vWO*@T$IvmnA5+iGtww#H#}-)071G_e;B$xszMHNsUUqT3ET6TzkSSt>UEXfhl3 z+hjKXsEnE5JFjH(52vvCzoFlbq+~xh#xQJt9wLrS21#p>M178YVdGCo*{6A9*!Vmt z5*kmmu+Rx7pRswT#;{qZrR=FwPuUJ9$Fc<{#(?kZ3Z+QRFWCL3r!W`UnrFtc^DicY zAC0g0v3t&rVwYVQ3(__qk$yct0w}>{DVud}6sx;97C3%IXFV52fx{aM{n*myhl6c( zuE^LW7l*SM=O=>r4TzuWXGefREV?M~%y72UxrxF`@#R>_Wfyz+aye!#n|HY^n&jaB zi|~ILN+XFPyf+mLY}G3|Kb)rYf6KPNQj^KbUUX$R^S|FZ1v^hw(PhV68^j=pgV*Ou zC?Hgw1^VoT_g65$`IoIRJ1Rei0tEBH#$1zw*h%?1Ah}T^9%P&|s=(%$B|G-3b8) zHvS{Uy>fuG;^oYio%yL52bTTy&nrR>HvgX$#o#d;3Csa4YQ*#|1`yJm4JI*6Cx);E z?+BQ?eDQ>cfqZeEpRd?n$~@v)2F(H)idB+-sRr(rGpEI*X)s^IQ2L)w(+~zT>v--4 z8kk+hRZO9g8OB)-^s+GBiwif)%CzP+`ohNi#WVWJ#cVGwa&HfFfMXO!mtZz}8wq2! zh$*2#t?G;w){A7?NP$`J(84X1m<2q?EvhlJF#!?mV4l-MH5ooGps5bCnR5epy&-d0 z#5v>oX3Pz)NthbL+~J}dj&9F9;wud7!fc`zFm?eWXBGd*K*k_O0uDv%H1K+Nrlp98 z3;HE88t_)mm|$XWCf$!#i{3^cYNQ4)z^mbmjxPp}!}`UY792B$xxtGSKa=SaNZVpw za=r@=OlOXnIYCD5@Cq_Ci@8CqEdu*jF0+O=$ku&K6mPLthq2a(5Y3M>F?@0BDPJ-0 zystR$GV_A3(Dw#2i}wWPHuFltA^a#{=E}I@%IC}z{%rbtrW}9S&Cg60e|E`t<`U=X zyT=ON@!X8}6CC9Izll`vDS%dw4n0!}{uL~+_;darZWm+2_EojSg{ybcu;N_7; z3YwCl8YV^yzVlLys3KU)`$$-A!2`aozJcH*r3L4~mCXcQd07Oc7`W6c;aeE36HcKNHv&M@xdhn=Boc_f%cVOHRkY#E(aT7t)Ahw4B<=`z9a!5@O195*2Im0)@?0B!K-Ye5#x zOc{xT@>IQ03NBU|ssS-ip8_Qq(x!}U}04-wha1p3E0wQz+>xQsIfXcR0= zq2(C0r+{s>!hqQ%dhluV$zB{tzmkl++5==4AUM!@PW z;aOf3L#Xfy@5=v_7hX_uo_eQ&unS+IVH4pb5y<-HRKpuBgcU?w1xst8nGcc1ZG~O= zv%5PAxAMU-EI~Ly%+>voDD23C_3bD8!Na?&ZRSQ5}dM9_==C2luThC zT9{d@g}pdcfp6=C3us{?Hwd@!+`Rggo|{jbgj${(^EM%%<)+Pcp|=Or?xN?$nl1du z3+2ic&Zp(3H5BgWVQl-TxdAT^2m@ic{laQ|KukIy+`<>D9ujWg)%Na)a5*ibWsV8M zDM#fb_~kd@FT9lLr-YQlSQ5N=T9``Nb0)#BXN7}!9>!e|rqk+S$3(sUoPOkJH@E|eH1^eC*PNilh^|mmBS4j1H!d0{i8Gm1Rl-ei{@`WRL9(p~bH_FoA zg~zFR`2JY9k>?@znQ$qs9^U>T%%-+Q{a3=#JP+sI(C7i8F{C` zKZW%uCxop*RpBr*toK7W)<))iVAgk`24v0=nBaG-Xg}YBopFjNN3+&oqh*)^>(Kwph z8psh!!n`EW9DeT9Wu)jTKf$XtO_at9P%vAxm#?sSo@hGHU+u-BcYa*+byxc2wq%Gx zd0ET9w1 zD1Y{dM4ZI4TQ^Yb<|~W}5__}F+A8sNzHX>Syoj%RPA{H9ISXwIubRcvc;oeTi)#dO zOy@?5J6gD+y}9@sua`10;(auCCy+E4E5Hw~n<)1BxoNUbu#Z!Gf=!tzmh*yTri!hUp&kS5*N4eL z-05MH;aOH3F6OM`zf@eNIEWf}CPTc0H_Y(0KK@&*7uVtqvvQNTC(plXhd7;g!rWYO z0bgO`e(`%sbF~5~xkHs8|JrDOkW{~h5;iz09$>(t>A)Yi#cFO`cz;J+f^x{?8@RZ9 zxE$`eFYd{+T>7DSHXke}9*KAGXJ`B&KF{}{y}pPW1#p3NK=dplgMbZrh#8)-kS1eerD<@NL%tC5M2Lz_)^d!)-RP-5d>w<*Wvxa#a4btIPurF z_7nQk0hU}`rcowb)6H)Or9WbT7T|4kBR}}Pr=Lu~oB@Ru8U;g3Z@(me<_w&h| zMudPLZ%1fA{QZV%(DHu6F7Wpmew`@2hTN1QsHNcPUyvp_m+Ua#FPUfg=>oqv-aFd^ zzlM}^Owvw$khG+c6qLN7SHrd$e!owobSbO}f~5e*D@au6p0g6h4r?r9fWjfMg4kzK z8n7yLLptq}tGl+duWs|MzPgGy$tk|>(_X&18+!Zd z#`N{oRrQx-@^z0U`RYy{=Bpb%g0HKFuSQC?@O3v$@YU@*$yZmE;={c0xHNuWrM|zPfLKukOyJl3hIRh)iGI=rz8&_tyIAu39h2Z=>E-BYW$v@2ftAcPQj?wI5hA2aJuNS5(26MIhL zf7Z(LDDpTSrer+_eH&EHdwW{)Ic*J79kY$m1d$H zGhp%n=@JT0Edts&P}-j+Zi)~xhDk?ZR&*n!H23w3fXa@NdT1saMF_u-l`h4sOq?KH zTr91uo+#~BJOibsa9R;gmCh>`EB0y9TVf>Bm)X+fVgZSNkq$wD1V+x6(kx*YX*oMh zDi9)|Tvj@)SRCc1OXuK_ud`VC8UscxlWr;&V4vmENGu}Akd7)25SX||8VHOt0!oAG zE2UQWHdE@48U1Iq^b2P6<9g{9N_>dAljWGlEnAAIy)9d%pD;74v!rV%nZbRV4PM?U z9bY_Wzmp?fhU0D|EN0v--6LIsfy(WdPAHa4)emr%s*oq8Sx_r-_RdG73^Nu(eO0P@9C^|ZbFstLCaMeBON$ifjA4m(4wqWBzX#zgK z>9N#_JOZA5CXGd12DH4E-o*7jzL6&2^X)!J&&tu!$;gK3&@o*v8-VKNT4fqFB7-Ak zy=3S(wz5ou;U-s?Q4I}4`}jwJJn>BK*;KH9W4NR^p+avMH-@GYmm%_aN0+z#? zv9k4OIEIfp%f2Yl@%{iAQOo*4GNP85NwP>kbRLe9od`h3NmFE9r095Oj!bBzXuef? zKxNo)ova$30}w+l-Y!#97!nX9)h<~$W~cf-j&0Eaj_oIhWFc7nfyZRGuyr5*Ci@%H z1!rV?uoahHkOg5gZMrENj*r$tSr?>QIQE(B2F>mXq}7HXDpn?i$Wr5jyt2hf{43Kq zz86jb%?kfxnBjbte+}%8R=q#5&tro>vCm1fKN0km-Jb}0!sUMu*P9mRFG6g<*_Hf% z!3xk;^&g7uJhQ&PKZ+r^FxLM$R@}r+{@1X3x9;M92_N0v{14(|VVwU?d}I^+w^2v{ zkp#;zzC6i)Z#hao0ZCJ(5?FDq{}7+E?AzuaFDn+@Z0J7~D@cCOpHZM=&{_ZH*zvpG z^*@U}AnbQeA>SVPU&ji#`o#YbJ}!LbAC5if;7k8OG`ASAyMov9nTXYVnjBPR_KA;p$dV&P+1e9L`%&`4{fIQSIb3IF`DFLl%x=1ga z6r!8;DvG_l5FupXsC&0KfD9g|mjtBXZl>v)fXmpKEb9XNu{}y`4sc)vHQp6)pT^>7 zF#Fja=OAZ~NBaX3u|1le2{=l8{Ss%7rB?!`VIQ~M322OueF_8CWBbXU1nk1cyyu*q z7QN)`G~jhW1AP6?4*^%Heg5z|sT(5WtT%e?az-22iPA2W0fxi2mU1g82hD+9@wj9v z5!eQcG&mygHO*-9FHP=&snLPC*iiK<1m4F6a@GvI`hQ>`6fi>tFtB0Z1`M9vD3FBB z`u2fF95#m&1H-Wl&j$t)^F)sbB<8t2Ca@wlgK|IzYj|!2tv(g|01u0_GSYiPM?Vdfn6~NM;`@l!Fn3}Jn$X$ zpc3;wFbLlK82HWC?felSA5Sr4k_inUaQD>mT+A42kUz%V#8|t0>i>aLm-fhsQ~w?! zCr*7NLjHf})LSdciBq?!EGJIgpppD6=3UiNj_1d4VjDSe>Jy#i#Hk0y%SoSO?$fmoK4|n7aoEE!*V7L&4FOipHSwCR0_Qx+bSd;qh(B#nEaJ==Mv# z5^Q`LHx%5xEe`@cCkxb|_CGceu-%XcfDNw)>cO(>ax2Ar>~OxkHVnHVkEL;Id@)+- zmDAjfMA!D=HoHgOm7}emNhMS&@a}-X=d9+ZDz6irf6zT)kq9lsj9?p+I}B zNd=8dks{!V>pY5D{AC{_6pwk_=j9d6_+rDVia5>xt~G!JAl9>k@+}qfz@_KGBS6I% zMKK&z3LFda1E625LPitLt2-;YgO?+NlyGNj#bKHVL1@!o3EZkj#!1Bz5mIF3a|)VG)(EIC9C%)lPt#+NiyvK7 z#9>R;yQ0XT^|0|*6*SLYLBzmW-1gjC3YzD{3I8W#@R3)4h?42R~EP#tiIuuAte&OfU*xDB9D+@Pdj#tw4-0 zh+hEw{hi`73P^D03zau`(QMH4H|m@ye7Ok0^Gz`tYh}d`D!=dosdk?U64G)4k!I2` z69wWRn#lArVS{!_P&ryIuzhUsoh%5=Obfxxz#y7o2(tor$b)_@9v6QqgZg4F5;Q>+ zvob)qNDdBqNfWI_+6>SKZO2^fGX~K-;9mqJH3wZQ9xD^9L7Olup^l(!#q#&z&L9Pz zW=!z}Q9UZj2eJ*W2?;{?7Yo7gl0h`xNs)54h6mj%p0|WW1hvJ=nHW_}R&vV*ZKk-r z0g*5cN)bAM1JODyNcv424#!jp>O`~hfSPZ%IO9Pe?9@2uGNqpp0I;P+S0g;zG$@^B z3XItR_SQjxVEYzbG^jpKEd~9$1Sw!to1i(gY;l04!*uBR+IB%ZXl@NJND7LB7rF-t z0?{1s@}Qvk6sCd*N5@G^gIXk_d!W0r z7M>Y@?V~)0r8?bDIT+8dD-Tg_z~}QvD&OGa#R0xu^1FY+?2tb#meinJOCdI*peP<0tr@w1bkks3<3!j ziyw%rW{|+xrOL}%x-PpJT)9I@9nb(>><=2X3qo%>x4J@^0f5=8EC*tHFxBCzUCL5A z3Z^crRk6S^S1pDyrR*UcZwnwZx4sSe>FyB?rAOOdTZBnjHE!mIwSPW6JueGy0(@XDmp zgKry^N;uZ2Ld$Q3aF`LQ7eo>$F>7^WIaUK(bF8MfQ_($)gh!TxJyn6ADJ#}MeHYbaWKk}Vx5cZ{Y5R4E zFppqHll!R7VIOHeQ1uo2dz0ZRs^xMtSTu*x<5h9U5jmYM9p}~Q)fCkY8h0R=p;J|< zxJ${NtNKLq#0b7y2&*ntr7<9ZT|JE}G!;Ak~o4U-?J&dRyEU0$lDqdV#m z=opFXO-FkFT2pH-!Kgld1OW~#WeSN+xNg|Yfx%buMFrQ^#sz(UXal;$+ZYer;{h~gM>skI*|Avnb|4}Dmei{oj z$RfE=Ez(TF^%qDq_x;gvh*~oW(@(UTXeBzDLN$cnyCpP!VnjbIt+|4)+Z~}H?T?Pq zpryE6SgV|-w+tOORMSkv*L!Md0OsdF3-0=fF&a@IqNjAxyu$n@#c|h{OVFSVEV=Md z56wG_lhsRuR*Z9@yq`vi&)WuQ-sAJCL7MwobbK>~Wf@3jEtEs`YH0Zcsaqw@LjSkC# zMYwv`b-~XtdkwY)|5Afl1TH@h{(~~sK;~43KX|YvUjoMGR1H9%v#HS@w0In;gR@@- zzn3zL;Dk@Xn+51t;!AK0#jF8t{1#k>VK#zRxq};ngjuQ(Q1?eL?J5{%SG7o~eMKQ| zol@GCi)!lqz|Ft91jEIQ)dE1u|sX&BXw; z!6*LO&opxdA`W872FJ>^69pVM5~Y^rnUx}}XqA@gwj@S?h?`$|Mmp$<$;ec_whe{T z0>sD&ZbfUpRr_7Ysb!T@JC)8z6VTf>w0~3DX964`KL|ndXRWlLaaAo!U?R09 zShkinh8J={9c>bwkZ}+-FrGrk*x?9wD0{1~HPRx$*oNA0+KU0YI0zaVYpLGeNdyRL zp_PDVL$pRXuch`oW%n8f2DjF#VCmM{vecpwgl}!M3utbhAyL|Zg5KIdXzQx&Cm@~z zSHx*2pgDc()@l&mT|0!%KR8$r(MzjKGxcd!Pp?{j?$w-%uL? z{_LZDO)V3Gf(Ys|WmvXZJXouSPlsqNG-6M)2Nw0%w+fMG$G znOZp1gQ(O0YCZJ=Xvx#_Ak8t@Q*ZYA6jq2 z`U->vi?y!eNq1#G%b+7b4J+Bk0h3~%n&q8)$4 zZI2w(qIaW`;(^23{d{rO5iNSLF*#f9m^OnizBsNu!WR#o&~D|6<4*bNmO10Ad;hF< z4_{%!dF>H52R7!N7QH%+;I{anT}j&=!@-}mb$MBi{H=BBImizxos?p&7SATy0HkG_ z&0OT#G_x)clwPh2hgbEw+Wf4|W7e^>9jX^l2U4tz6ee1989b`ipW-m8UZE_!732rZIK@Z(H-h~JB*3rC56$7G$ z1f80)*N6e=;z(G#zs{Q-9vP@xL>EgumUyr(ky_XGEjQI5exyzeUbYU3fRV#>tEl}0 zV?l&VBt{3?jxh@r-m{Pcu-|rFDz#%G7(bY@SNEtmjQ9bBpa#!B>YBmk2Xwb-1}&tZPH@KwT@yYy-Me796#R~A@iY}EdG!r43J=I`f>+8NixOS5^5EAiJjGs9Zb4^QSSk5NboEb{1YRC3-fh@DdGYmvs1mT8C^F3IJWDWz}8Qx-M=$f`A#PX zbNA}1z#Z@DMk>Sz4`ZFGi-i?F>E_S`BO0z+?yjldA!2spwNobu664kp3%;;>s@9FN9x*=)lf%_D1--ufz9dq7g+m?f&K_B1M;Q%4-^`J z$S>{KC0ni3qldb8gYY%_-LyO`TC1memDA*V`ay8jCa&MrZlj6;i~$ga5kwiCGB|C! z{vgc|KwxTbeIN$?-dT*GmPR!lPT8$jWB(w#gg5QcU&no4@&P^C;j$sk354R5ixWBhE!PJxb_i_pgBA9WYWo7hQZX)!N8~R|M(9dt{ zdsBEfM4099ydtMSkG47Oh9e*9(KhJau>LFkT+|W6D<9DJ(dc*`3L+VU6efSw@5gL9 zw`#S!V-061xWp#l&;UY{!t+9d6*K)pVnDlycf&n0Lj}z2>mY*%k9HcZp#hC+U9MzE zLK(BcAAC8kFApo34O)tT1wI(~r^SG_0rP&DVmG{#Ant~hFi_peK(Gs7LOH{DAL85c zhAawoLWFb?>uGfj!!@kOQFRTADD^cFB(y+JALKPQr2BlaUvonS4nSF~p*{^P374cB zH&vk9`yT$l+F08iH0fZ_fNBW_vU$4|$m(OL3<5hC!o12wzc-{%1sB}jwj{82XTt`} z`qOR(+Ua38klDk4K5*E}VDxDuu&?0(jVGb$5C;bkoCLD{4Xv@=o(wUp#&(-E!hrTP z?uIQ#8IIzkYK#F=PHIWcVTU7<4So!B8E5T%$M&Ehi&Is`{{IWUf({zgymOYzGf;hR1+xg>o-lm2b58!}6GI8koG|i*VK86Z z{>D(9FaGnvForKq`(ilD7Zbi20AG{}jLZ09wx4k<`iKY)o*HUnbN=iyopBgnw3>}x z-2Qgs6#nctx3M{YS?5S&BmV5JXy0WOD*G;*Qr&l%wvLhN+pWY(vD*#)FsX@gxfl$v z8??|7V|+?&atsC#m;~-^WkercCK|Za&iEaD+yE=%X$NCj-fktk7$@@;_QxCX#~^Wq z!XC!z=>71x7}3{vS&jb2Xuj^`!A31#VdHS)F`8#giP+mF8qFYT2I90#iV-~xLS*kh z)kyV*DIX$4i1>@8nE#`*j3IpS%N*lwUIT|xjl+3a>!uk;Qg=pQS)&O=t};ph;$H(( z7aKL45TFS#YCuAU(F6;Z8g*P-K)TXMwO)$5PuvtlO@;6#NL=HSrqnv)MD&V&EbiVd z#tszYCPccc#xVD|r!7X-Y!(6DXB&&NuNtl0?a7yddzD>g_$bHNmm*zZ3n!Z4lD)=6 z#2Ea(&uEk|c^rfBM~z!4x>fIRt_KBs^8MlPW5#_#CJ#oOG}aZM?k|-5=Rc|0^mn)ravI_clzU`cLtzbcc?w9F?~=iJkB!r5w!tBU{&4#% z<8tg6C}GyZ_)kXkZjwB3^G_qqElUFU`irp>%?(6+F}Pqf*}?0MCM9V5%~%mO`er;D zfQ;uaGoh!)^I$c(sTn@bRGGHYN{ri}x%W-@%dnXOVUXFBiVe5IZrVj>xc&eG0R+TP z=`>Cg)oW#ZO#Osa*JHYejc6}nqIqcT{{^`&%+wKw`nOW1u{5215oY{diy2lfXJP_5 zp9_X9Ynm2Nb{o7JW70|}K&56T1$fcXq=wp|K?VUlSI_iZj97+EOxZGY9MHyuUZao) z8?`g(u}j4#n8qQ$hj;pzUg7hn`kA`p`r$)NxBbvjG|F@XpT9fWv+> z1z@T!WeRYQZ-rr*rW_i0Zb9I(cOKB5`42EE#E*gDfB5iZlYOdzWms5r2_UG(<2JaAT0FU+ip{PicSt9NuJ0-rCTG>dm7K0q-a|d=4AQ>6HO|G zz%qeyb(kL%T{3N>aUmZ9_*-mNfx8dPN{}}{G6LSbV%kI@ANUvG)T)KlBQPK)BWduB zdnPg3_l6bqvXH9VBqn2jH_0jbGKel7!P}|*AEv{!9`p6N$w<*W)&qJR^Ofl)+KGTw z@aV1SI4uwJ-7fUUpJmxMGX(y+a*aB0) z;;&)o-3g-55wJpOb1=si>>Oc6-+9Cw!jLF)O`63UBJSHiOaUP8qDu^FLJxYk4{qi} z6<;$is`;A9tzj-fv+0I3bLovK2z}0^BriyVCcYN>H}kbnp@q2?bqgu&&1x9i(Tu(l zPPEdZiy1#JfEDEGW`=z6d7Q7c-3h+46ML9xKK2TcXnxe1&)oe0z2>5KDI+LdA#@gu z9A&;Q;zoAoc=KD@{sj=&*zV3i_%X$dpD@B2=sL~Zfa`SNu36?3nrS{UW31?w9ArH4 zn4o*Ud90AI3$*jh8W5FhGQkH6&FCxCq{X(2%_5o^g|8VHxx{>%x218p`66$?zgCzB zQ%)?Bz+0Vl3`|*X?nt9uG&LazXnX2rGx~%i5!18Xe2`b{`(5UH{Mr0m^C+5-_cmb$ z1(DWfuTlt`V(m&2?w76rwSkM0*%0I~6wTA*i?h2jp0_xd3u3j#kf ztz!71tmUZ?#1x{P^}koJ-1*;S^Ma0s%PLtuPy~z@pc5$5#v%o;+q%%}#%o!Wa`5-r zHd>h4+#=)|%#5*6WJv$QS3qqmODBpx&4&UJmtn;Lz+&3LywR3nV7{M~VgtCBl_7Y6 z@H*(aHtZ_M>t&OHEnOAqAgYr^0xx#7Y!`4=o!7-eG4=7bF&c(;vmB=s7b0IR#oI2m zhh<-JoXg$Ia)y!(95SQfncfyOEhUb=t)GQr%3h?BrUNWA*-H^X*TI(aJTFy;S}3x~ zBB&d~EYTF5o)@4Kc%?MExRvJbV=Q|_oQ6(LERNF<&~P{)+47|rCgV|>Pq94Wbya7& zMEYA8^%to@IaWxq6#sIl*&vlC@CmJ^hzkgu~v8 zEUk*wqaR#n2?mY`r-sW(R4Xkg^+8%w!%7(zG*iI}gv@G72*m`vh*w8XOW=Q}KgpZ< zrc`jw&2pz$-GcJAMGh10TE>aF zVfamfrE@W+Ea*dg2oS`km5_t=&nzm?yp2T(5{8#bg%=-Ls`zmN7++YX6pQP$+{Zy6 z^NGg@r@XVQ6LPFq`(&BRjY9DD7Yj{7Q)GYAK-3a*AcTKg&haKl|7Jm%4Kcxp9~KWq zW>eGv@?|tt-)LU~KTE7!u&AKf-|F??Cjr*M#qi*Y5T#FNDKaN7hZS-D6$xiptSEaT zA`2W=ls%E+C65(lPo#J-%sQ|bT?c8#3{eL4h9Y_T7qcV};}fW5b*w0XA`F@vT2TT; zigR09Q36GZ)7x9U-BL_PE6P>KSzTuY? zh!rJJq?kF}+NfCWykoKzIm3j~Mqra#X2Y0qRt4{JgC|(M{Y=G4K0d!CThofwAo4yx zl2>tA(A^nUlm!u4f@WK378bph=mfUUwfg^*VBMVWgAQ0|U095mA=!`}c3);i+aa%T zY1)qE)?%e;i!Y%p?bHgS?*Dzh0aRD>qe0SDYaR4vK${&b%dpbyO!T4*{)*EPd5@!3;UMofRR@5l$w%^*1VvbaVfZ0~S^n=!KoF?I#Bi7Gow~@J{8g4#e z?MKlq{uekv;3{nKI1qczO7q%;BD4R$lDoGTtr9r@qBV=xY3vm%#f+FR4Uvb|ERK7R zgQ+*HXcj_@+vc{FBFpq?ZybDi$4Zmm{e+Ny-+GPbW^94=NU=nZHQ7Y>5pe zoJ3uz{x+IN`~FM+Wddz&sRseXS6{TEH3;t0*bYB>=Bo^?^IB zwj7H2?N5LixhTCrDVhna>Q$mA%qeM`Q9MBV1jHQP76tMug{nXo>4^4lRt4KE0r;m! zXDujE$;Jg?CHAF4b&L(1Q~wY+>uVws91*IxhU98r#rlM;NWw z%**JI=C&UE5cn|0Mw1b7`bOYGK~n2bKd`uy4ejh{WjnCsQXN?Ud zKcr~cY(vQpDL&a^L&*;*Zrf%<$qy+O=Gaj3LyFz^+R*9|DcTR&PzaM^%VRc_{E%X$ zleVU`UW-SYZXo&K13#So41_u7ZEk915-j9G5}0w#wy1b8JLXzt5Umnzrtb4_UI0;E zU}l&*T&|M!#76TexuPW{y9Q19)7 zh_#tmQL>iyqjW6shFcqBrr;{e_H`n}&(R$N2mYZ76vj-!7V9zuZmFO6;(EgfcCQ2l{w9YO8 zwXNue9@$=(w4B49zLLX^&9KK52U`VVr-#miUp8{E^35FVtu6L0)Ufe8?P~ZV+m1eB z1L3P&`!%eDqkHV=Z8;Fm*~hie?f^$y583BYEKG6cA2iFo2`Wz86}TnqSq|~>IXikF z1H!Er>~t?O!Qqe8{_`E_gzI)UZe!X_dt2%*WhMKsThXou9A?7;dueLd%e#uco`#ad z0FXIPiT2M=Em0oMd}=S_n+lwMX|GR{91`av=;SGyULVo;`$KEz7SBM!JA0YM9YagQ zr*G{As4aNvvptbkF^eS*El|!!8v*kYLi@w9-|TMO-;$ZkPR21BO|xK0vBOH+cjihQ zPqFcy$sGCEF-`?I+EF`q!2xF+tPt#Yf)F_tqx24{`}LfLPn0l2jmeRSg&b>joJW$w zMlQ!oOqUOJbffkR>%9YQ1vQ z00U+?DE7($FF+!<{_MH1-z<#U?o)+92qd>o`y2OJ06rz@))pW(dc zy$dI~dW%jI+2Nvdj-@nDwf_HdO_PdxQ4(QRM^6s{Ty@Q{l33)XgJOHvPwsN+mV+v} z@iH_BcDn0Wfm!){-*KoI&M^p1&Ua8HH$|)%9y<16R<1sB94{6ty`DIz)@O=X>HUWT zJ;|O5EH522Gk6RHQTI|zF6z8>Ou}5`y)Rba4uTCnI*#G)N%qA-vCZ-)e@pwzaS8)< z`sScn&?{1K;djR>n%k>Hv-v`2GU^;ayv#`*K8Fp?vG7lS=N0O{j3BI$JFj6AjaE8O z(E2O^(y5)#ipR>$VCPB9N`~G^v!F;ci&z;!J)ROd0xixg%*8<)H5Y&YwRbqF5>Db{ z1mU^MxgE2zG{i~m^#rJN31?aAK^Zw~7qS>OJ;FJV=Eg7)2%*G+OVyo$prB)k0nkv{ z*_me9stC)WEvW|RSt=v94whBVN%gwrBEZb%P7^pVwXQ!@#5ngBM_owJ53WFfwilY< z%J$Cl5@bX2dW)1er-s@)ISpc9yv-1HMUPM62}Zx(PV`=ZRM?=e6Mc0xHMhSLeY`dm zUK!v-FJeoDiv~H-4YyR-D#?jnOqdF1j^e8K97C!@+c>WN+wole?1^0cAt}zT82;RJ z=R}%>t4Oa(71|%WYJpP%B5uTKKvMN4!LVwovoZE;GQ9)yoK&gfzng%liBVWmZMt)E z@i}oMkmT1Q(@yx&L72c!o@qBT5d&g_)h13>R_{9ceVjZM@n>qH4i!~(GGclz!WSE zHNm<^ohS=Ug}?shL|JGm9CgNtvd~o6^MaG=));mJh~Pt2wBr}LxI6a*THsSBN;lE0 z{Dl*xo2l^42PaB5Q{mHpoG9H)g*(4F$?Sd14`+3Jez%_srJJd+LVydUo2l?akPD@o zsnDf$p>#791{htHisy?_^KOYj{DjhjU@yDtd9kn-dt4HL76}Kyq)^wpVnKnlr7pC< zI^Svn_E1+VIIWD!MLjfl(^xy~QPHJjm<+JsWR=EXeH{=X!Yq+Wso2y+LQ-Y;(Cx+!FGz~E-CPZT;uKoB-- z;kr!IA)$+x;-tPlNQ!rH7Vgk9Wn>^u!ne zA_TO?ngd5Ax{lK1*j_e>?S>WCVtk7IV36ye0I6n0lItR^$=VEaQDxUiAP9eqa2>!5 z92o7oK+C|eu`a5dnlRv*;JSku_%X?Kjh2D^DK45E79s}FmnCw*_8G3Lv~BmB<)T`m zB*Ghiajn9_@0sg5^}jO!cg}My6QRqSv#vA$`{lUjfbe@d9>j9M(3~lxv0`) z#K2OJ=W_DT?p4lookZd+UQZhf1S}jL+u(Xg+f870!r{_Qu1nZ1{kOU<(J6&zC1Sga zDn0aSCLG?+a$UfzY|W;%@lsfOx2rtmaK+2fcaQ6(K$C-Z{!~ zGn88^ZFPl%?R|}dEqlY|q?v9LScm;K{{)`oAqQ)D&P^=7 z)8Hl+pI~wiqtw+f?#&#sP$94|TZ+#9IdNPF)1c{x6NksB??=fIo5J)ag6My+yZV~|Ig z?$fj&AY~m&=JDD!%-HDO>Wj&QEp8`P^pqW(L7MO6l%UCWH=`csP+MkLZ?_xWj>v(^ zJ#KV6A_u;9Fpubcu=UV}D-rgO`s+mE|5DMo~%yzWx62R*I$K3@#;esfd3X_}et z84UWJa?>oFl568Gy17q~fviVm#Tzf5c8fsf>oVx`o#);6DTKqI5P{M>-U!geL*TsY zZZ*%t&fD(QbUX|J2&OW(U$op^_ZFJ&2y=sBTrlII`=SVJ9aTmPr#^L8rpc^)U;u$h z;q(`7^h$ZGXefH?KFDyzEAM>8%n$Bu{Mooq?%86l!k52&6;6Eh71O_a>+WvtY0g*O zA@)2Ha#yXBc`DL$q=@Iqpk)US|E`yfCQpExXkp{Y(jE>Q+=}%4N@pSht$?-5dZ_YU zFLQR76zzG*OFF2M=N&KqkQyGeN1kZ7N-a+wU-YlzS;H3(*7bDv<0?cp@zmolo7&Q2 zr0E^J>`(?Gz`3%J;{hD+=GjT7(+t=k-b0lrBmOhs?e3mT0Z|E<)60`Z%Y%P!4^^&A zcv#ohgPu(xUC{6W9*S3E;9evH{x#4;lP+@?e;?x6%kyw*n1|-WV1$PjBRo`TGr9Qj zC=dFaDbd52v7XJews=3zbCM6$Gm|_t@2V%JQSZ1gb1bv&7=WcHyOU2 z<0;_Bgu?l>!7&*i7#B!;5h8;_7I=g-DFEh%gGsS6QrI%x=O_l?p?QV*e*tb-;-UKR zOA$=$FHK}{@N!Q!?>yyJ6_c;1S{-HZNQP%0%`~itFQTswYdpJnzD(_MkVv5O%x0^PtBZNwLNU&u3bf zS=_1k( zh_j8g!esPpBWJfXLPpOv@}!qeM$b0#q*J=g)Ni|-A){v-`L7GIWb|w!Po6i*=-Eb| zET}J|XB&CawXuwzZRAN^3mHAz$ddtWWFcrP^*=+W{`i7r|4y=3Xc*%VYBLKj`gVaS zMY4}*n2mj8JS+>nXQZDj0O_pwSkVt=442tjkb6&yGRfT$viXRv*}>0Z>pgLFTta;MSl=`{)6C&&^o-oS*4>5|jD zgUIA({^ELW_(eviDoRP)X|gK_ZJE$~!Dfc+1jhMLgr9lDO`@Wj@8?v2dDJS-p47FCtWm^1DCe|u<{UsaBYE#tT=-LDf z4b$^9Q3--MPh?wJIpsZD52vzOn(oEYP%{?+8p zY;$c@Y3a+&Lr#~zNyv3*$?sb@SwXscV9HMmcVu zD6571OZ1`vXXslfr)x5$kWybx*JMhe&X4leXd?`5C$}fxAJnn|T{HP3bhR?U*pcCv zY9)YQOL-kuXg!V>c|*f?a-ALJNxH}_Sa)Y`k^DG&w(cXRE1sp0KR`a7J+BRx@4}n? zUYUp}dV92F@vp~9_PB4nT!k5I((-LDE%tt%Dc52Knl_sagcIC_4EoGy-*!rNW)JTzw6KDh(iM>-aU9+cpg{w`nXKxPFPGRf4_ z@}-Cty?m5KitfnmVeuI`>JaLtQ2|B7a9)lX2+_Qw$T_zFu}FCKo39O=`cuB&iWGyv zoy@;1KZg-ap!$OTs{9IOK*V{K-$OuJ4y~$~-OS5@T-7w7-c0-j4NBxs?a27C25<85 zHuby3I|Hi0sE2YIe~{Df^hAzXy)u2=1uj07x50Rv3WQJ3<<-nWAQZu!bUiO`PNIVY zyvUvNa!i|5QPBJvx8zrHjg6$F(eLG3%qnBYk8;#t%0$T*mVTBm7e)5tH#ugWy#njz zcj{Ell4pQrz#+jV*Cqfn=B{9K#WnyH+_M7Vp+f+j<>cmk#3^8xS&|jH1f0O?2B?>~ zA&Bhp48TM_tPm>QI{-Djt3bG0Ibe)n)4y5(X5p&>>wWcrKZL`(;1_@j0#@$u>eUK3 zC$J)90l%45Tp$lXjq|8vqseo(>b0c%Boadc4qHnWbp^;lD0W@+i zXR|yVYk9n^10gIkAP(8ojwbt-*YIQ)M6`on^8-dxbzP2f>lKUJ)Mx|MiTGdwtMdOmaNmY=g!#(? zhDqKFLRJM}7U_WE(p4)??bf;gx+=$$dp87pMd**PGK8XS0XdjJqcn3TX?%40V1OPo zJ~APw;nLA^u?kKG(8V||mfzU`x){fkP8R|iASL7^#bR9R>j6_Si*Y8V|J)V3`$+&@ zjN|O$%L3?P98Yfi5I`5>SaRD+1zn5dKNeXk=vo|4Mp-LDr2mKBjtaUK$A5j}s-SCe zJh|CRLD%AV@@`cHU5n$%lQk7#7&~MoO#Gd$iNk|+>MA~=VOshJh=YS^!3qmxX^bWd zXVm0(&~=9H8bt`w8S){SAB`WZpeF?vOD6?Go)v|W`|%31j_*w$=16`ySK>%QpBFhm zNrEEVnl#b(bp(21aDlZ2DUbD|Ajui#eTo!0m3R?)QgAvcF)G~QQl?@6rvKQ=r6iV= ztyW|biyQ@Jm|6kgU#Jj^cKve|pQ!EScXTH|8x@Zc?!6opDC*A`t1}@Cluj?sZ>ShS zD+!~dYNo(!EHeR)gmcXmj+jQG0^xWo#ar6B$nWSu&bC!xwj5Sqb#1Rm#>{+~5ZVGg zSozSI+<4XA8wL$lR1zgOdzb<y}MC?|K~pQC6_ z#^(ik#r}<7Ml}Hs6z4V{Ems`l=HX5bu2LLE)*qnNI^8@wt+QT1Z%boZC7(7bFj0U^ zqK$;L#R}BuzXGAv76rZMj%t;+4Rfb54PY$y0%q_NM|h z=;jDhKP!sJ)W7Izvz-Bw&cx4jiGQFj$=7Kc@~I;Dyu zSc9qnynA2q@c)6=p@)j=g4c#8{~x@5dZs`P&MV51tKF|maaHiLe~mZO3Vj`TqiBb1 z7l6VX#mxSiglhMX$VLln1OLDbt1GbnS7f839)SnV1FVQfG{iUXft}P_=r0fKD4N%o zfq|Ch*cuhTJS@@8;J}eCW|)6FQXYMW6thsXor#(T51vvz3--qazO<0YA4v$DBgl74 z3d9VkNrk@I2f>&UC=3!}(gWG}n)N}dW(G#1`)Aau+EoPMSzruw!Hl*!PulE7OGECX zO#@qEhTQ*xQNxE;fowW~$=JJHARBkHWOC;~HtuFgb+^Fb*!sj;X--!RzIXHq+=Ll? z|BLfKN8oW|1K9|i@!T^pkd44uQZ+M>jlfw_K0lBR!CA6wK_DA~vm`7Eq}yS6^2y3T zHUwwC{!nXUU|Uflbh(7-j^dB8boJ{ecN+wQ_?h58~78 zSYWDIQ2#rKPwAP!&1hq%MV>XgsiFq7zY-WKT+F)LfgjB2!%Bd?{tCP-N}}FOrvD1a23_I{$s36J|rD$t(LaYyCiU5joMQYxl+bR>$a|pMA_g%!H);pw^BSPo;UCCyj$J+vNCGgR&+;FA+>e zRHC;7FKiZsxkQ|>%!Fq4BY8K1nv-)agKFX^Y#@HKf&$@9t00**J>)gmodmTH`iR9+ zpAYf{zm7qL7(YT~+5q`QLH#^vsqp<%H%11zT1l)vj}F4jXfRAdG3|-l5``^H85`6A z)6@Ak42i!HMEfMYg5AJsLeNpnOy>Uu92qz19ex&q>yDPBv#q4Agn2<{%qm2?1wp9Y z2V5|22FDf!(V+)7sm)7+PMgJM(DESE{6htsq*Xy51e@%&L713M6ES=I_wF0W*!^k{-D>Qr0N|C`qL~n zwGRiO=4L8N>cP>VJ%Y`a6G6w!V$=7JAPeDS$DIwr%z-gpK+CMIfN6Uv=%iVcg02KD z!3-xTk+ae^h&wlfRtTpv>t4`#9Gff9?S7CKrawc8T!9G>gPer{uYQ89+*jb|XF;g7 z0m|XrswrhblAXZfS3!j~lH;@b5Ofu*k$WG5JkT2X`X$JdYs6z#?O@E|E3Q`y%iv^8 zcbaF;u??;%3T1!;h67NTQ)ms;cL}x=pYQ4(jC3PcAj2~l>s_ya!6*2+a2|P8@f-rG z2k%4r)GP3;X7E$N;jw@4DXcZ_s~tQPGuotOxRXZ@pAi%+!_2W!fQ=;aV2~}lovH`8 zL@WNf=&diPFpaJB74!5NskQ;tjc*>!!dV7eoQb>bj$VDJ{qGzizc@oA6? zTpk{L#>&*U-#IGSNovL5^0?p&Xk^#vRN~XKg6+uQ)C^C4KAzC?@ogY@YOsZ+>1#>T zgMY=SgOg{U0Qw0J$)7;koZy2Nl2Q)+TArLaKbXcI;;JfK82k>iF^VexIGNCZh8bVf zIoO-T?zeLz-OGX-!Jq5@AQap zpA7bZ7N>)&*i!Wu9O>*0zg!6Jg;qa)z=iG3R!D-3n?$MTQne-5V8iv0UNUxVY2?s+57k3JA0 z1z3jAd1nr3XC2ZOIfUlU(v^f71G~aer;r91_jI>r$V%xJ>G-N4y%GIGpa||lX;!sE z==?Gl>%2UK&M))izMzn~nD&GM(_J&{?&x-!kRuoqH6e)53Kpp$bS{~58kreF=aPBy zjWLAICG+Idh9M?P+uk_DROmyRhS0fW{=%jd%NlNXM|pV=1$5KCGNy_dB}T2#XYztq&>Ovv56D z%#_j>=I;n;Z9c1=yF=CsR(lSF`p1QRIaA%BmWO-T6{DF6)J}n9vS{u zhzG=-3GuWhW0wVZlL4ngXoqe`NHv)HXGosV+w+SdU6FcYAE*MhmqU`Uiem_Yq{Sem z8+cv|akJqD2I03uc4DfZN$BNBc`E8)Nr=)5p4z!CM9AZI$aWT{XrD zC`@%rUMnHdQCZ6@*~svBw;hOMbEO7i-IYtRoVcbXta?g+8obO?`Pf3DIL}+D#H>tE zQG1hpfl7NaP+8fN7|w)rgLl5lrB)K`hT2Lxt4|v_4|*+`at_Wy_y=5|RIWtLqce&? zDJqa^C?^R2G&)_m3Tu5# zTFwy4GL)CiQCcO^X{oXrOfe`?b0f@>$sL{20m|wr1JLHo5C}!EC1=+v+mlcAsZCF9 zqI4ni?NyV=?H`p2sq$8Ds7yjjJ3LKk4-U;t&{{a8sSH2VD6fo;qm*mS0Q7}{qm|o) z>q#81T#3X2N^TEgx`I#*&-zCv4eCx)P7$Skcm`Iq1rR?A<@$iq2^QMu`m1scP8$oL zbe{4ern=M54}*?Nl~)m&p~q_FYK)1}e4~N7uLQ|Ckcf4rDri`*tbt&{3bh}3F-K`f zo^Mgwg5PFz-H~8`!XyjVm9|Z}1nFq{!Q?$kQ@=KJzw#&shq}P_WbwFbt}y?oGDz}T zaO0%to4J#tr%}GD9F{yeuXF~Fvq~*;m?+p$7;Lj9AuuAoQde#GJ*5|^5u(JbB5}dW z>{Kq~WQg)MT)d>DVGj6I%}-acJslb(NC5f}+K+I6E7z38qT0^6h3UhQf6=7BUfs3~6}D5yHCCBaYOahS-ECEm5e*Gf7|?pqLO8~@4k~P)PL!X1>NOi! z>86?_83d$ws){gcA#`GQ7__ObO17}LEX`C;?h_b9D%Vt*b57WuxT#7i!Hb%zl~$ze zs)akOtfi`BDJ8GhQMqFLjBX3(WOad5M)e&s_4HX5Q@+VrWUGF zY$RhU{ZX}0*wu{2s>&j{yQ%7)h4jL2%~dZ<$(Aa5T%DU^rFJSOp}T;NswU#s8C_J% z1#V_fl^>=FW&B9Dd>UVx+Dda$G+2e%a!gU0(2k3$rqm*34^gcZreiZgH4~>c4k&}{ zkt$TAQWGT^JQ}5qQb19m7~CirK%P})GjMj z`-G*&ty3)$M4$YoqASPTz^`sm{pDz}hZJn@mP!0|Dj886FxRE~s%_x&0aZ&&i#^cv zcNHpLp!-*qfeimcwxasho>O7sZkf=0VbpomCd^oeA~ca)xoezvbz*E&)dt>NRRwrbQX@_@@Fty~ zs60q$oVpq`d#cK!Wk^;%R}I5ytrhHep-RE@(J0NHu<)fS8MEVpW`2evEQ*SUA6)-U zRoR+~f7nuunL?>3Dkp38BBTy}0BSlDSt0DUS1&a~CSUmOpe9%r%z%9%+DYA(QCZ+( zCY8Ic=2EHVp&rYqEcH@jCUjWYz*%qg9rF}otfKD4SRAgVUSU?*IMz__G>=MqUx~_f ze>17ns;$Na&TXNtN6y8n>q^@UIFwxQ~eDyz~Kn~i|GvD@O<@F%mA4qxHM3^ z!HFN$1c3k)VFRW`=U*-hQ9Hn?_Uc>cg5U^Ioz#_C_kzT{|RRYs)u4$csWu1ICW)sG+KQgOB5(V9;5ZkFKQc%zNqsLC5G8*f6{4$z3K<+Ra#w1mmU^PC#dNaip863U z%$nRURi8uTU-DcX4ZaW5C#{J3yv!XwK2k?oO3B2h>QGGof!iTZfJ`Pa!SsLWc?>FC0QKgWz(Rz}Ydh5vIA~2>Car`H{ub5^UjxduSss z(rB^F8=A>O4`QY>{)OlS8-hZ6cuAE(tqqk*&^pef#R9npgc(DZ)J7HpIS?OO z1q{7HFZxKNqb7vfV_F4Hnt>4tW>1FqYGMl~CWpF)Nz5PZ4+Xj%lvVCc2Sb-TOUd?U zLzg&7$tpKPTUU~j6CZ>UTPdl17P?+!D|;ULMZEC!W2n8z=3^Vy)j@i9rfb+LkuBFJ zEWlp+b(C+|WDl%z_OA+~Tam-Uazu%irG*_rD~E%H=7cTsmY9{a3~MR*7AR;R=7+F7 zpi1vnm6sb?*)`0Q6v;!YLBW`?HJAp7f@MMPabd5jOZ@sR4?7|BS+Fjwr=9fc#m!;o zt7G)}TwOo{&W3F#qcuZok~;>MU?Mvgwh{qFn=U$vJsE1VRyPp@x&DJ{1#sx@u;zr@g0UIeTvK(M)4ceKpNS8xwg; zf6XyWBl7QWlBRVvlW^tQS?UQ9na0YKlA0H-!At>AIz8c5jOGSXe?6f|yoS!r93*FS z8qACpC*Yo_LCxdw%w3Z;eHnq$RLxSHDtkg;y5>4s11mE%g^a+*Yz^ih5f>sRS926; zPCa3%QPYAEu>1jE1Znj&7crea&VJ92ns$sp?Z$W`Y}-VGih;@rTyG|6Ahso514CMA z{zBV;Wm`>Grh%gNcnxgspxMJPx_8!$#2WIK+Qs|7B3CboIzKH^kJGDrh(}r@ESNjQiGZr z<{Ahet?9%FEF6n*h(IwC(Zbi8s4=o{ulNP;3-3?X{DB|y z*_u+sx24Qe=4wVV0v_`d5qRT)+&j> z@ilk?ZtKh-uwbK9`5qPHE1zPs<~TwFP-~m!5Ys-r;S%k8Ywt9}^{v~jS;h$D@59^Q z-2GA|8gxj5nYZC4wBUCQA4DxXif;_>A2Xvh?tD@+ohjn$DZCk`ozb*MSb^jT4CggN z7=cq4G?jKIF@cn#Rz)Qm$D2)m=9%dH2=g}WNeaYU{G-+P+= zXaX@0G`$&tjSn%c0gQM=9SOGo(EX`q4f}T07aB}d3NC!-GR+xuLvZ7jW-%i$_$}TO z9DS!bg(eX3QL~p3c>P(k;lFDU&VSJqptXPGyXF}C_Ai!N%*8ld`**Fh_&#uJTkSPQ zAl^ZXxsj0*m|jVH4Xu3_XKg9hzN;3q2aprUbJyNQ6FBdwrF$d}67bRP`tQXr`B1Ma z+P{%D&>3M<#q)}eDpBu=iyoK55l+Vc>JinkFFEHHq!QI1U#E+(NmTUnrTt%-&_NMEwv39fsw7X z=o!O9ZM28b8VG1F6~W++TJ$WNQ)ja&FZ1W&ldUi z*7jipX7<%C!3uG;pEet_L4}$^J<@!vRyr3+n$Omkz|NuC?u<|12rY61&mrY7V5D{j z^ER3>Sg%(PD7Ui=Lp2fWu>_eRleBC_g?LWIRyYCFe46$;cJYa++8&O~)+(8T*-pJx zc5|^_jPtQ4b3yL{OXq3NS=05QUW>KXXgjEBb;k{yR%%CL5L$iG8o_nFHX7p)SY|>q zSAmiZ+CMP6@;Ji&3;LL&9m#}; zdKG#7hxR6-ax)a5C^u{=m5__t?TpgBD_T4D_mf-Nz0Nq$0-|(Cv4%}f$oXU;PyuAkLaWUh3SVhn`UHV)x^p0=8M+BjtcV4D*U_p}lVzzQ+yk*GnNXYp zay&oLiTD{3Rir31`~^ZICX|WLMH4P(W;Y``+=2O;1@Yk*s2hVG`tUGJh2zNj)`{K7 z=#+3zSdkjOfQg-w8IH0=6I>;DmmRJ|E6lNBxFZx7hF`;q1QcN}6XZmb@X0O+jdRbD zI4#kIRLk^k3)w$~uV(6g-5sYF6Py?P)-yZ>qZeK&)DyJMFlu0U6HKKDTSQGUVGPx5 zm!HG)5tV{41fU4tnZ+fH4?o9hhReiod#35ilfwhqGih4*-%M43v%{|-XafDnc_g{k zFl%XeGW+<|mEq4Yw!_P5?1e;UvhRo6Il(3hYVx zZ3}lHdwYgAfB{>>Zz4Q3VI*fC4EG=tUxg2Wc6-9BVMX13Fx-N96U$@a{ZZF~NldKa z`_1rf(t;FhwbD}7f z;q?1(SEi|3U&9BXZu%0MB12;-r{`V~=5eAZl_9iR#GLAs(}{?PTx{u)oF5{b$j5KW zw&X*0geO$ZjTq1De3>x<)c`Qt1d17s@o_Bk_9hW`(Z$sy!V$W*jM&Wlkbm2V7g)~^ zQ+q{3RHF8LbVvkd%8$DdicuME4UOo*yk!3Hh>gr^ej6E4gFUN{j_AW!P8%1&2ENd7 zVuTyr5C;QDge&`d{M-mdP5RutJ>oXYKW#@uDON3{`kkaW61Fd*1X(p1fHN%GA5p;i zsV@&l@GjBqqY*Mpc>9CikqtJKIRk?v7pLZpLb!L*yOy z9OM}3jW`Gf^aC4_#M+QEB}v}oMNINkSY0J@XAOi&aQUA7n5+YNWMm+cNCQF<+{nOI zk=|tT)d&L9qa&ZQ8ZaVFQdXmkNM4jqS&=17SD$?I|C1=g4P_SIsVwJ20ahi`eK!&|+xhR?K!kmYLAZ-mrOOB%3IL+M^?b znd3H$k9@#vE@DdLGfd}#(^@|}G9Oc}oL2nq~)VP*^dFP0t5 zxf1z^mGa1IkvmzRB>ryXZrU)whbNJzT@YEMOjy296cBZdNs%2G^@g$5M@LOzZu4wf)FZ}zXI7Le zd!ERR+RaLBbi=5Q=+Y>jm{N_rSe)!hzK=@j2|lf(=3(ZtID3la4^28oshRF4c8}t2 zv`vqw-OS|udPngZ=-f9dnf-0-A9a99={_(@#`67`vhXtPZcF?e^Bj)~a$MAQ=|T7%P3HQBTGxu}m!#BP_(5V6wjsOqG-Rq7yc zDT(TY>3#4rG{M+H?fX%4=^l01^C5~}5=H0EETZe83t+w~brQ%NqmNVlkms(^n0^}P zM}b_V=|)HQ=tsK*$8{$!*tTQICTpgofz#LM7dnt7X1x7WFuD}r$&OF%yKiC&!EiFhAH$wyCN#4xdH-h&=DZ^X z=r5i5%e)wqZ$rhOb1h~cqLHFN!@=%G3@RK3&pi58%uY*6KwlEG8cSf#-55K}d_N~( zERCT@M~{%N4`Nne3H%z`B<)-57ytZ(?Tu zcLG4Qh>A7AwO{f+rXTxu!%s1oyC^uu($6tdF&<=zQ*38AZ4vvsy~PojRw)(}iVi5q zO)Hvzs9UVPHGPitlAcqm#P(!=Th)v`%bpi%#nSQf5!g^Cmac3cfpN0f?d+)!h~3AY z-xRS97$FKmV~b$5Dz-nu{(xpa=|Hv5V@-v|#ztY<9a;uIkQeu3=v|{pv9{8^R9by( z8iEih#{!Bq*49LAeMW2~n%ehgF+MOjH+B%35JMn)LSw7JIzw#Va#oS`WBF>;+V?Ej5O~=MAWzX*uB^$l=ODr&(oHix)SN40zOzC&q*^=$vC6evVnJd}ukMm+D zu=oC26gvhpgTWPY=2MIVyj>Za#+oB;kooIl2O#xZ(L7cqoj1oGu(&2gOz*iRcKv^M zafG(=b;wj>i6glkUArpG-Wod_({9sVN97sUW;(*Ky|INBWTEE}Co99Gpcy^-1VN?! zv8`+^4oNg;S}yk?CyvBo+5^tDtU*Z?a^q<1SA?+cuVULn_v5kGEXj)zIquNtkJv7V zB?iK92*t4__l_o1CC#?SH-~GNaTS?!T6rUOnlC$X5G8CM!-$N{@QjqQP`0zhGg2_j40#bR1kiZEZg z@67c>Eb2-ZiZBKyeUH728IRJ;9mpA*I2W+Dk86S%<1qyITqO=LHT68i4d=GIs#EQ_ z8e~Vi9B&w^i!%zH-bs$bSW7u7R7s7q^^~fY`p39eu2NFdA+DK&lw4dCXXz*?QW%C9zn?7xat30 zTBfNH+km4tjXPf&lZi`4ZdlI)! zB&$A;+b5C_%i@&6Nab(iT8U50`4IO_ys+wX+*g6S?Q5J`{QCBLTrctN0IT>9B0177 zeusD=r&2tR{1G1iQhfMyWW1>W zc1FiXix({8<1GY&moEOac=we){wk)IRqI)NA1KO*Kj_Z=8Oh3ur&oqtq`lf+jpFmA z?~n^k;=3SBlwlK!Z4b|y#urF_iR8D5A7d8Q&u!xsb){0=GcNv!@LSU-$6pZsudHrwySe-~uj?qRFO zdgxUeKV33v;`1neCz1@Te;l8Rm@)#YkZC5Bmc?UEMRS!Fyoz_hbPQ?c$>95m6)W$R zz4{vODzxEYnSiwZ$%G=>Lp!SkcP^R-jI&Mf75)Ys6M|4oYa~p9g`No;1k;w46Fv*Y zb*Y|!s2NbJM#6Ln0S@~m%oWLQbrPNkC)Zh#FdEa3qe>k}jDNDp?Z(#% ziEU_tCt01C;6hF%#7!o@s}od`+UbAP5Ng+kCm<_U#W(F?ScK5MJ1mJ#C=j~0(j~0J z2y{0)VKOm9+qNa=Qxk4Tlnq5q$oCO8YaOIjry z!O*4p?+eZy6V?e+IsH>YCqXr%2y4`R2}P^}3wk7Ig?ZfVldxNKA~y6($P=U;ha@aQ z_9yz1#HQE1$l{<-JLobh!N*S0G?|#NNziXJ6>A(7*v_ziT7q22aBo&Z6G1$GUcx8w zYvaWUD$&E8yDC8;Uifo;!VrvPeDHZ^SAsjqs_*Ivj$0F4tR=}*I}$Kwf!JI~2cU@b zN;Tdo-MTm7uqcV~`xEveNlMczK&MxZIg>X7JTl3viwTI<3C>?isDl|!_3+X)gdtZF zQZYu)GL!6E37BCG|8Upa2~Vs@=u;1O(&?`RO#g{fpfElpaa2PGICd}L2v!Y*!|+KP z?Sq8`JpeReYBDCc8CgB&eu%h24lp+-* zu^|+}7cRX|7$6kX;#0y{b0|rGi#{hb#MB{^mR!jLFI`pGV5zgPvUtE}pUHb`9bNhk z)mMWu8{IZ@q;@5PUbS)pgT0P+X_>jgQb(OkB(J*YIwA@fDD@>Kt`JZ~cNEc=BNSv1 zaXTAkOM{%~Vg;kezUAcnYwK1b$dOHrb*)LRMrSWwbM{-ju@Z5$&^3kY3f+4PlZMv> zm^ADetQ#l{Vxdxp=o*!O(FJ~2>5?#|W#a5dN-~n%Nbw67Ie8kYJB_eT6BNd?(Y#`5 zewkKR*HdyMSJQQvIb4c09BOCkP*-U1%v-W`^j>N1VzcvfNO^|CEQ1ael$Ue(Zq(7a z9M0j_A9R=)6CCF6dOB2G-t&$0BcRuhx^{xYqeeRN-)#aYhjh%O1LwZFg|3(Qd`N42 zG4yMrLj~sL9KN*InVj~RPIz-X*I9>(&C5B|>sqddtKIQ>sMAA-3eU?qZ11HTA<81N zFJ2GR`|0)wm=*(dJ^#B!F_$+SMh?=I2$)_&b+fQAJBR5|G0HfH%#pfIg2SOvI>Z(d zNfd`MI#lo#&SCMmat_rd>QFb`GIh3@q(epPaxiC__~#ca)BP+|5VjJp zf}yK)sPMgk>sn)mI=o7Z zx}{qwq=+lQ+vLQ%I#fJg&S7b(Zkphb`ZwM+%zCIph4kedHa^j95*&)2j@#Dh_lmC%u+n38 zKXW1ewAN$VYB+DJPY`v{uaX|&8Q^6leJ)mbcj|%zAOQmXJc?Gda(Ib`?B#pF9)uW>Rat@ty%1g!9phx$myXWgs zfqyxNxI+CrQKWy@!&^p71N~nDCZv(R_kS-^ptDhvttAsJYOcquEpU1Ex6pSNMD(ro zm~+n@rhA)m$I-vN9z8X8q=Oz6Jd<-+(^=n9h*G<&9<%3`!*uATM@0eVnZFk4CkYO} z_R^!LN$>a8qXGeQ4oCaxy9f>`1NDe0N~x+&9Hd9Z0_GgP4Jj{+e#7Y^ZLtADyUE(sVRte4Q1}l>i zFGwv2Oh`?2IY7%%K|af8H8tt9vBtzD&xOQ?@VY^;kK}CZelHL zl_4#E4ljZ~mL^)D>kUP4f@Uic-v~Qwy*lxLs5jcRiDH%m;x{CUX=rF)oOng3&#*1= zE}HtegNYs_dp8YP#)Iqx?N6+Q6#^($J;5pBXd)_16E_kTg&1fQ;u^xwKRIWHeNeEj z82eyMSg2u`cq4HGw(?MbDsZVJ@sW_^?1RLSm_Rv#4384rkA$;WO-k1!Klu4;;w7nC zl1>&$h=Dop(^SMC9$=Z|BwD4}4oUs6R%Hqv%%gz~fx4badNVX=4Kxn1T)6EzzDa|9 zkR1q4i$x(OGz#$$*dAdfEeiEpb*bUjHArfJE!c`c#4x@~(q>VEa(g79J2wo`13vXi zibq?1lZY8$7@X7=U2ZHOaq@_y&7#$?8J+YI-D=Qy!UrH_R?VG?F~k~4pXT+}?uO&Ui>JDho;aceKC5u>0XvE_75PmnwLO7oE2T7)WnD${(pewQl zk+RB>w*QD=T>C?k98J`OwG$?NO1dl*+siKb7+0YiWIH6U7uvLQOs1zhxwoyC&y)VT-9E^0EF;y(5VqnT&~i%tfbA3n710a=g7neEy{5TY}<*$;pQ> zLpF|U+?ia7v>X~a9@;KRPQ+{-`WK8BWUNRQ6XbAgRdRLFmb_kzk5aqKCbd zZgX_u)6Cvv{Ht(pXtq1KtElcbjwM$Se%AVr3{pf6(V=2ouee#pMz3*nj={y;xa1Io#(THC! z%}Xg3TA95d#apxmdzPhC778lelyX66<@mOguOi#!9Vz!kT|BifWrBHHQLT%r$%=Y3 zj6I%$I>Kiv>Pm!S)q!tkQZfX)1{YJrwoo{FIpv8E_0ZLFQ6Jt;Q3+84o~7InqI$ke zaTdw2Hz}rpPw*!*M4ehG+JUfG%0NRhf5P^vNI49P>}(5m4yj9}a|*DlMyjvWwS-5q zR2jNV=oe;zLY*omyh-KoRD3_R5{=5suYyxVq&^bHQ#(2}88d^mJyRcwinXqH>R+ODTR0$b!GF z>Qf1pY+s&=SQqNW6@jpgsar998=9{z3@lDP8YGoi!HrZ)M2V4U zxoHjH`s37U7!oWqd3rQ@^!8_|4+N3-mD5bNRaQ04M-*P=8fmYD#Z~i7dn1y5{%LiE z1FRRA_Es2QV^!K&(cz7aN|PhzH-Hk`ftiD#`P#zmdTECQ?M*+X$weFeuzA{2OueO$ z^}(%6+C@y2Wtj=h>;!##q?smZ2lY-fP15G}P1`37u=>EX4Vb`RoS$K0+I30$BxY(F zVhaJYqxyuxI6~C4wEd!d?PjD|V06a(CeYZ-__@7X+j1x^RM^^^6KS@XZYEz`C_Z`Jmb9mlp5fEE zw9S}W@N#2%Q&K!N{r{Xt-E}Q(Yc2(9n>5o|x7hb-!x4>}>5DE<|3lgk zj4LuB_>pscQeEMfPigyvXK8AkK3LR|M|SB%B&Rv1_Z7)1uIUp*a*Id$D3Q$cN$)3; z=c=Z!5Xmt$(}#-k^7c=s3!kjH+^$JqEJ|)uO!{Gw9FvqjNhIrJrEeC=2gdZZBDtht z`Ye&mXqo;&B#j-*zi_8>`YtcimWYkR(r?+A{#ZOZU2ALlyquRlOez&JVj-Tx=|$=1&>VhPn%+}z zxV$`l3a%22hUzQRQJciM5^Jt0=dgHP`V1_GN9)tCAoKu~LmjD}5ZUJR1=!E`-;%x> zu^0#i+tU@|^AmQaV|KoBC6??;M{VijnH%m+pDL{2BrC=&Y{P?Am(mr; zHn0Q9zen4^?`6F`NsC+Q9$>hY-o8AD#EFvh=ZH$eblU+a@I=v~Jb7U9T`=fTdUG)g z^7wgrWyElTp*JI;f27-xz)$JU68GzG(!JrtoAkq$rlz~}b-HM}&%RGThLl434$$w= z7>|6^==wGNSHXXmWkxNLd}^0*1T)3VL;<~1Mh==E&FnxL*XiaBkuDh<98B%yhsqiG znBEoFZKC>)9o+QIK+OkKApGi|@s76UFioD}fZ;+zkwk1)W+Y(q&Q@mRL76tAjD{D1 zyAc^(E750uVn#nqNii}MFdSN@W-P(fbrS%g05t$IG9HNm#HOr_U&N>|-;iM~?5wRZ zqb9m?&;oP?-v$|<$~#larWpzh9AiyNe63PR(VPr>e)$VjYn`z^0^uslv4CO?5U%0V zJf;Za&t4wzc0tDN%2F*W-IkFls#e18jEzE5U-o3o5y=(%GB$~1hXWbKVuo08to+@- zkC(qY^Fl)roKV)?rRE|cQs?Pc=y}w@^|-^l)u~lukv>lr5RU5 z-`4GE#^L`jP0xLm@vNpJ>F`4UyMl^}#@4iebfA`mv@^_o2W!@1Q$<50|g$ydUmkQe>R3mGlRlQ6f zv(&->T|nJ4^Cw}2>-v=IW<|fu@4^bVP036Yy0M*AF7J`qa_IR5v_QnjiRV&&={6%Nhq|l2xZNcOk5WUk~6G zk>y4F2bb88Gp92@B2an^DhVdV7c=$b%Eu;N(D!WSZOm+t3FZQt!rROoa&}jrK=|Qu z<|%8^a&r(J!QRL`WES9}_HBFtZf5$RTt8P0RGfM z;V+!4mF4IlC7%Xm-NdX3o7lyYvz2bRLf43_9CwM{>GZ70q9D3tXPHy75;mdOG$>|~ zt1WEF$)cxgxd?j=S)))*7PISfEwUPu&~|-WLBsl4i)Av)MBA@$I6|0ZGy<|?pb{i22Y)+ z4{0*2q!MW|vwth{;e1mM^0p|e9s;W5T2?5m?UA(}v#*I|CJhsE{K$*pSv|;sVOg%^ z^X1shq-bcC9k>q7YJ%zgQq(YF9G4X+g(-I!nU!uswPqZfg*k7^(14=#!8lVBl`v>H zF>A3UW%2QsEQ}Ma0IEABE6p6Ogu$2TSzj5IPqVUq!<9H!Zy3arEYx(iq|!xM2Qk}i zxF!~@$*KYq*JUlhEM`!IY%<)U{SWYNM^-mqstJBw(|{{kk%%$|3Kwo?u@JoP(){$9 zdoPPlN-Tse53-ut)2G{utYa4Rd9^I-M@RY${gS0|rq4DG*^k)&=XqokPx`zs%ihlN z%@53;D5p<_G5arSx8T?yyAs3qX_h_Li$05cWOs3+&zd8%(^&pC6S8|d(C5_|*^L;E zW>xlk_Iprqb^&JniOLg6d@JAZf_De9_tGy*>N$Qq8*6t0ZrrKtgG|8ebJ<)W9)D&} zV*)O}lD(5Xo8QWIV}f=s%^t}9e*7r=7N)yN1xO}Ev$Oo5(W~q^l}rNIe$BSVwB;3W z^DT0QSW{xvY;$Tbf>Dk+Z*1u^#3N@N{R~{Kku#B5KwH0@BkcDedCojm5=T`zT%e@z zob8webIO3b$xCGFFw0ERN0+l4QExXbr+&8ijyn$IW_0c9@QXgDIYJ#XEP8o@IyI-h zg~bMv&}VREn4gy8VrQ{KYL)g|{bWn3<>j~%yS$tgIF_}@)D}4&#LbZN4gs)acu4>; z{*V(vniuBS!rc6vXhf|h|AN6R$S?q)JQUVcHv@jmIg6A97B|dUi|ICS3H&?e)FYwK z^E^q}=K>pWX_>RuhVtPK?{vGI&zSxxmy7~makkh2ANu5+wxG|W{c;{sWcY1J&M%hq znJ_$OGyA=4L{4}1Udt&t8utG)X69UCzjvCQa|7f4|5Yx2q-<%<9E;b?_A*KRb(dX9 z$+8^8LIcpsf!c5pwlk-YyvWS6Wdli1=&&+pET&U!g7G6$i*qmw*c4!_)ZMwVDW{1o zRf%>-&guVdazKGrV7eDH-xQd=H|L}!{dTJZIqU!Xw+Y8MeK5xoQ(<}LDTi|oFapM7 zIcu;4b{^01L=%|wN6z1jK<_g-o3R8QoXtUnx#b!dcp+yrB{2JP4rY;xLo~UPvk^1G z;+ap}${EiT@Iy%sW+cTie!H7f8#A0Jc#|`Lw0xEA36r1Zq+3%K+|NBK%ZWmmG*GxM z6a@Bt$oXPt@p{|t+z<2tTkUf%TF~eCO1Zb$v!hcky#e<%1i0j`MXIeSDLIhiNlKz~ ztHDIC+|Y9B=c?qQg8oo7R$$tZ+ix1#!kp^4U`2Tv{c=w;IeY_hPqF6{l_bxB&|K=7 zU&Cxo?gpeBP2g;F?r#*7E1p11t|u|}r9vG@%>9UIYN#Ad2*s?zMIe!_a@~n>Uv6J` zoRX_y!qm*jrOgi&A~V<0hCZL?ZxJ&_}nbUwPafEE+)e~lKTqNac6}N)z;)L zbu<-#{Z>-}eA}8k1X-v}!Jb+^BWiId_Z54-Ii4HF2+Pmso@L5^_h;^Y_S}9km$vz@ zq0{ADdN=fI@V}ayI@w3($f$^vttm1Y17f%p2}PpNjar zRLlsJ66U>zI~K>KZnIBz-X27A!MgOb$I+{Do9rxTMHZc^>Oo3UbLdvh-g(~SWKLc? z1m^i2dCg&8Ze9q+&RJ$cGux73`FS&OUvEKvYm^r)b!J`|^9t=qnP*#fQrIvL(Vrod zQ464esJU>KnXyTPSxxhfSV}~GYLSPTN2Vlg3apodCSbub0Spl znCFHV2Xe(qy7}BCkM2w1g>x3vVUG0 zmJKW#lxJxr5!pO657QZ{P>b*Iyu(-`QXy^rIgeg0%GEMxjG1iy9-FrvGa}{k?AP9? z1I8(Nzc>@^v^L(P&V1^si!bF>1HT1%moS}#a#%uP?O@}gJQ~iQNeYUkc~)rKzOy2) z3fWr!M=jW{%4?4%#$lqp4b?!kCXXImXF|i7&3S(!S|y;O7F$VrJGR@Tx8L{V4M0ly zGn5_7yC<|&dN}W*g`~I>NAr$~gJGUQKLa?ESnpLW<9S=lzUOt>n-4k1eS|p1;kr1v+Ok(OTko?p0n- zG)IOA6p`-7<~r>EArH0Vf-0^h@f()s4S#*hlUI_M)pRi2Mlus%OPmb!<|584#MRIq zt+)*_cPc}Sw;@H+8FBD2h+4g`s$mk6V++DzU)C_tEu5U=bU(vHr01#VmsBNx$PFjS zpKn*zBzFuh!9W^%1)o(-R2n?U@bPp%!Y75{83JX*ZbL&T3c_iMWhOMU zEg9UyXip|=FK{R7DTd~xU+n_VxJgUYy}K5%e;xa4yM=d(?yhd5Z4=QxEIdXV*}6?+ zt2UwG(Gi-6n6Q{|jkaAxJ8c;Ksa05LL@UCPrzRVGq~6${D#IIVi%aB~)^G$VB%x@& zpp7t~rdUjTeBoJ?VX!5o(mB?E>5NqX{T63H#pAC)*r7A5WmMWE88Cex1_V?qwJ>%~ zGj}41T}%bkC(CfuhEj>oH(+8No6vk=snKAAsk9XcEq*WzU|P9W-+-BjssIZ4(SV8! zUV*T;k>NO_GN!2kGb>pE^thSf7xT2DZY61DO&bHIXIeqUvYnxhc~ow7FgRLKtvu>% z*o&*ooq$@N9McP6a%}Hy81G5H&!^}Xjx`KoMO1Bq0dw|~>&0z~!3B~g8hT;6Y9<6f z==zJn!5jq4T9K(-g`e#<)v%8F*=n;4JCH@goPsY*m~C)1&q@mB8V<68@tkkK?A9|0 z<_n`27*JuXDiG=|HoRt3GM5<+o28Y*%MG(J9UV$#iqsIQ)*14dpB-9kz}z-Kfe5_c zWax}68v=pb3}cxtHUXYM&`yIKK>#RwI`w*qY~5$rhARgGVFwI4#J5?8gh15qhM7$G zQ%4M2|2qNLbktB2u^b?Md-h4g2=?tNr}2uPcE*6ZAdL%O^}N*anSBA(UF8@qmkbuj z-o^mfdBbqAlEo#M{J?M$GwP%aIuqk#gFA_TYp@5Wr-la%?)5vvH#FSvC5Gy->Wd-M zks_7Z<&Q&_Z)f7P$>2b~JLlVwPHWUE$al(jLN*2x7Er7}<|=qIm*ANnWlJgcsha;Q zW}=(xu4Q7rJ#4O>{}4@#BP7W3Yq4s~h>^Fld{5GHC!M5NtjJ$U`9g*&-<>@hY4fYo zwg~z}~YvYc5TNQY9$xlbJk+6Vb^`hQJs*Pj&=Z7=b zvu9-fVte{*HZlJ&Gx^%n@=saN=Zoq2i`ef|=H+YI@4qk3zfWrntXZC)jkLfXUM;bmWso*-<3a)5wqNvznRt5ZHMw#vuE>T67lJ$@~>j7vX-;44LMhm zUlDeoJq){)pFx!&Y4FDN{64HTEVz|F_`kQr#Dwnx-EZfg#^`_{0A)Cfl~4Nz`6pPp zg+9zb$DS6C^9>l6WuoOL&7!n?mybEW!%I(Gtxbvm%!j*#;qATjx z>mEi#{Q`0+{fw9~7|lLTGUeC-#%UPas6d!B*jUVpFJYJwv+0Wi87F2rz^38G z0p?M8^0VB;r1loobzp^{+{1tV<^%fIZSnMo@%^Etxjri z-Vx(qW`eyI8J{r|Y_;5Yi2Yr6z3~h)(bpS{MGo}Y7L1kY|F0Un+lbkpLDkTi_$S_R zBxlbWZONX=sh$vb+!#k8B_0z`85bf8N&*H7Y+w@jUNq7@F_%Dg)fmDgDZFF!WPi86 zXWWJfAI7N9erK#pLi_enf&CjJDoQUy+5XO$Mh7dBz>U8cRcz!k-m-uzzMow|C~I?9 zI~8!n_j4(rTimJt_AF?~=;u@^sDsfw9WFE?MNJGGG z1sXLgFk&hJXU`Cb=Ulhy(6mLteO9;mP_jYm0%ukrZ95j&Fey5BE$Gi!-|JBTh=!BR zZZsk#Gw3*ll;`nT1#j4BeeaTj zwv2!6RR!lU@xUnWe=L3hUHqZ}-OvA3Ka<=U(!`cz?I^&kgz#0p(3vG(Y-bf_LC^h4 zK?69us~{cYC0J&9D!9OwJZw~0mF(VIfY}mGQHDsn_eqONKno9{juM1Fj>Co@|2>U-5Y_s9tf$=6a`^BhR`_IExi=Zj`Z>48u0OTS-+6R;`8Xxu9iOYNs>^A6 z)m7s+bT3_>k)GtNo>~5nukwOCR(#8vm`wih{Bp1Eh>PojAXb?3sRiX;O)8IFU;c|1 z`h;dx&M}M1KQ)0E$v2fZdWnMr4p@9in9$z2{^s%wZ>&VH!jCR4_u~nV11|IMgbvOn zx0l0V_!syME4{K71Il>kvAfH?J7G#Wi+8@gru?J|Ozm1idb>Zh&c-rO_yz-GC(y!*evRK|Vf4+y3{*jc{ITf=f$M7%Tgf%2jM0#n^~m9G%i z{`8~epSFf6CzvV!7xdi_nno#xT zrch_X!SZ$9q&zx?(znXL^#h&Y>}%8q<#&P;aDMz*`6mkeyZc1>PVlwL7Z;)wtk_jRQeOGVH8XpvmMX{*4VnKrHh zdnWtp3hbHCNfp>LpVn4j&pb4x0(-_Xtzx(6In%6)R{^Q>;EfeuiynLO=89k#63$oZ zD-MhDm3LIY&F&YR`|hgP;I$TxZfWY^JiEDKFks?4li)P`b@x_;a`US4Xy>eL6+OHk z$^vnp9Tl5|D&E^w@tI)t(Z?&62-Z{fR7?`dgf~k}sQ$to8Z@-^~=jsdHrZhT5zhlc4o~r(`zSOUo&^+w3$=* zT5~=;PGG8-$}`7UR(fmuLUlq`q}awetIQIiC?)*yH_pZKMQ>I_gcg*}nptZg&M%+t z)0qcvtr+7>s<6PDq(53LAweBH*vqP%kl4-z;}^%7IuPjh@$SO@`YB9oUts|YcI4u64d%2c#U!`TMa>SWeWqD3f zKE&Faj+(miez#lv+9`DkWTSP*`1o;_JNTjrKrA>=iRFz;6+iV%TfX`hO9rp+t`6i4 z<1K4dQ#-z7rKN%T1g{#>p4z`=-gmNPl=$OVH;Y}h zx8pTFmLfNAWm7Ec)aNO0`!wF*U!AvO8gCzHyumjeTGr#|M&91hcmrg}n?%}EmH(P~ z`)e(O#UIGq(?;H$(bFxx6{Q0|uozTSzi3o}8r)uXbFhHL3bh6EQ|G51P*dCUJs;V+ zDe1EEn2v*!c<@W+RHX+u&#~k;?{D}TP}YX39Q8bYpCyQZ7+9=C!pbrHD1OnH7!WHH$2{0%=HtEl=R9xx*e~>IOKn zD*cD4^MQY`M&&w!Ywi_r)gvy=AQ44KjbF6nErvH-Xg5%(1Fch2$C?ziqoVyjIv+mU zxN5#-uLQ(!VV!CKFhqJkXn|{pYfh@@x0r}z2{UVs%RHlY-n^PAwe!r=CYx(!E;7%Z zb-j7P%t^I#YkBa;?IL->5=$`u=g*4v{J;OS3ngBoB`5Nt6dXI#sdc7Pz_iZ%ad&bh zA9;f%geNQr4&!rgusi|2BVn;+h*0Xq8IBzFaC%6mpv-hnsA7b(AqpSaSu0vm`>7djm{!ipRw$6w@*d)14C2?N`9Gz8R*S z*IA=on9wY9;mc?nfWe3FFDq2C1)i++M?p;uwZ498B9PY9HD_DpSmkv=j;iZ`6V&yw zYWl*@mtQ=nMsNBhzdgU}R!f?4hCg?!C0qGMGWgXM7`*6a@Qd3l1KI`4sM5r{F15U( zG>Nt`>(~5UAY+bJdJ>uB^|wt3Q9g67z1@MHBJ+PQW) z#Lao;v@~;(J``#enXjoe&#jp@uXd6c;$q0uny(lCn>T9){BQcK`SZ***VRm$F7g@k zn4fSfys}6jz<= zk#5aAzI%2BobWnw&Nm;4y8V@uXwtNKg5OEzYZjU3)y_wl*Q6inqn-B?;j8t z&wtDx9U4~e?|W6<+h1ID)$+P!?I6(+gS#x)5@ovHA41IXkT~^ve-UyM20F$=r~Ut{ zk4jq6N44o247vt2iF`qsFNe^DO+o&OKYA7AOWw4?Qmh=~0UIEs3|MI?RGru}b_t79 zB6v~k=rE_>-Ik}?sBgd+&#;wgW&E|Q8#>&wWZ?ALnz_>#r3w=?Po6e+-hA`yS<`0D zH=~_H9E9;uyRc^BeDkCQv!_p+STn!YJZ&b{cH4Ej*)mHGDszo{tijMR&s#8Ys(E6~ zyxMuG!Yn;z2?dt9e4@2i$p6<&ge~yY`3IVPXTGiap&tv+(bDy{VAZNf+meeXt4xkqFGl^rAkfbr;@6w<7vB?Q?aCWBR&;R2Z?s%gJ1Gnb z|A89w>h1$&-n5}kK<=DZ*B1ZkUiS~r+HASOyLsaxZrx%zr2HsX_Alpk>A`XZJ?yp& z#zS7U4CK`x2Kbd`6EIXT0r8dBdVdL2?r+@N6vpfBu^b67VCQ3MqRl+`o~X_y3-jfx z7Z2~mY=k^=wdq^tr#Wnzm$Z}VPg zB(?iNi?--*zR&WMqAq6q*bd8N(_#>HN!#!mKIS*GACJD@GKT-U)3Qq4$@pDwT5{L} zR0F41S#x;9vCvF~;dF~vH;xQZ;rp0tP2;lp42LzAn?JX-<%b@yOz^@oT#Ux6_b|Sv zZFLm8hf*(k(OMGLC?Gyy1|zlU`DUQL)K;W!1cBN+()nu-Sw3eU&~{nJ$0qWGKf}7H zpEG{pJxe!siWUo@*4O`@p`M^ZeG7d&!jkRt3RLBppN4khnSHapdB{r_>I244KVrGv z$Q%mwm#0uib)mBUhFpFf2xlHQjPH2N@}WG;ZU`Y zqgV+LU6#RD?zTM6M$=~C07}B))^(WDip2K)K0$M}Bx-=?((c@UDEI z^#dhb5N*SUT7x>6>h2Gev1~7)#dj{Oni$yv^}446efgZ~_!xfmTbBOpb=n4W+MUn- zv`vbs5h@*cr%g}xezWq1m$mXa&j)vg0}??YtjVKNKMqr|0A7ElO+3#(WHFl{%5d|$ zQSoYHAXjRwMf}2z;eP)!cYhtS^ke^cAnwkQ`X%5l#2nv~u^=+4bnZntav$BST(oZk z<8bh=@b*uvgUZvG+V5?HIOf<9hb#_Oq%Y;8xC7K$KNlI zBm_Xx*+)QsBHxC&wBrH}`p(ehK623UGDvdY3JjK^pe#A0TVFi?NJ-`nQ zk^z1=Eyj_2)F&xZ2_hr8B1i^!!H@{>N%8l3av+E-xJJ&kzv638Tk?6@E=wYR?3iVv zkpnSE#_9+j><_MQqNWAA_D z&Uzd?!w(*awXydtP{*{T9HJb#ZyyXwCo>+|Ui~(Rn@?I|8PwB@^>NoSUvk{t z8RRkUN<=5fahD{hi9cQAPW)a_7b1*r2!sEjC4v5pgK(t)xR?}!(E0f1u%WlG}=Umsd5#vdlwJ%h>kD-M?9PcVk#FKmS;@zh}F9j7fmijmr}qH&4b`K6^Nb5JUK zHclu}Q-k@CuPkGY4RCNaL!L|<~oxS~Wn&@mrpQy^M&nmdWgXf*nU> z#A*U@3m?ptZ!N3XbEJ$fd2f7$`b_Y~EZa!6A()4xj4iuT@{ zj50Gyg+t#Ys&@r@*lh?@*6j9-`1N2g|Lr?VuehD!4;mv@QmzghsLGJZf^* zD!fc4HI;q3%@V-QQoKvrOdQU4+!C10t_lIRT!Z95yuF0|EhSa^Xe$y6oFrCN->I`uPw6oFhZ8x2>EO1&z9~+a9LAji5eKf_xuGrw0{T7jgm`X z5wNes=2DhW>RAF}ka~8q^|aq~rUt-H>J9IWiCV8|dKPdfwxmGQVoQpJhI-mpkboF8o%*+>!6zBOeCOBYomdKOB6Ol8 z@tRPp+%A&KHo2j0n|UtBniTh^uvr{jZDoSdnc~R5Y^i4kh%gStEU@;GJ840oZnjUa zuoMN*(c;VdF9=C+wpXmneb^L=7~T1R+c;o$X zA-s`UH?xl^RWaRbj`0J5u~>z+S%a)a&5=F;NDo$r^Vxyc!=~Rf>D1ps`Pd-q2=*5x z;1=r-53y9=FpT6vu1&!PRYys=erZuIt?&YsYhj4>W@Zi}<}TzSd~1#3!g%6{>LL{y zdkCgga0wO|W_{9B7$&<-EezwIg<1Qv!IXkaFtr$v!dVd4s07=Gbm zP-=$(vbDi}`J7Eb{WxYcBxVt(0ke(K5nBXLn9OVyzc88E8ivVCfMKG+t3%Yue0WFe z=9Y4p?$OqJ*Tg&0LzJ%%%T-J9?S9%;l%HS=z966s4ZDm?;>;cbtG=Pyy9p($b}~^<9=rD`L`;)j=jL zS)_y}EhSJcl9th=9FrDhB(Eu^K}f0OOLDBaDm>dG@)kZM*Oj;c4NP1p4VkzYAegx1 zIVx^s1~A5^bU{puO>rG$Y>Mt6lb3arHI#m}fEc95WTKU|qC(L00G3GGM5$ie3ufT=K zVc72!J#zlD2YOWrm#5F5A24+R{Fu5J@aw6|0~Di3UErjpuItsht}%Vd4ktE^y3P;~ zs%z)cENe%_XE?xR{xXub5h_uKh7<2>1%Balq_7*zT{;SeXzntQw*POA^&&GsFtIHR zmx*mgxZ5@`Z=nN5%Ukk$Stt6iWfUp8aGh>|bi%g*mv7tQG;F^09NS3iW4AX9gezeA z{j60!_dywt+j1g3Ogpf#lU9aa>dj{_WU1;lBDU%Aa9@7R6r3&OhGqMzaGidrq%TPF zq7O$T8i|V(D6Cm!U={@K%`pf1r$6LC2GO-Hf@UHI>fp>AV0~CI9S0sn4x}Crm#eC$ zDC6#6dXn(1ej6@>DX`tK*xHM5qJ`^Ep@KV@>U?UYABK})`k!L!cIFd7OiJ{GKWPM~ zg{^(?fLHaY96uFWV>Bf-q^^zuT9N#09b|pg)Fna_t4jpGVX$>5OQs}TV!>(0qAKdZ z)SL*nXipEZjtJGMXfeB!XwgTe3C#-QBZy>chgz>=rIf6Yj9}E#gpm>>3I_;0gwx1^ zaF{9_hVGgW)T4m!s48n8KJpqVx}l$Cu7FFEG%ArHipj!Ff-_7OZWg~VS-3d@lLbbT z1rZs|KHclaz*(aa)`4=xQVVG=oC9Hh^Yw8>>Okh4^WnI`3jBcWb^F=$Wdik5_@DdO zfq;->2coPFmp;e9nt9pfh#n^K<5*(5K0L0}>Sd^uTk*Y(dl<0vyHzX+<5KsXVqpju z-|i9#6)s{tCSo`w1^o2ZxLeu@9YB*;l;DO3P}+xrX&2JG=6NN^8cZ zQ*g9_vLW|HDa0lE<6bXmxu{jhZPC>ht4UFnNO`hBiG&e-GN77Y_%z#(|6#Kh@`r8K z$9$3^!9~_rTa#Hb{Bn1XYly2|BW0i|>yi~1pg-1FJByQUG8C4xPE!p)z&B3{ggXUq?Y?{Ctz1+ z-_z>OF5tFmYX#dwkjqIx3*_n=BE=*imXD~hZe(xLCSoSQtv6V+x!LX;qwbI7JNv*p z0AuF&2mbl`8y8XOYWAgWM`KxJHz_- zd>Bo*+zK>s)S&IRJvlc$nn$HYioVC;lbXj=xTfG`s78iE5&$7PFUZaemMEf;~ z_LCBA9#;7HqNq({$Heib{|2|=h5e>>))Lc+C~Z#jIcdmoX7Cx2^&5~; ztjB`I$mz^SQF1!-5pAYVXD&y{>5S45y2Tasz#B|b{w7%cJGwQ9QyD;tQ<>&S^{Gtf zj@neFD@BbAC-RzOu7nJGC{91)uHS$0|a|))%8{z zGk{U}nU96F;gJiig+7(Qo}9morHqQu!Y{mLFmLglyeH1;cPfu?!Uqes-sx_!poW}Tq?AS%T13l;NH{b_5Q_I@o2i`9=hy7pJl6`U^zueJ7M zvnW_3IizKfG$upK#>BB5oJZDLAM#=AJ(>>Wjnm-9>*kPRAtiu(ZqH5Ba|m@vO-3{tpP?KlYCwo-X|ylj{aUXAdC7B0v~%rN>t0{>s|Ptv zB^RUleLJk1*hO00k{l6I<3FGrO=@@yzwLg=Wg=s!aSK&`c|W{Rc5<)PPj$_5Q1`Gr zeftB}nZ^df9*F65kTk+#M5*ggX~KZY@-lZM2%4%V+(_#+_+8Rcqfx^SLG*}h(18s&_$IJ>5Y#-laEoa}-QV*oD(u~fy zkv1N*jv{8JiM1hyA2@0)BHf`C7?g_L@x)$hCX0+ErVb3z?uc*MAB8)oJY!v`sOho% z^gioYmg9j!8-$s$oIeZ6L?$iv5Xvkmq{hmzksK?>M)0uUXd;?ct81)WcMN*YdVtv} zR!mXMHL<>2ecpPjN&IMBSDw!%(n{d-)A@yVBYLS50Fl@P!(3`cEMM}1br~U-D4DXy z@{7I`qm7gV|70v^RlCAz5s2y@<3MA(x#DwQvUcFzU$UmN)s#UG?RRcj`yHH3FIhJ$ z>MqoN4Bz+)Ot~NTz%!5s4-E8&d;F>Ut;OsSTI$gQT_u$VwI0|R%gc7d%5!$3wN`yc zBk@e5bqqU7k?7;$a4es20QON2(_#-A-6V~-J!s5$)mp7y&}f`{6&U@MA`vt;9m*F{ zEPKs5iv2_jJt!ne3g(G(Nq(tHjeLl z*ILPHX)y@YEO@6$^fhsM@OExFY|T^HQrc87MMj0zYDt{jm4?6ralu6;v%^z7+g>NnE6(WAdDy)fO!Tbv2#90c)aWT8w zG=C+IPyNLDcnggRKehH@m#)<4gHNrKjg34^Qo8|o5=~NWYsB?$E`uu-9|F@^vHgK7 z-*mCVRRLBNaOFEO9w4~#-AVkymG4gRa^-uUScb!S&U0{+Q?7h}9Kk!BfR%47(n}-wZzNv~?X@&?h#N!-%{LYMC-10p#nFufM9t^U8^ z(OTYdIuI`xjK%VQ-oLh}Am`ulgnMNk3ZCm>(sFo-0E@XqUAGnqukSCqXX#&%9v$4;yG`CvHZK+33x3 zD`BZnr-NGs3eXcbqkeq86XRh$Z4uo5v-Olu9Z=?1_q6q7(cn04KkP*LohoVaA&+@d$| zek;TYS}Io987d+4ini@?nt)wn%zIkGY^L(`+Uvr3!9P|9`-Nba`z|fetNS@Y?z{B5 zY~9NI%w(Y9_D35tZlb7W9cI#{5Ed4WwK7qD#p7j)(owR;4dh)$c=ZG2J`0? zTOP}6R=txE;jS6ZEfAJ(6&3V7LBu?kpBnO6p<8JM3lhr59;x&ud^$mZ8^Zo5@ez2Ab->1qaO?_Kvio*8x zvrP%uPk5qoe&7dkzDWv+ocqnZ)ZaFW(YBrpw`+l_zRz@qBF5F*F9ifwZ$D4a_nDkE z0k*aZyDAY1F(ra1g4;6xHRDDT`!7W#rs10wDQRklM4ol9raOzE?O^auQbQAEAmCM8tYw6@avU%ocN7GuN@XZln8DZz`uwn4@!c+xth#MYhlr?kaM>nO^r zE-Va*#uD3lBN{wA^(P$s7AtnYfvm7Y<*W*`nH4sX;zeCdNR+ymU?>q6^6O)VbW^WO zl$&k~X)!8ezNU;@b!EVYTbD3h8QPL5P{0iw0|mU{V1VGpgHNPwDKmiOTJXmUJFy*< z1)QshRm=!lTUQJp5@oy9hzZpKHhG+(9PvE zwY%xFMA)Ufw_7K6f|jFlKGBqOMk>byPKfXMqohlRI$b>-rI7;>RF8oOs>c9PN-HCr zb@8^Z6=r~=RIlh#iHFA2pUv{%+?Qr~aPE{@?#FcLM1}&6oJ0X3BPW*!k1bfEbdu*o zi)eimte}$|0wX)Qhk!U2s`l-KZ>&Y;k`_8cI;_83Yodil~!ZEw*0<%9UC^XIXq^kVI8#8R>|A!Xc_>#1&0TDEc zx>$h(1Lx+UodJS#^DyxX=jLIZ<$b)>BHzQgIp$|BJH)JPS(a^8fFW(;c%Efkwrwv< z6{uW39r{g6thy60RKQ8(rdCbq2J;!iPDS&Sp0+70pJ11XRSWd$@;b}JDks;rmLDDn zksZR0$f@Af)dPcVa6jZ!ZiYI%vpmhRyO%AJZ|`Lr#->s1SiiP~`W~lWmNaX0Q?o`^ zw#BoSy0J4p$I2e2CE{F+C|Mf`iJU3V)|u_2#UZB3I#GH@zC zI`h;0ZN2021em6VT`7y08se-aUNmx<9v-e)(J|MH!!;sp*Q_hG$i`R<#j7VfITVb( zF;hTrsDP>IhiX<9+umWNv^K`D5%9VsJRBP^f|Ss!0F$9yTm_g)%H^q=N&Mn?TRv~- zF+N0{+eNzjs4jR7K&cjG+L0QdfB}qBkOwpj5RC6P4Y8##16a>_Hc<|QpEOp)_6vvF zt}%jzi&TaRcC;fogFqmW@a!69gNw;8QlzL5r=}1mDWMAaKvT#^q+BZG7*WV64}}~i z3IPhJ5K2KR!~ntk&j8VNVd_eZ40U0sh`KmZV!NFgz^IF747zZFE}|9Io#I0^bm=PX zq6;a})KEV&&aM`Am1l*DNja)P?cY_V0HeCPZ9;k6o}+Y?udD)Ml%67%(i zV)$t4MokdFj)G9^QV;_K6SHoWwn+*zz)_ML4U(jD+gRKC>&lZt`Rmj8ZsRr9Dx6p{qO-c7Zm-J;(aq?UU8$ zZc<6H-H63uCKT08_H#GDDrP%?RaX*V#Y0;LtT64AS7%ia2z5sVlDacM&9onP&|!e+sox{CA`W9iMHGL*6kEQrJ&J!* zH<>F>@8%X$WPQdkaq*>bB@r}E5rHxJIw2Uq&9~#1GsV z89T$~W%R`5_Q1}D98v5xoDfSjxJcAlgmB0Sj-r z&oF|3p#r9m*Lj^nI*-k=B`T#YA#KGQN=0|s>Uies_BOm>j;(?9CM*j{O5%D62+d_E z19GcjXp*+oFx;cH+-iW=(DA+xY&C>=u}JLVFpwE2;|>FbxHR18wT3y6x?658e7nH* zy{gVklA8-NK|tJGSaoV`g;6v8!-- zi&rBB6tq!&T~bh&CvjXzza6wBHWc>HiuL19)Y~qp=acv&OKfTE0;TI#&i7O~mxOY1 zOnX4XS+7lt+;mGxd){!PEruU?%@)k-_Su8^0B-ZLvCurWbzh2mfd@|d&2q?Zhf@ZG2Dy0KO5n-o!no9m?s7Y3PZEFPPTM4J4Xmg;|MV`PS48PuY%`%W z#8XZEi4ghS<1e8~C#15_+77HNH%m)vOo8uG+`Pu-&3k@mWLqIqS!+vXTPb~EWTCHkYL64K zHfY*Q$+6$T-Z!*u zWYvZ6r0C^Mwh`W1+Rxp2$YxtN_A{l5%8E?(7?Br<6hCOniXCrX$5KSie`{E(-IL`; zERZlLYWqF5-+an}6#wBKctgiRiK2B?-=3JMBzXYfG$aq#Bp8w`$7A|V`+2sMwiBT|Y_eypSfaOcNse2h5cgbLqS5NL z7{0YV&?!lB5445ATQ?ahiapTk2WY!!@n*$+#nWE?K@w zaRoH6Jaw<>i)3FOoR?>2w31wodM#NlN6pT*_X&Y|+DcSH5BT*(GJo(fTT0vs0j8#M zkTQcSQJ5ig6^&dY3iG}^xd&w1@bw!ul~j{&Mij!0WQW%ZeBo#!#N$LoS6n9<>5S*p`@igqp z8NfJ88`=YBX-Y4i_?E~LmLhAs zy5D_33ToRd+B&`rVISw=H9z(D}rvs0x@pG``rOJA9)x%5?}f^_M3r4k3QIaMwc4oH4sWZi@9K9V0y3wylF9r z5wajSk=@h`^&*0LnT}d~)6E1Z;mb#U(MH_589?Wt8PLv=W?+Dz8I*kvlV}52m;v8> z8Ww=W2fkD=1UyzTB~?ZzTdG`>tw@!T{wQS~2jF1=ApuX*MKOH`Y?n<8=)``Y zO|a9xCDQ&bJIw@+1g;!km#3c54B`xJh6aJ391Kd=MrcSnu{9h^0qJCf#-zJD2(vCg zTO&R<2x$3|h0z6S4tx$#Jb0Dc3{MutGeF0K9SwM}qp!f8-NjyIGqiB432!suy2wNw zEoDzg-?*VFQ8O4oCJm+;vPBfxG94LOjF1s6#=s<6Ok=ezHG*hX?>m`BDPM@b(f1yd z!~FEGaAXMjA2X@vC@0we`vk<$|J%Q_r6{KNfqC(XI{tZS-}d~+?`@rZK7*>f_ZzmZ z>;y%Fo%ab9=!`B<=6PF>Fg-l9m)XUK>3qg{TOalz#RCGCG_QITo?a8D!w#q8jVb4} zA8ofNJ|P*v%AB<8%`6OlxqTM05|lwYDlWrqN6JsOt^~iIWW_&&_x;J1%ls)GJj!*? zPjFZZXw+t%OgQm)7slqTe#+Z z;byp)d@x;(^?m8?v5u#1Xbjf-Sj$3hYQ~{BbrX4|Hlt(8Vw_`sxBY4g+j!Mg@(i>1 zj+1!udqoDOr4cQ+<>y|p4~w9ggo_tQsW2hEU$BA+=>y^yCZrE!Tsa|yL;(}h@V{-_ zTTDpzc)bwdRQ|C|RoKf^Ibc)T)c<(`)`VE;JuMEjZWdpa2;ca;y$^erAeU)q3*_qF z$&hL2I>mk?`;s=nH1vxMOhb=n@U<^GBKZ5Ny^>vOR_iwyAR-NImkCn1!ab&;Py%Ua zIPdLa@5v%)G3KIBjJYV_$6WLZ9AYkdBty$ZX(gG9?uF*=TomeQx#%E4???u}+{T_7 z_l^M5T=ZEg2Iiu;EIh)%q{v10dA1x%tLVAt)f9}baIAo!E8GWOLwf^e5Z~3_zLYJZ zwK1t$kSTM~1*8Q0ws>wEk0q?l6alIeFO9OdS7GB0ebeep;+wX?;;~3V24%`5WJRVt zmjIYCBcPaNMqq$oM$j|BUd#+&Obq8{N{2EFm=uX&aiG0{eMmT!$BU0@G8`o(nhcLW zwz$gu;!8W8F{oF2ej$2cXFmIl8*=>WW#9ROaqMsMz~WXa^97sZ1ekWKLv z0v_4{fCk@>Y0e&|mJSVTRWq!xprYpnlZ;qRf+-B=2DEwt2%Ui4O*=t$w*i9P{eGl9 zo*BRxs^X&TnQSFx%N?pBXl-KOFGbl)jhN7I4(o=4iRAQ58C=GKYQ#I@j!cb>Wc1{6TrxVYDeWX}fL-w^Rod4^rKulg$u*;+q?wLiTQfSGC7F9E%gr2SIbqqv ze2}?d0WmN)I>Ek0?UBvTCD_wgDs6zwbYdp#0cg1@ zKhe#81LGdpOA>UhwU;}L&GBoSyeY|kSbgY!#*YaG4G%6YLa@XH<0U~G6O5O|FHA6A zhTgc+iWhi)OfVMou&-+|!Dz)TLtOEKEx|MF6RHugIW5WffPghYR{jh00{HPXdlCDZ zV3%1&3-s#FWXmk$rF8ou-oM!HC*l_-7=L7Ag7Hf>U-Cg!6kpxX?$2M`)jpW7>}T)B zI^+PyF1L;KgLB;V#nW_GAchIUS$NJCw<2gInJ^p%a_)oy>S+l>ksxTl#05i`@~G1nq$A64W&Ga;S=|sXUjpfik>ixrC{_b4go>0@*a2y_oH#Ma_x)Q zb+k4n40Cg2!Z4SVXu%ftBXW6TFMEY)RgM-}*N|E=vaWtuU~{(YYRCaaz1b_Y5sXH`hRMzM|ul57I@B4Th$;hGjsk$1acwV;7Z4 z#x4T{V^>(dJ&75>=oe?@$W&!Is7ItKZTi`tV1H6hQG35?+WVE1G}B&4PfdGaJ)vh@ zmWYxD_0+WoMKtxGA;3^tz6nmR&$}LP+xCaj7W1R(jqrf)ZWpdy@HjV zQhNr(y7oXO)E<>dYR>@4YOIOmUliG^nE{NE|Jq`EI-5or!^mHKSCD@M)s)*#VODPs z@5gcG_>-=B4EEDCbbd%Bf@$wh};Vp^z-5CL&3Lwup<+L87}YDzBudL$$lX|w_AA~{#*TkW0e z9?9)WAi2=pk(OL^rR}XH_TJ0@!9mn17nxN;c+rjaKD@f4ub&FNhwA{;o#~8f>j1SB zIhqbe{VTOe7%)28$w%9NQ`LF781)mbP*rorq4L@db;d3pAj)8PzDuxx;dzDlh2ePx z$aAIe48AsG;Dl?q&0^ouVt9Va>-oPpqIWG1e4r_S@3Y!JXAe>BK-Xz8dM5#E(yaVf zi1rOHg%5z*Ve^+bKgh z#mD0~;i8etmt(}<=GiioR?#DNG6myM?Is{NRJXyfb4Tpy6YRgTL9{l;oWfo*Vi%GU z8FQSO^|hsnIu0s`D=Al#3Nlz%!9Ke?SWoRGhj>sgypy8ZddYZWqs`FYRev!yQ?2jC zk9}4J&&SeYoCV)Zv91KH;!RahDzE7=xsO1L)7R!`>;LYYZF&&uB`!|v#CB1dP%pfvcPU*sTjO&@m0(%qF z5vSU*MdMwyiN+SF`@j{o{nSqIDfa0gRu|e5#WMFMN=onT?$P`i_CZ3dB{LxZGVtLJ zG%6Sp26}2pGSC|!m?q7c3FHl64D_$hw5Ku~*5Gg4QNoQMwS0_|Yyba&trf8?=UU0_i6#to<%?)s1Gss|07Q$Zm?&xfN9qa z_CYN1e}$=Xv3;ZwlQ1-1RBzX|CBf7%!R*~j=2YFlQ;F52&b?%UX`$rMQI`n_an!la zleg5~uc)*7NRK;*wm`#}(T9xB#eLl46EA&F>m$u=8f~U~-1U8=$K6Pa(c`YASnmU@ z29FD9(c?Bpiyqh6NAtMPQ@qlQb-ba9WLEdMfEGP2pd}vnL?7vKKW~QYGaXro`i(9+ zdfaBn(BobP)aY@QzQksbwZADg|GsWTqQ@01p~p3dtb5!Mqui>b{pg&)#v^FEzY+v^YI^(N^nj zqd4ZRw&yYf1g~1ozT4NAA75=xVUN?=LcvkAw$7|rK-@B_s}UDEowwFNfO(ms(OpH$ zxcKl{;$wR%M{_W%8xB5ukay+T2jq>oI9RyZ zzN5w2$J4Exef+o$PWC>s#r_|bBp7lfzF=J1?4vUQYtpRzSBSoLkKMw05$tl}(E`1? z+&nq)cAPyyGB#;sN_D>>#a;$=IuT zG8uc7lxWEq?lyjrCwIJ>NI9lq%1NnK-HVQrsDK{jpy;I>1_;V=;cW&op`9Pk9}sZFEgbvH?ClV1Gd3Hxv( zCQP`a^JT&fDiK+b^1RTH_A$Xn@}$dr2nLk+67s#2Alk_m0U>sx?W;L81wBt2VEo>v zD=1X)(9a&JpU5XkD;>QS93RV+Es4=;8pJ@1c^uCf9|W^0z$5Oi?TXA=iXD? zFcy#CiXV8@d*y3(Z?1a7@*!S#4jgH`!34)xUlSKz@RrSPaabBpXzvwARq%YwVX+5= z8(;T`wJlswixaLKVw=1YE{^5{n!UX2*_p$*;|&O*O+o-v$MJsTUijw(3>AdySXu3T zQiAW(20z&3$4d^{pDk?(`}JO9cb2_ruTt1Qgk^az{BHrF5t-7J_re1Uw0q&f1s-}3 zZ*8fpKyHHL7wCeWe%|yaa5t#KNJWkd0|$6NoI+fhzRzo2@SU9;(|O^?!@`|s-?4WJ zRC5dPez^Fzai3*6Z#r&2tBx(;hfcs8VLTNY9ILz;URfZW>;6TPL)0k+^4Zz*C+#!6 zxF!hf%vY@i-1G&kJXt9@m|~TL-5?;ehsuGRcyV?#uq{3|$4=RAW~&VC;vF_`8CfB* zE2DYl-;iF60wUs8c+<7x{rI(~?FW7K0VTfbb4Mz3Qkrhn?4_zX0LJlzCEK(RY-s0{ z1(E!z7)KDl`71{-zw;}*H&=C0TTd165&wZ*&Zj5`sI3nKglg*vONh}zCxqXRCX9|ON2^{$xttq;{ zyrsLafCrtkkMg!3+x6$_clK=7juI3q3QZLdsv=mSXbWeq#D#W603lzhOe@GOUJa?fm$bU+s*~Ja2zPozkD@{sbsaJ@m-qkhby7%3lk2!1i<<N4W4;#dZsc!4;QeQz9i6*qr&)(?d0gj>;JKbwMPAF z*8v+3J7BY#QWgpi8!jMJ;ho^A1ra$C2FS>9yuNY`8&BJzwlAb-_F}aZERu6|`~aR| za-_A;py8gI(%JPbHNY><7$~&1Kh!E+2!kUT^PAa^n*$snJid*iQGH|pZ))SnW{**} zT*E`%MLXmf>=2AmW?QM5?-&K|JN9qq@H#x*KY(9u=jhDtr?jz44hjhElKV7i?!_)S z&W;}8)6%8MhRlSA zBaQ?*26^c$;1SX1f*dLAFN2)IS`!2tR5gES68x%JYh$qEC6+^(h384U&T}#g3>5h)q zef9z=zQVsMmF=TM-P+khwX+|!V@M18daI)+3;F6;M_2YFC5t*bCLq+L9@C_FSkuv0 zagM?K@3RZq@*gYOx8d+-IXh!O(+ZV+sS`7(4BrTfFgw0fSrNZvc4V=@B99TsGZUgS zl_FwJ@Y&d&?x11uR#k0^cw}cs4r@aRqN;ib2vwD-NRE%I;JBTbWh8ZRjAH!_?OLIm zd>y+%Hwjhn_>`ra<4d1fAjQiDSEaKll&IUBCQ|LpLG7S9B`#u-Jaeogkk=Pih4E8w zjtt?ma~eA-qnYT%gKs6A-Ghahgz-n#!j1aExQz(5@9K+n{4NsBG4Q zkU&3}>iAuKrHF4!bM#@2l%!i>FHwaZ(iL`LB80r)ZyxpMvr4PNTd%O^iuhX@jtur3 zNqyI zLURR#8e5>?t623fmcuh)Qq_Dm+|bN>)hR>V$PJpirLW_JI=h&U%X4J1xs;g8%9NR& z>bkK-b$vby#%9t`CAd}Usw?K#_k-wIM_EC2t@2dY6e-apO z8`Kq4k>JNe3mxzKybY9i-NLFA_70`#*4mq%TKkA-t>%}$k$lHp;L#c$g)dA8eR`rT zuiF5AvNdk)wPOBPv7;w@jq-!4`$j;hr8P?FUe;8{206B~zYNVMmb(r7Z2pul|U|i6D5XztNLsh+&DC< zXBkmXTKDise)D!Psiskm0KR3r!`sQfx?mt*HX0VT7EmToQCmC}HCM_qOHbSbdlI)kwAarPU(IiY9#4nC>{J|y|ns{$*>Np*-L3NE29KWb{ z4C2pLJM!3aO3kgarBr9@q|Staovv|=_tsn058|_TJ7QTqrHCqd&{HKhX`J6MNV=;p zCOXcs=M3#yp_hF+c7tAmuZ;-cPfT_=eNF)>J|KB)DmzVyy4CYJRnK?Cq+HtvfxL0d zsSuv_9|(gN^1)JD69zxi6!#hB1r_(VfKXfdSQG67O>qnA9Q7<_FtI^#j9^fdfZ$$W z>vpJS@XOaaCi$cSI$pESH;VtbJGs)-doUc{5O3r3rG!CwlhoY7WGoIGEcg4tuEbL( zYSv(RUL$?5+^lODp64GbP*4eb43?YgQG92;qYp3qrH5ZwvS+1m4a1mV)lUu4{=i#K zfrF(x0R zkJA>dgP&-M;NRv?Xx+SS#b7yPR#0BB=b!QvdATOo?Stiz!Ja=%+hNZi5|Dqd=f41S zr02hN_562~F!ua6L~-h`9zFk+*7HqTS7pAf`h}ekIB3_O)Vlr<>H21s-gNbL-$DM0 z>$i9rrBNzKxm~o@_YB|rslbn)xxukZ9XN#Fy%;jN!9#$qYbV`3yA^7X*arZM~+qHBxV5Z+9$XM`$zLTnM@Y z=8hjzFm5g!86v+wn-TZ2P^$Ea~S;4hXpFPtAJ4D{-Y`PFQMGatgoR( zD@?K1Q0cV)^3YKAt7U%twbhORyneOg9-nHU$B!-^o6fGGl->4tHPz8{T}Q4wFp$rF zvMG#Tzt;N^Ts4&USqHXLMHxV4-7FwfS#~LuV&Qupfe}1-z2hKTXK2<6jjh%+W*KT6 zyr{A7H#&~1&kyBqZ30eTq$J&{a#B^j(UPiQN6?3-Zyp=eDt+zM^tG3Af%^KyQ(q05 zzMd5N%H$PW!QUPmrJbg$!P zHFOvsu?^<79fpyiA#}(yABDN?&Swl$|M+2g&~VLddwDx7*)U%oKefcn;D>QohGq%~ zwY2tvlVY{aFqs*|Oe;Cd2GM5d^D^s7`m<3KEPS2`D)Ow1FmtmOT{ae8m&mSeu|ay= ztJ%f|t@Ve&Y!pQx*c@dFPza@ktSk;|Z!yFGj39?~0o@?dp&%r7Up z@EP{VRxOUE+zHfOQ$nBalO}si2Su?vw-9z7`lNu+-nv5ydYjf;O^-NUX9o<;yfT9c*?Os35XU|wG zH_r-d$HzSF*r7%b=cj)d7tY)6b^LD19u8-6Q%oHN6psf`jN)2BNm!caA+E^bGD-nI zF6H72_i$oQf8jnG4j3y#g~QQ8FWpg%Mm@1XAlO}*&2 zgB@sA;bnIPd{gcUB(i)e?=WqIE=pmO&5Tx(H$D~**KT}Ftm+g3^|Tuw=f$s$!}-)# z9KGV!i9hJLyNNObw>;9F-@f7~Q`s*Rj^7$#FPC|_Q)lCw#!d=k7b!~pT1fj5z>;g? zfye#Z2#DxIp;)}3-tbKLKyIG4*T;G1YYvCPy3jUwnZi5*FHZFbv z!9V@h(T!c*j8qjNHB~3I<1I&Wi=^;cWixrWxo$ChWc@owtXe;UZ~x9=X16vYbu%Hg zQYTe?$kDk)QZ;v1MVo*WFZ*azk^0~WKKuum67HgS#U*)ywL!-^`MjfLU6s8HOoGnf zIoQZe?RTgt!@F=M;1I=*eQ}WB|4_#tcfrxUMXvFBi$Ov7Jpcm)ueV%( z#PNZ#)9{*3oS>(Dh%y@NN8HtkIO_O<`HmzeiRPt@l;))vO57jb?l@B3)sCUXLMAm5 zO2oSYxIfu-q}#yYvUV3DRFFJh4P-#57=MZeWirr3nQs2TF^3tzDAPYineehrB*OGN zifu;73pb__^1{s|N)AV0jew95n9J+82dq|a0WFBP9+uDsDCSL6%oVzrc=LGCNL=A! z3uv>fPisolxg+JWRt>ND334@HNZc1OdJ6n(9(7ZMHM~;sxnDf_2 z`2mzG;KGpd<47%}&`L6-d^D1T6sV_#luSYH$B{h!v?C+#djX~) zGB$N6fgW~^C+v~n64E2_CGH-<;M5WU3{D0up(8gy(2*ay;JCyLV7xIoWfZzb)iz2x z>xxm*S(j1P&>TwzgqWk|tf!YqXFZcPKw0XjEDLp6&{pcQ5dh4gfFZ9+=1LiAu>*_xoGh6c3;eWyr%6BM_y0?ClfHm?f zZ)>HuE@@jC#$*2&7RC=>f;HFUgoNv^|NOs>A*@{~ur_ICHQVNl;Ee}Gyj3p&0T0QzFQ5& z_--}e&${jE2%dh~F^m<^YKXtDhJPe2LHtmH_}|;AbY_*b81X}~3;)hO@G+ZurLuy} zrPUDsObvfMEkXQHf}ej`MN1Ghl(=E~w0Ml6ZI_)QnWncMLZf37iCNXa9Up&+6xCOS=k?p4_G5U<7hxJr++7G%69MQY z=pr#MIx3K%mfFYw1XR%78K|JUGeFSYz2{$<9_~J^Z74^-_g$&HDSj3>7YX?ZR(S_2 zrVOHB{YOi|`Ws3_LVh_-?QXJ-_T_8u?beAoXgP{zp`u+QMKggF@I8N&bm>s13#VPb z21+QLff5R5fS_;}gDOWd0~lq>A8nMWT}b6!Y(3=+Wm>JtwAxVOmg!-aOpnrXl<6TV z)879Fv_&jL#Dj&%4O_7lrxm6Nt3C`P~w*950^}r zXgSLC8oVb6O=n7F#QU&RM!aL- ziNp&91ILi@f}^rfK**@nV(`^tWDKsR4N$sqW5@ujlhTO+hB4SNM#f+ZZH6(pY>ecn zaEzNHe3XFGn#j?HW*q$Wn^r2E4j=Iga}J-fE9M*xT`Fg{lygk!TDhIY2@J$nYBR)+1gw!?xwMrz2V4OR;DJe% zV^}J|E+>aA(5p)+lNrY4q{>@ZF>Qjew|^OC7S>7#;bmNga9ScmIB-^L9jOBCIdSk1PDWwY1okkkhNvIVQ17E9h#E?i z^vVME8ZAN8qC`WD*})YQgV{lPnU)>UN-{g>0KDUKIb!h?>S@`*Me!@WjPJ^Yo zf6(k8f^s9W11DTM9jCD0DO{undHul6%abV zH8j%ax6!mExQF=z!gTJnwO62%HK#g`HK&u+w{n0wy`0bOTbajZHltHV z=`56V)Qe?&XI^DNi)1j07|380F+k8qPRy@#8u>w=m0m8ReF}(PYD;sT=~uZ&VUJSA zP;(DyntRAlA~ZMq_Q3YMctB-0_2qJ2H=wcy+fVDD`d*}By{(INXJKVp2VHw1($@kF zeyp%vG;2-_@}>4Xx~MWiJzdW8iz+*_ubL4%MTz~O6RRk$>_&9xCMF}Xffnk}06`u8 zQ(U>!$P{kNJ~a>mw0{M$X|XM9tcdL=531~A1Y`Sm22~cbxc`gx%Lo5Iw7qvglt=S8 zo_h`uVL=cDMNh#lDgw6H#n=s45v~GaiDv_Q?_KQZ+QqIhMolx(Bx+1Aw!{=oA|`K4 zkDBtTF~;BQ>~r_bb0zQR3;E>_bIk6Pot>GT-DjSC%q#TxIETAD=CGuj`8S1irUY>g zI}A|MP+g0d!<@^8`o=*6)SAF7+K%%#aDZn1hQT~F)7(N>C6ok05*jFG0DZT*oIl`$ z$1WWxow*4^;(6S?z$7+>f-mkIlBNKH%vxy+&Vio9jErc$`mDVo(}5#<o*=yCDpsMUGp8?!wWSL7O8Tt}qujg#29uQ^5!#z|b%*F1&2K#6z> zz!86HKl6urd=#SZ@4+3|+Z6wwgh&}+Zlx!Jme6*9+nX^bY|vk3U@`q=23D!R%n9#P zKA3^s6%Z0f)toSTpv(!Y3?$Z#CQ)giW)e!RfpXIYHi0=|#6X!7GKz*dVR@*ffs2=v zyI>>YMp2Lmb0l57#~g{SS41|y;}|iV7h24leC0@^tmdcL zL@FZ;P0f)C2v}ubxT)+pl6p--g9+wpyuaO?!xj)eGF$S&**Slp%$5c?%+uIrih{Yw zhJlzZtp&BeZI0$66U>$P%Wn;c;H$IEm3hQpuuxU#pA^fU@xpxCjfr{IyR-u)GjF;( zXvxr5v=<8SC0K*_MAVd^jXqILpg0N1ff?P{CBrc!bkFeV8I1`M!GNW9d5QIsJA#s-Rj z0b^|j2^hs0GGH{$kO5;Q{J;O8?ra%F!+^0kLj;V@@HJSB7vnQTglok`*|=UM7&Pd- z68SJ_d?sjP(6}OgVbHh&)V+ho>HdMkd02sYrqA26mX|RK;6)t?L3dL6{Zk%vYBxZ&~%wMoCfDb`{3tP2FZZaV4`^st4dMO-zyKofD<`LZqJfw2Xy-; z?hd#;D;X4TV?AjvB-3?}3>%rW1@WN;w`W6X3x*A7!LR|mwVmHA+6_rhQ%M)n79HuY%yjML%_&^7q)~_Fh&kzro6Dl z8v!qDG5JEkiYy%hhMJ#*C{(sbC^AO1qw~#!SqlnA**Y#T+gN)FM%h|q%BZG8@L*+> zQBB7Rl8#pVXrIa<(NsGi9ELQoehe87!4E@5w)ll1BRdmAMzro}y^8k}M8CJKgZbS> z=Gndyj#n3(7qTgI5SrIdAYfIF!oo6znohjaQu741m=Km3h7VTGMVZ3kO?>k*b0j~s zzFq|1w9H(QhsHL>Ux{oRC4+vjDHDUh`b_!Q-VaqY>7{T<6jp-KPST{uW)hQzeyT~o zD}F7_Ll*teun7BOBJ8x#`rJ%A@VBSo=TdL8%&Ydx-k;^8C1rY{8! zj!}KYuj8p5fhbwf&lSIMDSjw0(QaW9aVeg#4i42~Xh+-tMrFwjV3e-qiZy}nC^FYI zG~&0m!;ZQMZN;U#VV1UZ!|N;;cbHokVSdzy5SrlXCz^o`o_=_;fqmu%b91E+G>aqI zeqMaiC?D(pg%55Ub$oE!sDt3H%dyd1hv~q$VT#C-+mVNvGQIc->!p z!CBQq#OcAR{|JoM$}5gdP=I{;77c2Ei;-W#@vIZWpH5AD_EFZ|+^AG#R!mz&kFPdmx5UtlI- zANr|b|9$amxtWhVWNu?xBL1LZe>{~5!~X3<<~RepMBy0r4{w=L%17Ltz)Oiz!`XRC zT#LisQZRbre*^?W1n3pxaFZkEm)T#mBgWyoW*LX?>RRv^dP48=yl1=qVSM}sbG#B^ z;cpx@H)0hnK-m@Z(VxQk+*e)xRNW#y`RJ**CnK z1az!$5zs+!5vcNlIhEB6O3!XGZwi9 zJVz05mX4BF>J zFS19h#B|)xQ2(Ons2hBSssrOEUz#>&szL56hEw-SR%wvYlq#+*6|Gv1pu|}e~3m26cR$q$>7W+OtYo6e1Q91EC z>>Ad43|?JS))27DzHm|L7nL<7mQK9m{*ns3_nS}?wTDobtB4PN&fQkIigbL-JcON~ zD7Z~{!HV02XRP9IatyoV)#04G18$A|u)qanpH*E@XeYU#6k5rG0{zql<)Qes&&ng- zGdD5q7JtwMWhE5`x5jYYVQ>D?d*(D2XoJqKpoK&Y8bwEoeVnS(0t)15RCwSXpL%+qOKf_OZEv(!<8Doi{gTy=Wiw;chnK z!vk%2L}z%&A6_sgMMa6;D7(5n0ao%ECnbYUd;b$~+EF(C@2OPSQcW;~tcU>VoA;46IOfo~#l$s_wd~y05*sT%%lmc60GioyG-Kr{jXE z(?L*mw?Bh}Zygv_x64Cy6|b86uo`ya7pS^eJAe5q6g)Kc)iUsNb4%97SIg~@8P!;< zuH}j~jwk&#AeMLg0v;r%(>8n@7V+DF5T&J^H?1!MV-Lv`riROYYG#V;%^S^y`3zQLl==zD5s> zaP&GxIC>ofWiQrbmroCE>eEA;%sndEWMcGy3WmAIp8`VSQwx3}EPa}>ibE}IjCBw_ zp}#~sNT{jfz))ipa|X$4Go_+KZjHk!9&U|89VnCGPk!-^x;0inE?k^-(G(YF8s3S7 zusGK?I`iy2`3G~uXi%cMO4|iHT&3;6#{0PduF}Cjnti^K^VW|r)03#cFi>@s9!J2c z9A$nbXI9#^irn&Rud2M@XLAR(kg$+TwGXDw1rE7X_x;5@f^DHFxKwioF4gPchI;V{ zu$ec_kFjUHdL7YvWx+SU{P4l`dNEi4p8L^Ga=ji6Ox(}ypr5*4mxy1B9X#?^b5qj- z@dsTn$5LT%16cU0`3VENLE*RoEX%t&sM>9Y-i&=s=pMiIySbTx{Y60XD=w?oRtSmu zU4T(kwa)migYVp#VdAHEnIics|1}R|VcF2dl~8~~r+FiVWb^o5Ih_sQ5M44-z1#l) z#cUaz8cpQ_qUd_RJNV4I<|kPbPc|k^Hg##B=v>P?QYj`nb_W4L>R>sTc+6>_JjTEI z(>$--`lj+Fg4MskGH;`(7~-umW1Nl?#yA}W7rK^z!y_;q7(-u1wha9JL1>X9 zx|7{ zdax+A8Fh1FH})eHLloP1bQC2u?E)+wVARPzO((b<^vRaXL5FO)9JI}r%R!ACV%BIi z)dYlCjrwf3b&lL8x1|WEnpQd5bSqtRa5WI~jm0F*a^zyrl%nBc&^Sjf2Gw|K6${+0 zyEr~l0jcDtL1}N4YOI%3zlB&{XNze^_Xc@Bg`$>mgRBGN2HAD^8Nv&hrKYkahaYB^ zCTttU$1!fAW8ANe@qCyiiFjxwnIh^KRS&o1FdYOZXpTDkvHIcTTB!4ITnlOFB-4W% z)h~s#xKX_(e&G^$4XArBf$(U21P_a}O!u`>Js)ZLoZa;pc|$&DsIzSvfvVig@=W_; z7fV-uOYBo$jimdod`*&}C&Y)bm_?@U^d4riK3NC(Cb8+#joGYIzcaFAX zu@+vvl5^!F>&IvdKKz9icqlGg;V-n{!(SKaJyk3j%t^bU0K-($Q)mm4h87?l z!^_25YOzJM8RSnb#}ZZj@6~jNE(`5r14zAk4a#jQa)GBQ)nldr`&|^oVxQA=%?l>0|dYFx%}JO zmK0Nv0Mk6>HZec>$Q|#!H&Y=oO}TZ%UYc`i&Hg|A-OSh^9o??*ovq^8;VEnk1!D{x zDIge`!5Osm{7yYk{ZiT+m%D|78#8KiN*T;Ai=Vl zU7>>EfIe0S^s%l*45+9_J>{3d@*AeNXe$orC(i->sSRjNGF*ssrdX~i>ekG%kjm zyrYii9bJoSJlECnd`(+%JlE)We)c;aHC+TQI367r9FGoy` zjjYBHPkW0UBJC|!*8=0=bE3H2+caA7Fz6 z(y_q-=^!|uD;>b#bYL7%%n-N1iTst{YH4ZBj}8qCQAQ5N4A$_3@UTZ^E#V;Q^q4Tw z7*3)lCQM7k@GxOoCVpYUv}}m4gbB|K5<6RF_^c&dR{EoQSOPM6pT{7T+2f&W_0XZ1 zfK~Ym%f|0%_AH?(PZ@l0aXvFdCR%abEbG`i6a`oGH-?Br%W#J8901A0b+7g>z*0mp z@lD!-D?YSnEB*u8j4M7g(L*du+ zL->f^mSod20!&x@ZB&}ud6qZ3S0&AuE?xNVgRFw8OP!vcs;tW-<1P!u%F1w%3apEFcuqQzbvwhonc z`7~`oyMz|aE?=h2XqV88b_t}>F8v6Hb~$0FYL~Q=v`aIfyX_MCsdo8;_%&fDe=^h3 z+EgI^pmu4a(x6?+uj5cK+NISK^Jm&cvr9@)okXEow99hC0D^WIEPkO~1`qRZmsZfV zuuF)K<@i{OWui~xEL+g(%KO?a75P#tM9Nx1Dwj8Ec3Fdf)ghHJQXapu6m{I`mWR@}T%7{#;b#j1Pm4T36y1FTyt}7x%VAnUX{!wbN<> z;F=n+(_QQcg`kPXdLlhVyP%2Yf9?paOrSs%BPZw>E%Z&%h8Fsk_=Ohw)<0NiENER= zXznn}3|~hcb%t9uu@b_NYi9L10jqM9#jM~S?T#EicofTHH$_D88&5!5dXun_2IhmQ z^B2{?-WdT~h``|>i%ZeMzzhbSx)io+ahZYDln2Aay^qoSe62cgd+kWeNM`ctUsc~9 zO~(&gG@aWn)1jTD>3l*=CldOprqfICygiIx84XMAF9J+WQhT03x{JK zY=FDuR$AH{rimuCCTJ2x#G0V-sCTUUr5QEyk^2ieyVE-B}5B^HJl<&o=d-bZK?^QeEq#A z7>~0O`?PpsOO+O1T^`%d#0@0W7yIixWjPjsrTXLMZiI33 z>*pr5Q4T)AuRmj}&JI#EJiE{N(wd}v_yoWBnI)cGrp-w8BBgpwqnevA>`_4#OC0@B zy`xgS=SB4oLRB%2;K@anW+<$SEM6lAWO?rC%2oO48!f{5*miYl8mo{(y`_Z| zZNsz_f$kP9*&NzK$pbo~_I;=qom@(1EYeY?J|Q3Hc#x^Yw>2Br$*`Eu+GwfEmU@v| zNJ*`8lluETOAk+pD)Hj0)jAswfu0I}imAsAdl5TGi5+(nOAZ>`OAx#8%^+W9vfA1= z#dzMO{fm?;YX1X5Rk`}VwEvr`{XZxj)c$Qk2gNm7F@Zn()tJWXFFB(=Xw#dQ(`0C#Dw~d!r&uwLt^!A z3U6{X;5k(S8?n9Ak?`r?t|#R4$Ti@J;#KmMV4v<+Lv=9**FhTTwAdoE!UIB7Tn7(| zU$_n)boyEc@i^zL?Uqr#*1@EcmSCP~{i*`*eiAaL*E|%U?t)(>U{#R9d1YJ?@q==! z4_HEZ$WBXFc9F1<%c2ja&I?YtEZ*8_8Opw;D7f$V+KJ2JH78jXAA0q=@9qU9BW4ye z5{Bf8O-Lqcq>BtLZhi#8#qC2d9jq3io#f*7l9McM&`(|5x(Ie3I{ArxmWHMa0!$aT zlT=z<-0-7{y{L@1xJ4YWlsZv#sXmf**U=U0S~i8?x@Hp)T-QMRB3nFu_Ml~#!8mQC zy131tC>UO*jMUs&Su|2E7%*_Tx=k1OY&TPfKm30Yi+fGjR= z-efTvz6R`ZEqdLH?rBQ*9HEPA5zxi82>y?2(T$OEE&7hq!6^10LdWnck9;21A~EV* zu@(t3;u>%ekKAYT^%P>DxJlR|xOJ4@;5hk&Wt^YjIFCK=F?Ka19wT6t zec{5ghr}>`@@2~a_Bx?1qoEIe&amXsgZT5WK>WT!@o=a7v79K}DPI~Tisa1f zSFc{bc=QrS(SA5$*n1N!1H&HeB*WfQz{GX55()j(uvc@mn37R^${9;z(^&zgVee@w z5rnl#0%r!okkx&|LhfKKs&5BgO-2 zLS*_d9)yem2*!g@@eAWY=or88pwD@W&r6X5E?B0sI)Z}BFkyn!co0XxD*G~DimZKe zxB91$rmeha>CT!FJ~A@+;OtBpBO}A4OHgXmlcHcyfUi0J$MU$6I!4BWT(1sx>;Ruf z>h}{^HNG_IhYf~<7Gu^KNndGd^-txn0Q=r-^OU0F3Um(IF9Ied^YFjUZG+(IvaLNnsMUnOeZwD z0aYCl7TuuySb(4#got101|ehpy1^e`{QHl9;ccxBJXky>RsvxIb1^~&P2fK zAj)zK4NRYA%?M4^aR@}^;!GJU9jD|vtfoCl2aY>~u48d$kUCawFv7ovGMHSiUUq%2 zzyE+bIJ}htem%;jdi9^^?vMM8IMRX0B|UAd%hO0F>1nZJHBYP3LNwQeM;Ok1;+Oan zpJ{N@wX0S6khzhOrWDbj^Ev@=O$K^hO?%e6>?sPyhZ@yAF%Qx%c>B_63PIm_ML^JZ zs*feUb9Joroi8W?X8WIwC7XzE0Y~@^j0XKixjYt2Y-27GJdHsh-?^(_H{~1{x463P zm9a9VJTX>FDPyS66m#yy&drX;{cKrfU^ViIMqucVaV(tI#;@M@9Gfo+=WFt~$>9;a z*G+iJ(UfB1Z7|CM?R{A*3dY-Dn&#tO8kIDfYB7G}d`P~tn zzgLIeppG|lpf>Xl%lmAV2SKSrBDt!=JBJ$lb&tu%7aYQL_Qd-{Hjn4~ z|Fqn#v0lNK4jy^LeJgtj6%vi(@_jgE|Bix%afFGEuJ8U;;Wwt_0IUG2m#T)Wy8;M(Q0eguLHJ_WsEu&(yC zw>zd-7qJW~skQsY6xn46qJjLkJ7G8u?)A%qtM9Q8k_u zXw70%DGH`>6M4MJDxZQH#>wB9s`(*>3&^knbpfHB*i!_=F-?2;hNIMnRj9b>zveP_kkZv&0Xjp$xYWEVAh^_k z0x?bN#jJbT$Fw6>I$kP}m4TOZEuu1TZJ5=rd=JfGp!pwZGw#X071~xGi2eaQM5XY) z0^Xs5)f#m|^hOn_ksP?-T>;))@J)<|6|4=FuyH&g!rFvY7zfC%HCV7xLSbgzMTk|$ zxp_SvX-)FU3-^NFyzp9tl1OV~C3zeVuV_tT&AfOurM%i}yqZN>oB8C01&=yjYf>{4 zm<}Q;8x7~tJhcbGuNKG^`6O7lxVd5!l?5kpgn;NKaerm&G-dHPK4;3n+H5IBKt(O2 z!mpFU8~1^^pU)1h!{fRHRZ!-Rlkersq{w*qG;N&B6h@45%Z2acoTfcx9^)ZbbH1Xg z^|jJ{aknD}>#lzMYOM93LAg4PFRE@$U|&#{II_>^$iCI4Wv|KFgiMRNJYR+(bhcGv zmnj`QXh0KaS;N{G9@XU4uqHFZcu#A4Kv{*3cU#-inmP;6Se>tFovUYscLUFiv$kaM zlsqOa;(}rY1PqV2w$o$b8l$<6%HSd$!|8bIQl;&9-n*8y7Hdyw;~KiT7O?C>!MLKe zAI}@rwhq=K2yR4kYRP!(@%+q%j8u~*hT5PL1Fk-6$CEOQfyz16XkO8b2H#}T1uEQ? z(I`pG8dtXYLS$Uo7KmTCvMm_zcUSg7J*&@`c?;`Xr?G8x_+UHg;lw5aR@s;NW!}?$ z;bmT2(3&)~c3@8t7IH!J!PI$ZJXz4rP!!x=y)quRS0~2f^?a3mQs8S^Sr;3h9iAH!}_@zBe#7?+NSN;_gupJCpjEVTI`>PXq{>UW)jIrk66& zm+9ei>+d>PeLlC|($PAZ^%fL}o2k*RI{~Zg%lx!DJk^@XEQGMMI3KK>=85tMDX6p6 z!tyB!THGjJ(BJyF^29`O4{Cq4%0*b=X<3*24tT*wbIv`O1U)h1~tX_K8N z5}Sm6s!cvGe%U7SBVDZxO=j^2waG427;zSKyiPZ3I|DmO;bndh4O*?JZV6x15f;a< z7bpZx{{sO*(+3@E$FDz5lt)NEQv^JI{az@LM%_DrCytR|@bdWe8_@%9JjfZ;IFzEJ z<$sCjTGIN#MCk(WO0swYtCJhoda61iFRt}TlK_I&pDcc%^(RmAYyFketqXi@UQ5!g z8(A+w!Q1+~5wOa>aAg@IZ_^*H#_;8RtwWfZP?s*?gP${Nl5~O9{b1o3OHpu{A2|t^ z`Qek~De9g6)+p|{0JrwSuOznEtN(o3KbrqIz}k)N@anY%dl{gla0G14R>S4B(SBq@ zkFictJ%)CY9+Nsr^O!2oPxYAh#V_%vJW1{Q{Z$j+H^>@k$`TFKdma-2*VLf*7&EPH z;L=A5$E3BwqO2r#g@Q3@y)=pckp*jP!8_yy<$GxGG>40lwrmb+X*K1y7c_QQ%~f8|frP@1#>hBt-8VDTt$YjuOAnJ4XR|A9o6f z+TzD^tv+jug9lq*VhgFDT3$4lfK~Qot}TY!`2%>3!zE$-T%I+96%iKFMSU=JuA3}f zv_j*N<@kF;;CSRoiibNUMqBnKZNc|5patL0*fm)#!4kLV zU!&cS@>NOsXWD?2ud0;q(-x!*EiTG<(|vk)KoI|Ngw@I_O#w~1ybS|P#1#2@NiEuf z^q~bMPogbIA6i`W@sj>)Gp*UIC+&u$yQ-u!X$z8u79>5CwjgO}agoM_+|PVqSlTdI z4NJ6>3`;XWH||HN&`%9Z>jb|IlX>raYockL0Mk%3iz*UB(Hr^JO9r-yN{I{ktumBL z>r60+&lztGVjFZE#ESkjh2V;QNI)=3fIVWAaJ)T`@hfZNBR32lpQ*e9+Rhvl&)%b$ zBB@p0f)@9&*ySm5Gqn!>-@#H_9`>A_B16V0ii;uR>Q z#Kn*iJ{2GsGAf8)7&0nM^%XKOoozqW>g%1H4b!aaSOY=8WyV^>s6)Ui_p&?-#kUdi z50_Np9X3MMP|^hW?()mit({pb!bgS;ADo>nr^>LgV}^AmOQR_09X+Sw%HDOV^nUcA zp`N`AaDm1eh%4i11G-S|ROv!Pim zbVU4WJ(Yht*P3iRg`nfS zB_QZHFe5%3=bNe0alWOP=r~_Pi`#K-1F|@~J_7%DJI=MK(s8a*Ty&gI!Lr5k)VHQe z$9a9KbeyCyLqkJpZ}c0gHzFNz=C2q7vOUJ3X5*%j$;UgW#2WMyhX~c0xP!x2Wq0`WDa;Fi;nd{YS<}|sk zt)eaHInaWO&oNvEIbey(;?RFgKr#jAi;#bBr z-nIxFr@#1vI!=2k3_8y7BI{0tU8L|bJC18ksgPjX6`g)r5qLOLSi*CJND>Rh$MlYgDB%-4ibrT|?7j+lE(2KfH z_v=N5?N*<4t|zuzXRsWP;i-oyHUd`Jm$}Y0Zd+Cu?^tXdz{V2l(sz9DbB>uVeJB5o zzz9C(M4E*yql&#efH~ zGudqlK|lLNK+w-%_R!D1%k3G#*F9-{*T`n5Zw`ddfKD!#!d+m<4B}E%X2@M2s9(N0 z5Hv&9&<0UFSwlP5&|FEHAxm9TXfrN)iIi+RAS)KVXQsN*D+Pq;w>dxGVR+#2tbrzJ)GASM#cU45K=cm_{&rf|dex}o*hM-+^Q z8Gz9GxOI{q0iVEm(LM+lX9mFd_s!t_p3bPu|NaQB01vyAw$b>zYe=1@*C@~5yOb7h zybqw8m(uF62b3ia=^h1-DfNY;REpULBInIAXIlq-!NGPu&LoT;ufw3A$E#?K@x4fIo2n)Bk<%9*_5 zo7R@5<>C*z(oCYl;LRu{2eMvgmnj%4t|oe7UZP#ly6_<(C8(-f=m2fzCxL=C^RxJc zHuJNz8J`tb6K9Gq$zAt#US0KFcv2WN3#hn)y*A?t0jnaE@gs5_dD4Ju(fr_haDY>p zP?yv0gP*g~EHUkBomB!w!Q7(WEX*xx&yq9lhXT%c%q(@rX(u`359o|TKXt}4#jluI zyx)0iGgBq;2c7YUWZsVNJa2Uv!t6x8Kz^ZVyExwXqBV{UC2(=ea~xk?+fjX8+!y8f zt)W37{LtP;QHp&QeB;2{iBTd#yvKP?ujZxB4}`vTUx~0#S)gvC^6|(Itp-EbLIPJm zLD%sk>lLby@{rudmMu8m^QlphHe}qCQQhEX2stqUH$Vs8sc{igRblIuEY~ zo!DB1*)vo+Tz!uS2(G?hI+)$e`owByZ_$oeVRm+wtS~#PYY}(pO*J%8t^l(5_}J&P z6&J8iXOTSU26Ph%OXe(j7o{e*y21b#{5pdtmp+ES`CRxY4SQrZ$V+^0i1HU@5Hj1% zp!lk_G0~XD0871e4AzKJFC7Fgu{%9Wu2@HA$rbA?z2SQn!nRW=-s^`qF6+P|JH@$v0mKz^{USx`=gb{ypo4l%n+b94s7ae@ z^%F#T;srS-y%fN%kMYWE_;~ibK(H&yOWGA>c0*$(ru}~~tM)BCa@VoP1nJbbP|Ece zWh4?LeMi*Ir0=Y)^f=n67cN#wb1=bS z^s}cTBE%URIPdd&KUh1-bxidO7s+4R@inj8AO~-Eyx=2SR|EWjkd*mtY6E9$LA#~+ zr(I9@r#1XD(YXUYjwucaMB`FySTfOBP6c9TES)_5W^of6 z-UnAjTz!N$aD5_v;e|>ciz{64I+&Nl`|kMe{8Qo;P<)-Vns|*0-z19_1>yKQ%;Tb{ z7E6|kM7fiw`m#Gmit-aI!s#rY-DBxPs(3buk9223>rUn;<&t_MNZ+j>dJL;w(Gm8)TDtfMn28K6-T@8+HDQByflaQx73)*M4H)_k^x+PI6)hovW=;UgEVqLCC<0za4O z^O8ovttG32Uaa;}R&!>-mm#dx>;CVtnCHNO#z*aI1q(5N*C%|zwYVv**yCns+UVN!{BtKQU zw;fSX=U>)vrjz3Kwt;y*b+W%qI_Z6U&I7C6sMMItFBT6RW~?z6%%B`xmLB&_>rmc1 z)W-N}gY9}im$~BYniN}8)(w71O9W$pRjS##Id_^GI`jA{Hnn!AilMwEnJWK@95vi*VF+k0||Bd&;Gqb z2tQfTb|s)A$i;WwyIPq)9R)XnrBX44{&~)aDM^9|b(P-pQ2k2oTpl?ly9z%So>iW& z9&U^04=R;W`>p5k{HL?3v({7))V^InsP7{xrNHg9s zZU#E#-Kt{yGhicdlX~lu4|>~7nY-~;aEw9_3I3gJSo6dnpc_J zLMv5&3J^|wk6uW+7>Ky^*Fh3s7&mWV)?CVf>Guk47B;G3627_nW9_ZmMnTP^M5)VLlJ31J+T2au>!N)l5L>WU%>s z&4NLxO8NQxwk@kE52$NLOA)E}GEzla0gthh`1xPLW8o9+utuBs(VJ}=8DiubR9q*zS~SgbKpsqi zqv!H7iMAiZbZvZRMWqe@t*Py6_8pZ8w5c9Q|A&B8QiZ&12@;0{DT>$nJEIzBDYh=` z4q+kBD19(>{&&7Sn!cT4JI2BmfGn82L&}6_l;s!T8D-!CSysM!nXL`0>(wjX-3x2n zNsquo%CRHgp|Z9)3bf}-E0El6LqsG?)plAnp~mz-(i4~N*2jQ8dT^2h%O zi(|B>JU_lRUpz4|M?e?#=(yfO_;rt8?qq9b`mcae$Gc9gN)-Od6t=Ozaaj(gu+1q1 zGoQu_WeV%rS50BN`9i=H77#Io&GOX)Q&=5ITwzMm(@LGfq9fJs3aME`$`MPFCsPQX z?M)C6j0NCJ_~uOhp_b!}YZt;r3*oinSrNr>#e=&7Ky_bdrV|$rx9D_HF~vJGp9tc3xb>;{g@;?80(nuF zd{*op4RG4zguuqJ$ng7Kwhg|*+?%~^ud&-yP%X^;Ou#Dp!fj;?bCB*YV2>;UaxQzr z@0|Hy<$MT+^Zmf;{P}d-G8Roy(Df=V!r&IZhy;K{uU-j@WY}s)ThKwF1p`1Y+9Dj( zkih4Tgw#1sTqN!yuLXfT+8-s!R(TZA7UTgfA_(x6dA1NmoN5U2*&2Dc)B;)I>t%j) zpv3`Yks1eRPZF=d(`w$%p?s2Kai=FANGQMP!6A;Y3s(G zrNhuRLnkR1L&CF*#Aaxg9zkY^sVSxQU$BsPSyFP8azy{VLLunCp9l#0FPMwwzkh(L z(0}hx47dOO1~Vp#v@nN+OMB6OL1WT?Z!VJl`y<6g|NU+e`mf;=F>Rfdj}{U4)k%x) zOO;He6z1{=7uD+bieEz)^B;%WnwtiTKd9BGQDJcTI~8r~&kj+re1GkWz*2AMgt~OkJrC%} ziweZk6oO{_ih!UQgZ4Btz6xVUGyZ~N2s7UB%`-`0xSADzt6DK=Kw9zT#nOr|QdG3! zb6{ssP-J+8ubCu{2*meBPXM}Di6Y*q5gJM{(2}X*sG!1<}A=>sb16SM_MLkp6Ao3_Y%Hx3bgyCipRsJ+B(2zsVN*&(SW6Z>M{yE%YZ)eEW@+2 zdX^FGiDCGQpP3F@de8pxJY)tOp*HZ*f5Qx0cd!0kSsNc+m&}Bd8*kD{JyQetjhVIt z_P7ru=PX!hJ(0RHhmWq-*|v^8y5@U!RsLGSS69fXrtd4(;|+%1rCyHRj-rcc_vkd? z(!7d_gE6g8Krp6(-)J%I$)##cdx~PXm*xXYNl<%Xsa%@DmSj-dvs4DPVv37FZQD|r zS{E*rsr6Do6#=bea^uiYDlG;yYJOBo5zuZ5+8EGoiC-AdZUJ@3teI|UKC;O6y{}jn zaj!=?eq%9YM&*|Q0hjG+t8^d%tK19Mm1&he#;OpSGJ^Tw;*41)*XAz|*}{0IoPNDo z6N)E7iJ>7Buc+y-p`QGW`KcdzT6lwJ<}4_`txQZ00v}Q0 zV_C+#tg|IWjS;<3OM!BCw`iH%lY6pC;GeFu)m6?c;}6%_8nUxqTuu=#A81@m>ursF za=|(u9T%+g(Lu1DQ^wGX%Vi9OE@}*IR0zL*T+Sm7 zz#jiQ0j4qZLn;-?MA`qIFAVkIu0mNmPj75 z&0|*D5lbX93uO?^)U}8pnseDuoZs8gW~Y=^06sDdX2 zM5ls`R{bOS8%J$#8Q*q|=v|72BYKmL=p$`Jkw*u$QC=&QufV)U(eM?R{5PgGQ(RPk zq0LD32TJv>H`QGD-jWfh^0`xDpELHtL&Z|^N%^8_s0Qz$BqeS+uM=V@b4J!wlaX-22UXdR!GC*jeZ4uUb- zDyTjxKla>fh1;?)KI?oA<1_Vlq6du6FA0e;KA#Z3Fg~AH;UlMoiHHkm;QY@V9{#GW zcQod^YOrw8{A7--h5TfWS_=sPsD=D4@vIHBqfVI0q$cT5vc~I ztQSSZgup8*?Pdpyu>%=6C7G?X;9+NB7j{Ps0M&7O1u0Scoq(Z(u)xB>rO)S&z1=#R zm%I&6og!Yhjf}qSP2Cx|QqDo(N_7qZAm*S!=t>YE82)k3fq=N@0Gpg3FYi=k=ImfW z8ix3#7-DyR?=4$GXmddThnUFw^|E*2ScI3XLB%f|VRqR^ctq(619`{RG_klZ;i(jl-F4~70oSj$VMaO*M`?g7;vk2dv(;ew1 zjj&oZPe~jv_`r5p2`%)Gq*i89B!2y8D4XgVHMJ_duwcvje}87b&c3_)x@}*?@J{vY zLDhy<@Zza9 zJ&8iqyS$zi3WaYP4BgbopBi8O&}NHHqzu$(4l2g#>&`A~2Y|5lW*0^0bMTMb+6BaI z?G3QaiGva&aBc?iZoiVaofmv!>!tj6B|p=2P<1}X8d}%zn~*PsAKejK)3_J9T}Z4L z!%N<;7tXWqU@?fCKQj&LP;6~BGW*2ssD zV}HmF|I+qqd>GW);!ZZe{OL49Je!@wl;3!92XSqoX02m;7vt=0j>bn(*1**#;P|f__sQ z8LNuPy!D-}o?a1pkj_ci@Y~xsY0vGP7j;ruz+W^I|T13&Oj8#{w!vVmdUu@GDCB{*! z{cqYju||{@Y84QEzG9%SKAm> z=F0roueM@iHW3`F^mKxYd8nbygSv^wo1cDFvjp2a>UU}APFC++F3oJX^(%tH+J znZ_HgDFi4^Atfkw{Am?6X-ra@_ux$1p3LXW&yI|Fn=n$>84=)kLCvUGzD==jSAy2? z_C|Yi7Q9CD5Vgxb| z6Jl#Mq@aQ&ESGp|N<2TK*yDMhKzq1e6!b6r1WGe10{U0*8r~wv-a(Jxp%j%@fRyxq zE2UpK`wC^i8eUS)UY})9mMBT_9eZPDqhORIV+}tU3~KU5$iH4#j)#QU8?rIJu(p-A zxBf@0Iliz~hQN&JczKMvrqpo1|LdrWL+wxU&h-PUD8*~|XlCyowu|spBj$Bxe~uj_ zaALaOgxS|CyWk?^pKX=-nsEDP#+TNpVH2Qm^LZ*U)Ho^K_W!GN=@ItL%H=iuhX{M^ zuuq5ps$gv*?Q_|e1Wp7Ct!N*ke4+}rx}trb@fVk1038@*Z^tM_PoIjHqJF4}8tvPs zc+MS1KeDc=&PYOoj48!YG4+g<)(oK1xK=)vimMtM!cSMWmuAoF zPN^6X0g@~6?hb{hQK1Z_smFnpMN!(Wm9Oozg|XplJ4Z(ZL*;QSWOk!tA<*QmRkJoa zWLG3nve)`aFGqte#0w!JY1=t`VhncQo~%dE&%B{AFYX9SLn1}S ziBDMP$Fd(?=X>H4qnde&4+7Y$I_l{Kz>#`&4O{0PDVD#(RATu%xTm}PU3nA(Om(b( zSDLTohGPSJNBf8h&Suc@g{)j2kZ7M6rt2UJ;7=#o|6nWWn9nq|r?L$c0%5HIKV79> zW3WdkB}wJCW>gMIUq-sPV$kB!9~Obpr}JLP_Mz+$AuL`Bluw3YeDHHVxehjhZ7av} zJ}DsdOB4|cPJQF>)DTAv-mIDZLw25`V2RCp>#)4%t#z^x=bh#t(YIc`zIOFG9vS9H zHn4|YJ?^`D@P2QbWB7w#M@4N2bwu*NejQbbcdX#3$zqC#_2ToSC>}o)vN0@41p%;J z$IlQ7cG?$2I8OrG!XVts=M}-R#jz`al^Dg4&y*GdEpdfk@kjQmJiCoOI87kRj|6rR zQiwnCYHKJa7QfZ^m%B0e8&BFn(fXLWSO8qdBKX)TX>xc+){~A29js4Vdt>8(B3M#B z?^By)(01WnhJJF)zBAD5B7C;MP{^ghC><|uXHO{I5k)%h+1?(m^en=Brh0)8hAtG{ zH0k78-?WB3li%uKuev_xr*!^m6?-s`YhW+O|5D-g*%S>0cK71Zm39_0uSl*X3uqr4 zG`v+aj~B0M?R;DqZ5C%lChNOggX2wMKTuYL>IBBdh!2INaf=LI@|Xd z*daO~jJtS{@+<{o+&xspSuICG7)4N1K0K9pgJNhqVR0&<050aDa4eC;I}9nP$`99e z)HhxRQ^KXigUbwBYOweIl?z3k-` zmO^{tgVed5()0H6d|{fsma*IVK%Vq{pSr9E?Ie_;bXo6bh3miGhyR^R zx7Uu+Min7703zVyRhu3MUz?OL6w&VGaE0O$GRPzurRqFR3DHRbj)UQ7^S})T3 zRHXr^J$+Cj|9hbQB0ES4yyI&=B6I9D z$$Uh~`2gm4wV{sr+=L789(_hNUuZ1XZgGI zb9lUZb4ODH>r83kBzD*!U8{qx#XX6GHpofLqRkj#20}He-xxo5gAd2@n8;{3kstt0 zq)q^BBBxNsIFW#W6RAT$b=h-a|G$hP;6wrfPNWV2CsGH|CQ=7R%Cmgxo9*M6Rfh*}Tk})(T9sBDB}=j}nE2cU_Rerus@yC8ojwh| z$289VfpH$loBUfreYSw|6?zo+lPGii>2akWJq{{Gx+)Z>%m9LqJ8H8TR1VZzv8Udq zs(PEG>Md@P-N~NQ;gwZy$5g$+H*%=nn!W(XL}RAdk1AI=kDF?bXJ1gZLT&gSi$AS> z>q~3xrrG+IdxLeU8|Bu&|BPO3SLXkd0{2@Eug0 z)@uA_3gOwa>^~TrZv@v}+AV>#q7_T!j%U~~9bQ@WmZ!16a}bxCLbwaz@9s8MMnDk_ItkIVh(ag#4S{=LXPptO2iypi8u3`xggDhKNEkf$COsDqrV z>hbR-_66*e4zH|wd|6|m)8oUG>=3@0*Q&_JV!bb++yuU#n#C2F}U!LxxL*d#or3hx8zs`Pu<6~sI3uvg~UUv#U;)4%9uWm5zf-kG( zZ^HLREBlb%IhN<|v~QBB$-$Ctq41C%&%J10dG3`7eAIKV*l0ZRsu3p6kObSB;@8E_qs7nW{*y$MS=~%>DLxte8-jv103HJayj)qkMEw zWj-}FAeFu7)$6&sP5pBVU0xcL(fHb_XYhgdr9%x)sAzcHj+tt*KzF$czU6W2NU0t+!)`;Jpjk)lj3w&mx{oNkQLuc~LqO0#K@H-F zlFwt%VbRYoUmhB~gI45nSY}~?6{|brQW-sO& z{4w9-i+TR5a6;;f`I#3S)s4WMC!0en@%)A1O${&exKmKC`KlMo6aHAfEm?-q@qz_s z#?&q*7WE9fky2x;oSQh>jD}Hts~^Ki*y_VD zJmy9{E(Ydk7~agqBq^PN#VM!`>f*(`lRxI^lKDT+lExj6_;lR0BfcS&D<1KIxEGr` zVwnyBpM7*H$_eGayp&f%nX;9KpUA7jrcvzcA7l?T_!D`76ggaHSdZ|gC-Z6&%hF^< z%hHK}mZgJemZbxuW$mJpp=Ig%AnKUc?W6U>JhLz-p66d0SBpJI@x|#LKRv<_qVJ7F z_PznTdL3=#|0c!v!~dl>;TT1Sik2O))os~$OgV6iJf?hXi~9Z!TE0A{)JIc%iHC-B z5~XAPEeUm8-3=++@Hy;_@VR#4HgQc|UzSdLiFMe}OWz9< zfr#_)gl`z_itF;=Z88y18NSlx! z*N`y}@S#9wlWmv>Z1~9D$dv}rZZZvs2KjuX0p|rrOangICenbxrX~VHGk_{oD3Jji zpLN-uVqn*FaPW-{M;vX~w-oAjjWE&KRj}EEC%5>vGOu3qr)K=Z-6zBKlwe2wIDa@J zur&2cm`u3rA(&TK5*oxlrvkYjdh*RT>>&!gSb@oeal2}aLYMg7=&jG}`&cyrcG)j3 z6*1f8QW2wT(d7~F_6Oz>NwkYtE}+im*j+G2-_PFLY?n*MCqi6ZF7Z%6a6;6tHh~bh zWOxaIxrCuVKlLj-vl{5dzwbZsclhFuOO`MGm`(tHEuBy%ZI>(66feFL{)z8A$v2FS zTjmrMy&3cCf7q)r-MBIE>mV3-|9lai2w>l2?cb96P)B9#Qej3NCr6Px(g>e;$f2BLNQ8Hmm`*mQTiJp0!HZ@;ul8g z8{2(F>7&iN4d+b`j;qACzXIoM_@c`By|AT@yKip@FX+Lc*!gelF}}h#Y`;gdhjg$Q zzV8!=Dpy&)l!fk!ayk(w4V%}|K090bPg6QF?2e2$Q{($h`W6TX?xR2%TIkzKJ7VbD zxI>1%jk*?H=sU7QhQ4F83uelPclgPaPXbf1g>niMUD%r=Aan}_0$|wl5DQ3F55o5s9 zL9~FU17pC8F9t2TdarCL&YR@{SKLwE&%@$&(7!W5J{_= zlM+zl7MFx(9<_8ad0^QV1*&qMAqe9#Zh2K(~a21igx(fSLD z;Sup4pZje6<~;Q;IK!GtRfJ)3CV{BqDNC4i^XIQTfHSO(ggVD4SX8V=!F{v|qhL|7 zjDo9+#D^rGQ!t)gPW8n6jCRq^E-67(>0)GPM863XG@{?dFEpaxr4hyGb~b7#1fKkM zX60_twAj=|^vQMNTZIjI$@IFlqYXP|FY!Zo6OBOZskXrqDIXm>Q8g$vzrCuXLFan6sw4nz8xl8gV|Db$6s%Q8m%x-^ zb@W%X9aroxclueef7&TmY!nbz>>fKsWi-?uS1HxEHNfI>m5;%s;Z3jVe|rw-LrpSS zhl%fB1nwfk#MKJlP7b4BvDzttyX5;9Is}hu>G)l;TDmsH#vNNto|@=r>-~OWlU+gw zwfKdd=BQ91pi2)>C*89&5ATHvKvaBFLno?uzFfVd5R3*-52aK-9v16prLc550QcTo z>9vdRsP5>>deLT7T7Gct0NytaJT-^5q2>T_J|A%lJd|`bN=P2;OMjO%rUszZaP89*^+^DDHI2MJUpcpVF@~XN}qN^x8 z-}vq>wGbw#?k5|U>pIRb<8EU2 zn3g}>CDZbUlnxqr$<3bim6+Z9_I7hER+S>6gIC_|$H8mwMh6e44i0r0x6dS*qO?(| zFMR`hOi^|0F-6ruFwd;t(9wzMz#c}JN`=H^Ro5GdbWMN~3>{drt^xlC{8eMaBK7#V zMgNOmY~<*y+yiZjy6Qe3bq?WajUAj#p)^tB6F{XSGpex(x)!k!D(X>BDcsG^932$T zR?=2f_%eSA-zXIxrc*diz1E%TTdfNR=6GPQW3C<8KTWyffjuDLfxQmFVHlw0y@A2bJ$$NY(msoGz z(XA%+5(Hq5bE{*n&24we6z3KYu-;mSfcg^k*4)<1fk&JeXQ3}Ts;)0if)0X{fHm_v zFcQ^Dt;bVQa3*xUkqDMr>%ce@A$#02A)a3t{wo|$y@TwVUASE|d?jI6X-&f>t+YP0 zN3FCzOl84^Xmvu9Py@1Q#fw*&qe{6TGs;>PSW}1^qzlXN(49$_R11Y8gqDDSBJH9%EDnZH2w-AVYxN@(9%$>k&E8z3JU5MWN(5&ijQ0U1mi8A z)x_wubDq%M(Ss$3o~{&D9E_Fnn{6)bHdN~Gb+f`k#P5Nnct?45YxuyGwWs3~W8b}y z2Z*}s{*<{}jp=*+c(=`u8e8%ey&ZMSqD!S0kQNo#y{JT}$}yg*?5>Wl%U)Dvpz{T& zHs(Dh**mj&I_!T#nX@%!M4A2h>OPJW%7MMI4*N;U)~&{U{?z!KFEu{V&oQt}8r-#4 zR%7p?!k`A<^wi)Ebx>PTgNb~^0EdHJ(c%3Yy8A?9Lv+`J-+ZZ72tS(P_}yrL%YCpU z+qjQ-fm?$Q{b?|4pAUb2KhxnTiv|t%`KMWqWOiSt2*_@uY6|J-j^wU7vOiP>Vp(=G zI);D6lauyIPX;zR1zww9Q!CA`DgtFi{;Cavqy_YerP($ri(8*r`}{ceFsaYVG(N(R zm%*FBh0VFa?r6@BI2@(Z;go!W-l{3Im=6?y^|>c`Aonwa5Ia_S8SBHa8va0z2B^^K$&&gSd*N z{q&`#$hvB%ETs*>VNFdNAwxj&D3l>(i+b_?yeaP%=yI-DdADrr_f~ga&+olNeM6Nb4b5}{=VI0~eRzv`&M!(jWtpL(U-AodO& z9Gce~1fq_s%;tscZ%%T|VI_pRd_wa1eppsT9rrJ^36GdRSFPw%)rx$G=KMsnq9(5A z#I&C@o>RV!r_uo!AsSEh1JZc-G%%h|ge25>UZbLE)!cOiy304wc+PlY#?vmE@lb-Q zlEp~Sc-jgSG@f?i7aC7H5YM0SoB=J(bbJ@43r6xHm!w&aF)V|MfK%L$KveF9tIJU8 zCH6`e7C8d=j3tg>ZmT^8o&?Nxj9{Y(9~n!YIDiigh8!Rz-3z>W%{d?=&RW`n5eHhZ zq`R25V8nqIj5t6VOSxX6J@8T7^9R&Nac|KkG_>b6WPF0)LqX2G12SB_vCvV^WoWdY zG_=S6Ki0lGKFZ?x-{(Tl(jl}22p}Lx2wkK|?^T*0=4uq8G?fon5D*I>2q>_2iiO_A z6Qm0kdX*|gI#Lyoru=5#``kUVmy17N@ckzoGdpExW_M?I=XoAdFv=`-L5W15U9$si z?prB!6Z{Iy1Faob4JF-3cmL*K6ePUzMbmpKNZ_u@C2kpf!=(uMW|3NU}ZUwIcDHz|O6gmen%dW66%U61f|I^n*Ig!hjo9Q6p%grgpTgtK~tk;GZmBaBWb z^R0|zPSi4U@($be2+@S%49Vy*&X5cUj(4E$R`Ded%yP~=g@FbYin`!|gQinlh_Et%)5l#Ze($7A`9 zn}g;5)@;4}qma8QZ-v!3X^vk08*mKh34;wsJC4EfPZ%u!#2U;0GrR?sfBzhN`5(wp z5a@S^vHVA|UE0mrdigIfHzhf={PT8t`TuQp)aCzUB@)a3=W}$PnR#AHhlHETM|}A| z!JLMAM7y4Q4p&(X3)FKj;n47?$f+71ZCYkd-d}rGizXDan$cm*Y6ira)eJCZ zwF_J`%xXp(XI3-7&a8I#-{~={8Kjuiyz}&|)?uEW)!NR}vl^aLF(MPw8XqGp7%{C? zolg)QVRoPF4%bQ$G3Z?v&3(Tct;6uEFHkl0j_!?|X8D zy!{FB^f2t@JbC1rT4nRfC$qiSRRowYiCNGy-<}1Z=P1mAp81#st)6ngd0O7_amOgy zrad`7JQEhiwMmrPZBD0W#>VrVnK90p89z{JU}l_3j@qB%NqAC0_^jBBYwDD3&*Wen zQZ|jG{E|0u4k(ILdjww)7hlBvtKc@=DkDHYQ>W!qcA zoVSKKZ`GWIQxKk)3ib5&>MDH@|*foT76fer25la{drpbxvc(NP=CHxpCVYJ{@hT1uF;=?_Sfz-yHQ{@ z5^P3-#Ym8k1nEeSjU1>xiP!FdArs4M>3ID%q#sf$Kzh-zbWd3NY4r=zmxrXMT~fa) zQvrL&yKxm_)DQJNy+;S$dk#UbFw~!H8fv^2T{&Z6>FTpEz z{#3v47L{S@trU3IMVxv%5|6uHSI=4D>8(Mk$RAHE)3r`z07xquD;Lr*QXlT?EPK51YJEBXM9RA&%L0OjW)yr( zGG>9g)vFRi>dTUqvXyc*oi8t)Oo@++^5UhmsT1W(CsMu_iRsuBx7m=^CL81Y-Cq75 zn=TVir97NX1uof;ZsLc!TF6gNrPLM;!<_3ZP+zuatUtF`pMj|dDv225y?2M=gMuG_ zdo-VnJJH1}vz$rk-Y%Mmm+oCel}FqSWczV#v&g+SpDZA=o=y2$xLGe$=h`NuC*KZ&O*~F?Sx3KPQi`%Tdy;H(G37VcmkVU_rIb@* z2G>RPl1Z~SkDrq+^j6?PQ(05nt!X4rf3oN5<&;-*u23y5W_jR&rzWP|k(V#0^pXc= zPsk}&F-n+{39-MCwfw&b+5Sh$TdrLTiTelwU1z{$IG+ z#mHwgx47tbz-Lxih}g#C_SYYwI{sJ6)|^=ulBF=T>yQOeBYyZsN-vR%!Ih=#8u7_D zQ`)++EYvmPLq8l`LUy>3l35nNmC`$=_(Ho{obdP(6X&f~7#_H>_Pcj^Z|O6R1%s__ zr+gBVebQ5w{Q%mje^NGxnp_(M^S-+&?PD5{#Jp$f<(K_uc*}@Jyiqus>n~){+-9Nv z;L=2zCHlHMG4JQp`qW$){MK@3a^>U_ZM&R}anBMyF2u3RxAE^4mbWsw2fJ$8#u=5_ zy*1|fkVyzSFpImt*^vm7*eaxVRR65*vpGjI!L~wgWpk&A_ZXZxszG*lJJ)E(QAOqI z?Cyav(?bdo3O?d&BYk9lNi3a0!M}32$64~V9Qm`0cwm%Ejl)D zS59n>pl&Q1xGTh3}xo|sE7LM5DwLfO;6{e(;^;l7unN3zqi0v?%tjpvUmyiy?i}MDIAlwh&~HE=kWwVKO#){ZlnpH z(IyPQgu#;~-8n2V-5|SP^U)*9MZXN$y1PJ(sMe#(bwEt+hs5Yo)f<-`71IEOFZ)yI*VF(AHWRVJ!^a zjTPNK`C&!(+)SkwQ%&H-F5bsP8Tu6-C1G=wlpPxygEeU}1}h?M_=blI$$l^TGRqQA z9!Zjit5Xf&rb_O6Dc@J&=89h|$0xZOH?AJg+_<${<^lIdaTdb=qlTK6>a=XWS zOLR79@7IVO!(xmPTcQWOnRaMZ_XXE0i)G(x?iykU7mJzBb0&Xsr19R?#>+&*^Z_~k zi7s(+ZgqFVdnovYxdtwlQ);-A#Xv3_=K3(wT+i!%^s~)%_#5vZVxB>Ezm}REmS9+l z2Imde?#1-JfA^!}7cMazVml+Pbd-hI+A)t8k}K=Do86<4Vzw^UQ<$9F+MUBidny>{ zk4OV;((3z@Ct$`p7k zXIWw=nVgqWGkw#TCAylL^bDDqidGxRX%%RYZo8PPsOus!4!dIY+(KQk8YM$WJG)Tk zZS20C)4-|vu-d`Lo4DVw#PeJo>YDzxR=d6oOdY{a^geEoDU!Wvn^;WdZthMI!x?v} zPW&*gK}aST`!Cd7Jp zSN9~bgtq|K1vb~U90RU|0oQFD1FnP#aUF2e7bkyt%F|1n;myGMgw6Uo$AC3qV2eyk znSa1qVQgCDQF(Z~_mi4a{DJghM zHM1tVdM}YX+}_T4sfm3u{fUw}Vu>v3b3c|aOo932_beY5xU_S!@9A7y+}sVVl=~jH zP?%)wEz}gwm$q>QgFgk_|Fgs*4#)A-LIr`k_A!w`ie3KCPrEP2h}Hi>Y9Ct|q>$R= zS$A1WY~iHNiNM~aJel3k8->;xYmeOVKX)Cyi#onkFEgJk)dvEO>h=M}mZfq~Uw1!K zo?2!S(ls?y9iGMCQh#xSxY49383mvVzb@D~_(gyB8J8%@o8w+H z{u_O-8E;@zkss>ps(+*J_-b-Abv8h6g`Dt?k%l(-26ve*>g|>Oo=W+hF4&(!B2l=( zOec!oA6&`x1Yv*hmKQzJN$MIYDd0#NKEhiusw7+;8j^5z$RWW?gWPXf;x#T1cYh`S z=#wPg;$U@m=z8rNS@C7JCkny0FT0-*A4DT~_7!()lOV#q_G8OjFNq*-_^La}B^Gj~ zQ0|l0+~vi$91P_aej`f^buTvw5V|G3@tNgi*GpOCTXoO-{IFj(cU7DE$$>ko?{1lzs9e2W!jZZ=TFi+;O%2`7)(; zXwTnT9(&&1SPp;P9cOA6VF{bmutfNyZ8Y&xxY6!{!j;}F5L`RLUC0tygDmQSO@JNzNziN>?}Du~hmG zxsf_H`MkS%yyLdQp?-z!DLdwH7c*tza{GZGj>&CDR0_JrxILM~yIeRNG1_*-Xal1h zp*LJnD%PsG@OS^su%0J$7 zmlHpwleM19+Udy3HPKxmsw`9l8?u~=;4_>(DuPKlyjj2?fb&x)xf_UEoB(5(2oP2V zfeNdf9AbZjamZwKoRjChg9CidOP!ymZcca{EDuKmE>O_b*>pvQyX z$`?L#KQA8S7$|-@DY>S2l!HSAIPWzG)bM6jETOeY{8q2*NA%QkmrP#qK2WA!{j>LOCZBB(#3}W#VFYbvbqC93kIb;;teTGMsZpjIf8b z?Dv-GQ9f=NM!6jEwY!&VnJqZmQg?N+iZg)`zFQ{cQg;vW9mhnlucX-r9rn=%u&o5Q z9sB%iyiKfAiAurmg6>t8xW=U-w65sTx?&(yV(i&tm5a%~obDrEc)C>Va%K#~R@UV# zwhAr}$JUiTPn5}@<^)$&-IpsmxC}8)a8=~&5nNZ6>E}!g0;B^CUMZekP8s1zjCqWd zJNis&8PSlFL%VuhyVj0&Yd`grXR~!kIXf^7VMufg2$Ga3tK1ER0mkH5vT*C_qBqwg zJWZIb6_enK)$W{@2}jy-(QsOloV3=xQ@qQ$!e^tUwTnjTXaf=U*>o~X-hp`%#TOi} z(++Ny`Hop4omN9TZM0mwJ5rA0wDp|5P6d{0r=?enzWDHvwNEbG;(kyZ;B-*y7p~R` ztrn8-#QeR>GIxd4T5cy0oDtk*2!^}1>?Mf?816dsBP|!M?^sYf?lM|~$>%>sS^?gA zdpS=MljJ);yMGepI8%75v`joq^ra0%*jshJv%OW1<6)NC-?1Uq{JRW?*dy9orRA|B zk#ZbwJ;m9>Tcy9#-b$~S@|J7BcXH7dcNy^lCxl-8xL!lFUeVkY((60zE<+C7Wk4Kv z8DO~Ur)`uBeasbc+-0S4 zvXk58XvY4ktNpb?`^%8y`0F}n4}Yz&{bdkDOo=&G*i)id!D1WQWut!4lPCJjCT>MI znj)sekaD)u3}JAZ0dbsWfZ?Rb=UX+~>eTUeI7>(3_)Fqq`uPkV@F|A7fK z*}9*GwZR1WNb>{kuHp&KL@mW;L(msK=uR-fd0TkO$nAR?mJ@0JPJiW~yNOAPpj&1J zowR;+{~*S3Rx0LP@2t=p`gaUWIOsknw_-~FlH=jlY22*~9Ji_|y#QN>AJaicg0Q_a z1UXT+f%8Yy5dj|fGzfImsaazG3O!34?rb)Mm!CaOSCTO+S=__R>FMK6xQj-iUo)`r!=m87)1wyN;0P~|TwzQt^5{uQ zULWPG;N_YtwU=ue80BTWGO*oB{mQ@&98I=NwN|pB+hb*T=pL)MYjkJqN3S4YR zfs0Gt%$zLxbMA045g;!&2w-~yawSjKLUP$NF_nY?cFt(Vtkh>T?{W#w8O>s zDH+}GO6FYa6W577^wFlb!qbl^w$uLCrKqVZ?L*2-PvOiJ#ZjXR`@C&kzpm8Jdu%3s z)QkGbv;#iv{-o%~1;ez@DF`!d_29wl?g81ePdf5I=#BUbvKNtUS9-n`BRRENA10p_ zIb3h7(gWoUj)fsHP(GnPukw@LF$8v%u1%}tqO6|6ViU&@*T!=Ed%1HIaJEKmwH80FqDsEH z6$(htR!@C#ic?|196zB?4nd7YNi~R9P(_%H{b~RN)v*;|o4b&LVH-BC2K_7ox)Hmq8Vw zS!=CXB}X%L0w??B@qFWY+SaU5UQY}0Y$W@fy$BLI4|r2rtXT9z&7NfTo^2K~l?-{%}0BEX@eK@ibpJCH_c9V`l`TAnJh z|K*ukaOlUD2-|H}SIJ}VP<5#1NVOcUA8D90>C%w3viYrFC8z!1DG)4Q*ptO24o0eG z?UfzNd5Va=91$(fAJ-<@wVKEIADqgGb82M7dBWs#$$5i+7W4G7M9doI24sgL6Fg6d zSPllKsqa;fwbsZw#XXIq5X~v>X(kdfBEnpoUJ?-%kTXkos*1`PQPwEwDH&Z{0XexO zQ8tW9DF_-0x+i7-99A5;HgroL{nnhl*=B7_9PS?W>%>qk`w6Nu;d7X2vdB zvoA<9%#1xA_I&8tyhhKAc`A9Dh#j0ath{xNTu{mLyx7Vy&gebP!65>SUV|XQEmUto z57ne?T%)JbAJ^!^#0`}_PrG8)YJG-fo|H+pNv6Qfww4V7$jH1_UP$(|6`46ELPifQ z!&+;~_@|2JO;>qa#?-2w$3-R11neuUm2In0(Mko5iD3VvW?$B1AAG60r+_6oaYC?c zzgC{9;dx55=a>kVcHp#jSccC)*-T~I?u#{SJ{z$Zm;g{h_wjnx?(yfaN?QpMm+1etWOJGtM6j>9r;;g#4g^|@w$a)KTX_C4+eUUhMuYg>dY+_6xXh6Rvwq6Vl%DEpw)b8_xxt|63S-ljK7JhuwDxOG?6 zQrVvfG)idj=ryl&3K^5CX6O;u_HiGmp5VFJ57jR`H~Zl_{pdA4&Gdj)nMyTfo=%mX zk)zsr=AZLtV8vtYwWj@5BqO4sW5a4Xbt zX8oRe7phW130%zg1{)MYmf)=*tl0OuLa!3XfL>u957dw42-N-&0=0jnpi>9gnKuLH z4mM{W$AB|oQ2W=PW5Aj)A=apa9K~CJ>zg)L$uZzc7;ycPW5AU#A+AmxWSE^2b^0bonDSvCAKySMt7J zC$~K9X_2r-fqD7k93IX1RIh$=W-!+hrH}RR6uIZpM;fMu#6Zqc)gR7~y*-wAn}ccg zULwYEh%<4&yFzVzE^@E2f0@OP~4s$dPBn}WJeCmE?y*}D`p17&nK}UW28CMd6 zLZ5VEP&@d*23^Z;$98Mi>l}0y8KGU*O2O>|JpoI!=L});)*H0RTN@ZMIc(v#ZIQ~c zu!VO6vv|J@ZDD_JhNQq2h7{PsfWQ{0aWlZk9xl%fWRlAUd6UIhu8c|{gwa|vdD-)o z2?i4?#?*y!Q~m>w;v>B^O&-o6?2--o5Oyi&;~c^+;?`MB|51mq&#y%j+=~zaFYRnn_m9G98x96doGBg zKeE7uo8o@dZi+K7VK*iHXuBzy<6(`5e`GQH=#Lo=Df`)V5(GCHf*dz>;QZkxB7mC= z0>@1OdJ=)?X_Y%}tJCaFZbiZZaT_n+!1A^e)%Iag)&yZZaTnQ~n=K zH$DG>=NGYr^MjifkoErd#>X0nu$O)edFf}4hcPyAW9-V!l|A$q77#UN45A#kEa#}ChRHCPxg57aXd_s z@{=>3tmnd}h@AC`=~<8Dz)^-A$5F3y_HYytz)=Q)Gn^*>q=(Z7oDh0VG#-qseH9(PTj2q^3U^qbay&rYEZlC9Lu;BAhEG5+GlpgZ2xI$m)x=qv!mwU0;&d}K(0k8p)v>}M8>@DUNfcm@HC zXFy=Qy7TDP%>cuAH8@ikFVE%7v9Y`(u$@5(+Z}dnhj&7MNBbppIy8H|zNwu-+e~!{ z-iu4XE+|z&*e=Mv1RwFUeF^?1r%-0JhRcp8=x)h#F*XM(iL7y9Q#$wHLw?rx;6pe$ zA{O`HGk(_h;IlXy+`o+Ez9h^Ycj3eseo4<5cj23UR(Ij0VmV)R6>j|;!Pm9-XMG*6 zasXV16K7n98=Ps6X0$9FA`MtoP>=uASch8x3+dPIOH>HsG(xcN53 zs4aDIXDrxFi!f2R`A(8$*LrS=UJR};z5^Te`FVh2h^c*k?r<)nmGErjmqJ5172+Qk z-_*!9-&^a|#dm^SGd&@%{P1Vbn_@gC!65p8L&7tVYdl#sv%jcGpt{Sp;I>j@$&Pe8 z=JJpU)vahct)JQ$oc4pKnkCkASvW9WV;f)%$3!!L{anuq!vF_4m16*El%WC6a}pTf zDu*}*IBy%kAc!!4t<+iD04vfNz;5u=Ms+P*FqpR4EIHta)GeIVA~3VIVNlc7FNmH3NLQb*C6ln_D=s_RA9^^_AtP`c#dB@M=kLMC!zi) zO57#Q{hqi85oo+UN@M9h=oxCN6JcHZ$%bjR zb*a-4gUq%D4YFg0JoPMbC!LrZwqb8@OfR1^?nL5d9gftQ2!q+Zq;SNY5oT+g zh?WT*5!!b~aWpxptRVBo@QOt>APsZ!Bh$<>*R6gfWwVo>hB2>iCc*~Iir~lEcU?tX zuW#0`9vRKMLyM1o<>A|;V)&$U;%5C!IPC~7pYrfow5IOR8`MC(pDg)jR}MB9Z0s;} z_Yt}Mv?ouTp`ha{6tFC8Uob};Kgtd{lTLMUzxAEc757^!)Gyp`t=JsxeyhPpS)P%t z&w9p2x!;l{&UrS8JrVu3ueWwEur2<6-V99dC21-<^rd2|@~QtTChr!gpILq|(_2W^ zKJTe1PB3BmqAQB{wBwugMOU5+p2Ol6C&7iqbuzDdaY(i;q;KdT85b6W!S}4S<5U$*r%*YbYe3hx9;otsoDw21S?TOQJGdg3kdJ%`h5)izMx5pi)Cv?sBy!q|6%(S+;wjymkrb{YTjanPZ<{Ct7h}AwMC?}Td^qMw zgd%u9lh()dSa6^MFvulL!33D^j3K)D;?e&1QD`wMX{-K zmDQ3n#s;IAf?x%sVeh;O<3M)rI+wiI%iCQ9I1RSZo~?SD;W0338;$#{!CUox*2^4y zY>PY9B1CwSe`BlOWz65Aud|%EvX6a83a+!#Nx>D)Cxlh6!uZS(qFz(*5tlO4k%H^2 zXi~5#G^9A2^;MibHtVDoHtPlfHtPnY${Oz=VL(DRHA!M0XQ~3#Y>0jS@ciEMCK!=% zj+5#Baqo8-3Nv?03)U)Y#IFAg(7bxU?BnmwSL9T5PgTQPE`SlBX+nZn< zHaxXeAJp`q2vXN~PZaSkwnR0~5D`{+n~t!`28JRGzHh!w`@SW|VjtUd8;h_`)J$Dv zQiMhLK0yx>k^wpH&knr+p)jK*8_*`wqluxw3K5Vma9kViNF?@Y|%?Q|O8 z&sj=*%_-C=o@*iR{HpEx1doz1d2H+d9(B##t`8mOayl5+Gu*1~`enPk@=^B(#XgQk zbnWJBeYZI(rJ<1N*ygVV-NJM<*oiDQ+`FiAg4 zTB`-R568k}y?3xM9OQIPP0|IN$>~8oNfUQ@<)1c{gdv6sDIb(2-%l+o#&Z5D{9L40 za%1mAlK}A=kuXk)M*2Y$?^u%*o9c9WwcnxVt~NX5gpaxu44!T3wK9nfoMqTjYi&!d zd-}_-QOR=C z9eN_Dz9T#lsN)86n}YIGzENVqi|za4suS40cT&Hweebk0+V zy{VEnWT&j@@it0$S%LY6J(c$WFNAbn?%bMdicNc-ZdLEGD$)s$EOxy~3(g(e%F8}) z1xxhcaExsFWW!^!e_wBN;o~@Gc=y;v$41_uNs0|-cSXQ={f1O$gE@>d#+oujL9nJ! zoH`rKPoMG5w#3K0IkG&tOD`(Yz|f+i_m&HG>AmG5j>d#Jk1*lQ<#)UElG&8Fsai=# zeftX@BnF$ybYie}?INsNyY{4$vV%)G;z&_zSHAR8=(We*V!{xD)X;z+twX7#0giCl z-&_~0ET5K-jpaZ*VqLADw~{H)$<%W1CRc>VlG=9~0-;C!{@#Wr81%^W6aNGKfC1iS zCOtB}iM#Y_Ie{FaHh!-^?``H1%{W82ztL{({ze8SlvDKBt^LxIW8wWLb~EokP0dsq zM&8H9&+&_0=SNbIvl~+27z5(u>;_mHG+ej&23H38uhCjDnGqQ5wS)l%lW^VUM1;tFSo5V>H7$OQuv3X#lvbckf#!(v^9h!rCn ze&V&?I-8eTMUN1>I*f!Mb2o%I+rV<1JGOyDfRHi>5K;!j2`K{{5mF5~dsxwEZMEwj z7qs5;Hn)TUH)E>PzcYa*h$(}I6I0LZ(J|GV^9je4mCDTd!X6${2~J4m)#<4r;eVsO zuSd}v2ePBMtn?j+&IliaBW9R$PWWIi`R*>ALJrxbQ^=Qh>AmC%E&?mmG6i8Pl)abS zyT{&3?&lP0FG(*jc0%bmg_3$V0;LCfE4gEj-b(J^WH2kXlDGHht>oVvjR3vLxMuw& z9H7`q5>v!u224x*qM0WC5)t*TgkRXiSTQ|U>?94Y&Q5X*R}pn982_T=(m-0lj(jT;;@+53eh>(B7U$|8Rz<&$kc@U|1LaKiAuX)tx` z*)GMzV2)L$#40_GdZSk92^@>nU@Y(S$4;jsRs;K>nWU7M?ya6)iX1lG+ux$k98CAt z5=*(1@Gx*K;-Xg5e`spWq*6tBET(6iJoJgTHp@O7iMYEp`la%$SZC-ImL+C+DP3Dh z+o1u!1nC6{mP?%FN`%dH(l*mcjt!gXZ`(|FITmKR&2`VdHym*hW-6iwF-d`$(n*1t zT#0-2bWwUQ3&F6R=p~c`c6(Xrm#fm=|BtO4v9OgP7F$loR(8{4zvvZYz%SC-ayqSS zV_K-=Q}=wxE;vcxaYQB zj5NdWz51@3a+Nn{dh4(p(ypu=peP=}Rd;%1AB~*aqhpTZ@s{?Jp|Cyny6@7DIOE2f zZ&ldf#Flxc(i&UlS?U+I%(M1J+cJ0fyxKGJ;B4>P(YDO9=6Jsm>mn>*Z<$vyuq}Sf zg!|kwudePcAP3I#J}oz|(1$4a2uBoAY1{Ye-SVsRy+4T4Oc(uG@#ES-_;|sQy=?b; zH(k@)RES8oaXI%1+M(Xwt9PiyI0idZ!eECQ;*6&atMg{q{3h?yTlPjAgMBq& z)H9ND!B4uI;7Y&{SL}N;=(e-(-9;gbi)!9d?|YZ+)%#v*V()ujQ%daGD|>$9t(mZ0 zf%(4oJ8l;2d-0W?H@N25^7j9;+C6W1;ocSBdUJ~5oUgO({E&mO?o3t?tUKgzXWN;u z+`GsUU-RZFsZ<}l+v<%M3k^hg*ZC9qLp`Clk)tt%{y>=Uu5XecAQi+Lma` z8Day_a=*?BS{fLg6(m{vbyDExNVv+qpSh|JHB%b^a#e&C?OhNFLBeGSaW()WID2dW zhyZ3c2w-*t;%op6aLD%hZtzpi9ci%97(9v}2j*3Bu){ObN(oHAIbcNhL5xFc0~jUf9vW5gNWGMo*cAVt-t;RMHqv*A0WpV~D1 z!?EbbE#8f62gC8C=7$1KIN4iT;x3QAZ6%vxoNKA#2U$ERue(UEVn@AQO#&RQrel7T zD~FP*J4d~xT%smtiU`53xjqL&R?UOKL&v@JrWk`FLYVzA5kpw`V)n`Ooj(;_}heS@X!y ze}{>0I2)DdS&QX>YqTp;*`_sL|4!bWEioJ+8+lM?aMZ-k;Et>~JIYy?ymQ4_14nOJnAF3EJ4!4H9s1>srLV6wSRiMx)KiItyq(ieHBD0&ITi=#38xts<*8u!7 z)Jcu?*U(Q~^EP%h(jsM(>vYV}oHf^95@^V#K-f6UG$6f)e? z2u19)vcZ2)BzWpCZz=jHJ?Ex6oU=C*-c4Tq%iFE!#5X4npEzWqeUYmgWTb%o=806T zKwNZ7sPCcIlB;EvigAWd!lshBZqt#V|YPgD??lZF=M@HOP$jb6$spULjaBR$v7 zXOd0tcz1}ooDK=%%tLwwm}y|b+5DPAI-6g|(O3dj5hk3?Z$6}#fa4V5>JG{Azy0zNx6ho7LCIHQ|uXC#rB#cri&q z!d}ee`z@x;uQWK$7b+{-@y5ynRx3H6jL$x#f8y7$1FB^4wW9A(6D~o&VYU&c#L?tq z3d@crlYZ4{1u2HK;!REg#a=fQqworTl+9Pv5+CuFp|nCw=1}dE$yxH6V4U)z26q0h zI>r`qD)ewJ>)~>zhbqJpoDj1wstlo7g|CY#4<3ssYT3>u!gmG}Xx=@iuXq$r%fFh_ zLHza~==ny5>d!>BHolCj)|K8%NDw}G zIZM5^32%Sete!8xV+wv%xPbbHW$GvgCqg6DqDz^DJoZt-&}_<>#O61-=y>H9L?>k? zn6~Xawm>Q_@KIX-H&%ze{R68yhU&xo)ipqJ)y>q@Y-d{!@E$?e2 z3!kc7GmcSVA`urwN2=+AUsXt9h8)a)QcH@n0(i~T{$r#f*R#T%vP6MkdvxpPshxpeh$xC z&>LJ(%2&*CZ9ObEm-f{Z+j*~PYSRyLZ9a@8baJtld94F-S{+|idAW@5gM0W6cE|=V z#r#AHT==^(eV&esL@sn8(oGu<>rYLuBjvL{ktClg=i4l-BP?cd8o6>s!o8eEhIMlN zqvcriQo!1@{H;D5Job?99m`ezi0oU@*FaR@BE!}xdn9ZfSM?+KB)#kR!*a^QzCrh8 zp;AX|3(*f}bizW-6odzIi6h!V@kg|U+)I3iMGu2ceO3LwE!54CgO7fbiH2A44Ye{2 zCt31?KYVq>2re~jq@m16V;v(USNFYmUq*T*WF-0#VWcSv!i_Z8R(_y1Qt+jkK6)AL z5`*yn#7YYtLAI6Tj*>lF$OW&q%^|b<+QrIxkNUdG8?}93XF5RQ<$$|^B63SXe{Q*O zbYf0%h^rJf;XY=mM;V=(Zu3u#9LL#@>L?{TWfyC;8fWyr>2-y3STogc`@`{H9#)$$`@`|m4(kuc z^ZAk_A^Dt24ZnH9D=RkiEzD^&P+yOKRF-PwyCphv#mJiW5km(Cw)u_u_WozvC*@Nw z_>0LGn)uoYKNF#k7@`PG^BvVk48Eqmlj0>#f_tNZNAbqc0Y}64R)yu=94UDvJ#Sf9 z*3X@iMV^1DPOQwc(3?db>XRv_n2?Ug*f0-zEon(vuZ6FQn3b;8m*H0UdU%8WX+^Xo z{DP#HTlz|fHR&ik@MiXHRH?TP*btzP9%6JzDn&DmmQtyp^F@V<29yTjzT z>dL@KI4DV|Unjp@b;nmRCiN(-)OT8x6uh}UEopsJ?r7tCCNDLyPfIc%qhF~j2{&&;Ln+{T@|d&u^**NecA1Zn8+s<^ceJ;U6iC$CHr zknQc|DYui{HFbp?>9DH!v3&w(bVUwgXA$@Ccfyao}oAFmrQaowl_FPR~7~h zZ&V5n_4|fcqA6Da-e~xn4)2BrMum5Sx{qgz?5D4yhPluxW~VclJ+ zzlEdw%G16i7Txyk0ZGDTlp)EvjCzGL$7K`|z=s9_d}u&uJbWt*2;Ap6liWj0;!NQ> zqaj>ZEX~)#q=!=D(|py%3{J09kW>{YOD@b^GQRjc} z9=Ff`#`DIQ*v7CPd~`fKiq!d^Yvgf#mG}my!d2q%<64>iRK26h5lI=G`TfXSLYei3 zGM{y?9vu6MZ+j+jl(*EU8XpgiwT|lv;Sk3KUg;&I1%m!&XFA# z*ac~aj?3|{(}A2JMeW_#;$t`6$0X6|%!`ja9PBv4_f{rR`UDGE=&wE(#U>v6v)(06 z=+|I*^7pSGN00RNaMeB`Jx6`TB*u7s&IXZR=LD7Y`Pzs&9D|Le(+|5+t=0*>=v6_neULzT>MZJRB3jK3?DF^o(Ht#u(oq*9cqt!ef1P z#YoNs?B6^g7mW2iE#Bmq2=?~F;KL)>?|;`f&Nb6!|K>Pf6ETl70sGk}WSQ~4SH*0O ziC}NP6!0sDJsuYfOz`!xTw84ZXW#QZB6e~v;J@ue@YVNy^yt7gj*1XqKd-yV5rB`z zPn+aBW63@<=)R5)>cH;m33)>LN{XwT8>T(T&vBB)kRr&b8ip>W#!G9;h4Iq;p)Z%o zAVM8G&@MabP%UO_7KwJWR5_tvN<=h zle&I!1;?O%kuZ38ZzIQ`h>wT>Q8(awpu6KEJa3xHL zE55Q(_!L<%v`+(Vfm7Hshs4tU)h&{FD~Nsgl!6v_Cp&Z?t)Hz0n?a5*zJ!YGQA+Pbk6azi&-UOUz041!d%b>Aq6(?qXko z1gVTUTwT5FDiUL`)+4c2yvS8#^!tEQlE=HTg2hmeBV$IzWGi^ zD*FuVomIwv>$@hho~Fj37>ppdH<{_lKUwDUh$0b`xM+wec$#)T-{mbL=!e5tP0I<6 zUiP*+9pf2ymisJGg;V0e!-cK6_p-7PyNC5@Qb`L@~Zx)odox_(>kv@aZ0N6Q06=2E3PkxdvQ7>h^eP_ zg4p@AP7piNzv}a&b9hUrGt*E#k`+aj= z&)B`W&^7rH@f>G@-t;~rV-Na16}>qoqBn&!`_u^b&mHp3bd9mu@92@-LQLRHkWsx$ zkWfZ7SPt9Zt0s@`@HLgcpP;l#A;S|xgiLz_FxrucH1eS%z8aQm5rlRW-*5)#&XO}h zam-hdt}Zw#g17zn%mRluK6-llH{TrBFLr;j2a=nKgPaNavyUL5{=6#l9`_BA=TG?P z;FhC{&W_x^YT&I_qm8haD-HBR_^3CjEjTuLUVF?L;T1 zTq!lf$2*+u?FJjCEGb=P&r>sEz+{o{`Cyd@G~mq_X;Dx?^~c_rys_-(_H1`k2-K7b)q~hKEYZr~dH$PfTMXbRrr> zXxh}XIuU*GPv2A#K*aG!E1)qj6^T`07&$_70O zXAy642`DVh9^=0zKH=c-I{(2r**%lLm-v8Vojhqi2V-r;hc}4|wXp`3nu!vmB7kM= z5>7)KWJ;SkPoyS4D+mTUMLo(Px94p4a?I&-ndO8}%9avmIR&zelN2;mDRU4NcK zx)ehmlZ$S&t>!v*P9LZJ%E^!|9XO}6rJv8~Z0QI3S7l2je4$I-e9-<{(P4BDx%-^almv2w&jmm_J1+=dMfzoLl_U1&M(&%^mhfMJ>ulbV#!|dy3zD)e`k6Q5GEVX5#aus&HXcu0r%G; zxT~{(Aa4b|m)M*)a11yT272$}7;s)i{xo?1Q6n}YoroBb`00eiyW%bwXTFfW2V zC1BhvSf(-vvxsFXNYexE^m%i=Onv&hzSE~B_A*sd2@d`)dzSYmiBv>dtSh9tWbB>l$c>Ur^a}GA^2D& zKb;Q@VogvV$++1^7B6USanZS{X8<}Tq*H(vS zaImuo6BQO=g9?kVqm6wyVrYX!cmwB&6>pt_z(h3jHLUJm8FQ3OwdlJ-iQ+fj80*yG z3(h)q{(?TPsChv;-?}+)L9fBTa8j(nyDsSUXx#<99<8Q-)f!ynBFPU;gwQBXK|&f) zT2Ni~zxYVz;ERv=N4rE--W*05)_Y*Abx|K%BylWOUVJB}*+u=Gm=+w34mG*xbm;Mm z;SS+5F^)Oyx`U*P`d-VBqAbs%+iqHcNwQBZ4%G7(ju8VHLRTB(Udxe{NAJZ4Tx6#f zUpDlA>3ZiP9`ljUH1hWl<2f7b631SYtD5<1im@DnU>e%k|BaZ=!A>v{6+I!>kVU^; zs6XnWKG}HdqCVNE+tfeXwaQi@rkUR(zULgF!WvtJH5>yK5}W&1h&>$as6bQ^D%d7i z5uw6~7XFW2S1!uoE&T(;bQ^wXv_=uo{p-*e@TV^Mdi^h{xj{OaleoEYvz425D329&Ht@S1exAg z(h|N=5S|xs;kxAi$4lfZRr3FH1T|JDYl9rno07b#J6q?K_xOrOrJ-E$XKF5CNJr5> zhlEUhAEz!PDoyr(!YAamKJ9QcqRUzr4JrcMdsz%HVi;*W<4) z*R*>%lbqu5&xW3dY6`;L8B2oS=-SYg?XoU> zub%4fB1?QWIGgmm8kbqpe|@64!A4bh-{ZMMgqlqp*(meQOggACZ+HA-IfC*T+B0YB zOQPk=H3M};f3AcwsLV6+v1BVFgT8!OKS)sJvZNaMs&ZH_e>vH%)uC*1YQLE5^0Lo= zFVEqc9f;{g-k$bg>VtxQIMVO^-wXQrr{**o zsFLs6!Abr7lPqzDD@N9~x7jBcnEHo#ZNa_IYcS{0N&W(InDulg@fYK+H`h_*rCq;_ z&2_N*i+*~RKj#%@dF;5dU%_@Y^A){QPWHC$DjrPND$#7UWo65^M7_vXR&BX<6y-y$ zIYMpT2w{z&je2*EP0OP)jahx3YiocY2 zmt(=bufrXi&Uaq*r->Q78MuG0xi94iaQ|F$zkI7z3-LY2g8SzVcW-mria)oZWe;(P zHv{*5n)^A90C#$OhSGiOM^+hegJZ#cpTm7XlfVZe?;nw#%lU`i&_el)`TI}1?AK?{UwEuqrsohA^tdoeucLH>p?c_ zQ5*x-gn`zQW5AU#A+8;N>K-TavVFwn)SaEP!sLNF)Gt2sKOye$)@pNTHU#~k zDgFpB=qoqxMY-2i>Rf1NkOBSFss5=ZTa*@msqAN0hEFF?w4--J$4>X3a*1l3DLhsA zs`gZ60~4wYZ+=x*hPUKc!gp&-3%1JpnBr`pM zQnWl$mm>#-ZEuCuQRP3lGWXru(bPzMf3EOipn4)P%OB z#M_*UvoY^;Rpy!FZLc=>OuT%^a2ri%RZ(_+jZ@12) zelD}bQZ55s$J>ckaxjh_mXh5U`A3@s`uJ&U-xe`Du4a~21$wS#7pEjwCdtd$TGe!I z%gCRGt&o38DmtLiwXmh^PYmqRYtoHuKP z!*Lw(Fd8*{bfWOPL1Kw;#vm7qwBTs@M!;Hpd6dS z?22rXi{W9&#T;fpFn{d&&c9I@;0c2QuhWOHuWa?#5`(!`&hrc}W~AEdgisGR&}v36 zUC!Q+#j9OiVu-?X4F&{vezDi|p`CVMlAN*He^bois=$9UZ2!$LFlvRsY3XXRzWQqX zT8@TgS7xOCCdaZkI(6dD{%kghLrj8M8j$>|T)U)i@;TW1y)yw6XTkJA;L+<$8o?@mZ zaLX5lTPg)d{OI3kiK^El$5qmG`xKjF)VK;>{@G8@7B%5;3@oC6S(7*>G_aCHR}O|* zi2x(ZAi&UFS-n*o(Tfu(309K4a@b!?813N(1A-B;d<#`r8eladV&1r}UM!chhIorJ zcTE2}S(xth)2AHcwdtdciPHLz+z^H_VL)K~ir0-X5qxfkzpf>gaa}MdmfFT&YGBl$ zz~%iG>II4twsAa0#ioopu>U&d8+3pw6v`AxbH>F(x(6f`4m6}X4!p#L!GS~o2O0#3 zcTzLEJiW(X!WHwE%=U}Fw8;Dyi!i8a{gr{ObN>~d8cXi=m(7=6Q5^?{Sj2$=K^$z_ z>;G05V8lV?zw9`u!qsx(ppw=tU%KaYPu5J?MYL z5&^D?3Iod{2VC~Y3y*v&; zg8z3K{;w3Qb-{nsCEnn=V1^xbLoaW`3=9PTK7Q~48A?3}`w_>&wv#hb{|m>q5!;>G zT6>a++0~HfWF5=7CZqvX0jpW=s0UV)a z5E#Y$*;|;T&gsbixb7MFgyPkH8)ACLmMq-5x)}K%nBXnU20h05kQ>HaKj~axU-3x~ zM82+Z9v6VIKkKF*`?EO48HuYoSdBz$mYk3$P)r!@F%S(1!tdFbz<`K`D(^f<{>H5M zD`)Qbdw)j$KF$0cu@|eOU2W)qSnAu!mSL3;_zGH)l|O~-5G^Vv};HxrhG#v z>^Z(&Op=gX7VJp`Sn~}6%o?6!&CABjAuT72jwvPPaZ1usUkcC4NYfzMs8#2xIdD8Z zD%%4Ow38EhWi8Hf6h~qB(~u8;8W8v+Q{F(FFu;yK_i+8-Pop8|&*u#^G3n9Kr}72H zy3XE`=ko=+i{CjPXSAHosH4{iL9?SebBr(bL}A&XK%iQ@-T7_2EcJaxXt^zNU!F6JG&W}tVw%X#JW#EE0^2X7Ngb}Vkc*1hp<{aW{?3LQGb zMN~Dsok3K!za5S$yyCsyZC%7xo3lU>Tg}_LVCTWxVZ~6y_9|})?Ouw|u6poF(Lih_ zF^RWS6F9y+Jb{!}kKIk+Smhg}Mzcsil^V_ASafMdMqOI!bV;Q~?C`L;b_hw5ix##@ zG(}>exx27c2eFCE3NJJt9W2~1K{_j^2O?hJ{4u|dTGlE_yu!f{s~U#HJ}Rpmt6NI0c{os57D^)7 z1{cSuV>uVcs4v{nm9GX>#Cdl|t#Q9QYKhY4-37eqdtn#gjkd@0OU`&k0iJO;hXOo) zlgQ>B6yR-E>Y@N|i~5BEye)V1LlW<+nh?A*f$BBzcv|PGftAsUH@Z~|d|`=Gyz4Z^ z?c$B!7}yp+X4QQaZ;X`-KTFLopQsr~5!V=ZRlE@>$N;vuw5xY`?MCe11P@KGxH``I zx2*DNk2dspBkrzIyHPq_s}g1_)Na&C*Q(avGI5EwrXd8k(1gIg^8-}sU@1OI6@|0Ns){)7R46mYEN zXz(X=h`&?7aey}i|6gqWXE+A@2{WM(Reo&y$SN(ab2Ru9I>a9(9J&9AbYSd1+B69q z1J;Cr)hlugxDqDB6;?qBM-$!*S~sv+Kh7~=O&C}OB^(}(27f|__@jj5CEfz82imOP z<`}Rh478raF~s#*%VFwNaLnhez>Z3*6OSEXy%qO&GAQ&M{!EFg9zHaYUJI)bP)+ zjN>nwF4C28a3;Epql`Pl_&M*U}yd4byu!=f>H^Ciq`r~y@g}nh0tm{rUng#(aIBn|O=j8jo zNaezu>W^t0j70J?1wooi9&oBZZuAVyvcwAB9Gk9h@9IqQTLYsuUCtXVx8K#(A3J#) zenF7uy&^?gUl-VL+VsTN+@;b+@=qVb_^Vu$QUg zr!2={f~2s0>TB8LJb$375D#Q=Rw!(UjMiY%BM_*Tj!7B0;Lkv!DE=SlyQc<bhC3gy;Lh~7X1QeYxIhi%P1HI#-pr@dQIZR98gk)H0|F!7elgI- zR1lkz?Ry%Q6AyEh;K}s#MgAA)nGt>c|3Ke-P@uj^k9&{D$t*bG>&$sLXBHi_ZPMQ? zr&#jX#6YzeT6A=^g<~E2*&U+~IN>uOh@tPpF%=D^*;@f$_7txbc(hN{dNc6&QblHvR+yp~eIXEoM<4P-roS<1r>? zWTgI5d2DK+2GrMe7EbWkFO!^L`_B;S_-_-Jg;7BSn3fF!1bev7BIXFGn*A3l_CLnS zq3W+0sroxqRnxMnv&bJ!QAB|u7g1n95Ctf-Fu;g{*cdwsa>lUm4o88NT_%1WsFQxh zC?vgKMGpe|6+eb31c3oT5WE`^1kX$kw6a74t_fzwx-oiYtZQIY6sSTASLYZxp>yBz zqAN!$%UX{^`}A|VhZx%F3+gN!%i6_4BoUT1B*L-=1eWdaQQ%8qfMMBTAdt{4ZFy|z_6;!;^!DS zZSix7ViQNhus>#C*gcM6QDxy6)-JyxiCA$AiO$&iolC;lA_9ypg8*Yom04JK<-5}Z zrG%AF?F@Pv7zzM&mk{$J z^#ePD|8X?T`+Npn80MHaVq;(z36aE(>z<8|}(>|aeB3hn7sbkShE+Zy!4Zt@uo51lI}9^R=Qj0zmi_P zYj4)*HvE`4&6&a>$8Cok=NQL6H#zwKvG(PGH6PpK{d{f&$pi^W$U=fx5|IQ+Y(eZx z5`x-Ekh{hblvYd8YG0`;rKZ(Z>7t4%eeFxDYH9m)FS^lIE!}upYxm{xJ9B34{haya z`o8|6|HyS_&N^qdbLKOH_5lR6kA{Hu(IBWFCciZ>x@&X|<*u(jRJDxEeh;LwplSNT%^$*7`_dB2G~*~3O#=vM8VvzW zqe0L#nElqkRw`u7rmt8O%uR~+4?Ap93+fPxTu_nW7T%x5KR5=rQ5KyviPHu;5p8Wp| z?QHG_vG%~4b~mMggKFs_qk{>zOhy(=NnvMbF?RcJui^~wb%B3E#jGeWz+t{BgQRg` z?HnvLlowBqXv*q@>K-@Q3=73&XH_j40!~1Slkd+#EjFC+#0za!?w=CP56<$mGc!YZ z{w7aT){asZvYTxs<*HLcS0Job18_M>Rk~=C;i1wdBdX9HdNsPG7G1wlCT{QrvpPzC zlal;qjl+8-PS_#^kHRdr7z7vm*w{?-VeprKmM61yl&tU}xa~$yzPST?cA(51$~x1U zI8BI~a&v0Rp(}@$Vt@N{>-5_E(N7>gT~w35^GR7-HiXszJ35V;S84t+Kvntexx-~y zWPgw?R|~+l-I228Ok;~v;@Kk*+OD9Sa9aro4}V&Ay^dfFgtyrdA_QfB!nOs^|G2CL zA2m0uj!pnLHs=`TTx};HEVKOcvW_|eCYG&*nbM{mMaJurijS79W?LzE-yNmN9K-t0 zQ*a>YXKt;@jk`SY;j~n+YizMo=RqkunCir96R#dCYZbyiq`1fs4?%oR!2yODqPE{c zwUWHElBP|+AxVE@S|ex$%g$1Q*gPNB0r#E6{09{1PpOM3JfaUk{MK8=D?-k#;_rO$Y#k=xfsC?fKjQpdC6D}C za_a3?i|@PL6V01_SGL;Wk^B<)C*Q$?G*c-RHlOZ-5;h(^OskO|4FTWIzuR(?a8#foTCxerS0)Jo!O$k0cd`CqH`E1|Pzc zAAQ6xJo(Y5HlMM7W(uPxKScgBsYWZ`^Kc2x%1(oN#$cg3KH(?&)OmUL(o^Tv-Ae$# zyO)Xt?LqKQ;O->>A$Ko{G9TUtA{dCfm(1tS^M(H{>sh_~Xyk=G&9oavgsUDGpVQ;# z`Co{HEM$1)@6QvUSL7RFEQCJn_2y1EY{sh z-H)9J=b7g!8r{Faxhs67#YQkMYOz89&<{dn&lZB*?@;HKm7KNVWMX-A;@e)mlr#EMD(Q=W(IV@@g~{zTVrU!Q7_2Vldn}Kjf~A zT71Q{0ijIeP;sGREMJj0H;RuRF}YFbYTsUvkk43Y#On3xU96Z@cO%?xE-_#D}hxT+HP~WnNN-BL+n=g9Y)i0LvSMBVB%6#8X z&&BbNYCGLA^DHZgU%2dAQJWWsIrAM*vodRATyI1C;>iVdPPPA0RJsWN1iFBLkS-v~ ze8^U4=X)6tFTT=t9e*UkIo@m(#eO+>!5nX>fI(3J=K2LDo>-Bk#sq5mb&)zN0L5Qcw$B!y`g| zt}gjt_`z7`H-@<^j2C}9#pPHA`r_ST&-88?R(W@vvw>kg7sfZlJ9F6c)C3z2dM6p% zrGuSd(_kMP#!qhbw&TxkZxhB3COH35jb82-ZJN0?j3+mCX0ol6=bE%&q# zqNlkrjPH2G+m^R&;(VWdL(#C+FD$54qnhu_1f(+HaYDr^>l2ui9}nY;K6CZwNqbYn z{?*i(VVEo&E--fXV0FStmlCEj!@_YNbpQFOk!HhizVba+JI4Vqc2);?XQ=em6Rmim zZ*n9r-BVPZ`vU_anxXIpZ;G=83#AeW!_`j}5bE*{5b13=8E{=VTCVc(7S0w1e<#No zX2L)a=qvRX+bs^y5c?7Rb~tpaD;HmQ7M_%UWyU~biLjNr?duNdC+o#+Uz&rf;czjq zJ3D0}zdqHuIjFlockKhh5MD2(IFx73nccSX_cUiVB(bT9RvP7#i*6?n|B&~0vG%ex zggW0a-#s}t2tVKb;V^l0jgIHjGn~J$trVxYsb`qEDV!HCa1Sz{2AHt5(8u>GP!^|UA4WJRtd$f0sXFt+v$m#;H*yYJ)CL`XA1fXQY6VB^dJzA2L zS?)8TWMa0{FCK)oo^;M+t!XtRox&vPTv~#pMM?h|d8`jDLDEp7k?z&e`8bkp7IyslJn`tr9hhjhd{4UPonBc9$cf9T!#}9_3%PXE>HVfeyPeY%1 zAe;~R8S+gOjT^7Hlg;_i-@7`?A|DVI#;cq*3Fd&Xr{VP6L}+onV=kmEu_Ja?h8)zk zQHim8Cf)Z`Xo4Mk3#~TekBaEZFS|K!Fxf5&4}z|4tJcu>CCp6Zdw#4jo*ksvxJcN$ z*a&0q2{0~c7Jy46&h%7%H*``LgMDYKUI;h-Z5ZK9V5exoj(<9bIj*o!p0smZ8)ifR zE&n>iC~%d*0qaAPU;%^kOLzpviyUA&o-|@oM%03U;_9t{Q@pgu8Lx9V6z@*00*T>+ zCzd^?gF%#JF5aDXq(y}CE~6$5X6aO({MPi1 ze8$~YXAAyOXnZZy>}j54e8wW5|HbK2${h?|XpRF5V7iNz2)Sjt3&fV`E?O+iXwD>J zFO+69H$h+6T`3RqJzsU=%Si?TMk3u7n^ z;yJqqJ8xjLj9cyToWDJur_``LwiCs6|Bv>FknN!{!S>J~qCL#f5i=b2>4f2(0kgsUTAz^_D`O~+v-zZpUZvuh{W<^j02oygsDT(7Zd*O9R4_KK$ zt4BN!jVVa(azp1kz)9H$dnr8F51t=Ra|_ zzM$*HV1o`t*-(f2kkS_pWda7CNT3+9 zv-P;8F$D8(FHJU2)#1n8a9`|yC^ky>4Uz5#B3<&~l9oZGLs!&z;ZS0S#PE$?=h`6F z3OGppy2?SK>ym~<2Z^j}IY^Vbx`U7bSzQdLvCi5KOJxm$1HhU(fdK#(w)qA;!aE7J zdE1>e!p!#=hS7|-C2UANGc1PAnbxRQIb@o1xyeeYz~CGztZccTI=D5iF5fYIYBVpI z;rthyRuyUG)G#(qfc?{L{z^}J#qy)of=w_74gcqk{t~^3mTcYZ?Tj z#vJDu_MjcZTu_&1y)!k@hH%Q$oY%b3nZ>r)5h8>v{vOzzZ)kNciSNGA8Ko1zuCU@# zL&ncccaG$xH#r-bd+PFAZgTcw`zT3tyH~6hHs0ZjmN=X7A%kl~VaM3fxu~#-&$6aE z!9}I$$@43mJ$b=`+f; z-#bt&IkJg_?Sy(VVOvUzBL{mX8{;gZ4qrXk`9e}(EJIdqbaxU|G0me<%`czQg757S zTZ<>XoEFNj+??FRaT{PJ-;&&vEv5`m>V*~qbGeinJ>)M~J=S8HqN~i0vKIA=~jb5Lf#4L-%8aBQCK~oK5rjor zvrE^hBYTN9cxIV1Q6~%IVJm!^H8zvTVL4PN-|$#*Un5-*?rA2}lR1V)@V8<4Se8d6 zK!?O#LuUc@d!*5*JiF3yuhV0&q4w$`$kwokKrK87>=y5=(S$F3OvWpO{=* z_7FUd<49SgHB-!#>iZYMq>nY1D@Dqd@4C;~KEMjvCWR-hf~n&!%0jeF48^j98cb0*LNE{UY2CL82JX;F!Zg0?Y#)5x+1GbR-hL4 zyXTZO;yo*cnPr5~-&_a+qAK& zg3%Nx!5Gjjv;+ewP=bLJDW-}6t)|tG^a@4#FDhL2Ddt zB*55B&qT`TP4silID_Tds>7zQzTD5WrzJ4t4s#5uufjKlvRVE)Yqfy|?iMr_xLdG8RQyH*whZ@^>18vNhwqHed=xM90!5Nwwx1MPzG zoYVW99~i7X<&F)L(Lg$R1}(vb7{+t@P%tjU00Fn(6hUpjD^`_egi{0z=Ridn&Y>72 zoa3b!eiqn_I)aF5+95G~)f>(abg(r7-A*Zs5vU=>x0(=^Ra2+JH^sD6jF5$9n+9@I zth~EYhCVh?x@g5Glog+#CD=VN^s%df41MgT#ke}#*}z(zy$MA8!v%&uEdN$7!~+|& zJ!L~fAIB(t41E9whCV2UJ@j!2B2*&u@gv1X=`IlIE)(f6^bt%tY&MM-_C7mAg+4Se zS}PFxXdJCVA4$=+{$eIXTP915w)%^RjU`$_sqYFk9ypn35NzcQRx4xZBUN-A75ZpY zUoKT+;BUk747ul=NQJVdmI(svpITtk`MNnTT5dOQr3h%+n~4^8Ma%6bjBB{voDiN)M7zV;VqzreGJ5q!cg z&WFw1Sh=a_6ieJ0kN9NA;$&R^L;JIdy<+9jsH2~D3gZu*cQ)dAzd1+$ZGPF1<8z8x zv3$_)&W}?e>k@>AH}my|J1f4yDelm{nOKk6L8WznE6IxBh~u(6$-g^>#bI6)-v?G>&g4({Awy7sWcL`II`jt{}b z#KD~d;0+GfGG$kbo!= zk(DmA1S2a@f{_&v4@qD7-gP@0POBm5A&T@QT7smZBrD9-g;mfJBn>5g(ipS}Zao>a zIS%h*@T7nHB4PXu<&BvutnO=IDC^Fx59QNol!lDpJRK_{I9Yr}=g!#68uIr5J5pfF zfX+H0*lXZ&%$1o4t)=&gEwni>qBAAJ^^+0t1W^a3;L&ggsk-&xBXwGt zA38dtu-b3Q2KC7#e!ik^DBD2!;|ZVaDA%V3`!|K-s_?{*uIB7L3dT+4zZ>$M4Iuqo z6=C7Zy3N_~U-MPdt*hM&t2K8v1@1uTVtzSXx`TdLm(0NkrLQd_lQm6zlXZt zH@7vCAE<68<#J22wb4~(znwr*eCW5XAwOBm-PzpKNG1?BQ4*NyE4?K#-SI&qSOmNr zo6J6<<+x8gcr_NsEEYS$Bn!;X0V_=Q4S6NDwc}?Xyl8gAB=&0+!arV(FdR|w%bve~ z3ZyF=@foR86T&G48QKuJ&$u|5`%H)<&Mk7EX2Uo%PJ=2-gBEcr5enA9M5wUNn^WSM zW*yiN$t0X;AB-!|_TeI~U~4ga)^1gr>l>2|q|#WU!cYnpJupO6kSV{tt3XEx$i&wUbcLBPh5N=ptJY5d+CS1S857{c~QUwjY_<8oa&?8jgTXLDWCZ3y~Eq0YT& z4uf;XsgACP494P#ucB=$I{PwN0}94DgT?d2qvf50Bfx7hPFEUh5e%#D7v=MGENqb> z`^q=6juZi#1=!$008K7|Phd8RE9O5V>RKDE#PKs}x$@dnVE9Gys^6h1j3B;XI>b>wTr5T^FCe_!L zCDKwzIH*@C8zo$2bZ(gdD?U%isQQ*Csk`SQ6Zq&fc;`~%XAQ1-lo56xK)~R0RfLMo zAvtWY9U(+i=1cpC0iy~lW1B8gtFhW)3fRVsE zD1u*$cQb;jJ$Q_(H{-z&&W&+33Bm!@e%g-U08#kfI&is0RhcqhoEyTMjB~YOFWb?C z>I+L;alHG5+BJiqUKrX4YFA{O*j&XgZd>YDs_#v5f&3s(&6$f799+sbFR;8L(oTk<)*a9a2)lAd|DoD zvUEz+8uha&7==qul%sx71U2gS3xT0<78rF3OhlI@Z8-|o_xD2igrN80#>InPBISIf^$gcHRDOWL+c7&I1y;P ztcd`$#fd=E7ISEJNDQAl+vQ;zSR@gQJwkVNb(Mc^eP)j9CW8&2vJ2xHeR$>)R|4xp z3*@{fPHc}?I+xI5)OqYxboS~xHz$*bx(}^SW0}IFENKdJ0p*2p2Ef2sgkq=^=IYYc zj#Z7}vV$i|o3Z;TCQ7;TDpEcwr4+lf8Liwcg9?eQps~bOutQ>a|M{-(bOT~5!1>#y z;DHNoFNqW@9FbQvmo$h;t5XOYWUr19_I@Ce_*S4FEft=J#~DkSsPiBbX))?Jp65T}YRC7QM(wIy zuG~@-4~SSxm{xKa0=AC3T_rkOoD1%~8^V)|C_9`B0AbWJ*T5hM7?4>N3;`5tpuU6x z^|%%GcrsY+kmWEVYi2-s7A$v7VU@uU`rhk$z=ojDgG$$46d4!(-W9GagB_r7?CkJD zR5%~h{ye-cF=Jc9HTSuOo1Zq}BkqG;<>$0A9#=X1e>K22O)wuHBEpV*@UOST@Ml)J zdXNs*Mz+I&CUWDT$zq#1R8>t4F>@F_galcZgJv`dIH*XM>Y>6zA51BXp>a;)rFgir zX%av%mDx=E!c=CnBzeil77@S4!=2k;2mOjWiSJqCf-~?z!uoq+WcG4Tj6Zt`zxcjC z8k}CxM$m07{#h(G5R1e=Pl~DLG5BY;?@`G9&0pQhC#o&MDtBS=U9){PRS_a%f=DFW ze0#+|Pm9R0LYQFfzOzvj-};ER9^C7(6Zpz|J+yk_UJv64zr3?i zEZ_Y4iD0fx&+Jqj62ly-DaB4v>Lgcq%fPA1|tt#xoM;wqRMwegV?}JCJ2>OTbV; z$i2*Sjn2_yi>n4_n_ce|1*86t>Qm2;^AvH{xY==)_iS->HrQYyJjrht39y#dr1kvy z?N*MGWR>8aNXvz7#Pn;77lzH^>py@K`4?u6t5oouDdS-_iY!reQoa-r0;dnd+5u8Lv3gzrM&}NARb@ zjCkH7d>mZV@m6sNZyWDyLh3zxxNE$*HCbNzv5ndcFa6jo?A3*@*clmVzL+dC+q)`V z3#!r6!ETl=jU5|7`t237Ga39)y$qaKOodVJ2ncQK$7QRPe%mP0T%Rn{*mZt%J;{!1 zxFS4@tCLd{jLVth@V)m>u1p&O@6o2Uz*Ha-4o5Hx3e{gPF76-rNKm#Vg;{`EIF-j#3-@K{3LgXzl*@ekPvHYPu zu3p#N0%lZGzGknh9gCveMFZ5&5fIt{bwM0)hJZDdw}<>X-VGchr?eW6eap3iJx=ldMx(8_m}y26XIm;Ce8*)P=G#sABk#I$ z*}GH(G})WfWSA|z`oHqNHr!7C= zK3bDsm_9pAhBE9>SY zn8fksq}#>Jp>9rEAZHQ0IVs3O!gni-VdCbbufKFXU|W3P398q=a-C&AQ{nIg)g=M} zAHn6|`oCjM0(UHVS&injTZoH}g7EW&G*{=Pj(zLe$Kojto-~SW&a>XAC@`AK<5KOb zRLBTaz|&HLXazix)Gts0Pc+RtrrXHYGk^E{!ej_bG@=$^Yrk@f%Q_3aSRBh5@`EciQlQAgSg|Sat0ufhC~iOkSI`Hl^OOwUfP`ziM1h36 zFR?BRtnE@L7}s`*DROP6BZ%`@+rI33ZDTHYcrCslJ1>;QQMMRVdhushEt7Sla2yNp z%E3GV#?e^aw4~$T>dD~F-&{k?;uK!_n`<~57L-hVi%d-!jv1VS$%B{zQXe?s)-*4L zpETU@{6D|DCY$ila?u|yH}jE-)^>^zR$sii{sQ4uf4a`FMgNPSiU7|4zX|rZ>?%&I zqMmLgac${qmt6@4dnhPVg0F6c((#3r%Wt1O(A<`C|3P;V+a8n(v4uK5u~mxRlq`#{>r!+I-_n;a?B&5tgWS=vCO_4XQJrV70ZLpRt zZGFOQ)>0m~X+}!uahvWfWv9p|qsbttvlyss^?^^<+!w zsb5h#!c)!Tv~kY1yqcG)Pcb#}=%pG2y)>z%JQbk4lo!B#{w$`I%}EXT0KA7gfkn{* z=}jVUo!Uy~>f6v_91vUalkMFqj+X;hrHRjNVO1vb^Ub5IX;@vG1@|uWgz15Dp{eQu zN*+_yQLSXEnqrVtb!jV=s-8qKQLqU_uqje7(RDCAT~)4D(y=u*n4Y#nVt5_jv>4q^ zxQ4_N-%F_&=-3+m#n$eAI;v|RKkd#HmwtI-n^>=taNh%KZ* zjU~Ueb-(X;0}O&EINl-^ILfgH zAB(K{i)Ck=U4bgjuJG5IUF)`1vuk8);)F;GZbB^976I|C17n_;UX6X|KTMMny>#%= zv@}P1po~vpW>=w{WvATTqCD|VZwFHtK+LWhX*uvUtdVAJQ4T`wE{_vZh&oOO1^}`GR*y;oEBxMmIUz3 zcvyvEkP+Z0v^gGDIYu#2ywB|7ownNCHVjzO;ryoY!ePJ;iQ(_o_nu)I82j?wf~h(y z1brD#sr-~8PpN#JBGc+8;cwuSO3PHz3#=t~a{=}*x$%@r&r~_1_ofI!QL{%XStb<0 zxAtn8fHQj6RQ&Xvb);zEj)i7+suZhvDiv!iyM@+7iQwap@NkV{#xDb*7{3ezDe%j{;M!a@0u==W zX#{G=XEhoyN<)UAeoZAID1jqGQ0v97s5E}dcz0GJ*h~*W{Z3j_-0+l9DKlIfMMZzR zsC9igpE8mJCCu)DRInTXP3Iqu@@-Vnvk9k$gCnt8ajpr-lCY+7`0!3 zag3@94J5(>Cnve#UH7kT)eFrNX>tp6f|RIbOXi(5rkQ`H$+7J+DVIC=-=+Upae-QG z`vV+c+O#39g9D6SQ4BE29`|}3 zAIJYMgg8CT&!9ty%bV`;x_@QG8aXlJ7J?FRSTCZGlqh?gk0=`J@U~GanQ~G=?g`y( z$Y4L)G6t?E z8!FaVRwtb{qd3K~BJZZ~Z~-L(W%CU;xIZ^j()q2k-D#{PMM9~Xr4x&1r3c(^-5ht@ zM636xGeAu!{(t7UA7vT@ZJUrT1rARS2#m9k*7NY39UVW2*f1rCvxz)XsJwG`y~Ajp;}lN|1CtT7smZgpiKmw=8xSu-3F1 zl1^zWrOu@#NE%9zbRSxRq@je6j^-;~^(H7;Ij`;7Lt9{84aGtFRFoL}4mV4X{62bTM>HHP}@K4*AQ3_w~{+WG6b+Tsj6^{<9 z=4`I|%1zmM5$psdj$hwotZ*+j*(D0Mrt^yej0qxjm{P;X)j+pZ?vHrdV=_*T%WC`* zwpIpFPRx4dbs2p3YIm+)S9}G<;)2!PaKF1kuM3B!Qo@5(ePs>IV*wGwX=_Vvm656{ z_p{lahgfe)4uwa73Mg0z?|_OhvZo~m!9aB<*fGrB8GLW9=Vlv%E}Xh%QWFl>Nb@vu zfv*kb3NX$#E7Ii}>6M4vi3a1g>V@X247ny)MM~6~VE!ZSKOE13J{a2BK`LNq$9yKk znxPyoLp_Y`e9=~ZjPrDcjO{#4@i4ZtJ#S>X`C*0(KYvV%apF5f$ePDNJh86?s+f-f zsu%mH^?DqGsF$1HaT5)Yo@iDHgRkSiN z8W>HB8JI1ZGOqm$rGs(pr-^BeN|@B#=t-D-v3kDBOKQ|HtgS(C3AF;;k;BDq88Y`0 zzRlgi0lZ-vb+HUrk65h zr@BP(tWK4XB|BB)EW7K*Wf9kH1#wB*semeWD)@_?3ZGr?ktNs5J*&{_MrjpTv~ayF zBoq-%O+w3E!7}Ks)H2dt?GWXzIym62H&Ch2UG<8AT#gPF_?XMN^Dp3IE~hF!=5ikR zEBGRpqv2aVznS8r&ubMepVz>a&+mp0IK=h9dnq0C`CYVi-p-P_92h=rPG3)ki!}1+ z^cn=6{!{Q~boxrj5zIH(50oeR`+0Bz;qT{3iSqZ|_YPj+2ydtSJ)#|POdS1cx3e76 z5exPFqaXTvjds%CYfwD20*2l*pgxA)vuHVv)#-$;*`-~;;c>$XWbxxojcmY4jq|+t zGe~MvZKRLdA#j=V>+b*R713nhgF(nR(Qv=2ks z!o9CB4UC4H4jiT7FdvonzI#vz`;AJ8hWkkw?k7^B3|A57{l*d5UO8O-_I8J>+nzXF zBGl6yF1)>TxNwSR4Y1km4|WKDjZL z(!w?vNr}PR4Pvl%z?OmIn;RgSd~-vS5!a-5Cwcp_TPQtTPy^pK$=(E}Ay~}@#>8f$ z#>8fepb(j5;s?69YgDE-^>&3*Oq3Dw$FCJ0r(op&P<#IJQTO{gf;AStKoP`PXad5- zd7kD$5I#=<4c`ccFt3HTqmCfXz>)>Nx>kVdRB7Dmf$yo$QhMND>XjpFg`n=T{SUPM zN;n1GwY7I1yG)TRWkNd;heKs9x97|Ay=`;^Fjop+_zzDD){r8gxc~ugW6?O^fnG}@ zmBss`y?pKmB*W)^tO`oxZ^3)uxgYb(_I$uM?*8WS_Lci?_bfHoFpX^xo#WLBy$(|6 zIvL*8tc)UAI!~cs)VZvK)LBEYbiS1$pw57RI_n7H;|)ut1S!$P4ydy+m`DEX?ipp3 zD~Ssr7~|<__V2(aF7XJBIcOYRxp#?YtifK=I0sQ%y`%JkQu|m3?=to_MY7cXfPzu& zx0Tu&0``o(VPPRW?mS$5{x!uy-2n@A*Rgcn)pZbWDBWMM>#oFpPU^m`11~P0YUw`V zqI-bBnq(8#4Cdx4ts9>$ntU6}r1dSeJ5n&JotZ6LTSEY~2eE;)E-DLkQCYpNuB^Ii zB0XC+bUfc%!_$*Ef|9dgw)E`=+5G9BrEe$S@2N1@9U9jljjUdxT7-(W<^TQFy@IWw zNS3ziC>XU}qqNl!u#s2%4o_rmrwFJrAfU=Rg06B?>D#N6%8TqOD~WGaD&L&V=l&^G zzPQ#i2i`2zxCT*K<(f|^l~enAm$N@9lBIG;4)GJAa)_wNuQc!^>nOG{NxePvo6_Nw zT?Zw?*Gh*I**yJ5%Sn0a0PnKe_ZxT?^*XrBtxGE0hiQ8LWZkJe!TeTba=YZnp=$mh z@Aqs7MGC~Jh!ZKK!W=n*0kpidT#MQW|sMZy=@d2o)Xm#Tz8n3a~$>lU&<# z!F&-E7Ux=bQUqK<{0p>st*o;=)A~ASK(~9(<;XS8a}*61hq&=Onj<%U$7nH9{ftsQ zZBfOIA5g`$p++^Z$Y9$jHO!xE$&of#3tCt<7|R;v68A&(4=$`79xk8(?cpIfet%uh zX)`mIFQ^Cmpmr1qg>9QlOwctqV1maZJ?%(~wU!+(mEt!V?QO+02zGB=-3+A_MfbK< z6dTWPqdWyRu-JHF#IWoy;9suq>8|5jopTPw7oAhDh#SWy+NbQ~u{e_5q_zvZ&gwG4{o|o8Zii3%SuXAO>=R__^_*~Z!g!BjIMJB@d z6XH6a99D-G2z)3wnBwWm5@-SDA^yyjc?ckErF*hzHB512b(A@oUbF-ygAz<}6w?wU z4JDZ3kfc?*$49FnX}DwvpUJw3mLO>;LDF~95+n^Jgmg47Zthva9;MZg^h1jDGqeOr zLkW_8nU)}FDDjiVbk9e$22wq!sD4RHfa-8~{1J&>pan=2Q2azO+Y{UcuA1%n2>hW+ zwujP?*`A%bR<75`5I6#gKh9Gi0K@f06o*E26WO{4}u;3!fsB}+NWiZ`y2c?P1pltV0uu#SU6=k}o zDh8_ms2#(+qmxYc=m@%SD&37EOq4@RahkqR>6bgq*%p*sGAdKfrq+)1W;&cKHOd&&~n8H#5GP8xKUOO=?; z#Hn$fj_PcYHIq8ac^ar<7I_ARl28h6=FG*SZ|9MrhDwfFx@i_h~ZZ^ z6RHp!Ly37TVwmm$VwmpH^p%S!k?vUtC(y(vH@8u$81TH6P<1Q=?tU|3x(CR~bdN?i zu#6Jzhp`&kelo;nhp70u4i3c6pQm!+GDfc$NcZSqk?z_57f>;&Q|H zJJEzsau?#nutF^~6T8T6l}Jidx59)^r!KNv@j>G~_?;M@jfa`v?U7$GIQl>hzb9bm zyL}hgq1qFY-0D!{yT}ezLW@O*GR9g|O)tnLmj3?!1Vphv!Cx!Wv#5()@ZVmA)B-~4 z9*Y#N_l0~S(WA*{IVxBL9hF){I;tI_990Jg9Q6e%6gsM2F_7rd!GT228-D>G6FpV& zG12qsU%?lN9u42}_U|Y@db?K9@^%dz@OI-0pFY}?$&9YV<%F{v|0Qh`-t}s}uF^aj zarAW!B7EJ5<0mIW-0b~MD$Ub@vP3V>>?*xHla$bOML}0Jc@&Wfa`G71)f(lEQ9N>% z2b~fD0P>3t~{THxLRv)Y(I6mvW?X)#V6(+E*>9tfvg9dkTD75AeWRm(p?7xYi6 zi}X)BL?wANFb)psAU7QxhLw4G8LX0uiDvt!GTT2%2{qdRzu69v3es%v5e<#cb+f&t z%=Q+=LbG9R><7Qyexl`Qw~K_TdBtWoAd7a>$Xa#-WzcR^8EH2=B!++N^SsD3FxqXq zWjB)K>6}MA9PO5qC*3WFlqkDll4oe1a<}26g0$O^Jj>l26QG_pv=-z^hby3X*3dd9 zPY$g&(PA{*4TP+D8;D28R-lSwEBv*xJZphBW_cd2LhJ!bY@;ORfUSbe@_=kI%cBX2 zOHs`7?4tB=T@8FO%cCJ!4F}dte#03bPVr#$NsZ9WD;{5V@ByQPF#=)C)lR2KGZYsyKT4NhTWtA~mAyvi{&yy6#Qu!GQMwOpbDr*Rq z%6ljRstgFIvW}putWrFWDV0}LQCUfRk5YL_H<{!~f{Ip>=XZ^F5WQ8lp%m8;K=DEBZdw=Bg}SJ&URPIFWqGDa zb&YX+(N+(9!uCyCSXE(1cb6`HeRrAa0T-94p8Xo@Aljj=8uD%JCm()-n*dMmN_D7|0qF7rL0x6Jpn=|S8zFq#p= zsbotlxMWwPtTEq{N0BVO`%tjZJ495J`5p}g^F7w^qw+nSdq{r;R+vGtDkvFJddS90 z?jaLCet(68&r1edNVx~oMCD=TDNQiDvyvhOVpT+ag|uAB2FNzqRE4=xHplE9G`j;5 zTG<^-A2r_6$psceklkqybE{ejVtVHt2o8w!&dyFU(q0LF1L>V(RCZKYUJx$8{uqu( z?-;-F9-BPP*dMe$E<=6+Z35Yy8u|J%G}92&k@#|;$UVXrKimFB=;nlo_tyjlMs15 zW!7XcEfE9^*az(Q#PSuF>ZP#pv=lQDfQOj~AaCV+=Fn$8m{}L@h@=p=+Z_rXC4|s&U`poA9t%l@}D)Q%O36eib$p1-8kv!mO zSkmwd2d`6EkVjq;-`#RrGc~t%G_5`9Ysr!DwJSa z$wf<$DwO!CVp=J5b4yhba60%Z7y{;&bOc!85oJ_viBn`$ z26Ib)P%tWkvN?K#E&PL}P{sijWp1e|2C5%z$1wkZe31B*NJr3xQ@JHgILs}z*T{*b z^pHEQ4-XemoS36}($rFst#+X~u(u4?3?wBgTq9CThKp}F?`g?Aq*w-P%6eN1568^j zDp<3+mrN{`_Ll3JQi^8veD-FqGQI=Eh8~7)UJX zV3Anr`WH|!v816|Yo{WLk83Bbq7`b_z-U@bEKTYo6H8^34kngL`vg2R3f@{exw@>q z@FdJDS!0;WD{0g*)~-Qtt=12mT5K44_ojIzP8q}67{1QyBm2}UQlk14=9Qj>W)|sM zUgxrvS2CZm#Eo>kOgsU@?N9fS9qMU9lO&ct>?1qW$Fvwb)FDFFJPwl44h2-PL&0Aw zv-C?Jx!L%w3ay_gEl1w~E!=Df2}Np2lhATiFbcXVHHvgqJ4Csv4i30#T3@@X>JBE?64*D6~6u7NFopWRpb`;C+i`unWD z0e_D)7xlfG!>iB-L3Z_(4!?`yp&2ky@-5UiO0$}U(_(b^uL)W6lI5f#zZ4~?sW-px z|Hw416GvA2hSp~q7t3iuJ9JvAopf3|MCF?_Fxv2O(1Q*d@~fise$JIViPr!0H^YBdl*t5b8QY;DWc2Q7+Iv4@^qpD~cR#*|(HF-bV-+ zcpDkTAh(hI4u;3u$o{05X!u{LXrcWBhR2)8f=Py^*7%4dk!}$jS@0$@tsF zZ8j}NQ_Ub`%>|aJaJ>jrae9NlR&tL6Z%pnzScTaAl-T2v7`g<0!UeL)LXxHY&dF7>?1b&+OvC~Qbtx3>?8#v|4;kN?4E{TO+`OY1Thtv zfPmS(stB0ft1*B$gdYL3dl~{}_bfM688ND*%I>96dKgw*abMjq()UzmspS9}56ARg zSBhjQ)0={YYzE}ZyLi)?Rv)aTvU?+FeY95B0WuAsBZxGBrHe}DbQ&O|=O7qHsI3Z0 z;^qTn^gL+*U*E>t-%K2!vU@8vwt>`#ML^|~?oldZdhaocWU0KFf>Gtiq{>=-OXXd( zKC1kfQdvjPRaTj&N0rJTm`!CR@lvJoodfvNcBnGV?){?i4x+b8Ed8ML#`IpTfyCb| zz3Wjhx?!z>GQFoEV9&79drc`8Y7bbL_tCLH`zWh9R7$4?ztGRy(*)^k$}6!iNaY>h z4+!N8JNHrFnHd$zVVs>K}?`>Orr*_kI3{bh$8N{*atmGUqQ2O}Lfor-+7nj++*EFU<^i(ORJ*cP3?tMg&EM<>U zFe>|zQdUF2rpD~vIf{T90|IKSBj_5d=W!27jX^M*#!BK{O5+y?@`Jsk$}+LndJu8c zU;~*-T%`;miM`Gg$x^u|1q+o!L`9j{(@-$6XL)K%`AtmjAUQMvE1MEZhNgpLvo#*X z-|0{KsZ8w6r`&^SqH;5Hl_r?jTTYPzfkHBDDx|xWY=CT&O;wnqWScpNKU*kevr>AN zs%ns>GYZV4kkZS9WrSKXVoEO`!ZISImkIGEkr&4Tca9SQn2qSGfe6IXOJ|(5zxXi!B{qu@YcqJvhqShD2A@d$Jyik10J3g8dj{xGQKy(T|y4QEc-g#=vLg zIyjKhd+aaZHyP{A(ebTb_&miIy-=@+i)s8~OXH7=X=j17`0#>&#WAI)1#dB>N2C43 z?DFDRA%MI%R{W9|#}-^IrMG{AH|Q5zPnCG#;@CnU;15#Ei(`p)it#mmu{BselXdGv zuaDKE{N$anRr&eq7OITil1bhbtOdmpnH{(@)>z_IFCH~6RCmVGT9}#Ytk=Ti+-GIp z5;lTX#Z=MILYaUnqa~Osf)Y#>&7>umDuNPB6@dWqy4awKTs2h`1q7?4ivCMzsOw@2 ztW;5gz){!5ieKWt{`=IY#j7bcq4 zxOb{j^>NA`lTuS>d;es~MWks1^KPPr9wOHS8ak$pvMHuD`nMBc9R2GSV%~_iyvci* z4YAcOGKypzpnw$k;{dVl)h4{Ai&LhLl*=n=T}5Pay8+0Em=gFDPMMR6t4URwM(Tyjz{C51gn5m4O?RNZGSb$lPa6vz1+LS@dGqP-6L~av!5s$%65^;c16mD zgIU{8=d>YXin_b_EG4jEg*Ss~5NjnDJ%l(D_6xnD=odXA@?wJEA7AP1!CL;`_$%kn zjOFLE2Qhv&`+O8%y1-jUr)2f8PLvY%u&R<^57WTtC}&g)e5$vAyos3(&hjQ^G8Gf& zz;)deAq1}Lrix#rCWW-}6(p}Y?d%?dZw07X+)uJQyulsj%y)E84pq;< z!!LXWzU>@Adlvi?cm`fT$TRSw%!luL764B1m6%ksAekqB=j_Bw|J}BlGkXyiPm&MP zpACg{%h_hY4BvYEH5Gp0efe|K;TK-LyHk8hjh|)zAx^*GNt$1U1!1AYPp(Z|P)jHe zWR~zlXBzb96+gF3W1EHiXpbj`kXPrQB4DT>y5+L+>K|1*^pN*JH69&4^ssjlqoVMN z3l(GeI}Z(y;#(i_#)a$#G5N`ixQ2y6q)@G z4+I!b@ECG|pvj8si}mZhtsGwsQSaD)L+OY?M!aKho*csWh0f@~_YTdj&WpIhN)ePZ zoZ~2qom8ZOR2#lfeVbg|@4byD4QSG!a{lAqM?=l9V)=4?STW=QYDQ1wN#Aq|;~(Dc z8_xS~@jhi{7V`~Dec7yCG4U|*R1wXQ`Q5%on{N z?kk~8#M&=vuz=9Efj7DKLg=x1v3zp=!h@q~^3rGF9=^#G7gvAyF2sRFvsvQQl~ryNGet6yr10A%#$jpHFbc z@TI%Fjre$%557`5)FFZw#LZzx~1)=6Tm^U_)luoi!2$%t6K_MH=P@VJDp;WZiS z3uUY?D04KHG1O+P&!n*q7gz3h#XHns(V~KXaQ$2CWJV3ehro@)0YeGbs=Tn*8*Mnc z4uxgt>AVI!;Z<)l){Szk!1?ApDQFBU(Od-vbV|?;~FpKjQ7pgp#%;~`FGs5HSoy>F`=5IASUzQp)^ggd)lF&9Wf)G4m8U=R#u#iaMf`hQ zYmUW8>xa+uZW&hj(-+=U!(2a%Cm;9rW{*+sXs>nDUR$NT#OO8Rgm-2&Cql>CVWGUo zmZ6CZeptSNR@!a15?8{nR#sa0rT3h{KA?zykChHsj5I6ln%X3+()q2ot`YJZaOFw2 zPswF}Q2uDAU#OjG3`f5bc3OYh>#nAq%pZoyA^iu+4b2og+}8CjDCy4*tK4u#_)(gu zp>;d)sCs=TF zzIjZ1Opvv%&xD!n?39VT*E#RQw)OFbD6|arhO0yTKXF@p+y1Xf-7LmL$y!!+c>TYz&bq0Fml{Xmz9tC4Q>-B%OIZ zX>!E9JY0TO1bp!WlsH-gS;ky1wP{655En|2Zw@U%zEI-li&=%>RuoxOd! zpis@XY5X2khq)gmL+(yBbPQkLLouzO*HQt-P~4*7 zB7E(x9BTM}beQ)$_>PG3fozivtkACVM7sTRXB+B2@xmdAQGpfbx`PxpuN&DT0v4 z0rKz#chzm8vp@{|4kc^^*vdb=2@Js^zrCwKN3di{pa_1Mayz(M>IjEUd7AU(9b8#_ zK?m6h{lw$4UEOSTMew})%jI2J4@%sRu&bW0qYdGdCyn2m<4R>igCT5>^u^l{1c!0C zt{het4B>39Yq|{q*89W*L!}2&_u%-2)TxfHhYU845=GlqboOPk#T1O%%p1WIkCt~1 zj!=WIaJtginqXLUzbK!lV_}O7*;l@iZK4R+BESYeL($|C2$je4d<_k@GZ@Co?yh*9 zg_t3U5mdxiGlJ;FmAO4!5wMh?L}%ptl6gdeZyo!Lf+Le>^yVc!UALJZjNrxVT@Cmz zJzcLm&Ws4<`Duiseg;~ zN90J^*CR=Z>g(^M_;x#3OHv>Y>h67iT7NTZ?y-w;-F6m?B8^h#-xP?R^O z*C;vA1w~K;-S}WwIM8WW)<8F%BA_Dz8yx7WAgFq zovLlfQzxf2d2q<9GcqvbiKk;L8}#w@H`q}s4y=j_%_E~^p8g0afl!B{7&Aoy(yeK~B%|HOyST|TT`PsbN2M&o0CXdr}}7T#VGDW)>a zM?ZAE%ttSUrJ2Y_{{#L)K6=fZ#@XSNleGk1D8T+DFl3{%dD4-zntaR<-(knP(U8uW z3`6C5ii`REhlx=go1q@&_sg#57sIA>F&`K$^ZO4_JnQR>S4Yd!9UAU>)t%MT(4dpwP&%(_(q)&KmV}uyFb{bB)^k z*)hK6X2BT#@fcq#Rzxw;m;=WU#~(E&V9ZNneQCty)#+@FGul~$U{AY}Zr0{^kMlJ# zE5`7x<9yB7%qm=`QLghWt`XaOE&d1BN1K+9(^Z9;BZViea<*XiQAT3suvHYN0^Vy@ zezOf6z<=T|;5SMsAFbnKEimGugMfYAmNSA6@3V#4b`@FqU(cKosL;TdyevdcDZL ztzy@W1#a{2kEpRS=Fyy%V9WzbFy_&YmWY^#5e2s* z_zKKAfEozk45GD=az90RG%Z2OP=b`*v;-;l3sA-&&O%xNQRj`7K^)+XL7WF@4P?7o zvE4{Z5En|2?enw**{%+-MTL4)_)6G&v=&l+OHuxumLO#)LCXK3B}n-#N;!sao#`9M z%yFdQkn&|kxgIS+%A%zIj6BwumLTQJNZF_({=gN+p<%Hx!P{TPo=gx;#-3;`8GAZC zhQyvkMHzc4K%Qgyra8X6MDQa$_H>5$HOK2sWMXzGmDCD6B^?-2%~baFJbkXO4I519 z;!5u3xxQc7L<+V7Po)A(15X+{2A*b9Olwk@DZn@>Tp5GsCZEcj=QDVn6>3u;)?&-x zt~>}ev1OD5u7lp04{J#cjH7dt4}CWooA~;ru&&rlk#HHbaU7Wqo*yR<=N16)Bj1=r zOA{5q(5U0r-WmkQ#U~kn<-)iHDWMDF zt^_U@#(;qfV~Qac#&$>yKYGMBn`z*HG0aip6#^r!sQ7i{`t@KUP@lne=buGnyi2r<_?`?KWqba)J zXHq}*87;x4DgD@JX( zsXAlqH-&3_OLQg z5Be4uj!_fTR$vUp!>z!G3D&^kD1&;q6@ZZiw*o^a$gRLoiicZ)(pwVK9rK_*UdD4P zEyv~S&4jLb*95tI1+sV<50J$#wc)S4h(z3)vmX8gULK>%GiPboM#W#Fg7AFjVRy;V%)6UE+k?OXi#IQx$5@Kf8l0b|2 z^~LL4G=0H0)jq0-s)_rkL11;UkLnEO75gaZo@3cm%Ga7QeFE(FOtDd|{C<um*U5qN3ibsosxSdgpHSWss>;MT0aR z=vNv9xmp{koh5Q3wW|u(7b(~M7FXOzS!2lm2iMFO#@FUw|LSXM9xLIse)F|pC#rBg zO1Yk~xSn{{*SdPT_9*CIo8P$Imt>ly{K4(M<}9R?xG7rrx>Czc%{rw4&w6f$ujT*X z`tuIoM@+M@7!b`{N~CxBz?+qK;igSnqT!~Et}%&=;ij#RkQ6s$mDwvroO4A zYU@_~lJ9x8nBw5BVIdsx+~vvUo8OR2Q`|5B5Vs=hX?5H%EaWTq!LDr{U`!&LCTNhdlN#`ok18517h7u$_l9nK8C=sNMc|tR_y9(Y!a(7h$ zD$Cs!ttEF?BTB8^Rf4D}cUN}^rsBW;F9PE@95rpoeP!hh5~1n!-PR}p@LLRbTgPAV zHaFPaRCH^%)i$wawRcg)`e)MLtlidwq9WaGX_&a%+D2(v zQ^yto#;Id!DcNm>A1Ax5e@~RVt$$Mz)^1A!TZ{9P6XoLkD~g3%mE#l1h<0|O+^XCG zK(XDjR8iY4jXbW-H3*JquY!w-wB??OYP%IPi8L3k$D<}mC8B7FwcXOdmJ)3zNhLBV z7Va?G@Z#_NJB-eguBL<9ZfVp}2MvPD)VhM8+F|UONVi;*DRWe&WRl!+m5>s;xtLAh za&rL~xQ?b6a&uvas4bTUwhXdT8DtgZfCjmj803+w8bocmH0o#&4T1(4SJfcgb3^%` zY(M3V_IOp<<5f~Z?Qw*_r9A)x?Ljf5J?xMeo_^dnm+9cZX6q8AjGHaJqS$O*LSK^}OxKf#<$l|WMVzOMR09jm| z16kaaz+Y=uau@tZ>`InWTDUmBlhAUkCNkpU9EjlRQIip!RD2|9Y~{)4VJ)?dQbh?j z6RPHmmW23;BoM`2iAK~?{Gea)52}!TpOQUlk-fU&KPtt4rnFG;ON5r=x-zSA{EFkQ zL|UNZNzN#g3%uWa^k> z+4Yn!PAdy1ri6zJsNW?qv9tG*Z?nOC_S(21aZ#wXA<@9txYmZ`)-t&vSx8Y)?Riw~ zrIy;bA+aWx1~R;$@j#c-AjlOL=?#8?Mfzi9Jm(j1tS72)T~E1gv$zia6&C5$;%aS3 z_Ls>G$(vQUzD~J*U~$C_$^WD6%j0W2y2txGH-cmmO9&z%vBsX**Gf<}7pO z%$#MOXP(F6nlzzYVSf0JtT@X}u&nF{6-z|-@4xKDWz&{TS{5%=cFRwU8&r&6O)>8O znHB%P2k&nFS5_5`DLTLKSypFlsI<1{hI*|HGZZDP!3>4QWyIz%L#dSx5X?|&i(ipRu#i_g;r z<|m`>UVts5ZrV#m-A|{RQFk%XQAXW+#jjrJ{BS{QlNgX&jk1#jz@ujoWy{xr+!SmE z+4JX)dfXse=(>#Z==rOZ2gcg25bK-lZ3;F6?zaS(2HXld2Hc-gOxzjqQlQHMj9X*( zbTi;)|MlseqTfrG0qZ^5Vn*Ex*o@D@;F59i#$}OVM3Wewh4RGOR^yG!GQ(uRx;I@0 z-R5wNpj)Ai@tFb<@r!;tT?XAhq#HqZE6Nk&vZsg1F+5FM%%EEVn`7u>jG-UJ!ZE-j zINmV~d*~R9pj)AiV^AO%gTW^~k)U``fAm#w4Xm=n5M zfQ<=tgRgr-WBYu2qMO@Ip{AQtz|zf?wI=Fs599e|tu@&@6iawG?MZoJb?kR;Z(cQy|C>D{hV$YkB?VFupLxT9MuIV|s%y{ncdJuY$G8<1w8i1{t0q z2U#?OSSt>a@nStZ)*6-Ze>%vz8FG;I{g@^YrcawpA7POAc!r``^YM&slnOGm^U@5*hwb^-_pVNX7^Jm z(X}U~KK(e~fq|EEx~s+(#_}m~3@5^ySbt%!Q?MCMoDyIfPAKRQPQ>sNzZB@tE>U!J zLHVBy3Jn!d^gyRFNJw$dr*n$_W2SV+KhhR6q)@=7J1#t2h7_U0fsMytg*(;@4ksyQ z$>B1l*p(?`3Uf?GOrelRf2=?-rnm_vDhheuWg0QX)08R36itWAK{TZ;W=x@g%|Y}q z2GNUR;UK!vK@5KAAdH|wA&-MlAUKFd!##tLFHvN*wf2KbG3AUSnKfKi@n(@0TD4k7 z;Ie837+AHU7_w^R3o)uzD%e}Ka#PCalGKjECH>yPYG(=<2RFlKaCJLb`@-YW3PF5a z+8Er&q=gRdHi65*eQXSlV#vYyLL&Lq7NrXCN`0e>^S@rWQ;}zMv4%6H7e0pkQWtnl zs8AL$Tlp9=Wu2UA-4p<|SXXN+7WKbT(dgdq3h|P{8rAfXsV01i;@ET6HLNA2hbGW0 zOB!=C+JbaHJ3XcmQ^8{T?$%BS;(fbW>$2_?1?N!hE#~mQcqVR_a=Vg&w7FKd9; za+~t_-qyF+ZaP2=5?&z?gK_SYy_Spnc6r|AU{(ZA>}&1Bju93zGzh>n>u8n{8eDxV zIGDHXZLQ8v`h+gFpi39 zmIWUF6gSn@u66+ny!B)NL!6rrTai(a~*VDPWZVqu)N7Mf|qgr+13J z-zs;B{j|mO+X~opdFQOsZ(pETm`10;6qHS^n=e>Mo!Srrmre~Z&|^~!>C}87hR0UH zUXMMAQpVk0?dUycQouO04u-BojboQpjt||@OA1ZlwAUNcw4Sz@?nniz?&u&zK>^j? zUU#H`QNT5-fWjqduZa0*EVI^CR&-0+3JF86q^vabN_3YX>k7TneIXorrQgIa^h&?k z9_E$)oNS#MAa!-WKE+y8W5w*mxX~?z5s1M#mp@_ddT#uc5Po|ayl5Xws7sF&fL~U5 zyWx>OdBJ*Az4U$nMk!)RZmHrOux z&?wr1RGaR zC+&u$tp@2yv;|2+3zD8kTaYxgD5QT`3U3B&rrnTqoi?ImNCLUt0Xh>kK=DdB`) z73_S=Drq1C}4ZQbvw%f_K{rCI7pWo^Yi?RiACOmSqY8 z_)d9TFXjn@3_4FT$nb?k^3&U_Q<(x5K3H!JlOYN(Nif2{GHY|!vzvq5WnQr!&{9ie>3*g}~4_Vy_(isMU4`2XQeDVbT;^d)q%>r6zU32_sy+~*+HEE%7 z0S!DvQ6xm`N)u1n?*JC!d6r$2sCcYH+inuIxXHNjsSYu2@wrchs+``S;F_9C&Mwt9 z&Tbfm$lEvgo!k}$+@Bw?KCiLQs1Rsf{oU4O>}v`Z)@6Z?JpA{d@&PdLdYk_S!dS7S zNHo7weNPd7{uOH>-suojU=)t>Mett3DzJjt#DMV1fzMnVZ@W_jXrT`QXU#;+q=27&`E|bi`W22f=&sO^ZMX_<lq(fpvtHB z*mS2vQ8>KErauLX;b`4?^c8C}7O=l@yMr?TQuycANh%U*THIp8J72WoU0tZ;?%C2- z6$YZOyw`#E{YdSMch@ML@d^cV;GxpbC<7N)C}^?5xLbMl4tLkLtOqRYxFWmAE)Hk& zd+C|cj5HX##_n5%R$DG*8@tBGq=WP(7qf{s`3m|e+s659xow=Mcydur)9UMgWXnDO zFWQWI{%?e=9z4RkZQz~{RPp6^g(@z}*u>PD8nlWp9UP`aAycXzMj^(PIJWn#pTnDT zBgis9!x()Yii~wB80{Q7!b_z!Vgg_cxBwSCwF!t(v)Z1@0WjKsU`=8@d@+KAFg$y4 z^Kt=D@N4Xuz9@S25%Sg+|8d}jHRA&zY`wPhV zOsg+hd-$;M-rtfR2w~@CYZD&?k;>w|KCcHtz#TyqN!<~Q?_SfHrx(6_N{N~~!dDb5 zCSLz^guL)2AcCYj;ik76s*dLBB?6SzxccigD^d}wU{?L0Q z*&i~XpRzx6A1U{T?i3IA2mGYQ6zGr7P)?)mxIs)JboF^4pAlE!Gn7CUHwcBS8I-|r zl7ARcHk1+-8w8`{6Mj6BkGf%Pt%7m-zPSNq{{0jmk1zc37k_VkR>jAdt~rdGD*ol0 z)ya80K!gq*aPA9f$EA7VyD6 zQ{jUu@r6Y4p|`EysRH4UF8BAl zXmTE6yvKXZ*WKDYqmE-JEmCGc= z7h+U8Rj{|xd5wxCwne6P^j10*Fj_|im>k96|FX8#Sa6Q7b?71adS(K?a{UA;5NM^joLi#v@% z7B!zAT)(CUts)emqmhdDg+%g-7F(X$5qFxq7F%65S`kWIGv$xJF36Ulf<%I7H>@sFx z7sZ41S)ZT(KD4~$GW5r5n?9lKxTZd$biXEa@vR7;iwhL~;sTx8sBks?PXO+-#j(FB zF`Uld2{FCkXzz4xWVX6G(7^Sn$cR>gRLhT+RO3byyG5!oqfO(}Yxq;e<*86LmnUc( zt%Pb^T8S?tlFun(gKq%QL1EOQ6}5F^&r_*zd8!@7@=X0tNU>0gj;nJSObuC`9M2%e zD&$0#Flw|sDjG#w&`sizxC&O!AQn&*luhmJJ%dodC|vevuW)!I-oh!5#A`xTNxUOl z4gPvx#5tw#5nts^b!CKx3aF>7hS!B9R4F~ua%D6;NFQD?j(tI~@S5&V>3rS*2`-MR zEB)suXV&`tSD#O!8#DScp4HJ zfK%49V|YS&+kTctdt-sP-xzrg(rb)7iXZFOW0cY(k~?SGy0b-o-Ezmss{DG|g7s}^ z!H4PcUK|q3cG6}nazir~xj_Q6>i-t)hJv0l=zmCCkUq3v{rnnjLDJCTA&pPjJw!El z7j`GWmX&YXOIE(?jvr+^6io1Zwjye(4>|ic_k1i}3d~Y=7yj5`|-(J@0Ox;AjD*2lWcNeA>T` z?PFH=U$BkRkAjWNKTNQl)LGKMpohp5NkJFP-R0`rI%ur(zn~kBbSvms=O0WF!M_?W z1`ZTp+>l^Bz!lz^ZtD_T4UJ9m>7JsG8!H2%aiqm?$A1K8yss}GEAPGFq+Nc4a_Ly& zk~RVv5w{c>%f-DH+Csj#qb-Ilq*!LGd}yqUmHF1YNNrq8Tb{<75PG8AogwqlE{AswHfk z5eLG+F#-p&=!+GyrY{C{qc5iFmcG~*Vtgi31q-K#A9ij)#X^6lcEnJ5TSir;g2grJ z?H&R3i*}iHRa6WX7m1o~Z;Fp;smepJUeqhIt%{GDJ=cA70siAI+hpB7j>kP?YsZ|F z7(SF~9Y@S++&KAw2WWTW&Wz_{DvCMA)m%g_D1|jX;Gsa!!HdeUMn1(*07>)~;7DI6v3aw#07GQSOE$WqW>g`u7p8qHp%XwuL` zjq(c^;;|7`LTM{n?-fe)rb!e_lt2{o0)?n)W-t^qGddJ$X1)-^%v7+~%!-dE){kbU zb`*1+=FTX}RItFui>50*0{-2YjHm$kSd?q{DEQ?vTB!J@t+uE5XsfEAURzbbKDOF# zytLH;lo;A-pYevR#x*aljenS_8i%wB3p7;)f~L9#Y=xLAKil25j4h^o(NgD+mzFx8 zv`9-`F?eK8efxNsM(iNX(ona01QxfW9RMnZp<;5f3D6+w)PXu052Y@R#}^XGUw+m0 z3{${3j=7*RG7k5MKDJPe-J!C!A?^`S!08_Ap(U?Y-o z!_{j`HOp;PH3;6Nd3u7}A$7T3d6Ke7`k*|{cJTo1k@M;Tud%A8a&F4T`!9;LP0q~#G2 zAGDBKOtQQ!$gHhWfxY8L=S@oI1CtKc<^dn=Um2>`{@FKl@-d~p1}Ya;d42-5%D&7p ziP!?{Rz_(3lmL4|YrJ#g^gpAwmfl=29P^3{9;W>?8*AfaZNJ4nRMB5G4 zi-H5>PsSzi3O1hd6q_U!_|zn?0UBGx2k3HDf%m@R%`O=9*Wp8fWS z%FO>J=%A^#&4FqXcc$9TvW;{kSd&;sAO_>y?N3&d;N_=WiRLK_Z3X$=7oaqnPguzE zL;$8)dnU>9#M`ttX8o_j1Ww85s2`ss%M)Mt_4rijVU#C+_3QT2Bw3yanhYcLWZzgm zfEKenQJgko4FQ_5h5!&E0+kZ&9Y6g0 z^x+nd{al{MB*NHON*ojY2@7p?H8z*Rk!jK8&jd#cC@oSb=$PoQr-(QF}}qiIti{WUOowL)QXC z(5WginvqtEDKda-NvUE0*NjlLJPX{>`NPmLfD=O(&u%GXy`DxW93w5Na2aX&LW~?t z1$%R_Y$_H;T53mcs;`1Ysz3b^P%+h4P|fsdImO5HN$H5Cc}(>cFlyFJ^|w!v>C+BM z4AZBrM7`Ppp1sG0c7>V#9APiGB#gIF6c(61DG&@e_rZ*av}4a?n(2Q*8DrYgJGZpMLv(8j1G&8lMH`Q0c-c&#B5%4k9 z_s7Rnf5fBUi&S61H*IwW#YbCJI-0hsfPHLrC8FBi726{wAMqCT%Xnz3#1}!ch7wSj#Crb6H7rY}!KMPbb z%T%bEu|Vk;424F$K#W5Ot3~otpW5p3q`VeUdL@&pN1w{LQNrdx3lrg|{b)5MwA!1r zJQ8A(DRr1+Ndq#NWDfQt1J{jvMY5S>FvkRR^!&;|y<0MyOx1=t<^<3;n534)lRmJu zGAt7A6{1|tpl-DQdxAQ=LofSX+XS7x=Gz@p%zZELy|puFv7O~G@vGi)EFg9)Zz*WI)W9B{qfXKsd@k<_lPY;l2!i2{1n;+U*M`HeI z#G4*+2UB_1ko08B!PH=P;>%HOH1Ug{`m@B1DK!M$c=69KJ>Z{v;-4eE;Gcu=Pfpeb z_@t4zQ%`i8gI#80^X#0gf<_Y}<5#VZrvly~@lRGa_y@mUj0ArWR0YATed3=Rec&Jb zzD$qSY48&-Lw;IZAchyTy&^6`!An)Ph*zrd_3T38g(ZCXsjfJ{#lzs0B3FXEi(gwE zlg3jTjh@K5h=F*5ZDGxpPSe4r_Joz-C)UIj;%7g$)zbS<=ZVqT(LAqfaAlsBS2Kh` zC&P$AQ}FffMDD5{9bXfa1S%*dzUp*j3jAYy-^pZQVg>UKO-92jte@KY>EjIgQ~QQi z*5L7%Ted`=cDzYpc%R5sN`EtzFAh(yTS&}P&fu(z{KCx=?RnJK-D@!Jm3}dh5c_@F z#judh%Lv%unA_*^3j!C`3@^o}T(P|tkg)af2~YbSw#8xByGOateQv9-u>(YIj%x@% z_WY^<)0~%%kK+M5WrgTL7}7> zGSpc3PD(MYGuJeG9FN@+Q=C7zVe6NeIkujo{_w`mIz#FWX)r9Yev^6)2M=jDXh=f+ z#trH=Xp-2Ze%*TM4btl+0%%ZTLIb$Y`*#}(RZed{gWvt$R*^NQJjHZH3=$A(O-(?E zcOkE8ID_v!HXJ_Ld((D_B$F?x+7?CQNPvu3E*jof7 zwt#rP=&i__8gRaA>)81aY4z*`lb&eOJMrIt)g$=oq6s0q^*vid_9aj;hR#|&AkV=ofB!de})V685S zwqUIeTCi64E12t)jHbM3sdlAH63T{>Kwj}8Z9jf@PC^84@vE(v-b+#O#3dt+!*E|!`; zg`}W-WApy8O`ps@9eF?w$Ki^#ciZ|-}53q z3(2V7d6H&t9AQdeRD@Q&$mePHr&X5dZ~VF{!kV|UT%fYZ_&L--xm&2IzaTfg^zppd>s9iD&FF0T5zKcdXA`fe>Ddwm%a9;eNEeA$uVZ0>(;; z_`-I}nYL@xlBhCZe;ruAmb+~^`{EF`ky6E><8Zc9Fb-$qOun$1y|#*g^N@GHe@%9T zBH%m#0+t8-Is7=)UX#5?5j-4{YScBgb!o&D1wK>@s{>=D#EnVBP#KEN%qR@nLr39 z=Ga@R2c)2!znCt-VtKgp+OUZQ0&H2!q<$pY=h2g;K&?DB;pT zf19?A`&+l zmXTw8AQ@`cd3G;5q||q}l_i}FslI|CwS$+l&x=lt`T6T~2^xLgo5d3~D3YF@#dkkv zZ%>Gn@@NxZWEG#fEa0yAyd5s~VBA`&`zUf+1&Y!B6U15Wia|q(G@uXfr~% z&Xqjre%sl6cz1jG0Q3%Yw|~P1J)B;nA%W>(+W%MZQ%~gvhdiI2-Za+uaDf~O@T<_% z{v8|jaKfcV2PTY>T5)q4jHfMvq-N8;tQVrgzI3WUW-`&Bv0>c-=PFeE!%Uvn+umNk z0Uf7jmT>>m+nx}_c2Z%yyIwKxRv9N{-^TNu_DH^GfIW#F_Cr~;*dD^R2{6Vhb6@1i zi!*Dvrwz1s(AgQ<9XGoTt->p?4=EToyEC(S&R}~p6#=)R&j*7YU#AFYuz-O6QQ?3H z?+yV!bKe&sNOa`Y!gV+-rEQ3Udr{#zWUY93B&6G`s|eKEsEe7 zcFhd%&WcDThn5sUh!iF|LU{@8tTMmH?3MYdp(Ddp0w%|yDOg=iTBz1atj?^iP+GmLy>fm#v zPM6N%wZ=%DYFXJ0`Q7S?CCP?h+!AmdA{f}0bqIe1IpV=Q+MNj=?8|x)?x|z#vw~Tj zxnxn`kTCpgM8P9k8tInLl+klwU)w_o;3${R?JYTa7f_0i=^5IZG#5=Tbev#;!F5eOZReGi`e?uq zZl>#edkYH-pGRycfbQ!`-G|H*>$)T_ve;giMf>64;tmmDy14nt#Lxonj~Ck?Xsi~+ zK^-p|Qn)5-K*6ZvTJ!k4Wf1o&2pCM98y^(GlQNu6){bIf75YJjbBGS8UGs*O;9cs3 zylm+?&nPfU+0=S%i_ zDgv&T&h4CS*cpm|8vr2m*aWeg!of#r4W!a`gMKGx*5MO2+n=-C0Ig4ZP&$g=+-$GU ze)Oelxe4tTk_tsJ_+gd^Am*f>Dy2FsV=tBfDi2$@klNGPeF2CQHQD^|#s= zTgv7d{J+`?=|XHSVS)=X2HKH7{P5v_W*dYibtxG6$K>*E+wBgfBEW(qQJ*oNWq8-q z5Krfy93QI9b7#L|FREFd^9ZzlhdrM4^dsLbm&fe{_tcHH2y=Ju+G%g2vEdZ%6Fgg? z%`bQcf>y3@L%74P0hnp3)IiI93#CtA7dACh-i% z`w-EJXE@G4y~}eic~}Qh)WUm~V&U8%yo%*xn2R_)t}^?SDpjmcJU+T4)gg|Lp0s-E zBLbctDN@Nb{Umq6;z3PnMMn_d)A?>N-+dgifY@itmvCP?V6Ud@4|3&U(gR_C1xpU% zC)Z_%@!^N;4SDz>`zw0o`TX!9dsS9-K3NA?Zml?O2tC0PNZ6$ zE45mZ7O`QpbKw{vw+hcbWUs=%xyp+1mLVlW{*M$rc0Ql@I#eLXQpr%!Ykd`+V~lu& zq3HE*z{Z?U@&3OkdY8%8P_%pTTlPpT=rXY8TDh1w_6ZdN)%p=t>(^4P5dqZ7T@FVL z-et~}f-By!NBke@^um0;?;UV+7pPdM)Bg$xHQx7)!JRR5dTy-aHCA{5S$pWdu|Qjl zg3)~!ULf;ne*_Wm^9di5Vm9;*IcrZ*lpDhqiV0WIgZ)Q1kc;e);b2fp1 zh$7m_o%KXVtZlseOd;O?f_(?eB`i1|aL!&J-=~-XN@$x6-wk=cQg^nQcEc0Wyan=v zbRTU&0?;BaE2b@YLJBQ-LJFkeLhEey3GIPYKQgF(M_Z68v>?_0(iWr&Egq`yL8(Zd zpaped;R}fgA?c8XC@_EbhBOMK3P7YaY8On>3;{_nqSVyT9U)Wp6Oc&~;w(p?&#g{(NpRAxGFt@q8BlZ#aB4CgW2uY3L>i16H z*^8@KW>#ZaL`>boCh7*%B^5S^fcbmLKnU53hDNCfC>OqsUX>zv z&zR9X+JetxOsyJHOFy`nFYe}uXNPGs&gg4&M&Fb(8b)U{m|xvqpb}Y|CFS-49C1o1 zM>?gSQdT&nfPqs=G31o`LL&Ls7Dp$hg1uiQ{e@D-=~O$4>C_51%BlD`omdkLUP9Ib zPNzRUPNxDkr?d1U;Nx^E_&A;G)am4%hB`QFLFwUaHd!LqXA|0jvzaEYMeVvoUW@uX zZ5Fesb>SDvL9~@NGo`HFABgxZ&-23^<;h$chq1s9=aTZH&(@5jjBqXi13ewZ;3#3z zvb1WJSxbWXxy@-6*&K?ABECpOTq;EjSM2R6erHQsU?I_b6qc}&R%gDDNFJW$i1Y!A z9pPk7>zZsY6$#Bp!M|4xF1}MBV&=4lLhQ!ebxaG=6-f7|1EP#89JAi( z3QOUUDX!RuBKePH9OYFo?ix*^9BtY1N5KCh$`Ob^2FzO@0skTV?`((7@X#aRhr~D< z2aw+x;~2%xJOV!MT8diG_S@pznD4(dSn9PSeE&s>H1Yixn*9)C(snsgBL5MB;QKER z#4mjR<-t<<{>x(V+&#XM(cwjY@71gfZi#b@43z30i*qbtrI$f>&oh6R>X#r8Xv0*0 z+LNdHds!VqSSI*2mdOOa>N1kxx1-%Kt8KkZCivZH3ud*@f=Tlb+JdP#v|uU@q%pyt zNP8gFu?E$-v<0a`3sPN4TaYTWc&M5Q{$AP*N$)a9pP(&B8d{L_d$a{fLyL#Bnc;s+ zyCLbX4AQ^Q79^{H@XH{9|o86bKv^A-%&tg<0(;7 zxEClGg&V(|cWmgWp(2<${W6LmytWPqkki*x5s(9p=4FcD;Sk^0(L4YGrt=2_Az+ZB zjKNIj-=zp1kyukl-2fb{O&!D76^h^ysb({X%T*4dW@0M1fZPxj1)GnM|3PV*KK#A_ zqYsC*fjNEA7LKzTE4c#To*ffo&0;HLtXYh<7!JFZrP>O^W7nX~m^oBkL2|(cKt%+b ziGr_^)SCk_l6qi>!6s!$6NiqJ69$`rfsr4@kcopY#7OE@u#pSaX6ckNMt*8X5dw5> z?U)-z!SE{L2Mc3)fj01@_85hLajwT`Zy87Aw{e_R!5ICAuaL=H=n7u!l(UZe*|v@o z8e8i_G(}%&Ovy^x;+>Lw&y?(=%{V2y>69FOgefs{IbeuWLK)I2`G9i5DFFxcI4x>tF)d|Fbgau%u%K~nd!eT6pGUy2Q?g@g6(4sBd41 zOSL0LhAqmaR9JCoYy?jo98^SYHwjgE1VaC<=iH{^qiHNRO+$PH&0V^yW2?^EQG&Qy zTXVTuThkWIyD-o13m>Eud47M|jHc0>lhv95RA9A+(bX#R{NmrdpF-VpVxU}0NWvOPlaA0ouSUlJnx@GGq-(WWYU?|-91x>PlgW^H$J+OjVx zuF$Lx4>A5K{T#D=z(Vx=HIr(ydldg6qEGMdhz@{%w!g#0EGx;fcnH3GfWv?2as2)O zhmDnd1pF@sI;sTVk9m64N5KC$4FUjV>Tv$C%+rM8KV<4Z9^{yz;-hn6b<=W2G$f%%sh@m|s{)7V{#Y z;^%s?&SS3S@-l`1hPcmDhP2M}GUbGe889#eq8Oykb9kju=Q&C-QO1K*#cf-=l}X<`8D#}k5K=38+UKrr*IBz|G$TWQt9GT&wn$CyBw@9z%BB-TO@ z@WgSL`8FXCgK_TkC(L}Oj&T&^lU@ z<%1T?CTG(Yk@9JoJZ`1u%oxaH3cQi_Ldxq5%6n)FQic|!e2lgr<#i@yt&{wnaIsKa zWB}!5bzG$;mGxylNxRB?vi_=v=ab(E5ip;;wMyiZ&&6~U5SmIhq*7uki4Sl5LczGJ zVOIAS1!E5J3lJ7roj(HRLE)>3rFanV2@VC}!jx7~(&SU&gpgMW9=wWQ-@tB z7**14HLo$vF+2bQ>TpmXgwz)tYgGhuG$Sbjjs`g7O?OlXfN(dfbrAn~x}!dO(HF}C z1K{ZwSH=0DsY);sL`4aB-n&VmCrZ#sdwPb33MlSNVBvUW??s9ywtjf;OIzY-Cf{TKVzu;6w}d$;iJ>`*#@8i)9eSt3gdhzy ze<5&u!&eB1o`Pb?P}3J;B!((jcnUo24PQgn2zm;&qX@N%=3_ zu+E22NdW`CaX?u25%94#tKbWFrMZQ!6ZzEX1B>aeu9k;{;}$w%G}e<6#pL1nH8S3K zp0;==)Vju)P&;i#Up{;di8sao6%lXzuNf^W;|*YlGfElK8J$l#VY~qtIHMFp&ZsZM z$SYN_F{AR>cPpiiv#NF$vuauH7{U}V&ML0@LlhrpRq1HXssc7=^~@vSR1r!*95?A~t&EobTtfxy%bue>Q8rhrn9xuG z^@xTy9sIP;QPje$zP<6Hu?!GM+&PdzTfOExWvyYp(`Yk}YLYQ3yjWwN9M=CdU*je) zU|4UHW1q?p%b(`nWpo{)Fcnv4xHdaJXIm-Q+%NV}Fgl>EYx&ykkPG=E;NjD$KnTCT z?AW3r_{bJ1SE0Xb)wVg@>=R1UwEAlljIw=V$mWlL2U9->LRj&NW1`BzN4BT{vf*vs zX@&)LS?jeRJY-Vb8;066aH4i34w-7M0|l5NabOdWDOJlDJ+bGP4@L zI-zpK$fjO$&AjBA`H@=&_dUR!Z9(x_`=;|fyB*I&;(30K+Zga59Y-}bMw;?j#TZG701ciM-zUza? z>N-dj_d|LUzV`jZ#|-o8a&dQ6vU)KRyz=&{xB~}o-4T*z^%DQs#1oMCY-JH~Sc2y; z^+gl_5j3CnYLmG<@3khK*hn#4PjrEMh-;nLgc5ne8|};M@JjKxR~^w7@pApf<4sPn z1%CbK8U5jYx0s4ixxpiyIU|OoFUt}ywE122Cg=>BHL;QfriTC6VoWDqCwg2Jw%bc} z+d6SalW|Sk4gv--#a5Nu^YN3adwp_B@riE7uFio7r$0X7t{*yT^1DB{g1N0AAsH0WH8PS!d zEN9p8md9YX^5?MRn4^XECqIA8k;wk`Ikv^fPqhSHGAT$?N>&h%b>9 zh+Eqej^6@s6XVg#ujgw|0=u~N9z%jD!~w;um);BpR7|fS+37#8IWQDf!CqR zrVI*0`YEqF(pWMjk0Cv1q3IhCKBx#HHuoC>oo@Mk?)WzywRF~-5;aRtgD4nz^Ke|*P}+F4@JOnrY3uQ7VGGO(pY~SGQhd*8M;oH7LUP{*dGI+@MIPMZ&9NI@{l?By z2ILHN7dhkTq_K5W8uaBG3sup#uIKq@p^Uwqw&Ij-p|b9$7L@iu@oGd)Bd1umo+mVR z=KAyDC*OCp*Uzk9Q9Y|Rdynz~oxlxqg*r6UPZMUA%b?1*%%EN+%mI3N1oLu3b6TrR ze3W7IRg{58xOsWQ<1POM;$7QyuFCFHNyI*ck<-~!l)Z83 zpaL?sxCM{B6S;xcnjk%T1D96~ZZO^s%O74SgjX+{UXkD3+Ppl!)2DM2p0KB;32Usk z+Q2uKO>fBBZ17#jNgK#I?z{ot7()ZqZVh~fpZo5ylyc#7#}K{w1|C-~J%Kf+JjKjK zqzMS!^O}GVcn9GI`Fhy#D~_pb6ve~y{-V0`aXvAL(qx+~w`&3R_N@qM8l~ z2vyS(V+;!oHC6lCage=7@t#;s@0u(WH7)qk5yGo|>qy|&t~(Y7{Q^wom2baN_Nc3$ zsIH#MGcBrrPN7o#mG2yN9#>VjH*n_-s9N2oJW*A}^L$kGgE5X98{A#LcSLBcis*r% z5O^@$+!x<;ln+V(Fwg#SOnFw9cEEwu&Lc~sc^-OH;o{!>!BOjRhfpPt&${KP6hNFQ z%oW84zBaCCPM7vjye&YMR#g2z-`EF#{`udD$K8IMIbDe z;EfIPeX@GS`q+?DK7?<%>uAVNb{-$ZH>3?Izz5xREY+9i@e9Y`+@AZ%xRlDcQ5t|6 ziPU{u^)1Zf_kV)t@D@_0IH3K$W6zZX(&j9`=B&fnFOCuHKNRbUm&%)l#^&Uy8q0e> zK7@Dv)$yl(8(J!+m*4~M!%5m*${g+M7S+=qR8Q9|{UZ6@Z#y@Bq7C>)p4?e(P|m0< zw$aB>t{ckw3YF#j!?BsgiawqN^Tf)E*(lBHE3dNLi~n+T*YtK9dF)tcEA}j9hw6C- zP{fs;7-2rY5%&?X{NSq$rFo$huIhZs{mw<7NJGgRrG}CzbJS3}uZEsB2GDGybWue$ z=T0_`;ytmBMw={@y?4*Vln{5W#aThq^EUGQAZI7`5@n3qT2HmL)6~|zw}+MH6XH7* z=2zcv)p%l+Sypch=1DuAi(&A?v=7wTabKNrV?fIcojF>>73Mz{bh_CG6d4sKE+UO6 zAvSipft@occvND(>LoH({ODLDfj}E3uah4;vg3oooV!^yLKD9-Rw@9O ztoWCppdqdW&JTC)Vl62S9^Ey2NuC`xdP%$xYGpnBdOUCT$ev+MWlq`y5BaQS5BasQ zdg=YyEZPlOO$Qc7GaInwv;_%33w({NJKIECAo#D!BT6_s>ClYNok|%?^7C8LN3f%` zFVa6~(0`Ytu=y5gQtxc$TESX?4v9;buQP~Fdv*0eefn($sSBwyp`hHL$_M6om~wNZ|{CkNH({b`PUq zd!qt4lUrW)xbGHW78;UPhG?^3C7SnxPyzq4|Dr6&oY)$FrH;h+AQlq3Ie8D zSP$B|8S6pYDV|vm+OpYPeU|;eThxQdvNPVM10K0e;npjKhtHUeuF9D4_~W8#@9saE zIZp+#uc$yU{1p9*&2kI*g0`TU3`ln7^LeSx5M7kA#gi1!7wwhyHS86y&JNx}w1@Tz z82H#1#o$Q2NbmGEtTaXNus{P>5#Z&#FbaXY6<3ZP%W6~fK%0MzEHYA5`4N$+&p1!8 z<`f-;vbA+KXKg502xWneeB-DZF##~}TCyI#7<%(9{Kt0AL1C1Ip{WV&ofTLn#XwB~ z#&7MN^?X>U25vlkrwnJ~v(D+37ePS0&Fqsh9onzghaJB1>?Tg^<}=cmvg3yfU>3acUEFnih!~K z!u!2p6H_?&Y+^M7$R?h?;^&{v2y$=i69``_;+9D(`+6EqlD96<}3O+*Qp4m zgzG2*N(cyF_ID;f3}H_ogtG&jeSHvAb=L_nB;1!j+pNSP?yhOhDH{7!VIubBOE1fP z`4VkG2ZPV_-hNp=(|eaTV+eBVWz)Ine*hH-?JN+>^Np9ZO2o++w-W*%+|wx^8iN$w zO4bSPRDgk7G{umQ*7!o;?w@q$QKo?RJ~yHxt4@iENl^P>9C&;f7@&gcbGc@7O2m7) zri$XobiQrrv{l})sWu@K3>Fn87%YDHvUig3+1=g{sEKEH+i#N35mj^ z{6qovg!1^f%<8T3ahbIgLCl%9l3y6>Y$mHeFK_im%zauc^w3H!1SDTXQBc^}~#@N!37Kd~FWz46WLZz$A!Gg|?BgX6zI+4wl$KNJf` z`3D(gp>5t#ikyS&sm5nI6zcttyJj&3BBn{Z<}>*7=HT&B4<+pi`@wH)VGOXF=I z;@f%@e=En?T5k!Gcng=w+laMet*ON}vYa|@lZA1}l$wokwkE5orCje#x8Z7HO(`8* zwV#Y}KBEuWCJTV+v>Dk9qHLU!O&Dh2;#tSeaOEDqcdv6bQPV0GkS%@=64>J>HLr|w zcF||SmFuE@Hph?Ii|R0@(kL5lt*lrrK}~i z1t~*|LV3VE=MuJqc0eAJ z+q416U)e6-1o(@#AZ2J#C{JAEJito6LT2sWWqUX66f+KLU6sULBAJmLHf{wFT@X{El3(#JfyLD7}#h@_3%1aFjfy~Pgy-Y zvrSeHp^H&HTqgKk-^NFCXHpE9nlY;&tC%}j{D!xjXI(qy8Gfa#S;qY zX*;;fJ)&ADZNw0L0DK78d)j9M8lw8T3^oE$eKo~4ZfgK07;h^~u=?r?iR9JWx|%Qr z492vO%~eDYZzd~!Fciio$Q3Y#!p}%e>#cTR-PC>a6{k~UdniGyBkeF$v4gf?vl=HzO;IG^3?4shMGPjw^6z_Ao5AJhT)mWvS#OP6(u{)(* z#nKkcVMS4nHKbt7VF3ZNIEp|kbL}YxW^sUll{tz*Dsz1(f`@1d=jnSj+@a3=D*tHzYo4*?C4GJ^w?DYLmCjW5&y7gRRoLR02*ls+mO zFi>|CL#E6M1a0i?36_`@D>@Y5jz#c6vg?!ON3ik^e$fuExk)xXldGl7W(>|&bh2M1q<`hO7m$~ohA9n+d&1xC=#{OB#H%! z>#XgPMoJN+k)C)PLf7YLe>74M3l*&*i1IOo7s7;D+R>4Fo!$#$DE#KnBmFtMAo#p7Hp`fj7n5VV`vCVG^ob`$p+zFTpx z#Z3W?is(&Zn3NSY%u198u4oVrw@->8AGOP?7+%@Z7^KS%uNcRgQcTSB8&c`o?8btE z+-yD>U$I1%zkG&CE1b~d`9dQ3PnRJ~QNZYSzB4tBmxAPc;@qyW94Z=WJR5W+UX047 zEx3I`&9N}wxwBt6ea>#4ye+c=n@9Vg+Go*$EjQJ!eeSGG7D8=lIKT@xQOb*|d)dEU%x~%_n@}tjJDLY?SU8mF|ow-O?|eRRT&U3Mv-h#W%Lw zRcggmIHkBoiQ;wxA}QVYYog!J|K87b4f++>LoC;iUUI26rFey}oRwLrfA4om^sDyo z{pNlR{hB?jpAO@}`Vmfdn{S-u^e%h&&~M4og{JHwtE}%H?<$*c-C3EeGS77L zxF4N9mW4*F%qF_C%HKNgt0ss>?0}^LIfOR^xbdBHIm@MDp$*RlNrVm0rY#;DuBzwl zkuktav>C^UE7I#re8trrR= z&eDq@o-s>UId8c`R?chhkag)A@Yh>8ucxpOFH5Dq*gX^(d$KPqoOjNbh4WO}A1AF- zJ~6^R`CcOwm2-`-d) zUrC{6wOj#vy;y#};l=h*EF9WyI<%wa(6C%?dWrhd92N3dE>|EpH_MGt&oD=gWpX7i zhBA2{%PkNqJE?6M{Bdf5UPiwKx)d)}{6ghKC!{isYH?&_ps;cY7? zOZI<^hbzJI+VDHBBEjsMG9>ZN`SBt!o@P`8R2Gh>H3j2%n(gDgin$i32w0PBD*9si z)Tn|n6+yMfNTW$*2T+E0}zB$5mhfVb9ouZH3hyFfnENKBhoKz~7C(JD1 z(3kC#zGDSx=eWTx*++aw9*_}LxG&&_1mQat>_gun$fGl*wdh9a($7O998gGct% zwf%hKK3g2K?5E}khtK*0s)w-sUOjANwz~SCh8}=A>VZ<1dhmrr^8CAHi}3Z|JX?ro z#kfi{r2~%WD|18`Bslj;cRXO9bjN++uQy0|jtYzhf;T=0sK-7qNU-mh6YZq^aiXpJ z$wZGc2Z$4$0ea~GH?9G-57Jx7?0n&DSmVnR}NDksM1#rVK`JlmdpjetN5#<^o3+i`L@-KoWk zoNz?&FE5UX;xE^5wPMu>3*)T<0x_6o#lLDe(m6FbT^oH^z{oT45`5G(pDr7cpmcd-2>9Y zR5bDNH9+g~-2>9oc=rHk;kyT-1ur=(cL09Xc$FV*$em|rw zUj6>y(eID68TI=;)$jd>>eqOiAK0LN6*j0}Ux;zUr+~5AU-C6#{30x4N*`1WR{Iq& z>f*eQE(WxBea)IudSIF@ASXsF`s$(Nd=huRH%eI{=@T3l|A}p15LXC8K zjaXbCpd}7j%7F%xM|Z3rVVa!b^njbFuP}dZ=SO#}qK|lu|JBhI$42?_aZx^#37;Zk zJ5~(HC+<`Bs_OQ$m;%O};_B}11$e~1=EeDx;?9z+nA_Kk6%?F@ z;lW#?{U|MD6(0c=pZ8QK;yfHy=YcOAKeQ8nucvD_Yp)R9;pz+*i=+aclr>$JyxPCJP`F$aofjW=X3=4AVI2ZUZ;+!2$@QjOc7krVMa400U=( zV#wL>g+%f_4%Ub%V6^3xlqlM=(g)Qa-`|zshZ@J#bIVsAfe=oHLLVn1+3j5vm>qOK zAmi{hV7THF+R5k`Je~QJ3lfsR6sor6tjch+%h}(gZ9U1`ISyf&_S;!#O&ZF zx6BT1Q#8yDet_wLM}oCad0dvOl_6ALmUxiZuj$ci3osF=0Y5s_^$%<7+Z!v0ttiy2 zASz(559)K!@bUd97LKgfL1J*j%#mRQ(Omt;4QdMcf|)MP6bLTXGnua1Y@)(Qcp9Z6 z+6Ydq0>-Irc~DMe?StN_#4JULj4(@~As$g3W+{7w0GOrZi(iFPac#J zI&?82^m>Blrw4h)NLO+U2&_ivuTz;ZLdSa+novPK5&Gj?a|6krN3A)oaMqC0B~SIW zr*JbeZzsSsGWWyhwlT0gd;A-^QPuK8cmH>+>r;&l{Wp9gyjJirF&IlR&21z{fN>kS ze2_etw$!J0ioWoW^im6Hi+9i1ddS!_w$o;@XJ}ib;oy@n`+y{0n#0m%mq5Ysz(5V4lrK)LI)Us3|C+r>uZuj#R=-`ojS1v$`Ci{%{z@L4P>-i1dd8 zj!1tv*{{cV*+Uz^yB+|)h^JD4IT3&O9I!=yNP9|u*!T$g!)WMY_`@CIm-z3@Wm$3X zRrlN~JZ_z<5^sOnRU!rkp!&zA0^m_Q`bW59rw1>%7ILJ$w9Vrr3&7F%V}05kJ*Cut zj*GF~lsNH}Cn?r*=D3Z$3b>$?Qn;X#@`V_lTLGh!nxaS`oRreXbW#c!om5jH zs&UtRqocl_dov}Bo;%ObNgi$S>g1qDCx>Y>>f|+|lQ$o#6C>dUE~pcQ3+ludVmNLE zj5_&BkwEA~>0|0d0i#aVnL5!L@o6U@vRU-J7NXThxcA0(t)ggarN0VDJ1U>mjLR$3Xm&7mh;%#+`JkX3+>Iptax z$es6n9a8o?boA)Xe;^Qpd+xF)bmwrp+6nd#AuL^Y09ILl!@QWOY>DF_g2(M)qFR(M zzUoO-*>UN_RNP#Xx*+43?>9ZfaHQ+Ix%n(PL5Tl%NHD>)NUE;1C6mI$_y8u&n z?T_E-Jy%7YP5d`}!#^tc=-(DmOz+ALoiD(+*TC1tKZj>(rpD`V_qlj&YKIR-ioW%@ z^l@8hi+3rXfO*3=$WPH`+|Q3mJHYJp3=k1MuJ>{2uCT>D z8DE=Hz_^`%Pf@WNs`N3pa|Jx8prf;pvoTL?^l_*LQixBtnVD($2~d@15ukqyIU)5C zLR-B0sBps2MfTU+c2vTN4{DuESZ1S`M>9h|}jHR1~~9Gn71jdW5(5Drf1V`@YJ zcBJT5;)vR>$@l|KKt^c-{HuQw~5LfM!`Hc^00BYR62+3F*%!o}f~}H43z+DbRUUpoYdR3cj7uoqa>0raM!>-Z}rv zGw1(MEHN^E{a05#eo}|$@$s_ILMN43k1>~l@%o^`KwhMv(1cQoe$5#6d2`s9mMY61 zof+K;y_0cFK6csiBtX!aC5d0?%#uz9aAsf+;^P*l*R8mb-ZBzj?>E+ihvd<9^4k_i z*Ll8e0l)Cu7A>C@wA+e*dWah)o`-+TFItGkIoLqHWr3aXj?B|Q1ixT$8tDJvYV{ab z^TOVYUq}casNT8>AFn7Tu0+I}6@^e)DdL|q;zehCU%H`q$_}4zEG8abh!p>v6lGGZ zwl)@N4Ca~N3SR>*i(gwEGo_GF4v;>?7yqY8dtUQLS7PWSF?Q6~7`~BZx8Z3Q!$LZb zH=*K}SS7hb9^cQy7bfEP{PR~sdBSbifzVu&y5yN~S`UetC!pwVf@BGV3cB)=J?K>BELP?SqCpmSyz-y)7JCfyZu%Db9O6a1DxRDUfMkm2`@qec<|1 zWi2i!TK;i%9GTJ{S%Ai<(2!PDmGZ(AmTV97NsWdyX1CA*bM3Ll^K<4VUa zUqY-Al$~r@4W#fX{ne-VTmY~Qls}eT*1}lDbN4365V>SmoPO$WLEzy3rjM`w&nlQbOaI~&FIp(OHM{CZ`-&fJ zV;z4iX_pEtJA9w#{(#gNzY!}+#1ht(!r6T^_JA_R5>~>Y{*_q4*XeQ+ud+Vi*Fv+0 z2IybD%Kl2MOo0A(S@y^P{gHl+0R6+mvnvGXkMvvk_P2oG+_grp#Y2i@*A0O7*BZS& z>*9+B!w4;!UCpPzsFIl)GtPPZHFg3pb(TSC;_X~_HtCC*lY-Iu&u`X;@qQ(;%jg-e z%O$X|cz?!MSIln2Q%hur@aR7WQ!?%v~EDS5Sa}h zSfec$zRRq{PkbGk$Tm^1K(IhZzPLzQln(}szMMIFBY>i#2b;Q7Hi;ck2#WWF?p`Vz z5~=hwJVnb>?x|(6_vrfR*Tq)ewS3@Cp6w-;pE_S6!u@J=_H~V2rfg8ZZ4c?4*_RZI z`fZZ4Ih_A=NKe!+8~SZ>SpR>lJ!fE5#nPN}Ndn0xq=%M9Cj>}<&|3fr2nhrPL~7`S zmfJ!Vh&~H~0*b7tG{u62qP~}>pnxJM2murX1PLObNJ&6NQQ(`MJ@=m3ThtHU55skK zr|it^?Cxwi4$BpnLIK(<$=b>X!KPdEflT{^xHu48;3ku{Ri9&t_{6Xakin1jC~|p3 zD&yKOZ6!XrS$w6Ib*07{QdZcc_v={Kvvdl^CiU8`KdLwUM0!h3J!^?2(-6Y~G=>t#3V}>4QI!BkP*nzyzKa7M@DnzL7Vsd^U7VR9rpF zBw#=Cyk3`0p+e)LAgy#+i1vy6#?F%S1McJ-J7SFU7*aQni5r!pG{l(Sy>J&p>9f{; z{A{{4mY1eBjxJ`6t*tcuX;AmM$>S_fLkoAD2p!4sgE12?>Q#AKQ|l*|{{p$KIjrh25i$2ndeP znzY?UkVkytBRCk(drwVq=aD4siO67_^9@_7>(U*ca6z9K%=UHWm=V4);@iGMM+ z*m#M5;V1GXejirKf8rDQ693|sR;Pz$@g@FVt*mE4o9#5aU?88*!#lIK1SIBh4fyu0 zHBz;mJhN5iP+}?ofgs;$BQk@EAIj;4$<`JLRRf*J%yJ zUAI$i4nhq)Vt>*WGMH_r)sXpCV6ip7We6=md?>(k@Zqgflh_Gbi~>NhO8_MQU8Xgg z{X(lD`EsLemQPJP%kQ5o??^CI}*0coWhZ1}MtUE11 z(oo_ey`#HzA{#+#Ak`rT)hV~C3=Ej2uU1lV9vAkOMXFU$XdZ$2In%_y2o z1vlI&Ke|4@#1=nbLaY1)*te}mdPgJ9v(}ON86n5C%=nO99xW+V1QVA7F_cD%dagyLdvV9hHr~lqL|z0UFohG& z%ir&3eN|`4loieb=hu2Sl{KVboCPNDDvlaxU8s3rh$(H7yIIEfAQWbh*pBDhehwJM zvJ|533*g-Z*s!$Ny&caV7;H_uld-IkwGl5(uq-ULK47f^H#$7{!HtexmNT{XtqUL}gNT+@q;#jPTtCZ5NeH`dzNV%cr1$1S`09ssaPyGd^m zzN!WA+{di(%MV!UMw(QO<(7tJylj4ty85kM@|~bt;@0RQE23~aQ`l4&( z|C4>toj1WcLeJXGOD9;HvYuY#?(s#=_$Yg(Nlv@9Jm1=z^fIF*s(wW9n453?l1-p| za1k(fl64O&pkTDpbCazv>JxTLE8RQAT4tFKDnKg%6xSjOEe|Uh3phmz@dS}JMEI?7 zbnyON@?pCdr&(Wz$CIcGFzJHLs@<|fzD7#Oz1mN9%X_t-l487HtURsD=QGpI<5=IM*9HAACG0nt#}XHrAWNU_vV6TbFI zUqf8`&-`j9MWD#nu=VKAWSpRU<$VWFNKEl7v#m8XrohFnlolcA8Anl|nfNN-lMh<6 zHD;&c3Qy3c$!1O?1x94PvZ3K%ec@;FX_+TUxoqbGKkei`+gUy#DOGz!wlnR%*i_AE zCgm%e=?RJDXNs&7m;%PjcU!1P=mkn0^rHBO!3z{HDrmB|f_TncOBf&WFIcyiDujiS zPDmx4AO%!OzZpupLCU3)e)XfIil6&(22|2jsU#dUP8eFEjHQ-5A+bF4aacsEVB^)B zRMy~g>fNHls1-$rsks2MPzo3}N0a%y1=bYSmg3`{u~HFLjkhBdFsk~Px2l&fw0_M- zP?8vvhJa4QBS%AM$@YSAn=I2mH)aMiX_1&2=+4h^iS9isco=Z}%?hla%UOYylEW1H znm+XyFLQ(^=r4RO9e*XQgBkV}lBIY2d(E#=b>N7T1BIh&a*(P)Y0lW{YRfS$D!M>5 zS6^zK;!#ng1VbjWbXG!T#U9~}Up$f3Rq=(H^!q_2;)x>&7kIpSfE-LVjSUFayY0e# zV-3be7+{u$1vwsKddOQ|uPQ{9x%e7@?A?RS&+K zNp&cl=NcbsRzODPVD+764suUhC-bD9iP6Og+`FZCNwd)7-Juh1#dB<0+4fs#5SeNPBpzKv^UABXY zg=&XWaX!_)SE^lIU#@-4+W!uv)!*O4Uw9oR!S7QMP|qg?gz6d2YYIKTyN6r%TbuG% z*IQ?@a*Bp4&G{AYzoR=tV07)Wn}bVrOFx}5iif{teZOMWy|A&YCB!GQ>hR0Gx`@utri>O3jt@|3IaStbjR+T z)l?AQzu7FT0Es`xyzg#H1RwdVEnR9pX}6^&AMt#%Fy5rbSQx|H zrAv0h_H~6X_^GY1C#-+r*=KJ3l}Q*cD)sC$+6r60yDIWAO`NSHlRh$Hp@R@JgGuRX=6Lx`#fmJVwfj&MvU#PyQ8V7wZpLHnBbw z>#lX!8yV;k`_%qB^5a|xs++pkU=XVurGUE!4i|= zzAdxvWt%7%C&f^a?;jPI?16C?vxrxu?(;o#zkS60!F*G3_e6gAW(?&dyNbQ1_?)O81w1>3(~ub>tmt-13dfgW-pV2j3PD>cK~)$`4DGA6WHt z06(>*dmfA0Pf+jHjrH*Ta`XJKhb~Je4NK%to`o%pEz7%SiC^6;ZTCa}d!|_wZ~sVO zG;2@g5W3V`11+Bi1G?}3tGE#Hku{ZXIt#=3?f;&r#8>wk9?T0e?!Tkk6fp1S+pYtt z)n_d6tOXTOICj+i0z$Q%ZnVG2emPF9_}(&#O{REvt>TF$3nkK4>7N+PkDjws=Q%%F zKes#s+ATS6NoCJc?x@(M{uH}fDpm~+nU}0X?$ANQo&?@-2KmoGI3^j~fETrx8OH?7 zy+T4QZWa)##V3p=KDJ-3=C3&|GWKUM>-o@NX|Jam7 zQTDBzS;4%CZCDJC-wJWL?`2C%-g)5kV1D?jb+C4eH@ybu<0_PpmZIkW^r!jYlD~54 z(^sv{_)|aMacH*u2F{S|99E0L4-e(n6hczv|6(-xs^P+Ye}%+w8g0s5yKv(Y86|)P z)#_`Df3s@(AW+5cu%$GZvPA6-05qQgVYJkq>bE$kfnh50vK!V0cj&=-ZVBJ^2dr^( zsWj-dPEW<<7_I76BK!W--z-zv0tHVDYeVZfQ`u4qM%P_XB3)NS5J9G%XRhN>$w=$P z%R|LVE3i?74w)QCDH;cjAdw~x8flG0q6W4+@(NSMuXMhqPHc@>A6dNodVAzaqcyJ# zi{LeP+Zym14|WfJ_8VJUk31lrI~uCl_Odgy3F72V&M5)`r^16pi|-;mSkpF~r`@(h z@c|ZF3A;h4%hxu4Es^JQu9k=sJh6Pq6GPjw$OFW~@z6-v0a~puOQAL7K^L@pA4rZ;`E8ukz412jgkfh)X+grB)?{_Z7iEkt0H;3 zLH-e1g5;qD$v;C&ki6Xo`Hw?vkFvLDRV4qqLH+|;g5;qD$$v&mkUV@w(@T05Wgo>( z)2c}Rq(S})EkW{7g5+<~5+r}p2lQU8gJNzNM=81qTsx_>b;em0&n$6jV zxpy?%s%aa;#!*IiZFCofz#f+IWra@!7!THzmlVUn8m_U^9yPP|lLzGv{7F(`>?tm8 zVE@$e8|Z0i`#QDQ4N?J5!|1;r^t0zx@sP3Sl_zkFV^pv~(xFZZ{VI5=I0sj;B$iKU zY9H-U5!ZPc6`L^!6;t@TM@6xD`bL^P%LDA*JbCmV;72sHCHcT#bA4DUd+u-XtMa7V zqa!`=#jaq|*OMyp>=avL_Qu~5fkrg9*HMY!*5GmQ9I-X{^+9>*_xTp~QdXkS6Guw+ z9+D2dmy}3{E{<<$XPV_4*j;!uU)9Nm$18CI_j_q_?+x6m{+(GX`M<{)++JLZZ;ps4`aW??f5Y2Uyzb48sD>#UV2Er+3JIt=r~Qj zlpQC{i&?54W^E-iA00>V5}#fY|KcZ$RyMbFw)FcF&Q3q~Ky7xP7mL1rSPYje)c&&e z2U{1)LHp4*$WjQzu`|x_BJS`*{2^b&u``0$*cla7xpui52@k<-Zt5YjLwZ7D`GHLV z$xH>iKRfUS6%{+AT2XY!t(o?zDn9!1XNTOrj2{ilY-`KcS&2drof+B)XAwg8k`g02 z=X9`rV>u6M!|41YsUXiPo<+5J`|~wG!2=13lgZ$G`b!y{Pg830K!S*vAzv9r3jNB% zqxH&P`B`|xeT6Qqx&T@UnBgPD-pp_$X!@0O=yWe$js5XzCwckuXkdmO4gXrZ+B#VJ zi>8Qg$PJ+6aSfI0kNk+Q@cTPzQ+AwjB=DqefmL)Mjb5j;hj<+ni^CPvl<0LH#)X5I ziN)9Mu`Slw!&Ek$nr!T0Ys(f=u<$!R_kLR-pZrS2Ocez!_w5+lbba+#JokB93$~V` zCQpKE7X>p|s=m@+li!3U_p&utn+(gw`=Ymr@f&Av#%G8@SbpQRiZy+R0GnR{{Ko`) zf&R%?{2&K*ip&b$sMwMP947rlFw<`G(YdxPAN5Or9#@CO`KUjjpRKQ2 zA5Wb%^ig$Se_Ic=DvE-yySMXEKleVEmZ+kujW!;%QW}kCJUk#jK{^x2iT%D zHcsIqV%Vs|GKP&JB}NR}aIwaBpy@H*v)46oCu%hV`aQ$Y?@?-|p}%z*x|Eiqp-=eH*9HHE24-kzg_&t+XfzsHX*3$z z6B5f0PO)XG+QBG_YoN%lNf*Gr=#78iWJsKfkA3k4(I~So;nDEtjcavC>5=y+(yaD=8J>>zY-0vl+Ig z{_x-bYkWNaI_!AG9Dn$G{{jA>SuhP!#KIFX`@g9e%lFN)C9so}2%dFTYNHV2X4~5N zA~M_7nO*q@_zULP?p5(kSJ#euy1K$2zA4jHMHODIr-45ii*)?Hz*h(5n@^t{ly5$5 zhkxBKQMFK5xbs%&0&L{1cyi?lEqR;ywhelpqw=OyF2zDu%s%R8@iFA6kHrUE=j*EX zJStzQx`z^jU7KvZ%TXzD`cW$J5cW8&X(rhop~7m_CS?>m|7GiMVQW3Bi<8ItN)Si{ z-<7l!yIbe>{VMZ@kJ-X_pK;D=mVX~LZi5%on%LTR{k3+7Y^}#s<;~gw^~r4A__R0( zz|YkV7^g}ic5TSmW7J)th#=;?U)Kqk$4*kP^qYmYmh3DAi_WK?1i2R3`gkCytm?~~ z;f$7$V}ZOzgMgY0ewdj;6ayDY$rOxYgdF4NpMeRof&fn2 zl`na^N-$YSG?uai9pjlxCp0epY?*DW&e~IYXfbnD)BTuS)%2is+{3@#?U*0;?03w^ z`0uf*F+QZ;{um#>!q&})7`VR6KPD$2lYL7t!Jh<$z9bOqJE9I#f*)V7rTLTKDMNxK zz9m@XPlD(DNkDwoEdjj5lopV#ihw(f<~q%&+vXTA&w|TnL0sElOUD;p3(hw3VdaX) zc)B(r(^3KaDRXtJ4m>GpV2B1??BNM9#ZA`OLUneMHc7aW<(SL);D?9v;kxe%1*7vF zJI1Xq!@NR4@a23>rSly|=WD`yuY=$z4B0h~5y>+6KeiMRUzO@&L0S$e0OtA#imm6{N5i?HWvv$h%1U_p=_jQ1uE3#{E zPtA@UB$|fL+TAaH;j?!4AD7SCg^4$VG>#9;(A*TU;C~X z9|)|%`&a{lc-R}Z2bh&=4tHRu5QrhnqG#@W2iE$YZ4{rgsaq6({!QBi_Bf#~cVPc@ zTyCw-hi}=e9UH^9U+mVIt)bP#7M&Ty?fX$ zS{12$3{-N5CU<0C(ITYsu}MXnFMs1h?LPF8KkvAEx34ijzsZ*D+VZ273+m}y8#9REm-mz_F!QVhV*TxTqbGY?enKyga)`~^aGVE5t z-^h!qDwfz`d;5hMce29<_ME_iC?DKmOQ#TX@NXi(=+B@scmz6w-}tv}9qaB<8zvRs z;JDBK_*iZ^hyi5zOs%nH@HcS6>mIE>8$xk#oFDX!pJ8Jx5EFO5b%Ek~q+oN^sdb}L z1O%0AJTWWy?wt~^@a0Rk4X(^PuM4Pac@Vf)c_^R(o9D%SwmiHB{WeE8?KBK9_+E`$I26EgU}0u68ri@;r}-zwf~klKbSvTYt2tz zw$%)6O$w9~4E?_~PB3&TH%~BVx!n3I%oBY-PBQ{f{24U+TWQd2!q0t-p%Lf{Pch7- zrNW+?(`4wa=7*)4!>F2FM;U-2TGg9jK}mpnnpXT3i$##sjSICJBck5F!XtgFKWK+;`-zg){J&;t8L95>>KS66G;P~)y+;z%1 zC4D@Hl9NGeOwSDMl#E%kXeq|5LdneA5&i`Y5Ls@;zvXlhc%hvXUZ$O(RGb5#EjR2$ zxnq9!r)#h=s#bJw3%*5bi&4v?qA<~jpVOi|z{12ySEmH=M!x{zn4Ox$Ojl+!;a{Og{$mn(eSncm9+>>A^6{d6ESXO@MPLVSC%UM&_@ zO570b5nSqLGF!FOM_A7*w>QxPOXcicr^Imfe*2UZ`SK|$@(^|pt!d8Qy9lsL+Vnqd z$Jqm(6>;J|kV4Igy8=enyWLoCV43P_Yym~X#!mLv*jauWo0yRA5F;VZxr}$56}H*8 zZIhV-L0k4Om5S(6>Q)3!-IcitPTlDYj%Wj??wdseaO(b!_=QvVcS`+D-CMmjBbFyD zv8VGzy1k!|N&IVdEq0CVrCPyB{B8mHN2)ayow;8s(nO-|(vTt5U5mi#!ctx@NaHUk^L&CWI6I8=1g(aohZv-%&=MpKCF04<<)QY0Y&I=L z@=&UfPYbh8V#{bXB)`NU{}L@h@=$^=a{jUBzF;1HGd-4VqIHl7)KQpBI0UZ;eom_) zlTQsMU(*s~B1+%^O?H-+AZaL3NaIocTeKRIzG0AN-+7o$yTQjq+wWo3X#r9O6c=S& zY58!|{9~nLr8PX(-pIAmqLt-J>*G?NE3Hhy7gt(6zmqGi{BHvK#2*t*NLN}rsaL{E z>jKNA5}QvV45naQUgdr#pF~g);D%T>4$Md}r*A&85{bX3qM~&j9iGcVd93#ryUN zh>Yqf@LbCp`Rolp{iq{_-+ok&h_;GS)TZ&EB}m2N%K{qt5YOBNTJxRU1$v3fWbOj3 z@+a6^-^pDdDig94{Jr@#1?9OxP6 zzf{k1{_6=bu0yC`F@NnVu0w2~vf}(#ttjTdcpX9o3w(S_YWqLH|1=$L%6j8(nrUks z^0(;5Z3q=zy$$jG-x4uyLnuUW$`*Y_PQN40klPTIzgIg!wjS`k^y&aoqT~{izBh6S zCB5zL+Ynj;FY00Uar813YWs0$z54fZiB+Aja;Fhe^lsnFJVJL`EIeB4g3P=fx-ZBM z4jo2a%#}g_W|%_o!Ax|Y3E#`^lkdfBoF8Tm$;?;p0bZCufPc*d!XnTFCJ>(TV)29@ z7SBl*YL~&>0pWnTgH1pjJLEfF#5edMzSS3TOd9}k?2n47%>D=-g8h+ti0qG^5aTw4 z3U;qYzo(*Ne^e`q{)o3B6tM7RO&4u4j>dsM-*NXN7abSJ4Ij z^ryDqbG}?aJiDs@23EOue3syfx}jWUxAcU>^2PVr>oFB9bo1SP_Rg#cl?rvERutWG zBwCLVKwdg}ojd4!*2_Q8@*mZRyK0gx(rqhZm*4 zR|pD+E;Te%N=l@LmXERz(*J}Oy)!wP-6F+OK{xyUq-3P(Nx#p&$EL`wkT!^>fnH4`wXGU{(wnOSqGBaGbq0A6X6F zn7sk3MDaBm@ww?xy3{b9m#sX({$c1SA_JtU4=qmOn{EYkVfh4(9|y!UpQFz6B@^vw zjAF@ok!$5ujfdphdsLhY=yK&XpAs_r*_`u!`q>lbv7i0FR$hs+-+^>^oj{S!W94O3 zrRw0Y^6JSC{86I?dy5KduDsR@uxsUox!sN5hQDpuecqVbd`{6YTz=}Wd0$HRQb!q_ z+w3?mbGsi>Vwl_g0NN$e(d*C4l;*4OZ`DadScM;`|F|>JH>tFEjCYIG{zXMr&9ge1 zH0B44F)W6bV$3XfB&?~W@ehGK&oQDQYf8(pjg5ZrW5PB-(#Nb|P+UE-TCOc^2JAnY z0U1MuJ*IT-ooR2u`Y2q*Go*lUY^J@R4}|+?*?X`&UkHE9vNu-|0;vj9GFwmn~W z{vh9`oKCS#XSMrlY0(dU1_hrDMdwr+>fxM*P9mrjcrnj8*FKKtR~{M4;g_AQq!sWG zWm@O7z?vdIfT45;}r-{OhW11U4w_*r*6O<1J zSosI>ffI@wJz|F^_bdEJ9A7lR@+Y`yN@CzB4i!4^&l3Yf8Gy_zicmCRVSKplHxCxw z9=DIPB>e~;UplHL|NL=qz`CBS^jbgi`xn@=SuI*(CLvo61$+pmD;x0-tff$Szy?9rvr|$};c$&W}Fx z-lalZ%zOU;w8R@S&D#cM$A2!sH1GW$X%-i6$nZ_S^baTwd)7W%V`a2ZdY^cJ_BRSf z?<)iEwwVjIs3~h0>;av8e;=^{T23E6%zo9M|^OiChv58 zb|OonM9i>R^MaoNBISY%n?DF?U8g?bsD6Jw($e%!K23#3lE7qD`IUkyfuac*Yt=T3 zTN>?!q*Te5sKRg}u>F}986mVm<~-nD0Y<+DFTi=g&CI~VmI)V(4gP$Jh8Nk!NfmgX zN^$@WuG6UwfQTH()D>|!^u_2HLt%G^(x1K1t z=X{((%{^xYY)(+Ff;Mo1@-sz4ZIt=b#x1FhP^t|$9}5!{;vhzjUSXT~ntdWuAUGTU z+EB?ZQzaN973abjN&7U>3&zNdp8$d}vZeTiF|y@P{$gbG8}{|SVr0cPA-T{;5ODQs zjFG(v#9+MWmAj0QW$PA77sL8#;PbBC7C%ftXt3!)MZ+_rx8Jpo(b$g^j`O*)d6feA zlGXk1aF4P-S8Nl?&QT6{Qu7vtnBDac0mkkM8o{HQWvA`iS+$D*b~zN(hI#l!nVX0q zB}Q%{?a_d#S{k?RgH%p4QY=^AO)mNw71{$uv1~XkL~w0r%40|=7iDGwnBvNtGLc7Fi?z3tS(MFk_e4YTiIyuZ^ zcIqn)Ev%*psD&5&X<@y8E$~Y+mGKOvhLeXSmrz=59xuP{%2P>+hp;2GHVV7xSY8Nv z0g*L>|8&6qG5g80GEN=NQ>Zz0P{6|Ucwgx@I1S!c(k>H6!$#lq*XWSTavnwfjEnn9 z@z+Jv!eDP4R#TYX`V!L83IvV$y`hdTRdwLxK?&J7d7#4wF(6JJx`;O5xwy$DCsXB1-a6f?6PHK{8RYazS7cZXz5)bY69?>D zfmi&D|It@uSbblRRL6h)iX8uetBjw7s}VmvAjbGl#pAf@#qqy2l?q2WwW53cSHLp< zf)k3g)OqM!Mfpv5$Pe~CY?wk%jBW6Zb`tgLs^4mYz^O*w1G{W+WkYsvAkqXkTYDL_I#53~>KI&)S6}NtHeER;f9G|{~ zo*~Ak1MsgHpXRq2k`Y4Ln8VXy0d_f|d6fFv6=Tcz7m9{HRqjt`x24V)^(l^9#+RhZ z*pHMLj#1~XNQn<$p%M>asb$2KO=%knuuEDvO5Kugyk_6YGQDbtUrY@Np-^*x>OjFb zH^KAN1ImmR52EGR;{IiRdQo1P9HBg04Ckp!L?6L;WPFxbVf*i2?L(OYL3_3>lOuLR zzPYjkuH-zH93gCoLzEI#aEPK2j;IBPsOLl@aEMwVe&G|Lr=9OyO@h#~&}hTju^+Vf+5P|x2{Muwru{Q~Q_1|M2k4nFJ4 zd=5TGh0Hkklmac0PQ15&U}pRd0j7h`TcmBp2XEP@TG$T+#Btmak1@o*>4|!l*26u; zO?_g5V<|;LTcSN^?Arnbja{J}exb1|l%ug@>0<~kyf@3_lk_1K9jkq%HQ+IXS3|1_ zQpR8cN0xYaXO>JrVxO`B-}GT%BfVNV&n%nVD<_5&8>|+szjFsFg3q!qZ=AJ;wIp=8 zaGf|Gobofu;U$FjF*W%1R`nwIkV=k$tT#mzc?(MqsDuw4JV1-^=ys2CnYidyE+#;2 z@lEp>pNx1!q9a}pFE>3zAF-2RCv^Vg$87Mfs&36+;}h?)X86J4s|1+Ro->&9eg8e993|0Vj?LtfsMb z6yB$bqZ=yVuINXt{BAcz-PHBqP z34}@!ju}1>-i~neW`{fxEFc!2HX$&_14AUCUlx_IYZ_;=y_?n~%8{h83zRBIm&9j9 zgAZM$VAMTS0rADwR7s_RJT%`_zC76O$lKVweFi5i=sS(Ww zcF1bRYF;%vBAyQ5Wk+fR$0^l~K@n*3-#TQ?Wlbm!Y+Q8<83E6s;F~BZS2-9oIv_t4 z>hR3+BXJh^2_Lm}bZ4C?8hq@%1K+M|@Rg6I!2xlix-&mQJgbsZ$3?9DRlXz8ni*v_ z#`vr~aDg;njAaW*l-N0|PRIX%9`o`a6Jm%@bsCgz>G1zJo_kSH+Q*AJXJy6EUSkB9 z{0!`kd}MG|ddz4cKE}Z@;uprjF+8uaqaLGSP`(K>^5ua6{M*c|c=<3)r<#rdj1GZ( zO-;vk_8`>=4qGz`#1LZ9TX!AhTJVwGvgXJ7AfCVQD&HJCp{DMDXX#z*ArWwj5*^L- z7okuLL!Tu&2E;EEqS0ZfkjN@_wVHDC>r}7MGIJf2RMPh@!Ur~^W~B7Amna9^TK_gH ztBAcv!Aom7Mp!<&3Zc8OM}4-P7C}U5!pkb%+fv^OUIt&M@lHkU0mS4971R0UC63xr z?+R?%)!)0yGwV1ys2uSafLB#TR#>ye^KCx|G~%7};W*hvDizK}lR~?Oga|0QE*Jmsb~rxS>Mr6kGaOzG;}m(ag-L$M5C_xnTaM} zlk2$`1ta%*?!er@hVf=w1EpOQuD2REl9>X*DRJ+Hj(&O@LymS{a;h;Kl&6320V1XGF?&AF@QIV+|Z4X4D^;fZ;0mNZAS0;9u& z;ul7T2e0{?5_f!hSXCJrPX2ChC{z6S>9Z+K994Zyno9o_2v3JlO<}lrnm`PR7A?5D zaKTFxES30@3`bplyUY>AN1W^)$#YJ2AHpYhltT|rXx3koyEj{i1RQs7pd>wbTs!tT zEy3LzD8b#ESFV|ppjaPG$X|C&2BjyjnL)_{pKjqB7X;SVFF>h?Nk7`WeKc9hGnYmln(d1Q@$DG!eV?-0!=8 z%;G(2XY18|mS?%D(Gu)CBM)o!_4J?R>E7nF82fP3pZ)aV4nPt1WY`5Et81tJz__W2 zQJNrvDm1z=3qJS>B|0;D;`_{4C|6H)fvT*rwNy22i3KV{~0y{ zPGu#ti4+qLagX&Uul;8{#2rfI1tAV+CHNE=lO+m!JhJTxf!pU7y4zJbF%-l?n?)!H z_*sSm9sU)2;jdDO%~Zk50_-y6!H$mquq~byF*Fxbs2Q3SFq(C{HnP5@1oVUt+a9E7 zXxDxI^z@A{yUxGmNK7#8YRmyC*FZk;O80vh1&Ot3w*H=>h?h-8V1_{PaSVsFrx9&n zIE?%SAQ%p##4ikoQNQ>LhtG9$JnJ3x+7#RGactCBs-WQNOBnVV5QxEf(d%~~_PX(c z=dvpChDYKeizoDOjMi9J!bnE9PQS2K%Xd9qZT-T1|vU%b;HZ`P$C|WBAC> zphPy2mgCa4;AmhYZ4jS7%+ZoB9Ar%CU29$_D7xP`kw76h>n6{0BURd4!J~;%LQo zQ#24};or&e4Mp&lgFi8pa3UhG>pl^oc_2p}zUhywNEYxbaS4}Zs_>+nfyw^F(jWOn zj6OAafo^fBo+VN`ZW;AKVBD<}GFW3;ECx51$*PYevJ3S>L3o}chxMcwIOqW_9Q0fc z1FL}fY!t1A4m12$;xK&AC_-Q8Mj!qwFB;~^U~?%ZN?f|2cB=L(FP-fe#g@=gmtOpO zjK0Vqx{ji`)nHj9Wop6R@hV4|40PUU9FZ22Hc*l`#L<%Nr-*;$G;UG8qZr)u9+& zhSOq~Ui`UCv}O=}lVZ7vTAq2#c4vPI_9$iN(AG~3En;rv%V>?7vgzd4!gm&SU>w3jT~&ao_2VRPA>ec3z>SF8%lm zJ5l;tgXsGd4SBAyI#P8hR|~e=s~Bx&VDo8D5}OG`kVd!-J45mQBJ7xgT&Eb`f&|w+VF&b|p0pJG$AveDmQXw#wZ1e?!c_yYMBC zIV#8cW+8J2wSV!*9c-^2l&Y`0A#(>KA9wVM2WiyYL0vlY#N5G0ySqdPU)-YMGZfM=#? zeKHg&T2)D6#v99caKa!q|DYXpNI9&)Xq5Ok)8|BxF`N?i}JjKg#D{+U?C?VfkQ3pm?6 zSy{G#T-y4q84P}ya(VCylPW0whrHrfI$CP%EG3A|I{gRVu*xx)ou(xotimNLc*ynd zwB7mExLo3BhM81P5#KEdZyvOtRsNHeaZ2V2ZHL;#ukaf zYH6DS zySQ;-9$50z)xx8BN$a33#UHf}x=&;M2rZcu?9?`>gJtNS@aE8UM_o3YmSeK(0hFh$ z_j%n3f664L5^OHM?r0Hhc86-xK){tRZR^ZX*$ZQmz+}|T0kYzLb?36+;DkptNq}n4 zRDrl+Jew_{BE#5deB1g-0Y=5N{YAd(H0Mo6J&nETQ9WCK4LFKV?z~1zL^NK$tVcb| zHjur@Sv866pv9<~5B;fTuT)JaRSkSRmOPc`IbD4twy% zh)>?-+Z-cR-gxfrcK4ugFK~(%1djQ)?NP@AEF#3~i`VsIgQ>_OLU>e!1CYz#3yN2v zINVJ7drbM9uA;TPps6_;7+aj2T>GayIoV@W(64NXLQb5VTy#@9`6624cJg(gbae7p zX)!waOH%3H{eKfs6cs3Ejqdih1e%P)Izyx@-`tOI>}IqBD~CWCrDawIS>g>!WC@LPtP zN8a-6V_~=a^s$;e=_^NbZ#O3a*UcR4IXq~%%H4EyMJU{y@q`$Tu7ZW5_Zd64E$c{y zMn_jGx*T1BqNDfydrax*3M%e~EV!w7dhr{dIKnjMR0x8rYgQg{&{30FX@SerwFSKB zpraOBNDI-=AM>a6XL;TsM}`kKCpI^}gJ!)YW4RY=jOE(fJo8J4sv9Y9^zb+R@qQmI z?!nt5kej?Qkb?}Siyyot1NoO;EKB^cJn4(22;@GSi!ScnTy*hYTrPgygZpSrGWU)t z+HLt-6pbldL~`Qd?)Dlku5dS9+!LIlIs{h4SguwSEv|%{XFCEF{Pg?sOaZYZz+Dxca%7OWe+IyL_{BWTSoMOw8Z7-mZ`Umh+aU8(bFg2 z_OphZ1r&WpbYlAkGNJ=_oVIvzm(!M~fjx%vWt2TS`x1ZbS4rdlwYQt>(c3``x3_Em z;iaXHI_$q*EZ_6T@?)PYJ*F)#mOTACn6`K~7@hq%G#KATJK@Fss6X!K{(-l;-eyZyIN6r`5~nN@fFSDSCV^JgcyC zx{o!?hzdOS52vp=3<)^KvnIfl=Ps~R_vS8Lemaz+%g?0z(dC`~_&;2MAKX8^nGcuu z&42BNplU)3nG0vZb~a4aEiVAqrB7IDv6Wt2SNP-lnoq96>wR!Lu(k6~OWA z3(XXhH9wwxStZ(mXJ1x}UwHOqHMHb1U@UvVV&&U{Ifhv7t5P|cp`*vyXFYA+=Q~cTlQ#Pwj-!h z{4T+ap7h&Hxns7z@2}PgED(|hZV&z+p7aA{)HM=o7RmyX@xyL(hvPyq6pkJ)GF^J2 z&Np3$W8%rQ7#%!bM+f&#Z8YLm3*@dq17=bk^IXw_22H91Pu_HQP#2Xs?gXsb9n_Cy zQl=u>SOiAz&w_?|V2Bi=7j>njnED!_&~vB0h6*qS2(YZRy))z4RasW%@Ti=v7wB?0 zEubZ+Dm(%AILL-4;GUr6sH;c)>1vq|U5Nv5QD$q5+^b+7JiR(om_xiy@q)mIge+Ng zR4~TTDY_Xaw4r=QtkbwjHy8@)7B-cKx_49Q%_zE4fT@yrT1k+To$#!UQS>NTM&J!pAQR#SGBVxitH`_mgFZ@|YwsgDKnrj@c%6HLV!Nqou_KF)b4D4kJ| z455dqYId5c(FV)kNgu~WFvX!Tl+teO3Z*hSG~}Hh4y+T~95g25X$$cS<7o?vzj*pV zpmT+<*!g^r^Ba~e2!Mtv3B(mU|93|T*H?DF$i@&B7(lg=dVH4y}p-b%uo(ML1*SIl?DsF>cA?_BPbXs{+yDIj>@IF2ORx0+Ynq zjy(1TEq84x``>ea)gb#3MMJK5+yRO~vJCcxS1}4@VDk;NoOp%Hjc9ol|w!00xwsUH`1Rj*>y56bg?cnemKmb>)xH(TyN8wNais!(?s zqBA9AiV4NDqn#aD4lTw#cNgMNTH;1T3znY`?9D{vHybE+-2oE^TyP`!R}Q#wKAbv# z2x#5hdS5^Z{ll&IM=FXj-Pn5f%|edp-GG%C(~XOZP4)HgxKuUgsCbY;9m2a)d*Tp2 z^*75@_70T}hq9sdoT=;s3dW%fD)QuumLv}haZ~Ysv+cf-vLxH?UsAZa?fwk~ql8eA z=ROHJSp@^*w%B*quTx!MIc~eF7|@DHQw(EH(Oc-MHQ)5cw2&A=$TgB3s>qA3&Z$vcqk%J4 zV~a=)x$XWqu)=M3_+fT!Q@B+WjIDV*fJdBlR%a@LDw{EE|LdR0Cb!;qdUCRC2ib7z z9exnmR942;`__NPO76U0p!87V=YZA5RgMQ4{P4@l*m{S@u>VHmn=emq&*%3Z9YdVX zFqi5z?(O%mK+0Au)p7ehmV!}GsL0#Bm`|m9&J@@{*){HOh1wG2W z{T|zd)FYl0-qJaq?7o}6XzacNL$BTUL4=gK`>y8&$~DPoS}f*^+6W;`JMVr!1unNk z-b#%+Voefd%3K;3<=NUd&}O?>i{RWZw6by-4P1@Yyw=Hn|)qb9pLz zv03ArJ?8R22WBoWFv!T|RSF_K05gc-OujRikwLz=VlL0LFKIO9^1K_3IqVeRkGZ^5 zFa8bu@oy>ltDcBEHa^*7E>B@^=JGtjDXM3fxjeO^JC}Dqm0AP{Z+zT+_eRGVP5$4b z%Y>eSFBYQO%Vx*HoYm8?`5|&vi{ZGGdmXw|q3>R-KPA9MSHZre%Z^BK(MeE{~vY~EIih6~aE`m^UQ=oca*u6nV|=9v~vmcu^fYh?2%NG?TJ!@%Xv z<~;@7%Fs+vv%*Y9LyOGj(P^kF*bK3V$*i#iy(t=lDZN|b7cN0>L36xPdbpx(v=fLJ zt4tTUoSouWYC|~uT(@>?NF^6JCVn9~R>_lG#17Gzq>2slo9^KI`#1;5=TTtuLG#`cPb1j#Ux2{);IjOc_)mlU7{NDE{CR8# zi1;t@XTitt=TY(Jck$;}@u$Wo@TaQy(@Xs6A^tqE8~!{d{tOcL!Ql}GcyM7gA-n*I zK8^$@JdV^JM@o+)mB*37?}CE&hBgK6!~B(tJm}PmNEDcNY%~;%l`1#XC;;INf^j$_~C1G&Wp3 z3W9ILh-WSGg#l5?`6)u(4)F(Ha(GhQGtrH7cu3=^0nTeIOL&4SF9LJ!Y`t40vDizuK#O@&<4UzG&=L9N zCY2f$j~wKDLkrz6lyFP@nXnrMp?`EiIzU}t(IQ5|6G zU|&Md;$aUs+cTS6jLDU_wd3^coM{9CB8r%`Xw;qG^elhCdDbV**>_G8-nNP1HS?X# zizg3t4%FBZA~MhIS(qKaSU^x6#^i>!if5jl8B?4++__0(t0<~=adt9qlARyNzX%Kn zulPEY@${%k_1PP=R>bi+t(N~*JynD7A+{UW!Sg4JD%-}68#8T6-o&ZP^53f@2J3X5 zpXaoP04S}N)(=dOgG-n*z1q$u}Wf*IM^q{ z_%Y6IDno0)OsXYAHbqOx|8>R`UmW9P8vBLHf?BFO&e^r%ZK0rp#o2NE;-ij4zOB=+ zP^MLO`87C{P!*qF-O@qjCb}R;u}}vf2qX(81Edc%HScsQPorY z4wiuF6#Hy@obF1+OHa$lMj zET<`@A6E_5`vUN=GmUQ>GQ9>*o8ye*@WqNUlBQO2CH&%LII40G!3I5-_P7YvNTu#Yg?^ zuT^fxy3?x3A%zVf!03(O_&Z zE0+KKpfiQd@~Tsst9KD3Fb51RF>}DawE~{|K=@SNr?)jE-j+9Y(y~PXFjh<)vn(Gt zRag{=1IOrPFe-089uUna5w6X5CR@&f^Phe(ye%Iw-&s9UAjuaCUq{hE+U-@RwM@9} z>G&6@cks>Ea$0%zo(;5ZIBfptN#sphMGOf1k%ycu_>6~~IczH}6X*#hx-p(mbVyLY zQ@IJB^sw_@OG$9hvj<`2cF>bVq)8$`E<3Z- z=KzG1F+9MhV*i2^WUzAMz1Y(ha7=|%3L#wryvDeQ5Fo&~zyq-$7gCqcZ=iSObGFZ@ zT-@SuXAOgA)=J()f11tf0%@BE3rdkMJ`{?v0#rCJ1!!-6NC5@^^ zjXh*&>>*k#G=?veKOX`|CGOGcvlnSGYV0|G8hh2$n6-U2)tHfM6)c6u6qcsOyus6+ zb|$N}QDXsbE55RVluyF_>Ik{vx;rpE9g`D{s2Y8Kx3MAHg}}QD`#G8IM!S zFi;qC#v`)b-ZRzjLvYSW+&)zHIx3LNeJc>taPv&VWrhR4o6BKs6Usch2->YOTr3os zz{<23)$+`9&fYAMf`wWvP*JAu6pY-Sk0;Alk%hXgaZYtF7P+h|tt+UD zx@c2{xM@>waGw{PPpFhlJp?kh14G866<^X{3)W*pNKPamMCL?v0M;!W&E`^p%s4Vz zfJq$5;PY37F1D-yRjhq9pbmS1qM=uF=4TG~3d1B127=8GY3=l97+>3FMvquR!ej>Y zU&`&SFJh+5+HAhLcA@b_Oewc<+Tsu)!BP0qFOow-JY_G=dday+t9S|EymU)J8oNUA zQ2L+zN&h>M{&LRv7SU!HicRRKu2@xA z)Q)HN9bbn}df8c(m)a6TRU%?GN_vIC@C@aHqhZC@oUgL_l#j1oHJy|y8i0a2DM17+K@r7^Y*5Id}8Pu4Mh<+u6&(CvKEbjY; zbC|9V3FXPz57y*MCe+AC^n-59$dh4;Z9>I=hh${}#2M-iEJ!F5<2heAU#& z0eBTm(;!kqf^)>AqO_=jZm3od7D6>Of+=SxI14uZ2qiG zEZ=gpG>#8hHX~&D<*^NTxA&Z5?_j~U`DkeZPq;Ov8Xx%|SZ4MaI=WJ*A}qI-6+FOK z{M%W-;!bD;w=UJ=@COOz<2P5V}&N5^(679V|bF8f*Wb zC^oMB&x2FC*Z$jPPrVaY_Eh3jK$h|1?E;p{$iWWgRDF)l%RS(Xa&G9@r>CuaB@+T;w6N za9L1tIjp)4*TEqRTvKKuDu>BTgbydmuLMRAnTW2tosW9-(6y0zTOR(I^B_A+r8hGN z2MO5al+XSTx~qs8QGCs+!YF>~tLfEw)8Be@X5SNL9AzkYxmCLu0yRX)KLbq?DTH75 zI5)8yqyoov`>&{)Ui#HAnLbF%>ot%?Rw4e1)xxR>4Vu+3Ymh>#!H6ld26{b@y7Tut zhq5lTE|Tn6MP>~8(h@fnOUEiOAiYt!EgSAtj@bf0$83R1@G8B>^kvg&UF2dnxI98j zkjs)?JyUfTlV`k&kqKZcOb$Gh-k-fi>mrla4JIGZ60<3<1DDM`TeoGOd6gp$XyN1hS7 z@C!3*QqB)fsS*=HeFc*yUjU+(P%({PUNkhAPu}K?=KI*V;7EZj(Caaj@0lZdegaQA4!%-LP;rgyX240IU<^35!bQO8=K}%5 zOnXlR3s5FuM&SctrZ>MmC*V%L_UbW!U|%hH!5$i#NF*?FHTgeI@1Q>r&P!*(9_~<5 zE)y*G2?z$|igIRmKVPdCc8MK8YC;X1#N8Jzb2YbT7k1RG;k?tF!Y<5CDteMM(m&Jw zp5%xJ3!CYWhx4Hqr?+HJ`~^uP4fN>WlPtJ2eJ)%37o?2uo38vzQkYTlQWDiOPkd>5 z41f5HbCUjHI4?Wn9M85%tA++@1uo;Uj@e#(NHjx(Lvam*kIp5G4^1gpSLJN8<$8~I6gjmOB=|C7) z@ES!oSMVx$+{|S7@~^X)^`x~?!|++FK>k$0j8v9O%Y>RkMQzub@qS+ZMR_&8Orjio6k2iI190*i|z%}Eymz`g+DU{LahnMC+TSCj6)7eB?;6c(zMkyrGgQ}D} zztbO!;Md9_FS~$J!1hhO>MUeSC>T9xK?FarZh8Y1Ve^lmr@F69Z_i$$2w=@@9S|D* z3`ucs4rOnRsmP~X+L6ZIqgXCB5x>A0Yy}J1EE!!nmF=PkE;e}FQb7=^h%&Wn987#9 zLS`$r|LTkgrFwxQPRpxwha2c3BI$pG%d{fD?)*e!*F89P<>;o@z?(#R>KZLZKdl1C zuQ2%%5lI{z{WLU^_-PHkIiisGY2`@ir-HJ`9x9YgKlKJ5*c6bg);|67({*^~#f8mT zCn|$buv!tx&b#Sst%A`HO4e6u%X0q#{)$`9L?8HPZ#nC*(fo$eBjStTBQzi z{yqM)CkmUW=;$s2$`sJxkQwu@Ntd3mL)>&<_BqsOio1 zn&CWe%k+-=N8lP;rq^U2Q8bzLZ&kS=d}-%kcwsGeftI4bog+lGpV8k0&CQiy3PJSXN4&m%k-cMow8>^h!!O+(1DhESYU9Jw7?Kr2Q4rt%Iuu_SRh3$&_7CA zpg%=(Tfp*Q6wK*)lO#5emZJ@3Q?d(yJDj9*8v)3o5frj$gbpBpFoMz+(+J++%29=r z)!Jx;nwtw-vdvT~G=ew&zRiUb`PS&dNR^0biMCOSCHR4sGah3{JSc-9%KEzvafp_p zA+Bs_IM{L-v=!kDPiAGb9JO_kYU_s777pcWk7%`dQn$b=`VU|VF`geXG^8*wHRK6S zWeNmC98RVaqKSuMh*T;f#qjEd=_qWcM)Plz3a6+DXzUru(Bldzf-trY2tl<9m#GNQ z06Ih_7?bj7Y2*RXc)VQurPP#WVwBL-0q`0wt9hmgjs@xKC0W{t*v#*t`aNIgo?&|$ucCcXB%Xt{^sp8Fk$MqgoHD0n>!jqv_C zSVJ5`O}iW%qD4~)jh%}sF~m2}iujojCcsq8;)*GSaDAi>tuAthEQvy-D=iO>7m8R{Ha=F zQrH8On;)t3n|R`*!+q8S#@@*kAES%H2wEM-XDw|Xqw>cNi21g;6dyaFCw?qHQ9L_@ z_q`7DPo>Q4#Y_GHk&)?zomG5yFV^CPg5^C2Jg&`R-0pyflIaqN16o&(A7)e*{-#gh z2FE8tB;4TGDSqJw$IcjeiuetYWyTGTw?oCjjU>Kp`MAtj1RDtgmy3NADt9zK3N>~# zK7v%W*wN^)PmtXMf80A70z!5)L|Hzj14Z&Zf1CINxsD3?kUbGQ4~TvT(V zC16Xc2OoJfB~S-%Ox_q8&D*ptY_8vq5qm#v`N)h`jQ71cH-KFhSl9_bLP+zZ@sS_3 zfx}vBQj;2ih^~*kZJ7tVI7UlNHUzb2o5Gj$8nJ?W8t=S5C_<|WD?o7eO{=RXTJ}I= z4>XC4Q z=rgx#2k?~31&O?V`@*MK55h(6GGqw|&2Ugb`00|_(Y$Ze%xZl9*0vFRez!u#ogE4@ z|NklRXUaF%dS>OxIG)t8uzDzE0_zyD-O}**&`6$^RmcLDA zE{LH=;V<+OI3$HTb6K&59}5)W$ITau+Kb?i+m8i=_^~Lue^jlLysQ*Qq3=f%W-YJoi6Sr?5kU7)tqt;W{M*0%bz(MPu&Hb@&U%N@IA_ z_?dY;A**mijxQGT?wrNaW2NxX%?{JkIGk>dE^gGLu)4;|NHe5wUJ($wB|^oJJ75*! zj2$pNj;KY92e2>(A<++x^}+r)#Qm|AtvEuxAv={6?p1$cd1#a7Oy_8v@5Gpi`X6VVw24ZPy?s2 zx$rSpY%NHA{5Bc&XOwyR$A)5taWah=>catgI;anM47vc?EsiPSG3ZP%wwUZO|5(2! z$v>t7m^cX?qBld^W&W}Mq|&vv5dia#8IwytVKZ%QR413Gl44K-4$61`%@Gquhps%P z!N8f!L#WGyBOY1~!L-;78W$PIw;%J=;@_kXti;DnF73$IPAi?lR#P&VwORqo7?D}L zr4~s*KIj0u&jyAG$QLLWEU8rj@;MDQfghh)I)t63u!6Jk79ThdRz@GuiXai!Ti`12 zSVbJqnN^z0zI6bJ%pH)}v8c3fPrsdYB^d*u*nIg?X+{kIRO!r*1!sYWr@?`oJ|Iq_JY_l)=a4U{ zz&M8-x+VVa4Aa;LEA#7HcBsfcBgD&hcuGeb>=#mm>zI_EMG21G>d-jFqKU}pM45=J zmIw%eHJ&(b7i*DFDZZ#gjCmwfCZK?Xi`JiOlT2j&M45@qAb=3@MHrXuqb zWh%0Roo19JXJy`Wb!mNmd0DRpe<~yv^?9sh;o9S zqGCAnMKLN5#>?Q@_VTUEOFI~BjROa>DR(5w$n71p8nY=6C92TRBeV)bKMy2Y6QKEI zqKt=tXUnwTjzk$I6r@EURU>VM37y4bBRrFJXpAygX}|waNibgFBvNo|>3p3CE+Zzy zc&3|Qf@I?G)Fny>r}WQBi(EfK%R3*M+8l-!F{2aLS6ed56+lr#z<7nr-EK*`CE)c8 zs7&S)YE@`r3hKfd8gi~6cb2X;*j_4vWsIH57&~b- zy5o+!N++% z*ipkmg>P@!J3flSFBiG=Wp|g3V87F1F%}b_j#V)t0s!iT9R1 z#A?(bPHP*^<0Xlzbz}%T3jUrcg*!-_N)MQsb$GYUrC!#E;#;23td8`A7PK0>WNsa6 zkZ~2%(OiLytm@=;qdI(V@3PL$iUyWYuo%hXF}-3E>sVu~5}jz1&z}H?FfK1OB8^8w zc+HCKr9c~9U8VZAXuscYL&3k~9$b)@cTV^6}1x1NW zXDYO>{bW;T$bR;ZIKtx$)eSyt$gtgO(B)}s}=QL=-8JGBCkMJs4z(F&q1 z!U|ejEGsyR2ka@`rbAoVNFS97t>DCmY~%tRAFZ&qal48Ts>hd-1Ctr%A-CCRs&v~X zWrIz$8f}1y$Z}8=CL*7u^{A+QR8cQUMY+V{!b(K$1uKX|q+lYHqcO3RV=r#116nDJ zPpJ?%o!L51u=G`f z^`Y>n4*y{wGnf|Rq|+xwCO$O;EAcs%A_%`S0Ra=A8UiScZUR&jdVxMfDsaO2=8@36CN6Oq|{*BZIXaD>UztNQ`P2x z-p(H_ZOnE#v4q|Li0Ex%y}DU^^Rdzy>>ve4wdK81+K?Ti#i+J}DfUT8vENVIyg786 z73e**&3A#=Z;b8S0l#Hurlg4db)HBSlNn8YbcVQ>oY5|P4yo3ZU=I#vi_IGnr2#Pe zHa}5j-{wN0xc-({*Y3oahpj1!$yTE!WQj^YbG57s?l?I*owcTDIIK3WONQ0Xb%Vp| zy0!j%GpDW`R&ywtTqGE>UvLx>U(3++)a z;ZTEyVC&n8_*-?Qza59aXG%A@Qc@uTcGOJdB{##B{K02S8$>ing)r^$Poe*0!Y?ae zAad{Z_`q)io147U;FNjK2Ul% z1ksQh);Oz(!>Z}q!2SUm6QbLx7XRB)mrUJ=ysG(%vi`CYnNfyie9Uia+k4>Nm8Wj$ z5*1GaL6!qxdV8g438uGKiC>uBUX_aJ?daD_Ms(Sa++)?|q~g2nzpOx&H4*ew*;izd^1i=i}0`Y#(7E!@rjwZ=N4dN)_Ycr=V@0 zlpbdPCUtn##5g9+g3m?2lq#dWcYRtqiT&3OYMxJ(5z{NQ2D+Jgm*PAh_$6GdKM_|w zgZ<$E!Eh!}z;I@O(TTmuBUr68kTMYE!boCVnq-tgYl4hiacR&6YL9}CTRs6_c4*-M zS{vV?tC1Gu1RT}V#UV@rnxWyya`-O{M^aE3j@$xORyYy>RXB2z;4kpX#!k;o0djgc zavRZvx?S=0$kKuQ)vrt6WHYGjxENSl)qNW)p~biufHy;rpY`_B5pZ<3vMo2I$!yCl z6dU(}H$Y7=+p-q4huM}%X(BdL#QU5`_&Z@x%OPbf)C5^ES)(;hj0ws23CU>kYAO{~ z92qa4^<8O%!FJMe(92-9kCvcHcBb)0Ka`HwVFjBMi;cRiLD|5@ymm}%d5s@Sd%Dci zX?*lAr7PIGlsb-g1)q4c*m+uvy!bb`LGnFCL=#-0 zCisJxVC(M?*0m&7QBL54I@AOcjdOyYN|O`BN%(uFG_L&2)zaRESug#rO!p+#ARROw z>{~*SO=$@#vOzi@{{j*Xn>y$1XtP3R}TF3vF=x&BDI?IG!-*nBz`V)(& zmvV(%fx8AH`N^M3NAb)EceKvl)?S60mL6=cm_slc;nd0-(ElsAd&Oy{m!ohIPkXhJ zmo1~M07a+>@Dfpsiv<`nMFhBfdqwvggKctvPncXU%1D>{WKL@_;P@oy02f^QXcew5 z_JSS*-O)J6cf`9}x?mKMq2Hb9a%0AUve=kul&y`Kvp8q^^b{Q$2b85z?#ArDR0d&m z9T3UZW9}Ti81b)X?sWG3U%;;u?d}r-e?zpp4Xad-xS^AOUR8Iq5U4m7*8X!;6n((4 z$m&s4MDQFHJ>H!?*wb^c0Pa3ivt;WsvuCFTJYYu~TlsNl7f>w(~ zxiN%aNpUCNx#!mu89|-|ghaRlMpr!kKA@glmk*$r*1FtR58Wgw<*w_lGp-Z=6VFu| z;`M+siXj}w@Ys0W0#ZQ?#Bv^BhHGk#83sW_`-D4b?X%p;S^VYy7G&zs);e$(l}wC_ zIv|oYYq`hh#pq6V)B<-nMDfubH2&xgS_z_}JG}MhsK|Qz+f`z8)^ATR8qk+E*Jn7i(*~I$iF% zV&;t$qa7ZE_CcB0*)Fg#RYT}JQS1^fEQe5a5PDU8H6pH|XsD|@sIKmzx)P7M+$wd& zZq)F^zHsf4z7>u7*0#`?$M=@I)iW+qO0_jSN^wCyO4OHZqP8giZ>IY#SHwjq=V@;x zrL+H1L=^Ts74{MlcE=x$GRRC+Q+DGs^?78LJC~iIgscP1t_H+$@W}>1_Z%S1i759~R_BfuR;_?Jgt1oqT2!VjN1v2djE)a^3t6i}nUpvMV%l9;Px8SXE z-8PQa`X;}DT;Ft{gm8V+wt?mCuAU97`QNs_v6Qm3nY*_xsF?4`8c~7%hw2Tl6%KCh z{*_IpB3MJqELtr3fjPMWuiDbR&4DnOEeQoXy_I`_4lBf}W3AAVrCEtsR=UGHMV;{_ z-5GJKO4lRgD7LmsusRR!Ri74O;$F2}{KCCzIjCE_4^8)~coe%r!{SS@Yc)QbT9AO1 zrs#+G3wz`Rb&&N!f;z~00if}TnL~p30r)3)kX4kBgRG*i7|%ytN{~;?z+ZS`rpvV+ z4uq4RZR+U4;TA0gfN$DY4F>bg{oOspGdaL=k zuqhHx3#WeEHj?ij>i#q$JrkA;`F%Z2Sbg{v9F~GwG*dHiigY?-HdH7z!tvn-{PI8; zY%ULXH~u>ct&_=*j&SF*I#d{;(AZ9*gbpUPGsOz3vzd^|_l$Hu%7#!BJg3mvZi9gq zig;`oK01d^cHxRy-6)j5#Ti?phtQvVY#83HmBUc|grtNJ!$omt@Fwxh&nIKtH`s<4 zJZ8Iltos7nOl5SvZtEMu?MBwjp>HKbpyxPjH`Q zhbaoiG!JCT6SdD~$`~sim3@zb!D>Yvm3_wsn>uy$0Ct7K3X;YpzGDVF1o8*12oiB! z%7nfy4zNZyB<_gy7>m7>DI=r-fi4V78^bavEXtkUP{v|g&>D+NdPBvfi=$p}fgQud z6EOM=cy(kQ16#g`ji!*uW4Pimlh#-~h6i}K9rfEI;R8K34)MHSv3oFEOM#KiO2uX? zt+Cjw46u3JQIAbo>16cyYbga3HI4gV{=u&!)oCEU(R$wWIL-*x{?!Pey zV%M$AzbUC!k+q?;aR;$)k^42)n-+^JkqLoI5yG?GCE zumHvqjXMOOI=r|TIEg@m#>oma=*4*IZGxwv+=KQ%k`LbqZR{Sv`f+{gkdZe*PZxRL!l6hhOVAONW$i0O_PRUHP_nuty4U3 z0orIxT+kN!j%qAJ-_aBXH@;P%27MY7?Uyxbez$srhb zn&I)9IgNSU-`!nUo`YvrIG*{0CoCn3Lh{7Kg4S4@o|Jf+p2SUgV}bA|bp&)?qjET? z^IwA%Q}M7z;8EOZjiqN#qt(HHs&NA!z`>VpqP2L)VVP{3bCt9j2#UZes1pOLWsPNE zwTzOm0;>;#Dn$I9U)?N6MU36tACCGHjct9Wj4!*_oy0Wi7)cck6CFuwnAMS-#TQn& zi*;!9eCtg1`?LiZPIVHgzsB85Cn95_;$5MyC_Y%ApALw!bz1AbOD~qH5@))vYk~(z zd9??nrqHjihVwDjME7gb!PJx5n)Er9;k39`0^SCZyN`QU1pmjwaPu00rQms#@9uP` zn5<*<>Q6mE3*vNWPfEh_ zr}@xq%;zkm_2^Xd!m(HaQi=F{OEn;yzyss+8V~fUJdj3smDWDXtMuY&-c-Kl`@t2; zmuzw`H`op;k#)lS5n7C+>W(IS{}y+59Rd9a9~^p~A_zY+0pY+__rG)m%W;lN$6+Ta zB6`moQYFq&@r=!T$OxrAYzaKkXS7z?MkobJwNehxgB>&2uT&Il+Bb2YNzBz$cdCBI zul)G^?nWWt8;BRd;zPhc|A2dl4lkr44Nwox{n$hWq~Q^|xJ(%>q>{=9yUgq+y7%Ay zkb8&8de|7NEJT;4(*3*8YIOg#`Tl+8xTezmC(vq4PmSR*FNazy6azux{l*Bs{dt&* zMoFg$2jcbu*Vd$?0iNx_-7_H~;az=IABNx)k|6e_v}uF$Tp%j1J~1*;ml->g(3a>-nzpRYq!&YHD(}13o$q3& zHDUAxVUo0?hKftcJNLO4@gEEWTrji-p%5(beHeSbGtQ&GP0y2Rj0M+NY+DN zSy|GXawrTArcJWK45n>?EO93@GfNJpnUn`Jwl_mS>XF+odDY#TX~i(FHsGU&%xcDlQfOSRX@H1- z`8AkZv|>xbHrYXs3Z_|&*|@aEPZi@K;?a#{s&xcx9z?43Hp&z|4v)6pEQ-m#vn9{X zsI}1buWXoPs@6+m4^T8K6uBciOh4Y8Ex%C*!}j*~e9g@**_ftg_fR^pS5~JhHi81h z!E+S(=Io%znCj9t&(M7J>W~%zu!P4{*Jpwarn){CzcAJHImimBuIR5tY6lNSK=4o= z%dGa6du6Cd;fHUz&oeUz-~$l_D^hrsv;+V!Qh3kbPTjQPC2zUo#8cqoSak{TPYaIc4Ll=3*JR*f&^SQ=BT*fzZ~@#eFSto2^we`hV1rJSmg4I;_@1; zvA8@F;PS4c9=QOz#s%YbS12rUxum%KL2E27mjYa(bBRk~J#qnbjSF7V&!Di#B|TR~ zQfZCFB|R6SHsU?E^4eeAknimUgazyhenvCZC3?qgW%@as6npYx( ziOu0{fA%#?i4ny#n)fU1Onl;qS^zlMy@i$1CWvU>Mx)Q)2nB%1xq#2JR<&qos zyL07@`@IAZZ`>2QDkQb@FVe+Z_eXQ(t@~I0gs!^D|MFj?i0QWKz^5jxQV`ME=^x{8_qK>2TSW(nz zv>2nPdLwlJ0o55a=>$%BY7dGa9Q&wq%6h*8b#4vve} zO3mcXtrD$9AFtO;`FI0bg+2~P{4+dxcr@GT2UF>A-K;?)?RzVD=Iboch4AT#>CNOl_nDLqde2m=l}`6r2->0ULtI&fku)(d z_N0~I%Kh@fSrrABE+!ZYqm_-Tc>ZOu%~Tj1jnG(kD`VYFtI=3b1&sAHtwLixVKu{P ztV4EV?IOk!?1Zs2c9ya9Vi=anuSR>S80-QS!3rFHMvH}^A_O2mK5NQs9mTTEZ^|}T zDJt6L7pqZD+f;6@+a}iPW9m_Y3(aISP!rYG#}p`SrHTeNY)-loL<8gb`*9vO%caF& zw0>s8=JEppb_Df-fG(jB_CEkwW(`5eMVg>uM)jMMc;Hw$Vo_OTJkYpHcdx0nJa-su zp^b6Zjju*U8O`NLFppMZm;r-wQ_TF z8NIogQm~>7yP-iM8n~BMW0Ya1WZ?AP=RqbBya5gvWdIHsWq`jJ4t%>gUk=d*_Kt(( z$#5jkOOh@zMPon^q?G|dO>B%X%ma;y{-J5i>L1SH%4wcnIyA3cJ+7GixD3`15x`g;1|~OB!$8sF)f`n`3v~j^*wQ+@Za>cVjcbherf}FA6-)m zj)Es9R;mczhglmnY4L>_o|9~njiwA+8{_!i*03xaM{ChhF&^e?Asw}hR%6uK!%yai zowjaiA!CgJZ(Y!8WM$?I4rZHLwg;N;DiMQu? zo?}&7>h7#E4i#F;L8bz&M%!6|;j9v}I5kk(`4@B5R+?~#qiu`&4Ohp|;)^fCoY z(O!)uws+a#h4E385tKI7;c!idyN6R05SMdKg81TxRxCAD%qr@7vI3#ea$TIeGrNKL zTds^K{tOF$5d^K&%I>Nq^A|=%iBhsd+=>DKJ~}176%f&iimWc5jHXyd9n_C@xB0@@LX7mC}pOwXB<`F+1H(%TJvW643>WtH>|_^d!>qvY2c%dz)XHoBQe@x=X{(KW zJ=54_LR($bzkf`AJSh#h@HfyX@l0!_ex6ONVrwW4ggQhF(J*=S>EO9|TmNb+85Q2M zIwppXUz601r8wZ>O+E)aMv+@NK%0dC#Yl3I1GKjeYK0?1=&<-3=!X+W#f;{7xbRzO zvm+cy(PTLCT|lzJkpfAEBmF{_Z(H$0H~Qmw;b2eg6d6@Zcv54^#P^nVx*(VgATWPhCFl*TtEpzcs#7X1pY< zrgry&vX}!j%Gjmx2|UUVOaB<kXNHo*igvn>+ zwvmH5_>H_?ozh0$yA*7M0yH+*)ZDKY$45~P@(sWVp8ae9Ew*BIBWN+k>;|+EF}v0} zf)%MNrU+taH30!5bs7h2t}P3NfRQ>40c_GQd5th0#=TW=S!*JR)NPb8PB zB2u@V!ifF6xml{(xtD(w%!6?j@Hc$L+Y&@QYOtY=4AVIoW0>y6HZn~2vV-TLa6I26 zJTXQWiYLbCG@dp+De*Kt;kk+mZRA!5yjrZ6)ibcaQ~4~%{aHEg&$JpHH@>ZM+?s8P z%i~-g%TM0y32{Fut*!32Ml}JbI9NKH`N~T4cRUYW|>` zNxl%fnu>x}ig~E-Pp)8tK7+kshX1Xr%kY80iVSk+u^ftpHBKNE#GrP2thaCzu8o|R3`R&MIhsN!wv}&EdoFYn*Z!#j; zQk%>z$|G*{cD#6>zX?y~!RdR7d2cvzAC}^Z>3qf0{_I$*!^Fv$;>LD-<1L;H zwvkF<%~CJWVw|M_VeYLkOKAw!EOmk+;4B3QI7>MZa7XxID1=_OdnW1}Y@@G|emzCT zyl#sX5QF-K7Gq;RTj6QQ%zWY;qA|uVy!Z}yJ5GbQaZ(q`HBLCruc4M*YFQR{E7}4N zD0bzYj^spzS-azAC0_`Ko0azB7j9PC=gSM*^b`wT*p6seTn#RfzUc3sfOTp`6!3C0 zLwu=2K0K7wUC{0V{{-)AixP5QThtZfMLS@Scf{YsguifKyKTFF;HolS z1kTd0@xkqExD<3Om57)LQrh? z!hCs+yOfkbo#^i?=U($69WJhM^AD;+`2WJt$+P(W4W5NXp;+8`?JOqV=NZL)!zb4+ zzkHV`%V3DPXQMNc> zyaRNPc-!;K*H^BY2$(G&RPLo*}!+HIcS%=+!+5+7xjLRuh6k)#DuA+qcP*Qs_Cv|q! zYOn4=8~1x2~1$iqL{VX%Mawl;~9`>Zc^R!ecu!d0=fH#xkz=-h= zaIMUj8Pf){-Gn;10UUy9@hzw3opfjIey*0DI2{hG+G@ zr(iG+sIz)kY_Riod+ub>9f%tv=PDiK@v|ga6Qts*(m{P$XM60tPOOmw2+yDa4LpM; zrH8j3S4|$nx=>hTRiIc6pfwh&0${cGvB>spoTDDO06O6k&++oB+X1`wXkk+mNa5#b zZl={J#6pXT6`%@jF%_VyRs^3k?myp$(?ms{v~F@_wY{KoD_(V8UWTPqWV~u4^goPO z9Xue1fs7ggQwFV`5VFC4@^98n&PmxN%4r|IhnN*sv3EAf;pY9GN7ys8N#aOb^4)gS zeH3K*vz`ywQCea{QbWFmge$GjpY#02PEkzUJB%MNHHs(i_pET812yMf?$w`Npg_2T zILq^1f*pioT>Ju1#0Jj=t>?>+G_A>3TM+v_xZ%bCm;B6C6Wr ztblkqIG8#_Rz(!!CgJY(R;aDK?2xCv!7?2<7;CFnAa{oKXtjv7@ip;@?N}r&UVgv3$mqzUW_auC@Q24O ztD1|7lM;n-BtF<2%rl5DY|97KDK3|9;0aJOlzVxG5CE>!&^4 zbOc-D)mc1e<2U`svz=|GG_A(pPm8hfo53#cdS>YeHdg9nnZ^pezFhZuzHIWOi1Ll^ zd)6E5xQ&xa#Q(da9GL!1t8te;uJgP->>@2*K5baH=$uHeniECg@gq9G z06(Im!6SoeBd2y_6*>|B77W0Vv4?2zRu9pO#rPF@!LykqQ8KnMLWKY{O!UgUix72h zL@{NY`p2mic-;>n*^zh!av;C^Ga~u64?P*Y;}yB^6*Cjxb;Z-(IM2Vl;z{Lmf1BI@ zXQGR5R_RP8p}?naI`Qa_JmYj$Hj^q)O-MB9D;j5V?0gGmntA{r z=tRIC>e|utPC<z%M=k3p|kof2|Wq1As8ztQ@2f7D=+AaD>NLvg2takXeo(PT}!H&Y}R1QU{L( z;dm?y!2@saYCObwoSIjOtt|7v%J{y4Jg^qwduzy`RYk6H4;)*Dcx+Ggwb2o5 z!<>@;MJgbU#XJA-Jj@zXnnJpbBQlz@X0%iYXEyG_s~Fx%I=qdOx(=;zx@dSmV7)0h z*=Hu!slYFr-Wyy)x>Vvb3JZI&VH5~Q!a-fajD!;a2Xjr(bM{1dhsIgfQeVXZj{M#x zg?)9_HhC4SE-yTbVjhIyBIuL5ItP7HgpU*GriFN5-cfHM+d$iZu6p@&Qe-%kn6th* z<;N>|Z#2#Oy707qOX~2oGm=_{1Aji!+bcoaTPpvD2nB|zpB3COO#Phrg<J8X4m0P>lBk`VCy}NrV?hH$eDoUE4lgB$z3{5COq%&6g4DTk}=K`c@Ha`!(*f zUM~qYhme;b|1$iuxOf|2izlx|1xcCL}&jyG}iC{MT#bEZ| z4cdxWWNkgF1@URv&|g;!`+OO+7OjKAPi4^h{TOc#e!iYJ(zwE}+~V!VC!C6oEc#9~ z%oMt~B7O;7tekW0aj!tk`tzuYU4w)ryWCgJ$m9y56vGJWBL|efhzZB>0kPieuPp{y zm)DK+c8jJY;V|9hl2Lq9NBH>2n;SfF{BoQ(Dxx+>!RN0tYT96{UnyB&e9AY*d)G&| z6Oy(U{}gnE`0K%Tg*7bURk9Z@o#%R!dFs@Anj~mkmCsh_%D+zVdJ<5zx{`~b?(k~p zh84OhhXd-EB5Br7FzpTh1XCoUgrrDBT`}?#4JnR;562{We>4|#72PYBix1Bj^Mq({ zh318}Re0);B{f}jf&7W=8a3g2O&L}B_#aD{3&i3(>SXujId!}lY^|V$Layj4^BJp1 z3DmiSZ_NJtz7c=tvfC^0rpey7i$ZZ&bL|`;4qcbWWKT`mmGOw|pB3XHjmuWE!e>AVLzbnaWoa!p`8c>LN4UHa-(v}b^$fXGZ z^H&Gg*I+ixYh0#mF?aZtFmW56T01e4vjYRKF|DC1tRnB!!Cg6;%At}RT9I;wXZ{&e z^^))9&dcyNHeK=ERJKF>SY9c9BHur!Ze;nqMlf)h`Q7;Pxr^a4KsVy6!E^^4ljz({ zIQ`dAk$mff?CNIEZZgfWy@~hMYaLURKMioT1c5G%Ey`i=gY*>0aMTzjN~kwAlah40 zVQdW((D1R>9|n21^6#>|>-e(PlcM>UF5XBJx*F^%`|`_0ldj>Wu}HiG?Ki-fWid6n zVVcC%R4DPNt7my?p4T)Y?gBY^=M&y+#%UWY4c=+j;11BBc;$6OH=ci!ZzxZ0>iye- znrpi8DJ{G$*cvK?=n*xZ6eSTb&;*{0Ua15U?+@P|(4^;m??~QpRA~XPcE-D%9iwD$ z<&`pN3geqvdYkjLtfUGb|Fk#8JgI!=Z3=C*{J6d4A9TY_?3$?0}8`+4#AP?rOaUsy?{fH#{~JD;!8PR;V@y=*yPc z%-f|em`y>JX7KFAg%@i@n(P>iADIxM&lg97Lx`+dN`ZHK z$npE(e`Zi<#$y@`tjKdq7iX96?&z&$uo2x!w}Z8_%ApM*#Q@+Ev(!H+!%Q}va3FcK z5R8kbb${q$7q7vVP!vq;c)QCK+T!jcg?5(%Y@H1ZQ)oLW7)&`Th4zRI_W2&(0qh8c zMb3x2%M{w%v?fT!br}2(U);Uus26!H<1jz@2n?!tcsn3`%|h>T_6vnaPCqD4m3t6N zS)6_VPFFsy7{@VLm*4vSA%)jm54>4@}s>iR*seOxDK% zgjqYFfmypi%X$}i{rv1WIW!}e35v@C2LXJ?c7outB&ro#=BP&ofG!vqi)FiVPgPE< z8QOE8`-=nTxyB%w&x2)B1kZV7YNTr>C~kfqczB8;$`oD^RIU4LU^`wg$XmY#0IKZW zE+LJ;J5+04tCVS?Jc10X1BvY*2l!@8b~#K>aE<#Z+6oMK4zT0yr69P;J~+fXioHmS zZJ26#Dc2@qq3mi?(`%7amLf!-0c& znqPZhu$r%!A?+Sa(HJ%Po>Ff;R=Xz<4XlkZ$P(WZx9zyhfX`K~b9-BwyL!l!S@oVW zWhTf%QYJ_?7;Uynf{C)Olmmn)RHCd8Erv$+GrRVbi84EaN|cQag@B1N4FQ**mSxpL z8NX`kfe+j9&>2XNxIKn`PCjs~RT8mw)OZqn+RPpoy}LloT2b4Y0na%oePt)s_`@ zNh|E3wP=OMsTH2nt?;n2f}kx@V;b$CDQv|eHTFJbgR!i&A~p6QEk;wk-&5wsGz2R* z_8mpQXc-`2ZcIav97IB?VlU!l0S=fP(-3U7Q+rXZdDts4IhI0cT8+t|#mFk9mrRa1 z5iobvCIkW|$DHsO#_JsdUM9z!2*_YeCvGI#~ z$>f-ZU}IH11S|CPH9do#j+qqS0&h!$J!E5od9f&?mvr=h(OPu$s#*Ru=D}X_YU*KH zjq&vZy{z%Z{5Mb$cTvTF^Sryje72Vi+doUua3MTlH|(kY+e@AT_?T8>|G7x1egn+K z-P6D@22}CxsYVs=p8gB?i!P`>tN0MC&_lNO3VH}08o095>oJ+f#zbaLjYa&>MsFRqh}L3WlilF$!B)^>F{roz zQ06@}49uLaEplbE%@hMur;7?@>QqBO7DsOMHf6gg0*+gNfcDl9EPLz4!rrgmQFPqRF7NrzQsGz^&eHU*^3J!y_v7B9HNqOP z7K_@_8t=e|J+6n(guDfR#fL_R-{!6CVrFmRi-M$al|Oq2d_46krHDF-UFq%3;wU_- z9RPV=PHd`wW08W14#7XYB*w{Nrd!qyzEWk z6@A|tNM1PMQHf(hz~8>so1(+x?De0uz;-T$SMrQm2Wz1)^p{b1A&*OFXyEOx#1I&Z z*Fy+my&VHu{QG*as>Z=)Rh0w&#j+}_uI1-clO49F?!~bu&R2M_D#5Wj=`L>{gS~2# zM4e$c(pwJJM`$%#49_r}p~dJE04Q6mVOU-962-u-2rTdvgNA@C@D#%z6hW{sg-l}T z)ex+%s27W_*y~v?41{p1$F%7 zIA2YEbyI!{U%RG5G|QpzBEe^aI`wI)Y7G>iuPn723DngWjF&bxIRi{r;eLBRfTlk=5&c z_}34?@S-8uSY=38(pU+@7!!p`)O9N8de-rWZ+nm=DB!eUic(pRp^7C7k6rF6?A-QcPW#Kl#a zMioyWq!2=uhCq680wJj{QFLTqs%SWYP_QT~iePg~*^i3ipt9R9Zo%jMwzoog&Xe9w zF7tR_KL2T$G*41oRLvW-31?&zqA@0Md*$n{D=J=5nGd+^jpMZ&_pTmijoXc+1HB5W z>(qaGQwBe*eK!t^xzE4~~^yY`)l6EFj{`e}2yUnGul*i2UH&-iEA^MnW7}Y0!_jTl0RwRkito zH;d43D(R>7<6T~WRZbeEgKaGu9MOUm(qhrpXaNXm-QOxgpp)^7UHpkUF81QmgWh&* zG{wbU49ubqc}Ipoz+Ky%Pzboh)}*s3Ry8EKA759xGJ!vR*gKCeIi*5qaN2?odJ&Aa z%0c_)e*C=`y#s@=xcC_L5-dKpQCKuEz>3&+5Y{F_j?^WH5U`b47HsTTBe9OdyI!!o zM`qA2FEt{~=V=Fd)aoF39D+ulNPocN5ND{Y*m3YUL}--q&yRY)cbT8}vravFr-aA8v@bCL)LimXrPk3wb*PBeu<_+HT9%D&Dxb^wo#SixWQkaK7ih7V*n1x^^qrie0-T^*{dKsErX zK=wD{m%u9j|R4ELEQud;%+gi4+$H?4JGkmS0OVgRr=wN)4WfTMRnE z6LD^ei5rH6cKt0U`V%MNVy&jB$3lQv&(FQ%g3Q3)gBhok(V_r0{tIu1AXw0tk11pB zq$nuNBX(iRi7=R^4JFLgue=L_Tx@n!B2#O~x24~s%t79+d_v!vQBk54hwa!RlF!Kg z#@p3k-#JiDtZx@(^p{(k%d{4@HfvmLfLhE}9YDMmS8S03$fBjz0J)fj&Lav7gaMTl*QkSnOx+`=9qN)`oJ!zPL2X-I#Tv#b}^51Ni6PdE19TxSqMw*`QDe z$G`V>(-CY6R~INW*>DB8^#|{LteDb7+2;J{Eno|1v5+l70P>Di-StDD{Q1ywlbx1X z49bSpj84fWwu(1vV&i7&l5oi`<`?~C2xILpB5$|b#zTcL9vdKC;W1im#hZ_Tow+-M zy-KTb%XEag!`nbb#G7IK!g%vx@CNbGvBMNiZkfc+=F0(cXLE^GqmzA3ss1RP45^Bn zW+kXxQ_HuYlE~#prZN1G&fa z^$dZ4YvPun5O7Vbaj;oWg`G8t(diN+eA`$*N)u(nu=7x@_>`x}1qIUQoEU%Vb9{EJ z4^J2E1uDis>1`Sfo4hJ^t;vfqm4^q&n2K^Y?yBrN$JSFpaj3#H-s*wU+g8(R^tNxJ zi$)cMuuOzWS^9uByI{IzDK=7oRY*dPT4chNeNa z!H5VPKZV|{o@G4UU+&Z2?k@u(bq5ibMzyC-&Wnl?rD}#KpC99^X1Ll7g2hz(`su7a z#lVi;W)M+zk3qqX4Y7~}I4L@$f!Sh^?A! zDu%U+Q15S_8pL-c`&O`1l#q25<2PE23obyws~8#rIy_#*s5)5poqiDlP+rAwqTtAv zYDY1F2VTX{5NsoflK%u15J$erX}*=L4W%ih!>bsbXsPIp(E={8^n`DEWfsQrO=-R) zzO_wBv`)mvUfl%I*yH_-5tIiyp0ygCG+3=hr%)hV08ZeCd-+uOdM<$Bl?-rdypmyA zEmdx^fr-45p>eZ`s9-e_g@zuQo9Q#y3Mzs%V6CUcLPh3^!92T>Z?gkoFuOk#>`je* zBXn4sSn8&TCKgTsZ_sYC-|8k98lmf0(kU=Ba>^!0SB{~PFeq?SB&oc6mhZA*emK~Q zk0gWv-zfvDuDc4tSUi}M9p3n20Wo!uPIyNTFLo(@H zr+;jDdUIb#mzg-kYD!IAmcR&7i5K+gk;XeE56DQ+_Ooh?fuID&dGdrD80Tpweqo%a z*^uyY9@sFbt1pkiDRSepsRaob4pO6Uz*<|?O@yt1n+RJ08n3?O3pQ=UKj*r_KWE?{ z>*|ZByd5jZ)fWWDNRt3AenK&s?a$+jn%2=X)yF#2YE`d_tkGGQX+7*P|#D?`wa{m!CWWF~04c+;QcrJNo(> zY!zvmyacgQl+b7jl|V$vJGizCfhTfBX+aY==1F(}Aa98Ec@ zn+95uGQm^VZUSI4raY#bub1h185)BxDTyC=w;<=~K9M}Tr|$>ziy{2?UT*j-HEn0` zc)0l)^fOqY#_q7cr1S$+h?kTO3{e>c3bKxMGh*kx!KH4cCZxM$$1G!!D9XNqg` zodbM*{+23pSxyyWD1U08uQ@BA(x56Q*;Sb@8|P{R0-!3}40cEJ)WN=%{KDzV(fn5R zpIulfCH4=hccD^mo1vC^cYK&SkoO+uj^tks^%d~#Lw)y|TZZy(!+cq68Mr1|Q0ojPT_$PDMgJKX2Fb2Bqh9py#{;jkEcQ zZ#q@vXGTIAcYk*n36GD2{nl|xN6fgf`|U&3>q=Yeq_)g6L&)uhm%&2=w;RmEL&$?* z2LSBo;ywu>2ASgh(3Qp2hDXQv)`uL7@Be$F5Z~_d#_-!7_B7|cn-?zQtFmfF!pHXf z6IiWbq{qUtQ(bL{BgFuKlhHpS!PVGd;u1%t(H!;Oogni@99)TyHfu$w6)@?Abm-U7Ij z)(9FL&*v{6rcx+79QBunj)&`4ry*94mm30tUl^7)hCN52kBn3q#Llu+hw8mmG6qsOh zUhYr3%0}rbdh&5;M*X=QsVwZLKqjlP~y9*S|iY!_4L^e`Sck@km;tX zphbN8>_XjIIBzHOx(j@f)djkI|Lk8v-bTZCy9K_ilnhZ!S4!21ab(_!Spcv)!#y;!6XF8F+FSYyiC3WYSI#TW`{JVLzq8_&;_`Vx7EjsB`S zsudLJMo~e1{UQVp85GgDAqoaXhS^a};D+H~4FUJomg!Z}M{Afcefjt(e=B%)hY}UB z2~071M#vPSkJe&PqLf$P;LDG5sQji8DnJ2B$K;eHfx6-`cZ7V+-ocSCtJ=H*_uSyS z$=p1GU%kQCn{9RQy*CWshY4R;TMUa0#TPRk8ef}|l!%&=FynDvxQ;qLb{571c-5YN zcC+sY`wx{6-Cww}@iyPF-dBgcO>5DU2i)r0ZGJOCzLRr>R*MjwaS5B}^yFWIo{X>L zd_F=3NI$0pFrsu~;f!Wx>`0`~_unJOGK~IJ9~oxhTX&?4lY+$p#PNL`V1nP6Yduna zW3KH;TfZ|~h9lWkl61icCciNUg31qdX%b^<lY^KL(u9IuzcI9tAo``|ua)ltOP zz&z?QS^_N=Ha4q{l9$o!2H%6ttBLFiR^TYV!< zw$R2IKX%FY?t=kn9<8!G>W)#;qgK&s^r+iMg&8IID4D1clc{j2n@35Px|x!&Tx$0y z=~8=XHM-Q!a2%cop~USU!9iqWfdjgf#sOVw9>^jlZ>@FKkf9fg$@|0uzGvBaDvGq5 zxK;NlEk>U@KT6)J(-3gB#}_AmrU*FO0|MTv(-5pdC2BNr<^Tu0Ri`1?oIpK=s5J(i z5O3Ahqcp9?G@-@Fs@`aMtImmlmpD3vK)_pdPIz2=^bY|qZ`C;wkio=I2zaYbL$Ebo zy=>@gJl?AFQkqudm(yZwymz#`Ri`1?SgDIZPF6{KeXH3$lqRxDt<|Rm+d+#3t7rij z=(;`oGCkW7N_2 z$T7s%aYU&&Cd`NuHzqiu;4ye$f$I+VYrV_Y6bR$HeAyadamcxGIKpkl1P2m)mk(r? z=ir^fF(w2Le3wt-fuof$jTo&o(^#XGv$*vOz9~91I^HWU_y(|> zsEESx5-2`d<=lGE$8{p$e7*RE$lmbT#r^i>$rp!wD-8CCjkxly2f$Dpy-Dl=T8+Mi z-%UOYsu0VQmuNMb{$M!myhJ`I9##pgZ>K~ z(7E6*E^4ccm5bV_vD9CMTU8nx#$V&dqFY&uT98&QYBjOZ=0at{=9G)!!!s0)8lYupJ>nQ0ATMdFq8i5f{Iw+EGm4 zf!ifbDBJj@GTmAuaf*8O4d0_|38g7VY4I85n`tpNXUSNecHFm4N3gL{8EcId4wd(f z2@aLGD?59_cRkx<sHR;JNXiC;~1& zM6-mmX$aN;<1AkK4%k5}#<4+s>ezf_Y*3$gB&a0!OcZW@tuIc!GF+ZhIWk-x3Ti%% z^dYclS3cn8p;1wylth49^4yGC3tdIy-~e{jdTDF`#S+Pbjft5};mg;dlU$?5;af;T z&)eUF#bK{;cp|H2H$uhYr%u;&9!E~sv@tTgtm0|>dj6@nWkK%yqtY;RVYAkz}H zX^q9M(gd0S$#eh-c7g_8R|z=Ji5v0;vrZING|X(TSQXJ4i&cBUs<2HvHpWqpTmU`5 z1^&uQF$rNh1!gDCK!0##Cn$ovcX{4$;9$n$RXCd`R>rT=YHQc^@dUMQrPa9W`Y&H+`tzMSGhjD7 zg9;vmDIQA%l|MN$QKontEJ=#ze-mYj=X(d^E8!UbK^S9>Clq7cv}lZNYEm+4YQh}P zQPC$=*#0Hx48a^v_9W7|aKMNe-ZaXXB>R42T8n)jb38pJ$-du*zBR4JJ#O=G z96EzgA}|mA9Ru^g0R!_I2ehhaov^CbI%~|;i^Z7RvA+K&HkFDZ0|g?XGKUrm+nQ4+ z^Di6tQ*?wK&HazD>qEifP@oaF4FxLCqltx!i$j_I?Tk~JmRQ?pu@DOZ1EF8uImN%2 zZ@=mKXdU0iS=|WKIO8DnZNQB%!NVtfQ8}Xg&Bp#M27ArMS2@&CFh49o`2G%lJhx)` z(uc~IKB9=|OBcdf`fHmnomIYcmXff1sp1srOO>ZkZxwm$2tKh-sP#>aDY`2G19T;g z0lJcC7r0WeT|qChN<_MFZ=OHWV6CVCXex}-7tmt#pjK13yE%A}hJYS4AQUWmkOphB zqq-t_lOK9mAY4h3{zXzgtJJ38#`M zns691dug(a@xUyHX+#N*~<{qK7=wulDJpu+5!QW%FS~!{UQWzIF z2?WJePBEH@MB+hciMYynkW#Q_xX-7^dGt$KjWgV*VHkXG`4~>2zyK#V_=}TU^i(;y zRhw$}+9;kj%pc+$QEk3=h`*&Zt%0aA@T3luC?@bgx7QGCo~6F&rL_{>9s|G2 zDNX72BJg`VEym_7pDF{t8iI{gEgACCSm8+dpfJB}xi+-Wzmz>?otFf12`Y&^u>_m-d zHBR~sriEEnG@lk6sj(NOO_SX;jgr7_iV46z)6`D1AFapPrZ60f;UKgc32-M0EU=@( zUu!2i4+!H_q2;BkZ?i$DJt1EO(+#;c+K=XMo3D4j${m@z@rE2kt~Q9ypZ= z5-2`6hf5r~gb>CrBmDJsA~?^zXUDG< z8Xv}ufpaRQ=oHXDF-=f;T5t-%jZ*Gt|AXwRjka>mUzBtHLaWg^zuDDjq$^=MjHZiY z(patO#JABq!Ee^oPsZKPSNWb!Yhvf=%u$zh)D>MfvV&{*A7P&!C*2cxiMB`+_2(=%0iW z{W~eT7>UQs^4E*CVgc!L#`thLUq8#A!9Juk$@xc=R zr)&hJX?gVoS}dAxj+ns*E$|=L5p1k7q-r%*xS~9xT;kBh-qa;9(MBV%mM_Uf+gh6# z>V9r$l=69t{rN6)>kKQ=Rx>nYCH`7|;6AGsiB=s4GDMhe+b7s#y6tK43)5{+&j_Dx zgJBiYZQqB?v_0@QGi`hP{%_a`st+r*_Btt6DqQ&w@JrxtF7Xd!=LvO^S_{Fn_#7xl zq}C2C^}E^k6c4jBSNPuL{=Vj=88WlBXLU>rAHOE49gCg`Vw+-Sf~ysn_oy;cX5j*` zcv+``11!w~!~90ff|6SCgs;+u5De2B7opCP-k>d!>5Zc^LZ>$bx=e2j5~5t3!4KW& z&rUffiX%Y$z(;{zr6SvG zVlYs^$8qIbr#Orn8yCx!FR;LsFR;LsFZ{JuzFmN@So!kJJFJa~*(n^&B1>#s^n$o@ z(d(2O7roOIc{W3nTP&=ngyXRw1P@&FYCLe!E9@d1LbD4x#D&bh@ljNl(oODyu#5(5 zWnb>45{h{-fdZ0l@p`$xt4;)GJj}y9PKk&aFC39Kp7G~~AcCRd7yc@dAGyDWPDFSN zrd-}CmMNE0loqC3PDs5wQ!eMgR+w@DhY=~4WNR2vSs$tpnS9Yo&|R(jH9r)~w z(sh>X-Q8(5_U_KJ!gRgjG(I1WFSdJ6yYT zKS7K8ZIaD*3Hvg1SnGV^ss z(MeI1gd8whS83$BBfw%6tw;6T9*zYM!2;(AO+Uh2YsM3*mUYxlvj$iu_=RX=HZ`)^ zYQ93y$yW1-D5jP!FM7(KXqe|`^WuH50lP@iuq_{iYs;5bTUI>n&nDxZN*}#PX}$Bb zKZ|K4)--0!Azq2o7zHE(<1|L=WS7EeES3_%en|ld5uCT4Ye=fA~ zSNqS znqR!66w$DF#Sq^5MSpjB98@hg1I=18M1InF$q@BP=Oyq!N?PBlpJv@BxNL)ef}eC2 zCFGONqOKSZmI8x3@u6_|i?1aeTw3c|AJ@s!AGv@eDcpL8??sD$;Di}y0RIttBG{wJ zN0P)bR{-3|Pxe@u!lRG*SF+PWHf-vNIr5RDw@C@qiJrc)|21#G%R9Z|Pcqo&gs2!x z)OVF1d)435_?TZf4$l)t8e;5}T)_`K;r=YLC371~8 zXt5>oj^q9Uv%y^PDd<&Zhq+R|26M|-p72K-IxU!IyYkOY`r~V+5n4*8#UL6#-l9#1 z)ViY55F2S&o`U3vhd^+Q zlMTpEZ^o9yT*H_sDb>Mm1 z=JIb&!{+qa(4eFLHR@g4!R7yg;CVWlfKD{n*blkguaP4R1=_*G%r z#Muj{ZYVAn{}EL(aqiUFS-J54ybX(`J}s`V|Ht2ky$*0eUk?ZvA7I$U&ajzeSp2F$ z6AX)A6aUz`HM6+!9q)p3>;dO^*Pmx@oXg|h^WSWKHCGI3J^0)Y{3)@PL#jtvKZjcJ z(0B29{|fdSl~4pV;w*S|qwVv#FzoD(j^m&GGA5dLJmc?SM$QY#K)uxn40dFe#q-#+ z{!X=pPFGf5G;tDYYr~8U#ZL&9PtN7D&-xox*$DpuX8LR{-@EksOn&67f1=qiGIGZJ0qYm%%p}%9o27!tFo%SXXJWJ*KKJ8G`90>zNsa>o__;)Kw{HE;T@ z{}jtDAwG?^&LSnm*7N@7ui#<@q>|%SW6j{Y75MoFA{y`u!zV@YOGjPFJh##Vv3%_@ zS8cNwi29?y1M5xkAY=l&KM!ka_9(GzTe)i{>W{K2X9ZT2UC2@kmtH1A$FCY4wf1hFAQo=hQDr>@SqvGSP z<0c}xxxPefD$_Uash-07#gB;O7Y?RolNR)qOqP}K<$u69yo^#4OM<)Fl#O5y)6(FI z;I0d09Zf(?Gs@PR&ww~{%M!(ZpESzaItlUCW?4`6T1ZO#O|z`EK!vqMJg?&_n{B>t z(RYow4e-Y1^iOgIDWZC**JbFzO1TF1qYyp31#gg-T`pF|H_zD_8&?LJTRMI zuH3to`SyHkq%kkf=X)nF9!YxWVA)iV72}^;yM$Jpp!d(m2uH?!f*s31Oq015Q1^t{j34@!s{+58Fm9L`y+95))hG-OI8h5o18Oh$^8sh56vefGpR7|> zq;teQNZ;hLp)7|o3641YN^)5z6HsxSI54LyiYIn(Rp(Pu%Ep-;K|V18K{alfw6-AS z%(`Xs*uc<~KdDNrQ+~=B9+Lxqcy4 z&T?pVaIXLPw3$GRXDQ}*df6X3J7H%s3oB4E#=w>e=aP~2%U&|gEeq_k@NlOCh*|h( zxCwYk!?IoM8QLP8fcKG-paab*zqe6YvdNB;N;&+L@Y5A|QNpC^>`hu17~pUWg0Ufq zkIC6umEY2|tZIl+LL&>KL^hAgD%)-zUBGu{fdgsPXqF30$5!B%pQ&DvH_ryY_+bIR zGaF`*pQs4d`2QWTkIP)B#{b8EX&cE;u(dgNBnad_#1RnYfUDl3UiE z)mccolEtppLef_<7V-;uWy^>YSUeUsD{JHAvGKbG75E3uV1g`I$on)0KAl4IX;1jL zdIy@7HLNIdW3QYDo}80cmmlhUwi4g^w5v*-*psWF!jj;f7G?c(32alH0wqo%#*zfS z^Z&8;-ceE%+vB+1yW~c464(GsP}1Z;20=tw3FbhUC@e@&qD*3E2@6XOB`gSt%J`bj#1>ezMG$nD2-id5j_NW+^ukZN5+rQ%zUkWF1fQ>0TE1*8EtOQ&&( z%KKjH7BZ*$Ty=~>&NKquL+gc8WY;aBo=5=`IY}qr>sIhN>iS1fLx{6!KY)*)=n+~k zRv%BM^bCch8snk5Z1#=OSRa?DXf((kR45=WOcH)4%X+~SSdH;)3Jg&>iBnl^e7RI6 zw)PG^EJ}SaF|6;n<>t^TsXs1OdL?Jy&}^~Kc-|`&R~R~t9Ii3GF*(pZl$B91bUg2t zpq@_5A*v>Gs%}hA70l3fCb53LdMM$QrH%}NJKo2)LUJ0#M6xXKbU(;rX5wO%e0$}G z+UnQ<#v|Ln`}v{yVstzid0WV$ZimU}wc8-W-=5M=&X_utiKlkN6yy zP6jkazU{xWks2#?VU+YuO|^gSk!J>k=9c4;G-m*hJTMT#&KXQ1^T^Yv1ljG7L7_9! zcc_keBvM3-Q-r{|B3`{cv`e~#0hxd{+!0zNWllh*uNcv+JHhZS$pWf%S12LWCEZ7d z8q=~4m0|p%LZ^{TVG11&amlQ?JJhcn$wbJJ+K&&GoR};slm<3bq6h`P1oG*T>k>cQ z6Dkm;-sly=66X#bH?)=VaWR{g?mdCjd>}MQ2f);6Lu+ZM9)NRj=ngdi6XH={?UB+r z44?=x=iPM;NKQfR<9(Ol{22+6#nfOp+NuE&2YwV3rywn-+R!DD>!yF;X@y1XzX* z3$;`OFg}aBZ0IPh#{e>)iJLv48iE=^qpg`-TUfq{H@u;5gpAjL!di>B)M<$8knG{Z zNP$Kc!j7Aad@g9Tb+4=3_!bub%*IcqSCoqEoxA=|i531PQTG*g}qA_(Za>{**q( zIzIByppn9|#Kf^7A*1U&O87$hSVA9!K334jD*9MMAM5C21AT0!k8Sj^lRoxLBu_mO zx@q8C`o{wLSWF+w=wms3tfY_C^zj6Jtf!An^s$vbcF@OecmztSKJ1y~^NbxoV$5h* zg8&A^({)f+wv2NYyG+iyObE3U@BR-({|0>=rH|wEagsjXrjK{%<30NLfId#s$H(+> zmOehEkI(4i3;OtqKE9!kZzqz2lR`IDO3**frx3b{6ME?K2qnKx4m~MWoJ1a<61uT= zg-L+2GCTqW47)T*D~7`y`>&UWJ@Ma1Lph>7m!i$1k5=??1AVlk4-BB)EZg|Ko zcS&ja72a}Pr~uQduOB|xYA-nz4)rOgOPEf2EZtFu^pAvYZlJ&X2J5P?HgUj5{K8d5 zm~EeCo7h{(fI$TN!cNpfC;ErbM+SXdLmz$UqZfS)qTKYSkC}ANx`;k*pfhT%=wlBZ zrtPGU7wDhQ)5m}5<1Bsjp;H>Y=;I;!D4>tU^s#_G`ckl)9*)9uB>g#@KDN`GbPIia zL;w7eKHjHY^E>b;soHw{gz;k@9^n~v{gT@Xo}}e#>Ejjpc!@sDG$gjCk1YCVOdq#U z>if{g9Qx-h`Zz})U(rX@LXEEjeGH+G`{AK{VTcN+mfj>98wRB-0@q2r(V9MIEZcXaSq;XG&yq6ikT+ zl1lu5{$fh(O0~w6=uawfHvM%I)lzr*U^?{DUrdK=IL37N2`!^KEMR%?FI2-9=)*LU z7T!P~LHZa*A55vG^cPd=A^M9cmE~?ssr9Jtm{OVhFr^kImHH|D#dLaonNADtoXGYU z+(GUu3LTUtQF|yG)4&=Wzqwf)KZ!0BS~8(UxECX{K?Cya^iY*tI^r(L95rHeV9BkL z+-W=$g-(MlkX3_xc?w6dqsgEHdmlbBFs7IF~e|U*vwFi%G9r6 z7V`-h5{Z3Cy;&g}sXPnjQ}!g=+BS*ri`a=ufJ3$~V#w9+i}+(!XpblzK}ZSfrazn$ znjyW4iI* z=Zq$Ffmh5MO}<_b+AKA|IA{tf)FESch8jzCa0T0@U|$4nUXP2}BzB$2e4E1etHTvc zcY2CBiPa26}5_a&Ubhc*}XjU zmb4nT%9MC;Xr)`EjkuT*vwAYQyA(#xsQ|m)4P}y}r7+WXKo2Uo5+>_FJhHoU{Tm_I`6?vS~x;f;0*@$+$LM zYp%9zewQZX+l?@0nmC16H-S-3#_uuq$7A*jRqV3`=-H<_HzCXRXVk(nkhkoNnnDtr zLxa?oP0P3I##=*6q@9=>W(8YiE7*!_m|+jx2BXa* zxR_}M0Fs(f8TKahYN}ypBg1|hy=f4R(<95_$nM<{dQSQRBV#OmDzo${u3;)Z`a_or z`Ie{1VgeMXcXSk7DzNDSAsC#jxd_QoKFcu%S_I*w5{T*`213 zA{S=jgO`)yYmN=ufMfW+QSIxyYcj_k$*p<~h-jEu3gQf6r-u3@&g;FmxJa`0d%Antn$%){i`*JT_~Y=ip$XC{jGBoKYLcQ;1z3G<$#>6% zx|VB!iGGJdBL(R^ZjCXUTxA!2Bi#>!IbOoAFkXMfyjGl=o>zIx-}y(${v)A#)eSO( z>HI>dr_^Ms*82e9y%$33)c~4=LdK14p3gN`c`5X8eN}#)%rD5omtZBV8*Y!yyLUz< ziXD*;9QK>*y|0mQ=JT#TO`5&;W!}uM>(6gAK*EmD}dp(qk7_xC`Z`3j*m#@1F zhQ5CTmaM;)**J3|B$40W2-POb-h}0t?=ek`p>v#}bGU*r^s%o!e9h}nD4YKPK(9oa9LT<#6oilV!%aC0DW%&#xYMuz?36dSR&f}VZU4}l{^WD%uu_VNO62>##rG*#| zliR!y$vq7_;pX8QCb!8yhuj(KLzT$2whW835!W+0t;2HK&E&M~gHUTErjDF4XhI_< zxni~~rkM!0)+2=vL&L=5G7pgtVNv}QdYk#7cv9x!B(7mRj6Dmk96KE{XMPQJWYtA8 zd=&Y8cNOyVhp=(%9Dbki^d;u$XUbDw^7wb=YdKK$k3+Q)d!0CY&^l$Wnxc_Txa314sO^gkwd?NYc&od*J4U)80Jc9h-=Ci?3LL8iYadm$kDT* z7Lpmi#n@^WR$No;6ehbr35`RHbmojeD;hn?6?MbhoYV30`=_CgB@b?yQ9f9vd@!zI zlu!FC)KQ!eCeM8a%U_dlH6!^EO!72Fa#wQh^U(E(?k=2eXhTD{TybxDy7k;pwoH{9 z_V_Y1CR@LM1x2w*t`2;a`_h-d%P!0d>utBA5@g@2zY6^; zFllfOa;}##Dw<;;iOR1Ykp*`My^08DU1h9%4^ zZ7Bo((j`OzKQzR0i{=wk~!4E|eN^l(m^(?rK!}Y9{hj1%Xc`KUenrwtL`86~`QnkTyO(mi%#Q2$C_KuLj z7efQoP#Ss34fKd`?>8_8Jui~Y2-`hRRe$^~bc<1{3R@o?r1*E3+c=ELr5=?194b)^ z5q>f6>q{a}GUOde-6{%2^A5u>j^JKsTa{|b$jGU$pKTe*nV%AIM2p0rRxnCxl0ec~RcQd?SSOr0X#rW(zH&ymx7dYv81Ff2k8L zDSNkDM))pC^{&QlZs*iAi*mckMo1Kv2n!;QWQIqH_cQWtl!l=fxuOQklnur;Y)?5` zYb=u-qYU1CpkjESq{t(p$|75T{!4t3k~iY z>Ej@Ewgi3rK_9=-$5{&Y5j>P7T#Bxkp_;|e6f+dX47`|u7BjHo2?dp4A4s^*lGeO+ z)_b$o-=`$7*4aRswa$8b);fz=taawnwDkfI52bu zYZ}nAGwH2*(6_t7BY7sBmL$)lv#Np`G19GJI98dW21)K@$HEhzH4J}HSsW1~=DWfJ zdp$@IF|m#Mzl*IV+4a>KiR^rM`L&XtB4+&fW8}$Z;U&3`(h|00hwJ3#3#I^TJ*JnA zXkb)%WO}KcT$>kOCN0INS<1Hvl_&_ww62kY`UZ82TZ9)#yAd3V@=bvZS%LEHxjXPH zJSE93y3s z{>-FkXQ>S?X8lj|X|Rz!@_`ya(^gv@DY3J}9X8GHo6&n3M9o@zZ;|?7i2 zG*Yc+xS1M2)4Du^wmN<5N_VT!EsITMF2dljFAtX}0)$^I_;!SFw>`$TAds9%*VZIE zmX}(j4>0jmKgi|e9Qs}S3bU2hdWGMSzQV;!8nI@3+e#O3F_Xqu)5x7Sg`4XDNJAnw zNEwC5XUYH;4vFNc0a!LzPw(B4LnEEl?<&-^(gIYcWP>Ew5x)9l?E{f|^NxTmc`zOTbT-$AJ{r}OSr!%_Alh8PZS6_ zqsI`W+(<`1`kTb*Kpx7J=yDWlTElF;yQ7BPLa z#NJ8|dTc5*p$?dx-T`4p%e1BK$=G$JgQZWgfZ6!+3@S-=-U#tD4|}rHzf?rlHWy)e ztNzxo^czCQLuGXOj@FVG*E-v8g=E~M$USNRs#p}{i#fxp*12+y-xuC2h}Xr*?t}A( zqtG!Y6@rNv!=J5a3SDnuKI!()lqL*czu#a2bE_h_mYYTo5q%Y#??Mw^i5Cx<&pimB!n5o*~D zszI~zuq&HVz&rxlgI=S_wI!8Dd&f)|KX$_SB?aT-WZIN)HoA`G8v1^jEz-1n>G|1} z$i*q)YuhoM$yEwl@GBEEd+Tw!+e2Ep+6T-%jA!QVuMPypbXfD#xc&;O17+kCvt}7|g=N_h?rj`0q38X6KPFh^1n1$~y>C)+TC@HBh z$}>JN8LnTdMcpf{it<~^#1+Sxr?*IJ`1$<>khPx4*KD}Dx%jq`0#8sn4HS43>XHhi zaib zbR>AT(3$L?@`olRir%4Je>t)Z=*!kFTBaLBk`9y#1F^P+Iz_AtLXnz@u8YI)&FEWY zY*?;0V??t|a@d|i*)AJ%#71Y;BJGbXx>uTzM#6=% zgdfK5ut7)n<>8;CI4-8jX`v{mNC%V&3TAfxIbIVM|0wA7$~I9fe;uwUOk*;3 zTuCc5^@5#@Prcw01q*5aYDrTvd2M)PHilSG5f=P1o6C%wS0>aF>84*#afPEwY3;I-|z$B{~5XXA0L!B z$(DoRpww(8FsbtMY*c~-5Pb&xT)%Grv*Cf6k{iMC1xlrNI4dg-!*dVEB}!}Xi+T8$ zI*K#>vfVD;H8a)27sR*aR-;51=xhMgX>_*wg)m&{HbzEJq9CE-+ z`nmQdLdy6@pC{(pE%fWk`2AlhzclqevUOJbDmTSx1{!#1ELre!heq^6Qz+40K9h~f z(NJ$0<`(7eq|Gbg<>KC%#_9X-va)t@43NI}{dZUp#Fu6or|*KuQ~o3jdGXb7RD26S zjI#I2Nf4v#efvx@?uU3k6jPT$2`oDprR`X_tPjk_C5mN~iThe&ULCAUs%=L`;I9?o|T3_$46 z9Sz}gPlmTv5#zJi5MFnP*hbb|4BqJ*ZAyoTJsw%r0eMb%79YlspsnzMoidE~%t~u- zLnzf{HbaMr-PtfPbNKj&MqS=0F%MZ*deJ3}M7K{XIurzUbJ6kn9vlRAJhQ?^2K=z1 zJ~{UE@=A%epNBgMiRaIT*9+oFFchPa{i8Cu$2eXH4PSj4UY#NScb0Kzn4SV7d>L+# zA^rp~MzLXG62>StyusBb9!N3k-RX68cW;zpb}`MEVg`f0lIU8x}iUW-WPN^_3N(w&#ztvLIs$mGdVnOHcKzjRNQ3ts!?`{ zh014GaEW3PiR#rNxuWz5Rjz@pHk4_@2regpW@UhFX%fnuw^umDzl?145;if7*I&dc zWHZExNR3ESL2NjOTRyhcdUF&GS;iy^bF{X4k<0Jzi=X+mBX?y;-DuMWl5BsKlCUnu=}PGgd@=44B8N-R;cedIm?evnZeBA-{B3G|h8 zCbeo5)+G;pd8R6vXo}=y%!tF~$6xGg24`5Fg}=onGs#D$$ekIziYt-77M^M;MoY*L zbEM;g6uh_qUWex;n2j$kXaZ9-#Rc#pJfpN$-uMjro>x*?ust!W=r6Xh;&J+mEeous zzu2Vd8v2Wk>etd=AZ@ zU(oJU*lE0VR$G#Dwq1i|&BHFVSy%loPsCm>kvHoaRkF>xTe?JsOCO`A*andLAEFW< zgJpIvm$1#cdHQwm77eAh(#w3xme|;~zV}*$Z;>t{e0(PekS9aPn|Oc5udwNIse9yS zL8>%YkpsV;sYB1mY^eq=R`%~!xiK=bIVg4 zT%yP(0sD8s-`toi*lpaL^q*7ukkkVgE7VFQr2|Cw+(gw|Bex4`SY@N!T^N=v47le) zG6EZGRgG!*lQ;2VV)-Emwy}2XTzO;d!x%Z+SUY+y+E}Z|OWvr9@$rqd!eMe|K;-$v z%L5|&1*rt%qr;Ip3JQ5|?yR|df9-Visv<{r3MO&y?U7l6^dx$NZyIAejkn=qCXgrR zlJ$2+Hmd=sKv3)QHq|w0TTj%wJF-fU-oz~^nmC1vS;KFFu;_K)DgaHx^1j~J(l$&_ z8Su-Mk&Vg%!!lGif}QroX|Y-nlCb14FH_yku8^cw~?0V z0et6=*wg^5h5ms^M`@EDz<&dg)@lICO`hVC@=ju`__ADy?Ib=tPrH*?ft7a>t6=#~ z;sXyxz7oY_^XQN%h|EmhNsJ*_l9V>)qMgK_V;&XZeus;ha6g~NcM_`r*iPbW<|8jC zdzbAbR=ukc)BRlO*b%Xqgodz<9d-krSrlo2HeD;C8mt44b`uM&DLh;!H>J>ll;hEX zqKN<`vUEqW;8I#eyNZ=oA1Vj_W(6MYD^}pgrNXoDldYCRS#|(|Wf=fm%9Pw!?8o9} zTT4BtM2Y%kuu;CX)Zit0-*;oapLi-lgZ2~0aWPZx)cJfru?m2yH%no3HfL1TDpL2!KzF4+vrd>El z8)~ZB$;w9C3CdtuI;I&B?t?nO#+Nn{un((JhH#SO!P6GUFbXyne0IKe-gh5Jjjk#h z%viSNLEHFwdzn>OaAyrraoXPnv--Rrq5{2tB!R=gCgbM% zb!Cz{0`%#xII^wMjQ5d7ybs4TQv*ZGjsecQ&a&h2S&@@f#F-1UJBJk?dyTtC5xkNsryn?tMr5N$-e>KLF>$}*aU^irD3OouKyc1ySD$i_pmcFRQeBBzeZ^)iI_jE?XQ zk2;ZCjnZLYH&1cYDeI1j#xIrruZs8%7>0UwI4QdPO7iZ5w>SzIcrJOf6b>nHsJqmF{|uaRjJ zfquHbHLVBacTL?iLS5A^Scv(kURdq0&{%VAp-%1b3F$y&xggxikztR&8RKCdZ(FF1 zt!)>kjjj5e@vSoYb+QrX-=f1c-TWs^HsE>!rdHFLJeHJG+P$ZJt@EU9@=`^NFVyM}AW}nlySb(tv#UZD~`|pmxGbP~rJ}M}6|wxzb@*2DbmDNIl^#D%B=rO~2@k z=rDldn-9qLf1HyGDd2#YBM*|X-%v1g})@ta@7ZQ-f()Y`1)32$!I6VtOM|Dm7b# zLLghFRfwCEjBV(h%ZPH}RQqSy4c)^jbR)vodXcU(CB&eQazmXu(ve2TA|DI)a9lXh z-HFjKm+!Gi8|d7N{&tt2mCAB?E?>Av>+(^|CUW`2>nC9dPjmdQ)4Ae2SzV8DG|(Ln zc{?&i5VkQXmE$Z+wZLS+JCPrSXOpmLjCfTN*2svLF47ut6iU);55y+R*A{SzVkz*8 zEtEY;H(J*vhhKWT0=eh?$VTZaY6oRqJGJX<#jZE&*mWhcpr5%tS^q(#P`tE=U&8b8 znMh^Q@56{o5*8zDboiF>=OX#SDEOf?#K!(NoQ`yr>S!UV(-*;r*@5b=EhSKU@({%g6noR`=} z`nrjApGN*8NRu(yOysNIU09i{`z&ISVz`d6GJ(ueC zgl&4>xY%F__avpSOmCXhW-ZjI!(3wfmoNcOez+9Lf-70e4v(6p=P(u)Lddg(#Y zI}w#>pZs_ASk_wuQkg5e!v&WhLwowC$XC*XxM_`)zmS{6@PsXPwfi~JT$CnYSaw-W z_}5606voBM^3lMHk$^a133>WrB&G&s-WvD~&e1QzpiDsk(D3)j1T}!hQNPlo^D0>qz<;ru^S2$GWpEx`_$e>F^gBm>IQ@?s?G~XpZF)=Q(wbg_upzaJIwj zHd!1dht*+q+gyH+%WwCa%_g7EX}6nvUSetyEzT+DB{T69E@~(?T&mq9u5^eQ^3K6} z@QyrPqd7-hdnp$71r?g1%tTZu6Nu9vA#C=&;)ZE{nzC@e^~4=&bVJVvg~48pmiY z3*dyIV;oI!j01)m*{{_|+S3wxj?pZs5N67kFKiTuDiBXgxXj`F7c*O+eOKZ#1Lw%8 z9ZiT?%Z#1FD$~@MV}QAeV_DHoB&%*TpNy>xa}a^-Xgm7ny<&%D#{S|?L36%tl!)Dy zk>YyM`*er--IE|He?h!9isGJYJj2ZFc$0Ht1>W0gKxj2nNZx2Tl~{1k%40J9dO(1-heF-G`rk(zujSS+FT~T-D5J79(TU_V-tt40nD^ zJ8*G7#;~Qj$VyxEdErhfoiuAnPskz~#Ib;zz`pqAf)J!|u#3rPp=Xm8j)a`i)xtyy z274Ec)?Rid!Bp;oRMH<*q8`M!A2W(v4j@_;xvtzxN@apBZxFNZ%De=zwTtTwdB}Dy zaUBm?Xj=?DN-$t`Tb*uC&|-rT9#N|xHeYVshrFSMAx&?LZWpZpV$_Gcl>{+z3Te64DSkFo!;e}uT)9&mPU_)u zx{mj*+9@7d&Vm_oiUKZa9j9R3hCgWY2JKc$z-hAE{C2y?XR-wy;3Y9OKm#$JlGA zhFw}UT)AU>med1tjB<7!{Yf1|y`NKe9vF2KtyXBe_q-MQ-Fsr!py;QWV)qrs;j4mt zrmG7_0pY9RJ<SUMGwFj#jpCwc9Lp3^3mMZh^>w*X#DC$ z1}u$NMzbt=P<$l|()IOcN)kK$QAv>I1Di=VV~ZYN2BI#B;9|PykpVA~wd30~RYSm* z@I3NrFlv=H>q3m}u(F>TLbFcNTowZ+l9@>kE&&?l6%P2tCU~yT;CJ)BYFhcI(XQAY zBceY^Z)3XH2I>>2Bo%Q7(!;XJo1Ok8J3k>f#JX}@hI9_$GOPeO0C5UP;lB~hJi%@s=(BwBCCfI4t09)pd@OcW?yOSK&NIF=?+}X8tb=` zoGXqFR0C)l8-JCSK2=BO?DmPNvYt}byC+ln3`~6j)TvFKJfAVLB6d4(8{za$upGbGONC-)$19^y3$Lo z?ka=*Otn@a6=`C{wNRHd8?=m_sJSxQB||i=GENsy$&|I@C}63s2i1}IFNxK_X@e5Y! z125{kqT#|q05LilQjLlY>+Z_)|D#FevCPLH2}ndYN0$rIblje1@6R7eM2M!#=uI;+ zLAmN71ySy0dBVtIR#Q?80?kUUZj@3bhHsDN3*s{}Hr%~DjS;aR^JIz^!11USt~{qI zr%%1shG3S4#aQ<})=buo{^=?hk z525^AgMJ<8i-p(gQkgDq4B6&!ZPwiSah;$b4Tmc%uBUtFTNivwKH4AMOulXk3-X`r zkM0(FQ30fxHqOc98}55>%yek^bo4y|rkepS&9rgr6u5$e(Ypm9K;hEN8=I4G$swj@ z4^r31wNqrRp(M@d63d-!cW!`76n}x64Lol*NgRJJ`kNpv0)CS*MB~$4Wg0OWe$B$& zhok$XHEBS*>w#WIIJha*I%qg>3eRx^PRTe9QX&kzA;EPi2Lg6=|NSpU+lay`jtqOl zNsNca0m#62zZ%8gkVwel|J&oh-8xLi)~|938Kl-KQJ~b0ds~#l8xwwF%ZAkN@on)-cMheuBlg?q|StUreqhzq$$P0BdS~l`y{^9a>cw z&Tz7?OzHN~BV>CGkhPhyCYh}Z_%rhO=BNLNs~0jEj(a3r@5yz84))QFxl7OcOx2$;3Uy(LezG;!L!8 zC0MMXq$meRIw)UuQKn)JX@QkMp4jnCv|$G6cy5)H*!@j3H$!+Yi80M_lH*B?s`!fZ zxku5b_;`xlFH5h?#ad-vdFr)3sZEx8l`|6k6h6edxGvdsOJ-)GZ;w^e1*!TPWKV2} z*#ET^E~y?aX0wCvBAI{Vs)K3>%^2~^BsB;t+g#t_x_w&`bN&~-R*>3Z+?vkfYdr)s z;v3|Yr1+QU1*6%)1;0jjOZ{~7nBs02m8T^FMx>+9Dg%)dqF3Q`aOYNr8(3cTmX z2zWA#OHgw=E=7Nr!f7x{Mi^V@V+7nRHL6{~AQyh~g;jatiZuqKCqhXv=mM8O9U#SB z;Kje9_lx3Q85`~oc40)UKUld&+aD}hW6&Syv&J(*{kk%?b5hwZFC#p?Mw=17j~PYL zi?pr~TP*$zd>9=-Zz*f*M~(qTiQOy4eitjPH68`FO99zeDKpjTxxFZ%sUR7vj4&TRegI#3AF&Cb3en#}mdOV~DJ$t{ejo z8SL)OE@VN+#U1G_oPEVXPZ&oKe+mX~c5I611rVbMGBOFGiXe!?PDF^uJCd4JBX!W4 zWQ!;MmMD^VGdFf;rZgW|PKFUp3NZ01%{NSy2|{evDt1p+&=U-peNH#*)ppq29=F%; zHG3@@N%g5>^c12L<01&aRv2 z{s862?(q4%W`_lici3z}m&@w$2VG95J>U%3To%$}{v6SEH927~SkPm3TRcIB6%KrvV7p|%k+_gS4hdQ5TP1(FVwRk8+O(5eGiNx- zf}XKv?H!Kx=8-)+JTkahINUa;naAe{z-a(z8uVdv2fVP~*%Sy`{J><;<4cTtaR%^I z&WST(?tQXeVnOGU*+Mj}W?aE$&}QEO_YTeP->Y}Oq2-umK>fBSy}bO*2Di;2El1C( z2iBREE0QZNZ$V5y$0}s|9Cin6QT5opKD*84@_8+=)7xqbcr0c+m}x@zo&f(gFif-A z?Y5g?7r4h`0yFS9tv;{A<}$my4kApLDSKL$$>DZ-%pSYP67<+?UWYpXxPw;MHg0wX ztYlo1l6tbEmD9AFcm{#dmDlv~bF)q4uR*bD*_Cju8CW>?Oulk%1kDQos9F-=&~}lMaZ`L%wC7x>aaNj z4%pD^@pyazKLiVp-DMA$OqA({iJX__Y=rQVwq>X6Wa*psQ71EzAMcM{m*e)@eP%br zEKdNUpwkbm`0Z9W@Z|{F9cG_3kz0G_n9Qb5pEY1Io50z85KC+jDV;t)$lT?2*gOeg z%*n$-mdR!h_yU$-!0Q1{Ky^X83ouzgGr?ehM^n=mOScGF=^G`U!E-EG?zByk+%HeK z$R&TQbz8RsIhjA;_5{pcdobW~*enoa;wcn&SNx#M?(+kYw11}>l?V3?PyBw|vSY`{drtgf3SplyZ_V@XGCacW` z$0xv#EG~~J2;G6h;k3(fGhp%t0v`Ambh&LFi^J^?K!@h{+ucEk^RC3%Lu9p(?eJLP zAgs>;9azxj_gFmvi_;TudZ5!V`OHD?iM%6orf=3pj*pMs21hv3HtQp`DnDi-V7Z)0XLkp za>I#Uj~$|m3wFp;O*TxNIkjw)(8T5dLxf0c@%n780PyRygEK*Baoerr$W7!r-j9{r zc8?jvoaGCqYnKRZW?G0R5^Iue_d`^$`prHX1spz)+vT?etS)oF1IH}g{>1K1bHE_M z-QhKh)8v8>X)!^B@cErylg|U^l3hMH0;9wVh#)qTg>oCT+Ta*~+vjzHD*b*lM4+IL zzdG!b4G>n+H*MjuqMW8dD?Mj8$f%jIytWn_@-({{G7PuJ>2U@;u#MCTbeKG569fr3 zHR`kRaGsU^sN1sd!OxDZI5|g%rqhnc=Ty5{Ii{&`%5o$|-7JT^ylY0itn@sQU7KSq zd0z%y4)EyndmsSX0)C6f=ZC&5X!BUXO1pb9`2p({F`nWVX9u8@kJ7_S@W` zPn#nUghS@m#PO$QJT7F@oW>7^Yxf0wU{%oLx!gW57^~T44cI+AV?1{9#Ct+^`ep;9 z3yIyHT~4!P?ROCTKPIsn**?GD=Y}N8>4nZI09`U1#Im@YE}P30^thaIxG?+u(0h4+ zDhLFSLV4^Uf49rx_4{mAr#+cwfyKF9R-4=IwFKPYAQng^{cwWI?ef~7GjQ5vJMP{c z`n;_4O)qoD%sJ&W%yLB&d1p;#hm)-k(EJ`hq^VBmp#y;csHHoG9KxU3e)i{S`OzzZJbwVF-X&FIExhtCFD0)%c8_@Tvb_S&pohsW&pA4Z`RO#$sNV-xRP|f{+1% zf13H2C#UaYB|;XYhIYFx7=-lFW`!=#4&wxq7i`}QP6?`_nI-Sf(l_k&k>?J?24>sJ zX<8UN(?kXzj8)IFg0VYXHoM#IaobELFL((gjdn*6tkh&DYfmJ{nNFA8>Tk$jw~Phxy^8v==TLATYYC zn_!t@PC3oOEtDlE%~|PNCF7oZ%uGyw&8|p1ug6-nvsv5Qkdr~00c=_QzM$7+3)n!~ zZcvNGZVJFPARe;2CJZAMc;~~QIsJ(`J~V@@5r$^zHRMpcnJ2wrYI?JBgl9|kW;y8@ z^VrCdzOn1Gy)a^is0a}SJSGS}VTIUEBcC0d&1I5@r9K!x!^q#^r~MwpS(pm(!3h$V z&Fc0#0(P=HK@+mONr}(|E>r>Ig@H@ZWpnxh9<$Ho2itczoixJk+fZM2vT_;@68nd- zeCR{dHf$!x$2?|g>1uCcW9)zn;)N6POfww(a={re7>08>9Ol>;VXv0Gs5 zhX$C2iNo{uYy!Vb)3#Smw_si(UBhyp_Tp!;mN}47I9-s0L&S#>7qDh>`YmSYwJe}n zyVsgH+cP#MGt22VIZS?dxZtdtC+LMljLw8O;cWoB=tm>TrC9W-Ygo7ofwZC0lj zhN>|BciABk47z+UXJiSQp@%0uj>jNjX7h{|s|E6Jx6^I~X?lD<7vwtDpfhL%wOY*1 z#Iy->&Ivi?G#Vh={)`RGv7~L)X{Pf99Z0{wV%4)@Rsa$$$UeZ9AUiU-t$ugF>VpIP zejhjwO|)R@1M(}2)dM*o{PQ}@-hdCL6WjrZ$7h8ZH@O>d!TguQ4QJ8ZPB_YJvbfzA zyUPcYLq0f;=CtsBEGvD3I?ePwvXXR3JM_&kkfuE(pSXeGuu*85wqY`CGt4bo(>4hK8(hjs`qi4&qMfO|3w2?Bn3A^p z;e2ZV#t#-NjDmxHm;tatgobfOfOgK~V5FSx^k3rmw~v88m7^0)&sB~MYDR742+LFE zPubvaT9D}IIWF=+!)ZhRnZ^HS7XP1Fe73lx8Ik=ni?6eQ@Xsv%KePDS1s2T^ z>z`SCy~TrnX7T@-#n-*o?w?uwe`fLZ7ZCoL#ituT($9DQGmHPvEdD>U`2Wn}tCm3i znZ^HS7XP1F{IWHce`fL1FCF|di~r9oKEK27|97+aJ4@zwBD?`dswl0>ce%$o%Mf%}=2 zuDRy6f?4n^SXxqv9RI!UyW)#akjga*+hqJTzY>}D#lB`4N8t*z(aj%kQL!%^<0{D~ zN54JOUwq~XGQ=F|c=wBNXrZ_O-i0T;2v7P}altdRd_qAbKus?VI7QDku+KlgLw~Vv z{k}_ovFpy>qrccu`1k2AIFUonu4o#qOj&~S3ty4rHy-Z2M_5U=xvdVb57y!6>Y~N&hOICb*cKD8nxP1`@4ZiL$a;a>Bi)YWl;|X?=4b3Zsy4Sp?tCLI#TQ9DV@o# zonnP71z+`4d~jdFo+|AU^_v$i5v2z)BF4r$EehvLV{oy;#{QOtqr?Z-k-S!gx9EVD zwkq^XMf#xqTNe(Zpnvv{U#|wG5~!n4T!T~WTgN}7HVmOtR6*F+-L_m`_?RGVMsKjg zun1W#j%@v9Aj@f6c&{KG!N}miTpk(lS-hR}DlTSc@{X({=Jtit)BqY*>hRW|OW!(t z6Amuc=;y14%s>``$_(hixjbB=h@;GU8iDVWeS|D$(zP|oj^(8m=^`eco^e7AHRB}y zj9+2Lr2Cr-Pf3-Y1k7cg0n*4Nv1WVQN;PmXlSZW{$$OT<-f952u<>pwSMS{qt%YOM z?^4O-DMpZ&N)`(YaH?ut|Lto<_mkR4uE4g`fn^_vPyA{xTrG%wpQMKfgGdNBq(ZPW zX5{eN(w5h6OU51@;oruNI^V_*d>yH?)hQ0;q_s*0$^wNnH*W~zVMnv;;gY0U$!>Sy zI%z5vAiGp@GAc>FoQxoS*r(RB)4!BY);1UGkTvzUhNVRa9brn2PT$d5T7iq1k{3Nm z#!aGMDZ@2XaVXvl;vA}4Cl|WauA3OsrLb5O_dH2y892`W_I+q7)gOuP6cGnOU-zNm%XT2z%%kU{&5KegvDKY=Ph zCZADf=S?$v6^<0hk9QTSzF1i8PlN=HI(8Djeo}kZ^b?RdJu{6jX~|wP8X9N4p)OBk z?M;OR_4KQ9`V_9t*0r{zB>IrEM{Bhs)ow2ADp}V z_!4*YE$kpjw;+7n`gYw?c!M+u7c=X-Wj(Rq3ISIIK&=ni(tIuz+&r_TJY14W_0kmG zvrqGqnhjSs7pJV(KXY7dA|+AZ1RjAZjR}ai72Yn0i)3Wz$Z@s#2oJM@sq2{)R2vkB z2AG;3Aq&S8HmTCOz`zW2*<)sqty`7U*E(|KSlv2_<^v1Y2+{#8a~25B4=Qv?M{x1l z{qt`V)|2?{g-dnb?|nyMPwAx2`=8uVxI_KEMsu64PIEhSHD?!pGg8_wNZ6Y5(?3C# zqBM5B(ua2!uF4SVkbyG_RhNxbtGPkZJ=58x6rKG_c4QNwCSs7kVmj*2Jd4Jqs^3J;L8MTJB2^m?#Yxt{Lj2w-$@zo&4q zD8R*{GYW6lg*dK-2>J^z3PPAdbRy?3#2cU+jFhhO{W37s>2P$v#9bTsErUHbXk%u_ z4QWq^V+HWfDC3f(UXwoZ2@h9ehZnXLq%BmaWdV`-$g3j?yGwg;F$-5)HV}V7VOR~I zG5RmA&gj1d)j=XutHWDegp*v1XBI^owAa(u52;Ns)dTzy>(Va5rwY7o#`1G2JRgq? zf2c4d{fOCCr13j0X43c(RI)R4of_cGiTMGk`bH#BHj;sN>9=1|HuzgA5oJu|&RE(_ z$R#~)j5i_lt4hmGhqHAVxs-|{v1@GMN0kNmmJNj-c6;}nWesb#X_2(S{A=V7S*q=W zOaJUcySoWJ)D5GF1qDfC9V9%#QKOZ+l0^R0!kYx?J}ed{*~6j2ev%g#Gs)h!kvteK zyju;RPRjCI8lxkS&L0S1QZ87jd9K^!i5aACYs7R*W5ogzz@yo{aVsC!GG6Yn-$+ z!fpC)E`Q*aeWMpq<=(^;fxcGa*u?Bj=Ni4CvkPx{N*I)sh8=yPQt{n;WkK}cWOP?? zzfDB*nGpw+q`BqD3M3^vka905R?TtA*J|A^6Ga6J&ZK+uV0kth=b}Q_<;A$DQm)G* zT|O^bDy*b}O1Ujh5!7&*rsW(9*lgRu(=Q0ylk&~deyK`<9i0MusgCfu3CI6Mxunrg7@2<#uxL=6H#83Dd)d zU>8wIGSnu6_B3+jr%0W|@xJkw1gYv~WNk3LH$$q8OO%I_sZSzSEbz;l-((I_?~zh=>RTf zy57B++;nezgc?Aju(f(^u?xR+sZZMMMjeH*FVUYdP}pfCY0cQ?eW=nX?2r57y9ME5 zs=|IoXqdu2Nm1DQoAG5|D8zoRtCGy_HSFLB6E`MtiHd$#9uWr{%>{ucZ4ka*rmkKY>W z@oTI{!lrMEr^JV5h*h?7f5MTv;#S3#nB)JDBCW5>q;}m|#c$UgKi!f7@$vllh)i+s zR_$$uN-MV~VUmfc<`ZirTWKPi@`<&HP@HDCfV&blda8#@l17~9u`K?CAf2TOE{nCA zJYbkiA%?#kCk>|RkI*kAiGLcI>+i_SH0Js%)+7Hsm~};br`TXys*l#)mSm4!1ldWr zhOB)pj&HF4^=~)Uv8l|KXRJN8X^pij5T5i&Y^?iN#ph&-_iZya)`_x`?&c`KSpW4z z++9H&xy`sADNcczyeU2|Q=AGg>dQA3b6u5$Nt&ys8@XefcHGnzO8)PbN

TKWwnx zxoc#M$Nxh_1RPL z`$XwoHSDZha;WaYisVQ4%GS~uT({5?&d-3i$)t`e=c>VAdNY^oIuP$H{eU6Z9Ot{+ zNS}l8ht&X@Wco!z8hbwzpHM-nx*Z9M4Z6NK9N#F_#>L8@>!Ty_60z!bGU|o+P&Fu9 zrf-FzXuh8T=*hq(iR{Rj{10|#u^_JKEV=Z0?3@#}KN7u$5Jl1zU@j!&LdH*xqs z@za7d4-1^BU>Po9L#}z-$^CD}UFvuFWbm8uo1{&80G^}qv1)*UeZhSHJR0vP9mD|C za;sA+Ky;TXUUN;!JTh!oxI6j&^>}|0zVH6(YAhPXe|nXQ|4K*k%J-4Z8fpI{O1ZxF zKj19j<@VVps@Z|1?GWA8a?sfOM71^xi_ZDyjFMQ+Y10Q_0(*?NoAi zAR|Ye3hDc9{CS}ZnRY(i{M;p3T^%_V=vU^x7jGp9w^2C#EJ&2UfRzLx?LLUF7lu#> zzHX;GBUdE}rs`SHwa!j5_J?>ry3sjzN7{}B3zwxpIk+Tg7fEr~kU!V@$?5o^^jjVB z_mhPy7PlwgeiRQ%%Rn^herGW%Nj5`{d>kK@ty`6(pfUes>##HN(W0~+VbOL&IkK=Y zI^GT4_h}q989swy!SUtYXfNVo7AcFq@-lLF41i z^r&OO9n+hXOp^W9I^S7jK2E;_CS0Nhq%#M1kMt0%WIf%<5rA{MzmNA3gb_?UY+2NJv8cNim|Q#`e@2*sU}H~3vUPpEZxUAJ z>u5=4&`xa@*%?aGWRY0Td~qI^BvqS~{6Okzb;yf9#y3bCsOm*|rio2ujy^lLjkE(7 zGjG|jlVtxdo~s7X82?>YY5WhQngaXc7dd%dQI={O8QY|Bf)b~1^+&ln<&G`(OT0J9 zZvr^5wSR-ak2EP7fTHTroqxBL2U1xp&&nI_(pq`FUHVp@SpFNV4#Q%6ZtJ2n3r!YMXtkobm0$%B;8MP8r@(DW!Wo%(n_XHHuLmVp zV&e65O+4{Y-J*{0F=${kY1En_{eSdqluhkFS-)%-uzX zHY{qV24H#ShrfE-N*nb6x;H9ns|L_G&>MQhT}JP5GS$im`;OY1R8{JZV@<86a;sA6 z^gZa`P?e0Re751)#zhN-FE}RbNdHAxShsO(m$uvZ_pU2;s61WGCWF^$%Bt@AE#p{h zu-jlTRCl+UXS5Pf3#tIC&PqTyyJ%fy(Yo7sCE#;eWhQt>e3FyAn`q zcUrr@mJ(eSp08>l;A3P`=_U7|k>vau$)SY+50_lZLIByma$)0ysa?^-0(n0-B9WUO zUwAG3J0ghj-Nth{9po>F#W-GA9k_eV!XD(^)R0F z`W~Xy_mwXvlzokK@eaO_uIo;TovxxwFlB?A(*(-9WG*p0-^S+bT=cB;c^c4r^gu5o zj1AHG2qsH{>BrCDOPHPqG_j1O1J~?PJ2o=UKe!p;aqf-Xit3B-B}|43N3%u<4U1+K z_Gp#&$L=eRW-YMzl5{4cSwSkt<)sHV?a`(OHv;9!kd2ezcD;(e5Qb7#(_{x@Wo13U zu|RgPymwK5K^RNn(qspdv~a}Jr|1nKM#0h~2hk*$k@MWUN1Ghn2qpjb_Vfe|zQ^-3yyeQ!Mrj!on=} z^%RSJY0ni~Y&re!3ga)g($9^-#_!!z^}Mv^-lX-j!yl;otqxWC-S2+}6fLbLbYLj8 zA8u9h&2_Tc+7fe7k^YBUucuWV8y3`~O=U-0gS5-=RnZ;aHAG{LTm0=&uqz5;h z>Pl~zMtUg54d&8I>4Fol4lT;9C`2j7H11#a&CU=<1MWX2SoBUsVL?*pX||zVBOd@( zfS-S;s8U6;xDY}B-KMTP1a6RoQiT9C-8F@&E2AK=R~v!{r`OeeT3uav|M_WBS!w!D z(rRMSdFd_OnkJT5WF~R^X9&xg2Xhhg#G<++Z*tKL=^KonEsccF73E1k;$pTm^37gy z*Ay6xqyp@k0ss~EAqy@8sP)-|>(l_6!AKV)4$A4%ZcP0yAL;)55~l$E`IRO#tU10e zw<@Jhe=yP#s**h$-}}5gRAd!|-W(O~zk4DyEE=}or!}6I`>r?|mcwg)DzD}B-(&V^ z`|nYhOWc3M*5|k|i?W)=f$xyjG@WDNTc5uXmQ%1a-S>SdV6fqNgs_={4bpX6PZC1q zwrJ+6aG$p49>patrfzXo`9=5B@iFD}J3%UG-Em)e0{@T;9CbMFaZ%}v_nw$hH01%| ze^dya$=J!^`nr-BElc8ueMV!x??DnTPVXsY)BRoSINEzqk|u{aMXmS$)X5B&iK2qN zB2l5Z+maj^I^9CL=S6Fv9;W$I$P2N3vTe@Y$c1~Rr?JnlOjl=)rEHt?01B4IKFjWw zP{7y@=V26#rK9%+I!b-*c+BlxEAF+%5gvIe}vUWr|KiMX0tqI3c z7ROB#ERCP+NdaSVygLQckK+fD5Jqvl(SB_l&)Cm;&c7j!AG+!|{s zqn5}64+n&vvUie3nw$|hEYozwVI1|t&!w2=K_k;-A^cQ1runu^)5)Z1vXd%blw+D7 zq=2yy{)@3`ev*VRGREMiN?$TzMQnnp6pkD)YK=6uH=V z(&Odn_?z70FuU3?D$WHijJB;_lod6bV~|6r_;|v2{`apG5E?$k9ROl9{adjj&*)|+ zR7Q$enn_u*ki#Fw8>6Y;aa`JeLkz7}@oE#ivrO11gnq48 zj+Mse5*~ehdIv!Oz9}voJD);mSnOQ;v^I7wfBNr^o!wFyE-!X|qHCTXV@|PovOM&6 zWAnU8R?x2;L0SBi4j9MJekmXRfo?0WZ~@D zJy7WEcYs9!ozNLQHT^;_argn_&^b(&L4XL)&(sf{URu?WoSC$!3W}Qj4y5(czCe@8 zORqTpyica={}MHqGf|-#gk@Y*DRb29ptQK>fN_^TMkZ$`#~?>c@x?SIIUxmvhD`Bf z8j}nqL5xfi&IM3y)T|o8tGUb4Yh$ri8&@7PM#IotaJc-5NoE|KaoClbhXlX5KzCyZe5~k}f@)r7dNXKemYZOOY+8PN%D~-J*N` z!4W|knoXT%l?*!?c2HRO#zNlUj^Le47!Twj046OI5h zHsG{50dv$&0Yw1_%@ekU(#Z>EJZ>rShJ!AJsz|8{;y}PRbN)=!f0YlMd4@81~ zK!5ZAb}3+3+5ukG<_1mO52DAnSy>Ch442MD?%^Fb-lyp?#rnS45c-?~8FJ}4#% zAd@ht-{z&5hHe0q^#gn#N5C!y40nLYhFLiP`Wiq00qD^a@YzD)kk11Enhc(ufm0TF z07DyqIz51`=>!&h!LU6D7`J`^nFbirG@w`lrfrTv$&x#&Y$Z9y3{e!l8#}vf7|h%j z3^+nouPXqcwiGwi9|SmQpC=Rs$V_J>gKi5@q;4-Da|7%rKml6qfpEa%@OgrEpEKYL z`YAUB={cPV0Kl57#isVy6{gC*2-5VCK5) z{6>aNSp?A9?ugG1n5j@_mg12D-lYvJ!S4es?J#NF2E1%Yc`X2%gTjr+4u?q5-;*yd z@tO_{cP0Oxd|ol=&kHEvA-~-YFzSw=*JZUi0o2w7KH`f+(zc6d0j#LU7IJ%nE`T2f z>|t-j>vvlrWB_hsAndVuLkuo8J=_royi}hX;D902gneGX-VO(>fFcXr0y-2F%}rY` z+_cQDrR7Xgq`w-;cR0cH~bLLo8%z^4_8p#z{Kpv^W* zFMe|>Xv6QZ+B^Y3)%8L!1nl+@fKbxt2m!+FA|pBg)a~$QQ=f;J=MTC8XVV$<`JHep zfa8We0JRzfkZFh4$}uV{Ppz770e3YU92N?`N^1#3R+EAKL6W?x%0oVEQgz1J9t>t4 zu|os{Owdpy2&m?OArGjdfSd|2u#rHR4D3I-FulI25@43y;G6b<*8@=#@a4U}aM< zx3isxyiq_XB{gE99}d0nIiD*z!)R+eJZaL6VSQlMIH~)K<5RFYNyX0@qvc}S2lo)cfmr1LwOg$Ux3F= zF}Wd51^|5+V9u>}2sL4vSs0ktoXu0G0=BZLRzgaj@td2ZU3s_NTvib|hncfP0qWZm z>ra(+ivwV60BH^RBm$ApYXx|5J1k4QV0`|N+sBc8Ssp6_FY$u{BR(6f{6OCkCjh<& zT%HgBE_+-wAU2agmR$}2Y<5#%U%(R&`y#%O%kG8lA&f%mbMj7iES zb$KyF7SplW0&7L@s#A-dp|I8E^MZdvWVhRbKAI5hURZR%YBlVY%oB_<;BvvV{g7lK zVgmlRJ!k{;bGOX~z|rX?yJo^F(F=ja2ie5tcSDMBKpqC(gK-s*wi0gHEc$Opj6VaPoUHl72r+ig}4 zU_g8AZl@EHtUuriLmIF~AldlcHon{~3I-{kfH)6E?DROoeitBWJ7I+heLB2k5!|u^R2x?fV9Oye8d$j5 z?N&P=-;*Y7Hf54oj!}K&kx12`67x|*Y`JJ9=iXc;LbeEdy)-vLz;H%FHgGWqm}mf0 z)Ws&^9I4NVC@Gv0BkY> z*~w=O(fv#)XpcBN>6M$NfI`9$BRuY~kD`{tcF|3vV-V&WgqQ|5Ev~l-K+Wx*Pzcf; z#0ZKk58&u7z?p~tT)-@3KD4JS$uX*jtr&~VN41mEEyP1ExUZ^x7rV6!b~KmU7KT_x z7mQ(uRQ`Y)cDt~g55cwrvNT_8tk^~?l?^r?5l?!< zshcRaxw&#w;K@16Qnh5vAv0eV+dLObmf=+rw)uullLwzT`Z#g)apLG>;I)Ix2lT%1 z(!nQ=K9pxJCyqW&9DS${rcNAvWLAqOjy{wJE+>vYP8@yYIDR;B^kH<~a^mP?48t-% zarBYn5aPtq$BCm4IB+>}^dTJ=9pll53UO0A}RiP$0_M($(T+SGGyHBM(IOS zs|ME*ZssaLxUv=h5?8jzk2{)?mdPryX^2jYy?0B0!P`D2xU$N7`Foe6K#CMsw#?w7 zgxRWn*O9)Gc^c`~r;KNM>V z8j`wh&R=B5Wnqw z&UmODn!1+xVlY50II9iMfWFy=csi4h(*@r`%R8m}K3>(@BKE-TvH&l}&5WlWuah=& zt1eU$u$rUS>fKxXMAiS4_fr1LWLZmisd!$@z2Id!hR!lOu3E`=cgEc${#?~a@g*!p zTC%usF=~-5f!wj6>SJ*wy2cAa%2T+UPeDP>v1`{qUv=0be58@im0Ak+c4e8Ok8GrY z$uLh0XkJKXaHj`fH;7jI=%fvz)gHJ8-AU1k)u1n0QdMR-(+)3e_~DH`54;x`3Hy9O zuLmA7!#jgvYtS9?GPrPfY-dd`dbMi5kiP1bD%-IU{UTTZ&3bp0;*EE)&Kqd1EG!;+ zT^$zpylxs6^@Yd6Vh+KM*9ev;gW=&+I}1GRqmxzFP!Vl-#{NIY_C)U+cY$lNbQzrN zt8Y|&VzHEKIllz=!#H=pq2|2H8^_DJkyZCtQ8lkn$NMTEvHiZH>J4!mot7d^j7BZ8 zvfvjp&KVq?xcJ>Ab<-EWRpqyc)#!edE2iUSUdrwbGUT1A=amFd0l6LNzN)HBoR0}u z?QZCq42tEo(xJFxU2U28nl8nLCmOcVP?VAnS67`WzOSYbszC{~LWP10RZf}7{TK^| zSExGrZq)|yYuu+C>i6Mh%6}f*NEYpG+D=1JN?5}CQlA}d&TqKM5f08 zCojS+>^t=H-sFIj@_ZI*`^?OT0!|9o@%f;AgG{?fhn6R}%8#lR7YG$F8X#b!bo!DG z1$B9l97UNF?l&H-ypaUBg7v_^NWv`|&6F4DATF^*E5kgV^`=1@m_dbSkOro~H91hR zG%#RK)w|7v7p30t(sdE;h()T|Z>l5Jv^Py7l|F+kMz`0$26LzJrTi{^=3T^I8r9Zl z6+gpsRYm7*3Z`jvCXddEe<=K-!}C$x594{KhUabnUp$Y|;d#f$FSvyE%M5gV`Z8l( z7sEA`uJh_dJ%Vta)Em}ycia)<`;293T^BDqUR@XJ>pHzZKRQ4V!*uLS>R}&_WIeUK z<~V)lAu7sDSR1{Jg|)6SlBYbtES&)|afHRSI49PNBju0k5R)ZhG$}rUd15i`Dcr(h z+9S(YOlvPsCWFnU6c^`&1-1Y2$(*If$&)&hk(TY7n@1AD z@_apF9N@N^h~Z-$;(rq0zRZ1-5Mc6!fp{M{)!l~CGfHsR1yi5v{;K#J*pc#0}aR4!-7FX(H?F`Q5I zHKgV0>1UA6-J(at8JMqL{T?b4x=kc1?3`)K)fJP*K#NJK4a_gAdTtQZ$n)n!Uo%>2 zKX7hzJ$d-DXagYxXFhZnx|Ys0d;XObFzzETP)(&hz6~+ z_u*!~(p;WT=8o*xRzs0lX{srNua}c~=Yt3pL(qk0ksPI*5>N%6db&yPXi^XhR><6- znYG2uY!6Vdf?RiTbf|`)lpMJ@+DGiFM?m^SUr-Xjrr~0-7rvM77X;|svN=9Wc`rLl zxg6iiL<4ac7%N;RWbU`A0nfpnJ}qXqSa;lPNpAd4KCZkIGQly?EoHr9lrv+4`uSE?%t$TZa& znooyCf6o_^K%*=vAk!?$(y)}FlU^!Ts!Lj30WBu!1q+s^7u+J7MS9J>(FZN!GOFOr znpr+t^sDCY8GcM}1h$p|L%W4zc%ve47Epq?(=-Ct7@Y4^l0fpS~2cTR#ryiBI#v+ zCeYsersg`x85F70@`Zs}Y^O6dFpI5lO*RX5nzK0(y{o?EXRTcv!Tm71*rBnDt;cT{ zIoS5;uwAm{VUMMZELj|d(u$frPU+jmd>6qrnQywsNniU&bdm)i)_8B&A-ds?7~>t@ zR;R+Ew+&LEzB2hU2K{RpYv^r=8)g!wMSGnQb;mUq;CRDk9XF;JK0>1( z;0C?$VVTnoU+CDOxPq5{a~iSxtx%6(+_YFpj+^|%|6rL{dBb2@&T0?uD&G;>S}3XYk60&8hLzPw6DeTxh!Ng=9f%- zqneobpNX!r96+=x%rBWXl%+LVo~#B9{V?HDR4s0?p@tT!HDq2@Mo&cpvnu*0sqRXp))HE zq$^*FdIg3Alb-lew5I?FjnJ8=4MRaqmumPeOcR`R}ZB3OpIVTs_mchrgCiFf|IATl3sxrq?4fG;R|#OLG#_e>$D05=tJDF+xk^8P&;+pCGLVW# zQ-xgi-wf3kid`TE(KXczU**-3rZ7E!eWBu%*e~J; z6Vh5eQdaj4cP38;e$}B*zo+XUJZ0f|g__j{=Z912R17j@6t1Z@O)oZyy=xKXOTFP- z`4sMm<;uirb*_xAHprFwtnp2g{4pPTICnGYWsC8`xhP+5;5=*dWjb6K z+t)xiu$ny>M%9Mpkh)M(-FLKS{gRpA(o0b9U0G;&1DA_VTwO<{`ma*mJY-MDo9c?* zRj0bv?;_JcYh|+R{FpC&bBEXzOS)@^*gA{FLzWCOTQ;98mA7{C9`Ul7?CcY}hMeVp z=@hc!+GKE#XK6I$I6opFz2qi12je0yXq+iTIr~IIW+&}b* zQ%Jk=SbOR3_xi^g0Y-DC+hS6=bu0#4k-N2KyETf9hq1L!tI#Pp5)3 zq03gYbXsQaM&}!19`MyR!}y-g1fh7(abTxchC88Y3_H{apq{ z3t+ysP^=j`ZTQk$ZJ(*tcI+NAC#yHU05$iRomw0Lh6pa)u*M+OUb{x+CrF`J!8KK? zopo94C5v#k)EiEZjBuf=1ZO7F!L1dhp*_trj$B~t~CfV z`b_aR0`#wC7#^r)Sa&Ip(*1_D>hO8L&>AbLqGX+Uva*d6i@a z-||ktJ>DA`doy47ox6uF&An=xSI5L!=L-$rGj@g9SrQ{x*tJ%@WLyU=CW{v=S$1HX z!?@nm%9^iCD4ex$-g^cX*8M$W3-iJ?WhP?}o`tKW&aj1Df%{<=*7H4PVd%*-)H+-c zGkNliSw^#BFBR%v%NW`k9p)*-tuWDu@9}uPs<$Y|D)?qkRtu)aCe#xi)nWW$+!14Z zvWD@o|8IR*p_ok&zSd!U2kwY5{(**ZcqXv`4)yOM z{(<94(Cef6+T@1>`qwg=K13PTU5Dq2EREl1kp(SS8okf#Tf1OkPgbFZyx$#m257BB zs55GVs=rW9)&c**E*n&D_K^*3o|@9u^d2(g!Bk7(toMxRb4Z5#;W>UqpEj}RE6cr@@*Mzk<(Eo z5P7Jik1G&)K2QfD=LbfCDCwLwwirr3L*Zt-BjoowBmRij>hVAY9v{FKxS%#He6mU( z>{)Z&#UAVpwPx_5~*ry0B#h(!G9-gA@=1FOkm9jGSZ5B8SI7OuN1zB)^0 zw5*&4+E6~&8)K-A`_(pmtv@tQ8TV*tCcPC)=LsEw#wce@&Crm!r%ch$8FfBX>**k9?pT)p zh5F%$bX^mxEz$qBI}@tTtw(l#)TA?MxHfjL7zANteUffyONO8pxF&5kGsI8l6Mwrg z{`Tf~Ezqi3MspS_Kh*9%5)~6l8`6;twzv0lrQz-E^bcaMkjH+W(1^gVmBK8kSG*0G zfqP_&(g(pnV55t&_5D;$I*U?$4*5P;|5`>y|I>1xYc=}zhw6Rq3d}Ix=bpVjHoXzq z*l3E$K6ja9g4=i}VCucUh@EqaaKOaWk7{Us-5-0Pk?^O9sdui=S7FPX-# z*v;_9u>txy7B1iF;uhINGU5)^*DP`n=&f~~*4Wr7eCKs?S8Cy(4cDMk$=aZvPZP4{ z&)5*5uhbc~v5Rm&%*O2N)Q2f&ujAfr@Q$@UfB(ePh8gfqfhvW2j99-5Pg%9;8?IoT z?RL9ard*jX)avja#~m@=@73@={Qryhr~&Wf+?6kv32zuN{~DgNiuqTy%<~=Z79Hj{ z;*J>e%QVcty3XJf%|zv8`qwh%K7+D-Tq{lCBlSx2Z_cmLme=L+Izs@NP1gu@kf@TF$XyXaC=X#J7#uJWCu={agqh)5Fk5EuS5nc5bu@L&mcn$NcG&4W%E4%Hz`y=Bu%px@n-}X)d z5~C%|s~HmF_Zciyi@dIl47n2U8ya=J zW}vS0>^4*O))BUtXz49!wi~lrI{EY|ch?oZG11Z|8k(QanDSvA;U^O{9mvoatLY<+ znqD(f6P798^5PabS!M!}<>ce_jkDIP15t=Q0}*c^0_ZD%`Vj$4F~A!O zdprQQ1L!mk2ViuvEpM*7SR6Wky>T2m`DDJF=>hlX$Dwo9t54rLki(BmX_E(w8M1Tz znBqdYR9`#bNn!TK{Jue+G@pMHhwkLEMses4E^Gbmt}u1Iar9{>%_qux$ZU0mN7frh zpH^xbw$~M&2NI*`Q<@>6qAk+-pmGvuK^c4QFx0~BYAqal@M)A)!#@c=9jIFz+nL+f z8XfI0&{29__bG3;5dJVxQYUG)zh;$Gc;%D{EiH|Rf98}n>~kLDFHM3P;?wS!GQS0h zJUrzbp5Q_gk1D=Xh1M>X{p;1ak7 zio_dEaq5(dEw@UY;VnP}_rq3#mu*mQ0WR6_pRWYB8wOy+{468pXW&WGbufAqGL18@ z4aeyTHB$!HwY(zR68$tx_dIr&WE3wF+lsjUJClp(B|B;SMEvCDv+0oP7dfVFFg+DX zP!|5xO7C-Nl4cPW33IQGFz0;vNNGd0EK#`qn#)ofZWlLLTrhtKAOj0^HyX#>f(AS% z2^*O`Ld@MgbIN#&P`J@J=C)PSkS`ye^1ILhNFe6wo-KCBk|@p=(Ob2D%gPe=Y0Ud; zb4~3~YwFme@F~&^hroFRe1Mzd1gc8|a9;Q*vfpDsf0x=_UC2Mk1a5a4lrP5@{0S{(p;X~P(h9%~SABmtNj zKC*EFa%Ui5cK}{EKot4`Av!1Bp+uWgm&rg=r15`XfP6VXza0Kwp9bUW7?{PQ*2ORL)9DoJq05r5vfI=tE zp%{=>Kti+m0VB-=0Crxh3t(me92xL31ArIjkuV@v)Vv7rq&bG(V3}phH7FVJ=1dz| z@#NH2q;mDtZp9%t0JFLxHUKCFR7a2B=kUYR3_zo>0t%cat#-hQ14vd!!0H6Z zQb0A2xB$Ep0L}qPHY|Za0?@3LLg>0(R<{$7bOHD?1n`3J=_?@r`49+Xu2CtbgT2Un zOb!Cs^Zd#Az=+1jJ&PFn}QXy%}>EYfOGFk-ca{Go`$36REs z4iA9$u81cDK)aM6-Q>^72P`EyMs<>vYp0aAH64@;+A-ZmK6-d+eL%bR!FfjzfR^oc zr#}q-<^g~h2f#VHgEo&tg0Odjekly2BjUF^gJ7-^fT0fCz-nzS2Y^We(q*%BqE6KU zOK~_15XT{h-3D;?P5_kk`2dUC4q)~H4K;Pa75bi;W*G?<_0@$$~ zurDDlQh-Rn%8djhv{-l04rt4k$0TCaW9J7qe zp$(S`Bh}RY!Vcx#IYboB!ae5TD(g}8ir^dmaLDKK0^T>E*8^^`&+7L9wklw<1EMcS zB3%)m2Rd|v-@(mR*c01bL7xvCC*tsh?QX!=b-k-1n8??P_*3zw>d%IUT-i2 zXskhB1U%3~nv8o9WcAa=ZI)v5!QDJ>SpnkJY-9ib9#BRE<^=feUXRTha0cNpH3X6f^2Al_cLJ!b z3&3OPDXQHD$gu&4bZ&^5zKF+VOEaX$k{l!2$<8sAwzj4NlJ)zi*od68Y$$2@ts$E= z1ZxXG-G$YH8&IMh{%{18>-Ts=0iKDA%wK>amd`g9N^X`zH!3J%bCdMjlx~(oU^ePz zM_R|57n}1GA}jk=o?Yay0WvyZ(g$2%L{KUNLYpmUg+%0o_bKdBxR1bpkZ>S#!4+6` z1pKf-3Roi$*#S&F!c*3eMH}M)G3|le5rTs#fTVVZU0!fUr{5b2!D0;HuG76*ZrTqi z%Y4)@O<9)~=Ngs4g0rL*2?xVIw>=0r+JJHkDHVW{UGSQkH)OLx_>j1Os0nYcIc$*# z1PL1e{KDMfhZCT?A@)P{Ac|VQ_z}oN5O=)}ug@8TMVZ^_0911da1Ws9KJdzjCrBA? zkzRjaEvyU8hh|BuB*(}>GQMH_5;D9?yn8VqW&=*L9hPxUIO(&(+8Y4eodE~MqlW;; zSt)|GDY%r!1K`nc7dWB=7Fz*d#Oec)hsfN!HWf(e*Y5$mbU+&iV*q}95kG)?+W@CM z;I~@A7t@FH$TC1THXoI7k!#TL_iySjqhQ8qWWWzo&+OgLE;qZDOTf!3G326W}jlhB}?0~HX z8PuQ7Zoy2ts&c^U(H(HR{D4JI836EYh#oxUP)B4Jq6`e4Nz_JX0a z?%c3*gI&wv8L&qCb~<>Z`M55^_Fv$qW`lBMa5;@dV87+ITLZ90fIXPY8i35>qWf6L zyUvgkDW%vQge8c>?udlI(O~2055a2K4nZ?u5BqIilI%aDg_M`=A-5N{bFgvtz<%2U z%MTa$t^=0)VW>gjPakehcb?`$2Pj6k4c7mrgR-n_{dp)hqM&?}@L00w5z^@%_&jWpn9 zfTQgR(KU%R;DgI>{$Yg;xDS#Sk2J#{A#qDvM*vnURzE~w*iQg_J^T#;%nQdIa7@A% zj60T2-D)WTGdCOE&C*(l&wOMjcQ%&S!l4Kt)q|J8%$zpxB)Z*zRP6CW@V41Gs$Oxx ziex@ACR!0SQ%D22Gn> z@aoLTH^34;6tp@aSOgtbC#=1^R=X_}34_yw16J6EHIA>a6uWG&9Rhv0LI9`-ryP*Q zT@e6mflYxgiNL>*(EM$WYCy3wgc85J7C?wKLPivyMOEGG^Q%Lnwn@Y2C24i4qh$`c2NCk_tTF|I0anIBxAI5>m{UMCI? zPaGWbFDFkN9G*Bh)SOwKI5_N7a(b@gHMX5Uad60Ac{p)!NY5cp92}lFI6QH1nBxTR z#KGZ-gTs>3`wqNzFhA1xZx0R^#cR8h#edDKFI=~geQKbK7U|5s&4^xMoqNXU0to3r|a(z~znTg>@n{2iCIA|-P+b;xJmn2cWH3#eS&99jh1sB~N1&w?QqDSOukyRop@Ezq=wICPd5WPk}!x80%B% zF9zxzr@t89UN!y2pvY?IFNQ``OMkIC!3p@)qJq`+O43I5eRPWcf_Hn#&WGEMt4~D+ zZ-p)(8!n0$(L!{GFN$xeFU;d=>YXhZ6(81ht-!1n#hB1hdU62 zm)WfFx(PhRglEcjc;W^xheDIzW_7`nOk1j$3|_Fa1!W3sy&up7_#3{;d-;dZuWrmIy(Z1RwYky7m6K+>NS({#_lxV%P#jM1 zL(~F;urI4$-AKltH@2eC;M$T|qg$t=m&b3mh~FY=1itn?ZiX7r{h=uK{43*+8QpK$ zBujuu_y2j7`hHpgx-BrvOQZE`#wCI$nQn4Tyt5#-RdrV`wA@5yT^A3CE%6lw2G|w1 zFfhQDo6^r-AFsA3Z&nRns2!YFcwTv9e7Mke6LH)WA1?O8oihm6i#L%btL{68EM6qk zEs}X@q3tf8*j_xj3z<4NZWn@^$nwE)w;0C#QHX`6au=<57yeBoIqsfbg*TyFv0i@| z-I{C~67MVAzljw2N|nfFe9ok=w!E)-=6x+WI0`D^Um7ex#v@4!8xPmtuyFi2@f|!Slr}FT19wm8EPjBS zS!wfkHj(v__}NN=x&0=Tk~3}wbNd1lls3HQ98z*e)B0rF&G8EbAT7Bi?og7dtgM*x zrKLE`=GUXe5p{eeQu@EU z3(~HNcq5D06t^>6%+|PtiK6M|8Mnv%%3E1g_{S5|>|$q~`$_Ae@!OOHl>ai>rmfm( zNgp_n5d#*^6)xONzuRv~mJf^fLK#%B)yp-6eS-R-8TBtE}u(Ig_k8s;&mfR76}2F7G#U>E zq<<}4JwAS^MeK_R)$yd7D-hFj1>zQYvK=(Li_}Mg|ymH1a$hYHGLeRnyL)OL_=z7>`_j zl7zyJb;3WJ!YvvtmDe{wVJD4SJl;;&F8PNBpl>S`q=C0>fon={BahCBe<&Q$akj&_ zALeYIZ&5qjmMx~vrq3U9HY1yF^JIL0Ah!M(c*wYqGR&1XKTdJBrQ!sAF{`(K%&Z>O zV9r{7`RO_XWXz12{rQ|&&&_A#^e_VPT= z*6AuU4`%Me_&mX82ZQKvD??oT0?R);m1|JHWSay5; zYcOe6X?l#7;av4F4t=aH(QttCiM|Q8Ts{2^;(RCmi&*ayB%faW9xBuMXg}{0_zq># z`J!C7^uWj5lMOxs$2_rm6venj9x%h@WU}(e*kL> zr+h+4pXdwOd)YqwDSR8-XTxol&GA{;+t|M1ReT%mEpN&vfGqdWv`SLpPBhEjteW;y zdedfK0AogEslqR2^b52`PcZ>cn=$UecEabMXgz(!>5EGn(m5J9`X_Kr>FDY1TjLIk z@RQUT_VgcdN6gc|{6y{PpMXcuntujW!SvbVnato?$@ciWMhnG1x5s1RnOlLsj9XCC zEN+ilWZpAETt;kv&kE$Y=^gHP(>{;4v4}lTe;hnZ&Ms>uRpK%E0XS9!1rxS0+1z*ch2 z?sz*TL6efiOmRBCS3VrL@Hn zwDKI6W7^CdyX=jBuOv_jQbw zA)6aDDDID%Wy!!V7A^snhkCmCO$V5#lb4RhQ{p|SJDQqG$)So1>X1vGecCCG#n+f= z+_R0;{W;!6LnR%*CG-gP{T#ngNuaW&A0%7ClV%x>tayJyo%D)d;?G;eXK>eSp2cUr z;1w6+W;VrVwxv7$9`B%{V5#dZotsJHKjXc1dS_>1oAn4z`72(mBvA2lM2{cl8<<0_ z?tatpjm1|aT*B{0zVQp4pFy5G3fGjrG5vw+*Mw%DY7a-6e2ThZuJNbFHI8mGSkLP7 z#GInN{)G=@RfmA?F!wB*xEx=X8>8o^4;56uo=3WdqxI8`>Q^_e zBV7Hdx<-qf*BS_Xt9}LV5;lBm!qK4w`na78$eVa3*-^i`O*(N(Z9yLCIV@Vhk?z`5 zLbSkU1>JY5>^SXMZwye67_@y3IVf*TU zl1eqhyY*)H4;=gft-+JZUsE1SJn-ga5=YQsMXu4N6M!(^{Hqxx%0G4D%} z`fxWq^=)UV50&#hiOl_?8mepErAGC@YCyAL_$~U^GA1%f%Wf|J?z>&h=0%uI?lrr%)4e{XXtLrqkOvn;* zz)4g%OC~;30v{es1*=#7?uPB^@^=@pTaBuzVPP{5Ex|3aYBJ)#CyyUH-!-y&ve6Rc z)Vr%!i_58bWW1LxL0;cZtoKxR6JN(yzzO&gr0{>JSss^cyQlg#gKO#QMpd`W6L%m& zzSx)(4wZ>}a5MAW9otFq1J%nl1kyU=H$8$GqpL@02uexM1BpvT@iW9?W(2myP)teX z=T(vlF~9s|3b)7-fM0A8RzvaOm5Gh?T)N03I6gC2j@8XD_M)#*ZEG0+%g z;%*XpZ~QZ(OdNwNN-&4JxDIq`9%Df>7jKVSWE07VezF!*I+y5oXhi?Hp6Ka&HGh0i zeREymR}(2`V6=bAN_o%5>X+(T8jwMQYV?7AzBPM=U8!IXZ^6=f7;vAmfEi~?H69o0=OVxP}J71_{v)7UaH zY-e>xaUgDH;ik{$-LBkA-E zqRj}nriwP3cU2FyBzRvq*i_?g*s|ij&(%BX5ug9(@#bwUySa>h>F4Trlg4aj;te(W zf<4tY7g;t@ZcUaIYb8~!=iLCECBG)G*s?2YyBdUR*>=y6U`J)*F&%2ki!4X7#3qJ6 zIZK>1d=-+_ho7qhP8wQFmj2kfOl|(ni)tJevGfaM^QtFod!^Yax}+v-;6`LepPD7+ zXY%Ev$;t~K?LxljTT?AwjK^k6l?%Qgt1qeXiWlH3@=~QIYDPvsv|r6_h5Fah2m94r zV-asbgy_hAIBsU1eajc*ukxD7Mg$M)5u7uiW}%Wm6$(zO$G4(*ihSjPTV#gd7h8GM z(?Jd_+48VQc=ii}mB&0fKZ98CBwSO)0^emd!*{PpaS5FUZvU>O@vB0H`1-bI%vl=DMGg4Buza}ZXWum0+ z(qxxslti8k)ch)JGSN{l4M{<$W|Z)?iH`bYNsM&#hDJy8xIT@RfH>grbckC(iJ53Q zE>iQP*mwt0t9^yZptl?1A=e|c8Hs8hBA)Sm*}#lrrzT2*tH;DNQt zGNH!~gV=u#on(d^)!TJGxTcEz6DmL%*GQe=*ncJNhsFM0JJhk?x8vAje|vMTgIcb0 z8Tf-c)KO?0<`YGs^tz!noeG87z{rt_Hz7!AIZWRwX=^6$0>aR^i8Zem3eWE_4nr?# zXkMCKb8?~Z2GAJAp}(>;Mm9cuhdK_8gBFt|9~P{sjW2qsW?_!?*->KIGp!4G_T`$m z_zSg!Os-+;vm-l5;*}bYcm!X`uFpyiqh{F{Gj`pd!_?)t>k4=h+fHbj-u!A!M~m2Y zCz=BDyp}u3b^oimUTlf4$S22LadU>?zSnAID+yGtdaZ=Bh8f_e)N_{B{3u?GJC(!2 z0Nl*Rx_Bq)_ePCRLr_XuJ=m(7=+`5-=*^n`8UpEP>@GcmOPAH0t09m^n50L*j>Z%` zsMx>Wkp08U!44k9ozgu*vFtWC>X1sGQnXuHbFZ*?CwX)wSj>yK4|sl8M(Vs(;}BoN z%}j(Z?j)(VY6d9@=zQhxB+3U%gT6p|y;pO7;R4i&Y<6V)52IV9SH4{{Ul6yWJJiob zzsA?t6t?dqXTDogtfZn-D3JLcB2D3wo%v8``Qol**SnBHPx^|CT2nJh6uv@c3-9BU zlGbZ$tm4VInZ1-Fd`0H1t?8;HP;r~V$oz|OEBwBbB)8vFKpuXt=1$?PugEFy*W5$I zy*2C=LaLo+@+^bWEYJ9geWjA6?fXH^147TQ$m$PjE*H+1#t}SlX>2G-`v+(oP?X% z+{Q?AQxiyjLG%dN+!O?=xrL><-6zkj*Ot3&q;a3dtq=`#fiBM> z!w)^v8ol+Ev0of+(!I9O{rJ0hqN@G)&C+x*8DBf%7TE*f7h6ya)nZ@r1x00>v1M?| zVL4Ev^SEj!or%GE;tRMYuO}EF;X7Mv{%m0RlXr&K6Tjhp*m~lduhh@0z956XuW1AD zlLoI{>GQ|7lsVGL!|+ArkEb;w$=x-th-F_Rx0DUH6K-bKRQ5Hg|7}fA9Rm4%it}`- z_SBrEp^}36Ks|!JdurM#38)PsTX|eh>GWG6GIMXu%i=A#Q#mya$IXnTTfQcB_SH;R z5~#+St2Y)~vFa-zV_@_34a_5uuMHNf57GJM(QjVi<44tEH3`>b4>abW3z2jT?+@icaJ|`Py`;ie<}|s_k)$Y!ex2Z=|S! za9$I;sP>v-T20y>@c`-^;H~&0P!tsaU!dwG6t1@gLpHKx*UV;VUV8=3a3ZvDGgKmW zLRoOALk#7$0cZxQ+XtO+vO}?8pknb_+)&OH zKEd|6p+d1E=t$4`Vd@Bg!14S1v|70baBTpi0>EJa*#j!{+Ppp}rz;_E@OtNPDeSeo zynyln#bI53KNJiGR2sm+fU@|0E3JgwLaG93I&#oK;bUw?=0g+9<1@UZb)dE^-vK3R zyIAd{$8|HB7x@D=K-lmC&IWK5bVKFj0F=zOf^h)KP>5BE&7k|3pC+aOR0QB-a%jh? ztX-VLHdR&lb4V;eYpq@xuPrPwX9{Z3_8R-*Eo9ZLwU?Z5xf3pT!sSpp`2Tdd>&Z9q z+5(~1F7_-z_p7q4QdY)ElduXUQ>$xhjNS|CT2s5QP`_9O8L{z!*1R+c+cjoOld!+E zrAfBIc426;)**D-!YY&Gm%}#|@fJa{yL-C#Yt{|sCHX@p_*$56(?bZN&ZD~lG+73 zTaj+(j1`+sp%W13!kGSo!A**jDDUOV=|^`-#Yv1Vvf?C@98Y@oHV{UC%L0pHZ(L>gcaWmVBtlO3D@KkMcixI^h9SU;v>DqQm0`{HL zZ}?tzq_S=oSv{}z3+26Zqtg~-!*|4)S|*q$e%#mfncBX2&35OLl}%o{L@eAbD}#TX zdD?DNPeksoIe);5`;!jA7Cu`$Qs}aqw0o}hUeSvCqnrDtau+Rm7oB$VdLn0`Td^u= zJ(2qs)K0B)A>2S#Trsv(ycpez9o9ukP_5mdUl?6$mD*v-d)dJR`(oh(J%U58 z){a*aP!*QRvXhF7;CZn~0^2B7#beiQb%K#;r3xSlT3o>6$ZlT1L#A-*NP#}AP#5sf zk-oNoM}u$J)KDP-d7xfeA7h7Kg*rXcsP(}cwau@fVxl zbR~O2L1vANzbN)X-SN5}=YGTMdYp@|sN&CcoEJO{uj_FwCSu2bvH+xFAecx|*W>1I z)Vh%>fnW+IvNGJF6~b-c3d$E=SzV9G-xwU`OrVp_Bn#DHP95e(f_BaS!SbKG2M|Bi&b3m5GONGfi%J za3dKM%WI`WamTvaGEw*zCLt{!NS0#56AjyFC`!qPtER4!^pJYh)n&I z@yM*;NYX?Se`#s?;{wH8vaTzcZ+ShPFW2Zt+PvP#;%^P2z(OiVgDCJETvJ8?UT7#^nXlXMuRA ze>{=4E9X8&jG z;U!4q$(*UvUuH7Q0WRQ^K_y6J;!OP#EUJ85g5+`-kCq^jNxGPf$IL!x!hD4e@jp?` zojP{UN{~Fb$H3&rQPCNg{AjqQGI>^lWVX~9Hu;&jA7=6s_oz*N^d5s(ZWLmbr^7z! z(!Z8*^ar#I>psdr@8Pf7!=BclcP!uHe4=+OSqYM^O%lI}+c94TB}lgJQNR577POeW z?Sgq?j}UUW^h8{Oq~2a+{wkM_>Ddi?(#9$ww7{fn_1E z2xw+4l1)ET2t~mrdj^MFWV_2KGpSXkTv}t$UIPp6Pv>Z0!TsQx%7VXdl^7~iNS$E| zz8Uw!Eco)hY76eS_jrSLp+4*BQ`#ol2x1b;Sr-2++|0zE+{hz0mwRc#2k zo7aX=kjb?nR_N2R+7OhM)rL^e%5&U;X)|+VwILJ)DifKbXQ;j8+7JhDukv6=aWfn2 zz+PS(LP4M!EK{KdtAIsQ1ErAhXC+=UT22osDCZp zxKjd3@pus-I{N5|n;ECx?|3a91%Zmw*Cesx5m7B3@fzGKh_#fkf;>ZTGaKxh?^r<| zB>_9Fx)a~aPOIQvT9rq6FFP%mi0`HS=D`Hy(mYBE6)UgnvBH7~W=&Fgt|-lcr+#B$A7&Ik&);xP;#Z3WcInq82BSywab$;SYi{(s2T=~k_V)R*pJo2tAF^kIdeR%rK9eTiT zA^w{a<>=Y|zVA#EGZr*|4HdT_Gdbm=#D_)^;_yX@g`yv%k=@0z2yqi?K|M9<0}(?1 zTDqoB0$w1!7ZIWeQHh(G)84y}jJPB*(TE_WN3gJ8;tnN&$`AjLgp8-iL&`IkCdLZl zbGTO)Qds$e7jZM2-E;fMcLNgdYY3!Qi{8;A7&<7?O+!#h*vaC@Is|F|Wr<>ol0wDL zUwZtoxPm#96$HOnT&b%q9zbX@6nI~Z+PP4nsb2XTouENn`5CS$;|f`KWn!C9xSt0p z99Ej{NByv{^7lSGn@pGZ`5Bt5kX7GCzsZEm zzl}zcp8uaoy3esoy5NA?m`^*PZ_MeXwq56W)1)FT{|LPouZ~C+2+5u?u;eM#!U$gj|2( z{KJAU(?rN)B<81Qg*>)u{;he!vnE2GsG%7$b^a%U@S2H`;~AQ)kX7cKVnWuK^JsRz z(Pv&bRPeP2Zjplrd3=205Aj>zF}uECX;&^H^gX@?xwpUN0J(BP;#MV*Dlg8In8Jhd zBPZMf|Mr9GkG`&g7L#Kz zY*?liZ{3l2)@Zf;{f@*E@qKC$nP*09wY>(lAbUIYD_CvoUrQ&xN_YkFD?~`x5y{bA ziRt2ZxLH14DcSmDb0}$(2n%0<3DQSS3VM}~ZIfh(C&1Uze|?i6f>`%^#KzpciRZ;e zxJ4fJ(eDx!Lf!Al$@>yzDk_R3a^1efqvGlMq!;f`R8rEl`xBQaNm&$O)rmZqlr7$Y z;M)UW-1gnMN1tMYqw{JIxpu;uPHP#4TUa9jy`I;_tgThN#3U(2w5fU>Uptvr{&yG9at z2hW#297kv8E4c*F*|}7oApOwKi3d&=zW$y)AJW~w|0L;f2izl-73g)>qg~Ni{pa5k zDxc2H3l1l9n?9`ySbtx#*f7GBBQIhm4J< z30%t>4^9R5)=B#E1jixc<>ZA@xfd(%0@8rHesW=+(EE__a`G|_%?)C*I8V3&Xq2B& z$U%Qdmc}UPcRs{4B(#Lt?jM6cqiAx-R6VCq$zb)Emmkp6&w0}9)*R%gx%%dx{=7+Y ziA9X!@mTb^p~Kys!~||;(Il>P z*k__!3z81;WlVqu>R*?Ra2K&8>NO)Pnk74ltMQ$*>qhhru#`XQope(C0x~}QeN)oB zY0^eU9c|u7Ii4y?-kFsU5;l7tbWV%pJn;)WlIl^?NIlYj5Mb}uRzqUNpM>9yeB>88 z3xfcAlyi>Wy&?A2$!mpXhqdP&M)FIl<%d2`tKstF zc7tLo89g}Gj`TPq*@Lt_BRN!9eAqb1rllz^yK+hE)Hz$ zOiE@=IhD3uC#*cog0JqY5X;nk<)3uc_=hMs?^*JN+87!$AI^S1hv9xUv`%!l{Gc|8%YOLJ z1L02NK*-phYsB_rc)F@UIGeMr69^ynB%3x9-u%Hh1b!zeZYkWO9|F@q@b%@BbQE1#V^$EAS(USHkj8 zLBL|-{>tPz;%H1jV`5`^BNz)?3)U~W^)7O_b$(MNxjbGCCTB}YOnx#MKknA%N?I7Y zjQsDxWM^>>re)z6=Gt>Y(yk<6gFQYW=@wta1QK&;>%`9`5~yZ(KyP;cAo%}S z7nG!Y107YsYIsDO0e0N=^63pg1P1ZH?h$qTPdAJwJ6nV@sV|%WO5x^gM{H5h=!iN4 z)IIW_X8^&l_#xu`3LV}Vu*x7jX;m8N&$-u01GglSpVb$JA2Ch?4W)8bL*X9%G*EGb zr-7^JDC#uO|A=WC=tpP$uhKvrX?`@k7^Z>YKTT*#SoO50jN~_0EkBeC9^>-U=7NQf zB-`f+E5JIG@WwR_o~4b3u7lNo;|eBNyC5mUQXaj2wP8`IA_16d8zWll?%pS9A}J zE(T}RDmdypC`_&_G1geK)09hK3{$Cfn3GvjSdlQ$2HQ{S#jv=fiZB_WZZGlKxOD z>DWW!{;ZZ*04OnchBEjdd402{>Ee%*mkZ)OR5KYHVT-!Qx55T}EN*5o>7Jj6b6awy zlECt5a=)0s_sWmP&fT7zmIvLF(*1cQN-|X_J4+HTo;QCQH}13K&4Rc955Nv`hhO$k zUDEnXIR1SJUt<$p@Dq9J%j97t731u!9kBXbrAKh_&g3^r0@V~d>P?XqOL*<85FzHf3S!@p?i7G7~FAoAMr2T%-H_v zCnz(Pv?&SLqWh7#i_R7s|BUp^7TrLw@7v_VN&+UQ%DU4p5l_binGvqun{2Nn$m}}m zkwtrxR?&&6GQ)KHE;&d^rIM~qk}ehu&t`J(% z%46I2C%+X&N}b_EHUjs<64{MEs~!K!pA8b3K2toA>0is(Mo-GH{t-9h`za&7=i>RQ zlGtOMZ=EFe!=dEV`ofBz*^*v2GWL};_a^a+DJe42M~CRu-=*|Y_vZ8HDCz|E*w3a3 zY&M;BCO93}lf(0oWtofah>_?Ht3`)a^9Q-;w7Kh>Ka#iA5gPwuoV%to zN!6_@l>TCTcs*N9BOhL;D^E_f6w;$kPIVCk8}wncx_>^~hhlY)6xM(=8ItNQ{G>7H zgXY@Wr`Fc7XR?V|busrZ)c1yT{wb+e7BLKx%UTC}L8Skwse8qtxLHm|i>{x3vk(S_ z(04-=q^e-FGCK#)w z+wr|De8au@EkUXZ9#j&0+fZT+Tcr{f@kiV%Q`DN)sX5~BxLM}ue{E8eg&%(*J=>-( z*CAceHg&t$_*bMGnRIkfsxKvdw7MG_|@=zqSslrNj;ZvbB`hUsdq_MgNK@eG6lH9Ey_u-fXMT z_gAvFEY)9l{~K0JNof5Y>Crpx60YCJt0=8HNM7q5?^>@Hh%Vldlw24uCSJ?VQ|f&M zONn?Zve>e-O+6pISU?8W-&r{B?uy4@0QzLCFSN!g-iHDLv5MC4c}lF}dU$I-RbY4MT%D9F4*_mZ~lsk6v_QH z()O26Y%iYNg|zji-WIpxewfEM@}({ozsAk7+dkz>xrOb&lFxjp_DWLfwoTA0L3x?L}Zk_(JTPkf4>;ER}jj%7_8siok4Nsx>fJWIleyg*{&bm9BlTqiU z8Y_wU)+jN}E}pLLL8$*5>2+SprzB8Ky$PRso!@dzy;b_^9;tM^CN+i7`#19N1*t2Pz00{`xE{g0-lsX%wn3OB#mD zaEq+kj5W6eeQE0}&B2qW=X=QhPv=v76y1`x^hvFD}wB-KHA zuPo*@dIX_Ox_vXO_2rH_hn2Fr`el>*v(|NcYl&Bz}Iw_MSTc%}LT4(aY zO?7@}F%ngLkZC*U(DK4fvj?QMS%hZ4)7@1BiT7+R1zTOJ3peSgRa>~}Y(6zqkVT%F zhYy7N;VVVlA{z{;y*%}tc+u}D3eX*R@dcd?05C%c?L*|zEf&Ynn|BCwuLSA6O5i`-+z@Fr_C!pbg?;o(#};j}*t&NNQ_L+(kf7ZI+> zdSUNHkB+2f2_2=*uv*T<{V=sO`$Mf3@ehMD4SmL#LfYwH%P^gQ`RN{M=zi0I_NmuE zZQ+!i^eh{9DtZt4O3tzNG=tcz&J75nH zTYCU%%XJe2Y8&wf3!!apu9W4UVQMBffMIls=)f4w{x*6E9t})L<%{yG)K_x(>Y#*O zMztd?K?ywz>0$P!A6sW;R*I6pr(~l%UXjn0MUGBE9>Ye4-|@S3SZbB96pRQSX_o1U z=}A7NH17aj?CbeJDnzD?NEMLpdyQ*HK6+|NXL8_<)D<({iiyJef3Tww-JYIR_q20# z%0qh^CTs^X<;lJrIu~cij1EIyrX1rB*B>*~&}_Aax-kvaz1=@De6RLpOg$Anl2H+h z7C9W}mE+Z70ckQt>o}+V$wGyW<0PHa#ukTt;ZWELW!4=Lr`sFxMjVll8+<6@wfe0N z<~Pw2Yp%Pf<5;>7|Kt=eNHF8`F~zzL^d^@?M>hhQRv&|L&(*@t2=>)R^n5rU}9lM8olhMIH@sPid$wLrR zwOmceJK|i*M&1zt2o|T`3Shc6t1}dg_(L{(z-jZ?0^Xq2<{*d1fp_G%$RgK;{H=bqLZ)ezvqhyleEQygb>{ImSxJ4FQ zKKX3uOKr&d$5IjTRVvQR)`-2>C(Gl~tUl2_?6qNoex+wLml>37d>GyWT{z zA7af?GigjF&V{}BeyKCO7vKAT?0tE36vg&1-3dt`%@Pt4wqz#k2!!d`2M`iK6eY-_ zh$6zQNRUljKqU!+ED{AWGZd3aSVTcZk>E1!fXfp_MdZ0Y7vl2NpCTao6gR$GRXsB` zJ>5M-{p&k;jyXej-CK3ny7yLf6^n=D;_oCe@(s*LIPYko{L5rz%1ADrLZ7eJq`Gqp zB%Y{Ms0`(|$WqnkTzIFb&!+oevCh&0H7*Xax9G-2=axigq!=JOmT)owG3h^XC~Bx;wnK>Hg5 z3LnI4s9jIxcVLoaL3A~y`0Vp3CcHQV`ZLGReh2?LrB@}q&>P`WHVZENc;GfSlf`5A zn0%rUUm|9;h!(q4|4G$|)PKGv3{+O9b&@)L3CxB^ zax;w5+!j3!77OFAGQ1N<7|tZG9XSO97p{e(SnR_}=i{|gP~}y3w?W>=YiIBx;7~LA zI*D;56f4YM7e7&J;rJ08v3kW=C3=Qw3F=E%a1 zoTiy~fDtFir}@E0KpNE-zmecWr)@P4lf#J7eb3b1h&Db`yH;4ijzBgK?unsp-aPoE zf-}MgS##Tv;Y6*%PVp^x5Gt`v0~IQbZRiYmJ`iW3-))ct zqOwMy%)PUj2FcN-(FMlpxkWjsWPk0I!hbdRdr;!<=WHAD@l@^$wN_5}k$o&qP8?7>n*&*@>GK&vRm;j<)2Dqun1@n%|3~vltxnirGkp#I|4RT z-QI)0kXMO0M&Xe}>BT!58JAQB?_x0ro%6h})%MCjk<+zB9HVBa%dbHB%F{Gf9mC5t ztc<57ucBefbWsgceix-V3m;(x5e>P$VkMz*0`t9kJP2wdoimk)jslaT`w<0JTF5QW zQ2@qA_vfPz#+J83hJQny{r4laR|q>;v67SgA7P)6ogh1SlrwqLh@N=U1(~%wDqtrQ z3(!Rl@_&&IjXB6aPFH~vu(ZtiZf(2H{1F~G?+*HU#X-6%fnYg9f8-$l&ox-FQURDK zr#_LhQI(1kxt2#|!Ckqi^knS~YO9B@oveLI$V`iy4ZYYUop}Q2BwdXn4x+=0R^>(7 zovQs8Cv;?*(oG13>=V3p+y=J+V#z+0QZ)QjZ7KTXr`ooOuw<`I=l|7i5(cpd;(Ki} zf3983cT7XK|6KcKB52|=bUBh3#!^A8nSGK>S3~mQY~&a^{>n5JOP-8Js$$8LDA9Dr zh^+gyc6BCyy@ZIdV__bPgG?7w(}*!MiRUCVzQ4anZADp`Dq_p|D(?=a`5)KzvgJXv zzRq8Q-bnX9B;3nNgsd-bWuC-2iK-iy6-HWS_`gmQ_Ao8v{`PrELM#?4A@)feZ&dSM zQjk#T(~sErLuwLwo#n2~*S-qxKrN*?o#Yqi3;s6Q=!U)!_g1h%`jSOMgmjn+i3ze^ zO;gD(lxd>AR{33&-d~dGRa{zT(uxl0@+h}mIzuK~T&^DO?~Ag#`t2>vC03gWm0jS^ zMW1x@cS5_m__N?4WErTstG^%G^^9LYC%X72rD$p4`lFL2e)f>>xDz}h3B4~J54gTR zeg1Liu0sDX8QS7_-$m%#YyCyAqt?GBMWge$p{VIR{}6O^L{%rnV7rxc7FT=#chB+{ zr{us4o&OeD-w7Oo_ubJS6@Gymiw7`KF-gyh^_>v4Gpp*oklyHL7n$0n6Ma%Bp|eUu zf~lVDlVr0gR6VsVl{QsTZDMNRw^8XSB&lSr)#re;)Z}rSTo$;;+vT#@3}(@8Fqw=F zgHtr%JqobanyM99A=-$!ne+u>T%USLEDZvmloQq3ba|qBn<`Hi16>I@P_ygcI%zyu z7T{L?Qc>VQlJ&l0_YV&*&!}aZPt}}jV8|9gTUm`2l4zuX? zI-DN6+hH>s&2E$Y1^>Eyfb)M>Y|(xth*Epaf&er+3fNp6X^&*CA* z))tttKgF>2Xz!}_%o5!;Rn~3+(*B-nnkJ2_*{+Eh`tdm18D;-YP1&(~; zrj{ARTp%1s^iO=}40Wx)Aqg1!CcYnlsMXDGje#WSJrg?d8S=W>cd9b^MlO@)yQi5k zp`49-sy<8i#LzPXxDOR(Mq1M-uW7_93k7H37{}tkQJ@LOUsgwA?AH~|DW#!eQX>n$ zSVPb&B|2}437W)x$4Ah(k7DbOrj7KsiuW6j`^wQ-v^O?Wm&BiWZFVuhyk%L>46en?anaV(9#^#Lv%xN6K;D(F}Q<_nIm{ zUjdr_o-^Gcji=epl;L%Lrrb1hGgYDn66Xy<6Q)9>v1M%4NX69VNoh<2D3&B=%9UaS z8oAN)NeD==Hy(oxMb+I5VRIJUij|^~v=ysOmbz>DR+2*NEH&4ZnMGVvc6^`wNmYJ+FW3KOr=VZP)W4Z2 zC==(Mk9N=TmoY)Z;4BT##81vr5AmXhvrnQJlDrZ>GfO?h`(2_X4opJ4n*l^E#7mP7 z!<>|*HuH|pl81PML3FSuK%vTFgHiuYcN9JSeJgx6ojL=}NhJ(GYn%Ndzy&L=M4T4a9Y9pPkU&YyH{Lj@eLe z>`W3Arf7T~|GtLebWR!qM0;1thCsrPGS_9rRbPF1CAu1_7P zdSI@i>M%2N*H$D1VSH+*R>aU1d@3&O6&YbitJ&eOiav+gVRO42Ubo9@wRjy?pWSRm z2Kf3&Z_sWe(iGaiw{ zsVa|a%YPLIKxV|RNb;c#FqFh&TN%yu^cS)7eF;NUjE{S`5LydouV&1wu z36wabmo;>KO$;PK*BSaYVfxsWv{kACxkE0H=KG_YqvJWN7;oKK`Xh#%-xbAmT1{M| z?)1;(J7%kkYlAf44%x)aKwO43{zH84Z1s7gJ_%$|jlZ0?0*KnYu`LFYASTAow#$~! z8>d^7wrabPll)Qv`-EBcMB^WOq+8^jyZsHE;07vVCKo@NVmA92Z&Kmh$oYt0m)M@1 zd$B~`ly_&NlKXacO>9ff(;8pve^6M<0+0mi9rGiZ}AUR0~n(Ouy(6|wi>`xC4fEm_(vuJfQI%&mp{_MB+QWmw83MK?&+G0 zjz9A6uIR2!P+@%H?N)6Qu@IxX^j^PNsFGvhfv`{R_17f_j?inWY+Pj z65EM&u!4w7GO8hODOd-&I^#(}#X26x<5RJYJ(NMx?jmX(5BNu+z7P1P@rNahtckqI zA|od9v>@LIwg-;B@^@?1w?f56lnEqTjdaTIqQrlQ_TTN#i(IzTpT-NnuzV--J5ez* z9bNpueP*FWo47R~qMg48s9+aZPBIj^WW9qNAPpMQ!=Dl$K-;Ed%iHpReAsUPd21H#$6U$^NB6xczl$p4_sLYJDrdaXM!ur*5=$qu*cs{lw7+W_e-r@JlI))(X?;vl zz($OJJ?B4`#-9Y@;R7zkP&Q4v>3MHHFLgrXv9`dG@>n9QN1Eu&B@qv>_q7q?YsbRUTU z7g7|!XnNiDRA8DKqf3%t=ylt(DWetF5UnwoSTu_7+h#}`g-N>rjSnu%V)na~v{g&x zSl-gb5B5niw})bGpZ%UNW@MY=OlOL9^^{`@#X3lmD|Mo1f&~zl)9!;EE_S2SEE*jm zY{2vRAY(Ro(0M8OliLH<0Au6ZHd+@8I6uDlNuOXl-7O(%MZ^ed5 zgTnIot33ZY&T~f5zf@6l)c!+%1JAWn*YiuIG5s0Ub2R3_60#XD50yr0bI_)W!+kf5 zd~6`zpC>(fe#`1Ue1~@GhH!Zj(uY3sFXp=gh+0;5bqpkC2l(s&M%#YFl(Wh6m#U)r zOfIVCC(jqfWJQa4+BW1oOOM4k&?`YGiF;rsw^Q*}+mHIEa%lbFK%x3N`%G!P^C%MV zS1UgAzs&K=G{h9W2rUlt(ii?Rj`veJDNYQFqWvIlNI+>~xUQXiVwg;ts^!isV~M-U zXP?B~75e2XNE==R@?u7ab0FP5=1IIY{374etU%&T%k$9jul)yv!%RzgLbOUEi^WFw z{j*P!@!y>+`1s8){P*otqM&c_P*kFzui;%h3ab8j*#&%Ndy0n*fYRGDC`bTw0>lP+ zE3>2FYs`7207#iA8UQK3i!u}?6RbElGny{8muq?nj6FsoJ1@6C?%&yozZd}20-#Nj zpf02+K+j9F0%JP!Q`-}Fr1-tp4|16JXS9*>l7L-6*NqMck?|#gGJ&5Bh`>oHD*uJj zr63ogrb`r+e^h(9@|WPIiknJUKGUd(eUhwdb;*|urQ&>;a-Nx-H&V7SlQVZka3``2 z3(OK4S&b^YB+!#jzLI5Ed-<*b*bM&<5xA}S1b&*NS|6#YR(V*ikz#JinhZp_qAI~BMwak+^rc5;N+HkjsbzH#A3)`3`^6BFPNuDg4 zNYnVhbWUhw!ARW-F4{2(PqB|lv7#{t{W&r4Y$AXxS^tkhKXjU6du9lbropCUk&{bZ zxT9D{6}~wC7!OZng8C5N#k@ED;{4gJ%hz-8#V^LiPE!A4(U3{%vmAMG^}`&J$#4th zN3JN7L?)@8%I|=1GV6bf$yH2g=v6lTI;hOcy*tRrW|Y1MyaTk1(l2OPRlvgxbnwc6 ztrdR(L8^Ro#gCHQMs$en9l$rbFq7o)4&)@1g8sM{`IRm`I%pb(9*;Vz&VMO0ImYOf zHtQCvvF;{0>zMRpA!S|C3SMNkFK~GpAMBt$-=8ntDp5;O0Jkrw2)vTUZ||UL<$;CT;+ZcOPxG@8YjkuuBpcCdtN(QA zHnQP21h#O(|FPYZnxSwL#5_N+kBI~NzYb{gO@TKQ0PY%h{V*Xtm(el|&<0}$Z6RMz z&qn+AJlYpczcDZhZ5pz?O(GVV8}r1-VNl|O9ngryfscf4Y)`aE@2wmx^kg5C5qHZ) zM{fySsQ^Gov?>9dzBS-X1dt8Rr!+WHq}S&9bqW_}Ro~ZO# zw+E)R;$I+0mA!10B)PpntF#|q=4GGFrC#=a+>6}HZpqd3vJH6Df6L1*Vl+$D%M#Z8 zPmOh_u%lm-Lua(s_Gb=P}DjwrGg1?*|O31HM*@24>sHPLNqWOihv5d}E-aA0I2fNUy? z9y=#%`i%@u`;reKPqQ3GvDSn@1Aa^+2d{ zz&0h)hri>EOvrO7w`0X1FOE@vGRux+EPOAgqU9SRii z{LA_30o&H-$S4X(i*;`Y*6{qhphRlR(+?%V^mr%m2gm;xVANu>Cu1;bvDscKA%16) z`fk$}&lb6Onjf3hMMu|>rp4O2|6&$(dQW{27%vnSFv>x~fG*6FxR;15`Y^DW6Z$hR z&VgRp=lZm62F+A_Z2A6+ct}rm^BZp9J0% zTr6QEOsrs^kTB6zAPW;eQNS4;5D612>3|f&#G^{UG)!F36j;)Mzq>#lCVrs=!iI^P zG#Jpk6+P&Y6~@_!r=%5#M;1hZkIY36_uk%uE*N+&ZX;8@Ck zDAEc&c~heUU3eM9Q~8}3MybS8xt-+k)E@aIGwbg{8KLb_5WtfoYJVRW`1m;P+&xmj)Fozdh%uBf|xk%Dg76FZzTJpgc zIbl8vOCqM9(t=}!MeJh|G0pFU>eGV}1psmp{he}vHW)LgCaLAUhMe~V7o!IxSS45zt+BMnnHLq<#AN-%(OT|?i4XSV_9C%gP+>LW zSv(LGn|z8A&e&w6Lw4{m$GuOHu{QY*iwD~zw||2nn8&QRKZOo=2`a6)D^o>7HsyCw zil<|WRYNvHIG@#7B~)$MSw=aN@$m2tP%~BP#cI*0>jWZ_wBj?Y;{2t^&B>@&YW7W0W8dX+_A$}hM9RM8=uKA`T-=hsp|g7Q z)+mi`0Yw4PTVao2ZU%oxXZ7gq#Uz*q`UR(hTL2if=w|2B<;|hJ@GI?y!&5zsfvGb`$XFw9Ds3fe&>`R zT<+GE>&=|q%eAI~jnb${6sGG!VoJp*EKLcRMq#sT!8xt@L0#lgSf&yP8-)$0{V8%` zfC4a$!V-rcb<p?~iJ-DA``#Fr0ZQ&*7Fxbg&3$4tLTS z+{X#!EG)_4s$U(Ijy`h-&BEpEJCewicS8$2!CMlc$TqUB-k?dCsQ?gpz#BBn`jPRv zN@p983kp9|WPwsBGIa4Y9T7w6vG8wOecZrj6WZqJ z1nkZ^!DAWRDU4Hj18GPS;0ffc3QFI%;Jprvmp_JI4Jr5lcOuWf4tLXZ2yfy+M=ks> znj zmf%R9zpPL_0c%QvIdNO?agO%@j9LPAEC!>NfSq4Rw>I28A%&9dVEwnI~~ifwFH8&hDlBE^1Ke*&w!P-nEB_UU`#5t8AL# zB%-6hB=35G0xM=5Z4`iGn5k#5^})6LXbBnXYm4yBWE=n$blgywH<%0jmVAzQdh z4p{2wMgsOp+&&{SQSb`bm5#>{^&Ya)>?AeC$yY{+c7=lL^~%m8%HBVvAnp3P;Kk&7 z|KR0ATaf>vqlga?{iiOtRQL}&LgH}VXP(4cM-GOAt$5)Z=A}F$b4moU2xvq$V^gq+ z6Mkl4={|%l!C}G~_Av>@el9|pTZ4-f03O;3W%wK&!&C_%GU=Y+7+DvxV9c#FJQ9qt z1CCQ1<>{Zss)cyB^ooryF^2ce0N{a&+!u^Y^wMToA94 zgjfdzD;LC(juyn1;a=nc*{wQF>t2LM9W~d#6p$@qlYIX?XufQ9wWzdNO!v8viF~l-hoVSCU|y&jw%Q`L=rXfb2*NMlB%w zii(LplBCNAwPkcbE~DlLWRJ&$ME9C%8^R|F_75j;bU^R#5BB0O(yQ421$uS+9|7+Y z?H~R3gQCwd}0hcLf?Gz@1;%kSIJbTnyA<4*+j3^ zY;amVKDWv2^|>7;(Q7eS3@)S3l9%Y?T6u%=_=t+{L0a7A#NmECBE`>R9)oT_1PI?YC#$zU^kZFU2+a8;vEq1rlVYG;FU4+4Ec8Olm;PseoE}zHXvqknFxpQ8+&Hx9N7)4QZ7=g_e z9}Ly&Had)Euft`rJM2ij;7F&)mKiH{a5}HYX7<^PR-eNH*eph;*XnT@+-`%*XEQm> zDCf|fog(wE#7(ukwjr_Rh**@O=k_aC*wMNlf_(;>ON`|s1}&V{eaVsm`tD}v%wV#M zq7jZkHoC2LICtJ*6nzGp&1NziBiwNWbQui}qup&bT1^f&zQo&MFxahThuLEC;OjEb z$u!h4Qu^bH)m)XfgzV<-(CL`*S57a#bkqf7r)w*x!;#oJ13%E6;?Fm9n`19VJmSk7G`tVd`7dw zYsU9=S=~mL4+iSB8m(@(%jvLE%JiMrT%BI%b$C5+@1Oy^n%Qdi*?lIT#|jqb1NUv9 zKD{)5>787aTU$cbM6*euldibx0*jI{9t!UtvXsmXBXnd~?gLQV7&0}#`Z3fW* zr%?IKE)&?4X!e*~CbMXAVlSN+Ik6su2U>(rb+$OYCNE60MsOA`AI#rgp9|BDwqArJ z*I#5dnC(`F)oU=AV7mAD>~@ILV7;b z8yWsr-BJf$&MBI#a3hApWwsl@TN_2Q!RE5tEKZL>l;$$0-6euk@j2a~d|t3N(P=f{ zA8v@iL^mp1yCyo98H^^dQqk>jTWx013=K^H?e^mN539k1MbMOnjw$*!qpg`6#}{h$ zjYJQE{R~+f1)Ueh4SpIzS)0>rH(MaWHNkkzU@XwNk@}4GtyY57fxsaU6TLQ&I5>BQ z)#>rtoy1Tf9FAEXOllBYx-32$H1h&>a2qbG)9CcTY-x4bOf=rwclVwhTv3YN%izE$ zy-B-c$>!cNZOqv)VS`>LI$UlS4xqduxHb>`fhi2)EeP(77U(_h1$98U*KIL+JYJj4 z48pRDHV~xE?X`&>mq=o*Xbfp~8a+V2(+%#%Y=cP52eX{f;WNNI3K2>K!cCZ{Q}s>g zNzto^&Ts9m+R&#J_yvd60e7OH;a6=a(78;a({1zmz=b)$oZNP!1@a7=Nwhm5EOAQ_ zB=$8nh$2DjjAjo|VzWZriElN6(AVRMYz?4IToq0LG=wCZsZ!{tH_<#(FiVUXoHjvd zLaz;y!NFt=lex!ZGr>WHPKOCjD0G?(;QW1NAj2DrS@7gwuvolqn6_c^FnPV;jVu

)f(=D>f3a~Nq-Y>uo69R&y%45}P7C-|h?L#nTAko_P-FX= z&eDY7)b7+MO$eHu+U<0914}dLM6bu~1czs}LAYgfVNd7r0s9Ol$XMXopr+?hUS#)k zc((RgEgq*8rY(mVZv2C29j=BkczizaYmk7W_2V`~jm!e!veyUssU5CfwL2YfGnWzM zW3qwz+1=g~=yt=o6iYvq8m!)JAk(NYhLZgTOtG*b>bUfZ4r}PQd*>;PWBQ zxN&7(M1KXU;fg@FtVW1CjSy1W;k9V8yBr3W7iLdTnh3aMh$d~CJsTmmgUKyruZO?8 z(?F*;h^l->T=HIm_dQMshJA2Lu*oAr5y=TfBADr{cuoi2lvY0gO;hx}KXa+E zNV`+C;JJ+=s+hd7x6TH}1`gk2aN2EV14O)5H?SK@AYKc2Hjx&r*16VBOD_b|0_SJ+ z!K4PY4wp@|`a}<~8m>BVKo#mZSmwI)l{=x@;e#L=u19gzwhQS8IfU9pb8lVIMRj3k+fzESg zD7QJSMkmw@KomZ3$WSYQ(A#4)z$9#-w7#{n8mtcrZWdf7@qqD~EFQR2-X|L2 zB3kUUTC!yzf<#VRaPp8*TU%vWUkX0r08@`%-o2uuJ_TiVn#lRQFu6m4(E=qZv&ZFi zLUGIDwLorU11+}DR7f&Fqt}bc7p+idbbw+Qz{PqXNr(8$VY5(a)9NHlg9f7lPUUlp`u4Nl0o+=)ki;Zt8*P8tQun(M*dbq@Y*iw2GiF zfC|bC5CecCF^U$bUqIvrg-w)GwI`a@rRds6=Dn0%liJDjPu~`FP%(wv!w!zn2rTqK z7y_nfbU=9lYB)Aiq-jL;+;kljOdzGUS*^Hm=Yi|bT<{K<4e7MoY_dkcuE3SR-9#|8 z8$n+Ukab(YBSKl(3i%@Z_1H+lE9G-Khjzbc!uQo;k#?_0{|>UFX>(9_C`+0xOe*L0 zI$hw2VUmMd2xQhS3mB8ZDuQh679VoX-`+7oiY7%q2iTX%0}2EM0hkgjHYo1c4KQIl zpmv4bMaRgxp*3J^ngVi)vI$I6F^vXUYi+jS%A_7mu36hruT7XwGB!{kH#mI=E*(%J zfD9Wl2MAKkBDfs8(HIdg3_&~w0hAH!$ziekAmcH*oe=&5(QcnnbQ+v!{f`@@MF5@0 z?1gmL10sZ+)&oip$`17sTzvLAUnG`65o2%gpM^Mcgy;(*tHE0YiR0t74fDr0H0tBTNs{_}>z}ZBgu!+?a{0N?o zp}=l3+adLV`4aeQw|eX_Uq%ZIsk$wOcu|+4L$rU<#v!n7gI%2$>LQR)i$2JyK_5LP zxSHLKGcYzX_P|07+|%x`L$nBKrpsmUSfEA=%VE&*g$u9H+x; zcNjd7#G0Hiy+IvWS_IJUnk)k7QuP^6;INUESWB!n#>lXH@_^rRc};FypL3c#5EEgi z4WW<06an>trM49J(&LCDy403JI(6aQcy*g+DLs8O3Y5P z)#!#g6|AB`1=0j=5msejeZ~Xp8O&s$hb00htX5-5y1|(^9I*BZWiUv5Z7y6yiELfA zXES7P@ERf+oGieU?{dPboxx{>MH47NxvdDwz0vw)ioWeq@TlD_+WI{W9$`%##(`Jh zp~h$y4X}0y2G;I_!hw~{Q69V5 z0rn+AQVssk31I{+_vpaYIUFX78OP*i7u2^Ps0T*|CTf7Z(n6;)m=;`i2UsXjiDx^n z-DiZNkI7+zpxOtK#pbtT^&ahBjcEUh6=IQgr?QEx#8F~0Gd2bRlL@2`UJTYQpz`5@ z`~((cy|Cg5A)@5VNd>4-^OAM69=#o11xO(sW1``hwUyGB*jk%;4kIp;yz>;w*QX%N zLUJ^?H`D?ZeaQS_rv*4gsQf~$zy}k%=!6Lg9QOW-4G=f_phD?`%@f$hK$>>g6(YJ} z(}D$p6%jI7yw<88vk~eeb}y{4dQFhwLxtZ4a}}iGMu`2O$_x>VwAz-cR~j+ewR;tj zczWaDLP+`{odipV6;MdWAjvf1nxxML<<^lyv zSZ2q$L1!sebi2(qrwwWi2FMNER;NX@d*Rw=s|PY8r;mxUbOwiJ&!}!N+!J-?&3@=n3A%U~Qt{oh249!ln#O${@l$gU&0$8#^GS7a<;j#ZeLNC4$vam~Eg44zY*iIbov^*oess zJDy-emfHZ69b`UWI1sNu)i$zzfcI$<@%2kLBqimAa41rP&l6oEZNkjZS0 z?aYEGN2^yOoxW1^ic=X{`+(An5rzZ1lEBumceH|!G#NZryzXnWNko`TP$2L^(ha*= zV4sB>>ZuT%_*_ma5NvTs?%(HzNdZbcR*MNzN|V6_^BthK!;A;fO=QN76?MWJGAb3qgio3UWE49YVicH6M`qY}@&ZV{?A;QK5_ zh<AeMyG1**rAW!XfCM(~0U6oVkohN1&3&jI(Lp5lN#JWMvJ*Y4TuL|c7p z#1y^CEz8DQ7HoQO!R^qZ-RFU^IGwOIiC4&cu(V)@NfD8~23va7kUT`=4ry9nEG4_K zw54N`l?=5N5@w@>y;~`G=fHCpUcuI-A`IM3FS>+{3*a!{7#t$ZH$F(gaEK2#fmv;^ zXV6I&X`xK)S_|TZ5+syJVA<0M1_QGLY#KDcTA~SJ57;t;U_V}7WX2Yc#^ zMK?DTBOyodfXdi>Hdq;gx>9WaBjjS*ox4bxUk|l2t&VMAWst}?VI!Z}0?{dKn7~`8 zoK8pYlo;0wpqd29$qUmz!E!DyKQEOBD=w^GFlV2d0_5^ zeL=Wb4k4Ns%8PDTLxnjUiU)2|R|rY=-M2g$aGL;F~F7`D0M*6 zYqh}k4p^^+t*0J0w;!?~Tv=XN3|Zj+ar-npH~ zQ09(qfIhbq`P@!qmA&G!0Q1~VWZCxTb32jG?LJI30JCS9(xXcMYHL#5L~mW(z6v>1i9mV7)A z-PN+GbH;2qnYyMcI(h79NA%IOP*%USIq)F+rdi&b2VU=;Kkxb*0u_5Z!Xx22_=xGc zfwLAaywSTbP!Z{f+FTP7`Ei|4={2Fe%+YXZZcXQ#Q1Ksu&Y2bc;R>gkj%a*VQ$c1A z{JZ;2sBBuWdw#_`aIHm6w#Rw>?18i9IA>y1Zxo@!*MxfWU+dB7YeL<4cQM+!INYgf zAq;JGMbmGY@E23Ix`Io?e>ai8n3B~Mc=)R;@R(PVVXlUO;osw6IIAo0pjMN?tggVr zSWUWL4L#!DU&A@!t1H|X!;KZ0z}O{$z7;FrpA|%QRV(q&k?$f|E@>ttN061 zPiLq!dl!CBRPcVZ)E^o*ZfE=f{)MmMsBsRuVa|N~|Fw%ubIr5t^9I4^fpG4X*kii@!29n&4O-d?p`!b^;%nqa3kTkDhPc)EX^$Y;Y?y%oTER^^vWv&`X^D zAnxEz{O2(K^Kbm;J^bfG{O99h)aK0xtrzvJcn$ya4gBXV{O1V%^Dh4L0siw5{P9ZH zRrJNGPi_u*7Qezb!d;S1PfC9dm1WiyBE2`%KVN~yif42LQS(Lf8855`Ud_itk_J{qvAXG$LfWWvXEC5JB!iMYeUsp7&q|$ zV{~|QO%c8atlzBAi&W2oaBDT%zjGCQY|%8ZU_*~3cKt25R}M2Tu`MOPdv{cNN4O$i<=wtJ!d6s#L+A-% zDAN%toBVKjzJqxZyG1^`F|;d9n8ZM%^@|@UM$at{nT4tBWA3vD z%hRA?q|vaXCx;%oIdlQ)f6F6n6@V`{E-?sm6Ax0qCxks9mB8ej`rm|dWo=_#VtOjCxpjb-cI)mFfEV_SyzfIau&$i z-Vqwf2}f9D&h)wo!hhH&6Gm(*=Z|zptyYG{B(}w@WT+^l9Us!}c>Tuk1cqx8=?VNV zbNk&r*(Y%(M8(zvl>Omqa_t_{-`uu6Tm%(13fVp2Ju&fi-3eQmjt0=tWwA}Lpd-gu zhb)}XnSH)>%;779V)hAULL1x$`u!cQR;U?*oE0^lQASP3kO+JD$K5@VuO=i4COHDW za}V@GO=xo>0On%PxGt0=kCXHYm)0$~^x>`CC1}EI~-By-Z8wye~XPc!+&M4B*}#XtVv%DT!@mzT_%OB0D(B|MeR}dpYhUb^c$i07DT)@D|9m-lNGZvgEbWiq4yfgSkCY)fB%g%!u6EP?dqN?*Cr`bMI_ck`CXLa%`iIU zOVi?n?^GfDes;uIWpk}qp-4n?A0?c*Nhx|~TJ@YIkGAGsAvlrYlYph0lDoX0qIn7J ze=($dkL`Z^YDmGuxFh+sY4`Qiym09rJn*Ova$nY+KYY^i%oa82*WNJax`2d?kRr8- z%Qwolt#SQ23kLqC!oXkT3}kHnC(6L&OVb{>b;$#1d_gaAXq2BUUoT23!|iR~Xrn*5WtfPRn* zXfP2_%j=vsco&_Wg#H(m5WO-@(+bLUoQmPM@3grGe|@jyE7SC=DvPs$!D@zo9c8}c zvWelp^smsT{2B=tYx%2KJY@&A4dH<6i5I3_*Gto5D^o}8U#I*|QsnaU(EcAQ^CH*3 z8nSc39z2k!UEs*IC@$?mlC)WLXTw^HGHWgTAqB3InecU%9kQA5)daSZnedm_Lr$Lm zT7j=$vWUo3csPl%ul{Am_F_2^SA-~IFTiw1qu}bfMLDQsf9;h*hu-Qe9w)K59ovTF zJAK~{-6!bT$B+sXBg0eEdJ28n$0Qum_eP74ge-{wIcpAIDhyU?>-l%6yR0oly^QF` zD~$_Bp!x9#lw}5LylwM5wW<3*?}S#XC84*x8~R1KjvXTj5N0t?;*3U3?}cXTl;1^# z;G^1I^?qm^CoE&oka&S1akfMvi;ikH`y}3Zw1Wi-+I{rhT^4>z?_{4rw7UV1LM2+L zgLj}ctkdZFQD_$bl!T0R8c(ozh;rZ4TkbXLdTV+OWzwkEP<|IB8^V_#D{~`9A6Qb( z3rAVLl6t}GN1W!_ z^PX68A;(`QA!GGw7K@1J)#ZKUdR5-%uj*C4GU=%4`_NBnUg5jrp>4t@RuIH1gqbG{ z?SGyK&CXYT7pXcK%1#p=X8`4XV5cNA7C{75YAz?d$bvNr5Mr(!I%l|WkbO*4>cu`0 z$Il_13__+H4=Z#;9S+-doG$ovHjOj zJC4upOVy0kj4WLDjv^wO@ne!^e5b7$%Cu3Bqx>#P_dc}XsU>-6`5&R%)%2v>pP>ff zd_2gg%@aKt%sgQT=z9kAMEPChfis~iIpHz}P_8G3CGoKc5OFCx+6T_zMp!Ab~*{>nVh;zp4S5mWN3v-{bceq3Hlwgu!tYL94+l#RV>6S zJ*WGkVxxa7!|l%rx6>-dEJsamEz#x2+p;Vr5nc)==klNii3PA!Odj7)&gAlbj5e`M z&RV|XB+t(R05v9ek%;$E6u{)ll{;po@waF&xi|@C#+n`P@%)_{OzszjK})MBllOme zS6_z7?tYlbqtN)^vMh$v<)nS)7^pl%YjA&q+lFLrqw3SOHvaj3$pHhI7oGvWs2TB- zEZb4_&&w|0-;?mLGs3@F6vTY@0iz&uWypLIlljk@uOpe(RGP(|C)cb$SrS>zn$@T7 z)^2fA^%uB@8He4YrWuM?VFAdtD z;_uS*iH&6w*$ooiY;QC+VxPqOhhHQ%x+N{i#6)MO7L<_uyXa5(0x*k z?(f<0$||?tQo0o?w-?=6*O0}x>5rK?p-5@Mxl58<>;7o}RDU6!amp4p3}T#NW`9x= zEI5UGk(X`1rHZcR6Tilzj>dMlY+KsQvTgYaMzge8S4ODpmb^|gtiQU-41sqsm0^9# zxD9n}()elp)qTpl(#Wo&D8Q#24b@ep@pJpD`;?|6nD-m%PVsytz^M6@V=)*tpK=A2 z5I+*IBx>-G{xt1VnX>GdGpu-qG`DD5ekdj%V($ei>W``)sOlEEcw1c?s9CbTlEhuO zDPR|#W*?JqdryB>7pZTxXH4g3y|Ld9u)1MgxQh}W*#M?Ss3?mrx#H6S^mYdL^HM7-9?B$Ud1Pn zUC-2sY5ctd)V;8t_{RsRd#&5#Fo^qlNl9eai*?`d{L28S=DJqJ z0M%UACMqWWPQa4rx^CB&QI%Xq&39cDF(DDxm9K2|k<$n2`f%oa%ga={4PrB)9P-TP<%v%;Zu9$dZ3d%!V3DLFHzT*LUizI$j8{y~~`VDTbCAA#sk%9iVo< z*3HqgWwp5I;TQ2Y+tZPFcf*as6Kuc4O+LyziNi&zf2;csFTBLOq;B$c_6c#5FO{Iq zXXu!%GF{YPD!+@;JOR_J9M;B2=Z8w; zO^R(D?4V^{(+ckZx6Eq_*TVMCeoF)R+lXV4H(Q4nrK5F|m$!+$-8x*I&QBpdDF?h) zNn*WxkeVBvIEcE@VYq9#8?_G7v``Z!g|*OT2fULQwbN$mTTkBGi&Nw2YB^7tpmzo3 zX;RRO9@^gEjuhpFKTPNEAEX}nZj*+1AH@TEZ0A1IusPDLbJ*UJe`=6=`1^Pg;PZPL zrr{n-_{fyv@J6106~NVk-~%ymHP3nv6&-&!U`Y&uS7^&^nOtto_pJ3X!BNkuZ80BG z&pNMncq1qL!S+r<;`g6vm?5+@Fv>(i;y=*$eZ%_`+soY6r?Fu$z$A?ya$fjnp^(K% zx|-fUe38(Leca@39LE_DKOo#UvAwLTCZ(=O+OJLfS85)zx?5#WZY*jnQ;H78;32BG z$kFgl<|3~d6K;bZDhX$!+LExy!9D62D;rz7ScJq^jx)&BX0+iS_mwA7_)5ZrU@{ZN zcX_Zln;o*uQ?8{vka_sZZJF-nd2^0Xw)T|lyOe7Vy=9V5a$$sOZbgQjDw z!6W}$j`0UZ+q4}c;oz6a93)FWpUGLsIL1#Y3zHmUWa*IbW{&6J;vuzlk%1XB!2FY< z0IuJ6ez*Vg) zFD6(uu(R<;)aZVT9k0w&y+P?#@Ko=O4Hswd#|cv9@NKRnx$l5hWiR!OC}qL87rB>u zL)7$Aui;VuEiW~b(JXD&^?+Ld6;(!WR9Bfoco$O{HVt-84u?2?I9wU6=ArJ9MmCh9 z01s6)B@CM=#v9c=)PqSdXRZoYar_K`QS(rb#$XaWRCatfg#$HpZ5YD$0wjqFTxisk zP8ZA=RyxghP~n((h=a;kHuuQUYr^;P9Rtz+f<-O37WhB-SQX`T*inqewX0nu)JNar z$NSrF9)%v68l1@ofQtOhU4$4oflA!Ixi2;jh9vCLbjl-wR>T4Qi@3~42T!;qFYIIc zm-)!<9V(B0nqGzAPDT~VEXa*_^?#d;{FsQNY_`+~VZQtIe8^T|AQvS+0 zs|6|!SS@IH+a;|t$+rlxqZi1(6pmiVxB}>{8H1Ky9fE0fQP{@!?TMWWLrTa0sc#crr!tggT~R##kzpU2NOsDOV~ zkk994<6q<>yX){TvaNm&{zW#<&c(mTM#*{j7u1gWw5XVmf0E^f1^5>!HeHW@5iMVc ze|>7CM-fP0qK9Ii!Z&>LSl2W(e_Tx#THC&o(HmIe~YL_dyKc?TcI?-3fAKInJxyO<}?KM6?y z6ZtM)`CSCQi{G0j9AE&c^_H&*&lBEaAD89rxd64P317+|Fh#DZ3BSzAz`*+zA`F4O z*d@}p?QFNqx9!JF^xO91Y!75({I@3hZF?M(^lf_rCh~3jfOTOnC$uuhSxvUF=Egy# z54>BN>9_4X)0E*4`L=ytZFn^&6f-U4$fR%E3(o@CyMb_+6C5lu$ipWHW$Y7DrF584 zKNP+%u`SNQ87ic2+b!B1lW*ITNKfDzo_u<;PvT67icR_3_66*?@hrp$TKcwqF584G zx6Q5#=W;?7`<#5Fu#$a3m{4U#L+it{65Eo(#pZQ>qYzR8nBE`TT-5h5-Dt%$KUJ>>iIqc${SY#_1*y_hCm1XvO6gDB5W;T`1pfcmf zTIKFzlvOjEF2j6^`fMyP?eEN$B=%NRVq~uArEE2lc+1-+e|UoZfrZ4<0 zNxIpu%U9tg9QUDwjdix~v51H-crl4v&wy1ZZuV2Aiui(_jLyfEE=q9MWP-8E!8uqZ znWLA%mk;->B&Uxs!c4cxx9W2?WsOC%zYUK<`wms*p<~~MC!%TJh4WG87b^?U_7^LA zq1RuiJP%Dj7H)~&da<$?wSA$oGkOUBasGE#K05OqoS)Tv*e719?8q0w5EDyGF(WB2 zmcG;JLI(}e)cBVxuSFgHRoMmYJ{}&L?Y`DIcc%C1>GNmJMc17Kf3@dixD%RxJlr4s z@^WQYbkT`$2b6mPo|PS_?1c7RRn-QCPlT^TIsbyU%}3FbFR{t1Tk+xcO&abe2P%i4 z{fDY@k>SVi;MR1wWVFX$1=db~4LErChj1VC?lEYy?zPGc6g(BqLEcm0j%e>G*hxaT z+I-;lO9FQU@On12s9`Yb#QIu%)P~ro)m%b>jeHp)#J?lsY?`isRdM8kZ#Ozkg`*Ja6_fRvG8Z(97ZJD3L@WIBDXN`tBhu2Pr2Xg#Y z2^;GiHnE6^bGQ?@pIDf@-S$sAhw@~CQ#pr&NzUN_OD8*>9sDEQi{rnbraCD8wL)A_ zlO#bkQ55WciePE|lW2ZcRh!_b`hEOQ8U}Qg97$veSD(#sEm33tdUkhIykA!gL`{1? zNz&c}|B&|HnqI$JFxq9>tBVhAu7dVvp><=$67*opdLMs*9py}UtScIrQEwJ5W)YDL z=R!MrHlu!ua3T8!XE=HBF6K*JjI`6TLn+giRcJU;51q=a|36_q(*TifuCpV1tNQW6 zb?h5iHw&b0uGQ`a>H;>j7m59Ktii^|0l!Guc|H=)gj^{m_?xjxC!hMUg&n5MT|`eY zXkgor%?gLUtNdQr#XgpSMo$<>0F@og!4gIMS_(32$dMW7g|_u?3I{d%Uaz1hR5kMA^=u{qPVvCl?IB_;uN9`C3`25yWwLPxI(nGtX^UJW*0|XapYl40lbR^ z-qa(%UVvSNl_FyuvWdk*9J0bh_)pV{d2CPHX?^m*$ zi{rr0#DHUNS@tFGLPz{dUM8}b=J;nKiw6hR{~;W}l8>e&MECz)QeP^(#Xcswf53s} z4XQ6s1d!?e0X5yvXWas$vJV;Rky>%&O0oVI;dgc%q&RY#dBR}YXRM!{ulz1jW~zTR zO~@V0P%86mpGpH~5k!{S>WA|}F$+eHn|VHOeFi$^sP8NEW8aZ8XNm`-n+Dh4ErY^m z&J1DOlF~Y~JuswxQDR#eN1GG|Mh|{?eQ13*UYNvUCFR_y>=PonNrTb&fIpbnR@Tqw zO8pS8#j+&MZ}>%Ksc(`^7~%6lxZ4poMag4T;o+&okhj6RM3063ylh%VWbKIh0*(t) zjI7(*$RZ8ZS%azXu1dgYQ{lrR70P}8BD zfv9eD{Vl>9tVpmD>t17?#Q6~g{*6riDH?G|-0aJX6kk+d#|d9B_~_XoaX*tGeG1O@ zNtb>uytw`+;RhC!tcv`~KEWE)2Dbshki%|6h^t$fi}r5uw?^H@*58?kK&Dn%N_`Wx zVn>tAfwsw?+#`HO2nQ#^`;^qGXh?__FaxwPJlI(J>y2EngVZZO5ls+NsK zNK~uG5c!PQbqICDDw?HCBGIfAvh9QpFItrs88rb1HBLN|1P@&~YsXMw7W`4|4k=eaTGOLGTgJR7|Lt4F*-$l)JU^2O>!k90I$d&XnmP|H`dE)B&y*&3P zrdA`2F-xNQjiP}v5PZ))3?02{9n?qK*JVZ4-L@m0i&Q!5(|Eq!Q1t@MNI9a&xXK*^ zIRub8wC=NRZ6Z6WcIc&l&v@>>HoOk7sTEEp#jwR<9NCdDzYLKVPCla&;**brVZ}g? zgkhh=9Y9nt&gKi|(xGy}j2+78A1fGoB+Rt{pjMl^R-)cZQ9x`-kAzvQ!T)(lF!V^6 z)f!yBIR+EsvMiEx4ONUJ#}3tuBw6m#8WsB_&TsU|jrA`H5uh^Wr{MU|^Yw(x4&I|FldmgGfxHmPs_RJ<_Tc`y@VwsLWR<%bXs{@!z4zRjukXD~q%7_*4Rt zqf~Hob22@b=8S}fohyE4Q4qiLHApM5oON{QKkj#GlSxhGclw<#SMT2EtEl(ex79Bz z|6 zCgEbu>K7IdF{>}mmq+&>VYw5VKTaz z^T~U`JD^)(Ejjax`h%_b3kgzo|8?BZ{woP?)G)P0JGBmy6dQM0i&R~%B;#BLUmv%2RRSrww^}|&xwh)g(#Zz^GcX3Zewif-F*>ITW z9TGOyRasd?#8q`4E_YR35O-cfGhI~*if>A$I8_AT9xjgnX0U{^0q(Xo4RC1hZ2+Ja z;6~3@SxixYea&mv@Ce7>1;p3*Co0bT%O&Z?VNgy3tP?f>4A_^_E}HVYqA-|+N)!G~ z!{rnH4AN9>!eC7p>r)WSv0q55j*^Gld`UP*hCeI2ErH2ID{|ly&V%8=nr6^B5aq5Rj<4xKDH-sIuY#W#z-YHMr z4Mh!OTJu*Cq{>rwL=xf^rD{|6WuWG9lIQPB2Q)OaD&`=MRrVca3a#HnFuVU9d_#VY|~B0CHT=Fe{(U zq~e1^PhQZlKrpd`AZs}W=1IJDWaH=tID4s#c}X*+G3*mk@+>Q(XD=nRl@T&ZB82UX z<~{6_c=zy&`234CKbfD84qw@zup&DLk5R>sR=~S>NP+z*suq+`4jArWj^##O1VP%vtWF~w;9|!1Sh$k zNihJJCdu$^RJ@P|0Qj6w=KID&_=Qw-IQqwutb%87k8*$dXql!z-Hj>uTmE!1qifp! z6n`+!w;G`mm}ZPn*P=9d7t<~LQ_O7Fk@H|{Xh1;J3gvnd;Hy- zLI@Ke1VX3@5RguK0cp}pfKa8A3M{<}5(uFOLN9}08oSxeE?vs1s1!v}6p4U73j$UI z3y6w{%5Tcuz2~+K(f7~q^ZCBd=f!1a&Y9EZ%$d0}XDaSbx4L!oI9}iteJ>C%F4fW9 zCe!jpRXnKfS*SX8Bm;k)k$+EoPQnE}zz&Fq#!=*xs!CSRKJ`EM0B?Ep0P*76I$X2O zk2fK?s?q;CXIp3V`QpXJITau4z7lN_U3uuDKm9pJ=jM;}LTh1vs+C+HHzGh2-T4U9M@d?-AY!0&S-JHe zy9Sl>(U zO0Gc+^(7}9tVQvW?fDNyvAcFD`bdFi-+>N-#sa^j7O1x=qt6l#qV(%rx|nF3zk_id zB~hwbgtqIhVjJuqw z9%tkhlxjFiE9^oi1G^$T>bp=Tx@AV9%T|jHtUt53=(Oukl6tM9k66&%*oD3%QMQ|- zATE?-UHiyKJlNgXg}Smp$S@?~S`#1fB!MxCmp*s*V-zp#05<1EkWS*TV| z#hvI2ZvC*)9_rcr@9=aP6JE~mC!l+-!3eM?M8kH{qI#&c-?E262&m83+>PasxWX4 zXI;mKee-($w?4vlhLbG^$5JY~SpQV8=xRSHufshmlA^`-Vryp2q&5J*m_B1BBarl3xYa{3Jg@7|F3h&oCS! zWS-%vo@&p~zUTkkGfXk|42=I=1O8V*a#c=YIp<%;Da^f^pX(!(xUDNz*D1`ERJVt) ztM3#Fdvd3+j`pN>3d?(XbP7u;<^RelOmmx-2dBWK_pyQWK2%E&_=8JadRl*w`Az=Y zg77Ov>A@fDk%;@5qaps_=uMI(O!Vz#9N#!JFq3Z6Z+^i9#wfly;)XFA{XcOfiJxlh z_>yN0T~uqR;-i1JTSa`4s6TZ&7ygw0nuz-L0u~|XB^wNj<-BBld-1$vN+{(?w^Q!! z0cIMT1nU!m3xCO9WVF#9@oWA%lmm%j8|_O#iR_Dlej9{g zF$>Z*_QJnD$hR8-*!2L0Kg_?P1W-kF7bNx}iQEgr5}9c7i><7$=y>5SC%46m7ke4( zv%E*?GYHGxA$2M@yy$N-rG6(NgWmTWh=+OK4~Xq6qw;rp8F*iPrdV9oRKL!}@HHcb zgL@k=9Ms#G;p(K$%`n(S#vx)sKQXGe@uKJ(Nn!0c26EK+rdV)9?ADw4jAnW_U%yv_ zRKi(yl3J#-cY&`sga8^jj(cuEh2sDl|E+OxNMRJNz9+A;7(y^9)lj{+NB0f|&d>e9 z5?Of84!#9reb7=WPuFaqT4DTcWX8b;DA%BZ<6a0ulGP$4X47mILj{C)L; zPD%jPQ1bWV0W$27yEIrLvxV!{C|GUeNt`tbCZh9@4(3VDff5;$bA3<&$vXHks03LD zZ@^-fMDXL@JnNtVz;8MLQr1B&1j{;Dr4LYzoOO`&!?F&_i--_OMvxCCqcB(^b4GqK zcN6LdvJM)2<*XW7u;1u5TUltq!4S5AEEy2&0%RRzl)AGHvVZAh9TdBebV*GLV#N)y zEZLy=TOyv;q@bDaTjZur-a!2R57!&xHg&GHtz=3dlF4g@@BVPT7M@z;Mo4fQ@|8=S zanRb0XB=EaT$?N7;Mv|dGrS;FjOfEN4|XAla!ngZ{*7GIZ{!kQu8DS*%R0z4QLMQp zD_Q#FnkbfB(^;a#TvG&vk~0qup?YFhr-ssBET7Ua`ior<98Q0+OIIW4FDB-v=`ZpT znq(dvNq@5a)=~5qn;u8gU(CG6&|l|z^UQ-((!{;J>CQa(L(_uOe&WnN)K$V9gX#Y& z$6!4?p-kyNP59I{6$2;T(k>x#B&T{P(p}c z(;GpT{VTaMe?79`I4T7V=4a35I6OcK{AE_j^RAn@2K>A*Wh!YDIlMw0K{YC3Lc4H z^>L1iFYpr3H=rd?1t=q}%8`CiK2m4r#Da4q`@aWd)i|;To{_Qieli6TTMEIjt*JYv z1J&@jjs<4tqbCch3#fKq*;KeXp6pc66NSQJrjFWu@zqWR-IV|;bp-0DgGP?wkPca_ zE-lt37V1hG5cW*f>iEEOyQ5GyNCMRw(0dr~s0(bu*z@XIa1ABHVs;62BrIXs=t5-oLIs)a%=HWx2M25vD zdl#634eC1gDfke*1K`*&0s=|m0)gN>6<|@{f-8dXU&?0(JRvqd5CA3X05KbcXk-dq zHaMEtpmGm|WC4t$J?Lzp{7i{_{%ygSt?vq}hWz^^TwfU^+3l zz!a`uM_MrlJ(q}r441%mmph6hm;{pB$`QFdR2FirDUos5)6v^IiW51k?l4=dh2{5& zFAXi2jh+FtX(S-emG^r_Ds;(YAt}Pvm4V6cNUL$=`9Sx3R8WjQ zRm;ljqkevP>E5dyws$G4gvdW+Qz`!0mK1s!l*p#yGKY6@+2;dmZogD`6x{<2K^*W9 z7Bf$MuOFTx7RD(7R1?nyE(O>*j{^pH6^;=@`s00Gg%eQS{(xFl93bVf3+~V3fFRIR zW`n#ZLgIj1-i3EiBxswNuZ9L;r&DatF3KrOu7FMb77c>xd$HdaFKc3-NI2rYW zHB>AOD;6o2(c;R52gIrUaU1`_r_po;3Yy#g1^>b|XdWzPYnZHSHKOn}|H78| z;?Sctya*hg6)V0P6~;!6XS|B0#DZ?9Zt13fcu4s0I5W$F;*VE_X(wU?@z` zSzF&T^_>l?6;>0_QP>;XJ{wiNa5Q=a78BN2iAVe6K7obFDgb3P`d_WM*;owMr-M+$ zeB|fE&nd#6lQjy5qAwu{s_^Gq-qCf~gxN|#P~i=97Z$S!yPfl30(t<8nF-zPk2}{Y zY^DRiLh>p}ghJOm-~wRJ8Yp^D4Mi!_rGhq9P9`W0w#`wFfbJ0iDd%REiHN0A6%&#S zcAH`;`39486saRfrAeAyrm0`2Fwt8~maxJ7wE++jo2A<)sb}e^B!m4m$Sa_Sq>-K6 zRKHF#izHudDihtyG+^^-5f=Iub_K!60>~%WRdcooE8OZWZc9>ctGRtgQh=0!Wiv-X z_TsxXE&SD6EFrur@6yOHuH=t0%)yq08Q$VC0;AkglVRfA{TOYjZJ=C5;ZvV2uLlmg zFW?f_xt0&b`WWVw)Q1XM_moF@^1jLB4UWZp&4s1&^{8u9VXIn#fXfOCbyM`p0vRj` z06kCgnm?H@W!_+sap~~y*UPAq8mmO62l!M zOIdy6TL$)*ZhXtYLo*5|B4H{3R^9lPfm^wN@vN6zI#S)R>@h%n1*{!y+(5@*TNC;f zn(_S2NKZAcd`Xx4u^Fcv*V4D*H}%aLy%ibh?c&2dSP)(@)?2b9y_ej2`>}rUBSCl% zh@NIr2KV)3(T~yqUtCzYP!O&HU_-s7yMT@Lc3h*kA|t(3)X_|(Vt;%`14d2tfo#+O zPZKbZjT#+KGk;0p$2G(j1KG|Z_(m;@aGoTEW&@4BQ8yWgb50$43iy=((w5|@(Xn2C zLW#n9Js!BzGv4VEJ^#k9jN%dkbKeLqA?>&5DccG&s)%z4fbt%xEFeL;K|YhCAdY2N zQDJu^t{CWH?$f~3*k9PMinxuy7|nf8xnUG@A5i?Xfy|45d2fWFB8I9JQE@l&hg%bm z<3>`nnHY3uOu)~1jhfCGsp<0*g+adJS02dkDO~6){^~(Z%QP^P-Y&f6 zL-N%&db0@TtCg)G-wk4 z0&$lo3j=p-*jK|j^YcQpFMm^c*LOuzbgB>f3dvM%nkPkN;hmI(H(-#Fujw~P?Q3F5 zTYX;>MHu*ZzUD=Vo`2(OmT|!XUz5!RtMxS#=X*w!pOL{4^q3JY(xEI zsr6HF7t}){=5!K zk2s9L7{#2o+%O7<4_IrtsO9R6~6mhW!omHyLcOpj)G1A#^ z%32a|D_w^CuiQ$t%Ky}@9FpY?+{%6~EFHIk!i$@>7vCOY>{db~LA*&Z>u=<~j+1@& zbOY{Wzo8@?gpz;fP68!*{*62NLzWV-%KHXZiAkK2>O7cIoYqVX8ft8sSNyrjR39ou z(3k`&*x5F>_-HdRe5kQ~#!CmlWIz(BjG;Z=tKoFKUYrpm#t?9$xp0>oTw$tUzan6$ zI-b67sG(of8mhQgxgZJR@xqpeRUXf)0Dh(rEhx{cOyV-vhAf*tDSpCNT;V}&BI0Vx zajDJuzT$SSG2JC=eKibNvUa{*d`radui6vf>~_2OXHhKipu2cCA|u@`(dcf{ z(EpX68H6h2XMhI&%QXOe%oQ#^9Uqf=x43Cd@$OLLt=y546n-R}>0dXxJygBDa>Y;z z9}r6ZosStT(Nkd`10>X#WDiiZ_k8Dr+cnD#aGI;`x$7f#AXtp{ zckfD6CUCrDDy&m$&#Or6Kg`(G1WHFLWtf4D_k2`E97AA;f6)yrqg*gJa_t_y<$CNe z=3c<6D3mtUU8L40#440iarbh|t)0gST9N}Q>|VBNRJTb_bs~{C4_Nkj(9+YA^z3de zv3(WsRS#N9(ZKM4xfs^~gs4i)l0+AjFdaP_9jUtCZ+j^sxB zJriq)b%q-|k}OFG!NZLlNzichhRR=tQusq{s}=qxG*6=E-#C)KTtXmF=`~!(kx*+) zAGGJTznDeia2+;vCn9(feD$kr_5hmL12u0MjsapzAKug zs8RK4dF*ht*XTtX>wQ}8PN@BtPD79gdc2rqQq>AOjT0I*y=bH+)BHUFzT#yMYMLQY zTjo~NpILk6_=;b9P*bi3=H~J}ANz>EdQg+a1!JtH3mP@OXr!i!dW~19l>d>}Xg)&i zHJXlKV?xJk{Ft}rr^aH}5yoEQO-Tx!Mi_aG4kOgzM^n;P|Laa;LW#myE9^B+O7#32 zuQ8iT2zZSdTteCq`N0c&9Kqr`0$}7doYL)$H5>);8qMF?^F(d&`4Prm<68~Pxf^>{ z2aEd%jL}Laq&g49*NiZVhF6YIuViKzDq^Zy5fu+L4oOTrp4aGAy~1AOOO2YY8>xwh z8h?6F(*Q|)58P_vpKt>3tnp?KpKwNK;P@w;1{Cf|^;>)LcbpVAoRPYI)2QpZp}H#S zJtk9WKfd<>yNQFaaN67ztX-0xHgX>RKIU3Ag~?P9`rooI@g?0ai1ys5L7pU!cVzJ#KG=R~GRgjLvy0730yf&xASb3ti+NQe67zyRS0 zm6L}r#D7aP9pY$+A1P~Lz7!z5QI3H&l&)mSa19d7_YwI70i zvJe9<_jCPJ_g@0D=wXlg*{0S{#eK_tw}KvL88a@h!oH=-Nc9TTZ=^xsxV^X8DTv_& zz-S6cmqgi!qoAtmYpy4Xu_Td-(Z1^p4NOLod8;7yATUN#z#=z{kxywjQauIujbv?& zG9GFii_wYt+k?z+8{H{-C)sQb(Z5OR_aAW6n0ZI{O=I>iy_?3_L;lwQ`itG5+D3n| zD>K{aFEVSD4L-2ckCIKSXRG_#?%Cnyy?&y7BnyeUyKge(jr>>Fc5CB?6U?=Pth8%( zLYMv`{d%~zt8B~9xxX}$U)wdPW7l?{OEHI|OQ0iu!|Ng_Aw;l)zXTn-w%aS!d=A|J z4fs|1j$XEr=sQ?koMv7p-WZA7rkmTU0O&=DmuOpfZ5MXRpCR}*-8@-9-lJqW@V*vj zninGki`jjY)<2Iyc=$wfn&>@>CpJ-nDtnbyl!{*I&A?DtA~WwIHi%z``eTxLI*NuQ zusoO%phOE>2d6YyoD%A}Q7Arrv1X8Sj>){h8}$YFIPW1d%voqKEM~laHN!kc>^llS zHPbvx2kQDv^Bgo$17)6N9!H_RA9%2?3Q8%ga2`)W%9*nbh9xq?7|k&kl_SVHT#&!d zF|R;7AZ6?V=~hqz@ZO$lHU%5hO_^t2h7JQbOmFjf?H@&QBb*4VgUAo}c*5+Oifn>U za{eG@{*LVr^UZxl^fm-#w{K+7PCB6U(z)}qh32UO`T~No>xG|>!sbQh$>?)fL+J^U zk#^xoKN-dEpM3d(OX@jqWtq2mA-~apImWm5Xg|F9h<_bKe#m?uMkV1m|K+Nk zQC(O}@AG(3hz*CcLVPI19Ng%9hg$efj`<1H8a8z!r%f45*)so{_~Ht49O?ucvO7ZF zqjB_d^CTl82I&E0tT1;{0tj33!*R(nb2LiT14vnE9;^glcek#uG#^59ApjdH*H@W0 z1yB}=OJx~mYvV>s%^`JGZp+!Wcw2KWd4+oyGOHYpa7t|j$P4PUCtAm%@+i;7xJYt$x%9>%(cPZWji9jm>-^ii<^i+c-uDf z4D=>M&s2VfSO*(NAAU1S#^hUp{A;ix|PCBW(D&C^hQy|%ge z=1^r@@`&U>)K;(UxB~MaWn0GUrv>IH)I|?qQlYt}4#36C;Vsc%Jpe*^9qIcm71ili zvTEbSMdq<6U9WX)u^K(2eZF4XT6@TXKp{kyGGUEg+jq?7SY=z4IZQM#2R!pe4R7ZL zi}}9-vOvttK^Bd{r>*8ZR0M071fR8;r=sJqn5mKgbS*Xa(gBzzTKw>VB^bA%q~2hJ769uis2G6c;T@TM8qyU28>l- zc=Q>|R}Kbg3G^9bX~jbI>s&r*8P99<(+lQZ!TNz2E<9rX3=OA5O2IOZVTXVcAc(h2!RNXdWzP6G@iS+)JD`7N2#Jz(Wb8jGne~g~MK1^b`(D zWEx$(Kc`VRzvwzMV@ngUP)F_Tse|V!ovw&o_2u+AQYY)3J@K;jW%DEPMIE&tgLs(Q zi#2M0&a>L}+2d;0uXC|(;ZxCsSIu9eYf$ja8GQ>&s0Rq3Z3ts*If_X- z(r=u{QK_#2rXGV4f(O1~-iZd#u3ckI6?&ZfXTm(IE6iANijf>ALH1Qvo}rN=j(*Gh zoVY?qj5!bw6XP_E7&HFYVstKf+e~ss?e!qX%l}M{pJ?TH{lf#X;yEKZo`w9YxKIk)8 z%mQBm(BLa`2PFVo;;;G2+!_6-1_+>-T^ehTyM95wX6+3R4NxMW^COT$bv-r?-!j*7 z3g4LP&T;1XG~kD9uQlrzH{6Bf`Ix$QkZ&rPQV}iU`{|iVGUcCur=uzSbX~J z0|SH!_}Y)=p33%YP!0acyb4WMw69*+9XG#Y9xakyR^Bncpn@VQX)2p$6CK)_Vn0}b zkKHwoXkNB}WPp%-k<0L#>HzUgu0B7T2McH`q=%%&YJ|_-BkRW9u$akV>ja$ii`l6J zV0=aXN&@Bm5P&(0on5TKc-%+i`sf##Sv5og-|RPYj0#?9bWi9I>n!`tJViw3AbuKt z0E26x1IDv|oqJ&3A^vv)p74ix4EhA3V6i-UXx=1#H~}B-W$g;^wbH}Kwo;&1&^nn& zk|bbpO}zC_v&G1HCH-Z-g1l3}2w)qZ0w|I3;>~}Xr-bU)x%Asna%_*xHM~$gfQIMO zB1_@Es0l1)kuz=R@(8_g(Iazj?EEpXsuBU)e_OP$EE>hC5s39taHO|ovJ!xeinqKi zPorLX0MGhZ#wY>UhQvs{wkgf_)>F1+Yk(rLaRf!W^73C_5}{ z+jLic8GW93zHt3I7r$v0&u8=i3k@xrOLo6OR_QewVQ*FlImCw#)Uq5DYoxMIvEcBz z>_ttIs;Z?jVZj5$cvfvo7M|&s9f0T6wyY4Fq_VHGx@cy4Kyxa@(gFMZnH+%M2(fe% zqX`=2Nk5sIXIyA-*C>nrNk5dT{$l$ZSB%cV2Pl1>_6U~9mgCY#R>jgDfdkr^M8xEP zHaG^7#s#W9Lxv+GvKNOX#-?V(r6(jr#iqx{WTZwU#HFOg$H&A+r;-0hr^l21n+>_4 z34}l4pjpgnvZ|r28j9~7d1FYvX6^edyu3s%u-1Z&vEky7tUq*Y?KH(>oR|QYHZnR ze5fe51)e#sY!&?#D}Kx^Ul+r64TfsrmT$%HJXrbjE)ZiYKf|pYoPytHq!qhbE1pk} z=&5CmTP=J`&hscK{>P)FNt$|;grzYAF@v$+nk!i6Rak0_yF|nz!DKTlWnF%Qo z=_%1^i3w4-(cvw*VdXSR!)%m1nPxmn>=OTpX-1 ze?Cm6a#@36GMUR-GfeQtNoAw(osu;TabZDj0M2e>nJ=y+;L77W@}M~?k++N^B-2ba zQ(2BQXy|nDrm1WWA2~bH)F*mmG%st=d^@FVD1{5cMJ=~h#bc(H_2mETlCU;Fv=Us( zlRh%8({5aBPr!9B3%HH!H1)hO*-(R-Y7JI=NbPs4@Noj4Hy<+)0Q_9l==T#N{T_(1 zoD_fapwM?EV(+;Xy8h$k9dMgC%lBfXbYl&Epn=;GZz&OL6A&Xsee4D?Qq&!dqCQFE z8$Eq!O24_wan8cUp~3p`7k?r|-+wtKdb>Lrq($WQuQv(Fhj$EsXI{0*ZOC7x7*21bf2-qTFrW%1r zdYstFGDrzPL+w!6@V|1~naq`x&~|KR%QA6&I=<1_QkVYsug;eCXbbFxt@>7Xv1ExG z)7h%8ri}O-3Gupg{)K-H03=vBhp7%;=;b@V@)4-ds+1+=n|yZaGWLZ*b(J z=TggQ^dnz~&gf(5OU|Wa$hu+YaYXM7XU!zbOmeOZR2$gKT8;% zHqcU43Cj$5;Hb<>_~1ZGN7P!4g>;E~4YKT0LaEkm_jHWuaopD*TK9#!ynHZT9Fn13 zw=F%N-KYvB&uv1=n~h1FUHDzL+Yrm>AaSaM3@+RzLqu%hHY`KEa7)VYxKFI_EFNe1 z)?Ax25^rj-IbM8Dhi$f8-2ur}eQDSV`F0jfwtOjyFX*s*5aM7g@7A!q^&hhwrY{bn zF1B$TEAnsAgQr`L8g1&-pJB0~uPBwS?_+dRC+r3&k+tta+(G2$0zJ3tipv(Psp-5p z({fxy4*^2Dy%Ua)&#|;YUYVe0I)H?SxZ_+)OJ#euRkv-fWf-aj+cRI4IM3390A#5jq1*@y+l-}1q6|T3Dt1yDWx8SGGQBe zwk8WL0vZ8v(mg;hE%ea=Wz#|%=ecJs--&1{1ZEpgb72Xa@up_tiA%`*qiD+<4cqHo zr3bJ&+pP`e>f-!jgnd~P~ zV_3{&Sa+f`C(lB@%PJsL{STD-51v@A3Y}>iEFmQ3f*rB`nY{YLV%C56iFnv1OCu$K zs(V+i+%AvN{jklJ3;|7t{jew8zTIMJj^@K+_JrH?iP*H&(ohHB*j7th+}UCA7p>&9 z{TGfTk+fyzrbWJLo24z+Y#g=Y5)J<5P-5n+A0rc8qiB|&1 z-fz4fKzp+#TnRu`CZDKI8Yu~{3f_FyLSAWFK0Ywm4`7nDf|>K^Xt7)uQ4VN<*=&{z zOPDZoCgD$QmVr8Lck8viS!x-p({{gJTQ3LkpIRDD>b3pLLAwh zS_ObgWTPdKEq)AVP-z+S(R3JZL$G zDo+Mh&cZ8SP$KJ*{9>bPqKNOlxHz?;$41k5ban5L20GYJU0B`|_16P%9J9>R0qB3+G8~Q51NiH>Ws?$s zDiwUuoGmF8%8ajbV2M_W3v>ehnZGR$!h<$$4i{G9z$+G=r?Hk%8VwdZ*`!YOjq2)4 zmWh>x0*(x>b#_BMEbw1FS-sZDo^0@uN}n;l%F(ZLna=ZCrprszb`Ix!Wr2@woP}({ z?^7XfT5Q4%$}7L=srzwhkEE{8ITpn?s`uZrEa2a$F1=-0D*VjEh9f@T)(~HRDmz4X z%igZWhu=MCSuctv<87QHn4$-8@&n5)C4g!Szb$D5QinJ9%});p z=ww!0B70wJ&6o}0rS+GDi(5?E{R*~l-$;=fjNv>|ry9c#u2?!Caj%384&qXXhz;Ux z#O#z$BIlV51~KFn(8FHN(XVr{{kxWJ-9ZdCn6H@BC+0tZjDk_@^!u7@FpEDD0HaR^ ze@oiB%~6mWzx{7o0=>jXgn8wSUwH@8Ps&R!!+dz#vQiYQO)(y)L2ej0P8$KXZkp8J z0X{H!9F$P7e0v#|$ZBv7xMPVGj5bA{yK6a#dQBnC;kXO!4oYNHF0C~o-~38bYa2Ae z18OX(@65Po*&(8F01rQ}-~2brev}D|+1^Ie`$UA}ra1TAw`>O^c$HAnOWB^fA+VhhD|P;g z$IhK3oc>!xw_q2{0lwl>(i{B@i&@XNrr`0uCC!uoY|H8e-;(Rddn&Larq(Yil~_dr zwbrjBR|Tb{H(sLm8;|tz@c-w^B}YWm0(M5uRi>dxSiL2Hr{s`2)tr)4v*aaju}H!O=ahVih|MXvQ`K`y&QyarMV~7c z7>4WDxi}tX_zVYU{Gt)#??HN1$7bH)jH?a=C=(mrO)e>o#ZwDQ1DwAmmmG=}zh^z^ zpMV)B>GL}x0R423-w@NPyS;tw4`|msj*~Owzcbb2^Tzw9;XB()+A9H6oz>Ut>@nP2 zV;^Eosw0|9OY-Bz&y1||V@jWaoBNQ|xvi7m!F+aS$wN{6Rl)|{+|LjZb90|-Ea5|H z2@SMoG@(oZIV^J4uOqG4&Pkk>;qoHq(CO;Px&Cy(Cm4nJ+7HV+S8%ka{MOor{yM!<*Lw!!Zs*p{o7rG;K7~ci4;LYJm{|L z*MwJzgBaLu#@H+KncKWvX)E<)~|EkwwAONQ7HiA+hcc3-Mn#M zdr1sB1nby{ES>KB*j`eZe9VGXsv(&vi4pe8&+Sj&Tk;Y*2SM5JmwUVj>u8T&q&3e} zpa4_#I7zQZ<^&)OvRue7HYTQP#{^$QUpSK=F5G7}qqvLB*3iFDA`KkDT~eoV1jz?W z0xJpC@!gALKtn$eFazL8IkCTkK+ZcWCxpAyyy}Z4%~@@IzW6qnew~ZwJT1@V`GNK` z)P5kIknUy^`hl0;E%{X#LV5Kt@V7|n8pN@X3Hi{=C6fgqox*8S^2y_Kml_V&x>)k5 zFqeYC_uXU&vm3%_8J#pky^M~Z;W1Kz(&b|smH>@TI9c)l6;mC%W^7f2e&`=s?QyLJ zanZmP@xp7|#(L6&{dMrEUk+Bm%wSJILsOmBcoAxn&s_F1CDE0Hj~FsBbvgd??UKRh zGQ`0qty449vH6QL3}SNw39(sAzs_Z??`wH2&sv33sIjI6chOtrQCT|sLN^DOTleb~8}9hXXeH`)QJ zdb#8+G=~VoZP#=L3Y`f`d%sF5#0eIQD2UoB)zBw z5jYz?D*0VRe?u@fS@#sJ3CMRA>D=Ykn7;m=NgtfAg?|*SfjUsFy{v;#h#E@x8~@kK zI#k(SrDT&1agU+onZ86Ts`#ELIS9}2v4#tsaZ0$Jrk|t~8fZF^)TuO`Xc$lWU&QfbSah8F%glYifFmI_}M_RFXW}}wr^1S7;S!!>Y4f%xL(p=5@EqU*f zNX~<|+##uJC&xm(Wwk)-Xo0+UN#Hzq%K|kV{<4PkJ@ULI0n_)EHaCQkx7j=cG~#S&%EII8SqCxWw=8AiTesHC!AuTe~&2w9c_cRfr&s{K8N!Wa*qQ&BNn-`3Wo8Uz#H!gN|V)M8q7! z7$P*~XS1QR|L2b3LoL_kIfi^`F;s4Cy&)d=V2__k%0I#}5T`JsjkS*; zzU9IAzEs2D$adDZ#E(4K*ljn6+s0Iv1P{$tdxTxHD`s8>vn;+HX??w%75pz)xJk~v zJdCnlM%CsJgK|xvYz2=%2{5)!G1e);`gP8eG1h!9)C>UfPiCj4@1BaM z1YjiPcC@xfSr9-X$=R@zb)}$$U|(o1cD7DH8z2PxLbJ4swI^jgaCiYs2H+*Vl?g@b ze4?xMWx?x(Ies{Bt0Txj>}-*3Q0L6+X02rS?bP1gx*vBQZDnUK*!54a3+v4eCc`r-^{d-x{#A|cZ`4AdPB7o?54vD6{ ztv3bq7a)#Z_YfX9C-$|j7SID&ql(wU^surtAfw7O-xDF&Zq$_W&vfb zx!8MvHBSkk>Z`F{Uv%Fm81f_w7B3xWwHvK#IuEj%Q6ESL8<#yniHymaoNO&2N7q3m zAA3!PSaZ>MSj<%L=MbWt5p(%TTP@VVq1Jh5t{#*>UNX$ukAj{bW^JU?VV&XDF(_9B z+5>MIZGDPDv4eri4wawBBP1C@KKbYILnExoB&8!n%?4WAk=8|MA1r1pJ{W0D5iN7^ zm{HbII#7(x(<&&5P6EZ~RQ9E$Gs=ig{OlO(FX%IfnUT4BtaS+b3KlamJB_n;7C)Pd zv&Rv?qkxjF@d1Ql)<^(U4kSj89=7KQB`I4B`Nalxd-@poIRQ61XiW->@Z4(*PEK6f4xbeBDu>1qLgErLNFNyqF;USm2?^w4 zGod#!F+M&bG0~a4VBHMwhVcmzgtv^e=!neNnE3RRgbYGzbV^1{VnljG0`6L6T`lJ( z@6~&S(3FIji0HJ;sEqWexR?mSYeYnRdUQrYVq9cqMm%|0qG)G`b5rO#o6yj6&-n0+ z)sf|OoO9%ZNPKd(HLYQ6bZSIoVg!+XW=wQu9N{4~J|QJBJs~wVK0eh+b}g@{Nv(izl+i6Kt#MIEyB%vI(Iv=`pD>k#T9MnQ2imL~ALj zG2|L}LP|<(Y-%Lscq8HX&`GO92=&}^3_jg;Rb)et9Y^Eh&z45u>bqX3jB8|Bn?xl< zCq%`!jY*t5x80nvjTbL&9o9H8GczJ1Js~Y4EiFAJHib|TnU)!smL8QElaUY+j|1Od zThqBIbt5r3&siIAac@kN^<>^!A=|UAG8&V9`wSX6K51b09{tCAw$F@cW$SVT7~6Pk z>o9!w(5hOY<#8s=T-_8${I=95G$t}7B9)}8h>eO*r)o}&h>FgPii(R$$c#+Oh{A`R zOKUn0y-J2%{miJC^n|#`*cdXFBIBY`6JrzO6Vg-CGg4E?_pP2d*csMmXP(e7E+Ti;9U%i%BFxk4TA*Nr{L}$sl5gjg3pd!cUkOG4ms_32E_U496ry zq(sHUMn$K_Bqk)rCM0HNL`RYCoGG?duL+@^yUxI6mvJO%5(akWZ0#|B*vvBMyAI^$ET;pX2i#3MyESZUs^lEySz*h&ROX@ z3&?o$tfy4v5K8fEoT}F42rP~aI9#*%g^-3G*&&Hvmb@?tPq141{@*P3f3w{G&2q{p z?EhxD|C{ChZN%Oq)jGnRl#h#6e?m;T>y& z?+%hlHm@5F4Y|?HZ=30Fl29`*4qphl(Yk7zxfyfjwndMS34eIkI#TR91xNmDo#(rboPEiQA(v5a1mTlETbop!Mm`?qrA(UfOq=u>Z6@Q$ zcY+$>z7KQdcxDb>f6qEz>^2wwc+VOswwi|<{bG&DjwYn$5-RE6K_nY| zu8C5Z%P7kwbkN^k zRPki1V4eGcvV}tq)bnyyePDI?h?BUnfoIAx|K&4f9l~w|b zSt%@Luap(d!|l9nT~q*MGpWG>+Lms@^sB;8_rgvwz1D$i`qk8;pMUfKz&_^_R!M8RBo7BL>XJ>-}xdplb7FBT&;Rz0p`@e!09m zzo=r%Bb)UekV#J)Huj8+-irYGlccZEA4~Uqw5l!H3w440k*Rr)hvsGXnap&q;l`#so zJuSAMMe{OCZF22`DmRAd3SuiwrvoliEW`m zn)t(LvdsqRSUuaBKNDhm7daqe_OZn}AAeWJ)(lx;4c&qVng}+)>D*P<)f8E>XXfL@^=%E%8CcDBZQrVITZle|#Y|h98rYJWL*ZR5{; zaS{klp`k4g-O&JFZAes2s_70cAU#BfboTK8niUw#D9rXe3VH^N3wH3SIw+A_lV8l! zg!6Pjo*T8~UvM^@+W0bR3DB{D2PkgGDTc@}OWyu_W7};(On8RAJJudgh>Z^fP|-S2 zl+SR8M@xA}B5LIU8umoduxGTN$k{2w!IW^f<5PY*9!Tm4I+zP7i5L%TZ5}*IDh%@ z`PR1Ss0gZ#eLTtsB|th0+t^Iu`gJb6qlvi4SAxKHmph71CZ6QBa%3rw=?Pr9N@N`N zboBO);#(Z{2|d_!Ei6B$-8^#deDo2Z9g}ae8R!};VIJb6XV{<$m+6_L#mQ7pcxkk1 zduQ>U2YRFjx*#u3@~qy6wMDN5>_t7$&vfH{ZcIDeSqxghqH$fm-_ydf%P{4rwNe782>eNhKsHzE z3l;AhZ7V9ra}ML4bLSY_dK9Z6DsmxSI@Z=5MZ%impKVE@Z9$2wM)Hfzw-5Pz>#;c|VP zImvb#9f9IxCx(|ywmpeXz~abO#|8+5h~UDy%J%Ghhb(^A(xnaurK$Q7GnPywwIM{S@x$N^x6*EwzVm?&9u!_0;mXcJ-?zLjE;wtn%giMBS!O2SZd+A6>nBQ+=JJs~kNonHew~Z|I4%F>%_Jk9RkJ-5vJK85 zI**TeK3c#93vEw0tB-p=iv5hH*Flch#)AYpvVC=whW9j%k;Ew1pWD?5Umvxp13p!K zm!ES}mMu|mR?o7X6@(lnMqEA6r#9|#CO1qMV}CV9=YS=)5>eO;fR`Ry5(@4g%H)i3 z0aL;2-9I!v%Z@Js9SvnV@*)?8@r{d$Y|>B>{9r6Bk&Viw8dJqpb6TUC*Njx-x59Q; z6h1Ll#Vm>Uk6fy7E?I4x>?Pa=f-{u*0uAtlb+(U0lE##dDy}j^sV{W_yQQu=n0%Q@ zogYjFqJNFGH@f->h0VhcSR#ubM{cscfm$pgC9dd$R4gg!Fh@boM8_VrMK=)766Teegk%^WDf^HNbEC|bRbRY9V3Y^%Wf+qi zhE4i9q4j}9>O;{x7kLb=p;*T{YWa-3eA1n?-v9wnMqmLqW zveC0(?aN%7Ed2^%#10T2;0{q|XE(~rtBFnxWl*eo2bU+0p`_mpG(1Rd;^svIN6 zmq2<|2~QSr#=-h-mQQwV@^+K+`G>amD~tIIDa>sm+vu;7jqW16>gP7WSvoeFUo9l%x&-#4L?0EaXVH}ziS7a=!oX(EbF_SS%;iOtsbVhp zmwqSU#MhSuI6v?&y(@@6WEs1b?ouk2TO2P@LGOUl3~%voVq8Y9WuOM8S&h<;o+JGO=Q6es~I%&k*8rKx@$X~kxk**ck&4h`KDOOgOknQAA~@w6)g8yQ3D zWWTaB^H893a=p^FJ_4ChDKh9*7C=17eup{;i`8Cb%whwtqR$eK?e*(i>@L@`Ti%3P zvRFN#?tyH&h5~&6Zc3BVN92M#;Z<|_Q1&CalBQ2^ECh_ag4My zusx}mR;3ZBCM;%~SZE18*{ZaM4nSn<(&ng{9>CGor9UeHREuJZ#6KjFjkqvaA`|U0 z9ETU*Z9mesbXPeu`c$du(sreXJO>s@mwA@q#Sx|XXdL8+?Rkw_g6Bn+4n?D24Gk%R zM}QKUR-6z;#=CxodjU2>m)2!)GYN`f&u~`+^SNMSx2=egwhf}@fO3Gth;_bFB#ysxa*)&Dfd>_Ir;6X$mwjqqE#JgU!=XL!-#WBJdVY) zlxo-D`bS~J8xnm~s-7j+Fx$Xl>SY^SObDrSTMYD_)t@K#p2Mn_hU1NqX5SrsO7G)> zN}DU;YQCEToDF-HVnJ-5Z5&S2lv0MpbNnQnXy3c^pqJP$+c=yERm0#v%-K^EMEvIb zA*pnyAdV(zj217g+-QtkYD_jyrWQu9D6i3mWP4O+EhF2I;^RIbbt&#LzBEb) zpy>YC)@ZaIK(h&@t(5@mvr_hi(w1l%1YlDv>A^dtw2u-%6*7#`V~6ddLk49DkzZ^C zq-yPfzgV?xse$9%OzATi0UJo2Y6Rq`l?sBmU&01QfCD08BVfl;=6b-^;0BU3y;N`K zT%RjG*Xq}~IG##5)}L$HQ(aee7(dncP@^i4T-AX1i1Q5wgloxuVPa{o8R7$mQ-7|V zCu#0CIw17t+IxJgR8PzI557jbQct)aQ86_%+CjZcDR&Kne>C4t2iE0TdTnwH%%)|I zvDrL9>fB}n=3D2IPfE)~u@CuRV6^!cCS@w<$x)Cg_43uyHeTYW9OEgqwFc(d8>N_J z`zJ6)^Jk(P#%TWRmc!@Ib_9!Z{(K_GQ4o zx8);s*8H(FRY2l0peQ<>01^jE*#7p6jb)|QG6n_24-UO{r}PU{U)>@2G?6TIr~qXS zAC}0{A-|ZzAE8ZPg2S%tiWd@bS$(_CUP>G#!oc50lREdnbzZ+$8Y&8dIUeZg2SOCH zt{>?jEK`q>=w$|>jy^Zs(d*Z_I8CRV>N|SI@G=92vmv!AN1w$R)^YUh9+W<)LLO-$ zLVOa>T(CG;cYkl1q_y3IUH$#poy++C>NW{k+;Wl-S!yFI)+Mt{U{#)__kn@*-d9Txyf^(Wm!5KamTqis_Oti$6@H{BJ#0#y zmx#N~(Ga+?)$H&23Xdq9CL@+S%C2eP%)$0HzGAiI#{T{nH;j?LzsVIPUe?(1yPmc5 zwpvRS_xG+GPzQ3jzxO;4{G_}l14He%P`Bm4MpQ9zfONSAqT}x9Y?ysEN>+o0$}+B| z1Ik|=c3y2{zak(L1ZML^=5ibmZa1M!SVO~F;8p`Av?O`vjd$&Boi&=;Hw!3N0a3%& z2w!YwABQ%>VsebDBR(Yx-uO;Cf1lc0Nu4wT285Hxc?5EK!IZn49l8Yl1xfv_ByUQS znMPc;95;I3-cP3mp@^Jj`!75oFngP#5Hps4Dh&WFwIGX!)BRPcv>Us;aNwzTJ= zS742b>sk^OFLEk^73gJW?0!fu7%EI2)OdYs`+f8+?1-+H!@dF~a%-0h2&shcM*X*y zvw2&4LjnB>+VZT%c}ET)oZZeo6?v}!ro`4le`*9;S7PON&PwfH0Y1<-7XHo}1ZFoE z7$lXMdQ(^e5JvmE{W?N5o7A7wvR&S)e*Oye7lS#FQ5c1v=w#n3h#Luj zQ561^q~$!0f_UcJUF>y4v4}8l^qs7)24-6Xo%0lQ|%+k&LK`-X&<6{rtz=_Wb#b=`=U@E-_5tf+^lk3 zb;1o|Oi+o*H`uXg0W4vk zUuUkueV(;9Rkl?*$#*3Y!p?Xs0ZZiW$uDMPA83t?J-b7O7SXWIO8I$8p3%@Eb@I?+ z-v(aGvI`;^R1BG7P(eI&Pzl92a*G{)gM4n4!I;u#iH|A$Iv2awwCt8UrdDaj6l4>Q zsjWH0=aMl+nDsEGzIItVM?=O`_HuifAfnaAam4o;n73EjNlMiE1jZ@ovF1`L46JxVspqsqB`Xk>a5iU_O8zrw|D(I7ssJmj?1(6mshLp-3b|m_C9Qz{dG~i zL;#Fp=BARSE^-va*7LDF(o6ixgRQsI!1UT}w~OL09&Ek68^*}i-&?J=b?0i2whjf$ zZ5@`#X5kWbck=Sg_5(pXitKBG^+yFRD6&5^3O5fH+s~tfH3XY$h_J~eW{n?y^_#2h zadk5ZH_5-`dKPX*f)XuFef{vP_!@2St7iMl;;=P%p~e0h8UaAq$dYpkB=wi%I0PR) zWlv!1{@_8Nz1#&$R^SY_+Pev8I%q-fem26ZZ1%QjJ}hRtA=B63YNhs;N&q^O)slmO zB#8tQ;ha2h-xgmfwWo_)*WeCz`y{j-;-pIxK>R=nlH8tf5%0BuV42mha!owRVZVa* zd4L`yL6^$V;)XSJ|04pwh9g^xCiV}$8G@it=*4-m9eSs<9$4JFBncJ7eH1K_QhoD`zdzs=hL7*2%kM@e;MyPXul@>!LdSrbsr*R z{_4v$YJc_V8Uuf&&ms3$`gJbuGql|6`YZ5_JsjVC+a9_7&f4l=6Sh$<;2F3qJpPFN zC9z|!vB#PsnL&GwfnM^7&F+Bzd(?hY9FWUqXz&D}Y__x1aFuXXM^XshecT?2+Z|dS zfHxf{ORRAO1(~pG>79#RfY-fa5BF|vYQF;0Oyq#cc*Z1-_;^Wua7e3Bu160BMa^Si zSRxyY^Zbi;9|3J494nlUxFHv}dYNoqZh$q^?S!raB{CwH776)#x7EUpPuO=O2WW}e zMY;~+$8lmZ>^JTl5Zj_P!9xdks5E62;8J0(A8p| zM*@F%-~N-=t84u*@h7d(N!TMJ^Mr=XZBoxpNtoZ2*{=)eV+g4d<_-zsibU%N8d_Z~ zoE~TmbN0MqKQ55ZM1Or~?}CJNz}6V4e`!eFDRumSk=h0?8GoP>ZoDU=p|kUU?Hj#N zJ&1$dabMhfMi^=Wi`n|L-a5SCGkY5iKsOYt*LL7ldjn-#IvRmN?veSayU+6yK@ijr=adDubsoKL_ZQH7 z2+Wo?b3lpgAaR>7>{FWR*SVZ$iFOKP@3o0r*BLBQHqpKeCja%MPM-YPBBknA_Vd2t zJ_#F~^z9H4oAkG@Q&0Nq*BMOu`dslzU%$@9@o6o`x|2S5{pG`T>P5;W$S9cco%?^V z&-W33A^=8mMM~*C`&A$DKY7Lr^6MIyzaQ8K`iRvDjM0Mp4>yd_BIP?` z=}}wzgDL*fI*(I46fB?OVTo)O&Mt!Ep@2H(ks{anf*LspSVJoFMKwgg16EifqjYJn zVP);2n!b-Fj>^;8D|;P>5@BGjLrI-%u51TsosT1zypAIwgXTIDB4Xw`hDe{RslnO0 zp?GsUN5e`6DSz}iV>TPAU+3bw1>U^5U6At&KSv`WSm77kygBRmJL(C+`Y{*oTgCA= zIt=x})_eQ&{BZ1#SBC{P=h`6umNmw<6CI!g2y#Y%<5~1JsN)|p4^=88Gvyxd5WKY0 z;_CRXMa}$i;TH>z@mzjA|)$Z-;p*s*e z%RzFqx+4wUhsEr>!^A*GzW~~rXq{#1YL4$zb2P^b&RnXh#3Iyij6i5T5C@yr?&R@r z7K$EK6H2s1^!IseLJ9s3kO4%vImoeCY`q>=uj$A{ZDCKUDLY2O*K)l_eC(*!uv(7U zsD}q+u@bVbo{^~zRk>JF=z+~<)oMHDq4BUo79Ah1?U;Zj!eS=A@$2!_5J!6@fJ*1_ zdOBy{ZeZ`SAjvPblw~0ew~Z$r#-TL*@*2jNG&~)1(vfHAlqdrf`pf*s5i*yg00Q1B=5z;;sVD7dSlVx;BxClM))`m#Xa>)D(s3RA3M9&B z+zlNaz0qH=m^s>CH{i%lj>bxWvR@8`;{$svk*L~6(zDBGT>#ZOJHnL!Y|r;+fLvzF zMfsk}{AklhogGgLs4c{+n#L^BkZrkhRd%c7P6pp1o@Nj9o zw;Gr{^tiZ|^VLZX(Til?a$)drb$qBBgV9{;yNS=WKWl9KmPh4%t5#mckL|`u#QnU1 zIfY>T@!@PV-Qi`lIC8e1;dqjqjUdu>TN3+zG<6d$o9UR2rotK)-cFrG!rNuAm^o1b z@WgCK3nc(sMok87We?*#IookWM7uzx`s4FNi9d*dyFXYWqa?prG(63p*s|)>CVNV@ zc)^Q@ON7rfauYLk{ZMtg}Z zHyek-SOe2&mE&VkY)@c}Lg77b7{%}epL2q6@@_{Yrgz=MM;blc-{djQffDC&4lDuY za%ZjMYh)tKx(5-9h9`m&xwT7UFZlCl*mJ8Fjr95`cWt=1db7b~zJhjbV9hyPE8HdX zi^WYhI3fkHNWuoqIUgco=A26uqC8HKv)RC$^;zTQtY7C6&S@>%x)Cx^^*c<}^z$SL zlHcOIg2`JBlB*rO;g8=5BoB|oSZHi3n~5?PWiMSbGWZ&a2QIS!R$5Jac+ER6GLu_N7RlE-b$j+5n_yd>vW zm|?ZIICi6xP(~~qII#sslsE>X6R?KO?k|E8nG<}s#4)9*ew~ZUZ?r?4zxWn0vdqMeW|M69b_K zU=6mm^|@qDE=<49C4m}M@ac;+$=>!+hm}0Wv6Ym&hBGtRW5*psQCnEd47S-;obGhY z)dBE%(eX6uq6hHei;gWy0M*uGZRzP1NHGs9VF{3Z`&$h(nj) zg(n@|#Qsb0YbPD?;@%v5|D>azubEuf%^QTLwI{nFZJXYx>b=d>XeECBl%ua$XC=OQ z%8?`vScT(HlmE6|gIAq)j1Zfx!PibZ+KI=u;Ob`_iJ~nJ_dDYlFBazEePz$~6&Y=<7!$*Kw|?5=o|(YZ^+@&*Yl=v%h-@<+&zGe=Z@J{;k9Q z4j@Nab4_i@nW0=$Gxqlw=`h!1BOC3xrb71jC$gH$HGRweW|AN-*R-Ftp`_)SO0wC1 zGAR-Avr9SDXxQQGW%L(&g<(1U#qx-+pubpl$(8gMOVqZC{$dHFR?}ZB$I2S|i`^E_ zrN7ucvbFRVyFapy{t917GnM4gpX}`3disl<_uD{!v2QpV=`Z%FXA}L!z7K7tzt~RF z7W#{AIBliB*s5n6{l%uv?erI$V0X}8%+X@{i<&We#tHX+%W)amX_;%Z-Prp=l4#w^ z-|Wac=V&E}&aLh@I}jf9*AgFOr4TO9lXL8a0eIXy4kVJ-gaVJe5M;D>wf!AO8$UV} zh-12gH)o5zaNv1IM3s-+{g>guW_!Ei36}%>2V9m*UA^Uv{Fe_%Jv#50FWhm?f7g*F z#N4B3f2Du!(?1XBpNI6%U-Zu-`bXGC{&>+pKJ-teZ8+e9qgRcuX&qf(^^>wU{6F@- zGro$Vd)VCs2xJmULg*xc&|5;f^r|S`Mv)RA5dtDrMTvl@fS?EjhTdy#zX2}NLy;;) zPlL zELXq(QK|%arLa^=1>=hTA|&{EkxN^b8&cbB{vwyjH~JzM9(pckE6M;3@prlUf)YXm z6DUD<>9cv65hmZ#Cd@1EdHzC9PZ?zaXnGhT8t=YD`evWPVz%QXE8ElYa?S`z3qf;7 zg|@UZGl+0LM+2MXE0qJT=3J4NX5;qPa-z|4h@9bOj!~%c= z2y>deqMXNhBPUss&nZk?05$mr+~iwin&dhxW>jCuUVl5Mkc2bI?&NIK0#F*lR6!_@Ed|cxU3?Qs zP$E42?&V}iC=NEm)cD{&S$Iu_#kBPhT9LQ}TWe0kV{8AEhGT!t3DqLdQB#IXq>g`T zXg3>}pQ1~R`LPAsdaI|lk$cU=+l%MEjMDT3$~|VX4SE1mIWt3+|Hw&~N6o|o{>T}C zK7^R)Og|831&-l8g@F;EDljajQ|E)6Z27C1xb>eov(a==k#7}ORaBAV{L(+pB@c6s z$g5`JcO!CR(He-3^(Bw|l`|GOVR77t_V&_DYU>gNhEK6h5zQ6g*^H@r?rf} zgRSV~6UC7o@{dfXU`41J1=CmM)=jW%mC-%e9JBkMX5z&Gmiy=@_=TD3)<8>RB+ml= zqX2l`C}0^aX(6Z_fN@mfq-&^PX4bQiWfv+7k+SI2A;?k}Rf5GVI+dM;PX<|D&;l^x z+7`Bag%ThDB~B`f?^m;w)7ICKRz*M>-8K*diB;{7{9EGw&|p}b3MEE$n_@UL_icOgSdM+%MMf%lMn$74+;dgoYfQh0o^p z1zF{HM&jxgvhV(9h*KAc=L$esAa>WZ{4S$M5R_4QypAOW1sz_DkFMtm}U0u8g_Vz=M%Lt3fLy09l3*s#kO2|WIvycTE zTW19DHpX5{9LpO6Zv(9TC}ljl5mBwmI`tvj8W@!m{^P=htgfsESf{Ui!P^*7EEx5UkWZkM=6Y`m02CH`7 zEjRM3mUHFhG=>*$xlvUZuc)x+9J4Jq-RF?m;{^>OXe0U^H%;dFUCV1o>GlTDe7D@N zX&q%|#w)Vgz{30sZ>B(a9n0oK7ZJz~Y`B@qWyiYfBl(-7}Wi(LShn_*dl3eE-gpo=9{6fPnBlf>s*f_IPTTZD4u zxh5URC`yHSXs$p$tD%|PUsfE4&9YRL8!Gr~qTysxopy=*nj)Hi?d-E*8vOJ3jLVE+5 zYSpa_Fpm~k$bp)b1jfu0I{IK(*b#Wbn7P~&1{ze*cdp-11%=JG9l#P*{GJb%SZ+(` z1eK*XvavDRvAKBrGRp>Z41Qs6;H_S6sfBLBVlP156=bGD1Hd|;v0wLyL61ZLzpt>& z765EqY3YbU<_Sn*ooY=Bw7UvYc(4EHcInjoyt5%=2UjeP>*h`GisB#tKh7U|A17!D5*xqfQW(iMQQ6Pbs^lnS|QGPpU%t!eR;$Kq}&+ zOM}a6A(%$GI4!l&NIityZXUkiw9FL%taMpcqX{AarV%YoT8#`7vC72MA=lDcLW>|) zMjccCDp<@UuxK8Bd!1#x7C@)|k)p=v)v`jW%F)40Q(1?J zXPTn(^_iy7e80m0F^_zvLj29k|6+Xf{fXh8CV7?@15rCljW_)1Ty=#=z|2*{zOmer zQFlMEt3|NvM3;Z!>;mP`HvpygO%yXyCr({197aBC72|pNfMtS29>8UahMM_Ohl*?F z1A}IU{b$WY`DcEM;%`e1S^hFx%yb>LoIyLGJ06O2$mTO#HO<4 zwd5ZJ#zG&olS?fy=`n^c@L>_TadGllYc2Tmla}x0SOp)nmO46A+*-;k(ED-m1%CZl z%po7nn|v#N#&Q_FL7VqFE=wLEXDy$gUa*)Yk2ezfS+h<;cDQ%r?fVH0Y4Qq7S#2rC!1W@@_2L--iG69MTrIBHG_LH z-%#wo)*k|6VXuO1H8Yk?lrHn(#Rl?OXDlPHS-Q(71jce)hl(4^c7w5OSYR@|5c9^& zBu4zrE1iES-{QFn#(trNCcYB5(8xa6VJwl)1ha9jV*O3ajv%=*Lkr((Q4JtSd3P)d zH>+u7?~3bQMXNwRDDPxn{3k1@RAJhfe$IkC6X5TH&d0#4@PC@KkQ6$pfc**)Uk$Mu zPiF?dDv%(UvFOAlXq>UA^}D56AU;}y>@w0F5K?8>Nug~BM?yww_a9o02Fjl-G#{z; zHNZ6Z*HSG|&L%KsBei#ZFihCqks8<>{92UhX#%rgW}IyT+tNR|sNGV|g^J{m+BPa>an zL99Wr^=&yy!3Q&51sy6L#0oFcYn$BcDxPo^^Y$b`Y`*!+j*R_|X6(1q(X5+reTlPg z3}T*>q1K0Gne-M2qz3}nTrNFh0DHcU^-*bg^CI(!rq`6slwWfcBz$dbZCzGY z{+3vi*+kP61I!O;)=Q=3a|FgLeC_hVXu=mb1-_muNnUEOF$p zKIJNQ5Koyb>tY#|UkogQMX1t?arjv4V^kV`(RH?-E5Mi9!WZ+-R&h|*7a6?KX&a6! zo09o}1hAI_6odU^iuaihF>wS3n=5#(z>{>s3Kk&2M!QFVzmwNtu`zx%-7zz|2qo9N z57vf!)`hR6Ppp0A{t7x6zS4E5c=+nHSRcOHEPm$Ut0-k#+y`Ti<;@mw&$dX+)X}U9 zU(-4Jg7CF(g7tQYyq4h=hp*C#VYmpp;_ziBCPR*Bmzqmk(TA_;i~WYLsg&^lDSQ=I z=%Z%mUwStL(rap8lb`Ke=E5^ZuL^UlsX=leS(r6jF#1HHO$OWXZ z>Db>kSXWDEGQ_Hzp|~i5WqYi|Q4vqsWSxgrK#Z=)b?qZTfiJH47J_~%fRFw;r%y${ zm43l-?|u@F6Si0_XfvqExBT2G*t;x#oY%V&+6BKcp>8HZJ!6g4Lg{4mK;d&KgkDl; zN52?QV5IyXL0G4c!^yYFmHVP=&x3DJeCBce8u_e?>y`7Y9yxF+#|PuOv{Z|V$Mv6y zTWJR&*Ou^zWpbPivg|{cjhj8n%Pc8m-ZN#V^-~$uqRo3Foz85K^86XZjq?|03Blun z>hnu4Dl#x^E@-6_gl;OdIr*&0l-*@AbDy=Ej6rx28xV`@%EOpc6NFss6UciI7{k2s-~;YZXaeP5{iJdlf}% zOE?M=-CG~Fej&;02)?i8AO<+iL2hYQ+L-+)5J5+$mleP3#X293N zrR=&!Anl2)a^dQkZ9XA;YDbXwz(!?7MyLoE!aLX~V{y-m%m zSL_csOp~mx0FUv~^T*P@>XCez87f+k$)#uK!w{v8!&=aJ=@Ebrq@w z@aZFBJp9HYVy$I7B5I&?5%CR02#^N8$^=V{wD&L?vHGl#+-;dLF4CJTi%=TP!{V#t zv+BZZnQ75E5*CLm=%D)!(V=4QE4_&?1=!$jvsah-jf!F>`Si5-nd|h?SBo?-uBTb-;J%q^OIj+sJ2C zAv~sDx4s=HpBHH4j1Cvq$R52$wkfSBj5Q&)S%`1h+1Gd;1x#H zAAYumNOCj*FpH>@6@69YC`d%@f7d!vlIt%wkEql2F!=TR*1zTE1jMYnJl6+e)?F^Q zTz~y-f#ux(O~NUZD+{NQu*B!AzCIioG}LVx=1Kd_dMW_DL)bM7t}D$4d^ih~s7&GK|F#Z{5P$P*`rDc&AtwOT zFVJsMScC|8=!7L|bL1Bb`#X)+irFJN-!3;sP3EQhDHY~na}W8f_0n~NY`bOox`Gde z%_}-oyw`J>Se>>vxks@ZlisA5Lmb!Ek{Jm^<|Er@K;QFM#b*_;Wt%Ml=M=DIq0%b| ztT%B}9Y&S}B}TkwxM8{r+6D!ns-P-nkM_M>#MTwng~dzyE^CE33` zp*&v&+p;9o0)nwScYB1`9#Sy2MMm40c8kn8#Y7IqS^(`8{LY>iO{ zEM}+6dal6M61FZ{05;BibcNi&(kRUK5$;yURzyzC#w_;}fQWG0ds+Z0id7rKZ4&w% zw!nBQ5@FjU6DY=$hAv%?;i4%|ZTrCof~`lC-xDtF&J^Ukf#z1U zWugbLeP*b?ffA#kUT57o&sUMQLlP>m5?Hye7jZ)&5u)R#AZ|t5Y;wt!cupnT=cp7! z!Gt@!vTcrb6u&rtBUP-Y4PEA%{?J( ztl+yRg#9PDC!}Bt!Xmlu<6iwso#iPQkE>y;D<7N3uL{{RA77|p%P2U5M4c&3@jr=| zn#-Zf@YI^N8uH}jcw`elQJi>-z5nAq)dus5`iXv)q6Hxr&?fE^9KFJ z&RKP#zt|46uJjk%8`F*cVsk3p=`S*NsrFpvoAf73i#_Ns7F&DLUo33&qQ8Dyft&5g z>5VV0O|3-rr{7MAu3?GnV=i<``YrJ*BjdQ1)vL{ z2EU4-ZBtua^dl^0q5Z;2{C!hf9RWbSX0}(+LlMCFX122efFGONVo>lZuT3mpiIo;S z87*wVncunrqy>ER<09esL2Fxm^orlg3gRXxU0;o%>C``@jFw`Wxhi-l)3oFDvT_v? z)E(=u#lR9(n_jRI#In2_h}GlNlOPQ=bc2SJ`vyJ(RXouz*?uF}qJkpKa@`_W!i0}k z;R9`LW3_eJA!?VXZsGQ}+uFL6?HHA9<(NIBhIxx}U|Qa{ig_nEiKoIUmjpmqe)27# zv+XqrFMKc_;f+;B7xAFZwl0!%3UBXb8vrCxnXk@i;B`l)1;RHRnU?SRp|L)11LENm z_OL`%D<1cnZ7m93O-fkgBwj+(cBvpxqSg+=y}m167B7mhe1yt?8vF!wG%R7tE3=xP zfY#L2*;YfIia2c9%RowVI!RR<+Pl06;T$3`7BFR_whaFU8`Eea3gxJPqWjtH#w}(r{6Qe z@_uE_OxtYq5b{j!uSmx^^T@b@cnRAp`*1ZsSgVrqp%I;z6n3z-vC3khezvFoI=`-&r!qGM^=bB}Pu8@zAfc!g1%hWRk-q3H?3SW=DTf zTD`W#CaNBQ5*4qf%zRt#Kopb%sbmm>kzWf_jt9k-NVHf z+3w>zYiuD}1Z>_zb@m#HvqKf}xts|(woWp_uoXt=B3Qz^b~$*K%{D??mx+RADg5mo z9%zVf(%`1`J?}bfwI%coY=J@j;s!ndd)zhe2*BNXe}K5Oo=oJTerwJUD&F#*0!ynT-d^~!LU`(0uZsV^-GREY~3QP z`?=Ir%o|_t5r6Y6+-w^nqXgQv*HxJ=V=Z{VHd_l63%{sN)*2QwCnEr_ZzuDN8UW@v z^{O7PiMl`l<~XqyPu)CQs-%Trrj-dRQ*uHmRU(WBwE)bw8}B2++zbJjUI+l2!_<(dWBe5n<7|a4eZOrRIu4OCd7p(Pw3z@>2QL{> ztAe&N8`9m;SC)@k@cM(q?=^@C6P?g=R=r)3x<7Srl-1VN(f^t${Syz_PNUKgsjkoR zh6wZt{Jw|4@7eM7M5~G4*QZpN_08)qhtfn$^@DlpU@}E|G@rrG*4zV_g&QnAO3F89*SfY|jelh!6Vze)IR}Vd- zE2r8_94d*@XyQ=u2oXq(=tMnOKIQ(d}cJ0Z^`_08PrYeiSnIR-MyUbJ#z1AGyEQ4dGmwngEN z1J{1!`&DvQcUK4%i6&1+rh#D8?9b4IJe^hC8BV>fZ5XuB#Gy?Iq6-*j%& z{!iOfNp7TIgKqRZM8uL)RlDAgD%zj9AKfx?oSz@PW!E#>4>Ah;$m9CkHbIid5&$zt zx~FI=i=!ZUY0G0eZ#j)HZ{{t38epnO_O~T@34t+l7fCrsn`Jk1mk;cEcj?FL7BboH z0-eL3yWmN-+-T3rK)Xvqhp3jlKEpbmpA@vGpdVl{^O-|-T&j@$3oU@I;})v$q#=a$ zzF>)JpX3)y7~z7`z3eFXKW0|`7p2c6Sv=sHQzmoiK0D7Zh3!KnDFUaJx0Cn#pp}O? z03v4P{~E0P!LzsW3Pz6ev+|}6X64`zZzDoGacBK(QOi*KVLW~|S)FBP|K9FzaYuMPV<23yKueQj=Bsff7{`9!ILZYycVwKJrrr*GIL{|Qu&0r| zrWSzNaA;%uA80BBU^e_xi{%?-0#&T3y_^xs)1|4MJRQ5-0A^`s-$B8OzrL^;n8Kc{ z7&>HziaH!$Zf+lwPu88pv#z~`y*>H{w#c&XPEZ2mGq9z-sf><;k6?}YEG$;1@Q=IL z6utpSS!2F$fMRRR$6dJNOZJ7jwzQ5uP2nFB%iJXbmZ;?8^Do=SMTz4tsl{w+s$x^4 zC;l)xQoMHMtvZLVay4sbUtU_gg-Wy8kM&G^oBh~-g3W$%O*ekGqrGv#-^fbXlsY)> zw6hXE+tD5(U$x@f9qo1HN^TrCYF@R1JxL&$5{}1pyc8kdcH-Wh?2Y9#7hc@S-m2hs zBGf5W@ZCn2s>x;DIJ~pH+L)Sdx^Iu7os@Z%OcqVbti(zvo=KUv+21q*Hz|`sPs%Jy zzp6X@8j*i9nLrxTUu*%e3H`-pwwlskOtQ`BFP8tB(_bv)wjjSsWin@ONeh|5wxYjw zy71A?_OU_A1~$8I zQ4DbNjdLd7*v7dLJ?&%Bc+e2vI5!rQ5F*$Bg`lGw=kUD_sIX^WZ+k5X7xj!po^8GD z%_TGqK(K^SVE`?m*6Q8S1(C8PIox!~)IiTyeeA!;Xc2^G!O4+spNLk$V&<*2e|Zz( z85#D$Aryp2g)I+m#Ft!m!tvF<_EmV_TlNqgKH`ypo)EspKtm5(R!Hk_--UL-CfUMI z=K=O3Xg@4w3qL#DEYtzS#Y_-;?q%8&By=94U_5pjWd9glhsBJ?%5U4d$miWS>uvjT z9h8=n5+)5|>tOrKazHMAIN06}706W$iSG}Qa{1#ss*aRbq%<-~E8wb!>khH+lq=-o zUx$!Eb0oyXM%lKZq@Pn27PFianagAorZ%9w6I3pjKXp_ZfB*|)Z}apVZvRMbo{P^9 zC&ae|6?vL#M_)6o*|mQSJhm~p;&8zTdo%Phti>p3X`n!P@TqD36nOp}X)hw70T3zU zc1o`OeKZsnv$h5p+EN~NO84IueQ77gAR?#(X5q$djoFX{wyjacqC8kM4OU^+9r}TN zGg=CZ**aJbETQZKkUD$`? zI^Jm57*D%>tTBH1Gkd5Omd@!M z=LqqrERbI;3%pLK6YO*ByVj)h-;1=wzj?XtXW*JY_b?=VdS!Wy8Sg70$vWPb8F`PNW`9MNcL;dj z1`#pdEe76~{b$}I#JuB_nfA4jVju9zrL}TZ?<^8ff1^Yy9Ub2PxDQHHEAT{OdtV93 z>p*oD!ivBW7Q#p!9>O%0)eu%*4x=MWwP*IER zAIJo1{$l$~9n|Eb9nkw4fPLgWx^?)+CHCsNs@jk-)|9OS;{!blm)f^UC>tVX0{dzm z-msi>b-sdM7{hO^u)EPpSj-q6u+lzVCQ$#Zw7;N*Vk+4L0lX~)t+w~o*43%xV*%|f za6u)h=0<+8z%|jth1rWOm)9A?SJb1d=wM2rN%T5Pz7d>oV&9Wv|5TD6Dac^-`V%5z z9(;A3K6;&9=QnzZ*~6}W&dicxN4sOQe-MBwtp|>#>t)Ol$ddLlJiof^gUDVe2S zQeZK2R8kQ~{}d3Vh0rN(o}jTOP}~xs;u7Uv>y0|2CwS4DlsprqbtT_)N;|mT{y>u7 zSFk~)jf9Ap($d!JmDY8=$rQOCbyXIs%WJ4s1HbvL#VlQ~UyE79+0?Ja6zH^SI6nNk zv-pe)+k$Yt&GuA$=wC-Qv;i<`vNE%7y?$k8(RyyKCd+@2e?CzSOH>Vc%5Js)DWNNr z1aJ0W>EJdjVOB=!@N}T5tfqs1^bqou^>}5Ty`v60+0%(D@38knMLnQV7O_t3uy+Vh z+KIsT-cK$_aYz+cmBerEwD(6b28i%o_E%}0%w1&EsUb{f{u>46&-VX)z1#k)j9Ng< zlwG-r2N&8$#!gM(m!rQqWAInS-ikx7!D25!vHkYvwE#?(ZwczoI$%#TRE@#Y4%lm< zQG)uo)Is}OS^y?`%R&2#XtD^P{kH^_hI$6jWYfTgXn_cz(IJ9L12FB7y%TZ>>mIhZ zHPo$&ze>-jh4MrI&5qdPv;Zu1EjnT!hK@l1W(XbP9Nnn~*wH)T|9llCO}Wd$vazb`_JEdC~J z(8u4}8=iIiJ!Hc8`(})fgkAxK5DASj!2PpSia|a zo5nGaoge?+x5q}vD~JfRJ3o9Q>~?FFogXU9>LAC0lJYtNqg|s^VX~Ep?P(iWI2Y_l z{Bi?-KIa32@P~02vmGEX;QLJh4Wb+~0?~CUM{f#X=6!hsu2IF&2VI6=SPVJxdjH1g zPgv{)=v37aF9OJTJrFx<7paPhd@X1ushT5705x`6(HK--4-i7>Ay&fXEL-AnUly&7 z%SSuP<76~6RDh*Jw~Uskt{#g_xT{seQB?pCyJ1uyj(jttI%=wi3LtIcxO!nCYVW<7 z5raDGAvDy!fQLjoUcg;O6%i4-IK5vC>ZeCQ2|ZuS@v4AO#@V|ffXB5R)dc|7gv^d; zq7a~tgS;03HOgZDTv6RdH1_N3DzV=x0${OU1K^GQh4Gx!j7Ip{5qoKTJJu17wnBI{ z6%ZM)RA5BHQo%6;6iWpJYJ9w-j+Ryy(4$Taj6*jdl-GaVhEX#jL>jTW^<6IvD6I$>KIPuqPgxbK{7$6{~w$mtu6S*>HsnbEsKMZhu} zKdpwe>hjqN$TQ4muQYMg2$1(|)bG4eZDhKlw_O|sNoZ0F$FuTt1YDyw3hsfUn1+=Tyl&0*DIXJS44I>}_KAOIC>2*vE}11!QzUU7`UXWwwt)gsV| zd5Z;<#)53DfY4XiY_-J=W2D%L@vISv)^q_+DNB>CaVxT9Yha-s0`ECXtLAeCj zzE!Y2_K%G&wt>XsWeiHx)2Wx^9SN0(jj5W9fyK;0%5TO)(j2$606NVb7U_T`9oVue zO7e?E;O_+ynC+NP#v6Rzpvp(gt z+H8_?#9Z+Wp5kv_jxQNG&Tsze%gy?2VUr=FFwHES>L8PKs|bL0$GmFlHxx}R=O{>; zDLdVfF3TGT^JZ!0jsfP+Y%12h1ja1Q{O*G>OEXJ0>-Tm}=Hiyye1b0>(Ok6)Wy*$1 zRbYu~5nd_(Wt1{MiSfwHuKtAPpv&sNn}{3#INb4}TxyHCv?b-$iSRAVGRZ3Nk0Tsc z0Ve z?)#2K5=tk0`f@ruqceYrqb7PA7PAA$>09va4;=4n0ayYWTQ;L78Uq1X*Ovga8SU7j z1<*yIGKw4^iTq)_=~<2#3C)98S!}~waPcvYS_s20Dj7Cd%*Y@BmBx}OVI#nojdET@ z+e83m#yPUJ06MzMiRh-$GXip=3L7u@*zqa40^4G%>lZlbF>ivton?k`rxfV#a@7#6C9~p03C}p6c!?3TMK$Y5@H z9pYiRrTJEUZh3yINp2A{#dC}Jo0s7RMuzjtE#tT9bIVxBr!lw8Cje%-rMaT0IUI#A zx7Y~tX1V1>0}RhCTL_Fb`*MYC=3-AX z09Rk&aLIKDh?&&;`#{X3UT_;9IR0WV_FG&1W*I1Oo@HQ(sshj9MUKT1>P9#gWSKs& zm_?>;+i>(!$6s0i7T#I39svPZcqagCW4GF08m@2+3F7AfV2Mhi*GfhStb{!RNuSvi z-c6ECsWAyY)5te9_*}emthgs;r6Wg@oeDM>eQXdBi#~IRTD5m7Puup)qtAFVj?W1= z-d@QW9SrHzxy1>{FpNUia~v%s`Jo@b_*~K09~=dVLUyaeBFROzo4dnw1I%}JM-53X zOJL0WVV)1h%pZPL{NaK@{3o_O6Mw+>U5;^PorH;Q$D9c9{v=%F)cj;TIM*=@b=wYn ziS;7h041tLdOED7uGb%YLDh9xTZ&{~M%l(e#_;{SN8v2M-_1dG!R+bO*^jlfd^ZZ6D$RXo75|*g# zd3nBu^S+!B?pbuuu~9~AC_&y?U|q-mmdH!#o)8>0AUDu+^ROdXLLP{K&11DYN`@)h zU@;r(dGb6*jyekKAasG@CsC7Z%UAj_$8iarfM|8(-Z6#U{k@}-gs$mfBh_xkJppVG z9(S~OUHruf#}xDjgk@p+S5TtL*fa5@W1@rtcL1rf4o{=gbh!%_(=Z)CD)O0N4TN_I zE)YkYA+fij9!w70fft@32sKbTQU0#51PSFa7M7@_lV2>xJ~Fxlf4H*M4r7dEbArt& zeI`M+3Hhe>oanPL*b?Zh>}hn~5gH)(R8Ycj+g*dL#)1aY4i;^}%TP`5{l6W8ceuoi z@n9?d=4CqA_^exg!FJ*feX#u$@(O}2b{28g#)q#uy5b8D93l7|{=5)w6YMNS%hKf~ z1d-X0u7vVR-9nCa@LMXNOluZnT_MWxGI^-lg0?o`bAOr88iBiH#k`HY=5%$YkV+FHX=5NBRIWkmxV^|7-I{^y~iA084kCIovPI@Zfuh&ap~`85NY>wh^O z$lnqWGe>^Y3o>(wv!Y-R)ykcEFaC;2pL%hze;n1pt9u$#bB$i~P8C=Jj9E!1X-_Zo zf4IYHN6` z17_Yo5>tFY=Pa(w#*&&{Eou-rxMOoT7=Q!m`x{5*o_NSaJsbsx&g;#g*VtBUt?-j(b-f&s~}c3#90^Vj6)7s%onH(V9 z<;Y+Z{R!e>{hpJ%^aTKKU)4nko$%NK+D*c{)wVdnZ7T=f$)^i37O`AHa z;)*q$?eV}m&T;Z91lTO5UiATMVk+RcHs!b->O9`tt&jMIDMAoZp|tr(29~I%;+6l+ zr6_%)Ndim!sxqFtyJ71U3E=rV1X!SnI4$<-P3@kA=AbORZJR_bgU;4(R zV{{&fM&DsL!=(%lez!?>E|BHF6l~C?A3#LRrLPb()Xol{;g)24I9$xtlelzY&fl713#?opE5 zevi33N9bWNap&LVo&?0qi7WU(G)@e7Ox~mK7)9@SR$g4`=|%n}7di0Y$y`FF9*l=9 zy%fZUG8I~pp3!nrU*y7o=OugeJ)_Bcp3Z$EOziM*Yv&4dm{MTkud#|kApDc~Ym!lv z{N3B1_L%tVO&|xo8DHlzh5ov$jkB687ud_OL4TF^ssiQ9<#&k1Y5ny&x0z?@ug#4d z=jX5W_Uaj}O=$OZH9-31{(7M^@Yh<{`)|1XB0*&4xos2;w&JM0X_*1vZS3sN(U4ye zY=W`tUUP@;U_iz4GeOk>531v=LQ!>>2M`Qq{{6ZSgPDIf->diU+Iydse|LX+70ux) z0{%UV%hAlgJL9>-iB~&-5yHd_yxO`~@71&RKAl%bL9bMep8R6toqoy-t@pb)`vSWp z`GsT0K7Ba0LKa~-9{eupK5ZN1d`I3(fXqVg9K}j^b2KFMe)%355fQkOxZGgU-#kSG zVK&RO$N(Jo4jBU7Bp@WZ3RiPhdO?^41y;{|{u4Z|>X>K{baw31&jVYT=mldSD0@Bz zf+ea$c&*Fw^b#+#pGh1<*NFYho6Mpsxj15{(s`;9M#5}8Qr+vACSkVretnpY*l(6l zAcIfB^4h0oxd&$%47s~;mU-t!XJqr_cS(IS``V=FdpO5HI_1Q^3P|#V{pMzsr-#AB ztg7N3?~{Y@tw%XukTC%^OW%8az-H-t$bNnL?)J>2{q56Bdym1ucI9Vay>^q~P!<_r zAK6a^*yr*$u+s(u+x5&?{^99a4nCldVnGK$hSC{WU0ig$vjjdemJ9;teDZM!UO3j- zT8<$&%#7}wVgu0}D-UX~DQLzy7s`nT%&qT=0hn1|$avCkY(?PABAfR;`)J&3j&Oae z;sJeJ3!+ua2V@%0x;(9y-+g)|jO0oHfo&KUmuXZd&3uif5{z<_G`(QUABGw=Io>(3k zAA&yEx6F9t%;7k#h zizL@OXzsQp3-PTCwK)osE56EhR*~hV2hF`T+5l4*JC{jvM*?G(BI^2JG${gbRfBR> zA8$W9z8si~4Lj&}>;vV_GIJCxG1}Mjg>c@H@G#G%xz0lYD2p&{X2DGqf+4;qvEWul zePUw4VfdW_D`Vuj2TjZvQ&LQZ64_9_{N3$;7d!73mU9(s(2SiB5i{fYL@nBBj%-D! zPd}1~fZ|Xo_AItKBPDd&k38S`kMbO8CQn;cBF_hA^85{oK{rCVZywXUMlImpE;ct$}2a=KX`L-)NjP63gmIg2I^uYP`NPg?6s!{7vWYAbjG(X$@V)!vO9_WEOT7s2w4+Y( z#QjC)tz6+53}se5y;_!YwSbJjgv-q=;}@IJbCatcJ?pJw3a#IJ=<#GlR2h94fO&7yB()#B%ttvQvt}tsIReqP0IlLR0&V z&H_8eIS~y5s2+;4(UhFGoG0OZa=*Oo;$3! zw}0}nw;AWjHoe-%$>@1x7O}aA!};1=*kQfR{d4H)dV={3Wq!ls_SOo+@jp1=+rJ{-t!aJrDU&p+0ye?lhyG$$ZTF?W z*u^^i=r48#KArwzCoVJSFSY~eE%K{WCfm2vpBA#^h5_`~t-bsy6Xi*foxZ0`j+}L_ z3zD-A)822VmOd|-((`|O%A{7yOT}=RX%kS`2ef@Q8l}HTzsJveCfd3@`h9Vjzh`3d zjlE}*`=fImpizn#ldnTSAZa8HbtphdqYeBPqarQ)8U@^PXt>v%I zcJjKzSpLa*M+ZeO>imKN&=m{st0%B&wn&2Ot)ALOK7AN(FP{4{Itv?MhjC64-+f_a zGk{5XuSAb20$;r2?2Yb14D3M5+jpI<(F0h__HNxh%-<_fNi51omKwzLdLYldd(J}= zDseSnQKY2(3+&$_^b?z?behE8tDPIzzQsr0EM{@XznK;!!<_h0#~y2%hkp zv#}O{Y({$xH51hx_q(%!wl3X=7N&AnoO2g?gx_2g43GdDV3!Qd{loc%g!+OSoZs|9 zuAXQhEN1*}{oI9cWRR<62nF#nT?e}!ILV=;ht3ckDlJ`MoUUF^K-c?!Ion9+D@cGU z!P&5wN${&9c+B5q-<}3QCzX=C^(jYi`G1@*Mfj5n{>M37LK|T-OdUI532S)c5&X@+ z&Ma+RUBk-rE9;+t?P$prC84XZ89I9fbX$gVanV0AdgT-FBgG&z=FYAfoDkp|jvmA2 z*lXhjj{^Ird`ge8C(xCktxDMhjg;e*!A3m9r%p(y3Pi_lk!0po2NrA1ORjPhrw6${ z)q!fwsRC~>`Y1Q^iU6J7%=Z>{y(FW~paxso1#*q#$lCiyrjx5e0c4rY!^FT6l@{`g z1;{GIar95y#0Tq%1EQ_Vi5m&4F#S0~T^rD6u$Y~8%r5F`jlP7%EWmzt6ekvQ4buWp zEyk#^Bi7gyb9B=4q>t6eE03}~30|vFVe1=V`D-<=mT+|k`nypQO^oRc@=aq*#XUQo zcl}XBepkT;jcGVU#EhxeF}*Rpam-|LTFesxl09j}T_s^?g_axWVdX9lCSe1XtHB*xJ6V}O|86n7d9SE+`*7d7=nm}mh z0M$mWc_GZEWO9$`r(_mzNeiZ#p*YzhRXzf~_0$3`a$GOqLdSt20RiKB9bK=KimN(k zM1$Da=VN1QN2SKb#w8>t#@3CE!^NVPm&LgqU9C)ONGm6nkt*Zp!7jc;Ae8qnTzXNQ z29mg~om?M;$2AnRn73+TIez@LPiNO4(>m3p1lnc;e6jhM(!w_X)VDeA6<0ekzRRz; zI#&}>Ghjr$;XSfH%^sJXmCez$q^&l@V^4k*QC`#s_*ZEaM~`qR%Mp3!zo-u8?kXIo zhSCyuoH;%StRxqr5TZ2+gRxYBC2HhQys=%N^wice(qJvaOsvH-@(tH3lJupjZ?LT6 z^Okl+l=mGbdll|!*VVO6k`}2t6T*cV;6Cl{N|hvsDs`|5q_$VV3kSrm+t4Q!=GMGw7&0%FWj*9r6%_mh+wcbQPxVN(& z{n^YW^6P%MZYBWcLxYzyT!jnC8Q-&^0cft30K(hcrMF#8ck9&#Y_{VB5t;+co{7O?c!8ar8m-yqI_)fLt}j55AJMb z>)vetUf;dh@V!a*Ml5E&_AdVB zRlz4lhV$#+kmIAe1-QqYPwgUaHT?5A*J$i`*VP=q@TaR9D)oaZDU-Fg@E`Q+AdkQI zyAA@GV___x!1M*Txb5$|HlgN}9&g`WwYZmHG3$jl{{g3d;2Nj}V6%5`it6_M&{b1g zS7)5l|D$ovHtLG?z-Nv5xUxL{2a^u?SRi(NzbT7+(;4W=EZ5ued<7Xa&^ZtfGtf_e zUW{Hp|LAK5@+~Wioq$JN+J(h#P}1PkqqXo0*$164 z@s0tMN|W%NLB6Tp!R9(Pe(7364tOZopnH4_5i$1|d_o_;Gfw!O>k#wCy+r)Y%lBac z-|P-*w;A6KNUm;<$7s?6fib0I(lw2X9g`K6 z78joqTfa|gd|cnSgoL<^KK)WN(&G9gWF)4=rl+JQrC;TATs;`fuenj(D=W@_4PP?LkJ z)a;}Hj6HmG3`C-DOnf6i_W2MSf7y-4aE^VwN(?oWcpYuF3)cw$C750N|;z z*40qbLa-INFW0$ZQ7Z_+Mv|n7GV5J7Er6~AT33-6Wa>#QD$!_BnB6u$=#*J{rSzGl zSMp7lUL(GC)sW>+6>OUH3K8-2ddiSqPd$B_$)`in+{kf$KIAy14|i6`C=7RDTU|DJ zFR8CRW~8QrHj1Kla|~qqx79XRq$Hmrylan4sxTe&F!bwNLAFY{Y5ab2I7TLk4*dAC{=?d08f##usIflSO-6WUEX!N{}~8 zv*>YZud6BQ1B+So=yn>9*yqaD0_a?Oz<+e@cZ^EF?8@;;r%hb@GayI3#g8Z7RM%!l zk-8jorAhKq1sinjMGz5l?a8P0u08(rGk5J#Mvn7y?Slrh+s7FdnH?^5)YS|-gWT27 zWx%0{$z3p*+`gwYxd^ezd5Ro!jgwKx8NHFQ6jc%yGb0N*gWveUwOI?GGqTVBqmg}O z6gj_hx#1ZTBTJ?9ndFZo@=a%CeNVa8Nb+k6HfUs>AtGjEjnC+fEa}WMH?sLgj`K6J zF=zC#Z8T?8U}RhI{dY-7n+cdRv9IZ8^dW8ZnWqbBX7<(NqN|>Swo?+kL5$6f?S&=G zw6>qYFJ5--(bmL4PflbLb)dSfCN#q^Zq=IrU1sn9hHz6YG zfzpdOuYfxo9Di(j_L)22Nh8DgIpCzTdI$WB^C@t^Ec|#mxyUN?PcngcbsTZUMSx2a zSDb%V?~0$DeI~AmA3k(#NBb!SUQc8udi^g~XY?H`W+uA-ES~Ym)kzDWGtuiJJ7fMZ zb@kR&)-`lP)X)Rmozv%)uyfDctRETK&d;phJf}D7uAEVkS8v`^f9MM2&kv6&;_fY@1(YDKk?Ue3Qr-lG==hTF zz!3KY*>(>97UJ%Q91sPYpI#m69w%Ffn8=XGLpo)dZTEds>>h8jU(j|@zhTroL4-3Eh&+EhQ zj`KVYnd~qXv&UCm#NWJTl_F+6SqjBztwmf1Uohu7h7%+iyv`=XKE{BlmG3;LOX_K-~qE?GvGrc?jLPR}Tb4<@=NN|}^l z!;yT|N!u%y`W8n;CdE!AxeG~TCZE8;llUsgt9lUJHN`z%nv93O;1Sfu|> z1W<-XdJS@2q|f+|fnbo)JlJKY(nEtc%=&9iv_D_?m1`F4oAJanb%#h&2|P51I2QDU zq8EYWm@hoi`@*l!-WT3AGMk?-G`y(yg;YYi&*ixt4LA?g^R;umyR#O_LK@2$UfEs<5R8OSbCSk zc3iq5TDVF!$p>cUDIG5AJtg(x(|Jlh`F$$Q?_r)XZQNlJT1E}R>o~fuVfKHt?YTyE zt2bs!+qqT3>-4vGSP+f3=C}*XD&P_zSI6~pqV*+y?m`Qy?PBHrN9)^26+u$u^zQC1k*P_EiODH_`o_l9Pe@2lNKNUJ7?%>4 zmYkRvn^He67Q3#_4)=W3XX=}Q75k;tPftxvNr+2KN$3-wkrtbh+%GXPJtH9{H8nL6 zlb0L9Jx2yloh(Jh_D$;--?wi{YFwW_3315@ed6Mi6JpboQqudyrp0F9;^mKpdoFIA zd{THX6BX2jP|te=`hXpT)w!fC5MEA468 z8?Tlk`^2WEC8nlkB&YXF=#!Y1(l<3Rv2SdA-`JGcjDGR)o=ZcHZIvSZw^|>^1y6~q zm`|fi&Jrg6e%oESd~$MfT0&A{T0)<+#Ds)oqMwws^whYFr1<)2xJmHjQl4UkClHM! zC-q56PD)Bls-Kz=pF(Q&i;qj{7uz?ZeoFn+R8R54pKp_*`o+fgNz90k?;9VVn2=IG zIW?ni{kZgmc!DgkPf{G=AZ0S)z)zF$@fl=S3gy6mgIF3eAr8m>`*}ee`kuQ=o%)IK z?V6KA0hO|{YDZN{A#JCnr1pzTO^i)QPLE4VNhfBMo}7_JR)Q-X>m$)M${WFz}n|(hQ|wD9!Cc2UM8uVIDbrc2$H2=Vk1mX^5> zlosD?qPfY2jSqb{*|7fvH`&NjFX0|5-Oc1*zr%}Hx~s|IC-AvdaBJ##GW-n3VY|IXpTkGo0+ho0N&zUs`(-sYU*(_tTKa zFrLd~+$^KN*r8XluJBwYJCw76{$iVmSJGc>!fh4(Rqs4*wkM}IzPL8EERLF6paed+ zC#NI&ntt$wb~0FX;Oki7Lpd+3zCDDgxl0bz596J;#zOf3h*oM31_ zPHBIR%e_->4%;ub<#<6xFKj+^-IH_td@kX*hoQx8N{ex8-4En}utjI`L_>?+yu6yJ zvfz4mogn2#p?&N+Biwbpds_QXeGRi;l!+<*|HsRWI(Xc75C(|ZvHnuopv0@L8JB}_ z)12bvJbO2|dj_HvpbDG8tw1VpHNC9d#0#-twqE7h;+`v`TnNf~_U~_Zk4BqdG3(in zzEGkxelySgvXqOD{OFFrTl3sY>0U-3^37e@DrWP0pbYdL_pL`9Jtux zUV)yF{cfv_!mp6lSh)D~GDltPiYNSA_ggY520!Ug7c-*v+&}ETE1}vDid|u#N~MGm zicSTD9A3O~4a2B1Cw6Ly_lQyFhRLuSb`VKG~a>2n2te%k%K7Jx0@+&}HEiAIY6>aMVq z(*me1d?^BGaMry|3qV?^jBA`D4KEe|c($H%50nfL(fIWX?gZo(K;UZ^NHo!Kty6A! zt|llv?nVzTx?c$h*$2(u3lS@aAjovSF&pROGbmzk+XGb0;I% zHosY_-F5d$^apH^x$ybC@l#|1b@WH~MY-Tr?z!au!#CWo2(Wax={}80Uj@Fvu#CFp zb}3j&;%2wq|H{=>R6Tzp+kCYIY5h;3T_Z=f!=uj6?yaaPY)$7VQAQ1T((bq$7L?nQ z_UWZJs)Q;T>vE?``rSRk#HsN1-`(l*^vk%~AMR-_1OYx%#UGgYK?&(Oa!Py-sqtusBc)(d%C&#ZBk-U8SkFaFCt zM$W!U5|X=_Gz||en;VCFZ%r+XqaF+?#RPGrZi!O(;=!t+xYvUrD2U3OOzhnDT^m^J zZ}*NM*>RQ5uEA>qd;gD_c5H#%ieXktFpKi^7irheje**_yvwxhD!(z%~%AU zJFPZuQXt zNH@z6YD0Cn@$ZFIs0DjsqI1cP%u}$OEeejUlv^8Jg2l`vPF=%=D(BV{0K|UXBL@8{ z0=Qf`H(3A>Sv5BX6}S#Og|-ktNWp`8ebhhz!DuR_hmZ+P>#F275&*C!YKQ<9R?Usm z0#J3vr~<2J6d1D~GPTYwqHA`YMP6`)nFMVfi<^J3s`^F;EQAcQOb`y1t+lH^wv ze0}I!G-dGi-yCtlopiWxvAzq6$c=u~uaGAG$XA<9mI=lDu^lm`#NWtl#P$j0aQl8) zBg{H5kDBF9L7zdzFLwb!TSbPLC(_sqDATe1p8fEo{pKQXleNR#fm}ov3tT zUqC+V#D1)0?mLpaSs?bWb-1|LR~W>;fS4FL3Tu2RL@Wd*@XF$EL{zN5w~7#{p7N$! zhm=F#Kn6dV$>64rZYl%tQpI&H1F#!bIR)-{r%mphB683TmL0$qO{(uWx$hLX;XAe6 zZ1{qD;Ly2zgFV7q>JDv$AG}tdA-}HJr^(^6E0k`f=gtleH}Q9hoAu9?F1A-}YdCpS zwof3yhKy0;RX4$@H+&{5^4%oz*=I!F?JRU_*TMp8%XtoV&8;cp)SVxN;CqGEhS2|$ zWVy=?{ozNSP}>zyPCLKG@siCf6W+|NRzMzbLx1>Dg(+o#sn#d=!$5fyfzh6RRAFlR zU|5(CZ1w8QwI??wShQ~oCEehm#YA=SRANwd&-*>|Ez;d%ukLuF^6MY%8q(`+!aR`! za$88q1{-I6iF=tX0`ZK@+yt}^eq+5r+YMZ4VD9r;C>L50gQpD4ZG!fQ0ICkk-K_%`w6;*VHVRtun` zp{=4`*djmd3`9#R3#uq ztSBUif*{gi=|!5LAealMC?x?!5QWQK?&!r1QUz3s@XhYNyW7_;>gV^@C%@nEo6Osp z-I<-4o!z%@H&2DaTOm0(?AZX)zoA0>SNdj#%6TVe-CKt{>hkESQ=?0eMt|Lp&j^j~15BCH6~$*cVFb(7zrHh$MH6vG{DLg2i(gS87&f`E zi}0oz!Gw2<-;)xM{O!>-kiQ{0K@caUrJHBY)vw1ySBKyuu)FILz~X7EgmZ+ zkSXA@ngYmYM661bmT^NR7U2`jxFg76FIIj*RQ+q*Jncw)5FYy@F^)xO<%Z&w+gAN(a?99EYPjor7lAem96uhqWc?!JoXo&0D3?3(;y;x;R#k5Mw9UmuaO?@L-WzC%%@4e2&;77C zh!X~~kBFBLmmJBWMG91NTX91vfy^Sq#V?E5{-G{ex~=#bUU-A$>aT1Dizb!5aS>J6 ziZ^NztWYCpu^oI*QiH5@-ea;Pt@{i95~utCn4Z`2xt7tC;r3}e%x-w>HyYwFyMsoA zpxqxAx8qN%n9m6rKWaYv73Q=1qDB_XitKCJ_rzfusTvLxBBMwGmR)@rh#XlHeo4b` zs$cTeGbi4+{T=|@g zAGNMs5Q(diuK|T#3YbDy!7cYX3qCw9;7NWe>j=G*7&i#4zNfU*_k@c2n6=x%RDE>q zmRN8es=S!3utojrjD*iBtfBTa5s?Te38gzS2 z;Rsyi$2`9j2(^}e-trL=?R%Ggm`;N$dZE*T3Wfm}>C(^Oz&-Y;yvG6`_ovon1->pL zbK+X+4ik!2O`2Wbp5ZQ@%L#|sT4mYmA|E@(mi|JhS)meYW;d8)<}Yd)%6Z%h?NIY0 z?OJw`|C!B&y*aK5in<14Jv&J8m!+&|l)0?vjUUC{&{*SFSKVJ2oHwcnpIEWP%o%7~ z*^j=+3^7gCVA&k06+D)PS^NHNg;P1Mr&9KZWUPqna5Y5c&Egp5OQ=>TGuBq0FBpek zjU*<{ALYI1>K_YTq7=HaRfZQX%Rh5_j+K-N2lgZ17LUWXEI?l?K4tW;D}5?j>)VtK z#DOorFFt{9S->`eSFqycpECN1_bQ0%|5OZzPk!hlP9V2jsD|=GUSh1*cyCN#7W3b_ zOulDiy5KodRO>WJwjb!Mi^cft`+NH{7mA1Q!b#li-dHd5;bZ^MhtDW`)PGD0e4$JH zjIP4{A8AVo$X(`WEOj+_zuTMU!lV<>&6jRd}5N3mzwe&xhY?#di=MYSo4q= zd`1D^L2NH0J|eE%R@P{l0<7>@>dL6$jpEV#U={fvm9e7oXQIreHueA{>y>{ySNa`y zyn3$WJEehtOG^W9%9@Qez$8qsQw^vjOr^gUKOe@gC4BocpAGw6^a1hHj@2Ntc+#=# zo!N>j^qtvsT#Gzkdi_eke5nvO-0MUCC||n8c-mi3;ZYS8CWgM36sDpa{RbUVu+sdXm2idRqrxkPqBWUi$kvlJ_u(8o!Vnsgk9o8T3Q(zO`&EIHCJh z#zx4*ukXPn7NI|jj(T-lAMPr$*0B{x%gd&5b3_fXft{Q=WKXMW`sg614ews>#^M*F`l=YjjPXrqv)t zwbC?Jr}Q-yi}Ck>SIftU$)mzlTZ!-zi0T_}{Oh`fEE+E&1wlcywR%y8ltLCwPODiv z+1fcqC^B%uQUzNCZ12@5`c?qI-w+wwvubR~$5AEew$q$Y%+mUW_>@KKTbA_UuAxCD zTaL6m+<}{nHr;)&rSP>%d42m$4W;F2z|EW3S~#Op{t=7qQuRMVKtn?)R!5@6>Uo{q*Vt@6Si*KQc8TF&#u`GBi@p_RV8%I)QylCoJ z7df&dsblo7|9TktO(}e3VdRNl?H?NfquQ6iNCG}wwkH;gC zNaV9iUm8&l&H3oV7-Xvc`fRPuj34*1?H9ghtHx`U`E@@?v}TKMEmG(tcUUX(jdtt0uI1pzS5$5tf~-7gN=! z$VVi*2HE=aPhUq-gKgb~kt_@HdSdu>R5IAsRT$1b!AxvyHF;=M zTsBjl=|%jFiT(Ivwtbv1mnlJdgP(aF-Fm`SEX-t|$m-IIbxp6lF8l=rv!%n^N{Qmg zLM4mww-q3g_Lzeqs7m)DBXVHT=hrpjbQx~HcDlD49?RnN$3tzfq2aX1kd4zPWV~pc z-jAZ5lf>!W*J-fOSmRKakS2ZV&%DxiR*}Br?)hf4e4H&_a>@7EaWMVatu`=Kxxord z4s_1Tvo+@IgY#_dIX?M@a%Cq8NLUrpG`GeLlIC&)(20q*CMs)_>azS5IR`1_tZY>3 zb3;BV^<)KQN2PNYHg`a}5w=9s@t4gH`k<;PVaGawe;OER4Oc@%d(Wk;VYphk{wYGvJ! zk6Jx%1RS;44kDvgV;1AP*WY!~FVk=?0 ziL5cAPqx_(@GccYbjVmyL)=LXkvU|%e#}j6*LI4{ ze3tTor8e$O+owVNq?_6veOgX~W}*4D(CCAjK(++(4A|o@AKmb2FfK_rwZgyYBC=ydCoO9bI_~>>^-*kks10n`t}F3!k&K%krPw zKDKNN@eK^!=h}YY1Sd=DpQN5((Ig*o-n9QZ-_}euCLNoZ- zaEKZ~`_;A*|wYK ze%D^wYwIOJ{flklW*XUz_s8MFc*8vQ#`}Gwu=XvytWo`ygr^C*C&5C3+y+wYksr8VtqNZj7#YuOfr2hV|XEc4W@BuO!qJs%qIv6i& zxa_szOH>Cc8O=u}wl>xH#e}bVMl)D6jfEhy`fI~^ztfDS5Z5AqZTQmf0f)usal_eR z@o#Ul>MynrTiahy;n!L!JgA~VCZpL;Rj7Dxh;T-OAfstx-%@6~#`EWY*G_9zi*5ap zGJ_clq&1W66Th@Q%Aq}v7uG->7tA-JJ++qxqlBrpw)hF$;dUDgP-`CZfr2H@dhC$( z)DGgq{?JZ!KK2o6r8?iye&r7H;; z@~rKcqI`ehrb^LE=j5%HWjSA|sDT(!B0C`Y#tdJUQ(lF>-Oc{awq9#pHvW6t>e^)I zpvvklN}6vnq7LB`!m5&W2H!!Kv`d0B175c$5|f+6xDiWNiTt#@k-k(KN=7&`YWK4hsV6blPs^|0^Eq~+&r zJ45-txA17po|%;W&(BP{_N&cYvlp(FXca?HWq{+7q-ANIIrJ7iE=l7VIWB3&4ci;S zD@;Z7xTF^u3^anItwV3w3vb%?1q)M|hxGKbF}H1fgjp<__-XhZTRVR0E!6vtZLEw6 z9~3bZ6W~?Tp4Dj<&elroGnvKs+ugs*p9RUDjT>%94rIpw>YpgQW!I4i5e{$S;}&T?*d^P7_?xMOv0LKSr%A`CM5l zsZ&iN=O(!91utIcl=1h${>T@z7?2fk3RpFUT=yh==`DjsGNg>}vgukYSp;JBP~nV9#t#*Nt2RCq-6=;3u zB`t(TY6PQOmGn>$B%|}KN>T))8o}6Z#(?#@cS5kpTKVi{62->XYktzzg_U# z4Zl71O@`7gTZ6{mrH2j2u?_cI90_S!&lZ1Ix>tCUm4MjGJ1hpv6a;0^>gQWFkQOH0 zxl&%3fAcQ7{6lG1X<3>4)0Ohm6T)`?SQ^3c_Pf6G)7jB#rV16=n%4X0QY+kp$u`A* z(DBzSnqF&p7wImP>ZAljnlo%!(w(2*Me)Cswv?9jGrz_XVCF&43Us=$D_Kebho~f> zv?i_=LeQU#{gVkORB`ZP>2p#7xX?Bkjl5K<7h+igZ<|OiClOet;dv^$>Ob_uI`-9< zOEWnkMZy#}F5+rw3&F^uapQuZAevJgR!2%fl+}$bOd6K*CmMOJw3D!m}432a%SO=!cIrCSQ5Wo61)prRb|Rz=;3pu@=6zmy)8 zx9eunO)Sr1Zy-gu-W$zt?d-9aB+C4^2 z_PxVTcT1n;8l!CyW%Rv6^3!nbomX4l7T9S|HKa^n-f;BK(hAOmsptm|s#H7WRE_VK zJ`5XRfNB8q!IytRv(HPQwe*;9PriAg+C7@!X`K7TDwe!!(2D*AT-jM+9LVR(T!^Q> z%3_FDkGr=psBDC^C>a5D1-;t~@2HeV`rxv*Qi3_(Y-x;E1ediER;m$@cqVO(bb51G z!*jHxOARS|P1wg)MWVx=d#Fm)vL?bF_KD0%k84y_iIbjH*et^5LUF&~-dFDT7k+06IhJD8v!D_3WLdMRQBCbWj0P&fcx1y$sjuyd`<0L zO+5O9WrtwrW~#k*Oj!?(fA2osy1AL?Pk%KAP5T5B`qZd zS<-UIDR`*jv)X0p(kige#rOrNE();zK0SSW4a3E+7esc3ep9EcJtzFml%UID*YDHi zuhcAgMD=c3hT_zh2GQ-NWy^%Utft8~ zZ+jSwQj5*#8B|Hl%ix|b2UC=8Qa`g1<`&0TG;vEPh_1IRYbvE6_rr8+1*7gSECrdU zV2Z=7%34S%hz}&#ppHLT3SS-TQ_6-*DP)G{J<^mFl74BoG_~xI5X&((E3>;+qTR8i zQ%|Rr!EZ18_QCIS_&S1J7IZMcgj?jibe1!X{W0rv(;DNiL}a%F-Wf~ zoDgrywi=AN`n+ttDJvsKmz$Mg)midPIo2$=DmND;ZkszjF>smO9F+C?+}eCI9`^;i z!^S^o^$vo%odtQsj`(@XjUe!9fpPtcf`Xc$!Rsv?k63u z@ndxi{Ufut&w_jiL-;cif&Kju9OHI#F_K`6(rSLhsqXK0*|cy!LT4yTDNs zt!gnZ93>2MjO6DMHf_jxCCui3Kbve{{bX2GIk02|>8>_tc1mFsGY&th*=GafebzSM zxz%c&*2mvzXl$**?Bu|1^z=V=qeBWeIzT%@!;KQm_-5v8Q=T~w?$6d|=&d`AJA5h}QlRBHj!pp_r$|nS zej4F8!S^L})Kkwk6c>SOPWo(OpmP=yW z-}jSo{!Sr&(m1f6sGNLV**G&r(Pfjhy6k?l!dNtTjN>DIWq^L0D>iwVuis{kb)<3p z*2?;Ak(>~j$2m6hdn)UuGhO^Bebo^I8ylIT^neb3#UF|l zv+QWP$YPWgl&GYO_}o|iiC~R%aWHO$M!NVYJd>r1jfxzP^3RLR*mQ9$%O~j_TN^G| zo-IC#Ce2sN7S%-}*H=JWX6mrDVo8a(?@fF6Bk@R(@R#9S`4P zMXwc=Hx+D*j2fr8Zv&~{aCEBfPvw>psZ}yLRy4YUp2aBpcK_cO_FILpX95U2>u@zx z8#%0K%REO@;g8CNy{QoP3>LP&_E!U}gmfjJ#rS1LW2QMi6B<=vyqwHNTe283frm1v z|FodG(!yk#+fKFc$`d`~rG?4dF3tX-Md&N1;2TvzOJ+E_N(p3hyNZA4tS6KmipWXD zFILfT)^WIf8qPWfo-xik%kc|8OXS1)=?sJ;KcF-PW zr$W-(0VIt?j%S3LA%08H5Hd1EF68ZhO~~K=zL1$A^6qR8GJwUZcIVLb=R(n^OCT8S znhL>aQ03x2q7b(|)QA^GHQp++21_#*7UPdaUK74gGnTStj!!w^b=)BDn+p<}rn49l znxG5~O_IVSG%ZstOhS{Sus<|ykyG%mhoE0pIoe8_Lb&gdmkq*AA-i29+)2C3<%Kch zPu_Lxl`{6XXX$;b@%#X33+w4f;gr}II zhmyjhTrV`U*lf!#?F7VgxQp_M6iW_wDeLR zu2P5fVrJ>3PAFqpxU2Aui1^06*LFBo^Ttr^r5B6X9s}h7Br{*y+6Ik&eqJoPvcpjW z-T&0_9^VzFjsX{9+AG*3?sQDx2NJpfOO_A%=(LtB(_pjX8xF;iWt~v1W#%}LMAAop zeSOSudLhN@YSf*ZL8F~ZMtT+u_`7xO)`s7hUR6Op^9FA0Xrqt-*Df? z_Q6JI=Do}BRD;TxWp97Oaiu0-ry6F;Ui{!+_*f_EBn~;+m#bg=P!m6biy!XeYUE!e z{|+V*Am_V*oBh8EJuCcHjfWxC&_i|Cn~15hJD^83neLbv)D52bMmHt~*%wwXcZBl8 zt7!+JPT~Q7`IH5$|6YtK&#cCeC+!HZ{`;hYaD9BaJ(QnL2m{2Omwbd017=o$b4XtW z74(JlQ@U%RTeW~4)dlN_?Wn&Wf7*zx0}mkaCr;fJ?7N$nzr+c<*a~Gy-a9EL>vIIGN*rsD?sx<*71);3Y{YOIO}exUWWVS6ALkM&PR=ZVY6NZ5%hROI%b;;<`r}{H*lKH-h)c7V1ezum> z@35_veYZ4SBK1~l`7M5;31bzJCHY=L<0xTe%XQb3vTlo>hmM-%iA!4h&)netQ>%1&RY0o?VzO=Qf z%cYH}PRv+MTC_E@yaO`50+OacDX$}FNZO*hT+$enlvl3${*IOFuSojE-J6p}8(lE!N-k}0}0j>Y(m7hUa9{!S$$;bK(!;PO;-uxEK6;TPOg z@Ayte!k-z8pRYIEou&ukujy6J@xm>psQk^D_f&3{9o?&^>sx+Vs4g(|k~fW21@ub4 z@(iIW`-E&VT({V)C)?}^j~Ac=L#CbXBKXX#_;(RJd+Kd ztp}HX$WIWNvBT$hmJb`dWDneZ{x;&%)%xg;5vDB)0du4;lCP5x%H&Ahz zFza2O!CTA{%?5)dJvTQ?XEEewDDa0DaVklH>T(0naoJvxbUsYOOXYdy+niR z3pBSy1K0!l(^{a}NuIIqJT`zh0p?0;arby#^dBwL++^(XpX&TN)j5-)U1d#-nIa)L zY&I4>F|53dgLC`GmMczR^UpGa#WM)2)gaai>orG)O>48^R8~31HNdp$r?B}Mgee#d z%qh2XDLz_yA(rX}vnU^}WY)yQ|BxE0t2I{x_tzzPfBpR_(>;HOp|OW;Ik8Nj^@k7p z$o%qpypRRT^VtW9e`J5`a28GC9~7il<0>ikywJIo@T#1G&#HmK3d$R*R6#=QJ92^` zTm{)qEU7{kV(W{FXTt-XV6Yg!oZf)ZP~|LM-)&Evjr6(XL}+|SqOc7&QX@)kfoHNP zng4A0Zn#GU+aAXT$%8B#93;8zXw`G&>@`Kl2LSN?mX>cUwc| z-`U2>rWiMrGMmSif5O#7=QcZ~GDn6psv|PrmCJmi#@`W&~yPZ>EZVxQfoqo9fo# zT5Gnfcr^WHF-p5`|Mvx+q$==4ZGq8^m&-e$_T52PRJpM8<-$(<*M#l%_l5mjRoJos z!hW{lTs5@nHR#?enIQ3r$|XK3m$>X-lepjCml%TR7*{4^${`V&ri?CQVShic)ryY2 z2ErylQE$A{u;u#bT0IvmM7}h)8e`BQ5&xD!Klb+}?k$(NM*xWv-vfyUS~gixy*FUG zl~cLI!&D{i5fL!)V!f95aU6^B`!RC7S-w}8iCf`K(_|Bar~l!I_bgTQzG)0@nBdUJ*`FUOLn&o=8VI-S{?Zm^os zoV`Uc_N&v@AL9}N*K9;wduQ*2tiZLRsL)9|w0p9%T7n_RoReXKH>OZ=MwU)zG3V7_9mE=Io3Nvk|R+2-UW) z8a8DEmtfH6=4O~ICPRK!UPg`~%aW0upOX(8;dQ1Q$oElc)rGa~TeFMSbBUES00goY z=@Kic+l=}{DRgyld0v9SY|2hIS@o72cmbT9VahTaL6^F`d}9{uzRyD2zF!n$PptDc z^i6iUHQSPvott6E$uJtTv$C`Fc{)>8HXse@2E<)KG4|QPQ{U$j@^aEMbTDtRLYa(w z12DImta;FDz}aZXrA2i=EqI@cucZ2{jYawdT_rVd+gM~qX{pYJX+}$`)ja(9v~fck zPMFXtv0=I?M{mf>Hs$AJTQiKgxTkbE219zb#h9))n(bgIqrvC`e#c`Ule=goS6E3W z{gRp2@8}Q+?JKjFZC00^Dak@SU zfosmiCYnZ^EoY}1mj z%QcyD5ck4V;&9-b0qZsxQ0bH@dNAUE6@z{1(Vpklw?#hFnv_;!(4EG-Y+Zha0m5E} z0lps_o4Y91zI9pACN4hTs!!LMb=espeulwh$}*bFIi`G*IoAl02xU5o;_Mwe7Hz~4 zCt$@3twn}}{DAf5ps1-+%t)8&3`ZCHIqS7FF>aS{u=XiSs_AM z4Q5?_zR3bMO2e<{fa$t)qtR&AS@Sb8a?(!N5c~*0JzR9GAA<6<>nU!VCvgDdASvfFd<(jSbjytB0369UQ zWWjK4H0GF$8CF=O(&w9V^1!7m8Tx#k9)TTuhX#|?sD}aFtk1QAz$UB3V9tV(Tc2*s zfx!~2>hSd1_B}H{+Q2mkSTpK(xhOp$aJ?CHoEvtgyn2J&{Jb2a4k7^zbmkn3#gq*Q zT^^(+ru;nn*!nZZ1Sh~AC>R{F%z61ah76rK-3p~LOgclBDIKJ+pgDbD9413{gRG1U zgB3nb%f=R-W6I02nk;#`3`16~E;}EMJ@s~+9mcm!T%t8##SoQBGa-OfQZXbTdZfEQ zJp?`Wb9stBJwtCuHL>GdE+isYl{t`LK!`M1a?I&wOCE@kZq3)5Bq2ZWjxV$=#2IVv zcw@>muCS86%9i?39;8443{+M+paLyf>0Yl(tVA>;9rMgavneAxD+@Xe60_VqYff%D zq*NLDJc~(}YqZ1gG&(pTU6&2xoC$KCtSoqBw4|r&t@(M`7JZIEpKhXdn%I3240i^L z8S(}b5F0YAdNVeh41*z^=0M^78R;FgiF2^ot z!d+Z~9wJb7zC~xwfnqr@NN44N!JG2(thrf6h!>E5?t-y8aFr0NW;pfnfonvoFT?ou z1?Oy^n6HPNF#`tPj4VS&o;4#&5An&YgRw0;S7)}Q+s}0>8U>D)4Y4aHJ0ste2U;~5 ztvVeL@UY;3Tw^)#b)R0je4^M@+TuGC=Z?61qrY? zss&!Q$H_l&vgzPt0lUd8^|7qLW|=N6t*bwYax9Yg?$Q5VG87J^^j(%k_DuOM%OZcNU6yq)0u{aMwDODY zpp@fVjr`6B(9t>WWWFo{-J9cX%J-;>GS@g0c}F#rv&NYo@&oKlnh}qp`khPUcSN9F zYn)9B55k+!X$6bm_J(N%JK?0qX$55j(*wRYoL1m~&mN`~V7h4qJ22jVi`FUp3YDC9 zc^X6H;*2vGB4=lw#SqcZISi5SdcVaG`JUuE43Rytq2FT=Ue%&=OBxggfo{;K-^V1u ziEr>JPR(`BuS5AiXcu+yb*cl+qII$M+ir!p0yq4C((l?hHQQfW1*+Roee^qGC4rgaH%vB?-Rsw^D0%Y40 z=2~>qR?lwS=KL|ZhK?V;M>;3R_78t>oFiQc2FI z&UAiCBwF;T(=5CdfN3OU`o>>jy7@C_XMTAk`t>tsH(_M}rcspX(!avA)-LBIVS4~( z(UjRol`zY^m)|d5(Iaf1!slWW;$o5Ry;%So0fh4KIceIs1*edL|;av{**7kOA=T#sUHf``Xv;y`fJhpYerGi z)~a8oezDc8rsyYh$r6;`&qY^k0HH^DiCtf|>DVinj&4HR*NZ6vQdNnGL7oH7Wx@~! zPaKNr&Spwd+MTt&avtT!M4@Y6IlBulupF@7_~)X~QHQgM@ErRD6#bwumBo0=KK-?` zK&9+rwXzewakf#EO+r6>;~XixFDKxhLs!o_J2A%6f=V<>?5q(Ch1^)sb4Q$e`29r4 zcyxBQzNK)8DUL|%4~UW;V4o04PqP?r*-honQG&AURkgDFoKBshY!XUxIeQ6wG-JV- zId?!VX-g{U=aoxZ$No-*^F)x4EN99mM$>*wWS z;WP*jsS&+%!Z}n?{z2h!wX%y&LR?kwM#3p)Ghw6}!K_nGy@DWlLB|)9go$e9N1k@} zRFqFbS5tK+VYV8<3um0UDg+^CVH|%~jo{i@XC`Bht!OXRkEX#x%N}LHL$qQQmrnTB zxkM;qE5^|v*&p^(l`c)v8Q6&iS1!Jbwq11UAx)f|#9X@Qr`9Q{?ft)ZZsOrWcA#v7 zbm5V$m;jQYEKj!Op*^dYHeqgGREc?t+ZQ>wBHr6LCIR<1t`n_H!i#*BteHBsUIRH7 zxq>meCgV_`GMaP6MKEZ8d_e6kI2Q|v%riQQ6u!Bonb3?yW6ubJf@qbcc#xDrmSPQ{ zjb|%FpxGF-E288fzGF>1@6e$!z4$0}wPr>b6W<3aDXSrF_U4>MOiTQY2Z-EC^dt-< znwK#SA@!+zSN}NXDW;zCvpojEGhj-OC$^ux?EIADUlbX!+wI4(Jm6azYf!<^n(~j5 z2GwLYpC|bbXJ$3zZwsU@jtS2sYdjQ1ep(^2>gIFiE0I+->-N zpD@2!!6nF92dAS6*PV5$=&h~co%y6NS8klSRU+(|(6xrw(Yn@p*cjQmwI#!dhTU?u z=geqqq|1(ko6d;Tl$6wzo}JRhCBnbqqY`zg`f*`l26&^LqBEu#G7|L}tqIq}X696b zsbsZ_<484T)b}^%d$4WEnhJYlS|z5Z8dLT9RCrlTVS_nUZ#JMmYq*An&_XCH+_ej} z{lgiN@)s*LCpOcYbZAzL%Z#@E;f&+{Ux--^Z92S4;6JHJj)lnZ%_|H1k>^?Jg4?NW z$cv$BM40gp-Vj^9uxW4({S;vFuovN9;snuM4(VoW(Yw-W?x-qkxMZ*C*520CYSsa!}F7ULg=<)dX)c;-t9=tVpYYrCEZ;+jxq zY+BHWl?hI6ZdYl$!zH_W?S;L8mY z9%aye4FE*atDjKmk(iqH_ypILpc?sXQ53Z(I}r_Q>}n{CV(@gOuj3UijL(lj_C~IG z0!v0SOfnHEVyQ@m2?bHYFQqLsE1Jua5D~l;ooeiAEF(KtJ}Z%4I=WU)M%I3ydA265 zAzIDb&JvNSArKsH>bfbb1}{(AuQhXpaKe`?2{cb!pX}Dc^%+)1m6ooyTD6^GNxik* zZ|O==A$Y76T%>wMjo@@ES4S0sJ%2u41@%h-W?U>|1Kw(mrpViclX@mKKTrKyVku-s zk}N^_?9FRDSHWjsLKcC9fP()kc$>D*Um(0c~mef_A)t(yGpuZmH1HWuc`y z*K0y2R$#J5Mzq(1MH4-AibV(Xu7nya0W8m#&&m~^WD8@fBjy7HcoNLaN&i%7iYP|X zlm#95F;ooI8R>l`Etxmje@u7X=J+B)szZBTdEM057jSzAiN{GxyMb!%+_T#{@Uv-^ z%~iDC+k0P|gqR+`Cqc=(wRep2L|+_Vjr@nCHkIkt2Uvp|)2)s0%pY6HMML*2t`Yo~ zA~QC&e$Mitv2|OlJhpC(4H#QBWFr%=IQ572dTm@uoN%4B17b8+Vi9WVDif}-Po&P% zyOByC(bdO$?OgBkk#ThOF*Z)_nbC2mZwHrNh-RM<6W-jxl_4}`(WEs%(6*y%xPst8 z!Kzlaf2OOkw5)VRxOZc*<>6>pKUb$()fp!K?u6A|c-dipw3BN+Ck$nZ(1pb(;?Te@ zu1AC?*e65?PZx+)V_7s7q6RJq=0L6tYl&9X`85WO?(_q2Z(v(Pr2M$MtBLR-i^ft0 zK|y-RvXWwZFQ6!uQ}7$&P?esp!&+51SHA@I)pJ3)Oeyw`1%zK~~T|E4gX`;f; zoc&w_;r?!x9kKo9wa^;_T#JO}>=Riu;Od0N=Zl3IjYe#@aI; zcWnrTLp6wUR`m~wC(E`>-Cb2kNpu0l;^C3o=dW8;FZpT={>l(JN_~hVcY$)>ky@3< zfSkoD)fgpD!889TIs3JVk@j18u5Q6_#yJ*Wat_EXmJc2!`GOzNxp6M`AdpkF{_!9g zc*f9sD!I4@MT~U)AT+AY1OyTfw=SKKDzs$LBpyORl=M|*e0BB-As|zQb}X9sd!yQD z$|#pbS_AfX#`$La)83n_(tG44#oXFj=Um|iYINOG@J!Zq!dO>ho}VCcV>6ubEF+rX z-dGcCTRPU;?z%C@(b>m&NgV71kX2G65 z-jx*0@2M?6r`A6-tP^{1C*=#9V~$O9?F{7|M01LBYW;+J6@(FQxza=VbA(WFPOYEt zTOT3u50xwZc0hNitYNGLWdvBmkn{{$!>GiK9zc$l--@vhnCrUB3E_3*eni|Njztqc zf`T-!P*M=jYbK}Q!|R~43tT;Su}{F2 z9~6eL7~;iH7GAb?QmcU?(>T}}{;86&+*R|_R9a#cmmnx)i1MPH7niXM7DCtQoo0XZ8Ul-6qv zWPv~*DAj^%aie22f4o$*3GF<$jO-%Nq*SmOL;Oa6)NxJh-vFrb2 zi1C8YgF;PtS?*8NWut49pe)*0rRb1N@}jclhl$O@+4uzYMK`f%&!5n_!%-cYD_ik5v^LjoRTlB}CQ(5tubxHr+}6hlvS1a2>jtP zR)uPz3#J{)X7#CX2`GEVh-fsj!WD+zak(OerYhv<50|UCI=w}(su7&4fCV8*g|Y~m z`wtzzKI>A?Pd{R&469P$aw+Q{!Q_s>?UiHETInAuYe75AHPr!d_B<|bx8$zm@F zO5Cd&2)08{s04ylr2PLr5F|cPQN#;j4H$PMf#ArHiX6Zt8l!LGu!_~fLu_UK^zA_g?ROBnE~}yzCk$jBl6}d{0!16K z6%qz?c}aru8@ZT%W-3oFr1w~iYoIb@f4nWJI&OuA=ROP1WS)z1D{gZ943Qb@y3<%j z)OBBIAa~to8)&$$hE#NYLgS$*av!D0mHF=W26EpmW<_Ovci8ZX-3|D|4YY^sN5sB5 zL|MR)y>@EF><0W+;;m4S zerO<}kojKSD)e2aq+Vk6aT1iTDJXG&#qvantNNZn!^nip8ce5IVP95E7y7de^Z98) z9|rAr2QP;vNdMv+a023iirVlZizzDi+Gb+=CG4ozN>GY6rd9zrlkZi<_prPcui~}% zVCYwHGc?@xMR+E2+qVu?tl{_tA~)7;=dz5b+fIy^C)zKfb5q=EiMEDV)NM5$iv7}B zDRX6RyE|U)wx6-0vTl3-NX4z{{Ly%Ax9uo)Rt04NZad*r#kuPId7`8MZu_i)&~v`R z9>(7ygaI<`rCvg;O|?wB92D<$Tqe{0jFi_JU?p0nnYIMwH?}$5aSPo_0raQUY20I3g-o(nRWi5|mFRUJv&uZIQXdq9{S>gtH4KCsoId)bPRa z@XYUn6XZkZ_ymoiQ$sZBgBlM-AN)=!cV#}fH$m=$ zdstCfA0%lns=d(N0Ilj(*jY8{Jui0IG0G%h(#u~Wx(nc%FNe?p#K(w| zXjLzv)}ZQ!4)OXXGpOzXbp#kxCF-ZnDM9(|XU|mkG>s`T8v2%dvDOB@@M-SNLc2s& zS8dIp8B=XB-F>e{Pxcx8lJ?QJ-H!FA?xz66S=#z)sfmj`=7xONo#>3e`3gWR!P4~npV0Ekf^ z#|k3jK?Kc}P=QA*b=To?X~~C{Ldl~=wIjrmV<|fRAfSgXbH{NLDWYT-AjX%~i4n`a zP0^ntcN=aIg;PF(B194EC}P`YkfYxUVDb?~)ZYpv4y*MiDOD5Z!8bP3}jEuxtiI%hnB}#fDs`=%_>9au1-f?}KiiS__C>+mFV;wq=6Y zW(P!rciqukU5YSbC5`#@Xe`&1BGzI74z+FOWt~CM9^B)k37HfzeJ3F9tZ_Hu`cTB^ zcLCAw>0|Y{Cn#d@0zlkf>yCj9C{TG_l)BEHiq@0?ws0M^;00Rj+DCxE*1^3_5w}+Z z0y?q^>Jyh8h9aJx8^X<^kFs~eqjpF1QKH<-(CT7$Hd<#mUYpxUi=^N_`lh6H47$3( z9RgRF5V<#R0_>$v$5chb-gDRE_EM~8Fad<5+B?M>ECs?M`I2E=F*y;acED&6Cr$*h#p=H=#lyp4f%Kx zlYvS9Y}%(zC>>W?iugJo0{-|1ko{RijB^QKgeL|>iX|Tu@r|)3^l26uCE^E&c>Vhr zzr`KH4;3*xH-Z^9TXCW$KT^cp#eRo-o_|HewBG=jMem(x#!W%1Y@k=2{X{fBPkj0f z_TnLboT$yO5;2=U2F%rvlX3iJ5%b1Az=VJKWVqO#9U}e{%z01slQsGMBBo>+U_SZr zsW`EuOT=3@0$$qr{5kR2gL~l_?hO92h$*lEX5#(aBs41oRDDN8@7oUOp?0t_xK#La z9AiEeDLL2`iV>|=0OIOnC*!$>6wz^!mn4lMOgNm3-VWiUEk$g_IwhXcogxE5h;GcE=St9jUsxKdKvAahzxA^e@4DipD2j?iegXVut4;4lp>z} z%FE~nir9xE;?DXbtD#xfPB!I!rPw(*bZy@0?#SI2i>(Jlzg_OeywI2$e=n^1$C4*> z5&N}{i2nn7?&)?DQ$&0d5pP%y_)CVlwb2JnPc`M!Mf6-e;_Tex?#*`;G4J9i`E04X zE!yI68_?Cn4b@Tn4tEoDYUQl{=u#t3RZcAFSVvh}(d_I~A^g)KIvm@;Gke_${PQBF zEw;heo?rY3EjUR;*TC^-!#+p=W{Q|zM9lT4to%|Dvmcw{sa~&DN0&c$hw$%-=*gJ0 z!NF4x^Cco?GnTK$es?XtOvJ3mrnf5i^i%v{5tEGL{X<{6yYeSROj{hLtxZpN;LnSg zIXEWFJK*lg|0ZGv(da);gm6J9^E}VsLva|IiJ?Xqnu8%7hPGp<9flTQs0W5NU}#WMA%G0qBN+MyL#Hsb0z(%t zv>8LcW9VZH1vdidI)VVB{4H4aLwd z42{IlB@DfSq1_mof}vsz&BKrfL#r^f6GNLZbQ(iDFfxDY^u!4EKUEr#C1&^8R6!O$)Y{e+>fF!Ttr`T|2sF*FZD?_ua|43%K$Du&81Gz&wAF?0k&CwpOV3kJ_)XfK9- z!_WZ?1vLTa7Ys#W=rD#FVCV-7wE*aa8Nttw&KXC(3EztJoX3n-4Vh2{^>VngVGApS zAU)bT#S@2yT|XIxBJ07FqVs}l9!vF1%!ZsJ)gF!g-W`wH7oF&{;K->6bgbOHj(ZXc zwMDZFtA+6Go1moEJ(*k^Ky^Tq1|7BVothxW^CwK`wFNN9&SYvim48&MD>_DtD;Hg-Q8$|59A)LjuKC}`*Fb-Ye2&;x*ISoIgEt^ zFD4JgxrMjQtLu6Cpb014ZFsZDGlSu|$Kk1thMjUh!Rb|brfT#2^0eE`=ZZYD7@ngK zLOVgR22|9YuZb?6ffVj3Rqjvtx$|qAph+7%nfzO#A-qWpq51RF5K5o%7|G<7U(*yh z;yqo_p7CBISVg$ZJMu$S!EbNNo1&;Or%Z5~8uS~{LF%IuW5vAXbFtNBwAH{W8m&5T z0$M%gOaw}7IV2XX`h9H}%|mL6kQwPA@+Ih?Gt^`=5|%;qHo?k8Ny!?`CerB z7CDZId}m**5{*`_IT^*B_w!}???;TK{l|aT6s=D8#QThH*V>cGeEnwV-1VcKxMt|u z)T4t@^{0;p2T#+Ar>g{EH&naU$E<$zWTA?ad(2YQ=L^P~w)c zRng%MC&TzL3f|8ucrTa(?$G9vJC$D}vR);!{%{Yle)a||Hx4Tcs)JUII2y(;S8!aS z;E1+0f({#c#ht<*5m|mMvK;lLs01`-e^C6wO~Ij*?Lh_G{Yti6Ghn-X+sUTGjw%ha4_2X!`KjX|KpR<{6q!wSC!1?^gGcX9Zszx zpopKqirVft8NqK8nQ!qn|2=TA!?)e-`S%qp-&3;mwl@Ox`|M_@fF& z6$(cFF6wa4oyb>jL3<~(g|v4Xz=6j>!RYGkv9YM#edzuwP*B=gd<$P^kr)UOh75+E zkcfaI8=Czvd`t~Njo_E~@w(oyxHjprlO!CGD2Z3}_<=2GlpOdt#EpjudovRr`av7T z5C&nPFS^Kk68M)z0bXc<`v2kXihwo>ZQXrLKugxNiKpK1oTBZc#kP-Z;fq+M>A>=Q zu%{WnPGtEm%W~BjVEIWEkDgzt;I>T3O@AB$%pW1127I~5?J&#j=Q$?@w6m(G34chz z?SPV-W8_JQ*oX2%(cP+H(WrVgkHFs-`QByuCR{urpxxCxY5Xk(-`|vcvn~VQwELk| zQBZYHExuJtY7EU=GP>Me-ILBYfhW@5Z`6|ZKBGYrtA7(~QVY=4mXObt(W z{$T~TeoAg!4~R|?>q4uc4iO$5KSg9YnPsVa1;iaczq$_XS`r$H`bK)f_#(=jq(k-V zd1yMsGtK0>LqvHx%F~7~7I|)!@chanpdQhlF8pRiGdC%lx$P<7wydVdz@HVlonpBi znSUI1B2Pcl0>KRWH4VwSJ(mel4E9}_?+>4md!ua&KRygA^x@&}^t#6-+MxOd0=K|Fx%_U8O)mmHu4Lrb`1fDSzcjPrs z2a=jh@buu1lLmD~XD52ZtlT4Snu|1zO~x)i6&``^m%*ybU9p+BsOEr6G}@8q$$%r$ ze4W5ZdA*e{a_QT82B8y45bc_zP;YCLLcNVJ+1knjtAhu_L(u*|V6;huGE%>5kV5^g zZi+8*kznX*1i|oOk!3%YC1f-m_}&UeJ(P?{VmNesbX7F`iHI8E_yA__xywZ&=Lsz5 zmB(NROId#`6rDX79*GhLLVgIlRngfN z(0Z4Gw?lFi#j5*v>a`NgS6dhO_9fKxr zhZhLodzh(S&UDp!Pfe=vSu-Q6ptGr-x?C!$gUQQVVuYBNGq%#d6-3ogou>|$MY%tv z;7+C#tvq#5i(kU4qg}ro4a2WhKmvyQV0G?U`=K|h7(7WZ^CfM6Th1Mfu@Snm>U4Fq zc*M~t4yL|R#&4=KhQawIct=Qhek|v?^@3L)_roHh(7o@&L*c+k2wo*}?jNahCl1uy zwE0qVaPuX@K)=IP+2?DrAB2WXimHlcwukg(nOMIJ! zp{c)k*M%;T>KG5ckmd{MWRM%#*;9{?(D~@1(Yel^BwoJpp{NqbC<5bWdKXKv#X~u-&aA{ORTxO&Npz7ns;}DMB@dP zL5GJtt@!5@3`VOmFrn_=t)x$UQ8jP;#d9RV#SO`D#m;(6lG`NfaaWn?Y7S|@hJGMf zcT#>3YS7=4%ypF$b%v)!Cq{5{(69YHTj7HS%#`FaTxXP2AVvhPBTCBk#51gm9)@0@ zCbGWwu%{KgNtLx{vXAwNM}YMzhV^7QYrkb)d_205sI&tj`wIhM55*URoC#QaDL=CM z2+b>i_>;`AO`?y9&mC-X+CTO4ZKvQl1Bx=99z@q-?~(G1&)s3w+5g%}6FT&2baT|< zamX7I3FTn4@^Oy|UN2?kNtSWzqN^i3WPz3R!n7wmE%}ZjMfj5*J?!I9tHkxodxPO_VkSD$EhdXAOZ-13F1s;ShE5cGsg}jqWKRpF+tO4uzp|vYfg|o%-HT zaDt6uy{`@PG~?FGDc7h|e%`5O1iWK|sC!5x|1AqDJ|HKDE|p0==>?Aog-@?pU$lTL zBK_DLPjl{~oc_Ezeb`zbeRMkR;lb!euBSO4kuHypLOPlgd!iHAfkf@M^Psd*B%P2C zW1m4mnx;w`9MdAZ zr3#zYHzpCy9u0pVX;zq)CqqwuKjs|zHf%;FDI8_)yke309 z`j?OL)}Jo&cy%m9B%PcG@rmD`!F^7r9uTJzd z;GUt)1iEJE*NLz+kw;s|g#T=U$>fHjBa1wVzQk$TjhJvz*0&iZSw)_@{96h!-^6v( z7kaRc&}x!rEB~$$ZHqpZ$-ikN(#rX#{2mjF4!;hY{k~$@r%i^O=Sv0q&n4`+H-P=O zBKyxNdw!^q<|>`VzdIUfhJl_x;U5z5)+xKPmmamb^Wy*a9DVsZ_# z5Z9n>Y%O$nD#U_w-U~z zZDb94@id5KBTcA(`0-AdKx7EZ`iZDx*Vww~iFvR{lkexnbbStKI(ga04>S2<7MV6~ ze;ZV~7!K=>l<+05c?xHE+H&($SS`#1}vd#1~A^9b(>278X(?K+CgdgO=}$^}x-xsoN%HkN}T8E#WlhRb`qY55oC%V4JVj;M@+Jk zFn+$LAvcgRdYEC<@fT>2u)@;-C1%G~Lj?;wwYYwAzP;7>lJ^F)7D5=FOxYGOY*$?L z)JMaH$HKnD=VBw!QUn$-LC$u(pDild0NE8tud36Dv9Yy8m;Q{_^$Am#SEmio)|nte zt0kUj*lLMY!x(L`**}m%+ocgau=(r!YcXKshc`Z>Qy+ zhI~y6bt~B8^r6?Vy!vei<0W7ftFd7it6=KYZB_KtN^q`@BI9-pW1``H%VHZ-<+k>7 zCkx%nH+ih|9r|&qTTp;pwpoVQJ zC>Epz8;X?oH)m#dXYakd{^5t*-Tj_(r<^%+=FE({FsaRdyBV{X&5}{5FkDqrhZRJI zg;ErdrSFy^@zh?_(g=4~ye7*yfkSqky>kR+M z^*V{|+{I#fAMx-}5;t7ItxARUBApjM0iA=M3#-o3cVcy6s6ppJ?bwW$O86^NA>kEF z3u%6Gtq@sAZ{w@5z+Q#qihlXB=|gG-vi!?oRoIc;STK6SAh5twNb&DtWn^Q|x>eXO zJHkS|qRC&#w>qM{6>hzr{>Idt+ z-WtNsN zdCw?3S9wITJ*8oF*n(+xKg)bQZ;qQs`>W|?BjoM>e7Wta9}!AaO4m}~V+T3W5J!c$0nzciFh zeKOpK9U5r!!)_BQG+ptmdZ-A0Hu40#j8j6+34@$d7hAH8JHta*(K!^#aZ@@{o^*vD zfAZoi%RhqomkBe6Cyw*V)#-WDK$`I}isIGNn3Ff?C^~grcImQLvp5ofW#(tDT7y>? zhvQ&&ON6ho$Pg>Ot&9`fV0xR1>0vI0mbiZ{!V>pl`A!SP&pm?nBw0yNJ67ugytR3zc+ylV2z(PZs!xOu>-ZMlW5jo;;H{>DHvd0@p8g(nW0Qi4^@2JUUmR%p z))ZRg4JDfeb3iuilE+4p!<=A+M;C%P;QiuEcIz7IgckA0D!95rrX_%Xq`KhM_yg(B z0ZAfY%*ZSrBP%E3(ESgJ6>&_FTQggJglm^dZYN^^X$=jTbD7}bHHj=sC$P8P( zrxX{SE^C0jajReq*688P9DcNtGl%7s!?`^p;U^XN%?Zd{n*M1-AX~XFB9x_nhz|By z_g#LLul4vZ&G8~R>IdNONc?RDU&9G}&g$BA*`iBm>VN8?x4fZLiM=|BN_>nybB}H8 zOr{dK=9{s!c4_RjM@uJLS~JT(hG}_=G!e~rvSU9Zu5pAM+73)$^R<<2`DY zc!B|Z*PnFGmZXX1k{4AXg8_@&zf>Id1!+ne>FA$f-|~K}?HW!ur->F*$bZ?L0Tsfq zg4)fpo5B?;GZeq%Oa4^!63bC`$=^z=3)GbF zUBB2$yCZS86hQhxHyolIIgVp&~C~s7HqLfFJa(UST5?-Ss%B4tg}+!R7{=r)j>GqqO~e^ zUg77N+SJZ6r|K&#Dqd@3ZNdsaC{1F8T5TVe^Cu=8lRN7t98Yw17d>Seb^Z(M&uavZ zskrKYU!0-6Y54tXq-TcqYG-#Rr)hgANt&yWQ1<;- zYu0G&DK%4UrYVgrsA7#|IU$iqh^uF-p>31kEeg0#Rcn8iQ`s70dB>Ez@uB3_+V_IT z<~Bo7(U?yK2;@x5IaAtc1C0_5&iGhUEI2W=4idPr@y=ZpJNH^;OSw^;h>V%PFd*=> z8SJ|@D}{dzbn?3Xs1X&*;>KA6EGa?+(xhs+YWvU-IJKQx*1{CeTw&w$#O78|87af*2g|zx_&*68zSX5? zezdiLw#fk7@DSJsG1gX=?*#0;t{8Dd!C%onA~Wu+fq3d6#Jh3U)*4a^C}?$GBG1KJ zpVa;{F#dT6HGF`$3vm zleHftuT0^&bZ#STnbVYPGbNKPTi?{$RIAZNw1|K%qOaz4bG6vruS5$Qrd7jtypvO_ zc5(MrvR$wOoF(#Q+jJ5`7k8~CFcu$3ARdwm>F=%%T@Y@f8Pv{7Xku12_wEbF7 z^mZy%S1};y;xa@?io)lH-d>+SmAzdl6VknYpBUVpG{6?14V5wmDKeIJwobM5H-+Xt z9J)FK8}gP(-17qP@=4Q;;=#4-lCye}%A zgf38hmnnRQIUG5p*=$o+YpQlh>R!sfD2p3i@(GK>lxH>PA^OyxtvwYJNlup**iEzz z|87d(c>gi$c+D4|c=zlo-9*p!)E3!_*q*Qz9VDl%%7J#-yzTn1^j;X(TN#MW4Mawk zcw}!_;)w#uuFUc(!p4296SXl0)JPAC%no`kxk%Hy2$u;4g8t5hq2MmlV{a&H?fm!~ zZC^KGW}I)k%*-BQs%BN!4B!})-8l>=x=R-gyHj(tZMu`pt}qG>;UUN zc*y*7VQTqDJjCz~7b6o1cM6g3brZ#LV5bsopyGH!id?*_q&`k6(n%ZLU9q>6P=0t( zQcYoRmv^T&h2%raSXAAS-6e^vV`HqbA$%IkigpIq6<*_W{Bw21Hov>KwRL=3J5czA z*^k4H?UUR+3Kv^;8{tCs*aWsGD;D19Fl4IlB(4&Bc#mtJslD6XZFy;v^~B-U`dYb! zmMG8~zW|y#G&bJjJzDH~=tTpxSqB7m-x_Ich=t!vPhz&@hkKe_1wbS6^y8)Nga_oq zKT@NJ*fucTTSu~l=SN!`TiOd;8wH21)tFVximk&&?Trm)Ik%Bh&7D$g7|?;SbwCHE zHITq@m{mR@z~dA!_G&+leE~WMb_nPov`?hvx3QsOQuU@Fy{3?EPOuKg9snH)y8(10 z%KR8Q(HhU=LMS%YYL%>XBk23DW*`nqmWhj*I+^Y<45hTAiIugTaXGA=-Ha+q)13nUoD& z%ZJrFu}N$Xt1nkeYO!Vuyy`lHKafM8(kNZ{B<(Rt?y4t4?<98QB#Hr!xi=KC6*DMB zw(HNZ*43WwfvathSL0C@HPn@rr(nY1nY>TabD#9)l5s^xC4++e4!4nkMWAOR#53~c zhCZf5O8N0!+L0d2(gTsw&xxv=iGJEcF)FV0^$1~9evm~{CiFj)jXbu(+17p*Cn>B< zJ8eC@t;oeWaJmC}in_x6C`-}0@_Uvh@|o;NOI7|r?TD4wYb((aAHhPZbknF`2h6uN z)Y?f(YlXs_=jy9*F^a8dp=YKVm^93#EyOT4K{CfGOiTwj6MI8yHB>wIC_Q+%0Zdk7 z!6Iur?F|VoP{44V1h}wwd>yuPF&fev`1w&n0G5tkPzHA`V)acXY{Ah$v zpcO^e>hu!zAI_G%?TU*~8^Szb6ki19Pj%~eSOk6>!zE8pA__uUJ$)P>T7rftOuLC0@j1g@D#1j zd)=CVz{Jrl7`Pj-;Ek~8R4f<}VbRZ)#);vlE<3-~%U;AHM@-lYGL5i4WCn}f29Bjy z>FsZkj}LerlZCvxNO41zBNbFbD-e}FkCP_0~WByddiIZ1;Dn!J8wB(J@^WM9Ii6gX4 z7oOMSrsTl}GOfR~+iY#7z1oLm#9^IAb#7I66#^nt~mWX1F)ZajuFB_l$p-`cXlDrGTmO;`Up+;XG0^`VntBSvPcNvMuKodjmT` z&puG>&7}!8&*C*d0agpm7BkqCDHsOmpsiqb>x7p@3(R)g3hE;PD1WVWwy+f~nB@$b z0A*x=5yB9pXv7MvIDqig@9WiN$)8w5_!{~dFXNodWn^lNAY4wYQGeMi>r*U0kCo(6 zdUB^?1bl<+^-{z%bvQv4n>JL@lP3;!IS2>ym25Vn#zkbqduxfQWMejJYyJAl{B)UK z%jbobOAzRhE+@6J`G>&$G@AwY=GpMxTnb-~np;1TO&fuud-v;+dkx6ZN34srU*tPq z*7L~KDtx9sW*5imt1jmyJ-O6CCV%VJG59Q@Iij+H*`^}&XR0Sx3Djl}zQ7V`ApgkF zmHpY?^Qb3J36ME&bR6b9Lo(A8CgyNmSkub37z_N2#GWfSvh+s!=;Z4cGqLP5tV=Svov9If~j3$F+ zr>sfZ390aLMPa0~P_sgzHf>Oql@EuXiCiO-qBv|IQ|u$~EMgyjN%HRs87|aNoT6=p zx@JI;_tOpJYHANXxtp6zrVG86n<;J!=xZ@t zm+Q8GH0i8u!=&?P3HnhFDz#ZhV9$cCKoQ8|1!~WA8xv|uJsoIDHTzO6X+eEOv{&f! zBixuH*R4@vg`qmW;~n?)>nq~E9wasTc_rwb>5|wG}iSXuJ~Wu~b;Vc?E4a>?OX^efKYtN6hxXM}5{1g1*J z>4v%~nU65#sDB%T@o&dyZyF@LW|TlZA?h-E!q<}frOHj8jg-zkBXNY1JJO;ZHE<6Z zxnx_r{tVmtr{JCM<6l2==8)8gZlH5xnyE12cA=yU9>uSy;3srm#7HWay%~g0*mPc+h zsLzgklpvNCka(jb&on2~xO(>ns%e`fZ&ApHZo>AxqepG@Mv?JAM-`kVLb2Ave^}$RTK(xT z5v+dEL1%!3u)Mk0Gf`NP(1>MyhE;A$XwCL|PG1PH?zm1OjBzV{r=%pcrT!Bqs1&6I6+5`h}tO=2y`Pb+U zJU|?fO}kN4MahFtFE35@M835*4A=rAmKwm+yI95jN*2HuDmU$(b+UHE0Q%erqBi=` zeYDX(B&b3KQPhA+GW}9%W%fsJd$4xh!2Qj@g=KvPIWn&WVUH5-W(&79V@DoyB=OmG zBSyTGR}+<}bsg~?-Ru}qu5g=-Tq(6gGw`TNwiM*dkc6I!1Riq~5~goXtgeKwyPJwY z(928&Emsb$VoOE-42hVdh`^!+iKxq_*N4;klqqN5?_`$y z3J(qu6+$$tF&_6`{AWr=WXp_9u2I`STcXxfk{dHi1C#?zi^v*4-EP=7kQm4+jvyB= ziGQy8TMd{c%9g1qt%BTxi9xm`?QsbmtcOz0S9!Cf`XUB4Ko9NfhLUxJ!68?xT7R+j z3S&l=@i(`n6B+T_zfs&Resh6Lao##m*vR=O;dE{0Y}M&197qeDEbElB21~4E+k$=d z{42r=^G|v73z^LP8Cl`~4O8UMGQQ&QE-a_e;gU^BLr}#MDSe)v>k0>K_MVJ$saWqq?5f10T^9ptvhMBf)>Yl$U3qL0(lhi!$@sox|uC$A4He)Lj0 zJ2JumrV|;f#M;_f-W1^1^k93eZ9bO$%y26VIMQ=;ysZt^{z%V5dYq>ebW04MnTq(> zT*SmA_+ReT04xiVu&a7u$S#&eUeMrY)dv1*D(ok7Vbv2*Jdvzf2Q-!lwyBe?JEL~; zLxOD{B3^i4nE!_Gr_!;~S0i+93)hKoT@@TDJL=cc_O1m%GceM=&A^DSsM8*MHlb4V%9R zxyq#FY5o;ikkE24(h95*2y2<)zB0$r*z|TYj7@h1^IwID9B$~@+|~`pH<~g3@Me;o zLw6=SSJ~6?$Pt>{($-jOHH0mxhxHpvFE3-^N@*T}d}sPd*X5eTL*HSF`4 zA!0ZgsfS`C7g?ZSmVULg4qG)AM|BS~#Sd}g=?!4%$XfoSSj$dTMJmXQcDBLVrXegN zutXlmw1NLvHN|U(C|)YHgsn3g#j{syB3t7Nsq7I&*#JMR=b!0dn~C*b_sc8x@lzya z%hP?y(6ml!oXjZqbda=!TIjl;U%Lvi19v-P%Y5;(X(-nb9C+Y0!KpEnMReP%dp zDtrmf5Ge-l$D4$z7|qW9(x4{gAM+JHZzdM^%$PI=d_TxmmleIxIH2cAM8n8{HT-}qZerhh>0pF{M37Rd~ zQdfMg>!Y}4ag<5Jf{aJC0g~L;g!}?Fe~~;L4~tkj-rl~p0_|CeTC7Kv_Om^2S!jxy zXF$adu&vN`OVs;%RF8qS#kjl7OslO1l&hxFG^ga*^t?TTZO>YYO?lrMc(;Z?wQ9q} zi44QUl$L6t_T#q2TBTw7iR>f8#KcqI`?d_Twb5GR>+rR;7AnXQi{$g1KT6Y-xJ#;m zn{4D_4P}WoRw75K$a5oYbF|?G#!w@JimTsfTPv+Vf?iQUq}!;LjXP3~w)T<%x$Ggx z9b;{+wa+E;Qx&;roNc~#zyR9s0g=^*nI)@#fE!5ZH^Y=~`Vhl6Jt42z^1E__1>LOY z%Qh`^^_FRWTjBYRDGjyYpt~He^DVXEiu+7k59gk1;=0fehpjI}-$@)UBN%^MLzwG) zAH+tFHL1-CCfP!?`os0LA5U0XR-#brvdOk+gc%5ztKx8=3j!illIyTJQ*2>cmVwlZ zRL;;I8}1$%XnlL_leT(D{Uzcel}ImCPU4CA2HSo|)l9C-KAL6=*0ve2TRd2*J(L4^9Wle*i&_*Q8aBfghmnxP zTs9Z8r+acd8#oiid&wZCR4HDb$k=BV=EK44d_IP>Kz8&+Tl3XbZHdg4%hAW;&mXE& zOJDv#II)&0Z1f5nZSf?JXx`Jd#yISNU>%IG7OXri*_V~Q3=grb9^1+kOPx!s!_Kia zz@Z1k#u;KRMG+PoWEroAjd?ii!aQ37PBtLUDut7aN-CUh>tT6a4_oPhX;nsuWd#(Y zzILb)ELw<0fMru&oM%0B*C|xNtY}R#u7i69C4fW5P_T+ybYg_tEuzx=sxUd0O`c^7 zK=gos|9F5{zlq{3T-EnZay2#-SvMFdbv5-ne;{k>rn{zGuDl;h*`6HE-g+7Wl2~p5 zx@&`xN_X{$7@7M^HMV9dnr+>Y`tBM#l8iOhl3Xo;f{))nYiokNIYjNNQV-u0inm~& zPqX=H*#=;51CYWYRbH?q;_glYE>?lAlw&H|`mEYg*n))y>O4W!Zp!*YS?lYMdRN|; zO>kGvGFw$-&XBB+Rau^%T=+$kc(&_BEKtu~3#U>y(tp63t+vrAq!e@7vK)QvC&Bwc z<+*wpcBl9>t-&g+$w6$zViZf6;RT%X1#BbT#*7+CElbl_RHDL>L+(?(37 zV7Eiuomk*k#Wt;m#4j|I0G3hc)upTPAIW*CBEZ%88f%?L2}i10Dr|!ct#@+7tBfvEFbpn;(pHS1kRF zQHm=1!7z~l-{revPs#$nH�^N`#?4EiRTR3;T(y3)Sx(rA&gTWE>-#y3S^>$?}0q z#7iG2?5XA#D^;|{0m6IchE`*TUknNtCna zMV}<5=X9yEWle)v)+;y+XYmsJk9OqV(-+VkrGRdaayJ~ZR43lD)zwm^kYrVe>twTF z+%Vm=F00-U>w1mwMepUpM4T$0^Ie7pE)_Ihf)}*qjJxneqz>gq&oMHhCGbKO(Yjwp zD_arxRlVAR(d^b(ISJL~5?y@UhyHDFnyh?{q9-u{#W815 zY>&06A4~nOmJiF?fPTdcukj{?s+VPT+GvZ@zLv%ErOLy}2~jM)PfBf;Qz^wKAgewu zpQEeejvAncWZ8T++EeEIsG~lcY|+}E5`IgC2mQ~Mzyb%R__Ma}z|P(gLv*EEN&wr{Hl-R%ZJ*-HV){G$5TDWsI{i>VS?ryis1$9isFVka z3|Dbtlj}C%SL}jWyQ?SvYfi?Y{n_lj-SA0MB)JL8{oK}l^^6i+Lw&Wl8avw@#%6l6 zlv*tMv6Sj;#rrt6r6K>0ArP6snjOS=ue1PH0mW*=Bz*|csWH(pbRD+YVp#qsXrdcG zfZ791!B}p62-ufBek#S^>uk8?Qqod0Nh`mGq+R>) zgxx2qYb>eEVum-1VyXAgEOV|o{Impo+uJVJ8z=0t0w*Wr@P zVHJPb>aMP6=F2veHuGUuzrdJq$)IMbRMWvmpRmc3_lY~z-qoK49>;(aI$qRL@OV*6 z1mAlc0g6C;;$0*DGq!wfT5=qamG$Hf21r z5pap93VZPz6vB7|XN-|UPRGuZa5~5W5G{WMG?fux{(~x~! z!j3601`C+Lo~%@cIm=WmmLE1C4;qn(1N39Z&)RBhzf0sz6`5+YV++lY=7Frwhb{cs z`{yu#UNdm77`X^q^ke6WY@wD|7W@~tfR2G#G25kJ@}u$xsZ!ZQ(UPk751Rx}4SQ)nQrHxj9`uUc*4IG2qSEmDbi^K|Wu zfpgNxakby zKO&5?%M`!E98dN4&t(+JB}pz-$etpp@oaPC<^2S|#9@lJn&V0P|9(cf1Wpt!!+)aE zQ^^1nu5VeJO@0wA*B9UMw!l>;8u~2t{VG>%p;`xtY^x&C`4gD)3R+Jq1FgA{MhaHB z3I!)h+IW>l3Kpzs9>R9}l=-l0S7D*X7`P*iT$-u*U&l;smE^vza;eLLi|snQ(tO$B zSM7e`l1W$0YZ#!X=BJzN&d;*3-Alj|Ejg-Gc_~ClA4<+yeHd#9lMS zp5E5H8jJlM0m>@|?9WClwXU>3(7K`~i5rF|DYfrvUCp$xN&1SfImuA*1cP0u5;|%6 z(@72AR2QOp0Kk2(ZYm!xLkI0q13KLV&5v4bcN?`eTY_e(AgZmPe{3n*bOUXw360Mf zF}hb_x&Oi@ZkEVG6-hR+#vRzi^#|f^3)=s$?Y*}QAU+@q-kI`?gVsEJJmH1sM{uqk4XjSV7 zR(KO-+;kg;vK^-QZRU8gFQ0|ltFs~7?X|R0DZ`=2pjHbRF|5~ncARf$ivQjmPdN>? zYW5_}e~Rc?zEhN*OSjjpIFF%n`d!#CuD(_UU-UNK+7v?{#uO}v-SM|K*4j#LE0v3A zd&H`u7Kto>`lG%q=peAo4cHU|meSqFOlX6{D6626jF;#!DjIvy{h3fXs6{v{s@5Vv z=snUPV3p31HA%ao(s-jl35T=wzHNQjo>~}ne>Px$ zG{JJ4b~enOpw-5K12DCgFt#^Qc58-{$_4dExINNRlYe69;6ePUv4d0I=#>b2iq=hn zA63CTq{Yvm|u70_C<1We~*fMcQL<_O2OtvN@Q#UBhUU zZlMIPSHQe*SI5{>Z~&+olRbpVBV3(g?XlV!$vmkrJ~-hq1dOW!zR|kg+T3(;|Xh%WmPzUi}i*=ucDpEpt3I;r{jPVcZ{2L4cq> z%WZ|qrW{Oi+vBd`e3|N<;G@RXx5r!J#pk-!ml*yuQ&T*4nx^z?U=Qc+I0xtI!8A!L z7>3&1bpmQA~bkrY1r30#oK(15=bjLwf{w!8vn>p6T*< zB3Vi!6xKFV@D_70_k7r(#`X~IfpfZ5Plvygz?w9%*Rp(X3cg?t&PujNYrc8H%vZ@% z%)I{-eBRO&W0;1IVceDEtp^4e&4C7`ppCUc_7hU;kOW1$AgBR|dMZFY1zg5e^(g|V ztfe%`bB`7j7ew%d;((5EVwnP=BKrH_I1v~8qL-31yrsE4Ld(w+0jEv9aRBf$gi~Wp z^Yh%%9EzLVZefqn-pOOZQMhJ6sEVWQH?_16(AF8Wds}L^I?o-%p)Ey~Tf-!tlZAKM zO-Y@CJs*o7!|=Q(xqUr$ro5dGTl+GGvu^~MZWMVr!!B<=SE%Ih^na{XQy}iEHaGJ2*xNY+>*l3=Yj+f34w>M%% z_I7^k!S#00q$w`Lz&F(NfjIs^8gNBnYV|oC;e-s7?0#PCTOIAaaDR~w*606$^+-cy zK8GyV7D&%j)tq)7*+Qh|**oom#QnC<=*jcF$<&rm_0)FeptgBTxo(iMgmw1A_6Wnj ziyOm_O%o01eh`k-I!qkhTH?WJ;t($z>yl~Thc3vAgqFtW)N1}QUrPJL^PEz3?nR4j zM!0vbHM{ZIbR2uStvC|rPtEA-vXZmo9C8uUhrO0-S3}s9ad5mE!v5qz`vkVDtG%kF z2?u0isQ|x_))pK(lF6S9>t^p~Nf00D3~fFBG*gS4?rzLfiwC=7^d2IZ1NBT~?fCO1 zoq;?4NSuzDV_;G*JKF{7ve&YKy{969#7?7xT(A?!p?xTyK2;AaeA@=ky0Wlyr~ z6W~4GU|K+rVAD(6H)WL;<9z*{rr`J7VAtkzTB#Y4)1j8U+6tRDdHI&;@#OzP`BWBr zyS*<9%*M!L_sCGJ+C@*@Q4!zGwztvzW{6Jc!j>^c4IsoFR}X2+{I zt$C?WaEV0%05kfeX6&<_u>Pr?x@W*UEJK+)+2tsl2H)2_~7 z@tkUDXfk* zcBZg$qbAAwEVNO?QOC;RGu~Y!)Qr%~zx&Vam8=?H!nFaR9)no1Tw8aJ; z7YZE_55M(1TwGl9Op96r|OdztRaeWsFB5 zyl)V&T@|3N`E>fDQ?T5yR3>FORT=PZGBlfkSFC&WW)tmkmTD|`9=c#v+(i0MG4^k% zZ;oBm-P3BYnMoYLZwos(%L!p25iTX&Vg** zDTMG+4b)@<6;qxexB&?6>R3S?rBX3LOJ%3)xE61Q8-PO%KypN;EwlTvw2Pgqvw}Q( zfTcj7Us2JnaiRL^m(n6wLEkh#w&NTEgfAInEHlWU5#o*M7$H6vRu0|v}~ zBZj~G&Y5`k-vs6t6+`dd%P$?7aI@erT{ZwO8GzL0KY0pmKKv=sMMIx5t@)Aq~& z)4&Gfi{8C6@F{)GlgD^wHax~I5}To75&g*3(hQsq1`gG=f2VZsMfn+$nWr-8<+G=! z1+nY%&_1Ua=o1Zedig2~@bViZaji;pb@(*xEdy+o0Y-yf#50&-oRY8;3JmeU2$mCF z7R7EXO7o!=9qqV*ddxt@bT*qcSPbevlKPiI<-yBTRwLgYru}Y!-88_UVm52B1jeZW zc3c%Bv{9F36kuGYUhX!>Xx=fb!Lyiu#qy60qjVI1D%@kGvwM0`_H&pS^_3E`6$z=w zpzSv-y*ji1h@^?$rt}`BbSj6@FQ6P2OYlMkOvO-9kXD&xFNNCkOu@Kc^8Zo0p7y>3 zZ&$$HU4Gu0z~$}=e$@;%pm1hY8ezx0q* zg&9?)uh>EeN>v4+N8?@M$|~c6wlqWt-D^F`LYm?zHk$n~YvIQNYGnkmU&HV=qlA#* zsu0hJ0ZD;k(PyZEKj{DAZ)gMl#~*?Jir~NWP<~}L@?aXSd3hbiWSK$8^9CW*Lc`y* zM_WD>=mRR6x6sw`WmQIM*QJ$JUmjljN_n*U<7L7;#&-vYuu!>UvsL7I!Xub!ga5_OuM<+vaYc^Tt5jz@Ho=-5GZk@IFM^!SQ|};z^_K+yu7F)`W_O+iZ&H`n z^f-@&`R{))=XK}uMw0Ho>XAn*kMRE{X(PS1%<~)T-?Yp8< zXFpcx2bYfrtSqzjB4(M1ph@239rmW$cFEnUa9ztIz4>7Q-mi`u&P)`h<(4%&vD{KT zmn})bwkOYvPugXF+)||HoH6B)wWyrjC6tvff3%iZ9jY`>bnHji=p*R8bTR{t^f+x9 zd5e4OebIMyTHbj$z4`~3ai&UUvYzRhE#mUu=*}r@&!#rMY-JE)?0jttc`Z;u4Y4Ki z2L>O4Zi?)?-`+tRF69i>%fS&F{_N_z_NHt@qt3P2!Vl3y2I=YjP3f-2k)*vO>C5zV zY8OE*I@e%@2LOIv4_;yl#x4hJb|WV4r136m+A4r`o$A>1Z|`W?t0(R`4lT< zm!+zg^k7#MfeJjHm1lIW$+DAO1zxI`gG52I0#Cx)ZPMrVMC`A!oP{wDWX;aF0&LV) z$nv4Q6Isk5%wGJ(=emfPFMq0z1g@g?V@a=c31YF=ZGqTyMG`vbB~Y1nK7zH9wx;k_ zdN>u%)T8zU?6o2!5;VM(hNGEP2Qx#d&-l}>G-RdvwwXyArkgN1aZxeTOLgx@M zG`?;sWu;yU#oM+XN7V7S5O7Q{fR?}dlpzqXXMSg-Sbk-%iO8(kD;(6rF-w|`8)ixI zn|dzhMLjLoOhH!+pc~F?_SH9V3St)s+Y!Ys*Pb}ZKb`?;o+RN$SQm+VL^S%GIg4eXS*FD4 z2I4vU3~j4~;nr6djO{K$D8JAYvfcpUvnt;Um{ol%Nx16OO+xWEV=Ifg!X??>*@u>d zu>S;~8%pjZfwg-xMTiU0847VxI7yB6xHEjQN$UJ>C~JgluDI$b=X-kx%mna2@D;zi z(n5En3yY2XictD>3+2}Zx3D_0voX>@hF^qplj`9p>tV_KsazdtguUPDL7@w*SQ8v8 zz}SrBRtxK{nb@A|R!hMRHOHaZJc%d_srZUQa?es(`G#&Gta}rA%=xS(D^4U$)>9sw-H0NoVk2(SOIZP+wDT|A3%D7m3f%)IFRU~a;!_9aw={g=6ln;MJeEO7xp3pQH-*BC zn?Y#_`_OMlCHqH`|I(9PDbm$NLuOZDwthF20h4YfgYxbUT|+fCSR`5rPK1Bp<>;n6jeR8XWU(ZR(exGqld589p{|1s1|c=IEQB4g&G4b!Ra&w@D+58J#bPl71uiygo!E_Cx@ew7^| z@WJsVgL~l5pL&K}S_Z?APHS%Sq|boGEc$!sOtJdkrk!&5`LON9@!H6Iu_RX5-F5i+ zFyiV~|A*l2S9QzjIUh%ywnV@=gkgVHCIei*vMyO7%ip^!T+5iO-1|3!C(Uk9_e4LD5lL6D;fd^S84O@k6^PDeUq zVofSe3z41}8H#oxj{4dp37eq6b~m{gz~0*4BbJT3hg4r&_TwTdP8qKEfxayNxsh0t z^N^`4Q(IUq$!{p+pkEyU%)geS5&SkYDDL+$gOcreG|Z8xeIcPo6lh@?-W|{Y78CAh z0H4i_j7xsZ$YjlPA{?Ey3Q4}MkT=f80n8vHePVTw1XgwiTWE3Tk4b6ZrXLrc&5w4p z6T8Myebf|!=~GWr7=20EzCUsut_@9jRy2j2KV94Rakg5Dp*=KwR;1kQWY0%A_F1~R zza!-Fk9o>Xg6BD<+(cNE8&!(lLnogj<^62IZ7NT>zpgaB8PD>K>TP(7r9wI$3nTUR zvvj;I|9*Fd-v+bnrO#byU@?(6VExJo4>(_ivQ*h~omXOi{fI zC`xCU*2s~nEs?xM3J<1kAWX8ER&xy~Olc-+yCh|YLLrxR1uw}(#l8I4iexl`ZKlvI z1}GKcJ53#tnnRM2Qsyp1%r}r*p*gFu^qPGl+42+=;`gTH3vM!vfM@{JqRzQnhuEJx zva361vNfC9%n`5Ed0uqFiXJ#9m9G5=XTfQPP8f_t1!2e(PLaJ1xU4r#`E#|#^Cq%nQo-K@wvxZY=2br#slQCpiNWlZ4T zmNF=6f3B6IJ5O~mA!CYdMy69&>bF6IT`i$+C{T(~?|#uyZFO76qdd{U1*Q=t-_;m~WdYjrEJUT7|@4SMcP6 zdGOOZVjM*Fg9#Z^Z!Z)jVv^RQSofp`W?#{u?)pe1oeYZ~n+n(kK*1})V zXE%htAl&6tPk9jWL}w6t3SxHyks8I$c4cAg-qJok>|8o_!gn#SGdyf+&S-sdOyO_h z8B=zBqoi@(OU$Y*mtvQ5@iHGW{eo-v`BI{)Sx(Qrz+1JvEfzDU9QL4jRv0TE=ctO@ zZ7P&)FNjGAFmU1cPNS7eVfcgEmm#aSe~u5k*9EVz#qbL65SpAHI=1OrS4T4MyS$(; zs7z`m9afY_vZC*@;@I78ju7pf0e4!K$Tu&zI|?li;UeBDEb)&lWJf*b2(V}@V*~^| zPzBKb5fV_aE~}BUD0*{!V#ejGzjST zZ~;lUdX2D4&9NvGobHyMjX)&M>erq#u=9;<^!o+48-%d?RIHd6@wy~!r*uRNAp3BZ z4_ovec6#qIuy-2SWTXQ6VdC|p5KyiPpk^Bf@?Br{jh6{}90T)oQ)yF$w2dA-4a|wd9O2q#i7#~HLl_PD)cDg^miw}5!(rCf zo08YK$*vq@B0qT}+jW?Fk>sCI_&AFM6Kvj)rnk%TV-@qp`?7;O{rxN_JwgXzrR#1*}B>apt?s9$c0EkjA3QZ|ELbe9b-o|~h+Bx%bO znydYH!_p>KR~eRZ(frd6dD02?e=d|$bH2IryNPIg2MC943Q{$->E)znMYEzwjwq~e z>ae(C-ULfcC4chEMr1 z*w0vuv9WwagAkUnL>VPR+yj4COw8#cU1U3yKW)p3=K1(59g&p2HO&!?QJ>HSRjLGA zy6fOrh>|UO@vz)LmO74G7w#!{F%^~Za8dVWINDj}D59RyiDI*@)SWSnLb& zl*IRndO%>PJc&Du?p@+u#22~oEPD=&;004f&k058g4@%}JzbIS#mt-QNU&64xi4cj zq_Mp#VWBCNfkdRvb7WZ_m@@C0GsS|RgY9vSHrG@a)_dzE5n(vRUdcyRhnyF)ms}TXfzh2zKQu%`pkL$SfF$T=rE$^ zFu#{Dbgh)2msJo2Ea=_$9Pby(rmpQ9&kp_kvY)oxpyg7dmWa_!(+*1RCn^_9(Ks>q zF1llRm$C+IOV4Y_Zhil{kpvB=%-zg@Sjz9%asVf{Ad7`8$lGQI8@+B z#m4H_HlkBw7xh|L9jbTo;a%_ElI`ohD+ITl%qaBgh1FU7yYR?RHPk!Mwy4>bxEr2` z0d%MxX>O0T7!2+U z@P7)}_1d*rdHjGdmVdavj{yIp2meK2tn%h!tXUnL>(Bp@iRD6G?4qjX2P##SxWN%> z>BNq1L!-D6>Z+yo?6tjKwbTY_0cs3$)<%@-NdB{Cj7H{R{1>ve!NH$$hCBs*BVvs_6MLEDg!DHjALv2BPIEWqWkCkXHs{-Jgp3&*uMt&ve+vFqFLCNSkL`bd{g%V z2l&%WZT~C0Bq>*l&7aXo%gg9!4tYz_{dIf~oJ}ZRC)F z$Fee8H@AD%Lf+a2GuPx*x$4x?F8f?VcIh*(+Dv%WT`ZIMX zK#yc+zZe+Ae0HKUV#$i@p%XDvFM>>EgIySPwn-6N^dgXK#-1MpJtG zJ$QldCH;b)?i$$S3mj=Y$d@fD7%0<^&Y8+NZ7S!{4^Ryn(%JaxmByXi?o{a|L4z4ML z(K${NSGrp#S=)slW4)w6s*9}zTwQWXfe2=Me!-g6j&Cq04{{6&XVX4G>wHPC?lMK) z=U2K12y(4geu}pGxx`~Tfj6F3@OGVY;1JIr2M4jIKSRqrpvS|vbC-rUK8w9^5S99y z#AA1XH{My|sKfgB3<+S6I#RktXEkin|c^w z)?j=`w~4GkI9!Ud&GS7TOd8ZK9DzS)_-)bkx%}NZMMJHhnXu6x1R*FCS8irTGr_ zVLeZm_-St$;H!*qvL`3Mg5!Bg!cVC1qBrdUs}5o9q_8)_%{8_R@nc_ojb?q^z&>VV zQ}6rv1bW{;lKq#;-uR89z4p5Sbkhi;hWpD&*s%sIqXZ_mE{nH%bqiO!O+^k8K2qmZ zQT&1IyGjF~I=Xh+QPP}%dc>5 zl!ihR@TN9Qz>&GYmBoE3-pV35p$;qWjeb|KZD?iYYX^O(DIHg+>FCt|5*%WTuZMrODMC5}k=ZiG9a$H4@*!R*`&x7UE977$;C7JxhjuH9ul zj#@xbIa;uPIbQpcDY(=CrU-qbOE5d3ZwQMX{DxxDUD2J6S|C35Hs=0s7>qgDhweXO zV9SuSG?hliA@DM6eFp=rt&v7klioie$0bkFrl_7YK*i@`3%Z`Wn;GiPy0_UiVE=#j$THRZItW%b->38e0OjR z`>!o7nAmLK78<$a2)z6k9D(9DX+syTC#C(kWHLQ|Kx)6TT5R`D?gwCTLMt+`&v@A6 z%EARDS9UzPU!JAmCUul!FNXhvMq6u@aAzOXxmaHd!45_5OR;LKa{ID0zV7}PK2RHE zM;GH*(Uz-(w)kx@E4^DBK=b9*m4_v;wb3YpX84|WS8qxJGPK64+&=7#|FHZpP7+6} z#JEq9e1;HIXKjQ4QCphg&dwHG&|1rBSfs4MpGpS`g-9(170p|W7O+Z$`iCBM zwyreUm84iv)ftAJbC4v%3{8(Y8xV!JEoEUS*Mmkj5*OoXe80b`qWPDrdH0d26jb+t)txbXhZV20EBq(8+bF{x z%xFk^{G;;fET`%45V1?;Xa2dUJ%#xrF)3(5gYK0;XJbT1m(+J=YBiZ?O@!Q2!`WR6 zV){NYD&#*8z0xS~^4EE&4%HJvTB$p+XH1{iIsO{wKL_%4muBiP|WG>DN#OQ^VoRo)iMURs~GIt_Y}2+a$Cv4FZlnTtJfL zw!r>rj?I}lye3<08BvuDuj35SZW-7&JZ$Q^Xb{wB%W+ePQ*QpEk)_7vVbSuapHysf z;U+uzEv12wxj7f*Y^62A$KIAY@h!LErm%N*>0`=!!*Ri$afBBhTEMyR1_Jt)1)fZbuhlB3qUKAP(#i7i#JDaTw5 zq;S}X7`D5?H6&U5RvfH33~Z}`O<7U%5}e6M?7!3u9mW4`Plc`CfKtv%bav8w-`3Yx zmACa}OQ^S#fa)MnZS|DQezX{@d;*M_F7$lAS3?8Kq*_B6Y{_Ll{L8Q=2+7 zw08{3Zv?pzi z=uQtjq-eIIrL!U1wQV$RSo#u%@vcF)e~r4)mj3fCoXxcqiEOe)R5-mU0-D)cLww@h zITO|h6Rzk+F6zBj&IE0k1PxI^Sj~7;8)yLaGlFPL32y6btSy(Ir7DP`#dy;i>`1$j zQLIKgn5gFr+oAmPb*1s z^kswkjENA(=lv%2{YB~v3erRP8Pp37mUmz`wxfSvHmG_@s#?0n-C!t}cS@SG8Q+SL zjiyU0M4@bSPuM1k+!C4+DuAxb_6$SbBi)aLb5VLa)nFA)L+J?uCHQzm&=|HY9b;G* zAt5NXONgFNoAwuFIQwBsrH+b2QB0^}3@giYCh^rpx8iwvFeO*+e$?3q@oOCz2cWpX z$fwD`VX|!0f7r;6e`RWi*NED)<|~dI-@jtn!^Pn+`z1IbbSEKnG4c1-x@*n7F9hiw z9wpByN&*r8f-&Q2i+w_;_3D1(QCItFt-Aure6;QX^YK6taaS)QryDFa z3K$W)iDMI4R!^*u{i_%8x3>st&UhQLfbY_09uN0smayU;AD%E~pGowTwDep2Yf09_zyn4lni7&KbC;JzQaDPI9hvJ zDj64z4PBIWFjKGTG=TCQQyN&k+lxKU*j_H-h+?#t#2@gPp}lOyL(yIW#FS`-qAeG~ zr$bLF+V0L!MtN#CpG$3Xy2`N~p-Nr39$4?)cFJUtIz^GF z=^Ee_Dy^}Y=?T8fF#+*~H>3wBTb7YOz~%nlBU#TpUid!<9<;y z{AmN8TCH^s3PLLs^@btaji=NN)LU%^e1uXEcTMsC8t`eEUKp=rhK1RuR+LX_Bo+b( z>dF27A99OD+y$59r3#tSvPs?8#hBbZr-$Zypoj`)yyO~s&`+q-{q62VV%l~u)$NP7 zX0c10q1uT;(ednUT=`VTiK**&#|o7Tj48OavDOC>GT`u=)EpTDyi9-!VI?KF?PC7^ zsmK_34o&1TX|6=JE)}|aG8Jyk(y6iRWI6&d$gy6D&Ku0)3tTQZ5os%6qjOX1vvx0l z7|1_YjhR2YwFdp#caytcQzUBeQVjk`rsm8vJ(KR_nE%PtX!hez#UYqH>zHi~OlrfU zUvwtmz64@U(KC1POY~BfV@5GikHck}QbjV2CYtxxl0(o#$21%dH8H40E`$kX2JRcj9nOth|C zT$=8Tvb0jb&Gq0buc3sIqV0{twZa?F2`FD&(UV+=q&F}Ij!~E+^~_J>P<4KX^Kj-k zKQSK3+TQdb=5)BX{aBM#=%6bV`pbGc9r}Z!K*r^{nlWtAZEX8WU5$Zcxn2%7Jej=( zb(HSR+0t@Qk@JaO&Ys`!79?lX#Iks{_%=2gkerY7a`yc{a;CiPOheS#Q?)j}><>x{Kix6OWyzB^3nO*&va5|ZV3&4_ z^#;YJ)I}-;_me;I_LC1EG5X10BBzr3$;a`T!B1X+hhBbinp>Li?71NBE5~}CQx84U zOiY%^yU+O;-u-l``Sf-r(yy87{*9vfD0xk%y-EiTn6d z>FMs->}_8U{SPz9D-!xM|6(`xT=KsVTl*$1o*yBz!&X4_mCXRUBh0|@$y^Dxk5Wej_FRlJR5lHjA z07YgxTrX~_Ju2DhDjN<-BR1+-rP^c-v`z+MdjpY?D>?FJak4gDBB!cI@|{WDitUwg z^Bt^=Hrc>^!pNmIk-F2_Mq3YF8zgh6Sc+@b*oC+zGr-<_IIJdXa%x5`_UdkD4ejLr z*rh$V1;`9rkFA@61hR_bDBSE_DBLd%QjQv>&}PW>d!32eZKSkE=u{>n74*3?j^%&z zgCC3e7VO2p;{cso2KEgD+f{LaY}&V#g4t*P;566zTSPC3XPZvA#zbl&sK!2)81Yn> zf)mM~W@?@m!6+Q~*TzTm=)zZa!bt zpT&Lb4Ad4$X*eCnTbiq!Vi{UYWwz(18CBVXj}g3@Ybxz&gEaW`x$IoiDgoFOR;dQ- z_$exThm?lXa=fKc?moR+(Aug&bXbyQi>aV@41!#*h5Y%0&IrvaW#9-MZyByP>VTLa zeWa_Db9%C;wmaW1j?=1a6&0;9%XybMq^_ECqf%v7aR)7$pTvZ4pc(zHn@*z;>?B!o ztXs(OL|AwjWP1LD=Q&yUXRA6}S59)Tl^1avpM&$m_$}{QKJYaAaIN&)t9s(jYPlnU z!f7+*D@+rwfFA}^(%+3Qob7o4=DalMiV2=XT#7B@8g7>iHvNT*{y4vkbnWhW3|%`Z zYEm?8uT(QQ>tcOe&*nlXqtFhInx2T*w^CP}H;m%8++w3&yoj}c6V5g`uF_1?lY|zU ze(e^+rav>+t?4$;V=C3x!<6HwVmizYWqWR6s0w*k6l`3i>rAQ|EV$UqwGDVzqzkO~ z9`YB2`4~c}&xZL>x`6f^wijt7HAA}NOJ2i#646Bi;9x$);|xtm6z<8#YZWyq95z&H z7_`-;;UK++{oi$u#8meS-xbXlx1$%k>=b?;!f=WzW=sQThp?dWvum?aqsPmj&}{Kd zT{oGpmKr<<*%No?U?=zeIbszHM^n?+b%HSS zlY*$n;C-lIa`|IfFi+PM1>=e5{3;8kOQ@|rt_k8_RT|n4o-&~{V>;r?Z<{C>AC~(Q z+CQzm;OD`NmagmEnO%<+{qUH)5~(u(k~;gt4N*V2T$KBsG9mY2^))9FnIyiY4o@BL z)r;tO&Gby%4Q0l}1Z4;-w_@@p6AZAL_U_XtiedgXTqwWsu4^bCKJ`-H}Ky#$`-@c-8-Xz~HDS{Nmkf z+dXRRwds#iubqS(73#EA@ExyCTZiDH({e8FwEyXpZ1je{nc}m06W$#MO{}uXBDhC*JOw41Jzr|BsY5XBHDX3fB-(42&UW$O+ru!&d9!t;? z-V=^K5h*%2>N+f5z4!EHZE!BKpiRWWB`h($%YiZz;*&0i42`rpU> zQaJ`_9|6@WWJ#g`s3ftK(p{3P>=&b1&Yp{rd<$LfE$4V-_(3Ml7rW$2eR!QP>gwN0 z34ZxK<~s9%Z$w@F2SP4L_?ABpVKe_gWPiWm=X>9CH_KZ^CCym+pZMCv_t>W1--TA0 z{A`}jBP{qpZ5%*RvY;xKbzQ}Y?8@}gVE)Bh<=>`?tQ%+-JDMSnY6Xq9*9*Eex;5YPS5l;4Wu4{tlOv_>l6#ebZ+TA~3^-w0Up zuXDQANBwQDJIHA1Y4~k-<8Mj$`2U<8wdpG0zyF+_wW$WcXyeZ>WG3_prWG zU;w=00k|rdHpstp-x;QTqyp~T$I+Ji41hg2<#P3Rv24KuXP<=C-Zt{7*+v^VcQ)C` zWHzc&Ne6A-Y_gO!FHdz@%Gbnd-x^>a?2nEpXj7)`~Rd=o?|Q> z|2b4Tc$t7X;$^DyZ+X28KGBIe^8bm6GZE9#EvAzclV%WuPjq6wc8L+@8a2<24DUJQ z9iX$*->?<Inh9CCU7< zXZgDj_J(gs3vGencXR1UhW7OPZWBPizw+h6NOq`NNma`x1rp;|lBjJkK-NA45_V-_ zO_?+Hr9xTdUlOYwHBb&cg!1lx3&SPl7lqTLDmb6voVQ@SnOEP(xPz9lEse%T+FETB?qh8{eqo+|N zE`LpC8=B1AVO7bDZfb2BUIY$dr@`1TTFpRz6>(R=?Lu5@Q~?zcotsNhzdd(w#5nO1~!j1v{zm7TXO?rS~N?9_09yM{9*jfm@B5mG&{ zruf3*I}Kkrewpp*>*J?xwsU6NW%RYCiFo=t3prZ4?Yjb*@F~cAVRgnp_XuZ2Z|YFm zl~HYkXP218=8a2pL}R>se61D64bQ+B(jC3Elbw5OcXumC2Y>Fi|H*x|2kLvgo%=*h zcV`DqW%=ek@;|ws)pFNyF1K^n>h0#2ll-`s_;X`|TZ7iu0rycmch$Nm-ywhQ{r=q2 zcpe42>eHfnsD9Nh;#oa+YsWo*5x4(SM9v0q1rCbng3$oA6iTZaz_-8kXMW?)EZT2x zh+93yZOn}tp(2Xx_V0G#5`#w=b{T^xDqi|^fMjFz>qBd-eTC{YJo#olejJmv%D>)o zUbtr(!QJr6oY{iJAS;@=UQQ6*h*d zwKf^2o4LzTg--6;&WI8;tdqNqbBrI~#pY;j$u^b|E!-WPC(>kl^uM$1dq1wI>HiyK^4=>*0g6hp`E*_vs#)AEB|+ftyIa7`m|mcXi8K3a~p!(&b3}x$)pdl=eD;4 z+UB4%xkdeFZjQf6i*%QFuJq4=ki+8r3oBBiTemYh$)3T}j;Mx&G#MS*eIe~;lhTVC@_^zWn*eRGf1{KbL3@$!UGy=v};&ev&pewUaC z=dXKw+rIeF@V!>1Vf1BpcS~pfz5eYXkHn-EAZ|3mF5qNMcPD3qGy>}W4*}vy2iXPG z?(J^mj7lS*pI3lqy)E6hdmnW6Id%bZ9*QZH~}5(f?dd>3GUL)b7_Q}F@!kR z?lrt4bdnZ=8j==+S{D4q9;3xn1ceB&GX!Nyq zX+*UCA0onsz`A2C5zB^PPBbbF_wfJ0eQ+pRNutF)_c~q^FSKzyY?zXG0k7 zU{1msIEWmJd}=A<0jrjTXZVa|rOequIS*%>$?j&@I%iIsaqz0!B1|5ONxV@@5avq?QLRD$t=n3Y1ko{?9cj<#cKGmeTFV@ zAc6;)cn18S-htZSX(R3k#-R~v79vaR$~0+4Et|6=)4p(AIsh)b~!ZPT@U9Y{Zxtb z7vZ_n%$qc_7Ts?bQV)j51k}%-JN@h_-Y><@w|b$w2=*xaGXK_=Irb<_drB|!x~pSo+1M8V>jd=;l z8Ji}fDTmUwTI>LO_>65p=h`%Ut4sx#AM&~kYuD+Fjo;dOawew{aw4q|wAW>L*~pte zb^!-FAEse_;AQn0BX2cdU4ue~EXnB1blB*vC_TPub-)JLqSdnZyL+>5zdh`00cmGt z?96Kxx(ho>67$*mZE=ohjECSCpSA5$c$-)|yNGP@?xJ`{+)qRce-YfeoTKcFJe_n5 z_h(f68KrqY-hip+Qag9dXYPvl%@@CH@q(eR=2p{m9lACP= z_|028vXd3wa&1|2Ov_6hkDzsfIgAQi!WM5X3O(#oMcF07I5(c{h}BTVSgp6f8P~Ik zxU&T#V{LyCHU3+Ktd8An=-pNr_yd+Arz)%^xU>Heiv1GvV?bGaih3$SY4VlD z7Dhkqgy+WZ`uJK5zu|)j!(vB#Eta?&J6@?a39EKvg7bsF1pR+Ypp$#toiG=QI%Vh{ zMj!5lH^rU4WS?qFClUXt1g+nP;+M0DXtdwm7PBNj5heZ~5yK9++hg0%t3~KRcNe@M z=qIAp|081l$j>XAt#FJ@(2YZIFeCj1#r!{lo*s4ST=m#s(K!yHTeMd0yHnCQPP z^5Up_I(na1#D!z-*^d4GBCyBtKSh*3;ckMxM4N~c*z3COFCyjt5%J=rdlYsQy&{gB za!n*6o9kzA^kw81l}thSv1;E!l{$~r z$sB({vn)a41JH$Kj9+E+C^?wb;ec(7FL(hv*qAk@_+z$Xt{6^3SLHaoTWR8P0}co0pfyt%EZ z!d`m`uHAI^a_&l_!gjwBsJGnxow{9jy6uj3y3;V;HFdvb>JCBwsr$hhhRNsLb%!{^ zPWV=8x{wn=wD$4lHuBjPA89*2#@HY=yY!yBr!)A3|HL}zgs;Wd-FFXi);nQqeSO{T zq0ZWA7;8vOgtO`i!`2Yw(bu!+l_paDQ$ybl8uT6Er?2zF6SPyqpoQn{Els0zcVFkw zG#N&l8Twaduh~Xr*6^*&wfdd7^sqV7Qzx|c`^8_7B#l+xGo08psLht!4Ot8O+I@R*H~)rm+)1PLP3-7|<7Zg>OgRR>8v6&nNEbil zTjkCor)cIMkOXL)e4G^zg%*$AT8$e1iQUHPV6ci%GoM(NR6Q?BdGcad(Xn8ULK!@>kMo(ta5|fv(1Hn5Ee&$Pe z92Tj(X=`g!ljC-ajC%*Kg+&1@Vk;B&SP)^934Thl#Z-Z_<$K7OF&V3m5igA$FfDr;OdZ7rwi9zb;L?dl!@-yLY8BCH%+k-H%}K*}cn? zEL{~pIbazL&;CeBWR`TOvTc^MKE2w{+1k{$VGYk#NQ-2D=g~CTY8~>$WSE!7{LnTy z4bMP{iNHJ58}h5+^4z8@a<2s7GAxuyCMg6w7w{@Wb#c&=B4;U0u@rXwa%nLV#r~{l~r~M5dA~6xp$H?#wZYw4m z?ayXYks0@9TP@Lye_PEXGcinU>WoMuvVkGeUN4YQgEC~?p5L0?TS90}cD0mqP#P&w z|0$(9eU?M5hF8J8{FQR5b)0k3@Xs>%odc4Mo`n`B9XcY}*cW-Q$#y`j<@uYRh!l+nYm_$v(ch6Mj_G!y?$@z|vtG0U0)V zMevJyUe;db1;3+k)m>R{@+WelHuPty29})jqpti-;5_q}a zE8$XcwVdOszl6&^62xs6`N|wEPMdE0w1FSS3X#9Ow3=`G@>08`+7NH!IjW+%FD^0< zAK;OW8MS??JM@fiTU+q>Mjg}KH7sTvHSVf5$KzVeY^(7~^s=7X*jfIJRb~F|t*1?f zw6|{lGCEr_?9Gi<*Hl}w-eJUzjRI?_wQY;P31_TXpfr-{if>DXN}QT%G|4}TGpBQtiKx#l$Z!71W1E`8scqi6(9m1RZ~kk z>)QnmtFD%J)=49N64 zM#}E9z73>g|J}9BInymW`>=ZOq~E1szh)|N1&`|RiUH!p&``=VPZL9DYk)C08Eg@}P|*j>D7Z~F#%`D!s- zw>Y?`IgNac=Mcx3WxCP_YA~#~_R|dcL;AA!xQGgh;8Ni!|9`lFpdRR!(o+loRE?X^9r{ ziz#4jes`)LjWJwc8;?P;6vNa(P;#X_#XnEN2)EH zWET+M5w0^Kjex~o0a7)vs8r1lwyOEKvu#2Ye-Y1Je|wG|^fK?rIxnRW`pr4tw#EaL z*;t+lXAc>ioKMnlJ~Gw$(OWM#Hb0nOlpKmd@m?Ryf$;6JrZek#|0>NaF%eF%dYq6< zf~whAd0cWvRx6Uhv`=sJq=`2E7roU8 z=eRWdqto(B`^nlDL*Ysre?niiij>C;Sh78Cs8f`FUt{9!bM~&|t@78lz({##Uf} zcWJj|&5T#~r8S@;#r=GJ&Tv1u*4bt&@lj}FxJV*9%C zGz1=Vwwjg?2mve*Uyr1j$g^Ls&vUz| zPcb9a+_Af`q0q*moMDhrxxgSqxyK+_dB(u0JYW#2{L0`xWg~+CWg!EHvY0`7Vvtwa&mgOEjX?(GJ_Cnxia~lsXYigfFP33eWsd=_GsvRcWspueXkc*+LX>q3 z9Lhc;GJ!!><)ML{V-TXOXW&rCz>9A%I}xyZnw z95HCmjmQ%WoXXSm@5ORKPcj;y>}60`xn*F-88{UFnGb+?1|iBOgZ4dx49d?8(kc8( zGLmdHup11V3O|L5$lVMA6c>X`%6AMhD3=%nD*OsqEYdt;G@J4{1E=!R0Q_DEXxkX1 zQ#Lb5uV@C1UnKx-fkE3~(D)i|n;_*g1{oE;s)r;y4eT<549a5z`+-4_@+E`VAY~=P zKxH|DFoln&fziz%ld{49Uo%LrEM*X)%x92W;jJ*FT*M%ga+N`lvcmvhG03QV!yujV z#K68~5UBhpV0>KGaU%!zr>SGqnzgwT^i5EzZtXld6R zm9sjcnsLwqL9}w8o{mu~;h1CiShZn(ZlRFU`8_A3a9aejs4pXT=%cY}5$E>w^rU&4 zYFPGM9gD8VRm)OO@ei?_Mi4Dk$x#pZ;p!ha_z^+0)F#K@;|Ge}9B2rlr3ys^Kgf0( zLA1gZ$5B&q;o{>o4yGfBR=CnQz7D?+Q4c|^(g0z!!WGAag}7U+Eao7A1L9yM2WvQ3 z&%s6xzTjXB2irK<$-y2DE^=_0gKs&w#=#8^QaHH9!5t3nap0a1i%{c#A8_yk2S0M~ z698yevTAB+-UF1`VS2(!F!FL?o;@~a^ZUoWNU^wk7 z-UI!8X?cWy^1pv^@P>nbIe5o`1DmHxIu0^$5RgEN$E(G}TgFSvSOh`r{6vFzX(yhj zcxfk$u|E|1#!IX5M8!+<@nU1AI^JW9U1Yp6-Upj#$6}R9c2t?{gH83pVtud~KG;W> zj11Y)#w#EDU{idsX+Bu&bRYB+A8eKnHrofA>w_Kg!H)P~+4PQvU|;!QXFra$GoJGye&d5(^uaFs zVEf?)xlBAVpb$RTVIPbg1E*w15zihX)`qf+U?O|}c<~ipjGcxTW2eCw4+-(&J-isZ z5ifQM9)vL-8IYk5#{MLhiR@tF#j|)Zb}?RzT?}LFa^l6;cro@lUW|PXW9)Br zF?P#>q5Y$p*g<=V?5VvNyKFDUzT1nj+h&aC2Jzy*y%_s%#(4OT7f0^J*rOX*X(qC7 z_Y&F3dolL*f*tHM85=eD&8p9)s1<@QTnKuvlyZJ58qx*2?~O?pk^Vg;m2yqB(kyEw zF_GSwzL63$4>5TSIc@*JU@McRT*~KvbXq?Uln9Xkn~c zwa8Jy=JbCLas1nD?UiGQaVf_UV!Cni0(~E=md|QVXo|{&<_r~_j$PXe)O5Pq8E4a$ zPgk4f;JG~yhK+9{+Z=b^!}$1sUQAc}R_1v=MDaWyfam!DJk$XkFaVEhOsnR=%qJA>=gbf(%W@UB5SNXvlXAy;jt+BwjiX6>Uovk;j;vu1(eA>Cl?92NW&NzBO? z(MQ1WJ))G;G}0g!_+@wE{ELos48zrf{-Xbbg*%7MtF`&BH7*h2Ed9PIern4fE9^S$TBeyfGj| zDM#q)e6><6uO3)L$6!ntS7k*oF9gB-YzV&0&hy6;W{O+65VbNlM?E#8c84SCejxIlN?a9UoO^i7B@rTkM5aZ_3$xY-85SM3nw z?1*4^7X(kbA{f;j!I+*17W76iq91}60}!klgrHY6g1mzf+~(lc5ClgQ1lwZ}6c~XZ z|40PwMk81@7D3E71Wm>xh;2Lp;nax;3Qs~%?_&f#CL zYY_ao7QsjB5oF(hpm-93QyjG0jNpf@2)^2epy>|Ih?i|FwC_$tDSHuYJ&oYH#^|rCeZon2-N#AxKL`heGm9Dh3(qPFJtt}c|zmp3r@uGuQ$}D+dAba{Cj^b4_N8QSTsLNS7%2?}Dh1ZU~b5Aviabi9Gp$k$9mFz=JUWFVq2ep$-72!+;m+0ACtlC6E3< zd7%!#BQ=2A04of@3w1>DLLFef0eAujj2G$vR}H`mbzrG(! z@o`RNEDwn3l;jKaS3DNdfCUz-d1N`}lD#XJY+cQjohz4YT)AZ5$|c)YE*Z^SGMKq! zEOW_F=8_efOG!dbF4?bg$##`XmSQd$xLh(qxs-X5hBvBQ3hz_7l)G#YmuyqHlsNf+ zorL=&OpuUws9ef933*s@$@Y{>`9=QUBH>L5k4eY_k_#JC9P+l5OLnDPvMJ?~Jt>!L zNx85ih0QCM>`1v}L&_y%j7zqoT(TSGlFg{OvKQr&1&2#^qFf3OB`z5*Trxt;mGQtO zp57%+6mtqm!;24>xJ8%vF_(BK7dxR?5ZLFq#M!vSwYX%N;Sx9E693?muI`fV?2<0( zlD_GZe&mv_s;AYnk#K}t~6Db zY$?qxtZ+-6D-Ct-c%`ZX`%AbmnFNUD%B}U=rD}_kJQ-7pU@E2*$O2=H!*dhL+(4ic zFY>hX43l33yhl5#X}M@y0#0@`tmnubU{YyOg4)SK9wn%KEu`%-b*P0LU8W8yVUw7x zFvK1z=E<;SaVx_M)GSf0YcgJ-If-gR3%Q)AHnEW0q_(nf;%uu2CD9X?fzUWXFVC>8^Rw&epB852*E8wT7AF1Ddl|t#2V0 z*IHHZfU>Vs8(WkhJ+Q+n{y`GfMb?3$-o?lluLcXz^!inJiGFk*XVVvI7mt9%B(=8Ze`=Iu`C<3W~+lFQJXDRcT1wRTWrZ5Zm}h+u~ltr zHaRil+|Dp-!7dKd0sVmgOe^oF&08%s_S5fMEvxRQR$p2L+)tl>Y02MDe|%|mnf=su zo7H8I%#QrCP3>V8YCrYfuJ*K$quVX-wV%rDPzPF+gdJ*kvtjM$77#WJx_&o|9NW~2 zwElxUIZApoXX>v^UGt%*VC7@1f?cB_JFS|#M#t<(=q|Otnc+2>xJ&J4A@_Hw6-~q4 zXZfA5hP5@%Pk0e)G*6rv-fi`iQ#5_IWvf$kZ@2nE6*C!2`2dSuCEYxami^~jQg~va zXrOQ=)bWB^iB4_LQ997fWFB4JqmD7Pn@6qos-rC=d9OObLK^H-CtAp{edi zz`p(JSc_8OfDPGvKpk#T3LI2Fw2*}d)!}A^h_(^yq3yx-xT2<3#$$u|OH;)H1%gbY zNs4ovqW%U?aa(<66?YFM9#W%B(R=9aA$53m!%jT6Qr2PgRJv|<&PSlBe}mH#>&Nw!fcomPig$=07%hge9~ zuWXcQU#W^kdH$6(t{$YUXRQ8ukcOX82bswZ((N7aK%b4~Rs zR3^yd@DI}NvsP}nUjMb_Sr5{uUt1mTAU*k79bje9>6|UM*)FRktfciXt9>kF{bjY6g*dL* zD1)x3ea%ve#P07PaW?{^wdHU)Jzi)Z{dC1L&pzt>t<}!=(Zz4oQKtNT)cC69E%wpL ztF~k{uc_lr^?B{03J}sDjhN7-)J zC^K(ZZF?X6dBbY7`)Jg6R+~$pMc-NNG=cv8PVH`rPN3c?*07L3XHzVTCs2i(R$U~} znwz#{0k^DXlt5!{*+lDhN}Jo3&rhITw=L5rQ1&}E%13vs=9)n29ZTzn^zR*Oj`5JX z-?frGq~muj0S~F@JxiU3wBVlF-}DQ-FjQLChoN^iph|9>lX~&J*TfI0*L|yLJfx%d ztpYxz_uW?0eMoU`tG_;^CvF>0TUG6C8uB6SP%X{R(Ph;dhR;!X&1yX7XoY4edydlU zR=u91@w!#7=jf4cb?9@{_JK{np$Aq^I!Et+Z#jW;wCsCzuvv6o4J%i=pyXYYa%|okTM8_Ul8WWZO(Q58QTYt0$ z38E6I>SWV0M4MA>$=?6T8bgUT{-l0vYRpGUl*kxp{4$0r{iODj{*c2QqJ`=h4(jR= zPWtvJ`b_*+rErA(x*BNZlkc(RRtWF0TD^}b@Mo)I5Y7168h43a{j3f(oq*)gY!dQ# zFvV#)foju$8e``#G~G#5h{PIGbZBZt@RA*R-<5zW-g~a`;&M?i&n;^=gWhli=q9VVk zL+NTnxs28@@(U%tQYTrAxqh>%?H5}9n>xibjY!$P22ujndQ9`jI?FU$sLt=!(qIeC z``wxnZXxY=Yi+%SYW-nNVz*Gd9eMPJ)vvZtt3PeX)<3PTw1qOgww9DzXvk~JJ#3-m z*Oq_TLdE~GA#?t+dg&H={Fl|4w@}N!ZR)K5+m@;0jSczWjZK5oZ)_SA`p4=TH>trt z)2wrrBt z!c?61&XoOEpy|wSJ&Gq>wG>~nELHO?eDNTJL-TBSETM@G&9kksgiboN>ZU~Afm2qe zLPXYIJQAxswIn7}KBwkcnI}^}r{-DvCDU4`B{G>(otDDMR4tw6S+gh8)O40k$#g!Q zrBgCxO>axqJ-toZy7Zc7M<$t`+mqGGU`sYVgH5+H88px4NHPUw)Eb!`Dw!fPYRxTV zO-8MOIS1f}4I&9f`yH(#}w=0#zt+7f-_)BSyyQR%t4i<=!dC_$HY~7uIUhm!}$rnA)e(ynL2*Q^}oAYj0=!^EBAn zo}mUoTA{>w4f4={UJWvOT0<&*lHbOglHaCT$pTiRPo)_Jw6=Ds3%`NXWfw@#4`ohH zXkfLkR4P$WYhl)b=>6kGBt3B{9qq2Dl_PyxgUpm|`rY)|J@(+TUAcrbO|DRKCQ&ln zs;5-S5w3amlT+!#aI3eZ(vfhh8KhE3A*<`8QvX6W%DzIja%3&6c{Y7hX|NqRQP?Ir zOA*Vdq*Cu9HUayK*h~~q)F!QeQL7=Q(jhw~TQOT5e^|_>+o@ujXJMF1MT*<VgynKlscK29NvG1vl3FKw zZMDyYa|=U))6=O!S`FG6*EE~At+Xp;tBTJ{*~;-(Da#9_QuETbCbgoptzI6Nw%NE= z8Jmq~m(e_58dB+Q8JmFeWi6+aN~6o#1e_{sjjXAZxt!(sQ>jlmYxqm0jpb~*y(p)7 zHi=WIUU{vty-{B)gR)1K#Z^+RJT;oyJUv|+*xXkBJLPT6?^m$pKB|H>R-x`IXwB>< zy;cKam()y85Ave}yr`gMrd`kPT5F(G>Q+%}Y1d;!6)-reQB*~(GF7_RJVVx~F;T9>m3;FL1>RQ>>g11+; zJnj{`{sNfVO8lXx>iGLY-;g}wdjqn>q^s= zo+9VP=Uh{Z^HjU0)j!YEx|&wkKTm(xwEFaU>Q&3?`se9rEvrt>Q{LKEg`Vfkl5h|~ zdG8BqR9`Dhrw+EuM%!y^xlMH>MK*k%Ro)>mc8$KnmjF|p6#BWg)iF}2ZXGMr6k1)! zny#eKyE>NdNTHazmhVWRukA?TdX}OoG_9WHRZ{3)JsVH;`j(ATXkmTJ1}XHozGYTC zj@H2HLn$<+fmKNOi-CWp{RYs(+-OAIb z-tE2fr4)M8$Z|d@)G9(7Xnv^@#^3IOu>`(|8|Hk2|4efpWx3PT^c3;Cnv0%CXywcd zg|HEa+?2rYNvp2qr)*z!45gEAI(nu`N9m)+*64nePTP^-CR!!4KKVeHl7N#Lwnm=t zv!%ch`k;wrvm>;T^e7MW|IXwPIC@cA#+N2P=+!kdAIUB8Q zu7#OyP*S);kmBQP8Az{=&wN*lbj?k%hq{D%c2^|LJU-*LGJ6Ip+*~U|I?|ZR33V$D zzu`o(N4cgr_+~1{2jY~QxoCC^t)a;wQ7bq}Q5=agYO*|^i!+MD=jD`Lc<-i#*21hq ziMq#0vKKSTG5zO1F|ZJw_7xSA70% zZP^SIQ6DA%JwILfs#|CtLnTSFqb!natZ3vw{r>INz%x-2@?KDs<5lQHE3Kiaw!~lN zqkQwLQ%GyANnV?{ReZWH3r_cm0qE44ZVf7!1rol3ASoMh+|Mx3NA-ak?0gtdc~dU~ z4QqnsQls~K6tF5>NR#<^;Mq2`J`(L=>JL4_%u)z3r45LCaBPsp(&E=WN_a{kLK~lCTRK6qh(cAV2 zp!m(bGT4BtzxC2jZPRnxSwG}6qE*Io3Ch`78}qTz z$`dlsmBt>{ia+1Wo!8!yBlu8h%tW(APLJwcCd^Kr0*Vqs^*iBF^ikV&pSmiil%>|FRrbia5vrB=x^O4noQ!~(rCeUis>E7XX=COR1_32b@sWr^8 zN4Wmw_)0j{YIMk`89uFbat)^YIFg{UyWe2tEq18xi-Y=8o;e@ML5~w?qnCe-hNc>5TueX^t^w8?s zrM2Y)$=A2ivmRPAdqKbFGs=5#M%gGRF5LI+SFNCDR1%S=K~<{a1hXeeRQrDAX;-QH z0Tq1GH9->Plqa2%uoI|ZQa<>s^w~*{Ue-cJqK5Gq=oP1_cQ0%AK;pOXvFKx$=x{Hs zzS+#Xg$n!Ao0`rX!fMXrldq=;QNV9 z2U^`vlDI%s7CfPLeYFne3`FABJVAV)=N=_0^D%D2XqeRD9R71U-&bp6W+qV@C%KH1 z-clXNtevMh3E2&b(kzJL`f26Oj4<&>#o#!&ty_J|=fRDPwlcX>Ci=0T7HMWAQB(P} z_-&jP_hj@w4LGfrHib%(N1!U>aD-fvC|z)l+!T6)g`Ukt=lfgjQ=+zTl46CazyPhd zDTyznDMxVX+@{_)eC*s%Z#R?M7NM8{S_@M>iF(S1(jVbay5vpqCkI#acyyt^=JV>q z${Tcw`glkqkDY`(2^3{(O^S)qnwWJg@kjV<`;!Ptjd&YB4I_QWM%puzPDE=}%yLT9K2A~>2mhs<;olCg z+i29+UvAHtB$x73u1$r+7twf!(_TopoTzB3UV zNYjUDHB2i@{9V3A(c>Hfi#jx&6z#pA?i`nmB{JZcO15+^^C)1!7y+Hhoi z&WfHH0$+nsdh@jxkAwt8$!%q@jmb}Q1sEGAYd)Az)-#6^$^gD9vjA6RL^FzdJF$|d ztU_M{l5+5UkLGcFjm9Y0W)>V$f_@sQ)ib-IL@nh@Hji=1h9y#m>l3ScG8FP(peW~Y z{l>~L554F(F)*?1N1>)mk#x6_M5%|1Iflt1>RB0UoN+>3`e~Hb-0U_ImB>ksG^U25 zwNj>}pEzk=zP#hLO^>FQqyJ1mjHTM8}p~5ty`7z)SytZ@)e<7xFRHsakXhf@sCT;u7@AzGz%c9PVpV0 z14B96l9a96$GKxYbu8qsal1%aG29d~UWvi&2EGO{4p147ATD#ek%Pv^L^m5TZp@^F zr6BEMwfJVl(3(SQ8cNH>h`KlI7b9%cmc_wfP%or^uK=!#A;Qaie!4}zM-RqoxdV)} z&*&YHSOa;$neN2ddoN$;C8%gntrO{9svJl+sB)4T2hwf4a**1f%3G|H4A{O|=V=b38^KTbMct=X$(Z6x(lQAxBpd_Sva&a>d}4^C8!9 zrp3!E$3qP264744c@ZyJ&UzSRypTLW%l*EAoMkOu4oPQAy5U=^_1vMSNNP5;)10)- zNA{%hxz`XRpFm6C^RGA0!CkSPYf$C;$v0in+og| z{p1oq+a=3(vO#?w%Y};!&R`QQ8@dMh1XFKftJf=9Hg658?9}cGw^L;+)}YG9CU3=h zd1YVIpvo=__BCT|WZ7jg$g<&qT^1WP({-!FDyzjC7+%q`e_`;-Y8v|&HmWR=4XUh3 z`(V**@W%4}FjtCqC@^zzF3&)}7nT&GMKZIZE& z!!=ifY_8<&!r$s*Wi7`yqNIXcx8HIP>tzPEappIW|<2aWNR+ur3PZ4 zGOcCJbG%fU<`}#(S-~{NCRyex232MhA(*=`Z>()bVUW!kg`K&WH)CrO;mug)5C*R~ zhp_X?yuhH!z>RrpebJB@WlQ`RY3uEIuiT*jEF529n_R&HG2 zkmwP^MhuGnC_zcNK~1M<(IK~?9Uiez-pc@U-@QSHrf7w8Jw)WtnuEhf7zuv8K_jPWqY$f4 z(V{y}z>*!`iR8w#_(i(B)PIVeg|2?0 z6-bwW_dy=a(0U?y-A|y;1zPcmHW1+7Pqf|uJ!fh|0Fq~Fg8@p-(gpyyW=Z7BS(*Z@ z&!-Z3{8KF&Sh3lH&6+JqewnS+!vh?p=V+ya?irdC{f>Ii(dr_W=4c%Neww2-1t>RH zYX|W0T&)?vskz|4N2Oelc8^>x?E`>cTu}5LHJ>Lb6Xv0m_vi{&)DPiiKKs>N{V{N+*sY2)~&n6YZL>Wp_NIGxN1bynmiEPOF}or%B*w z3QN(m6__;^UaXaafgaGxIITw(nMFCCqJ9z3j73`0EJLHl_BY!FQbjI+{T|Q`0|YPB zdH{Vi58WapDBTw!%Q^`(14{{UMjFu3qguP+1aWFE(z{ zsOYifM-DDOZ0y+a(Kywyn7RVO+1H>& z9-s+pw9$sd>#S7S90e(OE$niD`mEK)0DQYvn*h*!oq*#2M)Kb)!HiRKgj3J;Xc-6S z@Omv4p!Npsqs*fCgep+H5UtOgBL`jGfWCNu%6+Dd1z7(XIF==D)T(CYxjV|Pb6W^K ztmPr~GcAz%ZG_>M(Ws4DV}QLIwMGEHZA6)psL$sx8BglL_6#PA->S8x$W2;iH1s5T z{W*%7L_;DvP?G|l( zuq+%ZH9+gBgdanLs;Q*btOXR-o5?N%2L@wHap0l6+-k~)Q;e`oGSS&@nUT<2w zN9&Co_tW;B(0e}>+oeqbSicJe-A_4oYZC$Dc59OWGVT#DeUCOBm}9RtBMXaD=0~G2 z2oi7OBUht+S~nU{F;B2a&9P6LkF@Lep%V8~;r$|R`F=R+YZP=qYY=qJ(5G<_KfNz|Mo(Cs{a+QgkvhK|l|x>DiY)pPH5WAA+a4Ph$^ZnBXN7iq*j= zRxOG+f??vxAuX%p6#acjYZ-FNNYKSd(2o=J3rUb?9h3+B4iN&nT1qcWl@4p!=-FW{ z0<4veK>bs6>lHN55Y#_~rXJN25F2((`x4;9F>Ncru;bcJfV?NPT>uwO zXuAQXoRlP`PHEeKr2qu87-iaWWISy-ow~*!mX2y+bR`)sZyuFCt$hw~<+S#Nky5T% zMy#i6-+EH^JEnD_6Zf?sq$_wv`vmVLtv{nhX4+%uH!UTIvfRVL-T_~0Jy8{VXx3S6 z0}_?^T3Zir?rZG}fDz}kEdY7W3+>2x?K5C~ztJ`Uq`M&47ZF?tU<;*A7~X4uWG%J?{%7S1!AsK@o$mEb^7{SEeT-6Rf!C} zrfmea{~DCJPJOO3mUsiAuhZHa+A4rL-wAg6J8dnni78rVys>#PMT-o<0UXZnh*6_$ zX-3OJW$5BfEr|Nw)bh)NQA)xk2fcg}UJ%#9FzDQ+KW-xTgS7UR)+3OYz~DbiyB=Zx zY<XK%Y3u@K9R2u(jiU-b3YPq%76+_-DlQ+#(VbMm2LFUPQyl&F z6P(XFd~Mfy(9=Xcz?tqQ?S7ht}^0Sb85l_(j`gB$2C# z1A?hSc2ANH@6f^bQKM(5)qV8n8Jg`rTKHVB8ZWfXz_b_Ic7O#h;nor;)2~|VObLd< z@81lf=Na@0bTzg(p5cG3Ri%X~#fn1p1bXtTHW$gqy+RL9prGHhr2uPw(^de~{9Ph1 z{jMzwW>Lz^Qc(S6DSDOxdU=Gk!G0p@B7xrg0Yl@>&_A_B07YKIrU|t3wO|eZ(&B+# z{Yz_wXUp>a4gdVmP_C(A&5_Gy=p&)gLwfMHwh(DXy#fD2diw?%J)|Z7NMw_PmkX~O4a5TNX2%t>{N%BJmeL1ix8TC~Fc>)C69iT4()-+I$2S^DN zY-o_a6xcsOdT+;i>XAwB5ybD`pwWCHO{pS{3f6PdznSz12T{Y!dgl-_=yMD+ETO2Z z`V!cIs7A298;KqT>$?C}WYG@*L}rypXNbNB*!~cGKfs6C1Pc$J9~$zDk^g2R{|z)FQ`v@8v6%h=l=y`<=F(3g z<)Ga9Nr2*c^s@jz=g}_$9LTF*2XN(+B(3x7r-5ZDpq~RsF~FLF`q#h)h3m-xB?{?h z0G<>QYXa04vZOu}Sd&ty@GW$vls*-pacO-vz&8enETex4 z>}DDL6M&v&MM_FpVeeH=fL2bV3@k5F9+uY|;yu0M74&)`Hx1SPF>Kd?cDJukl=@ZF z%fogzDY=3^3@OW2)Q1DCsHoS)1AHkJ^;(&DXAVUQxD`ZKw(xnV@QN8|Z56#F_>R%w zO5nrgvPyb1K#j@*R#(;sI*uh)(PI!dyox@AWmVA!1JtX^BwAlp{{SFeH5lm_#TX!^ zn%)RM2b`zx38sjhbch^V2r1ejMt?}uN|dR#+q5R`0i zRK7)(Y9dWCeOeO@JDDETM2^YStQLxdpQfq>eUs@)EqxF`WNj#wOb2W0Q2=@CNaVCS z`oLh8rc4ON-G&Ll6cM3!pn7%nP$X(!R}$^5D^hdU)B7WGVm*BT!0mb{RWjABuMaf@ ztjGZYD{|2EMiB6}zMc`(3=JgDms?QXV6-MGYmh4Gl%x%#8$$ZzQ?g zY$SQsh|oVYIO`M#XPx47qAqgzCqfTGE*TpO%c#b>0_>iFHEW{B7%ZWcz!Hj!?+w5b z+*A)nqP$J@F#vH*(chBkbyIybfYMAK51=>GCj#_njwY8(-!<2#8FB(!K~7*RL+J`F z^q`>O@&zG5Nv4x6&@YmyLQC|3WJ+qOD+bSs4&YhQ!QhE$B?X<<3JoEderhGQY2R9^ zb$e?ubyyoc%HV9;ADm758|J*yM$c$O4~#u!TeQSvTGf_CB({U$ z@H;l`^hTL@dl=36Gc@M~wRC)(e^5IU?P#yRPt)Jk&gR6#Bd9$}ewHS;hx%vf=l1$Y zfLWXN*AKQ!r5gS9Q2WdpQ7|hV2b)c^t)q#jsr!+sezJ9g+Y>J z^B~DOU$mrL5{>4DOC^H^n>kp@{C2R&96JPF5qB_#2;YdIFg(mM6dn`V4ufw^rPsrB z7r-Zq9tRNep`>(uh)PMNj4^P=sk9(Qa>zJbXw!#F;r<*hImC>B&r78{BgArTM~WSf zjTEiRjuNd`jMB#bVULbM2UMJItk^Kjb9~8xQ8#xYLD3xxH6Y*`wqZi{s%Xkr3Yyy06D$SoDk$+AQ zgAJP~dEPcai;pl=q|zJ%ocjpfK9%ZElA<1%B(y&!iD>0x3{9!@=wq?)fXVup%vaFj z6#f_zmz^sA(=rFWoUB(1;#jo93Ad@j6cqLfZJ2`ExIzV{VyFT(Rd3)}OZrs3Y{*(8 z>5SVlTdhSMW6>ca*R{%t1YM`;9RM~>(^~;NpQc9wG>S!u*3#x!y%v6Q?m?_xJ!rcj zBmOoOnvTwTh+?Pf?L!V3vC9m}LukWvy$rcN)w9#|4sCEmqnef%Nt@4rhj>LvGxVk* zuMCdW21hhiKHR1#^`FI4(nD=>;m0KCgHK?cS9JRml&e7{)-Pmg2Lq1%?#zl`YxSlOQvq_;L3sK!E^!-9qRSLCU zgr=B6`xilH+#iWYTS}o#@o4EOlxwkM6Tes(GB1IE*fi3Oex~@NdiEGmg;c6)5Ks`f-K631I$8)Z!5eS*3pv zAon70E90Y8dd*CXAfH@!usyI`FG2%Wb;(3E*XYG4V6~n*i=>r%8VG3ZELL^3UV|pB z*24^f>KeU!fcXiJ?yb>l1~CHF zirt~$bw){p5<7Pdpr&i}>S2;nu4-_APXP@n`AygS^u=1eM1c9Nk8Z5hD+MtEF=a$d zzc8W6jSUXK*wJ7tzfKRQ;Vrd%!IDC5Z4@g;_txpd1I(|3)M35eEr=1wt9platk=f| z3r#L*d{vstZ_p)tkM_JmrK_8bz(#SOo1hjZQtk`Iy-j+_4?H&{+M7fK>0Tfc` z!8*MPp0Lx)Q`U`o7K2@GWgtkLXK?p1809hs2VksCp_?%exUf+#l+pNPNzXUxWi#>r z(6}k;xWNv+7G=BFJvX*BB#B(fnB0nHe6F_%lNh;&!2u*TV2M?!T|mz)22pNdZ~$UM zgNW-ES+W?y34X$s<6nVsL;o5k{H@NqV+m5g_+5;(BxO>QHPu zE!2pXn;66Uu{Q0E7`b`zd;rC7hkkPNLipv*1qTq`j)m8zLLGbMGI-?TMbBu1hc8~3 zW{@ivc?KKteC5JOE|)EC4W!m$&H6jD&Kh;;=&DTlJQP+2u9` z2T;ST6S<8ss&kL@o|=@K75PUPx$?~lLzvvD$TyM-eyMjiV&pbO+tF;3+H@)scT}XP za+!hy;~e)e7pfPj4S4F>;lH1E?O! zvYXJmeYgrGM7cr10f?d-R*aoV6K<{O!C)Xy5C2>r9%3S1r<}8LFxi)b!iT*vHcQ#VWg^9MCsn0>Zuc514 zmEZuGb+9taOp|+RK}HI>DZznnikxG8l$LuEO?J@yLwb_{^VA2W9MY?YFoKHs%BYC0 zwD=I#j`|V!`N(kt3TBaqmle4*F>EhQIgCZUu*-FcEm-RvMz@z3xhQez5_LSH4=`fn za>T&vbo_|k#fXt>5r=P4!J~T5FyWF55gb7MD0&$`usG?ZJ_w}O)$|+`-)&$%ivRZm zyyRdWMWJ7h>JdSVKAx^GRaDZg}DYW;Xvb5@iUL)XVXvh~SZlBN_1~CG4 zAKanBC-wg;@66+Cy1u{f2AK(x7?Ze(Aqh#uJjPtpbwf;TO%V~2Ba+BKDZNx%R1kt~ zo~e0ixk}a0R!v3J7zy`~N#@Yj(3WSdweMN@{(jH%d!D}^ua~p;ey_EMv(G-m-6#8V z5}nCLD=HqAi;br(b0wig6xsiX=4UK}>~>=Q3I{Rwj3vwg6Og~~p16O;5^1*wZLoIY zgR_>-E|>sYnLK<`gn9<<>iUNk2hr_&OI0!F2bky#?s34&m4vbtT3>-1Xz%p@))|*u z)S@bAp#^ThH$c?fGO>XO{>kFxGBG9=9*9BgAKT%t7uU~O+BskX+VSF^aQVqHt|r-N z-34x-0CBc7%0sOG$>L#0f4)&!X#s~ljLl1y>9PP?t$`aTV1jI3LsOQAwL)66 zv3j=1x@>7{cN32~EYqla#p3IN3E1rbx!WB?`4vkCxNegVt=qs2l-Uz4UBtoAa(ibo z(yEQvC8F?(rMD!sV8dmF==7VVk0i8Iqsg3g5=*aII!Jd~tAQJEZ!N&x zTezH#gU35r7_Qi;`JJeL&0>%x&?1d9$HmlZ@ccqPv?`;+Npa~KTz-kr5{$f4BJjGU zr5*h#+SM~6>bj-1116xs12e^z>z2ND);~lOW!Eho9WVj5uuRc110Ge$MvE`}e-?`} zEJJD$p=B4if%b-qWf_*fV(I4(9i%(0y@<{fh8u8|CwE$Hu{cXyyJ<0s{qr8W%2H^t z1#X~}4@Hk#7J~@+acVVJlH^xtsReGp3g;tQjmMJe$gH%`0yl4sxX?lxX^91Hz!)aN zZdm$>*oTNkS)08bWb=PDGM#1zzsCc_}@5I z73Kd-ucdj@VhY@Vci;4i!*#@*Vbkr!n@s4UUDyIxP7!<`rrt0CElA50Q|`miCmXG+ zNcR=j?^{OKB0@_ka0A5+ep}p_EK6&dh1O8qZ70@eS;p8s#0pk)UX=~=ju?mX*JZ+A ztEm=v7#SYvC{EP)#!;NMz^ycG{DgY0^nD107FFN|>Ie}LTR&+ix;=pVZf>@vj#EAs zIRKVdq`IX?jB^(r51{uDLfKno?}bsG^f|DGdG-Ui;w;82doc@NaeUduEioy11$~PG z3iw7A5Xn~I@er;=Q~)i|zzwu&%zF;LtFF&*lTNf+12^FGp~(2 z$CQ&lV`(lEeWwe@To@Evu|0Vv5tj>dGMIq&+|3lfH(N@)5;pmkvC1#_FUkde!Wve~K>&>?lOSjG*A=E zV=_T~weQ1U*v-+YbwrJ)7H9Fa%;IlPxti^OB}RVP%|&QAj3z?Qc8RacEmNg^&pta* zGa$RO=vrY>q_ph>HGU%Tsb#YLV{AzB4Lfo2%MFb6K zc3+HsX8G8TJf{61&b)>Rtg>hDqKC*&r|m?Gv-3NM)IThWL_eId6B*6YdW!CUT0WBK z$yqxQ(KjtvT>n!mYT$Vh{1-HaN{PN`CkA)P?kK7}w-_WE`5TO_i3=Nvna{N>u{T8K zb4!}tUTo~B95MBUWxNw6pqYKKpP<49V$NWAa&dYI1CspwZ;6nXaI#Qhz#Ti${ex@| zar>oZGG$d7-i6-pEE2|jS5K5TOKT(+ys`|C-u>>`iBVapUgE_oXaW^*i6V=b|Bu$Vp*h0qU(0^`wb;@=FYRF3bE#42Ut3zbAcFQzfcDbWNH-uA z#Cie_IEgcFEVd%`wI$GwvR%l-zFsBEs9R|5=2dSj2@-u&B)fU#V0Ek{=SpQSugp`& zNzxUnj!@HD;RqTi(Zj#&ggPeMOFY%7ePvDUUW)EEYJ$^hY;6L3*HIgd*KE|DE=Zxl zpUDOf5QlA5xbjz41MSHF!QXO7?5wN~k;K(Tys50tv?cRvVXC6ewx{?y_}irJPnWk7 zovNy_5;?-6SMRFn2Jy10+DoEnZ+mfSZMu(`?t-Jc7D zxw5JF*Io^lS#EfVHV*1=nYiR7(j1^$X-9JP_M&1|c70LHQ4Nyzao(b@quSGMJ@(-f zZ;|Gxc5uK1bltK0BEwNlvCl@^u-5jXVe*>6VxyDV)BzEAoV+i7b5i@;kw+8w4#NP| zPki94c9(e~o7#&OJ-^k9{m$wPiB|gB%WK*f)znal+W0|Vmal0ps#aGG5)FjP=p>(0 zU2QE(?;R*kR9E}R#Qq@JPo6GnN15YZD_DiRWJ5jd{a|a3*5ZJR8ezW%n;+8OUWBjA zZY>7XP#d`*g67|sW237$>IxF9XW#-675M*4d`Yf&pO(RStW2Mji{+6N%V6k zdr{hQ{Rq*jmO8|lyxR7MF&NZFoL!slDQc{pUqy7E>f#{u>$9tfA8SFo$g5co@nrU)*Rl7-at{?Q*pBoyAT5d3MDSu#p(Z@{4i1$_l#6ov)t@=(n(p(Kbgp6W@NuuTHNUiCYfIGrRiz0_}H zncb6NzkBZt7T-67vyy7|OA$J~y4r3L?(O7sv01N9b-)DdZHFvT-y8OgY+^e0;tYFA z_|1S_2>2#Ic=)JerM=25G1o`kA`@Ys3I9gwMw#gUnYh|W-6<2h=88`nt3S(PHqW&e z9z%8w7wem-Q>5MNOHre#dR``Ke<`w?s^?_F@Riu)v@mDX(#P(EkS~JyNCsXTF#ir)!zs|G^#Ypt&Aw;3c}okmnoj1gwjA>J>mf2a?P(y^E!q<(Y+9-lWxlP;MSM&3ptX>6 z(WDjZUOD!#>k6@^mFnk!3Fu){mblbP{ltDL+Pd$w7xCG9hKY@>)g}&zz~hT7aiz67 zRC+8F_TubocsurS8@P;6rt9nAD&1&r3-O?hy3mf$iS;6`t(qb2Y1{3^S||93!jg7s ze~Fy7K`AHq`3l?iYNE`tV7oB2SHF=7mmMOogBmZLOLy3dhgJ926+d)P2TFT~ox-J~ zy29x?Hrn?HbVCPG^MeCz#G{UCTL+}j?(JDZ-${*>P8GYsDOjl8)FvW(_2-S^BBN!n3PpuLA||>vh0GeAiX|*!}>v-f+!clwG*pRt)H- z`nn*3rk~BCoBc4Mjy~Wm?i9oPM`-3DH<_d8JA0uUqIMK@y2Blm3Yl;ccVUjShn=yu zUf%=m2W0OLXv^3K9^#80T9zDGQQAXYBJBykz{zyyU}tflCtUw1OV$N@vAO;s&_wK| z_K>I-GSUR-<{f)6y3>QEqS*)PU}<-_Bj$bp7Xotje*k)d>NY1ze4)b8>ntj|J#Z7- zwjS{lj(yd5yNlR@=o~SpubSk538?#NmiVWy8fH(nE|2ZS{@xGZU3fnjd4$I0z-6w_ zgT}asC^p9)rm(P(<&UrsqZr&@?Q36zME}x$l^r~YU+%AZyC8wG-^l&yBEtH^qX7Px z5DnX?Rc&VH<6SFKX0$7^-g++&P~+^Vtk26ucZ0e`+V4MwU+wrj-(a9RO4{qb6tf4a zEA6jg#lOORYsux??M0YTZRCImYIe;QvyJdDLLMvswjTf5p>XjgbfOac8gF>iS1b%w z`$=>f%Aql=8>DuXsIQ%aP-kX%iKszpm>p%j>L5-HQj?|qk&}aP9`nFQj2f(Vk;n|C z(7-u4SdFsJ#RksRJBV?Ieh(2*VQO<1M9{#%Y#Oj1iHKopQ|uZ&4OlzMG01Jz5cMmW zdsuyIOOFmw2TRlj3Z#~{9SVb!a`f{OONOe8rQNTggNToL&`FFLruLKe0KM2Z4DJNv zJOlE7w(xea7&BaTGu^_~m$->;|J4fR0j3^mDO~2L$hD4Odx9z4kY_Qb4&e@>=mD6^ zG(hGGO#O^z_#7mf|Ih%L|I$(>rJFO^UuZ6!0e1#>O_J1M(t8}a)MGFvfTE313pd(pqmD0-+E{%`aC6=dm&KK zALTLt^pU`Xrz0f$vHiY<>;o9!%24na$e?#AflvldBpA%#N*Q?!Vc`9Wz%T||UlSN% zV$$~wk&hVkhCfAtdPg$&T}NOvgBDc?jAhW%mcTd$v+W6tXMi8JghD51z@+@*NMxc$ z6q{-Uq7iJv9=iaGMYFY1oC`)?40#?lOC6=)SJ(|}hus{RU@UJno49%_U z>MEHa!(xq)eW{jGs@9?G%Ng{NU?l@s!iqJnMsN&^gaxb!)@guB+@PftT(b)1%?u`( zJcw*#GTV#5P6l)I1a>o+=0ji~gRM;n9Ar?@l)w=N+kFWfWzeWOf#Ww#TFW~H5IM;% zdu3aHWB}`6vGHdav}i%#X9npK{K_COm^>~qSSG=53{0?G7E8U(>t(^? zHUnHh3*a7uJPEQGT#`+Fh+riim&I);%OefYamj&{N!lxRxDwBZJivI5Swl82-IRA3{}6Yya0odjMCb_^j8Jp=q&EbNRA z0$T2ivPJ-!ATS}JL+8u(??#Z_pTX9T2sCHV?PCIg46-C>!Qk0g@@UDxe;k3<47x-h zFez=Btd1m?_6%@cGBmU!gN%s;Ix`52CJ@2^zb^|}x-q~{$^z(tAOjCJsx|@WErE9b z>%;bG@nrAEV97KB0~ln_ATW>ttZK$0LlNLYW@RyaXBI%12B?FFVhWcrD|O%tv0xqn zz(j=XAF*A9^~_)&$>7yI0;3t=CuqTAEP}7G$T0XmD}V?MP>GRRO8IUPnWGr^FC#F? z#H37;7zR1Z$z?Kwd+7wGFz{VTAfCY{38pgWD99s;0j`*acBW{+r1-BTGF>A|{3Zf3 z81&do;8O;_N-!G%E|*sB%e|kY0owb|wUn|EK3NNue!*Z9e3=%&SGVx_mr97*MPvcH zjNDD&YX-aa5J+V(b1#7<49fNqNMq3E0DK`MpnnAGyYZ>6j zYN7G#5!}GNN0Bf9n>0XszeP*Y2W!E+jX~Ov3()hh&k&;af1 zk6H>BjALJ%WpG}CpAnd`02ECFk6$Iw&i{*S$93aizsz9OO#;6$z^~x;f>hjD z)PMt!qXFuzJT0Z9<;p8f0TW!34jBp=_>~bTW^hk}QU=q@$)lWsD#23*yZ#`LKNx)R zCxO4{{G*2AS9YP^7woe9Ie}LULS7R1hrztp1YR>Jk)RT+Ta|l{AKHaNZ4hk2?g$6b zI{;NR018czw8P|gXh%^z0FD}rN(_9d7tGZegxC?N!2nmtgGVg}xGWxk8-qTM z1ZrCWTz_y`Jh;?lm*Le2)Mrr1g@6ZxK5hiO7}Rwqpl7gA0v`sAYm-M~1S@b~QQ;5o zzrGrwo%PpJ%G`RCp*e$W4+4P*@75{O~2L4wH)LI;t@6b8i- z#4}hrm^`L3cqu^=gKa}>==Wy|6VG9kXF3D?vM_Yv3fxfDSC} zeYym5(F0`*lyzgs;|l~PB-9^YVN#&|k+d(=0GStQDdliDWnau-`6L2M8Ms9gSjONN z3DOxv#*oL#+xYvFDs42Gh+r4|L^1688V2}PVgTzH?299?fx*)x0-G3&PA0I0!FdU` zF)(#aA(tIY@WaGV%{K^&u{#>Tmv{l}(ExSFJ}spz{EW;87#yEZ;1GjO3kV!xP$a>3 z08Fxug$v2$7`t@(n!s@eMG~A~us@YNeqgYCF@YZ$j9yCM41+Pt2%KXuHeH^7KQn2+ zl3dO+z)u>(-d|vlE(ly=aBn??e;R2DuWHFc^4%Jjxh+D?tSU6ZJ>mgXHpzUFsbn@F#<155gVze-zCo#fC}ila!$f1N?k4lwgYh#Vr(Zjevs&s7NO* zr5rm==4uQY{7S%u!Bz=sGBEjHAQx9Aha_-kka3AT>M%HXnLs@ThARXbFesA1lR?C9 zzHuP%0fSGS2=rxuf*(*#e+KQV6EHBiCxMYcxeIv=Vh~)jGTr~enAEF9 zE<+h?bR{sH0qTT6y&p2bZ#x6{n1M5Vz!|_O2KYs10Am=Seh7eY1SUETPwEqiU>6S$ z0+9^*dJ%|XaKf9wBnC%)2*fZzu@R_dGJ^+x1g0<;(yTK5{)=aFHh^5FGUyUSAc+C$ zkwB>_4DgH30H!mT(T2bb29E6re9FMDBZ1ifOmZLwcO^n+1NBJbo&@G{o+}>^n8yGG zO`zT{85}YYn9tzkKmrTjf=~jB7_1p&BC?ptxiA7t8Q>S8p_*k3ejiF8odJFZ8a!4q z2pU5`FhDgF@L0nDbx;7TyMy;1+F$c{A{*GH%LD?O7~F^=um!;{c=DohHWad519a~0 z)KbcEh0MDc)Q%&thks5*ATeC;Kf=3 zml%Arp1_qm`20r=E!#lkD!cr-iNJLRC$8j4gI+&fF)F@rGp_B43pGQf{f1ITAE`ey=97zCdu zPz1mvTi*OvA|>pC$}vz#83X(nHGm2RJ1!A;#sI%T4IY0ozz9 z-``BiuaV2Y3{ZLo3VFles~ZG#pd}&OKKFM5l^JZjMW8B!jN1h482odWfWuup|LD-g zXAyB?7bTlOH3nr52)Hmve@vhz1G`)Tt_-H-6L4oxQ9z&$gY%|BBK4Srmk?;cAgGLh zCxg@F1R65Pen!BXLGB9zjTqefhd>hsb1PNBUiH0;=I>5pgDsCI|6}k zfdhdS4Dh?wP-;sC)13*lX0Warfwl}x3#t=o&%~n^fsPCw*CEiE!OMCCLKxKbAkd9L ztS5mU3@W?`^kOhyPv8R+lQ)v|WiZ{BT>3Mx^&?_5bzqucfOA@>EA4nht z!Bx7)3?uM~2I#svQ%fmFN050I1J98JK4XAi&xU5rL9h`^#1B3Im`CFu2^IMz+t-dG z`+NqUMG#oXVElLjix^m@5?IV&Knj7S2=-&8_hu4Ut^usmq^!W?akO{(l$b&yQ1eXE^3vUo8 zWRMCy2Oh-?THhm3$^bv}4IbqPPz4G_Ao(ZT@%!EYo-?TXh`>t*a~>1; zo54}|vqH%7FM`Wh$1hI^RDw151gHudOr1b8elG?5t0FKVA-f&hKPn-+0|OM0f(%X! zyq^-N#^B{21Y8(we?_1sgHHbvaAkmB0mt*-9Z4Cs3qRBX)zsAhHLJdsQczV2%pMF- zNeX}$1JsQIpl5(uQ2=}p{D@WH*IocL(Ll5bd*4?}DyR(wz#jqh0)D-lK!66QO+i{p zK}jg^4`zTePykvXIE@A1H(~&^)c_UHUP~z^RDuF~M-+p3BW)GsNn=4lmTit0T|2x z6`KGIVSpk{0ERI@VI}}07)<@xMC2nTsJ{d*BN?Fb5`fVRPFx&l#Ww z5`Zu6;qxzb0BRrs`3ha`;E=)Z69HJL0U9!kw3LE!M_^ve0JV((EMomxCjJrkw;k~0&6uutyqsKxQ?PS5t%n>fXrJkm4;^gP7)NiT?1s^ zsihRqC8GLwF+nXN$gqb2N)Z9r#{fl$032X|!b1QKF+iyy07n?0wh(~t7@(vOfMWnm zvY{v`1mrlopq3DT6AVyF2*3{vP(%p8j|@;V2*4Qzs1XF<9D*I#9r$4=0KaGex&!|H z?N=>Hsz6}B$N)uw09j&ZqOAGN4!w zkSFK@k5Z`BV~e0z15`pOrr^m5<$B0mp#d^K(^4eM1G)cXfU-LPo+J1j3-H$yFul?U zmGF<2Qcz|GGQ37`7c&&e3_4gLPJsL?W9l%P@dH`lZ>s?^+iNKWrE|dS$N-gc0GOPa zpe7EG>I_f<2S5!5sC5IN76Vka0pNyUA-2MA9)UUw0Few(AO=7b15}0qFo^*Q!vKh3fRZo(CNo(4%tT}g6O@4gmv{!K{{mnt1Jry0 zkc0q!g~1?Wp7e_PGe)$0PhL z5q#?nz!w^z3ckYBJ~ZQ};K00417u#Lr4*EG0rO%8sLBFhDS};CKWMQKSxy81m9Rof zDJaJR8CEesAr=6u8KC+KfVBu7Vu>r@YqkJ3Xn;!Gq@_q|1I<{KCLD!H(X)U0?!QCs@a2 z2B36;;3|VV$pkVO1f>wT$)K;S_YMM>M}X-~6M1B6fZCa5O+o*I?g`fMP_rwbdV=5) z1M_DDav8jmpnw60pJ0|E1n^T(N}m8I)c{pmj;Vua{vwt9pV9Rf3EBT-`@DH%f5G78 zmjwQ10GcOQ<7)<}cmhBNOWI`}pmlQ4{p{WMF!>i-?{H=$fEQBL<5P5NOH( zlugjX9|6n-kgf@W01Z&3L0U?g_5=C1WB{5b=-&o_NtOVTCP><|3kaGZ=)_>)c>*B} zK+*&~x-$Sl69l~&#NHs#2fwLk36g6Bx;$(*puy7!+9uj3YqTzoD{Skx15JLqX95OP#0z>dsZDB0JAt(fzLQ`B14CW% z*vz1p1l#W8^B3(KNS0tVJJ|&UOAzd4aKnqhJ_eU0ILH8GOEAk32IFMgk0Mx)J@`a| z;~J3jKPNDmjdl<(!4ghsfO`0}mQtEDCi6K4AY6j}zc2vV5(F0*fM^MV%M3uW1i@7a z@cFBEAdw7q*&jsUCIb*H!8~^u^p=HWB3OeB2iX$z$kqTg{Gpao7PTewBL<*Tg8sQC zCLmLSq<{g6lmIAV(5wf6QU=?45vX7Qx+Iw84+fx0g5WuWKw0Q31m~gQCKM(?mwz=v zEq|k>l=cQP+rV0O%AkM}3Hn!MkSq(ZN05$v5u8FEP8y&Rt7$0(R7kLZ8U*P4H;y6V z$}Z{Q1Zp$*dmMp!3_y_t3-Mq8dL#%MG5|Fa1U?M9PA1TV!Gbt@y8rtzQ4+|dIRo1y z0znK;OVE-52$WzoZ5a5;y>E|T5q8Jqbn@t=0qTw}))d_T#dNZF)9eaJm0*!Q8C01? z-~$F>pAqQCpuYqL2D|2xM<@djF2O>>7)3D`1myac z%34yHolkaK2B1!Y85|gVUQWQ70qB#UhYN$cvW{8^u3@F1P=X%r8lc^%V@<*J5A;dU zUSG2-piY9olL2UxAkZ@aWfBC97+iHA(3Amalc0w`15hSG5P$&Q*O4v>0F%-}Bh;>z zT1pw@Mj6^L7*?M^dj=pxf<<;>(9erN2m_EJL67bX0%Vq63~XlTg|bF%V}iH8mBzqd zmC4|e3{ac`AiVy=K$QW!`@2;prf z24CZO03p0`#sJ>4Vvs2Vc!!KBcr}l~CK-GugB3E!kpaBZMVHMo5Hcv1!EPDcmcb7) zSSN$!I1dIH&&njcE5;PO%f;ZF4Dw`fRR;Js6JXmf19*jvsb@04KMQ~qyc@;<-}*v; zFJ>XY*R2qg$pGI;LJHnAnlL;qllVRcQur1I0(=bu0lw~l0AFiBfYbR9;Cwm+ID-uV z&Rau(^V1OEEHeZ+cMJi}5kr8Jv=HC~Cj>Yv2?4xbuVjJ{XZs+)Ni7I)t_lL2fr0>M znjqLEgNHJ}i5h@7LjwWMqdoKm zUtW;JUjq=}<2nTRR1N_?<3fN>j1b^c9t8Mw0|DMlA;5bk1b7F6059+m;KdUHyqrOR z*B}V+ssI6=g=1Evq@<+U#!L~b*Q;%HkHyvXYDdz$OiOJJ-$MqS{7xHGCz6p&OASO) zUrav$B7idi>sE`fO{$lB>)`N~K?!k_R=~No*|t)pr7QdtX%bfktZ;A!y#0ObxKVX> z*zz7rzh)-S_3zS#Zo%QfTG22){I+PcaHZScvxxA)EA6q;b?@QyA5Re7_#PD@n^Y%< zwePZK4x8RhdI`(nwYTB=XF_o)Wyr+%Q~zOni)62+U;K!@G$CcTBR!yeiz zn8~KLlNYF?A5;nNwc_hy$!4{!!#+-4*{rs6fZ1-!bU-+5Q3D)cCfl0qz6EMJ@@~>6 z{oyavoNwQ!;b(~+dY?W#NAv{K@~x^*diZ&wFoSNb2B}Ec3jK5JJ(m9P40*!j`&-Y( z@QHZU!QtS$EYRV=yUE72+G@x0D0A2s@AR=hQ+JsEgZ@PH`}gUCvqWLio+|%Iyxs=l zccrCXQ zPY=3cizn2@_o!I>4Yca&`|LEbEAKLYhu_{!>V;+A4O>|En}U~#0u`PICO(2qFm67? zO)0W580(0eSD388O&BJfaq|e1A7Cs7H=(#GLRJ}LDY$u#$#{%8;3f-`E*SI1jma0c z4RF&1H(t2;1AT7eCK8hd-29Hoo*2u;*f@-h#LXwTX@;9&xM_@=TDXbD%|mpqi?Mqc zYlpGcxN*l#;-eO@{TD5PnC^$0Zn&w08(Y|$mv~K^@MK@W{Yck)uy(1lS%auXI)eeaKU>GNF%Fms$Q2ay6;o#+u{u;RWDlV zRXsT14F?_W@6p@hT_@FFSURizV8NRY_|5G`es~W`tt-5HLkV~Xf;))!n^fbe6nV z1-gF=@z507*V!<*$n^H6=g&qOpkmF99c0aR;GpVV(~7aLtk`l; zZKRckoyMh2{RWf`;e4{Qw`R%}Jr1d!jqyQ4&MRW4$!Q^c+>pNruN;`Zkv}!UIK#%6 zZX-g&D(cDfN*m)b8!x+*9`{I+llGX(_6x#~2dNOtv^z>xRbEp=p@{tyE8l%OQfI^;fX@26RN9M#! zkFUF6fAr3L?1y1o=HvPpex3Qa35JI=AGgxeUbfd6KZG4mtsa$>95W>%IVxO|{^M>K7TkZ_p*oc|r?Rm%Dh~&U!L{xL($0>} zdfXD7mSxF8j%Pjg#`OKH$4y-*(}JqTlT{&8<8X2IOqaUi`t`?7@R&)qAFCQO!Ipvp zsS}9rNtwO`P~DTUks!AxW9L9;PsW_LYq1YOSx>SokkpegrxRN2IcVrf_BDv-$yn9j zWz2je`|)gdY-h`7k3HP5EruXNGPOhrx(80B=7?vHngwsgZPu+`FR(Gf}E@7Y%y*5MEz7 zc6+Sh`RE+qQTXdr$t#Bq#S;G3V(n}|ppMvb(Cd@29U#;vV|ziNPsV<8&|=-4wAh+z z7&G^a$>~O?*1|10G&C=5$?1+Qao(EKrXh9b3d3e-y9@4lP&j-cdP4XFh*AfIZ_TOO zj+_n|4ug}EbPA7}iXWjR!?%X-!BEX=fMXXeO=AC6IR-9o&7m$S*qYN2D|XnH<7ZD< zuNr|SFRbhS6S+fng*p8& z9afk##F=*fD?>W$Rvj_7FsF_F{BrUcGbj2j=4*Fp-=B!}Mys#vv zX#lqGaJ^hQ%-QvFTRT#3tTjA_Q+#l%njVgFSmhbY=8K5_H9eZk^i#O|SX;Mi8kB}p zGRkw16O*wnpd+SanCI8eeG!H=%#F=$DLZtoK|qH#5oep`Hh_-~=Q>uQk(M8uO9$P1 zO0HfyRv7-Ep6?!9zmD{Yo{~%5n?5Bs5DPswCASTRFQ(+S#xO80x4Apc1}Sb|LiH3g zgS?n>#yll1w}|ctBU5wfV!t>wx3{ckonbH3(^QIq6cZo?MzIv796q{Y&J7aX+j%&eZ!ONv_LYUUHT0mp+%n6fiFF5$=61yb zeUIh##&F89TpIOTj^*~0c}^LwLLNU+aTI#S(VR>7#|GxyAP0SHOdh<*ZQcfF z+2Bulplpi02C*j@>zl2`DqF0v6eZ=Vu2S*}F{g`nuzAYMTt_-{W;D*DtK*5rc~rBd zaULCdrzUy9*usz|d2MA&ZW;cCmUxLCS02#SWpk6f)?_g@)EV{AV?x)nhMRcSB+s=O z&ig5wDxhkLm4cX)jJ*OCCyJ#gSMsPihYdcR&6Atv4ROQjPIt<)j+S1AkD$74VwuUO zj<9sfa}X^$=XuMfj5JIHn~%`_<4l<&-ccg~CcKo;R@=m1;b`_zixsKSLC3Evy$$Re{y!Upy z-PnglZRy;+5VQw=o=4p{^7FjTm=>Ss(E+~nc^=*V{TkxuI+hrp}w(QmR5O(tSxwlJV>K<`iCU-{syyO&4jOOJbb)+_WW!*%G1Hlm`gubXIi zFR!k+d@s*YJ{;e`>s6|#_a)zeb{HPZ%xmqAv%rcu3>r$Yc0(~{ew~?jk4ELaH+gvBSy?^5jl67r zZCDRSH*L7T*GeVdPaeQchFefoJ<+}BL4&T;th+{?b|&YCLy0)MtavM0EC%#*B>M;y zZDcGQq-+#%^m%^APO?;^VKkH)ATste^A?|_=F&MI+d03Jyp=CAY!GFg^P32l<;`7b zXgukhPiIuKF8S22N|$^C?x(p+eka*04mx8n_DYB>R3DO0k4)V|^829Uf{=U~Tfc_n zckf$_O+LE_8bvXu#aiqx$F_oIjkFelSdENTSz(Q(C@tpLR7w`Qb}nvW-1&go=1;oj zd)C5w#Nd3olpG(N-&KwagJHycQ86yCA?=8FSU%mlCx_+x%f5&)D9~(oad=^%yEqCM zi?M{|)4kVWNPe)CW@!pCGE%f=H^-Xn)L1kK#z^Zmj%9#EjAU*g^de)Qa%?t8y-0Qj z6kKG?7o=M#mZJOy$~Va?QuUFsQRd@A^4rl)l~2uYDxdN~4Ie|JU53!Jaa3Z^+lOS) zHc|G#h{Sw4k3LPzr{6?dA#}&L4$2JBcahRC7eLrWxoyr$%+GW2q|w#V&;bgrHY_4( za?r%Y_$lE@$?!#1=#ht?=ljSG8*PXMms;ZR@fNO5@_rs?_zXsF*yR?rvGaP(%lCG| z7aNM}MJWFVbNsyg9b;u?y6V_}D(ix}W0ID7x6%m^p9nRk; zCF=~G@da9IhU4>kT*{R2s81rMB+#r3IsC0N)`F*Ydg9p)k}OiYrRH5NRtzF6k{tu} z6^f-OV{T$En;$*O-{I1h_TS6U5NdJm6&eapr!jFc$^2;C($E(yPH34JpEx}taRT+r z4^Q*;?q_jlUxOx#6p_dRF&5>lx#DSlD{G(m(S^T`hzPaR!!8=&UO*SaSoZ>N+I{%t zp9IBMO-_u6iNk{72ibJPT|o9x(;{M1;FqhFW*Ppn?&b|pmXHz@EkRO3#(IKsgp9d? zWQ2_6a%?iFMi5I;(k55N0oE)s*6dunpzk7V)$lC^G-PIODQGL7G{4pvH^P&qzD|fY zojwn?6woceWorRFM0MR-Ko4G@Y%QQW>z=Iz^pjuRTF_En7xvf~58$sUS8;f4fvbF) zX}_%?z>ALBH5+3QTAjnkM@U(G)uYdJ-}=YMmCl z1qu?9d2ZBVLpN)&sI6M;C5S{Q=gfKA3Z}Nlef{`;0X?mV`vr7myL-Q&vmBzs;exRu z)mLn}U*IeHWEIebAU>;ru4hZL3g}7jKvn@g{AOhp&~M{cSq1gwf&9bp8nRc%agy}T zC&p=aE9s23IEw9P6vb%2YT;*5C}J9135ih?Vj?xuV4ZOojeE>tHH9Z6#*e3;ba2{? z&>82VL*-tfB0amnJt`0T?AjjKTZ%Q^r^QBqVufUFy{lMbBLlVADURubG?vjyi$%4u z#!{49pq`N|4sY*NPo(+xcQto>P#_;R^`!;!lrAl3Y@h-Bv0*&4%#BW2Y&$hPJUM=H zls3ep@ZwA7?DY{)!&Pj1`;l7g)6p0+?=3ADwi}O`ZuJxTr4hLL2|Yr5xcZ3?@=sSk zvCg%m+8FoZc!If>nr8>p6&F@Np?lk%)lWiN(;>KGW2{;kJe;8&;c*G!5s8Tr@CA0V zRjX`tM_W}o^Jy6NUGs#F`=m8bJiW=uP}w*Iom^mVQsSb*$Il3lj8CynDeYJzTbQxt ziJLpVn^j&-g?*sdgcOXKU#)qvwvHTW^$mlepxQ!h^RTX*gBfc0lKMkwIt!eSo39*x zva}=a;+Uc*zK+zX9Way7cO2M&&d7a5PXgt@`_k|ul;#*2KP4dr=D8BAdu2E)e{(y% zHGE>-UpJkxKa3sf|E6C+h0n0XSH99>T^4GwP=YB^hR5)* z4Mu6FTBUPzadH_Z#_aQO!m`pZYFzm3i~X6uV_DaQKpnlL*+I&Tdqq^F|` zkRD1M9-%WPXstX4uYu)q_s`({yNoS?*X%O37hd+t*tu<5?Cf?e)@&!n%v}QuLq=nl z&R$qZr}BDhcyeJOUCaJlSlB{7Iz+=YS?F8`!9zy(LH4qp#;*%|)S&~h(vS)JV3!m> zF?ou-W{VwP7t)RT{MUu_7*SyjJr)(xPoi$taQvb|dK%iYsF1EMmlnw$`oqdwrxtdl zA!2-~GggHGEh0V)a}{Z+h4TJyw6`&Kz;Rw}N=j^U49%}u54gCMT1Y3w%hba5^3JN* z7}tR_9cDk6bCwJ9cfpSb8M_3N12T3GUct-Qvr}5ED%{*8t94$B?Slte$(&(^TgHaK zthdZ1nKYYb5^OP}o7NsFGhpv|EsiHx~8?YZwl<__**X zFf|wxHwm9MB9p@>q$I?~M8dr|$xqZMFLVVZRUZm%?BuA2e?C4w zedG1X(TVXXlcMzzv9Wr%8zkxDC+ZV$0y;?_69?8P;k|!Iz4ih6h`0&*sJNt*#3-N< z$@(}bNFMW3X6VO9 z=@TPjlA8{0Ct_Lz4y4#9Jv`pPH;U)G1yD=K4_gs6A&B-2 zOCJ^;lSBnaMdK_Av9D!DKR1;S`Xf_@lX=(T%3M# z02eeqC7HUR$F;(`b;&IvagydY9eZMWM3Oj=FtmYqbG5Ll19U6pZ6w|lKW^NM;*<3u zTE7G(L4%@31&?tgi|p$E?LmZmqsE9f_X|6UeF;w;Oni9Z`adD*ZC~OZBY9iTs2FPv zXu^L<5mVrji$@mo(jf}b$0gt+z=W8I6I)L3d%y4ieT=_sqs*_@H_~_P6Eg`1Ks@wG zbo_Ma-?$m_Fh#^BMnz1R0gZ@^O__j4kp_=GJ~3ueOk6~)$heqS#{{=n7^kxD!~b^; zf)++4CPhUiLzDii4>Sw*^S`ugP(pG{Jk%2l?SWB+M@*jr!|v^9f}z@3KP4VoA2T5; zE*VaeSZ$!wA^*=YX59g;xwHcV|7&}~@ewKp-yqPa2+_lYvETo&pZ@wT;3gs-BqYWk#lW1nIFm#4Mse>tsv{Kej~LUS$Lv8Xt_2GGS1PGO;& zUg~b1R9-mW=D)KpH5bNw3(bh{V_#0d#&&jDb(P%Rxgo5j-MrnWr0>o-an) zm4q+VLHc3w@?N2j;A0AR1btFUWVAjqA}J~<09*IoKyiqh6f!I^1zWcGd0~tp;61C= z=uaomJ9n#2&y`N{R;?N8E+5~o8D4-3{Po7ALeFYe zm%ojT;8|7Z&kyZO&ydEZI%AqR^lxFS4)idat}_ zR>Q_PMR>d}Y&eVxORzD1sy*20OW_#@|Eg2z@>Gkt{i(%%e5J*P{j0^E*;bV~QWS?W zdVFuG41`DBb(R|DZ(kR-pf?CP)r#nG+_8F5efj&t+u#E`*rH$i+~6HTEaZfrdHOO8x@H8!3$w0#Y{=OHn52p%M``f3&+elQ5!z zc}B}3r$*6~)5j13-R=T^$OHF3xKP7wFfLM?Q|XQmlBw0;cQrg)CB63xHJ0A&*-e4# zFx=!?n?BdR=$BQ9#%xZfbEADdC4PWr=#&ekKPYJVMl85Tm)$y8M_La zIx(O+U@LSmaAb&uF7Fy5qQf`*#uvDd7`a zTE}5soiPBcBBA7CH#x1-!a6VED%1r<)@dEvOR`kIOGSRt3#O0KvD8{(>Zp@e8!n7H4mLSX=%C%)Bh$2EMdb-QbFBLdX@_w2@beXvTH! zl_DSc3#{D6XajQwGz?aP#F3P`DFbaI8Os7uBN+<EnW*hEkjlCc9ICnRHEf{c)ijRyT7hz*1b(kM_4l5iDB2FX}Q&sD@|OL+}zbgQU2S%~x713RHq5Gk`phjMe{Iixq($5U~`c>6hk*Pm6MCy7PRa zVw%|~w}$l_7gHlb8W+^@Ob0mzIZ&8XYpZ~OJvH5A!lH(I_2lp*1X(ulY@j7DV$E{&jYDrsJhI3V8ld4dLp9r%l@e*f7lvw{Bz_7T4`gi8y z68b}(J&Q})%Pe-b#%Z>Y#Y3ElF7c4(v&)ha>h&H=O6XoUX-Nqk)n!XcS`4P^!+1Mm zx}A0K%=;F06W2W`KY=QdjOBqGk&Mj-9U>X~9R!GEY%3@aQ7lDSf7D!KX-Um)at!+z zrb1JE#MG_htxp}vhD+4A;ImreW?wC#p|s~}Nz*RW7+W1o`dS+k1sX+C&1fx%6Uo>% zP$iNvbCETcqEuDQ&euwA_mVF>Jq^2|8qxiEfp?(wmbTB>O)K;zs1ix}qUWGSM6ncQ z!ZSLgXS+l-Ge^0WDl}d*I+j}BOt-;5SrB1O!sM)^SEtgT=5*FAGMuxvb+wbNRkWyb zEo&@A+2w4DuOY;;vM3+(nogxx2I4T8G{2N)UFXj)rFsrp!#nd!>HhU%ekmO(uLaVt z>w;36)Stefv>Cl6HNyL%<*+~2_eBYC%a4qWfLnV+g7p+ysWa}7JFNT!5=XR5B}v&> z*Zgonsm&QjYI{$^BG@VK5tC}m8pG8Gl=;X82J4I+v4J(hr^HWy8RYoH3GhoEW|pk&>!LGuN4qo4 zp2ts%N{p3l7jXm1=pwUhKv`}2b1vghopFxz#lNI>-DCWnHM_4Q2FqCF=~*e$rrVzoE=J!yaIrdGrexhku^vDY^_Sqc`6J z2A0t{ojy>OuyN#BSVkw8t+9;G>OiC9BaCG&M$mY6sA8N5e^f~~N4v&wC=TPv zRjaucOApjyH$ezWTHSkUv06rJEJdl)gvOG$nEOMFxA`Aq*_N+xpEli;`*`_g84a3> zn`Jbp>fI{ym#4!sqd#FKxZ6`o#rqtCMhK%HfE;vK@oeJ{<5%%7`L;` z`nNg9ZG)W9}h0t7&Gx& z=oCI7F=Bf7`1ntF7-ZWRpM!}y=Zj&mt1u;BNwFEF#S+G8v5!EXN?LygVJaCr4T@AU z<}*c$4FnA;$&Spnb(B#!y@#8}-6;#2jvba3T26=V`_OV4Xj!4@+vR4!k?3@WD` zjkJbq29?vHKR>7(C(u_7F7G3+R8Qebr8T|~gsY^&)mKZknEy&GmIE49WKB`}eQExD zaC!YGY{|x><adCc8g|AyHb!6g3+%I5 zN$w(TPf~4qpYv~6h4tO*aC%OC`)Adohg8tJ*Tq9B{HSVUfsJu!WpNGuyc#>J6nJDf zs9;GctB+xsij2Ji-76W>XKS$@kF=Nt6t1N89!Ois*kRDLlCirWW<{|SHi1$_#>26oX%*^{6~gQS;R_PxG%oS1j!yCjq<+ zJ4MSGPwA({jDIU=w26N!^zzqx51la%t_yTF?guq0T8F5(w$NfvL4S%^iqh7fYG@40 zIA%04yS=Ws?J9S#p&>>7*gf0@oN)zXl5!-3oPESxuNjTZLA9Qi(2@4+`IPQ1Aw8cq zl6TYRMjx&I7|@!MqErE))>w*ipbr)#y7!;yXa2V5(`od_NX=(FrJK{h8BaYr(b>^K jXN=U!@dw2zsZDhsq^4v{1&t|+r6}7z#1d0d#s~c`N$ssp diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index 2eff81e47f62d133c3e848379711caa97a54e1fa..9c21270cb84b88aba08fe38ef2b46816d0af4d42 100644 GIT binary patch delta 64 zcmca`is`~BrVTBOhH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- U1{P+iW~Ro8W~Q6BGR|HM0L69`r~m)} delta 64 zcmca`is`~BrVTBOh8Y#cc_x__`TEJm$);(BCYHu#Ny%o3$p$7CrbecghL$Eq#;K;M T#)d$lL_-79#LZh7XDNmzgUdUfOG80RolZ>SP2 S)FqVRRlD+zfno>BOuB!;0u(F& delta 63 zcmca|oAJtR#tn-Z4Kpf?^Gq@=^7WIAlTFhMO)QPgl9J65lMPHPOpQz}4J}QKj8jch SjSYc9iG~KIiHol=<^TY_z!W=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:53.949560Z", - "iopub.status.busy": "2024-05-24T14:16:53.949098Z", - "iopub.status.idle": "2024-05-24T14:16:53.967220Z", - "shell.execute_reply": "2024-05-24T14:16:53.966766Z" + "iopub.execute_input": "2024-05-24T14:47:04.494561Z", + "iopub.status.busy": "2024-05-24T14:47:04.494190Z", + "iopub.status.idle": "2024-05-24T14:47:04.515327Z", + "shell.execute_reply": "2024-05-24T14:47:04.514753Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:53.969575Z", - "iopub.status.busy": "2024-05-24T14:16:53.969152Z", - "iopub.status.idle": "2024-05-24T14:16:53.972283Z", - "shell.execute_reply": "2024-05-24T14:16:53.971836Z" + "iopub.execute_input": "2024-05-24T14:47:04.518048Z", + "iopub.status.busy": "2024-05-24T14:47:04.517704Z", + "iopub.status.idle": "2024-05-24T14:47:04.521191Z", + "shell.execute_reply": "2024-05-24T14:47:04.520693Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:53.974240Z", - "iopub.status.busy": "2024-05-24T14:16:53.973959Z", - "iopub.status.idle": "2024-05-24T14:16:54.033719Z", - "shell.execute_reply": "2024-05-24T14:16:54.033211Z" + "iopub.execute_input": "2024-05-24T14:47:04.523189Z", + "iopub.status.busy": "2024-05-24T14:47:04.522996Z", + "iopub.status.idle": "2024-05-24T14:47:04.581897Z", + "shell.execute_reply": "2024-05-24T14:47:04.581240Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:54.036016Z", - "iopub.status.busy": "2024-05-24T14:16:54.035694Z", - "iopub.status.idle": "2024-05-24T14:16:54.217027Z", - "shell.execute_reply": "2024-05-24T14:16:54.216505Z" + "iopub.execute_input": "2024-05-24T14:47:04.584548Z", + "iopub.status.busy": "2024-05-24T14:47:04.584087Z", + "iopub.status.idle": "2024-05-24T14:47:04.785981Z", + "shell.execute_reply": "2024-05-24T14:47:04.785324Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:54.219569Z", - "iopub.status.busy": "2024-05-24T14:16:54.219138Z", - "iopub.status.idle": "2024-05-24T14:16:54.463668Z", - "shell.execute_reply": "2024-05-24T14:16:54.463047Z" + "iopub.execute_input": "2024-05-24T14:47:04.789188Z", + "iopub.status.busy": "2024-05-24T14:47:04.788666Z", + "iopub.status.idle": "2024-05-24T14:47:05.052163Z", + "shell.execute_reply": "2024-05-24T14:47:05.051482Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:54.466095Z", - "iopub.status.busy": "2024-05-24T14:16:54.465710Z", - "iopub.status.idle": "2024-05-24T14:16:54.470289Z", - "shell.execute_reply": "2024-05-24T14:16:54.469813Z" + "iopub.execute_input": "2024-05-24T14:47:05.054390Z", + "iopub.status.busy": "2024-05-24T14:47:05.054184Z", + "iopub.status.idle": "2024-05-24T14:47:05.059284Z", + "shell.execute_reply": "2024-05-24T14:47:05.058776Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:54.472358Z", - "iopub.status.busy": "2024-05-24T14:16:54.472018Z", - "iopub.status.idle": "2024-05-24T14:16:54.477733Z", - "shell.execute_reply": "2024-05-24T14:16:54.477284Z" + "iopub.execute_input": "2024-05-24T14:47:05.061589Z", + "iopub.status.busy": "2024-05-24T14:47:05.061256Z", + "iopub.status.idle": "2024-05-24T14:47:05.068596Z", + "shell.execute_reply": "2024-05-24T14:47:05.067935Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:54.479873Z", - "iopub.status.busy": "2024-05-24T14:16:54.479454Z", - "iopub.status.idle": "2024-05-24T14:16:54.482243Z", - "shell.execute_reply": "2024-05-24T14:16:54.481663Z" + "iopub.execute_input": "2024-05-24T14:47:05.071303Z", + "iopub.status.busy": "2024-05-24T14:47:05.070997Z", + "iopub.status.idle": "2024-05-24T14:47:05.073937Z", + "shell.execute_reply": "2024-05-24T14:47:05.073464Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:54.484266Z", - "iopub.status.busy": "2024-05-24T14:16:54.483860Z", - "iopub.status.idle": "2024-05-24T14:17:02.729964Z", - "shell.execute_reply": "2024-05-24T14:17:02.729231Z" + "iopub.execute_input": "2024-05-24T14:47:05.076227Z", + "iopub.status.busy": "2024-05-24T14:47:05.075865Z", + "iopub.status.idle": "2024-05-24T14:47:13.850907Z", + "shell.execute_reply": "2024-05-24T14:47:13.850220Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.732901Z", - "iopub.status.busy": "2024-05-24T14:17:02.732413Z", - "iopub.status.idle": "2024-05-24T14:17:02.740225Z", - "shell.execute_reply": "2024-05-24T14:17:02.739759Z" + "iopub.execute_input": "2024-05-24T14:47:13.854219Z", + "iopub.status.busy": "2024-05-24T14:47:13.853511Z", + "iopub.status.idle": "2024-05-24T14:47:13.861980Z", + "shell.execute_reply": "2024-05-24T14:47:13.861443Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.742257Z", - "iopub.status.busy": "2024-05-24T14:17:02.741934Z", - "iopub.status.idle": "2024-05-24T14:17:02.745669Z", - "shell.execute_reply": "2024-05-24T14:17:02.745111Z" + "iopub.execute_input": "2024-05-24T14:47:13.864301Z", + "iopub.status.busy": "2024-05-24T14:47:13.863924Z", + "iopub.status.idle": "2024-05-24T14:47:13.867723Z", + "shell.execute_reply": "2024-05-24T14:47:13.867267Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.747680Z", - "iopub.status.busy": "2024-05-24T14:17:02.747263Z", - "iopub.status.idle": "2024-05-24T14:17:02.750591Z", - "shell.execute_reply": "2024-05-24T14:17:02.750026Z" + "iopub.execute_input": "2024-05-24T14:47:13.869842Z", + "iopub.status.busy": "2024-05-24T14:47:13.869515Z", + "iopub.status.idle": "2024-05-24T14:47:13.872780Z", + "shell.execute_reply": "2024-05-24T14:47:13.872262Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.752711Z", - "iopub.status.busy": "2024-05-24T14:17:02.752316Z", - "iopub.status.idle": "2024-05-24T14:17:02.755447Z", - "shell.execute_reply": "2024-05-24T14:17:02.754903Z" + "iopub.execute_input": "2024-05-24T14:47:13.875008Z", + "iopub.status.busy": "2024-05-24T14:47:13.874481Z", + "iopub.status.idle": "2024-05-24T14:47:13.877784Z", + "shell.execute_reply": "2024-05-24T14:47:13.877349Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.757486Z", - "iopub.status.busy": "2024-05-24T14:17:02.757069Z", - "iopub.status.idle": "2024-05-24T14:17:02.765120Z", - "shell.execute_reply": "2024-05-24T14:17:02.764572Z" + "iopub.execute_input": "2024-05-24T14:47:13.879774Z", + "iopub.status.busy": "2024-05-24T14:47:13.879442Z", + "iopub.status.idle": "2024-05-24T14:47:13.887941Z", + "shell.execute_reply": "2024-05-24T14:47:13.887375Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.767095Z", - "iopub.status.busy": "2024-05-24T14:17:02.766782Z", - "iopub.status.idle": "2024-05-24T14:17:02.769456Z", - "shell.execute_reply": "2024-05-24T14:17:02.768910Z" + "iopub.execute_input": "2024-05-24T14:47:13.890345Z", + "iopub.status.busy": "2024-05-24T14:47:13.889921Z", + "iopub.status.idle": "2024-05-24T14:47:13.892738Z", + "shell.execute_reply": "2024-05-24T14:47:13.892285Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.771610Z", - "iopub.status.busy": "2024-05-24T14:17:02.771306Z", - "iopub.status.idle": "2024-05-24T14:17:02.892264Z", - "shell.execute_reply": "2024-05-24T14:17:02.891701Z" + "iopub.execute_input": "2024-05-24T14:47:13.894992Z", + "iopub.status.busy": "2024-05-24T14:47:13.894656Z", + "iopub.status.idle": "2024-05-24T14:47:14.017529Z", + "shell.execute_reply": "2024-05-24T14:47:14.016936Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.894664Z", - "iopub.status.busy": "2024-05-24T14:17:02.894275Z", - "iopub.status.idle": "2024-05-24T14:17:03.002392Z", - "shell.execute_reply": "2024-05-24T14:17:03.001779Z" + "iopub.execute_input": "2024-05-24T14:47:14.019893Z", + "iopub.status.busy": "2024-05-24T14:47:14.019511Z", + "iopub.status.idle": "2024-05-24T14:47:14.137961Z", + "shell.execute_reply": "2024-05-24T14:47:14.137305Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:03.004872Z", - "iopub.status.busy": "2024-05-24T14:17:03.004510Z", - "iopub.status.idle": "2024-05-24T14:17:03.493374Z", - "shell.execute_reply": "2024-05-24T14:17:03.492823Z" + "iopub.execute_input": "2024-05-24T14:47:14.140894Z", + "iopub.status.busy": "2024-05-24T14:47:14.140463Z", + "iopub.status.idle": "2024-05-24T14:47:14.633843Z", + "shell.execute_reply": "2024-05-24T14:47:14.633289Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:03.496039Z", - "iopub.status.busy": "2024-05-24T14:17:03.495639Z", - "iopub.status.idle": "2024-05-24T14:17:03.573307Z", - "shell.execute_reply": "2024-05-24T14:17:03.572719Z" + "iopub.execute_input": "2024-05-24T14:47:14.636657Z", + "iopub.status.busy": "2024-05-24T14:47:14.636193Z", + "iopub.status.idle": "2024-05-24T14:47:14.716923Z", + "shell.execute_reply": "2024-05-24T14:47:14.716269Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:03.575691Z", - "iopub.status.busy": "2024-05-24T14:17:03.575320Z", - "iopub.status.idle": "2024-05-24T14:17:03.584382Z", - "shell.execute_reply": "2024-05-24T14:17:03.583811Z" + "iopub.execute_input": "2024-05-24T14:47:14.719317Z", + "iopub.status.busy": "2024-05-24T14:47:14.718954Z", + "iopub.status.idle": "2024-05-24T14:47:14.727562Z", + "shell.execute_reply": "2024-05-24T14:47:14.727095Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:03.586594Z", - "iopub.status.busy": "2024-05-24T14:17:03.586417Z", - "iopub.status.idle": "2024-05-24T14:17:03.589005Z", - "shell.execute_reply": "2024-05-24T14:17:03.588558Z" + "iopub.execute_input": "2024-05-24T14:47:14.729643Z", + "iopub.status.busy": "2024-05-24T14:47:14.729308Z", + "iopub.status.idle": "2024-05-24T14:47:14.732057Z", + "shell.execute_reply": "2024-05-24T14:47:14.731603Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:03.590942Z", - "iopub.status.busy": "2024-05-24T14:17:03.590652Z", - "iopub.status.idle": "2024-05-24T14:17:09.050544Z", - "shell.execute_reply": "2024-05-24T14:17:09.049862Z" + "iopub.execute_input": "2024-05-24T14:47:14.734094Z", + "iopub.status.busy": "2024-05-24T14:47:14.733774Z", + "iopub.status.idle": "2024-05-24T14:47:20.229441Z", + "shell.execute_reply": "2024-05-24T14:47:20.228821Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:09.052925Z", - "iopub.status.busy": "2024-05-24T14:17:09.052604Z", - "iopub.status.idle": "2024-05-24T14:17:09.061472Z", - "shell.execute_reply": "2024-05-24T14:17:09.060902Z" + "iopub.execute_input": "2024-05-24T14:47:20.231843Z", + "iopub.status.busy": "2024-05-24T14:47:20.231472Z", + "iopub.status.idle": "2024-05-24T14:47:20.240396Z", + "shell.execute_reply": "2024-05-24T14:47:20.239835Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:09.063841Z", - "iopub.status.busy": "2024-05-24T14:17:09.063436Z", - "iopub.status.idle": "2024-05-24T14:17:09.128851Z", - "shell.execute_reply": "2024-05-24T14:17:09.128343Z" + "iopub.execute_input": "2024-05-24T14:47:20.242411Z", + "iopub.status.busy": "2024-05-24T14:47:20.242232Z", + "iopub.status.idle": "2024-05-24T14:47:20.308134Z", + "shell.execute_reply": "2024-05-24T14:47:20.307473Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index ec43b5fec..7c054d311 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:12.098975Z", - "iopub.status.busy": "2024-05-24T14:17:12.098794Z", - "iopub.status.idle": "2024-05-24T14:17:13.187472Z", - "shell.execute_reply": "2024-05-24T14:17:13.186859Z" + "iopub.execute_input": "2024-05-24T14:47:23.751320Z", + "iopub.status.busy": "2024-05-24T14:47:23.751138Z", + "iopub.status.idle": "2024-05-24T14:47:25.225197Z", + "shell.execute_reply": "2024-05-24T14:47:25.224396Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:13.190034Z", - "iopub.status.busy": "2024-05-24T14:17:13.189840Z", - "iopub.status.idle": "2024-05-24T14:17:56.244531Z", - "shell.execute_reply": "2024-05-24T14:17:56.243884Z" + "iopub.execute_input": "2024-05-24T14:47:25.228167Z", + "iopub.status.busy": "2024-05-24T14:47:25.227876Z", + "iopub.status.idle": "2024-05-24T14:48:06.900638Z", + "shell.execute_reply": "2024-05-24T14:48:06.899939Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:56.246941Z", - "iopub.status.busy": "2024-05-24T14:17:56.246597Z", - "iopub.status.idle": "2024-05-24T14:17:57.361537Z", - "shell.execute_reply": "2024-05-24T14:17:57.360976Z" + "iopub.execute_input": "2024-05-24T14:48:06.903639Z", + "iopub.status.busy": "2024-05-24T14:48:06.903118Z", + "iopub.status.idle": "2024-05-24T14:48:08.159074Z", + "shell.execute_reply": "2024-05-24T14:48:08.158455Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:57.363963Z", - "iopub.status.busy": "2024-05-24T14:17:57.363656Z", - "iopub.status.idle": "2024-05-24T14:17:57.366860Z", - "shell.execute_reply": "2024-05-24T14:17:57.366396Z" + "iopub.execute_input": "2024-05-24T14:48:08.161720Z", + "iopub.status.busy": "2024-05-24T14:48:08.161355Z", + "iopub.status.idle": "2024-05-24T14:48:08.164937Z", + "shell.execute_reply": "2024-05-24T14:48:08.164437Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:57.368955Z", - "iopub.status.busy": "2024-05-24T14:17:57.368625Z", - "iopub.status.idle": "2024-05-24T14:17:57.372418Z", - "shell.execute_reply": "2024-05-24T14:17:57.371945Z" + "iopub.execute_input": "2024-05-24T14:48:08.167013Z", + "iopub.status.busy": "2024-05-24T14:48:08.166830Z", + "iopub.status.idle": "2024-05-24T14:48:08.171171Z", + "shell.execute_reply": "2024-05-24T14:48:08.170623Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:57.374586Z", - "iopub.status.busy": "2024-05-24T14:17:57.374186Z", - "iopub.status.idle": "2024-05-24T14:17:57.377890Z", - "shell.execute_reply": "2024-05-24T14:17:57.377442Z" + "iopub.execute_input": "2024-05-24T14:48:08.173563Z", + "iopub.status.busy": "2024-05-24T14:48:08.173189Z", + "iopub.status.idle": "2024-05-24T14:48:08.177196Z", + "shell.execute_reply": "2024-05-24T14:48:08.176714Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:57.379908Z", - "iopub.status.busy": "2024-05-24T14:17:57.379577Z", - "iopub.status.idle": "2024-05-24T14:17:57.382337Z", - "shell.execute_reply": "2024-05-24T14:17:57.381872Z" + "iopub.execute_input": "2024-05-24T14:48:08.179576Z", + "iopub.status.busy": "2024-05-24T14:48:08.179106Z", + "iopub.status.idle": "2024-05-24T14:48:08.182081Z", + "shell.execute_reply": "2024-05-24T14:48:08.181644Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:57.384391Z", - "iopub.status.busy": "2024-05-24T14:17:57.384059Z", - "iopub.status.idle": "2024-05-24T14:18:32.166810Z", - "shell.execute_reply": "2024-05-24T14:18:32.166191Z" + "iopub.execute_input": "2024-05-24T14:48:08.184202Z", + "iopub.status.busy": "2024-05-24T14:48:08.184001Z", + "iopub.status.idle": "2024-05-24T14:48:43.717252Z", + "shell.execute_reply": "2024-05-24T14:48:43.716631Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6b925d1eb16a4c0da4908e6c9ae20ddc", + "model_id": "3672ba1a4e5b46fc9b75c6e4927b369a", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7e91fb6e7e4e41419c598fed5e03305a", + "model_id": "382983ea361a4f5a866d4601f539f91f", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:18:32.169305Z", - "iopub.status.busy": "2024-05-24T14:18:32.169043Z", - "iopub.status.idle": "2024-05-24T14:18:32.842974Z", - "shell.execute_reply": "2024-05-24T14:18:32.842486Z" + "iopub.execute_input": "2024-05-24T14:48:43.719940Z", + "iopub.status.busy": "2024-05-24T14:48:43.719611Z", + "iopub.status.idle": "2024-05-24T14:48:44.423578Z", + "shell.execute_reply": "2024-05-24T14:48:44.422996Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:18:32.845116Z", - "iopub.status.busy": "2024-05-24T14:18:32.844829Z", - "iopub.status.idle": "2024-05-24T14:18:35.564158Z", - "shell.execute_reply": "2024-05-24T14:18:35.563568Z" + "iopub.execute_input": "2024-05-24T14:48:44.426212Z", + "iopub.status.busy": "2024-05-24T14:48:44.425592Z", + "iopub.status.idle": "2024-05-24T14:48:47.282615Z", + "shell.execute_reply": "2024-05-24T14:48:47.281970Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:18:35.566509Z", - "iopub.status.busy": "2024-05-24T14:18:35.566169Z", - "iopub.status.idle": "2024-05-24T14:19:08.319151Z", - "shell.execute_reply": "2024-05-24T14:19:08.318671Z" + "iopub.execute_input": "2024-05-24T14:48:47.285179Z", + "iopub.status.busy": "2024-05-24T14:48:47.284689Z", + "iopub.status.idle": "2024-05-24T14:49:20.452475Z", + "shell.execute_reply": "2024-05-24T14:49:20.451973Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e49d3ef85b404defa7f4963e4e6629e0", + "model_id": "e16af912ee194d9193fa6f36331fb731", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:08.321371Z", - "iopub.status.busy": "2024-05-24T14:19:08.321035Z", - "iopub.status.idle": "2024-05-24T14:19:22.644386Z", - "shell.execute_reply": "2024-05-24T14:19:22.643806Z" + "iopub.execute_input": "2024-05-24T14:49:20.454694Z", + "iopub.status.busy": "2024-05-24T14:49:20.454407Z", + "iopub.status.idle": "2024-05-24T14:49:35.504423Z", + "shell.execute_reply": "2024-05-24T14:49:35.503798Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:22.647038Z", - "iopub.status.busy": "2024-05-24T14:19:22.646609Z", - "iopub.status.idle": "2024-05-24T14:19:26.330344Z", - "shell.execute_reply": "2024-05-24T14:19:26.329816Z" + "iopub.execute_input": "2024-05-24T14:49:35.507033Z", + "iopub.status.busy": "2024-05-24T14:49:35.506803Z", + "iopub.status.idle": "2024-05-24T14:49:39.497973Z", + "shell.execute_reply": "2024-05-24T14:49:39.497351Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:26.332507Z", - "iopub.status.busy": "2024-05-24T14:19:26.332175Z", - "iopub.status.idle": "2024-05-24T14:19:27.746150Z", - "shell.execute_reply": "2024-05-24T14:19:27.745559Z" + "iopub.execute_input": "2024-05-24T14:49:39.500229Z", + "iopub.status.busy": "2024-05-24T14:49:39.499893Z", + "iopub.status.idle": "2024-05-24T14:49:41.103191Z", + "shell.execute_reply": "2024-05-24T14:49:41.102597Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "72283dda082f4ec0939a16c2b153ce67", + "model_id": "545e865005cc44008d0627654a77a00f", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:27.748653Z", - "iopub.status.busy": "2024-05-24T14:19:27.748259Z", - "iopub.status.idle": "2024-05-24T14:19:27.778181Z", - "shell.execute_reply": "2024-05-24T14:19:27.777661Z" + "iopub.execute_input": "2024-05-24T14:49:41.105631Z", + "iopub.status.busy": "2024-05-24T14:49:41.105265Z", + "iopub.status.idle": "2024-05-24T14:49:41.143677Z", + "shell.execute_reply": "2024-05-24T14:49:41.143107Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:27.780781Z", - "iopub.status.busy": "2024-05-24T14:19:27.780417Z", - "iopub.status.idle": "2024-05-24T14:19:33.885804Z", - "shell.execute_reply": "2024-05-24T14:19:33.885211Z" + "iopub.execute_input": "2024-05-24T14:49:41.146408Z", + "iopub.status.busy": "2024-05-24T14:49:41.145977Z", + "iopub.status.idle": "2024-05-24T14:49:47.552406Z", + "shell.execute_reply": "2024-05-24T14:49:47.551769Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:33.888133Z", - "iopub.status.busy": "2024-05-24T14:19:33.887792Z", - "iopub.status.idle": "2024-05-24T14:19:33.943798Z", - "shell.execute_reply": "2024-05-24T14:19:33.943306Z" + "iopub.execute_input": "2024-05-24T14:49:47.554765Z", + "iopub.status.busy": "2024-05-24T14:49:47.554389Z", + "iopub.status.idle": "2024-05-24T14:49:47.611617Z", + "shell.execute_reply": "2024-05-24T14:49:47.611045Z" }, "nbsphinx": "hidden" }, @@ -1038,25 +1038,60 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "024d84969eb0452e826811c05b19f723": { - "model_module": "@jupyter-widgets/controls", + "0440cad43c2a498fbd42bce297cdc34f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0b39b8abd42c455baba1e06abb8a2329": { + "04cd61cf624d403b860482e547b93418": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1074,7 +1109,7 @@ "text_color": null } }, - "0e8e060c4b254e9aa5d9aee1d4552593": { + "04fcab59994944f9aebbb74313208b51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1089,15 +1124,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f133a4b2d4a24e94a1b9570408bd0783", + "layout": "IPY_MODEL_30d14252227a4696bdd8eb0fe60a5b55", "placeholder": "​", - "style": "IPY_MODEL_bb96ccb4f6e842659006997a187148b4", + "style": "IPY_MODEL_6caf9c6ff0384b90a1d5e30b26893ad6", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.50it/s]" + "value": "number of examples processed for checking labels: 100%" } }, - "16d5bf807cb04c91aaeec06ee9da5f37": { + "05f052e21b754028a3fc7b4cf7efcb2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1112,15 +1147,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c14a4ea32a64ed18ab20668042beef4", + "layout": "IPY_MODEL_5ab1eea0e6d44210a1850dfbf154b4d7", "placeholder": "​", - "style": "IPY_MODEL_024d84969eb0452e826811c05b19f723", + "style": "IPY_MODEL_a887846e044f44e6b2356c6d82ff5820", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 30/30 [00:01<00:00, 18.54it/s]" } }, - "21a4d54883a940869cfd7ed09127dbd4": { + "18cba06919f048ff8a7212c76706dac6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1173,30 +1208,7 @@ "width": null } }, - "21dd46862fae4c2a84bfcf41906c39af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2c7c46d3e1744a0087f1859d8b530a75", - "placeholder": "​", - "style": "IPY_MODEL_7ab05e8ff8684d18829e229ff7b44757", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "276b36918c404b46a75b710ef5a033a8": { + "2026f5905bea42b3a5fec47dd1835cab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1249,7 +1261,33 @@ "width": null } }, - "2c7c46d3e1744a0087f1859d8b530a75": { + "22fcc50dcbcd428a9ee8c17689f6f3fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2026f5905bea42b3a5fec47dd1835cab", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_982e6ae48ae045388e53ebbdd808ea3d", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "240484a70d20448284d5a3841943b3ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1302,23 +1340,56 @@ "width": null } }, - "30bbe46276aa41e583319feb81c21364": { + "2696508d12274c61a6ffbf6664e979c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6d9cf6a85fb44814bdfc2207f05d3845", + "placeholder": "​", + "style": "IPY_MODEL_6bd5333df54c43c49df93504c67e4e92", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 746.86it/s]" + } + }, + "2fdfbb9e9b6d40af915a9b427e9ba1ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0440cad43c2a498fbd42bce297cdc34f", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6d1ecadc3f434e53a239f1876fbec43f", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "36c12eb6fcb945d59d80c223b853157d": { + "30d14252227a4696bdd8eb0fe60a5b55": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1371,7 +1442,73 @@ "width": null } }, - "37a5005c84374d95a72e5be1fbb33822": { + "3672ba1a4e5b46fc9b75c6e4927b369a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d8448722c142437691b52a8a7bc5a74a", + "IPY_MODEL_22fcc50dcbcd428a9ee8c17689f6f3fb", + "IPY_MODEL_2696508d12274c61a6ffbf6664e979c2" + ], + "layout": "IPY_MODEL_8fc02ffed2784773bc87ba8f52e0f4a5", + "tabbable": null, + "tooltip": null + } + }, + "382983ea361a4f5a866d4601f539f91f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_04fcab59994944f9aebbb74313208b51", + "IPY_MODEL_ba103601b82f4c59857df2f5ded6b85f", + "IPY_MODEL_dc2557ffefe04c5a93e2cafc602a0a17" + ], + "layout": "IPY_MODEL_18cba06919f048ff8a7212c76706dac6", + "tabbable": null, + "tooltip": null + } + }, + "4596213caf374557af5521d5be515e08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4d5787d693ca4fd89be1afb5540ea753": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1424,7 +1561,75 @@ "width": null } }, - "4c14a4ea32a64ed18ab20668042beef4": { + "51d37079c20647b7bb8009f477f7f382": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aa7da5d3c11b4bb38c9fd44d6af8c807", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c06580f426ea4f3389d11614ec28c060", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "545e865005cc44008d0627654a77a00f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_763410d50a8e47a0a66c8d256feff144", + "IPY_MODEL_2fdfbb9e9b6d40af915a9b427e9ba1ce", + "IPY_MODEL_05f052e21b754028a3fc7b4cf7efcb2c" + ], + "layout": "IPY_MODEL_f0325b816faa4f9cb226a3bf092f6bbb", + "tabbable": null, + "tooltip": null + } + }, + "55ca0cc989f74c2a82175ceb95ea4d56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5ab1eea0e6d44210a1850dfbf154b4d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1477,7 +1682,7 @@ "width": null } }, - "4e719ddfac2641bb90b122b285ec44f5": { + "5cb7fb4d4c4c4a02b48240d5ab278e63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1530,117 +1735,10 @@ "width": null } }, - "695186571d9c4469827a800135ce8fcb": { - "model_module": "@jupyter-widgets/controls", + "5daacaf3f6d048c5890aa6fad52a13bc": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e973f6611dd84adaa5a8d78acdd4d793", - "placeholder": "​", - "style": "IPY_MODEL_6a8a48155c6549c091f7ce9a7841f014", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "6a8a48155c6549c091f7ce9a7841f014": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6b925d1eb16a4c0da4908e6c9ae20ddc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_21dd46862fae4c2a84bfcf41906c39af", - "IPY_MODEL_a3f9b0167e1745ec8e1b71800793297d", - "IPY_MODEL_ec34083d9aba4f218c969e3f971052d9" - ], - "layout": "IPY_MODEL_36c12eb6fcb945d59d80c223b853157d", - "tabbable": null, - "tooltip": null - } - }, - "6f9c6dc90949461bb5eb0f42ec842dcc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "72283dda082f4ec0939a16c2b153ce67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16d5bf807cb04c91aaeec06ee9da5f37", - "IPY_MODEL_a287eb6660d249179908428b066ba313", - "IPY_MODEL_0e8e060c4b254e9aa5d9aee1d4552593" - ], - "layout": "IPY_MODEL_ac97e4d805274807bf15178774524dec", - "tabbable": null, - "tooltip": null - } - }, - "75764baa73944ade9cd346841e860d52": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -1690,102 +1788,53 @@ "width": null } }, - "77ee6d53ee484fd69ff863308233da46": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7ab05e8ff8684d18829e229ff7b44757": { + "62d3c28193d346f0a5af52cfca9ee4ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_93d780eea2d44a42a5024bc8b529f752", + "placeholder": "​", + "style": "IPY_MODEL_55ca0cc989f74c2a82175ceb95ea4d56", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 151596.94it/s]" } }, - "7e91fb6e7e4e41419c598fed5e03305a": { + "6516b051ad0a4020a44326f73b533699": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d1fdcd599b7b4eeab009a7108f0d66ca", - "IPY_MODEL_e51224c051b84e188743df99b991a3f2", - "IPY_MODEL_f913070b4a434266a567c6f67d55e871" - ], - "layout": "IPY_MODEL_f291e908ca0e4adf88bcb5dbcb342db6", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9ec6bb72f66f488cb39f95374493f5bd", + "placeholder": "​", + "style": "IPY_MODEL_8542671a46ee4d28b68e6c3fe4bd5c9b", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "97666f8dd93a4351b2d681838990fdf9": { + "6bd5333df54c43c49df93504c67e4e92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1803,135 +1852,25 @@ "text_color": null } }, - "9dfec509908c47c886bfec0ed856fedf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a287eb6660d249179908428b066ba313": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_75764baa73944ade9cd346841e860d52", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_30bbe46276aa41e583319feb81c21364", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "a3f9b0167e1745ec8e1b71800793297d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d85d0e2d6085433f81e2f5ef0be57d75", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a6a2dd91076e481a996ba865bde48b12", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "a4429305ba0e4c6ea968e042ad0bf8a3": { + "6caf9c6ff0384b90a1d5e30b26893ad6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9dfec509908c47c886bfec0ed856fedf", - "placeholder": "​", - "style": "IPY_MODEL_b40c22a7efc24073986b4602a63f0182", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 153412.67it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a6a2dd91076e481a996ba865bde48b12": { + "6d1ecadc3f434e53a239f1876fbec43f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1947,7 +1886,7 @@ "description_width": "" } }, - "ac97e4d805274807bf15178774524dec": { + "6d9cf6a85fb44814bdfc2207f05d3845": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2000,7 +1939,7 @@ "width": null } }, - "b40c22a7efc24073986b4602a63f0182": { + "6f0cc8e3ce944d7089bdcafa094524ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2018,41 +1957,7 @@ "text_color": null } }, - "bb96ccb4f6e842659006997a187148b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d011171ac97c441699d89270ff68fdc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d1fdcd599b7b4eeab009a7108f0d66ca": { + "763410d50a8e47a0a66c8d256feff144": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2067,15 +1972,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_37a5005c84374d95a72e5be1fbb33822", + "layout": "IPY_MODEL_4d5787d693ca4fd89be1afb5540ea753", "placeholder": "​", - "style": "IPY_MODEL_97666f8dd93a4351b2d681838990fdf9", + "style": "IPY_MODEL_04cd61cf624d403b860482e547b93418", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": "images processed using softmin: 100%" + } + }, + "8542671a46ee4d28b68e6c3fe4bd5c9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d85d0e2d6085433f81e2f5ef0be57d75": { + "8fc02ffed2784773bc87ba8f52e0f4a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2128,7 +2051,7 @@ "width": null } }, - "d87f9827c29f4d968c7378ec2439f165": { + "93d780eea2d44a42a5024bc8b529f752": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2181,7 +2104,7 @@ "width": null } }, - "e2b77744f8be44898bf35f6dd358d30d": { + "982e6ae48ae045388e53ebbdd808ea3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2197,83 +2120,7 @@ "description_width": "" } }, - "e49d3ef85b404defa7f4963e4e6629e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_695186571d9c4469827a800135ce8fcb", - "IPY_MODEL_e5303555709f44cb8996c10b95dfdf3b", - "IPY_MODEL_a4429305ba0e4c6ea968e042ad0bf8a3" - ], - "layout": "IPY_MODEL_d87f9827c29f4d968c7378ec2439f165", - "tabbable": null, - "tooltip": null - } - }, - "e51224c051b84e188743df99b991a3f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4e719ddfac2641bb90b122b285ec44f5", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e2b77744f8be44898bf35f6dd358d30d", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "e5303555709f44cb8996c10b95dfdf3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_77ee6d53ee484fd69ff863308233da46", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d011171ac97c441699d89270ff68fdc8", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 - } - }, - "e973f6611dd84adaa5a8d78acdd4d793": { + "9999442241904326b09851bffb623704": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2326,30 +2173,7 @@ "width": null } }, - "ec34083d9aba4f218c969e3f971052d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_276b36918c404b46a75b710ef5a033a8", - "placeholder": "​", - "style": "IPY_MODEL_0b39b8abd42c455baba1e06abb8a2329", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 758.97it/s]" - } - }, - "f133a4b2d4a24e94a1b9570408bd0783": { + "9ec6bb72f66f488cb39f95374493f5bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2402,7 +2226,25 @@ "width": null } }, - "f291e908ca0e4adf88bcb5dbcb342db6": { + "a887846e044f44e6b2356c6d82ff5820": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aa7da5d3c11b4bb38c9fd44d6af8c807": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2455,7 +2297,72 @@ "width": null } }, - "f913070b4a434266a567c6f67d55e871": { + "ba103601b82f4c59857df2f5ded6b85f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5cb7fb4d4c4c4a02b48240d5ab278e63", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e327259429014721ab3f5d50f63fbff7", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "c06580f426ea4f3389d11614ec28c060": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d8448722c142437691b52a8a7bc5a74a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9999442241904326b09851bffb623704", + "placeholder": "​", + "style": "IPY_MODEL_6f0cc8e3ce944d7089bdcafa094524ae", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "dc2557ffefe04c5a93e2cafc602a0a17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2470,12 +2377,105 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_21a4d54883a940869cfd7ed09127dbd4", + "layout": "IPY_MODEL_5daacaf3f6d048c5890aa6fad52a13bc", "placeholder": "​", - "style": "IPY_MODEL_6f9c6dc90949461bb5eb0f42ec842dcc", + "style": "IPY_MODEL_4596213caf374557af5521d5be515e08", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.36it/s]" + "value": " 30/30 [00:22<00:00,  1.32it/s]" + } + }, + "e16af912ee194d9193fa6f36331fb731": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6516b051ad0a4020a44326f73b533699", + "IPY_MODEL_51d37079c20647b7bb8009f477f7f382", + "IPY_MODEL_62d3c28193d346f0a5af52cfca9ee4ed" + ], + "layout": "IPY_MODEL_240484a70d20448284d5a3841943b3ce", + "tabbable": null, + "tooltip": null + } + }, + "e327259429014721ab3f5d50f63fbff7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f0325b816faa4f9cb226a3bf092f6bbb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 022342012..73542985c 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:36.205155Z", - "iopub.status.busy": "2024-05-24T14:19:36.204981Z", - "iopub.status.idle": "2024-05-24T14:19:37.430982Z", - "shell.execute_reply": "2024-05-24T14:19:37.430385Z" + "iopub.execute_input": "2024-05-24T14:49:50.346505Z", + "iopub.status.busy": "2024-05-24T14:49:50.345913Z", + "iopub.status.idle": "2024-05-24T14:49:51.544534Z", + "shell.execute_reply": "2024-05-24T14:49:51.543857Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-24 14:19:36-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-05-24 14:49:50-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,21 +94,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.247, 2400:52e0:1a00::845:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" + "185.93.1.246, 2400:52e0:1a00::1068:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.246|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -129,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.90MB/s in 0.2s \r\n", "\r\n", - "2024-05-24 14:19:36 (7.26 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-05-24 14:49:50 (5.90 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -151,9 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-24 14:19:37-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.219.169, 3.5.11.148, 3.5.27.172, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.219.169|:443... connected.\r\n", + "--2024-05-24 14:49:51-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.96.179, 52.217.49.108, 52.217.233.1, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.96.179|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,9 +168,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", + "pred_probs.npz 96%[==================> ] 15.71M 70.4MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 71.8MB/s in 0.2s \r\n", "\r\n", - "2024-05-24 14:19:37 (160 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-05-24 14:49:51 (71.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -193,10 +188,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:37.433469Z", - "iopub.status.busy": "2024-05-24T14:19:37.433289Z", - "iopub.status.idle": "2024-05-24T14:19:38.693567Z", - "shell.execute_reply": "2024-05-24T14:19:38.693013Z" + "iopub.execute_input": "2024-05-24T14:49:51.547444Z", + "iopub.status.busy": "2024-05-24T14:49:51.547170Z", + "iopub.status.idle": "2024-05-24T14:49:53.068431Z", + "shell.execute_reply": "2024-05-24T14:49:53.067845Z" }, "nbsphinx": "hidden" }, @@ -207,7 +202,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -233,10 +228,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:38.696151Z", - "iopub.status.busy": "2024-05-24T14:19:38.695736Z", - "iopub.status.idle": "2024-05-24T14:19:38.698953Z", - "shell.execute_reply": "2024-05-24T14:19:38.698536Z" + "iopub.execute_input": "2024-05-24T14:49:53.071590Z", + "iopub.status.busy": "2024-05-24T14:49:53.070873Z", + "iopub.status.idle": "2024-05-24T14:49:53.074970Z", + "shell.execute_reply": "2024-05-24T14:49:53.074360Z" } }, "outputs": [], @@ -286,10 +281,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:38.700791Z", - "iopub.status.busy": "2024-05-24T14:19:38.700617Z", - "iopub.status.idle": "2024-05-24T14:19:38.703466Z", - "shell.execute_reply": "2024-05-24T14:19:38.703042Z" + "iopub.execute_input": "2024-05-24T14:49:53.077640Z", + "iopub.status.busy": "2024-05-24T14:49:53.077268Z", + "iopub.status.idle": "2024-05-24T14:49:53.080839Z", + "shell.execute_reply": "2024-05-24T14:49:53.080227Z" }, "nbsphinx": "hidden" }, @@ -307,10 +302,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:38.705221Z", - "iopub.status.busy": "2024-05-24T14:19:38.705050Z", - "iopub.status.idle": "2024-05-24T14:19:47.741655Z", - "shell.execute_reply": "2024-05-24T14:19:47.741082Z" + "iopub.execute_input": "2024-05-24T14:49:53.083196Z", + "iopub.status.busy": "2024-05-24T14:49:53.082885Z", + "iopub.status.idle": "2024-05-24T14:50:02.197841Z", + "shell.execute_reply": "2024-05-24T14:50:02.197236Z" } }, "outputs": [], @@ -384,10 +379,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:47.744245Z", - "iopub.status.busy": "2024-05-24T14:19:47.743798Z", - "iopub.status.idle": "2024-05-24T14:19:47.749434Z", - "shell.execute_reply": "2024-05-24T14:19:47.748970Z" + "iopub.execute_input": "2024-05-24T14:50:02.200838Z", + "iopub.status.busy": "2024-05-24T14:50:02.200415Z", + "iopub.status.idle": "2024-05-24T14:50:02.206637Z", + "shell.execute_reply": "2024-05-24T14:50:02.206064Z" }, "nbsphinx": "hidden" }, @@ -427,10 +422,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:47.751530Z", - "iopub.status.busy": "2024-05-24T14:19:47.751102Z", - "iopub.status.idle": "2024-05-24T14:19:48.096364Z", - "shell.execute_reply": "2024-05-24T14:19:48.095809Z" + "iopub.execute_input": "2024-05-24T14:50:02.209145Z", + "iopub.status.busy": "2024-05-24T14:50:02.208748Z", + "iopub.status.idle": "2024-05-24T14:50:02.638158Z", + "shell.execute_reply": "2024-05-24T14:50:02.637534Z" } }, "outputs": [], @@ -467,10 +462,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:48.098890Z", - "iopub.status.busy": "2024-05-24T14:19:48.098535Z", - "iopub.status.idle": "2024-05-24T14:19:48.103037Z", - "shell.execute_reply": "2024-05-24T14:19:48.102561Z" + "iopub.execute_input": "2024-05-24T14:50:02.641122Z", + "iopub.status.busy": "2024-05-24T14:50:02.640673Z", + "iopub.status.idle": "2024-05-24T14:50:02.645692Z", + "shell.execute_reply": "2024-05-24T14:50:02.644970Z" } }, "outputs": [ @@ -542,10 +537,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:48.105040Z", - "iopub.status.busy": "2024-05-24T14:19:48.104729Z", - "iopub.status.idle": "2024-05-24T14:19:50.453604Z", - "shell.execute_reply": "2024-05-24T14:19:50.452960Z" + "iopub.execute_input": "2024-05-24T14:50:02.648427Z", + "iopub.status.busy": "2024-05-24T14:50:02.647997Z", + "iopub.status.idle": "2024-05-24T14:50:05.427039Z", + "shell.execute_reply": "2024-05-24T14:50:05.426330Z" } }, "outputs": [], @@ -567,10 +562,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:50.456521Z", - "iopub.status.busy": "2024-05-24T14:19:50.455956Z", - "iopub.status.idle": "2024-05-24T14:19:50.460042Z", - "shell.execute_reply": "2024-05-24T14:19:50.459521Z" + "iopub.execute_input": "2024-05-24T14:50:05.430476Z", + "iopub.status.busy": "2024-05-24T14:50:05.429663Z", + "iopub.status.idle": "2024-05-24T14:50:05.434064Z", + "shell.execute_reply": "2024-05-24T14:50:05.433453Z" } }, "outputs": [ @@ -606,10 +601,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:50.462133Z", - "iopub.status.busy": "2024-05-24T14:19:50.461793Z", - "iopub.status.idle": "2024-05-24T14:19:50.466784Z", - "shell.execute_reply": "2024-05-24T14:19:50.466230Z" + "iopub.execute_input": "2024-05-24T14:50:05.436615Z", + "iopub.status.busy": "2024-05-24T14:50:05.436042Z", + "iopub.status.idle": "2024-05-24T14:50:05.442446Z", + "shell.execute_reply": "2024-05-24T14:50:05.441825Z" } }, "outputs": [ @@ -787,10 +782,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:50.468850Z", - "iopub.status.busy": "2024-05-24T14:19:50.468522Z", - "iopub.status.idle": "2024-05-24T14:19:50.494333Z", - "shell.execute_reply": "2024-05-24T14:19:50.493853Z" + "iopub.execute_input": "2024-05-24T14:50:05.444740Z", + "iopub.status.busy": "2024-05-24T14:50:05.444488Z", + "iopub.status.idle": "2024-05-24T14:50:05.475833Z", + "shell.execute_reply": "2024-05-24T14:50:05.475164Z" } }, "outputs": [ @@ -892,10 +887,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:50.496514Z", - "iopub.status.busy": "2024-05-24T14:19:50.496124Z", - "iopub.status.idle": "2024-05-24T14:19:50.500485Z", - "shell.execute_reply": "2024-05-24T14:19:50.499944Z" + "iopub.execute_input": "2024-05-24T14:50:05.478414Z", + "iopub.status.busy": "2024-05-24T14:50:05.477949Z", + "iopub.status.idle": "2024-05-24T14:50:05.484291Z", + "shell.execute_reply": "2024-05-24T14:50:05.483674Z" } }, "outputs": [ @@ -969,10 +964,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:50.502462Z", - "iopub.status.busy": "2024-05-24T14:19:50.502137Z", - "iopub.status.idle": "2024-05-24T14:19:51.874676Z", - "shell.execute_reply": "2024-05-24T14:19:51.874134Z" + "iopub.execute_input": "2024-05-24T14:50:05.486636Z", + "iopub.status.busy": "2024-05-24T14:50:05.486295Z", + "iopub.status.idle": "2024-05-24T14:50:07.075328Z", + "shell.execute_reply": "2024-05-24T14:50:07.074681Z" } }, "outputs": [ @@ -1144,10 +1139,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:51.876917Z", - "iopub.status.busy": "2024-05-24T14:19:51.876550Z", - "iopub.status.idle": "2024-05-24T14:19:51.880651Z", - "shell.execute_reply": "2024-05-24T14:19:51.880202Z" + "iopub.execute_input": "2024-05-24T14:50:07.078297Z", + "iopub.status.busy": "2024-05-24T14:50:07.077744Z", + "iopub.status.idle": "2024-05-24T14:50:07.082976Z", + "shell.execute_reply": "2024-05-24T14:50:07.082309Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 63ef7492ad35b61696627bf71addfaf9f470ff36..b06d94c86d7077302f1f81475b35ea7d987bfd13 100644 GIT binary patch delta 62 zcmX>tep-A(E~8&=6Q^|TmWKv5&r-H delta 62 zcmX>tep-A(E~8;ag>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay QP$<#Rz%+65JVsqE0AEKE4gdfE diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index 432b23a02647ca23c44c445af24a30d80be5707b..642b7051075e2acec0385e099faf3fb90344f692 100644 GIT binary patch delta 64 zcmcb6i}~&?<_%{!4bzNM$}BU=jr0wYEzMGsQjN{bEtAd64bzg-j4Tb)j10^y&5crw U3@pr2%}k9G%}h7{OqT*p-_d|Y7FI;)S8I24}B1=6jVf!Qm~~3^Hg72yUx8clbKlVfws_>`!+CV z&i=l=_u6aib>{J>E`9u|OJDr$5}J8DXz#k8O_5+#@`)>LgVHpI%q-1}D63gy#Hges zcS@f6`;w3LT^#OmyYEc9_TIg__tK$Fy>A`b(0l(-xA)MYs&^fJzTuG-i?80m?Uy%K zy>}m+>iy%;+Fp5RvUkPdoBz{4ee$8#FBwMNIS9M<$m-tjrzd+~I&ww5{m$a@-V4(k zdY?OTW$(`EjlElstXZ?U+H~;l18(Q8J^Od=`i?trZ`vQ+{Dc;SI<~s^=CM`1!^h-*`HEA|Jo3`DRhB&2=vmYx3KOh}+y|13cRE`Wc<>Ca&5P$2SDAZbg*BddCj`??FSr<7q}Iix{qS{d4>hkl_sb6!SBz7iWu__wEu>JE zDiM?=HhHR@OoP|8KGeMK*;hYU++|!694%47jbJtyBV<6w=3p|lp||gaW3A6jy|wDp z9lu+CQI}gCxDuB0?1hrdaOG9ZS(-$t*Mpa}JacO5t)&-Li4)}m4NO}rypTRq<`fes zg5uf@bJqG$bIHrz+i+3EDI-$r6g|m;GHL}2gla{I)iyFY$XV+{&Fhx_Y0v2@NxaOa zL~U~1Z3?-bHWF^w$RQ-k1<;r?GbyoF{ zUsB#zbd!#T3GX9|S$Iqnqq(rc8L1@AvVWp3|5~)hu7CDqc}q1qbj-DTuCSBIiQF7N z^Atoth6N>z6KP2%)b`JwEcPy%P}D?936kZAKu;K_@JGyBM^vgm{6V>@|Hj+JPm69& zJn~4nGd_zDiATc+t*K7N1R44#ukE~o^N)-fME&ps9a4=9Dm1Cz#8dTkKQ6mf2t(7@Pri9!|?zwU5z#Z!kAKqN8 zXAF(0a1+OgNR*jumC-@RkfcW`hSzExL;Zbcil>X|mfEQGi1@W{-nMJo_OIUbja@CB zm@a&Jbh_5xvAN#xNx7Xi8c#JsWRaS~<>d+q&_^Oek%ldnB z=k1~z9X;fF;^lICh0!)D{s3N6^{-woFX=k8rIdv5tb|CwR#Q~Ul{Cy6m;30uJ&P)Z z`U*f0gGmUW-)Jo@chcaB8HlRUa+mkdPL$6UUE&QIm!M016x2sYLqMC*sG`PH>+g82 z1kPIGh8di-#U0@6h2NBGs%A!jz?`Qxir~0&UNdfKqM$RAXNF!yBVmFNFk4VUYh+ye zz)0jE6Ot^OyUBA!S1=c~#t3Cv_+VVjmKnyph#*O68=SpTOpcCQ9|6kRqv9UA{`9?K z(-x)Yp-e=A+fXjK6+$-SHek3B$`Vm3SUxj6S}43;x2?0X|HeJ#qs4Sfb=*Si5Hh+o z7e1X^5;lvpZp*dmlgrADR}IFDVk{;?rA^Q%R0hYq3X(}ffk3AECq60Bo+6vXf|FSV zC#)xyX$cw#A=uyuAp-=>0q(v6^E-kFNiftSu^wV4F{><>ESZqAoe#N|Bc%GV_XmvD za)cZHR@iQ~fI&0TG3JE?DM!r=e&h~B@7VA_K~WM@LLUoV7%hLq41Ms9ald!WpF*^9k%D zv;n|#G$LqaC1bPVqH@M?u#%SnprjJq%~aA_XvYm0*v{eX*`o5^4QrZp6pkt*IO;$G z%aTTy20%MgOpJ^>#93=p;7rxKKP|4>Ozb?I(HND>0(|QevfB468 zMgPU;%i9-0Y>w2o^}6fJS**2HXd!yqdUD~@Z8@988b;5^tHlAULH0<<4N4%=BWi?I zz(k)jgOrCPjkD9!?~rzIF}I2{6Cy@PaF&HZvGy$LiU1`R zAo(>BEIG#<<53EWQHMIrM_?Dj$3>`M3{MD83>pu9cfm%C-JnAs1OlcT9k-r-pu;L~ z@93xl1pZ}RxoHbCX4`o|X&mRq8ey18q8W-VAjzB&2mXzIW;C{}gZ;f{isK-;kyQ!{ zk<`+n7iiCxOnKn0s;~N_Tv@eTC=GzujhrXUJWPAkk~1hoEK`j5f;(7D3XkqrUK(r_JTWh^<^ZbH0^2OqNYgCrS`NVK zGql{%Z8<>0*reXY%B5WoW_1v+uqYJB3ysBr`QQoH1SOqeY?U%&1`@JS)A%hY3$!i0 zc7i0r=sbGpVswCTq=8DsF(R{8Q7obuIu7QQ8a8Lu5_g8^TH_8-wroqM+qKw*X|p3@ zscQCBkToR{yQa*|Ip=di#O?zFhDeG@;I%d~N{@A$7?;qCebC2Qzy}L}6UJiA7n%~A z6MpYfhGd1n>tElf$*Lu491e??fU)6gRZpnS#;uHPoe#5QIXD$NiGyme1o8+%IdKOK z3~BF&{nlobG%)*7G2K!azYu4*{-~a$3!lc!8kH?Q$8RkcVndi|hP_nKz@eSthoD>z zrbkYYSUDSz;A=yI-??ZqHai2&J|>Pm&%)(^f)oTD(2S)4V+|RuyR`(;V4Z+jz#&-+ zLLu-%!ZMCJQ&?)QhE^LO?VX}K`UtK*cT;EEq#7B%KJt1=>&I^HEa^h8A~Y7ph+r_p zJm3VTgLnd4QUsfs{~kyJZZuM z$OZYE@fF$v*C#$MY1JBcfV1iCovSNwZKMIDOLf47GRjWi9%^Wih5Fz_2pJ zKcmx?j`oqK;ghEX9c!nU7xrYT5%vNCr6uwb+rvX z+;D?yE7L+8VJ8^XpK{^TZHb#h-RO&HJyewhBPKDWIm~Ko=D|{CGCyVoT37kj@w4wB@Sr9Nu!5P%RCiViAg3|0i{9fZk zwgs<$ez4q8wZs;U6FF7ia(}tBQp$n{u)5L2gq0FY4+=^QOj8-*NY3ajlmS}RcmHx!>#xowcC2jRth@O_dywF=|N!A?J+AdW;{QdG5t;YMz)kiz; zW7GfNd}tV({$taBZ2FH)|FP*m{2sNC^v0(Di0=+#(|>IGU+`IGA$rE9|LE@yW78l1 zM>013NB$4k*z|AyLu+jMfA(X;*z_O%vsQ~oJ~sWwrvKRVAAW8aoBp5qS~6!uj!plu Y=|498$-)ip|7iN(-hbj~=ermG3%#uAqyPW_ delta 13401 zcmeHNZOEQw8Rog4flhO4>E?89_wD9d+T5=1j~`M>3Q^NZKSG%GtG z<2;V@IFHi@A6fI@BWsTTd^NrC%Y47M$sE`nc#xS2%asqx1tN@O(o!oJPcm_eA2~{- zJNft3uOA%z@W>^D>gc)E&SvoH9h(M+j%*veAOC#%$fm*9jx>Y6-La`X7J3^8FCY2P z;Jl+({YUE`{>lr34R>zecH2#d-M*y*hxRRf!5zLe9SZJH+_AIS5pHz*KbQ6`-E!0Z z!7Iz#2KO&-8T?{-{oo(Vn+AWq^PIuAmg{!S&As#bJN6xI58l|@JoxIJ*ZtSNI9T_G zdhoux?-}g9ck4yn7O}&ByTNXM-FDmN`rf&NU*1y>&basN!TNhPo*mr&kUqb3>mj%Q za88Fti$=G#|K1A*NAHpUqfeiF^xhv_(kN;PQ$%satuWD8%|z){EgEZryL_eJ@zaoOCZYA>wF#JU(= zrnrF7#)^x&jh+44w$q!Kh0l_+q=^(!$_~C+Aw-lW$!NycR$A13?yTP*c(TbZCmOWH z6DVPw_0dz$n29JTei+ z^UUgty*heBt#jT=i^rtd8qJMo#s`~;@WW$m^`~Ajc>CRltE)H9jot1&(PQmHkN3`~ zLvSKytBvwhNXEU5lp!qgAu%4?6PNVQ86JP4`pl}DN)?d*iXn-G$i{FNv(Z{6orGb- z-~O(8y4N@!l_pA&5S5UcB4HWfPBW^ABqk3pU)TRhuPMa!?OnI`X+1xpY+t&)Puk1A zUDb_Z-dU2Il88vMc0|}rS#*SO?t_>-iS|fqjpXJ4B?}h6B4zYKJ13}C<1^Hbb4s)0 zL?iLCqn5d>IB0+%iIZwC{AjhYB_HUo9yV80-{@_bAH411wwpra(OFdci6^RUyOr8S zZ@yyp;TyIdJ-V~m>Vir@IW~bu5jJ_Cm88rf&YE4w4Ox)1kXTH zTqMV+M54BLy;e=~bBjQFQfjTFU@_+i^1*2yyb^{Q-yXZQT0cfxy{o#dS1YR>b<(ly zgz(BH#K;`XM>TjMx45pehqvVZD@fM)o3QQXr>bk3`SF!&-Q&I8?T??T&a8dRxB=_E zh#*P=v=NE@XlDXS4<9~yUv*$rLnD(~T5zC@LdR~OQhLSkGeVRMEueJn@R`lkW4)RO z>Xqb5=%hfs&bg2xNW)1Z6CuNEpR0b_YYK63ogL~*VMnO@{?DrOw^%O&wV*ARz=b;E z98q%AHSOYGDf|ZvWe9`|0XYC% zG2;jnuvALR386wk_>>&}WMhS6%Ep8;7o)TpCBTFcjAo0RavU-$C=|CWqT?5s1?*OlT(V^dk7XasShEeR0o-2 zBv~X2S!E#vodoX~2%90E@|j*O6jBk~%TQQM!f~|(pg}cOau@V8KMNtp`B{h<$2D&A z>(vFdj35XeY3TSs1!qlUi5r?6G^UNi3pe$_8o)i4F-;7JlM!%5h}x6jAZ1O+v#im8 zOax)wQ8O2iZZ>$0w~Ub@^KzIXtq_<^PEraCq^WlQTfK`u%)|`RB!%vWRxLZ^_Fr@*pwYg3@r^G_z)6KktUnL`zV zAPLcd4@HX1g@`hjh2uz4Z(B&eDcb~YbmU+rDlMe3F*FK`mlY~ybSUkGd-@YqIjVD8 zpnoFLScVjk+bD|02BZ+D0)4BSh{{6z)P7`b^{J*1nvW~o*L(f7O^7jAh%N0=wG!$! z8VzQ&5yoU^^i+@07*W?8_5?P7-a;jC+#2R%5M0ZNrnH6&D?LjVXkieW5#5P3UZ6B+ znWt%5iaDunb0bbP<*znYTWe0xqH!==bP-Zkqk5*4pfGYon?z@{M`L_s0fn3z(2L;= z>KQ#y@_?7;XdY+FTi1A~AS6^VUXB2kEK)DHSI+8Wr}R;XZpWZ21|EU#j~7-uF6D&m zc}G=()rHJ91~gP)#EkwAou$GCP^5((9(%KsAf?`KA}UJ{v=VKdB%hO#r-;hZbxqOM z6i#HivUYKUniCy#A+&`T-b)j0fV`(XOQ&G%ObUU3Hq1~cKBM(Qx8_YGiLnfA2$<4Q zUo>0R9HgU^B4;R2!BGSyS_K55rn+HY#ZY(zV$xJFMFRRA)$Qb|xlNCIh$DqKyVoGqiE z5(OM`kcWiq%uWNBsK#TmeDRgucX|zYf_o^IK!^}pM2I(o3K!v-co;Eaa*jgWNr5ZG zO-=h=5*NKjdqG~a` zs`MiX(e-WnR@K@PMI!z(@Zntc5NDlfqVXG`J37M|bqrKxh!QLgLW5jXqL3*ZJ`t2X z?cQY8HE9aF824{A+?shiXkYBww^wtueV5r~W^I!MWiE(};HWI%YFPtmj^iRdKpUd# z%BIf2d?T^l`&_kQ(!Ukn%ddo9=ONF@Qn_+<;r`^?&?}rQj{3JP!g$9(rXHE4T*orr zD}r%_$-$}_McFX4cU*gPwQvlKgg(qBz;9xiqW3=J8o8?0SLeG2d;Y{K-0!^xYi69$%=vM`6OhI>tzwM?1-%PGJg)@)ku3b7}e zEYFWSsuQIB=fVE@by6HG;e2=ff-XL}Q(T7#XQBo>8cy>9lm$_`#9v{Oj(z zGkR1fR-jNo+@sGE@VQ}WW{>rd$gq${<#cQWmEyMag^D)Cu&8(YE+xCnOr?wPxn+b= zpU`YDjs`kMI0zhUj^-py$g$wZx9gq+Hph)z>19@8sFay2SI7Bx<)(t<8 diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index 4c992cce4d760cddd9d0a4c40f9e310365f2fdd5..5388783682659e7b02a81d63de2ad483572618d8 100644 GIT binary patch delta 8910 zcmeHLO^9Sy6{b>e1}0I5U?;e7>e)o1%=GmAIrrXk7r{i-5J;Sk!N4FPbAMF?ofy!C zh7ht4-NZrg;Ubfjpe|w{Vu27vvXqc46ehUPkSqe@#;qXndtGn3yHM)lz81acu2+5D zx##=4=Y`jIUU+@ymEWC_Rp;;cuYFhTi{x#IMO){Sb+V?aysS!C?^ITTZLvlNYo5P( z<_9;=%b~xy%l)5pH)hSs!z{PBC8>{}(rCdBZCH|L*N zSYHweA()dVRPxzW!&)R)WpZKp=!4z2x<0Z?Iuz@QtQ4e(u@Z}b*Ro`#5UU;*#YYY? zMTwbEtRmW&l~J-{O4)@$ezm)6IC!!9(DLl_-HWrnQQQv?yxYk|qxPzqgB$a`3#83A zKD+<)6T8nmbD`h$hDA~#$i$VTv<&cQj)b@3V3!9Ec2~PzXBIWMAOP~Av!%w!bx&CzH=<4nh7ltq2)7{-~?uz_) z9QO>r{@eW20`yT8n6oU2YQW$mIOeKzkyLflY?a8R3gaq~ChY}B!P!;TEWNNsj8uDR zwg^CH65jcc@xN-crdFL|Qj|25;3U%;b^UPu{rO{ktL}7HFj>%@&IHe`#q#@WN%|d}P7M77*9Im`KziTz21wf^A6vBvTC=10!DQUQt8ixHKlb5;jA`7bp7eZ5grq6b7v(V6RtPfM_-K6+A(S1)M|l4fZ}MI zwY+6+(9KBJ2PjM?X)FT=!2%IMyA0P`ncE^lT!Stginp+}9Bi&KK&x~zsiqa`SKiht zJiL56yscGt#khy>fVY*PEdz-M1{RHJo)0H4qxspKcx5 zXmNjj85Y;->xglu&xr~(F$jtZkxFG40}Evl%!DaS!#j^38G|=DN#GZ9Pf#R-paK(2 z@DNxE2Qwu~Qwz?-XE+8v@e!j(qRiHcBuGm$9@b%^e0#RoT)YhD_qxa6*PH9ENcYBG zcXlBIIn8jaT0jg}eblU6FoD6ml2(4bs6mtD;vleqTk^0ji+)6v+adz% z$_ed~2O5K9t8&!}rxdh|d5P!8__?_@qS$B=joM|n_HK93Q%dkAumZ>f!82kp)FI(e z-54Pz@#w2ICXG0CA&~*!D&n;8x@xJAMGu+whuOJUB)A1W8i}kKql7(@3Q$5s0pt$Y z#c!{4ze2!olwEPHQFY?ljrr-}t$%d)?rEh@xSVDq@rFiuqX-umPe{*XoY4uPC!EBa zM)(w&gY%rBJQyn?UKMN*vk;xvSl1X)S?5s;qU%rR&F5#2Sl8$cv%M88`<#S9QzaTlRT&`7i_~oVU(Y{gj&=U5ChYq?AF91{A*rc{*j3UW$$^kb9To;1J zRrcgK4|8P1-3+0ZD$E#WjXVjM60(ktQ!op-r{V%73xX;kJtMRhI3Yo6kT&h|>U|^G z8gxK*aEw%iZpRe8g2T!2qBfoJ@?k>v)N)8Lpj@#ymI$qjC3q(W*QAE0B*Nr!*6Zsm&@BIE~bR+o= zV)x05(p@~6F@ZXRdm0u9P?ux_=Olz@WrK|f`qO;|7f>spp$0EU6`~^vI|&UL7O}$D zPug8$T)a-D%}8ar{&ef$j)>Q2Yr4_>;_KbD<_=?W{O$H+yFCfp?a9&N>G(3Y-JWc> zCyU0_f4e>TUkkoZnoQ#?e=85J=tzgw%Zfz YZ?@Z$|5`i!|JxI{{OjGPeslYO0QSb_k^lez delta 8898 zcmeHMOQ>B}8Rqot1k#`-coTJC&-T(%X`9^j_}2?8R`EfhHMfd|ASGRoe`yh##7+b) zB{&duP=esbNoE0ckQOQ)5YkdQl+q3qQXI6U4hj*RiXi&!yHC=4Q#}jk=fb&z!@m1p z|KoeC|Gx10)(fw1z4V78^1DCK&(PEU+)mcnR7pYGlx@s{yiq2|KuWV=E%8;9!o(ln zIP#MlM`rlkvAl6){*9LxRcawQN1;=oDoaw)kSM<5jn>=cg@1MDx`krlV{u$XC90L8 zt4b73MQF#O43B@U+gkqpAKlMq3(wgoS#^*ikc`>~lQWYv#MOvAoPP+9?);*=KIX2uXsq0aik-amwUwCyRC2Br<}?S0AkadnB6^JL!juuXV?N`Bc{p@7{6f z<4f_!`L93+!4ebrhl3|oIf<+Tau+s$$jsiL0&I-~3=dxh*w%+Ha!lxn1%|L%t*tMK zv;b%XNGgB;C|Om~swrSQAzgAfH>lBLItly&t^`?F6Y~mZ-p6ch5R^kCJeXLrQx+L} ztvx6OO?h>8_xg|%%vup|!R+wx_CM#JyWfe&K7?9T;If!&shP+ai$(?ZTy&|4hqHg3 zpO`psp)4?}l6Qh6Y3BoTEZG$4+2QXeQh##~Y^~ND#7}EHZ+p5?H=u3!)79=ozcw*z z#8{Pkh8N$NAL?z$nka~r8N3c9ii*9=;6W~=^B&wFYgPkBUId#h>Ec3$fK-d)YmrT` z6WSILl!+HAt)nF8O434Ar94Q?SS_bIO^VivJ6yf9JKbaE*2bOC_UO^>Xm4T##BJ3^ zrE#Pn05)nUkV%eXUXAEN`B55*LzogtlBXCmyt;f4TBj6hFh!DmW zrL7Ja>@v>lwOR87dlTC{0Ekcy4{vq%^)LiV2UDD|j%+RgEMg5BgE{p=++;$d9kOt# z+9XL92sk>F9S5C!HnalWLP@lus9>T%qiaqs7&2a)!hx$^Ubr&Kcq`_Fx>m>)>ORw* zx?jot+UA|J$!fF*GpA|*;E|Oqx*9c{yV9)y*W-)g$>Rg+OoViE5(>P-qvD8gOWuAu zd%iZha}Yy~5mg7DZWOJKi2K$%^Ao*Xml?xR-9p?VVg7<;s9Xg-dXY>~FfJbR7>f=2 zy%+FqA{tqPgfB$nD;12Zam7OyO>zTDxD)K&IN9CRQ(<9(2i!sSO6D*Mgz_*XFtY4dL%P6dCS!2u2nhy_#tKcBvMMX3 z&tg2{r}in_!UOmLLL;MvfN1D-f>CquY{aP7IIXWj;MT{UhP4se50~EWc6-Bc!At;| z!|gygun7#lEunbFUdWZgNhO67DtKjyAhq&fUOmCI)5wV3T)TshljWR*4=js#owoK8g|zz(1&r69J1l4!316tYxtj) z30YY0ovJWt@V_{4#pQrG`3k~;3x%D$(j6b|B=FW~O+AR9#%%h7PdDo3Zz)_Wtq<|m zXZU2c9-63d*9mHDD<;+3OncI|>THm(Pd*h;q$5Qs8VNgPF%-3CUv3&o)Df1uf=fx0 z!$cPh4qTm5LP->QWhnP!xzqU+r7`2GPpy~C#JJPv4SY$)u&`twR2NK3kGF4%R%Pq zak;c3S7w|zgXFYRgZxf+d^rF4?%2v7D_08S5S+pAs0HxTVf-;D!KjQY!EQyL(rEdlUHM&E91HmSwXy zxqV+VsoZ97ve}#b_m$Q`ncD14{@1={vo~q(Fjj`YwZxc~m7BfE^nZcP-eld`gX%lg-{_vo{&HHk-Z4M>bCX_uj-U|8nBc@9z8$y?gYN diff --git a/master/.doctrees/tutorials/datalab/data_monitor.doctree b/master/.doctrees/tutorials/datalab/data_monitor.doctree index 98ca57c7bfd8f4882d973fe8ddd2bff8b01825aa..0256996c395f0c2459513593db7682b3fa592f24 100644 GIT binary patch delta 11054 zcmeHNO{iU073SP?2L?jZK;rWU-#G>pQ=Vr3to_%K_=iHGky=5er2ALxz@#V&hEmgx ztPTuf4;4))iUTY76X+GhHg%#C#RvtVBAEz6T1D){f#`Scxry&4csGK>J9%%ibJkva zt@VB1`d%(SfB5qAhkx{|1H8!edH1O=h!ZS2okNz|xTp;;u?WYDVA>gx1hYD8CB0Tx z{&CBT3oSBfsfv}sB+ZgHp`^r_RNkw6<TumAP$kJrvzx%lehjXk$Ta+fqWLXwfv8%fd`@3cy`6oxN7 zRzGy{)uW5ymQOS>mb5WjrlWG{U21X1KUBKe9OU&)HX-jt6C;G>MWW zskzH4WNocT%%;N4;>T}pZ#31o!-MZ@PxY0sY93{CD2Yk8zIDIR(DyX}{oM{Bh@hR7c{{joEr zKJ=dVo;<@VExLZX@^InU1AD`LH`>?smDJ>L?Zw&gE=EnNXk$1LWgxuNE-8bW3BftK zYG;0KzRS^MfN-W2BX6QJrEnLBp^uce!{O^_Q;geJnq3CC7upvdjgd_|VOdxQJ zFRmV$zk+Go9Fz?Y|8aJz7WCRBwCJIG=dbBP3B|h+BbcEeio+#X#3d{+J=@i+X{~$~ zLE(g@l0gj2hpZ1fS18QP-Lww zBvwKlom%l&E$))Xy3JwZupF(C#`?gWRTgBM97C_=06Hka0N|hunN^FYf7qUzzp2D1 zld%EdpAtF~-0Jh#y`CF2G`|2m^vByDG+jpaxG>}zy1{Wgg~%}=-7<2RnFgz?L|sCD zN1&TcQ7<$jKD^Z4-}A@;T1uCqIXR^);xiSwwkkNw;%cri5h6Gqp;QY=44xI*6l*a& z64L9Ax$3i(PLh|7F-bUzSp?Zh21&(z5Ml)rweZtSRioczuzU8*J_6%5cnR?x8C0TB z$|nmIjJ6ZbbMV@j8>XxxIQMZE{^`aNt&dHuE!R)i9_-eT)v}s~OqrmhfdKW|(g>GK zCIOW963Q-y<&cdci;aMf26l?L*NzBqpMsFuO6clE^V8X-rgMq8!mUaWV5qioz$yi` z45*CYiUpLw%S~4aIh+G=K`CsGILXA3x_S*JObRT8)*}~+17-@JTudfIo{Lp$ie#Zi zlqdzfkWgDghGoa3N3nC%WBu0URfNoS5cV+|iqT=(h$-kt2Oef}xbTko(c!@_wg(qi z|1|q{Q@zJZHrB2&%Epn(It~4x$oZn7eFZ_M77IBja$?Zw7abLXu&U$K}c?h)XOn1*>R6{a3SAiOZ%uDsl5zpoe;}6m$;6 zppnqDvY;plZx^k{)&%64YSUGguSr)-1ZFo^0~e44gPH&g+bEaWoSpA(HYSFzoobIx8(6I>>%3HHOSXQx_FAh++vzGf zO@oHTRl+hsQqh>393 zF?)Cg-*5WLE#%muysO2(Nn^c%%?4QtJ%^cKRr-B}8D^h-Py?YcaAT~(J-ZhaqgS)ukB-C_2#rQs1s^r}*Guc5vFJbyrA<1r zItgMo6-^bzfiJ3oo`Pr^Cpu9Qp(rR)5J5<*h@ChP{r1`ChI^8D7LJ^pK;Yhc)?NQv z>;J#U|KF!BAAaic;irFjfPeCH@N0U|CiM-PA=WO`@}D1MuhBi zbg~2`y!XNe@07;(f*8@4|Mri^YHKcCczOQ%j)GAJTLmkk;*p%yI%Z?E5hV4kN>2Lf=pI{S(A&hT#yesN&L^6bLRbGzv`l4zej)7yyK3JCEQOkArm=O zs5oYAj>bDOT1u@J`&AbW`#t%G=4&77v~?Sd3E6V>cnWRt6Q~ zZ3=n*qr2McO;?Fo`qS@ePs}PY`*Tg}w{z4%GwGDjQpLzgg@A8>4U>ZJpWB)qnO}Wt z`_XBaOJ+$r;mJx>A`#M=Lz1L*3Wn$Y!in~1|H4a?JLaDj?UT)n8NzkFz3J>1nWwz$sGwpYqZv82U^&dFfvhDRJ=&!tDD*9LdzP)dji~uZv{=&Humb@es zB1O%L=Th|N-iFAGPd_%DF_D$k$;!Z#7CDqybTZy^p($m$2Rr{T$dWw^0Td}=9{*WWqUp?EtvcGt2dTiJE2R?iJGxzU2{P1qK zBW*^pnWU8F3a1Z($T`E5HO$z!tUOa;p5caD&wRW6Li0!^VPywF-+S`Ir%t^8UGKi< zRIOH5S6AN6?cBfH-+R4%O;@>9>90LMIW{9oNEmZ2C={b)jwi(fvWvO}L(H#TZ-KhV z0u__FaUm)bgcH_*Iiu9ZDMd@v&0=9JQ7TdqSIJw_UKg8e_QT>lfBLTW#ipx-RQ*GL zoSfKRA92j*p}VKA0`GdTT9nBOp(q1|HpwCr_a<^H^Zf6>o;*116!Ht̓lME#a* zK_w_-u4PJowLrhx%(5vtNx{A3DhKU-l2I_`gAESKH%GdE+Ek-209OzGO~CSrcTPXp zd1nJ2lqZ)+N$Z0w+9=Snbs6%>$J@-D_0d=ZorzvCpwtNvWfZu#NF~gHp39)OC}K#N zLxUvX%bm)cdj>g%^aY=ncc{f&+@Th-zjm>;{SU9SY6h|hMOvJkOHgihE>;mzsY1EBy7opl@Km|gh^LOhm*nKND?kR5IYs&`46`IhNI+|r{EkN4ZZX%Eb}Fj>OGX|Oby-9V77LT$yE47gy9{G6F?XHmG! zN-_)7b6CIRBe9I%g7D`4+~M}l{Zb|+p24{^FeC&LUNU$Y!8Z!p&-^~t?<(=_h^+PT zg%~cxMloYTYr;`Ify4r!54FnKB}g2xV&`;npgJ&`6&4vOIF#cI{*?t4VVe@(BiRaz4iHWt5~X)>gwv+!vT3+f8X`?NLRU9T1Z((l1mmW zN=l=)&=-L5cw`VL57R96grMLb)CiJ>kKj%M!AAvFK=)4ivZrN`5ok(+e+?def_A{E zB9{`pTeQ5t@+Z*Kp-;5GgP>Ic4}x~jtP*#hqLm!8HzLL$0;EScmW4)J;S%Sdmc5IB zPtk5jUJ5vblO`M=U#P$bS%`7S;(j0574D?-D#FMaC1b?bGO-LtTx7A4mX%ryKgvNR zdjE~HEng^_D1eX_@OcV-0)ta0Z&Z*hA^~8)r9Q*R0&ms^(pUzRN|>?W3-fsU6mNCK zWVLrLE0jI%gv2omLy1Qt#(>wM-jDRBKi?jlKlkU!*PE_(j*(BQ#{i#vd{^$n9S40y zi%t~aQ!o{d3M@v{5bvB}EB6?GeLL5~Xzj^eEl;a3suXHiU0r##G|1ia=V2df*Bb33 zJeT$8&Y}k9hPi;UNS!I%2lQmX($B%EGvj43LU@D11~Q9}K`W2u0QTQ0GqC>Fe4%#R zS*L{dUQ3gM0))|>8(`EJ86?^HwePntp}SijHH>XrEh-EP8>J56oR`i*QPBh_s06x9 zoS$cjc0~7Aw$SD*sB;F;!2AUhj3$M{;}*^jL=rvZ444~wF?MD0y=E31p?xnI4%ow5 zXNQ_!Y-`Z_d1&KJ1zI`9*t>O=11uDLDR>3lnh`9(QlNv=EI^p_&<8`ORZ?SewoQap zkwTUPz@cxY1lugYp+RKg{ppkKk>!O%G7fDZ+HH$2-NL76U|6Cl$e5nc=-9?Sv=Tau zU|S#BEyUXl4cnXFV)h{p%`l1st)is}uPj2+aKnRl%A~0533+ASu_toq*D9Gxs}NdW zqWmU*S$QKvz;#6i*cwKlV>BKGEk3eYio>)76P6qHvKDutaozf`L5=ou(YEDO zQWO9ij-@!zG;}3UX6r!TT=*qz1}iZRFcI_twUZ9y4gs;zLgRF{H}Lj@1`_}{W0ldn zD@(x*gFJME=yV99!o7a27IrMmO4Jc#3w3j7aV!)7N}Zr?9P>VrNIMUs8PNbQuTf0G z3@5^-Kt(|K-L@ki}y}-Umj~evYA9~CXt&-*PFi}Goi*g_<8FTJ=DY3PJ~&cV>MS7x7-UL?yk?0Rl$XH`Up{q@ znyT^P=Wh4IlF`<2OeT6SK`9%vHNh*5$}$3sKc?dDTrZ0$9GOrt0kMt@gw7F^ZX5gaJ;m<>ae9%WVO@%1b5t?L_}cG!6%)|VQV1AP^tFODrlO*Ntf zGW$ph*%yQul_z7ypHp#Xt~W^*7oAna1+0%Df-A-ptzA@-VC>(D?K&7jO;u|Svd&L| z60&m@pafsC#-Yj<$BW;^R@ZbMrDmL%3DdwL8ctYTa_F;>zxH1 zk5GcwS+j>^kbtT92nZnsU_^;Q9-(kixzx8L1%wh!tV}RFyEFSJ>`Wmj(NaOe>u9}sSr(pI}G z7E!AdX~d)wAEdC-!tQGX-S9=wYOznZEW@7potd-yoAdjd^Do|=g1Zm&2Htb`SE7zo z0KGOL8jcbjDe~Y^=}cKey<(8WPrA9Wo9njs`W!S71+CCJ#2lTD;G9)HK}b^4@a0qY zxLGwm`rPe(=z}j(73)IL4!QVHlH^R5On{icjX(Cq#))3m$4f%xNgL!KgH;He3Sue| zDUTNq#8%f!B{LAj;Mt+h!6~0jQHjt(&Ise1*Wz2(6diWoinYatCwa4n4Gg75gk;!yGGj zM3ULFE;d?84o#4rNkXPND$hA&nvwMNIy*%Ue09hYb2J_cXpSHg%P>^ng(H-f@(iUV zJVSXt6-y_z1-c~Fa4;1MJqJh`Tnwp#MPpe9PDa+12nG|=AFkF`*M`rGuYQWB-NVM1 zaI)M_uHLw{etqrA>b3ROQvO@rGH!Bbd3e7k&NjIY{kSlk|0V3O^ikYwF8y)Rj+1tr Qw7Dix6 z&ZHkYbJp3!c`p1kP( zw>B4^HP%P0ijq8+C1KO{=Ggkwy2PJbCeX3*p)}6_t}n!DQ>2XiL(K zjE&X8x-dLyY*GJWC$4+NdGp+cAf##xn>5sOiPrL4> zTP|G)EoF3$_X)uS)dmh*rqE_9s~05?FE_TRf81TSUHzt+-LqPqdiXofI`zO;7yL~r z*FC&5x$e~MUu~Z3!{?p)!ei&3`o`ZpdT7D%AG!I~JL503w_Up!9`opI^4?SL{M(m| zu6l9z{x43>Kh=Eg4-PFo@H&^Ddj8`-y6KfJKlRAtPrd)Y|NevLEK1dFvcYgP#yDM? zwi?&S)|ui>BjxIV#unXw<3C<`bkX}W?xVEQ$@rk6iz?WVN-ZHcw?6B!Mg3V{|F5q( zm(6KyIBU)SagD<{FCOd9`G-E}&-gp1KX}2xv+cjSI@_QBc7L|RSI@R$eXh^{PJgaH zWT8LPo6h>d{f|8Uv2$=+(`wU*CRkHM6NM|bNN>C|v288K_}bV2~2HW zCJd5MQUsr(Z&X8a$O;>S*N!dfANSH9ync0(ra#GNb?-lKa>Y)Nxz~1?J~X~$IM(jUb0@2FJ&VDWyLK--Z?d}Dvo640m)|^Z@}YC) ztt+h-+E(0CHzH&$l57YsP*C6jl)V&Sr>+`Ti>6{E>C+K8Z&%`%J7h9OIjF5-E={=Qo#%lF-K&iS98 zzTm;hQ%)Uw*$cbrBhyP3#`OZrE`R5@X1_U^SK(}lE>mBkF^vl*X-QaGa5iO_HLqLf|Gj z3t5(zzhUPKlf{T_-N_4PVliSi_nUdcJV;-($3QaCIPZcit&z1gY{<&Iy!XCy} zSG@U}?%qGzdG=!S#zN^Y_Bq{RF`Lc3BpE1CZ7$Ln>p2jS8sFkhIb^YX+gtnFb<{Y5 zPE{+sks+rx>(aV5wyH>xmpJH0Cc9O&HgS$RazOj%$)+LwO%!2RwCG8ll?OTQ6!cjR!$UrCXDI#IsfR&}VlpS$^*;(?6N)Znoc@ zeAQIV#|-bg>Cx_v*X>+2&r&EEDUQi%6ACad6(N-3y0n(1BhuGfTErkhlTxcz7Xv5^ z1ZuIZ2d@TWomf63$qMsmt2DMYMk%sk6@hv~;%;2iL}^K!eKuU&bA&Xr*>+jQ-R@?y z-J{cK(|!5)?74eV$^&6nJbMzhvLg#R2MFl4WDs!(QdHTl)BFfT@5no(iB-^TzNe-+ z97dbnwA90^M-EN*L3if|rWemgc6A`;a+B#FxF`v6B1&zapfnNwL>!R~|SW>smEA|j2Gz<(o2r9|(3eH$^_ zbRWEW_L{{;qcw+BeS5Cj6RQN85-nSxWvL|46jY$J7G3+QMbngqx-~>yCV>!$1Y8Aw zW5(6$DUOca=%_pPysi(s2}E51gtg+Owx#uwr6#g;lbhg{Z+pq~!O48H<=mZo0zh0E zik+^F(q7PA$cDA0tmAE=ERiN^r0L5h=ol!5y3kALq(yH1^1eUY`K!rd#BLahbse$U z-;C%UJU%j0)${sZ z8`?r(zNCxx&Vp!47*gaAdYdmx%frDm;;;7b>ap`XUGGM=wkj0sdKYTOu^Md~)BB-m z09&?Cw8mx^>k{yBJM|uX<*5gTLS;fL6Ic{?%#{Q1rn~3Ij$AY#%!Lm440*K?bo8|L z(TOahpgklwqIJuAu9`g#klAcjb4NSb!HJs4Rmv$uE6%cwn+id7{Skx2z3MNFIockGt#= z_4G6;(#PEon1+hml<#f zhyWnrxe38}_dwauK}x4vI)og2I~2MFgcBcHlU1>%mAOeS1W1usN@ewa;EmX{L*R|s zJP>$yoH}w*_sH?tGtXBZ7}C&7cE5f1?D(AU(R4PT<6_zx*bq_W6Es*9rS3O2BXrY{ zfQGOGfp5AkbvTg5ob>SOvD4cRI}+x`ZFP5FFuQUpj+#`u#(iS z*HJf@pex-}+K5IQF1e|>6sbJ1(*zNhE0jr_Ok`CMYvfr}MSNB|T2m)8$!* zX?lXPq?J%qSUc*R-mqnhD^P9d>*&-=q&X)oHnbhJWov+*J77Grh?XMO2A=>A~D zvV>rDG->qnxq&{UC{xvPkjkxL*sg)xm$;4Nmzrz-~(4czai3vvTK@a|MzLK~MqE*5MX4M2}G>afJr> z0AH=~1)-sXp!0_|WC*u0yF-y1F}sepRgq&P;8M&Iw<9pxL>mt8A$6;0ggl_JZ&-#7 zJwPFdMrUfdaU_sPOINg2l7`T&vD?6)P$7v%{xydLfng(#Q*+F%%aO13^wCAjPrq~L zssJPc z=1H<4MbaVz5+~>x+5y$CHnY%;0#3HX9Pq#TatxQ1eDEE*`F8BYt}Z5i@po5|HxooexhIqLt9?LFtlc^e8nr zDmj(<<17tPy9SseHcj_}Z_KWrkJubQ*+0Da$WwO#e!>Bn71OcNG1HU39DMa?xA?)%Q+LU7t<8~0<4r@1O-|NJ0g;+qw9D^*V0y=N-t*+e zs~Rdv#4{nJoT*r8tR2^$yGQSw9bevk!|Y>|MX@n){!IxKIvDG~U=Wl7b4KIU7PpSO z&1Rh%YTbxkbD-A!%$H_Y?8&{x9Bk|$y+~q;ITtKeRngkQsn!R$S5v!lxgAKQ7?7iW zWeF0qFf`Cmxd895PBwH$vP4P;3t%ot+@d&I0z6Vtwg-P5CI>oa5M`jsQ2xBZW9UsR zMYZq^Q4f^8`H1cAq@TWaK4yB~U!T_9e*f(Jxq%kzBivB7=^Lm3Z7y26)+*t39pYuh ztn5Mwa^sru4(2+X3+hXJnY0c%}{zw9NOQF#NvL zj@VxF5u445*vZe&uAPG>M5`q&G^Y%K6(KSWfHJm1lgE~;;Q^!UKx^6-P8ez;m4;ys zj8970wX^~IXjx`!oJfpMz~6MKp^Xq}(DjhG&VogI4r$;oH=7;i2BT&V$KB;8tlLw~ zfxx5fCrK97(|O?4Oy2O&uAF?2E#!eqnvV>S50<&HTRI#{BYt{DnHxF5WJUC5Qw+BLR5k_pUs@|As`H9(8{di~yypyAg})plg(bFs_i9yb&c%05K&M&uPc;ualt_5mJO< z3EVT_8UzGn0bgr&s&ZXY5FTKH+5kaiN{-m$GGb_Tv|s`nD{zWk4)eym+2Wc>8L@b< zr=!jhZ(+|LDs*rqJ<-K@9Cig_h+NEUrl?ks(dFrOfQc$&-c6!~0YVS3a`W|sGa_ij zInP)WDWfDs{Z9t0XA0Vc5_6uKCjLo=YuIh;B;#^ba7 zKn!HxZ&T??FV65g39$0JI{rXT$W^;LT8-jQo7x&kqAG z@DA)AmBw4BTVm5vXz+jhRe{Xby!8rYju;;%T%&eZ@wN*rvCMzy3V z)9_ov+-tRo&4!ybRIVGXHr;9r^3lg;NZS0Kb_WU^r)u<( zdUcb`J!pQQ%9UsX4J=N{pdVF)hc^qQw5#~}i@m;`Yan1HK$NE)W{#a!(&bl@ivnrv-dw#(}!0&-5s+AjdtTAhixUc!AAwv3>4x^G%(> zMuL1c_@_T(nm2Z4r_totmQF|95wKci5bm-vga$%e6dX;4@r#Udn3xXzf=6--d%{)I zsLM>q(Ph9m2iq5Km>$1u<9>RE zZ#9!UvRiavc8$=2h@dY_Mu5$h9S_AGMih^jEhCv*psiZk1J+;{iH*| ztO1u%n4Ts_Mr;m@Uay$kWOL}#dNDy6#Hf%kXwrMd0YQ(ln${{T@7wKpVr3egtj4x%|~nwJn^c6 z^^<^?TXE(j0HLwibK(G&M6{&%nGE<;0A(v1x_+2aT?(oa>C-{7WJE-~mLjZ_Ut_m+ zIEKdj^ziDj6Mdq*ZQk0NEcx2+AMqES`;_6&y>B`9&G)|L*c-P3=&b;HD}a7df&Llr zbSr>9B)eYM!mR*$D}df8RNo4q`ycSx3ZQ>TbiEZoZw1g>0rXY?{UoC6tpNJ$^6~w~ zZ!3V_3ZS;dMki_a^dw>0L^ct+X|q!0_d#(dZoPH z3ZM^)#`gyW{A!HNn(nOtdMkk53ZT!>=WhkjXOmoS1<+do^za*U|DOq~(i D*Lyjm delta 24820 zcmeI4Ys_s&UB-R8H@1~>DYRUwoV{Bpl+wPP+gdXN3N05C2rbk`f^w-dvt~jSS_r81 zf>kh4OfWP@S<#3A6D29ppiSI~F>Q|m2^zF$Ot^fI#zcfBv`G9wLX5xJYrk*z`_k_D z=$HNF^-zVM!Fmr8i$l2N_($%sLEAzW{~>Ga_HsD`tj_|^y758ZIX zrT4zmU2?%9`#fY3h1bROuDGJh(DUZvL=bv0X&Z4$<~r zXe&eLR2YWwi*Gyl;Ii?MI$J;Ny4St>f@QH?Z-VH$D1{kP34>J8NGqdDLh7*IXY--@ zy4T(E_RE$kI@Q(l8gy@TH@HC;sgf04-^tExj;-}jecfHRU-gzJnZw@dvtRt?Gtb`t z`6d6wE5|R+4qkWmj?cR%`pXxez3=N6p8dCfc<96f&w1)wZ+&0*xqSOem(yz=deXrM z&))fuFK<5eqvJ@#xm)Tz>ZIhktn2CtZH_s}KLsz2Et#KRRzIiswx9 zkaX+}5fM8pjC4Y4A$FF{LSN^c*%*gvKK5LOs)4j#t?FrpxdB>cgKrZ=rPGIV(hO2V;glcBJkglBvllRo(jso6pp( zzxk1;U$itLni%^is0hY%B?KL6Mv(}Pw3w2h`A~h`E57%W^&~qlYSfM&x!~Z6nYOAP z<_DhO&)4xf{@whb2JF@ko`~4`4o>x4`;qBb$1Bf2sOP%%zT*#BhwFI#1qbzNAO8Wu zb@jCi4nD>?Qxc5#y)52%o1)Jt=Dy3mFU}Y_g=^~}PG)t>MF*U88JzBf3^q7rx@1H0 zWe8oN_6Bb zKJ@nUF8tg1H4hy8z}bthzjpll%Vy7ATA6zzLO+zGO)kl6nLE*msEW?Qy47#|*zETC zA`e5Cl;~aG2NMeAQ#&1e(1y~g_4uBb&o3DtdFAX`T9o>edXZH?r#`xdH(E{W#bcu@#1sy>&E|i{_JTBk=?+) z`i`<;25wVYpK{XH7@bsF-Ei~#j``9$Obc-&Tg= zlOMQ6s*U1rOAtyGKMcX?@%o$Rm#&sq&hI%`HkLKxqc_dOqOt6F_iN{JeD@n>FI)=M zxfHzWBvnB4Cdw>D9*m7;5XIWn#s4w8W4<6Xl$6pdPPi+4Yfj25lYQ)*cbjc+gVq$Q z`r_$`k!G6vA&QhlELM9ne*5?5mmKY*vF@}Fv3uRR4?CXM&#t=G9I6{%dEI;8cE$VO zf6ej=!*W79DHR!}QtzltUdbY?wc4mDEW~ZIx6Bs}lv1Pa($%AP%|3K+*X~<#<_cDR z?HhmU)*IjO>esyf)<$UhlTSB}E?)7rYsTNab@r@fV{3l=_BUoPUJQX-h!h)b2`K5E z>w@sEPeUkf$eZXay#&p9a;!Hd_a(%^Xs2wiWerHNx_g-Y@xfv!l88>hg`kYe+NI7% z>wL+k2IzFHB-xh^mW_4I_@&p(eqz~LcS^Hg`tjLQ7oE~%wRT+`I^z@{-%AtI&~>_Z zLTol7T`a109y>&$nEUS7G?+}4SfuTzG+QP@Hc%U~k|5F`fuk`*1HOtrWA-7G-=k6)p8i#ljcnUiB%(K(m_)$C=%Ld^@{Zmvb^- z8ZjA9KE3<6{BV?Ai^i^M!MXCvb%`O|06QF?f9eUHO)<#5Cm74 z9mQ6~OjXm)6k6fB5}j^pA*Rwvz`r7*vyt8cbW@kJPo!oZ@4kpKI^|pIE5@IG$L#gA zwVfZ~*HQW+btu+5bI}f+@2!vmEKp3;B%3sYj@m$HR#b61Tk2B9AYI5h(|Hv|Bo-Qb zF0r18ol9#YlaaY~RoN7ersi#}#ca(w4*0!ep zM&S!m_h5P-jT01bC5^Dr*)9x1PHkZkT$E@8CBXDaJ`-fEXWnqA`~%=n21=5Jg!KBBA1_p)W?^QquKT^o!u9SB(S z*@m29X|*XQOU<1F&}6n;IyK+-VaP75lN79clywzu#;#bN$-I~P5&M9)LI3Qd)!RU< zweS?Ijdg3*#ijHy#VYt@Nv#|Bg-!Z6j#HgoFKFl1{DH{_({_H4=)DMqRq zkVmDw|1L51+WhwZ)f=ampP-x=QZ?sw+*9_M4M`j^dx^5#jjgo*Td?wbA1!Cj4;Jk{qK!JAKJaO+@?bF#6u33JkAG9X|WtcFPj zuc44Z3wlE_L}NYzI1=jDlL2)9lhsLu`G-c-x=PZeHyEgw6e5@E5bEoFOfHQwTIJQdAm^*n_zfBpUdU$<(->A==c75CKoafDNrVR3vxqgq&^OXvlJS6){7BzdCBT$ zRC!LKS+wK@tM{1M0+33PlhuKgH;SzcBk0P#Msj3q04Mp}FAEffSdeE#c@$ z>#YQBe!xR#XL4zFudSvHt@HCo9++MA3b=rAhuS_tX66o#)4NRZ69&n_p&v&@3)HC> zr5CH46NqNfka1TRe|GjUNZ{_vJ4FI_2X4?O6S8%X#|hcm(Yi@4Z3p#5f6yg*_U%Fy zOHB%(%OZo?0H9@t{b`^K9HeHd0l&EnHxVk)HEftz;Ib#kdj*tKKvT!xN$sK+G1Gks zpEY@UX3fGcA3Sg8!sEe%aKP58Q(FX+6;(Bq5WzI8S7s=w6SWQ z!t|qGhWuG_j*c*h;H(iq;^EKe9*2^hArG{0@i!06K5G$D@o( zI;dcVArPIkA*MYgIJ=%Of@o^B4uo}b0$Uqj5y!j#dv@cp@fDjuxb{1<3zr2YLU)#; z1kp-}HK?!##HLF(DDO8+WI0e>Xq&w!cgai&0GxOLy`w1#X^upi&`Uyy_n>M39w;(O zcBmu(L}b)(0`9d|o?^PS@RX-#zBhaF!lThbY#b$0agGBRhHOk>dl)s~FB5L=LQhpumMm(DcaAR>j z?WVQvR&#vt)AK8?V-(eG(Z-ZRq-@g$nWIACW5=9P^pcx$D7)@R@ZCLQ+cd-0U7gIP zR*;^0diTLSriiw7G&Ms)DbXLmryd~!E)Pus)EG(maY}^^T?TL|lFWCmK&n&E69zqy282ICO;y3OSHPdm5Q5xmeZ@NWD(c($5o=LyN07P~)TtJ^KAyjk@#BG9rJqt~pNSoR<`8}%?zsEOwz&nUVr027TE%>WLCxYPS8 z#ZiAI8D`>8k@8YIHe$av4hls(<&0fFINIr!$nnX8GmQ^eQ>ez$q`ctf2S|J$J9W9#1SAi*7T)+UyQ{+%8+WS4-AFEsI&FDia1h0HkVB2PTOr zvNoCw4SAOxV)gXTG77t^bxkK*m~MpW$)_8q_Slf3wX2UG&R?=1Jxs3>av7sNR0U0$ zWKzV;XkhYmgtM7hV4gw=;9RJu-ZKnFj)N-Oh=Q@kJEz;7!6TIbJe7AqU1DIUD2l?4 zh2oX^@d0_PkfOBj{E7|K-2D-Hiq+chnD_Ht)hB@1X{2DdiL?ot1nG9<pL01fK?X6_zbW(J%! zvH_z8ODl!kE5IS@H+_22E2cSMV{JX*O1FF6I^7iGhktec93lRk7rl;Td3K4_%417H&q2}&s$8!T#uV4{h4w39Alg6aoo zRVdq-O!%E^=LwSmB6hC(SbIA|HX{?0ZAs#n0)i!!5Ii~_)Ifr-wd0NA31L;>pVDK9 za|wG=sxDJTu^3-BOl_(fT}4R=e3B75VSoTjQZ)BOH39THq%*i(ow9FbAD>V?7Tf&(gUYUz}9V4+>#pr-cL z_=XLJS+_S-AI0Zkt0Mbq#q6n@T42s(MqSNVb=IrZ(ItA)c-)ZQm7Lk_7>m5xI45Zh3?Z)h~XskPp85+xOy22V#(rS^9QO}TN(TZ&Z z(_<}T4CE3Q(|wK;-Tu+yWt zEnl{->14v8u9- z(9U)1h+2%-pPOHVwV!{w(1BqwcvKr$2ry2#rlLau3Cc7NIzx-rB|DHIW-%N2*8%iq z%m4`N*2HN_H<33x(46^~300&Ay=7F(#4MW*j{uS62^qe%_&P=x^xd6{Kg8T`{O9ZE zD3(UxJVGsjJNF%~6vq76Xom#X#&|qs8e3*W1J?BnT%m0EB(i0m=`v0oluorUHfEIZ!tyZATji2YT@ot`5g8^}Y|Z{bRy zvBYy$9cNHty!sKNBH}ra7riWQGw+69c{>4Hmv=G&8)17&PHCK{IZnXF)>2Kt7mgqP z%KSBZZ}r|=z4un{w*8;V!o9b8%hNqEqrJC!@2%c4zMt%IdvEpn-!kmI)u%k&dvEpL zTfO&IHypW>XfbJjdvEpkxx4q?>dCZz%>4G=>bt=@a9t9Sjl zL+-uRdvEpLTm5}L_>-E=-dnx*R&QCl_ulHgw|eibUhTcrkL&5)d#g`5()Zr#y|;Sr ztv+pjKjkLdd#fMU*S+^v@4eM~Z}r|=z4unn1U}Q9j_$p;`uiN?dvEpLTfO&Ium6v^ R|DWFK)ffKo2Y>M?{|C)O;DrDH diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index f1e07f21477401d16becdd03ce547af4a8974618..44d51d18772a17cc9f3713ed4724e2fd56a00c49 100644 GIT binary patch delta 62 zcmca3c}H?XBBNoNaY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ RS*n?-aiW>&=1GiR+yH3f5-R`z delta 62 zcmca3c}H?XBBNnOg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay QP$<#Rz%+65Bt|c80A;WeIsgCw diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 65cfa8290e2696231db95ffe04ea4c13d51e4dec..bcb5309f50a20f485583df90383d14ec153d61b6 100644 GIT binary patch delta 68 zcmX@Hg#E-4_6_?u4bzNM$}BU=jr0wYEzMGsQjN{bEtAd64bzg-j4Tb)j10^y&5crw Y3@pr2%}k9G%}kr$b8dgn$ryP802bdCJpcdz delta 68 zcmX@Hg#E-4_6_?u4Kpf?^Gq@=^7WIAlTFhMO)QPgl9J65lMPHPOpQz}4J}QKj8jch XjSYc9iG~KIiOughx4-9Pj64AV6X+I9 diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index eec11033c9376e55ddd4063298e1e752720c2449..a449f1bed43194524fefe1cceef2abc56976938b 100644 GIT binary patch delta 447 zcmeykh4bSU&J8;_4bzNM$}BU=jr0wYEzMGsQjN{bEtAd64bzg-j4Tb)j10^y&5crw z3@pr2%}k9G%}h7Hf|XY($f>G z86_qkPVpvAp>x{h>5j)36(^rf=bAkIui#|ebce|`=@Q(@8Hsu6sWI^dnR$~kWF}8c zm!A9~U1ajbbQz|Y+R1^J#3t{*z&_bJBa%Gr@{@OGHcwaF&M3#MuA?wHA=}@gEVDQ< zKEEhFH?g=RwJ15UCs$nPHJ9!K}LRF>g4m;Qj=M-g&{uI T&NicgvCV!t+x>DFmEQpXW5~R?o3gd z9F!tC`9z8v@rpgt&P|^9SA6n?3pKP5GNn2~=C-2T|hIo5=wiOq|D`20T&6W~PPc13Q%uA0iE=Vj&jZaQ2 oN&&iiazeJoWQlB%$qG4QlfPz*PS(jbrObq8|D5gqIgCp0085s;lmGw# diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index fd19b72f7d9e3f574b5c3855aa87023df457592b..71d4363696aac708fbadf4454604c157e1bfe2d0 100644 GIT binary patch delta 80 zcmbR9NqEjD;SGB@4bzNM$}BU=jr0wYEzMGsQjN{bEtAd64bzg-j4Tb)j10^y&5crw h3@pr2%}k9G%}kr$a<;$aWCUU+AZFhFmXk&QJpfie8xQ~h delta 80 zcmbR9NqEjD;SGB@4Kpf?^Gq@=^7WIAlTFhMO)QPgl9J65lMPHPOpQz}4J}QKj8jch gjSYc9iG~KIiOp|0+uw3B0x=U1GjD&($)f)r08{)M9{>OV diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 02db58af82393b4262fed53566cd2cae5506a444..31b01927308191810572801c92fe2a6eef2ae236 100644 GIT binary patch delta 4015 zcmeHKJ%}Au6lUfvi>s>!OoD}&$)bf2vgh3YV<}n)35lf%A>Lmiq9W>Ag@ASnf^0FQ z5CwyUvap)srAjAQrxFV>2!h}vHX8!5@a)cek|)dFT6o=?H}~H8zVn^$d^0kw|=XxICjf3^=FLm?eYiati=vI#5*l6OKUFLl&YP7qRXCODUw6B!|pgOPFaz5fTX(i6X0Li+3s&M-DAz zkpcJR)g`YLx2QBidgVfJC{uLG8gxGE;0M8&*tbm$$H1!!gL$2oQUltP!oL3A`nwm_ zE?+*;traDM$|XT@QjuUaBAdubD+G8p(^S5iZ3n=IZnmE^R}R+9t?^S|KKts$(`R0M z>D0wq>&~yP)otyM(kl2ts$jCW`DoS!zaCdRvMM1%Wn3f=W zKyIHT1$jlDTM`@(9z)#J%Bn%LIaiX-$=Ym#X0-u)kj8M!lX7hOVuzXyuB>4gTv>%M zbLC10EU84{4H{G!h`bO9oeaV7*vT*@1s-flhIUExQyG z@xbO$qe=OI0e?!&XnhdKpp?}-5GAXnBcP<&hL2!x9N+1@V-S^&RcafdO@)Z}}y>EWL?>pz4Z#Fj; zHa8a5zdj@{y|1srWxTc=bu>kS*EU2;Q2-icy!4=SHd#ylL{b=9eem@0TMrJc+~~Xs z*(O9~l7k!s@-*kb>Bx^xZuQfzKCBM9C2s!ySmz8F8BMlEJ21fzFc>6}NJoz3wR~wqASwV`DgcscoCpzrLIAe<|(Dd%myi z%(~n3=dZNSO&7V_45!{|S43w(N137#(JLTTh)C#yCTP~m0S@x-_Uc?GG!;q#qKyDf zW}l*qsB*|GtSQj*uxI-FPmGQYXMSkkYdR&2p%N(zDZrr(#;Cw@1b`%B*4q z)|A1EB(S(Kr}cl@x&DiX?Nh_qBcmHlM+id4qHAFcrs-@2 zNdMXGR&-SyOic9an{8M$Itb|n7p8zNmRSXdtZD;XCao%?Fj5E%BzWoqglt=`*jq zdg@}Wb@z_0$+mRiMAwhzM@PE~t_i${v}RvIb#n z$|{0grp$>HyCoL_p^#(>HV8MRWZ1DT3U**buo)-_^0GK?@)ETl+pFJa%0(>J z5$TjOdEgT)s3Op@3`(QPV$5sm$%Ao>d$$T>>dBY-FP|M9?-Dns*Gjm&bt;5{(H0*` zSYfS)oF)ZJ$wg}w$OxXRAV>po7G>7N7>j;fuzl=0gVC|m0R<^AN(b=h4f>L`;%&!% z9(Wczvw~yHt_p+Modb(bT7S}+UDm{eDM|8dOagDCmkG2>!DMF(XXS)vE#kI$4(!d3 z*_#K~F6^~irGxj4t|`an?A!U#v988z+nfEuizC;c`>lPw8d(z^X0bVo&8?f!#GIA* vp2g;)+r}(5r+3+d<7#ryRP$>4e!eeQX0f^B%vo&iz5)Ngu{m&T{_*6$X}z%R diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 6a9f06a7a08af9e47aa60fc68154ad36e76f3b99..1404e0e6ec2c33805070f732f6d01fbb81d10f29 100644 GIT binary patch delta 76 zcmexsaadwQAfsWLaY~tGM!Au`L9(S;YEr7PnYm@MnYm$Fa+;B)VVaSFnWec=ijjeZ RS*n?-aiW>&<|f92TmV^~5={UA delta 62 zcmX>saadwQAfsVMg>jxqrbWJfvT?F$nxToMu~|~GSz@w*iG`_=simQ%iIH)tX{xay QP$<#Rz%+4l6XQWH09I=fTmS$7 diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 70a50065fe5f8526ef6684f7c072cb76012d46d3..4c887499a23a9db331a7816f64fe1ab13b10bbfa 100644 GIT binary patch delta 72 zcmeyif#cf-jtzS_4bzNM$}BU=jr0wYEzMGsQjN{bEtAd64bzg-j4Tb)j10^y&5crw c3@pr2%}k9G%}kr$a<;$aWZeFilc|#r0FmJrq5uE@ delta 72 zcmeyif#cf-jtzS_4Kpf?^Gq@=^7WIAlTFhMO)QPgl9J65lMPHPOpQz}4J}QKj8jch bjSYc9iG~KIiOp|0+uw3BZhyX1n-h& zoC38Jf+NN<7j5oyk^n7MMp0k0>d_N~Gbp2dRE8@7OjsMd;UqFEq!fvT_N~R&i2C10 z^cj_-_bf9>2105QS+R4ZyWmH&j)Egg!aKHsbYN0qboAI`p z;pC{Yp0X@rgqVo&K7m!9$wYt=+rm3g;0x$r^VVgwgs?KygODOBAAne4NleUJU>ve| zLN@b(j|lIMfb-(_93th@H+a=>WXiXq8#Q<^#91v24J=AdlgpNDu?wf@l=EB#ois?P zv{XbJk|Yl)df7H%8!4BPbCgO6tzb#za`aod62!#FZP*}HhT$)%vgsS7dWy&Q(5V{d zq<&`T_GD#Yp^7UyBny!TtvH7yz+@LQ8=j;$q7}BySe6F8)!SQKUqn64XZO(pS}ZfK zk^!8*G(J_oIC^eusw~UfyUR4JOje7vtEeBBGR*qCD_@LF9ro69Z#~;@&fa=%{nh-( N^_*xPeSm)S{Q8XcGyB&_}DFU9|Bp=mPy4Mz57%WWCEaZs$BR^Zd>^&&opE%0k=XVmrTdT~4V< zJ3SC&z|0j%?Spm!ltqEWNeP)SNnRZ}4(OJ?v_Cr6!w+1ZIRr2W&{q%uR|cUUc=Mqf z`)h5B|Ju!m{=76f)BO0nXzmV|J2xsfABQ&^7bfG#hJ~f~@!3$}xU?WVNglXTJo`x5 zaj!BuNH&?~{U^6;MN9op2j>gYh{pN=Tqu(4z}Dk#dfxqN7?w+f}#_N z$SRIjd6^wp6A@EZmWYskYWo7a#|j88$`CAZ?-e)7b7>SLZBqmXS^dzK9}??+o!C28 z@8i=^cBbCJ+X=S6oE~M{$~za?j)HPEW|6hCQ7Gd*@nj@Liy;XxS*)Y$mEJ|GkhG{a z#HZ*&mI4Lo3Id!iiz&9NEKacPtt+S5Jlh*QkVB$uQdAzD4TKm#2C$H0xj4+aT8FQ( z7ZqEbi*M5mikkm*xyIIC7-O8$=#+P;l&R)tT_T>f6i&)))?pRWXs?ads0Ar$D`}Km zM+jM1LF8ApJ?pr7BS?=~${-~wD-7izcv7-@9KGh{t6|pp3#``1Pp~=%YhWGa-5cy+ zzd$*9WZ>#VV|KQ$XxPevvlKZYD3iFesoK3{va3b}@EdDgE>>AP%ky)rqxIk>n`LwV zo}rYD%E0kcV;4qG4j&u2P`A^+t84lw8xwuy@>$kh)Dl+xd08Kj&7f`ubu*~{JE-HW JJ-68BuJ0DfS^)q6 diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index f52c097e4ecca974842dd45b3d8b8228d60fd02b..a939cdf69341cef52674d327ee799ea9c471f417 100644 GIT binary patch delta 64 zcmbQ&&N#1~af213VVZGDnPo<~k-kB)rCDlHsgpk%5_|xlxLd TfrVMBnW=H2nd#(a^v&adS4Ku@eAxToP^o diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index b46d196aacb856571d90362587018057485d3fc6..5b87fc9ba3f5736e1228ac70d2a5cd56239ce70c 100644 GIT binary patch delta 68 zcmdmUm~GEtwhdc24bzNM$}BU=jr0wYEzMGsQjN{bEtAd64bzg-j4Tb)j10^y&5crw Y3@pr2%}k9G%}kr0a&CXh$#{J_03GHQkN^Mx delta 68 zcmdmUm~GEtwhdc24Kpf?^Gq@=^7WIAlTFhMO)QPgl9J65lMPHPOpQz}4J}QKj8jch XjSYc9iG~KIiOo+rw?E}%ygnTO8t)dL diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 0925f501f26eca8302b0643506e84d0b91adffe7..d260aa901776d74678807d9904d42e36409173b9 100644 GIT binary patch delta 7607 zcmeHM&5vYN6;EL!(*i0o)1ywmsy7|b5S!_H&pr1mM#dOjkT5DNh8RMI`x)2(1|nfG z5M*I+#Sp`DWi&C7sEKT}jEMx|-pIzxW)|#hqlqNCHU6sVHB=MR_aCTEPA{rYzw^$$ z=l5~C4{tnwc;opuf4?oO%HQ*kKSu{5c~fFh#`nBL;uK<$^9jVQh}#giBR+}v6yno}I}o2i+=)1iID^qiyWgKRvW8bL@9xb1`@rtI zr+VecJ5_=*cxctZ8I#!vS+(*NjV~YA%$i@jy!*3@Gid^Thf0y2vzK1gV5%}o$r`Pa zi)X#uOv0ni%ufxw=YP~|*2NhugieWB2$zK+YcvOIgAn7(HM15^{M~-{&+|PAGF5w_ zV+l-A1zk&Go3nIErx54wJl#FH)q6+9gu*Tq!CE<2v??*??1aNn<@w~t-A^VxQB6sU zoMOsMF8EShlGZq1(RPgko_6QFf3CZZ+(zYLcK`HJv+(fl<<9jUU(7@-yV;1rJ2b-RTG@95pN+m=9-9vtwLwz zc>ezN?y0SriCHV9a@CwzCHA>`r3C|}g^M5FpG;5BfBL8HSCbhTkEwB45?TCQVhU@l z#u(%Q)~nQindvVlt=hwPuXM6m`Y)F|FA77sGnjUCU$8DOy}^#?2)Tf+9O&k#&eTmtux%f9_7t z`)_uSZ1qKvCGDBKkZehYsH)CdR0BlSYDesW1cd@mMMssB1^{fXgv^pn#3Zd_uTfns zu{UcJ9^SdqiPshVqupauo0RbYgp7eQuSl!yd+ zP$8q|5q)n=rd+{2dVy*nwfX?AiI$aA&>KAP)mOT=Cato|N$s0ekD&KhuX6}^M^#N0 z?2>kPM*t;c0AFHIM;2l24N0}gw5+uaRck^ov1qA_a3A!sV39<~z_?fNCWynULiojG z1O*&`9a*GRdBq~l!pl~Gx}D)~JJWOfv<5rrQVfu6=_`7x6+}jok~LPC9FiG(Yl`17 z++Cf#C{Dg9c^pcu89koeIy?Yx`1fnwPTy*7iMzX(xC_DN01{17MvhUr*7i5?uTwaM@<9f3GkU9W4L%3aX@LE~H z5Q2dKP)Z;axDhV-sGSq*YFf3^EPMpHTZXUt>AfVu4HrDG0S~Os4)#pIDnrZ3;e7)L z5Qb1iIFZGLJ+(DG*(eSmyfZ7gyL8_|?iyEi97l~QrQ_MH^ZQWlTCJ_Y4y}t6GF%D; z_O3?Q!*MRMjJ!S#yoi7aw8G#lm5OStFCh zCqbq%tl7*~<(18B6<*rR8LrMcn~ewgbIq`iMTQ!+W>JFG>!J;|&ql(;5j0+?=nTey ziUvz~#qyX)Sc6ZX{UW%+u<^l|x+8R!>R=3*i#ZIa2b8C5$HA5h5~lbMD=r9u)r7?{Kb zRg;aJsx37|N+a}Ig;&sP);)sW+2QYxOz#lVUC`^mgUuivorHknvOMaO2`X0ML7uP^ z;630AYky+8BOX9Ji1;w#A;iOoM-U%DJc>AlIE~mwoIyN> z_$cCIh_my9lRJ-pvFGTO$+ASrfs)99yl{n+4@HTb)A009cYe@bb@R&3>G^-2+Mp?`p}W2(3})a>v%HId=TTr5X9GOLZoapj>LOl{{xM`%NAcV73I^(m8 zMvJg2VrD}Wrnp)iJIc~Iyns@^RvU?|8GihF_t^Z+uT6hBnJJkwv13(3p`?PNSW^WS z1Sj11@a|-KYW`22{u)b<&prJ4S||HPYCD#(Km6#y>F0*M=ey6$l;x<|OP7F~NF1!e zMT$~Q00_hI@>9s)Kh-_E)r+WobRlL^iHwOM23Z7$hz}KReYp90cV<~uUy>#P{CF&) zs<6FhU+`$y+oE8T_ji(8;#rO&yBq?lxkUVup|DhK8e z)fM%Miq-Oyo*(v$~kM}vKDzoy<+gcXn;mWM+M-vq;vH?dM{C_TBlwk@sfJ8 zM&hv$-)kF;5GFa&ma;d&s$yb61C3fcrIs(*d&|t#p@rx`8fQeqanfn$y{I_mI!Lpu zIRO(sf|sR$w894f)K!t0Q&@qtm3ax$X5vHQJ>M%CC>wH42M?C8Pc_?;g_p`^(CZMC z)hEu$3s0UH&t^&#l@z)iDd-JAx#}W)^->EfBB5qd%)zitT-j!WK4j&x5;U7*6Av$6 z?ez56q-ohdz_sn+o$cw_JzgVQRbCc|VhW;A$kn-+qRIGyL*>Y;Cu#}W_(Z4H+17fe zd-&79=h4-zn>%D%-zsjrnDZAFbhEY;&PEqV7S+sX{EngMPH7F>u)2p?7E($JSL2~6 zB-x`md1Xbd>;TL~>mByL-EGew`uOx)lUaepXk&~Oz7nMfNTa)n=uHN)_3-ZP4y}42 zd94!+zx~AYnZ9uVH=O(A^z*agt**=xLgnzPA(-H@bs<5xvi0*@FLlsu4lY2ijY(|C z!!F2bQvsbE$tonR@ovW6NJzSs*`sjwPT2tImf9qUW?B}q(7e8pT#ww7vsUhrdY|5v zLR?s?g3q-iBhV5cdp0@85g&*Gr@-)EOVM459_$qKBG^)sB4M@1T4JFBYn0{GT3vl0 zQXa-Fj`&Ypf@fC*sgOmiF6bo-`$qP<>?h5{hoX1i@C85ptkfjcMPApw40AHxZG!Va z$7GkRwyvNK?W+U|7lx~}jN@H4UVeP~y~(S`KVCdauLfrCS>3uokg*^B{YG~hp6=M% z%sLy5Wr`u-?O@q*@hNLKE|SHu$mUQuw1|*Bh9e09e=|;N>1&BjCM7k~QvGH@ISW6* z_*X?<+7UyfToeqSs^tJSyhp-D;-&9weDxQKw|FQxy7_+c$)lFbgIHgFH3vQQ<7Xt0k1_>?07;v|n z{0eOm9AlBNr@@A3PcWUO$P9~$>G6$B!&<~wd~{{LpaIcB~;-2Y$WPM^I1 diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 606ac7e51386384d6a647be6130f466f321698d5..563f2272f39779e926bfa8d1501da4f292acec01 100644 GIT binary patch delta 1554 zcmeBt!nOPf*M<|EhH1trWtJJ`M*0THmS(9*sm5mJmdR%3hH1%ZMwW(YMh0e<=0+(- z1{P+iW~Ro8W~Q5ea{e}zw_s&puqh}?wd2y&H8Llse&b&h8RtD9`-c~;NdP|t!0I}H^yKq@B}CYbAUaoOmD{5>Uu zJ$6clV8lobh{;J_B~1OSlNGk>O`a1V0FDY!v}Y2C^8CPa6h-wqqN3R@B!vx<946-n zhEDz$(nxAtuL<>^zF`+5`|$STI!P5^My5s(4`K)D|XKOs+v(!;A)-%;JG}JRRv4F6R z%=HY-jdT?B^zg>XpsdHTj{J zJviV&ahr)hUKRaAC&##jPoChTL{a>%lP3_jlehb&utC&JR`9=0VvHUL^`E{zm5F_r zdTyPhJTQ||kUbs44^tF<6lKq%$*=u+NQ}^rF6N3;GT39MWC%u#K)-K3mf$*n@{WIU UoKq8-85uyJ)rfJc5!2U=0G@hxb^rhX diff --git a/master/_modules/cleanlab/internal/neighbor/knn_graph.html b/master/_modules/cleanlab/internal/neighbor/knn_graph.html index 6d1e3d3bc..c60674765 100644 --- a/master/_modules/cleanlab/internal/neighbor/knn_graph.html +++ b/master/_modules/cleanlab/internal/neighbor/knn_graph.html @@ -595,7 +595,6 @@

Source code for cleanlab.internal.neighbor.knn_graph

 from __future__ import annotations
 from typing import List, Optional, TYPE_CHECKING, Tuple
-import warnings
 
 import numpy as np
 from scipy.sparse import csr_matrix
@@ -1085,47 +1084,11 @@ 

Source code for cleanlab.internal.neighbor.knn_graph

return sorted_first_k_duplicate_inds -def _warn_missing_exact_duplicates(indices: np.ndarray, exact_duplicate_sets: list) -> None: - """Go through all sets of points in the sets of exact duplicates, and ensure that none are missing in the indices array. - - Raises - ------ - UserWarning : - A warning may be raised if there were some slots available for an exact duplicate that were missed. - This may happen if the number of exact duplicates in the existing KNN graph is lower than k, - but the set of exact duplicates is larger than what was included in the KNN graph. - """ - # The number of neighbors to consider - k = indices.shape[0] - - points_missing_exact_duplicates = [] - for duplicate_inds in exact_duplicate_sets: - for i in duplicate_inds: - inds = indices[i] - - same_point_indices = np.setdiff1d(duplicate_inds, i) - - # Figure out how many were already included in the original knn graph - pre_existing_same_point_indices = np.intersect1d(same_point_indices, inds) - - # Optionally warn the user if there are more identical points than slots available in the existing knn graph - same_point_indices_set_is_larger = len(pre_existing_same_point_indices) < len( - same_point_indices - ) - slots_larger = len(pre_existing_same_point_indices) < k - if same_point_indices_set_is_larger and slots_larger: - points_missing_exact_duplicates.append(i) - - if points_missing_exact_duplicates: - warnings.warn("There were some slots available for an exact duplicate that were missed.") - -
[docs]def correct_knn_distances_and_indices( features: FeatureArray, distances: np.ndarray, indices: np.ndarray, exact_duplicate_sets: Optional[List[np.ndarray]] = None, - enable_warning: bool = False, ) -> tuple[np.ndarray, np.ndarray]: """ Corrects the distances and indices of a k-nearest neighbors (KNN) graph @@ -1141,8 +1104,6 @@

Source code for cleanlab.internal.neighbor.knn_graph

The indices of the k nearest neighbors for each point. exact_duplicate_sets: A list of numpy arrays, where each array contains the indices of exact duplicates in the feature array. If not provided, it will be computed from the feature array. - enable_warning : - Whether to enable warning messages if any row underestimates the number of exact duplicates. Returns ------- @@ -1151,15 +1112,6 @@

Source code for cleanlab.internal.neighbor.knn_graph

corrected_indices : The corrected indices of the k nearest neighbors for each point. Exact duplicates are ensured to be included in the k nearest neighbors, unless the number of exact duplicates exceeds k. - Raises - ------ - UserWarning : - A warning may be raised if there were some slots available for an exact duplicate that were missed. - This may happen if the number of exact duplicates in the existing KNN graph is lower than k, - but the set of exact duplicates is larger than what was included in the KNN graph. - This warning may be disabled by setting enable_warning=False. - - Example ------- >>> import numpy as np @@ -1189,20 +1141,11 @@

Source code for cleanlab.internal.neighbor.knn_graph

array([[0.], [0.], [1.41421356]]) >>> corrected_indices array([[1], [0], [0]]) - - - Clearly, the first point misses its exact duplicate in the KNN graph. To raise a warning for such cases, set enable_warning=True. - - >>> corrected_distances, corrected_indices = correct_knn_distances_and_indices(X, distances, indices, enable_warning=True) - UserWarning: There were some slots available for an exact duplicate that were missed. """ if exact_duplicate_sets is None: exact_duplicate_sets = _compute_exact_duplicate_sets(features) - if enable_warning: - _warn_missing_exact_duplicates(indices, exact_duplicate_sets) - # Prepare the output arrays corrected_distances = np.copy(distances) corrected_indices = np.copy(indices) diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index 342c09192..603f34f5f 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index 9988a7dde..51aeae808 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index 92880598a..c365ffb16 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/data_monitor.ipynb b/master/_sources/tutorials/datalab/data_monitor.ipynb index 5cde8f1e8..0ce8c1c80 100644 --- a/master/_sources/tutorials/datalab/data_monitor.ipynb +++ b/master/_sources/tutorials/datalab/data_monitor.ipynb @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 49ddb70d1..fe2f723fc 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 54b13fc15..3ff0b13c1 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 5ce0fefcd..4c4d23729 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index ce84077a6..d2f8ba229 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 4b6e07cda..1b208f7cb 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 0f9e81e4e..b2cabe536 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 66c071254..6ed37b0aa 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 39cfd67eb..ca55af704 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 825b1365a..d3385f068 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 5cf24eb78..a3a353f89 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index f9cb78905..0d5d692da 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 31331c392..05b9d7e16 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index c5aa95ecf..477a7e275 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/cleanlab/internal/neighbor/knn_graph.html b/master/cleanlab/internal/neighbor/knn_graph.html index 390d8eb5b..4f48703c8 100644 --- a/master/cleanlab/internal/neighbor/knn_graph.html +++ b/master/cleanlab/internal/neighbor/knn_graph.html @@ -876,7 +876,7 @@
-cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices(features, distances, indices, exact_duplicate_sets=None, enable_warning=False)[source]#
+cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices(features, distances, indices, exact_duplicate_sets=None)[source]#

Corrects the distances and indices of a k-nearest neighbors (KNN) graph based on all exact duplicates detected in the feature array.

@@ -886,7 +886,6 @@
  • distances (ndarray) – The distances between each point and its k nearest neighbors.

  • indices (ndarray) – The indices of the k nearest neighbors for each point.

  • exact_duplicate_sets (Optional[List[ndarray]]) – A list of numpy arrays, where each array contains the indices of exact duplicates in the feature array. If not provided, it will be computed from the feature array.

  • -
  • enable_warning (bool) – Whether to enable warning messages if any row underestimates the number of exact duplicates.

  • Return type:
    @@ -899,12 +898,6 @@

    -
    Raises:
    -

    UserWarning : – A warning may be raised if there were some slots available for an exact duplicate that were missed. - This may happen if the number of exact duplicates in the existing KNN graph is lower than k, - but the set of exact duplicates is larger than what was included in the KNN graph. - This warning may be disabled by setting enable_warning=False.

    -

    Example

    >>> import numpy as np
    @@ -936,11 +929,6 @@
     array([[1], [0], [0]])
     
    -

    Clearly, the first point misses its exact duplicate in the KNN graph. To raise a warning for such cases, set enable_warning=True.

    -
    >>> corrected_distances, corrected_indices = correct_knn_distances_and_indices(X, distances, indices, enable_warning=True)
    -UserWarning: There were some slots available for an exact duplicate that were missed.
    -
    -
    diff --git a/master/searchindex.js b/master/searchindex.js index de3de28cf..2601923a6 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 91, 98, 100, 101], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 91, 98, 100, 101], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 91, 98, 100, 101], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 54, 55, 56, 68, 92, 96, 107], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 90, 96, 104], "benchmark": [1, 37, 83, 84, 89, 90, 91, 98, 100, 101], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 51, 53, 54, 56, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "core": [1, 40, 43, 75, 77], "algorithm": [1, 2, 8, 10, 31, 38, 42, 53, 54, 56, 61, 70, 79, 81, 83, 97, 98, 100, 107], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 51, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "introduc": [1, 88, 97, 98], "synthet": [1, 100, 101, 106], "nois": [1, 2, 3, 36, 43, 46, 56, 62, 89, 90, 91, 96, 100, 105], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 90, 99, 103, 104], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 56, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 91, 99, 100, 103, 104, 105, 106], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 90, 94, 99, 100, 104], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 51, 52, 53, 59, 63, 66, 69, 78, 82, 92, 94, 95, 98, 102, 107], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 51, 53, 54, 56, 59, 61, 66, 69, 70, 71, 83, 92, 97, 101], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 51, 53, 54, 56, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 51, 53, 56, 57, 70, 71, 73, 78, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 51, 53, 54, 56, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "matric": [1, 3, 46, 97], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 52, 53, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "learn": [1, 2, 3, 4, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 53, 56, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 90, 92, 94, 95, 96, 100, 101, 105], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 89, 91, 97, 98, 100, 101, 102, 105, 106, 107], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 56, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 91, 94, 95, 97, 99, 100], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 51, 56, 57, 63, 66, 68, 69, 70, 71, 94, 102, 103], "trace": [1, 89, 90, 91, 98, 100, 101], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 51, 52, 53, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 51, 52, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 106, 107], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 106, 107], "noise_matrix": [1, 2, 3, 10, 46, 56, 89, 90, 91, 98, 100, 101], "py": [1, 3, 33, 37, 38, 43, 46, 48, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 90, 98, 100], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 51, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103, 105, 106], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 51, 52, 54, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 107], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 54, 56, 61, 69, 70, 71, 75, 94, 95, 98, 100, 107], "true_label": [1, 2, 3, 36, 46, 56, 98, 100], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 91, 97, 98, 100, 101, 102, 103, 106, 107], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 57, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 97, 98, 100, 101, 105], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 54, 68, 73, 87, 91, 95, 97, 98, 100, 101, 102, 103, 105], "achiev": [1, 2, 37, 38, 41, 73, 97, 100, 107], "better": [1, 5, 10, 43, 52, 61, 63, 71, 73, 74, 83, 87, 88, 91, 94, 95, 97, 98, 101, 102, 103, 107], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 51, 52, 56, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 51, 61, 71, 73, 86, 88, 89, 90, 91, 92, 94, 97, 98, 100, 101, 103], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 50, 51, 52, 69, 73, 83, 86, 87, 90, 97, 98, 100, 101, 104, 105], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 54, 61, 62, 69, 70, 71, 97, 100, 103], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 91, 92, 95], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 107], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 53, 54, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 96, 97, 98, 101, 102, 103, 106, 107], "condit": [1, 2, 3, 46, 52, 55, 56, 71, 92, 98, 107], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 98, 99, 101, 102, 103, 106, 107], "k_": [1, 2, 3, 46, 56], "k_y": [1, 2, 3, 46, 56], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 50, 51, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106], "fraction": [1, 2, 3, 10, 20, 38, 46, 56, 61, 73, 94, 97], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 100, 101, 102, 104, 105, 106, 107], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 55, 56, 63, 71, 73, 74, 86, 88, 89, 90, 91, 92, 94, 95, 97, 100, 102, 104, 106, 107], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 107], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 51, 56, 57, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 106, 107], "assum": [1, 2, 3, 12, 43, 46, 51, 55, 56, 71, 75, 78, 97, 101, 103, 105, 106, 107], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 52, 55, 56, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 56, 62, 63, 65, 68, 73, 89, 90, 91, 92, 97, 98, 100, 101, 106, 107], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 104], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 51, 55, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "return": [1, 2, 3, 4, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 101, 102, 105, 106, 107], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 51, 55, 56, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 51, 56, 61, 62, 63, 65, 66, 82, 87, 88, 91, 92, 94, 95, 96, 97, 98, 105, 107], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 51, 52, 54, 55, 56, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 106, 107], "perfect": [1, 2, 36, 73, 98, 102], "exactli": [1, 3, 10, 36, 37, 41, 43, 64, 70, 90, 91, 92, 94, 95, 98], "yield": [1, 37, 41, 89], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 51, 52, 53, 54, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 54, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 56, 57, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "loop": [1, 3, 46, 56, 92, 102], "implement": [1, 2, 3, 4, 9, 14, 22, 37, 38, 40, 41, 46, 50, 52, 53, 56, 70, 73, 83, 86, 88, 90, 94, 103, 104], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 51, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 51, 54, 57, 68, 69, 73, 75, 77, 81, 87, 88, 90, 91, 92, 94, 95, 96, 101, 105, 106], "do": [1, 2, 5, 9, 10, 36, 40, 41, 56, 57, 70, 71, 75, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 60, 73, 87, 88, 90, 91, 92, 94, 95, 96, 98, 103], "pseudocod": [1, 104], "happen": [1, 10, 43, 51, 63, 89, 95, 100, 106], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 89, 92, 95, 96, 97, 100, 101, 102, 105, 106, 107], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 53, 65, 73, 83, 87, 88, 89, 95, 97, 98, 102, 103], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 51, 54, 55, 56, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106], "distinct": [1, 18, 56, 107], "natur": [1, 10, 100, 103], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 106, 107], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 55, 56, 57, 70, 71, 73, 86, 87, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 56, 57, 60, 69, 73, 74, 87, 88, 89, 90, 91, 94, 97, 98, 100, 101, 103, 105], "round": [1, 40, 43, 56, 73, 97, 105], "astyp": [1, 100], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 51, 52, 53, 54, 55, 56, 57, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 90, 92, 102, 103], "rang": [1, 3, 5, 7, 12, 46, 48, 54, 56, 69, 73, 74, 89, 92, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "pragma": 1, "cover": [1, 3, 84, 96, 97], "choic": [1, 8, 43, 52, 54, 92, 97, 101, 103], "replac": [1, 55, 60, 71, 86, 87, 89, 90, 91, 92, 95, 96, 97, 100, 103], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 51, 71, 88, 89, 90, 91], "05": [1, 10, 26, 30, 55, 69, 73, 79, 81, 94, 96, 97, 98, 102, 107], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 91, 98, 100, 101], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 92, 97, 98, 100, 101, 106], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 73, 86, 88, 89, 90, 91, 94, 96, 98, 100, 101], "max_it": [1, 87, 88, 95, 103], "10000": [1, 40, 96, 97], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 51, 53, 55, 56, 57, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 103, 105], "diagon": [1, 3, 5, 43, 46, 56], "equal": [1, 3, 10, 12, 51, 63, 68, 78, 104], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 56, 73, 83, 87, 88, 92, 94, 95, 97, 106, 107], "impli": [1, 10, 36, 62, 69], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 54, 55, 56, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 91, 98, 100, 101], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 51, 54, 56, 61, 62, 63, 66, 86, 87, 94, 95, 98, 101, 102, 105], "maximum": [1, 10, 70, 78, 82, 106], "minimum": [1, 8, 10, 20, 43, 45, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 51, 68, 73, 90, 97, 98, 100, 102, 103], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 90, 92, 97, 105, 106], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 55, 56, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 51, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 55, 56, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "necessari": [1, 2, 3, 4, 7, 10, 12, 55, 89, 90], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 51, 60, 61, 62, 64, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 56, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 89, 91, 95, 97, 100, 101, 103, 105], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 51, 53, 56, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 96, 97, 98, 104], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 51, 53, 57, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 89, 91, 92, 95, 96, 97, 101, 102, 105, 107], "when": [1, 2, 3, 4, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 51, 53, 54, 56, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 92, 94, 95, 96, 100, 104, 105, 106, 107], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107], "rate": [1, 2, 3, 10, 38, 56, 88, 107], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 51, 52, 54, 56, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 91, 94, 95, 97, 100, 101, 103, 104, 105, 106, 107], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 51, 56, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 53, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "high": [1, 2, 16, 40, 43, 51, 52, 56, 68, 71, 73, 86, 87, 89, 90, 91, 92, 96, 98, 102, 105, 106, 107], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 51, 56, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "imposs": [1, 10, 98], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 55, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "low": [1, 10, 56, 61, 83, 89, 90, 91, 95, 98, 102, 106], "zero": [1, 3, 5, 37, 41, 45, 51, 56, 57, 90, 92, 101, 102, 103], "forc": [1, 2, 3, 5, 41, 90, 107], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 56, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 92, 94, 95, 97, 98, 101, 102, 103, 105, 106, 107], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 51, 52, 54, 55, 56, 57, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 90, 91, 92, 95, 100, 101, 102, 103, 104, 105, 106, 107], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 59, 84], "produc": [1, 2, 5, 9, 10, 16, 48, 61, 71, 73, 75, 77, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 106, 107], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 54, 60, 61, 62, 73, 91, 95, 97, 102], "opposit": [1, 107], "occur": [1, 3, 10, 36, 55, 68, 90, 91, 92, 97, 103], "small": [1, 3, 10, 36, 40, 48, 51, 54, 56, 62, 69, 87, 92, 95, 96, 101, 103], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 51, 54, 55, 57, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "max": [1, 43, 70, 71, 91, 92, 103], "tri": [1, 37, 41, 104], "befor": [1, 2, 3, 37, 41, 54, 56, 70, 73, 78, 86, 87, 89, 95, 97, 98, 100, 103, 105], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 30, 36, 37, 40, 41, 43, 46, 48, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 90, 91, 92, 94, 97, 98, 101, 105, 106], "left": [1, 2, 43, 45, 54, 56, 63, 66, 69, 89, 90, 91, 101, 102, 103, 106], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 51, 52, 61, 66, 68, 69, 70, 89, 90, 91, 96, 100, 101, 102, 107], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 60, 97, 98, 106], "length": [1, 5, 12, 26, 27, 36, 38, 43, 56, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 101, 103, 106, 107], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 54, 56, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 100, 104, 106, 107], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 56, 57, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 100, 101, 102, 106, 107], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 91, 103], "ensur": [1, 2, 10, 37, 41, 51, 53, 54, 56, 57, 60, 68, 71, 73, 86, 87, 88, 90, 91, 92, 95, 97, 98, 103, 104, 105], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106], "least": [1, 4, 10, 18, 31, 36, 40, 61, 62, 68, 71, 81, 91, 92, 97, 100, 103, 106], "int_arrai": [1, 56], "can": [2, 3, 4, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 51, 52, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 101, 102, 103, 104, 105, 106, 107], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 53, 55, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104, 106, 107], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 51, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 104, 106, 107], "regular": [2, 3, 40, 60], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 56, 57, 62, 63, 64, 65, 70, 71, 83, 97, 98, 99], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 54, 56, 61, 63, 71, 73, 83, 87, 88, 89, 95, 96, 97, 98, 101, 103, 105, 106, 107], "cleanlearn": [2, 3, 10, 23, 30, 37, 56, 60, 72, 73, 74, 83, 84, 86, 87, 105], "wrap": [2, 37, 41, 50, 60, 70, 73, 83, 86, 87, 89, 90, 91, 94, 95, 98, 105], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 60, 69, 70, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 102], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 53, 56, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105], "classifi": [2, 3, 41, 48, 56, 61, 64, 70, 71, 83, 84, 86, 87, 88, 94, 95, 97, 100, 101, 103, 104, 106, 107], "adher": [2, 41, 73], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 56, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "api": [2, 3, 14, 60, 66, 69, 70, 73, 84, 97, 105], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 71, 73, 75, 88, 90, 91, 94, 96, 97, 100, 103, 107], "four": [2, 10, 96, 98, 107], "clf": [2, 3, 5, 48, 73, 83, 86, 94, 97, 98, 101], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 51, 53, 59, 60, 70, 72, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105, 107], "sample_weight": [2, 41, 73, 98], "predict_proba": [2, 5, 36, 39, 41, 48, 59, 60, 86, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 103], "predict": [2, 3, 4, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 98, 99, 103, 105, 106, 107], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 54, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 103, 105], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 51, 52, 53, 56, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 92, 93, 99, 104], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 51, 56, 57, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 51, 52, 53, 56, 70, 73, 83, 86, 89, 90, 91, 94, 95, 97, 98, 100, 101, 105], "element": [2, 3, 5, 36, 42, 43, 45, 56, 61, 63, 71, 78, 79, 81, 87, 88, 95, 97, 107], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 51, 56, 61, 62, 66, 69, 71, 73, 86, 87, 88, 90, 92, 94, 97, 100, 101, 102, 103, 105, 106, 107], "index": [2, 10, 26, 36, 43, 50, 51, 53, 55, 56, 57, 62, 71, 73, 78, 81, 82, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 51, 53, 54, 55, 56, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 104, 105, 106, 107], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 51, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 51, 54, 56, 57, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 103, 104, 105], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 51, 52, 53, 63, 66, 69, 71, 73, 74, 83, 84, 87, 96, 97, 98, 99, 101, 102, 105, 106, 107], "size": [2, 10, 31, 37, 40, 41, 43, 48, 51, 52, 63, 68, 69, 73, 75, 77, 87, 89, 92, 94, 97, 98, 100, 101, 102, 104, 106], "here": [2, 5, 7, 10, 14, 40, 43, 46, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "re": [2, 5, 37, 41, 53, 55, 61, 73, 83, 86, 87, 88, 89, 90, 94, 95, 97, 105, 106, 107], "weight": [2, 10, 37, 38, 41, 48, 51, 61, 68, 71, 73, 87, 88, 89, 90, 91, 95], "loss": [2, 38, 60, 71, 73, 92], "while": [2, 3, 10, 37, 40, 41, 47, 48, 56, 73, 83, 92, 97, 98, 100, 101, 105], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 56, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 104, 106, 107], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 56, 57, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 92, 97], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 53, 56, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 89, 92, 94, 96, 100, 101, 102, 103, 104, 105, 106, 107], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 61, 90, 91, 92, 97, 104, 105], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 51, 57, 62, 63, 68, 69, 73, 75, 87, 95, 97, 101, 102, 105, 106], "clonabl": [2, 73], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 56, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "clone": [2, 73, 101], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 65, 69, 73, 79, 84, 88, 90, 97, 98, 100, 101, 102, 103, 105, 107], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 54, 55, 61, 62, 63, 65, 68, 69, 73, 83, 90, 91, 92, 97, 99, 101, 102, 105], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 51, 56, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "manual": [2, 73, 86, 87, 88, 97, 103, 104, 105, 107], "pytorch": [2, 37, 38, 41, 73, 83, 88, 92, 97, 99, 101, 106], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 56, 60, 70, 73, 87, 88, 89, 90, 91, 95, 97, 98, 101, 103, 104, 105, 106, 107], "__init__": [2, 38, 73, 92], "independ": [2, 3, 10, 62, 73, 95, 104, 105, 107], "compat": [2, 37, 40, 41, 53, 60, 73, 74, 77, 81, 83, 86, 87, 97, 104, 105], "neural": [2, 38, 60, 70, 73, 88, 92, 97, 101, 103, 105], "network": [2, 37, 38, 41, 60, 70, 73, 87, 88, 92, 95, 97, 101, 103, 105], "typic": [2, 37, 41, 53, 70, 73, 86, 87, 88, 91, 92, 94, 95, 103, 104], "initi": [2, 3, 13, 18, 37, 41, 51, 61, 73, 86, 95, 97], "insid": [2, 41, 73, 97, 98], "There": [2, 3, 7, 51, 83, 98, 100], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 51, 52, 53, 56, 66, 68, 69, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 55, 56, 61, 73, 87, 88, 90, 95, 96, 97, 103, 104, 107], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 92, 94, 95, 98, 100, 101, 102, 104, 106, 107], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 56, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "prune": [2, 3, 43, 63, 73, 84, 102], "everyth": [2, 69, 98], "els": [2, 69, 89, 90, 92, 96, 97, 100, 101, 102], "mathemat": [2, 3, 10, 46, 101], "keep": [2, 13, 14, 56, 83, 89, 90, 96, 97, 106], "belong": [2, 3, 10, 36, 43, 45, 46, 51, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 91, 92, 98, 101, 103, 106, 107], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 104], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 56, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 91, 94, 95, 96, 99], "erron": [2, 3, 36, 43, 46, 56, 62, 63, 71, 73, 74, 75, 103, 105], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 51, 54, 55, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 94, 95, 97, 101, 102, 103, 105, 106, 107], "linear_model": [2, 5, 36, 56, 73, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logisticregress": [2, 3, 5, 36, 56, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logreg": 2, "cl": [2, 14, 30, 73, 83, 86, 87, 97, 98, 105], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 51, 53, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 91, 95, 96, 97, 98, 100, 102, 103, 105], "x_train": [2, 86, 89, 90, 91, 98, 100, 101, 105], "labels_maybe_with_error": 2, "had": [2, 3, 73, 102], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 51, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 93, 99, 100, 104, 105], "pred": [2, 43, 56, 86, 87, 104, 105], "x_test": [2, 86, 89, 90, 91, 98, 101, 105], "might": [2, 5, 10, 51, 61, 73, 78, 86, 87, 90, 91, 92, 97, 102], "case": [2, 3, 10, 13, 36, 48, 51, 61, 73, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 103, 105, 107], "standard": [2, 3, 5, 30, 36, 43, 60, 62, 63, 65, 71, 73, 83, 86, 90, 91, 94, 96, 98, 102], "adapt": [2, 37, 39, 56, 59, 73, 103], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 102], "scikera": [2, 60, 73, 97], "open": [2, 40, 96, 102, 107], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 54, 55, 65, 70, 71, 73, 79, 81, 82, 83, 90, 91, 92, 94, 95, 96, 98, 101, 102, 105, 107], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 51, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 51, 53, 55, 60, 66, 68, 70, 73, 83, 84, 86, 87, 90, 91, 95, 100, 107], "made": [2, 5, 16, 37, 41, 52, 73, 86, 87, 92, 95, 97, 100, 102, 104, 105], "easi": [2, 11, 46, 73, 90, 91, 96, 97, 98, 101], "inherit": [2, 7, 38, 73], "baseestim": [2, 41, 73], "yourmodel": [2, 73], "def": [2, 7, 14, 37, 41, 60, 73, 87, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 70, 71, 73, 86, 87, 90, 92, 95, 96, 101, 106, 107], "refer": [2, 10, 16, 37, 41, 42, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 90, 91, 92, 94, 95, 97, 98, 101, 104, 105], "origin": [2, 5, 10, 41, 42, 43, 55, 56, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 90, 92, 94, 95, 97, 98, 102, 103, 105, 107], "total": [2, 3, 4, 36, 40, 56, 62, 82, 89, 92, 97, 106], "state": [2, 3, 5, 37, 38, 41, 47, 73, 98, 101, 102, 107], "art": [2, 38, 98, 101], "northcutt": [2, 3, 36, 70, 71], "et": [2, 3, 36, 38, 70, 71], "al": [2, 3, 36, 38, 70, 71], "2021": [2, 3, 36, 70, 71], "weak": [2, 69], "supervis": [2, 10, 90, 91, 97, 100], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 53, 55, 56, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 90, 99, 104], "uncertainti": [2, 10, 45, 70, 73, 97, 103, 105], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 51, 52, 54, 61, 68, 69, 73, 83, 87, 90, 91, 92, 95, 97, 98, 101, 104], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 55, 56, 57, 60, 61, 71, 73, 83, 84, 87, 89, 90, 91, 96, 103, 105], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 51, 55, 56, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 107], "deep": [2, 39, 41, 59, 60, 73, 95], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 53, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "subfield": 2, "theori": [2, 98], "machin": [2, 4, 5, 9, 10, 14, 16, 33, 39, 54, 59, 73, 86, 87, 90, 91, 96, 100], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 62, 69, 70, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 104, 105], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 56, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "pu": [2, 56], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 55, 56, 57, 60, 69, 73, 83, 84, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "discret": [2, 34, 43, 46, 56, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 51, 56, 70, 71, 83, 87, 88, 90, 91, 92, 94, 95, 98, 101, 102, 103, 106, 107], "would": [2, 3, 5, 37, 40, 41, 43, 52, 56, 63, 73, 83, 87, 89, 90, 92, 97, 98, 103, 105, 107], "obtain": [2, 5, 8, 10, 16, 43, 61, 63, 66, 69, 71, 74, 88, 91, 95, 97, 100, 102, 104, 106, 107], "been": [2, 4, 36, 43, 46, 51, 55, 56, 61, 62, 66, 68, 70, 71, 73, 88, 90, 94, 97, 98, 100, 101, 102, 103, 106, 107], "dure": [2, 10, 16, 51, 53, 70, 73, 86, 87, 88, 89, 94, 95, 97, 98, 101, 104, 105, 107], "denot": [2, 3, 46, 48, 56, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 98, 100, 103, 105, 107], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 56, 61, 62, 65, 66, 69, 73, 74, 81, 87, 90, 95, 96, 97, 101, 102, 103, 104, 106, 107], "converge_latent_estim": [2, 3], "pulearn": [2, 56], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 98], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 91, 96, 105], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 56, 73, 88, 97, 98, 100, 101, 102], "messi": [2, 73, 98], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 91, 96, 97], "robust": [2, 46, 51, 73, 91, 97], "prone": [2, 73], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 51, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 61, 68, 73, 89, 90, 91, 97, 100, 102], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 51, 61, 77, 81, 88, 90, 91, 95, 98], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 98, 100, 102, 104, 107], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 54, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "experiment": [2, 37, 38, 40, 41, 42, 63, 84, 89, 97], "wrapper": [2, 60, 86, 87, 88, 105], "around": [2, 68, 89, 90, 91, 102, 103, 107], "fasttext": [2, 59], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 70, 73, 86, 87, 89, 94, 95, 96, 97, 106, 107], "along": [2, 48, 63, 81, 89, 90, 91, 92, 97, 103], "dimens": [2, 56, 75, 78, 92, 97, 103, 106], "select": [2, 9, 10, 26, 50, 61, 71, 92, 97, 100, 103], "split": [2, 3, 5, 10, 12, 40, 48, 55, 56, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 104, 107], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "fold": [2, 3, 36, 43, 46, 73, 86, 88, 94, 96, 97, 102, 106], "By": [2, 36, 62, 63, 73, 90, 97, 106], "need": [2, 3, 10, 36, 37, 40, 41, 43, 51, 53, 62, 63, 65, 70, 73, 83, 87, 88, 90, 91, 95, 97, 98, 100, 101, 102, 106], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 51, 52, 53, 56, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 90, 91, 96, 98, 99, 102, 103, 105, 106], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 53, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 106, 107], "numer": [2, 3, 4, 5, 10, 13, 22, 30, 34, 48, 51, 52, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 98, 100, 101, 103, 105], "consist": [2, 3, 37, 41, 50, 56, 61, 106, 107], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 51, 54, 56, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105, 107], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 56, 62, 73, 91, 95], "close": [2, 3, 10, 40, 46, 70, 88, 90, 91, 92, 94, 95, 97, 98, 102], "form": [2, 3, 10, 37, 38, 41, 46, 55, 56, 71, 73, 97], "equival": [2, 3, 37, 41, 46, 70, 103, 105], "iter": [2, 3, 36, 37, 41, 43, 56, 62, 63, 73, 89, 97, 100, 106], "enforc": [2, 37, 41, 56], "perfectli": [2, 36, 62, 98], "certain": [2, 3, 5, 37, 41, 60, 69, 73, 89, 90, 91, 96, 102, 103], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 92, 97, 107], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 53, 55, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 90], "filter": [2, 3, 10, 40, 42, 55, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 92, 95, 96, 97, 101, 102, 105, 106, 107], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 101, 102, 105, 106, 107], "particularli": [2, 83, 100, 103], "filter_bi": [2, 3, 40, 43, 63, 84, 97], "frac_nois": [2, 43, 63, 79, 97], "min_examples_per_class": [2, 43, 63, 91, 97, 98], "impact": [2, 4, 10, 90, 91, 92], "ml": [2, 4, 5, 9, 10, 15, 73, 83, 86, 87, 90, 91, 92, 94, 95, 100, 101, 105], "accuraci": [2, 38, 71, 86, 87, 88, 92, 97, 98, 100, 103, 105, 106], "n_job": [2, 40, 43, 63, 75, 77, 79, 97, 103, 106], "disabl": [2, 37, 41, 43, 51, 103], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 51, 55, 61, 63, 69, 75, 77, 79, 87, 88, 89, 90, 97, 100, 104], "caus": [2, 43, 48, 90, 91, 97], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 90, 91, 96, 97, 101, 102, 103, 106, 107], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 98, 101, 102, 106, 107], "adjust_pred_prob": [2, 10, 65, 70, 71, 98], "control": [2, 5, 9, 10, 16, 40, 43, 61, 69, 70, 73, 79, 81, 90, 91, 96, 97], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 56, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 92, 94, 95, 96, 102, 103, 104, 105, 106], "much": [2, 10, 36, 40, 43, 73, 89, 96, 97, 98, 100, 103], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 56, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 90, 92, 95, 96, 97, 102, 103, 104, 105], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 56, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "suppress": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78, 106, 107], "statement": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 40, 63, 69, 73, 98], "limit": [2, 5, 16, 40, 51, 63, 89, 102, 106, 107], "memori": [2, 37, 40, 41, 63, 69, 75, 77, 89, 90, 106], "label_issues_batch": [2, 39, 63, 97], "find_label_issues_batch": [2, 39, 40, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 54, 68, 69, 70, 71, 77, 81, 90, 102, 103, 106, 107], "inverse_noise_matrix": [2, 3, 10, 46, 56, 84, 98], "label_issu": [2, 40, 43, 63, 66, 73, 75, 84, 86, 87, 88, 92, 95, 97, 98, 101, 105], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 51, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 92, 94, 95, 98, 100, 102, 104, 105], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 54, 56, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 105, 106, 107], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 51, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 103, 105, 106, 107], "final": [2, 10, 73, 86, 94, 102, 104, 105], "remain": [2, 73, 84, 86, 87, 92, 101, 105, 107], "datasetlik": [2, 56, 73], "beyond": [2, 5, 7, 9, 10, 11, 35, 83, 86, 87, 105, 106], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 60, 61, 62, 73, 81, 86, 87, 88, 90, 91, 94, 95, 97, 98, 100, 105, 107], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 56, 57, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105, 106, 107], "scipi": [2, 4, 5, 13, 52, 56, 70], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 51, 56, 57, 91, 92, 94, 95, 98], "csr_matrix": [2, 4, 5, 13, 16, 18, 31, 51], "torch": [2, 37, 38, 41, 87, 88, 92, 95, 96, 103], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 51, 60, 61, 66, 69, 73, 83, 84, 88, 90, 91, 92, 97, 98, 103], "tensorflow": [2, 56, 60, 83, 88, 97], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 51, 53, 56, 57, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 91, 92, 94, 97, 98, 99, 101, 105], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 51, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 101, 102, 105, 107], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 56, 71, 78, 82, 86, 87, 88, 92, 94, 95, 97, 101, 102, 103, 104, 105, 107], "wa": [2, 3, 12, 14, 40, 51, 54, 56, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 104, 106, 107], "abl": [2, 3, 10, 73, 88, 97, 98, 100, 101], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 51, 56, 57, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 88, 90, 91, 92, 94, 96, 100, 105, 106, 107], "make": [2, 3, 5, 18, 37, 40, 41, 48, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "sure": [2, 5, 40, 43, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105], "shuffl": [2, 10, 56, 88, 92, 95, 101, 103], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 55, 56, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 98, 100, 101, 102, 103, 104, 105, 107], "batch": [2, 40, 56, 60, 61, 75, 77, 89, 92, 97, 103], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 54, 56, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 105, 106, 107], "destroi": [2, 56], "oper": [2, 37, 40, 41, 51, 56, 60, 71, 83, 86, 87, 95, 97, 103], "eg": [2, 5, 10, 56, 66, 69, 90, 91, 97], "repeat": [2, 56, 61, 100, 103], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 51, 55, 56, 65, 70, 79, 86, 87, 88, 89, 90, 91, 92, 94, 97, 100, 101, 103, 104, 105, 106], "array_lik": [2, 3, 36, 43, 56, 63, 70, 74], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 51, 55, 56, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "seri": [2, 3, 40, 56, 57, 73, 81, 97], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 51, 52, 56, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 103, 107], "rather": [2, 3, 5, 26, 36, 56, 60, 61, 68, 77, 81, 87, 96, 100, 104, 105, 106, 107], "leav": [2, 43], "per": [2, 3, 5, 7, 10, 13, 36, 40, 43, 48, 55, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 91, 97, 102, 107], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 51, 56, 61, 63, 66, 68, 71, 77, 81, 90, 97, 100, 102, 103, 105], "cutoff": [2, 3, 52, 103], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 51, 53, 56, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 92, 94, 95, 97, 98, 102, 103, 104, 105, 106], "section": [2, 3, 7, 10, 84, 92, 94, 97, 102], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 52, 54, 55, 56, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 104], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 68, 70, 81, 84, 91, 93, 97, 98], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 51, 60, 68, 70, 71, 73, 77, 81, 89, 98], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 53, 55, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 91, 92, 95, 100, 102, 105], "automat": [2, 3, 5, 26, 36, 83, 86, 87, 92, 94, 95, 96, 97, 100, 101, 102, 105, 106, 107], "greater": [2, 3, 4, 5, 7, 9, 10, 28, 40, 52, 56, 68, 91, 96, 97, 107], "count": [2, 22, 26, 36, 40, 43, 46, 56, 62, 63, 69, 84, 92, 97, 102], "observ": [2, 3, 46, 53, 88, 89, 90, 91, 100, 103, 105], "mislabel": [2, 10, 36, 40, 42, 43, 46, 61, 62, 63, 66, 68, 71, 77, 79, 81, 83, 86, 87, 88, 92, 94, 95, 97, 98, 102, 105], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 103, 104, 105, 107], "get_label_issu": [2, 39, 40, 72, 73, 86, 87, 98, 105], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 52, 61, 63, 68, 70, 71, 75, 77, 89, 91, 97, 101, 102], "boolean": [2, 7, 10, 22, 40, 43, 53, 55, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 91, 92, 95, 97, 102, 105, 106], "label_issues_mask": [2, 43, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 51, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 51, 53, 54, 55, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 104, 105, 106, 107], "return_indices_ranked_bi": [2, 40, 43, 63, 79, 84, 86, 87, 97, 98], "significantli": [2, 92, 98, 100, 104], "reduc": [2, 40, 43, 56, 88, 97], "time": [2, 10, 37, 40, 41, 56, 61, 84, 86, 87, 89, 90, 92, 96, 97, 98, 102, 103, 105, 106, 107], "take": [2, 5, 10, 36, 37, 41, 47, 48, 51, 53, 56, 60, 71, 86, 89, 92, 94, 100, 101, 102, 107], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 53, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 107], "skip": [2, 10, 37, 41, 73, 88, 97, 101, 107], "slow": [2, 3], "step": [2, 7, 26, 48, 69, 89, 92, 98, 100, 104], "caution": [2, 5, 97], "previous": [2, 5, 13, 56, 70, 73, 84, 86, 88, 90, 94, 95, 100, 104], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 56, 73, 86, 90, 92, 94, 97, 105, 106, 107], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 61, 65, 68, 71, 73, 79, 81, 84, 86, 91, 94, 96, 97, 100, 101, 102, 107], "still": [2, 40, 41, 56, 70, 86, 88, 92, 97, 103], "extra": [2, 37, 41, 56, 60, 61, 62, 73, 92, 95, 97, 100, 103], "receiv": [2, 10, 37, 41, 42, 62, 65, 66, 73, 75, 79, 91, 102], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 26, 37, 41, 48, 51, 52, 53, 55, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 55, 56, 69, 71, 73, 78, 88, 89, 90, 91, 92, 97, 98, 101, 107], "appropri": [2, 10, 16, 34, 52, 63, 71, 90, 94, 101, 102], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 22, 36, 56, 70, 86, 90, 92, 94, 101, 105, 107], "f": [2, 7, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "ignor": [2, 37, 41, 55, 60, 73, 78, 82, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "allow": [2, 36, 37, 40, 41, 45, 53, 56, 61, 69, 70, 73, 75, 77, 87, 88, 89, 92, 97, 104, 106], "access": [2, 10, 13, 37, 41, 73, 87, 91, 92, 95, 96, 101], "hyperparamet": [2, 65, 70, 92], "purpos": [2, 51, 90, 91, 97, 101, 105], "want": [2, 5, 10, 36, 40, 51, 57, 61, 63, 73, 87, 89, 90, 92, 95, 96, 100, 102, 103, 104, 106, 107], "explicitli": [2, 8, 10, 41, 51, 73, 97], "yourself": [2, 5, 40, 91], "altern": [2, 7, 10, 48, 53, 56, 60, 61, 71, 84, 87, 88, 92, 94, 95, 96, 97, 98, 100, 101, 103, 105], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 51, 56, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 105, 106], "effect": [2, 10, 27, 37, 41, 61, 70, 73, 92, 94, 95, 97, 103], "offer": [2, 5, 9, 10, 87, 88, 90, 91, 95, 97, 98, 101], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 61, 73, 87, 90, 92, 95, 97, 98, 100, 102, 103, 104, 105, 106], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 53, 70, 73, 86, 90], "label_issues_df": [2, 73, 92], "similar": [2, 10, 36, 37, 41, 53, 56, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 92, 94, 95, 97, 98, 102, 103, 106], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 55, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 56, 66, 73, 90, 91], "were": [2, 3, 5, 36, 41, 51, 62, 68, 81, 86, 88, 94, 97, 98, 100, 102, 104, 106], "present": [2, 3, 5, 10, 12, 13, 20, 36, 56, 70, 78, 83, 92, 94, 97, 103], "actual": [2, 3, 5, 36, 51, 61, 62, 71, 91, 97, 98, 107], "num_class": [2, 36, 40, 56, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103], "uniqu": [2, 31, 56, 78, 90, 97, 101, 103], "given_label": [2, 5, 25, 30, 36, 46, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106, 107], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 54, 55, 56, 71, 97, 98, 103], "trick": [2, 97], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 54, 61, 69, 70, 71, 83, 89, 90, 91, 92, 94, 95, 102, 103], "account": [2, 36, 61, 65, 70, 71, 87, 95, 97, 98, 100, 101, 103, 105], "word": [2, 3, 55, 81, 82, 97], "remov": [2, 10, 31, 36, 37, 41, 43, 73, 83, 86, 87, 91, 92, 94, 95, 96, 97, 98, 101, 103, 105], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 51, 56, 61, 62, 68, 71, 73, 77, 81, 88, 90, 91, 92, 95, 98, 101, 103, 106], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 56, 60, 71, 73, 75, 83, 84, 86, 87, 88, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 54, 55, 56, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 92, 95, 96, 97, 98, 103, 104, 105], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 51, 54, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 90, 93, 96, 99, 101, 105, 106, 107], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 56, 71, 73], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 51, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 26, 41, 48, 51, 60, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 104, 105, 107], "expect": [2, 3, 37, 41, 43, 48, 51, 61, 70, 71, 73, 86, 87, 97, 98, 100, 101, 102, 105, 107], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 69, 73, 86, 87, 88, 90, 91, 92, 97, 98, 100, 104, 105, 106], "simpli": [2, 10, 36, 71, 87, 90, 91, 94, 95, 97, 98, 101, 105, 106, 107], "quantifi": [2, 4, 5, 7, 10, 13, 43, 65, 70, 73, 83, 91, 92, 94, 95, 98, 102], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 36, 43, 55, 63, 66, 69, 71, 73, 75, 77, 84, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "cach": [2, 87, 95], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 56, 57, 60, 61, 62, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 100, 105, 106], "unlik": [2, 10, 43, 45, 48, 60, 62, 63, 65, 81, 90, 100, 101, 103, 105], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 51, 56, 61, 63, 71, 75, 77, 82, 83, 90, 92, 97, 98, 100, 107], "mask": [2, 40, 43, 55, 56, 63, 66, 71, 73, 75, 77, 78, 83, 89, 96, 97, 100, 102, 106, 107], "prefer": [2, 71, 79, 101], "plan": 2, "subsequ": [2, 3, 37, 41, 53, 87, 95, 97, 98, 102], "invok": [2, 37, 41, 98, 104], "scratch": [2, 51, 73], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 51, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "share": [2, 71, 73], "mostli": [2, 56, 68, 73, 101, 105], "longer": [2, 34, 47, 48, 55, 73, 84, 87, 95, 97, 102], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 73, 81, 90, 91, 96, 107], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 61, 62, 65, 69, 73, 78, 81, 88, 90, 92, 94, 95, 96, 97, 98, 100, 103], "docstr": [2, 36, 37, 41, 56, 73, 96, 98], "unless": [2, 37, 41, 51, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "is_label_issu": [2, 30, 73, 87, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "entir": [2, 10, 26, 40, 43, 46, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 91, 97, 102, 103, 104, 106, 107], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 52, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 91, 92, 94, 95, 97, 100, 105], "label_qu": [2, 61, 73, 87, 98, 100, 105], "measur": [2, 5, 36, 61, 62, 73, 83, 86, 96, 97, 98, 100, 101, 105, 106, 107], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 105], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 51, 54, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "eas": 2, "comparison": [2, 37, 41, 69, 98, 100], "against": [2, 37, 41, 90, 94, 97, 100, 101], "predicted_label": [2, 5, 25, 30, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106], "ad": [2, 37, 41, 89, 91, 100, 105], "precis": [2, 52, 54, 63, 66, 69, 96, 97, 98, 106, 107], "definit": [2, 7, 34, 48, 73, 86, 94], "accessor": [2, 73], "describ": [2, 10, 18, 61, 70, 71, 73, 79, 81, 98, 100, 101, 102, 104, 107], "precomput": [2, 4, 5, 46, 51, 73, 91, 92, 94, 95, 96, 98], "clear": [2, 37, 41, 53, 73, 87, 95, 105], "save": [2, 5, 16, 37, 40, 41, 69, 73, 97, 102, 106, 107], "space": [2, 5, 10, 70, 73, 92, 94, 96], "place": [2, 37, 41, 51, 56, 73, 86, 100], "larg": [2, 9, 10, 40, 51, 73, 92, 94, 95, 97, 102, 103, 106, 107], "deploi": [2, 9, 10, 73, 92, 94, 95, 97], "care": [2, 10, 37, 41, 51, 73, 95, 97, 98], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 51, 53, 73, 89, 97, 98, 100, 102, 105], "cannot": [2, 5, 12, 14, 56, 104, 107], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 73], "__init_subclass__": [2, 39, 41, 72, 73], "set_": [2, 41, 73], "_request": [2, 41, 73], "pep": [2, 41, 73], "487": [2, 41, 73], "look": [2, 5, 7, 16, 37, 41, 56, 73, 78, 86, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 106, 107], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 53, 56, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 90, 94, 95, 96, 98, 100, 103, 106, 107], "__metadata_request__": [2, 41, 73], "infer": [2, 41, 56, 73, 78, 82, 86, 87, 92, 100, 101], "signatur": [2, 37, 41, 73], "accept": [2, 37, 41, 53, 54, 71, 73, 90, 91, 97], "metadata": [2, 41, 73, 92, 94, 95, 107], "through": [2, 5, 7, 41, 73, 87, 88, 89, 91, 95, 96, 97, 100, 102, 103], "develop": [2, 9, 41, 53, 73, 97, 98, 107], "request": [2, 41, 73, 86, 87, 91, 95, 96, 101, 107], "those": [2, 3, 4, 10, 40, 41, 43, 50, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 92, 97, 102, 106], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 53, 56, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "www": [2, 41, 73, 103], "org": [2, 4, 18, 37, 38, 41, 53, 56, 70, 73, 97, 98, 107], "dev": [2, 41, 73], "0487": [2, 41, 73], "get_metadata_rout": [2, 39, 41, 72, 73], "rout": [2, 41, 73], "pleas": [2, 37, 41, 60, 73, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 105, 107], "guid": [2, 7, 10, 41, 73, 84, 92, 93], "mechan": [2, 37, 41, 73], "metadatarequest": [2, 41, 73], "encapsul": [2, 16, 41, 68, 73], "get_param": [2, 39, 41, 59, 60, 72, 73], "subobject": [2, 41, 73], "param": [2, 10, 37, 41, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "set_fit_request": [2, 39, 41, 72, 73], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 51, 52, 53, 54, 55, 56, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 90, 97, 100, 101, 102, 107], "unchang": [2, 37, 41, 73, 107], "relev": [2, 16, 26, 41, 73, 92], "enable_metadata_rout": [2, 41, 73], "set_config": [2, 41, 73], "meta": [2, 41, 73], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 51, 54, 73, 88, 97], "alia": [2, 37, 41, 73], "metadata_rout": [2, 41, 73], "retain": [2, 41, 56, 73], "chang": [2, 32, 34, 37, 40, 41, 45, 73, 81, 86, 87, 88, 90, 95, 97, 102, 103, 107], "version": [2, 4, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 56, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "sub": [2, 41, 68, 73], "pipelin": [2, 41, 73, 105], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 52, 54, 55, 56, 63, 73, 75, 77, 78, 82, 87, 95, 97], "updat": [2, 13, 37, 40, 41, 51, 60, 73, 84, 89, 90, 92], "set_param": [2, 39, 41, 59, 60, 72, 73], "simpl": [2, 37, 41, 43, 61, 71, 73, 86, 87, 89, 90, 91, 92, 94, 95, 100, 103, 105], "well": [2, 3, 9, 10, 37, 41, 45, 46, 61, 63, 69, 71, 73, 78, 81, 82, 84, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103], "nest": [2, 37, 41, 42, 57, 73, 79, 81, 82, 107], "latter": [2, 37, 41, 73, 103], "compon": [2, 41, 73], "__": [2, 41, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 89, 94, 97], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 61, 70, 71, 75, 77, 81, 91, 92, 94, 96, 97, 98, 102, 107], "channel": [3, 88, 98], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 56, 62, 87, 91, 96], "inv": 3, "confident_joint": [3, 22, 36, 43, 56, 62, 63, 84, 97, 98], "un": 3, "under": [3, 10, 37, 41, 62, 69, 70, 91, 103], "joint": [3, 36, 43, 46, 56, 62, 63, 96], "num_label_issu": [3, 40, 43, 63, 78, 82, 84], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 56, 57, 63, 101], "don": [3, 83, 91, 92, 94, 95, 98, 102, 105], "statis": 3, "compute_confident_joint": [3, 36, 43, 56, 63, 98], "off": [3, 43, 56, 68, 92, 98, 102, 103], "j": [3, 5, 36, 37, 41, 42, 43, 63, 66, 69, 70, 79, 81, 82, 89, 90, 91, 98, 106, 107], "confident_learn": [3, 43, 63, 98], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 56, 61, 100], "cj": [3, 46, 56], "axi": [3, 31, 46, 48, 54, 75, 78, 88, 89, 90, 91, 92, 97, 98, 100, 101, 103, 105, 106], "bincount": [3, 89, 90, 91, 98, 100, 101], "alwai": [3, 10, 37, 41, 56, 86, 87, 88, 98, 105], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 68, 69, 75, 77, 86, 91, 92, 94, 96, 97, 98, 103, 105], "As": [3, 7, 83, 90, 91, 95, 98, 105, 107], "add": [3, 5, 7, 12, 13, 37, 41, 60, 69, 87, 88, 89, 90, 91, 92, 95, 97, 98, 101], "approach": [3, 36, 40, 43, 60, 86, 89, 94, 98, 101, 103, 105], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 55, 71, 87, 91, 95, 98, 105], "know": [3, 10, 90, 91, 92, 94, 95, 97, 98, 100, 105], "cut": [3, 68, 83, 98], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 102, 103, 107], "underestim": [3, 51], "few": [3, 9, 10, 69, 83, 91, 97, 100, 101, 102, 103, 107], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 55, 65, 66, 68, 69, 71, 74, 81, 96, 97, 101, 106, 107], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 101, 103, 107], "num_issu": [3, 7, 40, 88, 89, 90, 91, 92, 94, 95, 98], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 50, 60, 61, 87, 89, 96, 97, 102, 105, 107], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 98], "v": [3, 10, 40, 62, 63, 65, 71, 89, 90, 91, 101, 102, 103, 104], "rest": [3, 5, 7, 9, 10, 11, 35, 62, 63, 65, 73, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 36, 62, 63, 66, 94, 107], "calibrated_cj": 3, "c": [3, 10, 54, 55, 63, 71, 83, 86, 88, 90, 91, 94, 95, 97, 98, 101, 102, 103, 104, 105], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 51, 55, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 106, 107], "truli": [3, 103, 106], "estimate_joint": [3, 36, 98], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 98, 102, 104, 106, 107], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 61, 62, 69, 78, 102, 103], "done": [3, 10, 60, 73, 90, 97, 98, 101, 103, 104], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 92, 94, 95, 104], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 56, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 90, 97, 98, 101, 102], "baselin": [3, 37, 43, 87, 103, 105], "proxi": 3, "union": [3, 5, 12, 26, 48, 51, 52, 53, 56, 57, 63, 69, 73, 81, 97], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 55, 56, 61, 63, 69, 77, 79, 81, 82, 88, 107], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 40, 46, 51, 52, 61, 70, 75, 77, 83, 87, 89, 92, 97, 106], "practic": [3, 86, 87, 91, 92, 98, 103, 105], "complet": [3, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "gist": 3, "cj_ish": 3, "guess": [3, 46, 98, 100], "8": [3, 5, 7, 8, 47, 48, 49, 55, 65, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "parallel": [3, 43, 69, 79, 96], "again": [3, 60, 86, 97, 103], "simplifi": [3, 14, 97], "understand": [3, 9, 10, 36, 62, 69, 91, 98, 99, 105, 106, 107], "100": [3, 4, 37, 41, 51, 52, 54, 70, 71, 86, 87, 90, 91, 92, 94, 96, 97, 98, 101, 102, 103, 107], "optim": [3, 37, 38, 41, 60, 92, 100], "speed": [3, 43, 87, 96, 97, 105], "dtype": [3, 23, 25, 26, 31, 37, 41, 55, 56, 65, 81, 88, 102], "enumer": [3, 37, 41, 88, 89, 90, 91, 92, 107], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 56, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "num_confident_bin": 3, "argmax": [3, 43, 71, 75, 78, 88, 97, 98, 102, 103, 106], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 51, 56, 57, 65, 74, 86, 88], "eqn": [3, 46], "margin": [3, 43, 46, 48, 71], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 62, 98, 104], "poorli": [3, 46, 86], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 98], "variabl": [3, 7, 14, 27, 56, 73, 74, 88, 90, 94, 98, 101, 105], "exact": [3, 46, 51, 86, 89, 90, 91, 92, 94], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 63, 68, 77, 79, 81, 90, 91, 92, 97, 102, 106], "percent": 3, "often": [3, 36, 46, 62, 97, 98, 104, 106], "estimate_confident_joint_and_cv_pred_proba": 3, "multi_class": 3, "auto": [3, 9, 10, 86, 87, 89, 91, 96, 97, 105], "mani": [3, 9, 10, 56, 57, 69, 86, 87, 88, 89, 90, 92, 94, 95, 97, 101, 102, 103, 105], "wai": [3, 5, 51, 60, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 104], "pro": 3, "con": 3, "pred_proba": [3, 104], "combin": [3, 36, 90, 92, 96, 97, 98, 104, 105], "becaus": [3, 46, 52, 56, 68, 95, 97, 98, 100, 102], "littl": [3, 40, 96, 102, 107], "uniform": [3, 71, 96, 97, 98], "20": [3, 7, 42, 82, 88, 89, 92, 95, 96, 97, 98, 102, 105, 106, 107], "Such": [3, 92, 103], "bound": [3, 23, 25, 37, 41, 55, 65, 66, 68, 69, 102], "reason": [3, 22, 37, 41, 52, 70], "comment": [3, 55, 107], "end": [3, 5, 37, 41, 53, 69], "file": [3, 5, 12, 39, 40, 59, 69, 86, 88, 90, 94, 95, 96, 97, 102, 103, 106, 107], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 98], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 51, 52, 53, 84, 86, 87, 89, 90, 91, 92, 94, 95, 98, 106, 107], "five": [3, 66, 69, 98, 102], "estimate_cv_predicted_prob": [3, 98], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 102], "confident_threshold": [3, 10, 22, 23, 40, 70], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 51, 53, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100], "valuat": [4, 9, 18], "help": [4, 36, 37, 41, 69, 83, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 100, 101, 105, 106, 107], "u": [4, 86, 87, 88, 90, 92, 94, 97, 98, 100, 101, 104, 105, 106, 107], "assess": [4, 102], "contribut": [4, 10, 18, 102], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 44, 50, 94], "metric": [4, 5, 10, 18, 19, 26, 31, 44, 50, 51, 53, 54, 56, 60, 69, 70, 86, 87, 88, 92, 94, 95, 98, 105], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 51, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 51, 52, 53, 54, 70, 91, 95, 103], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 44, 51, 52, 53, 54, 70, 90, 91, 92, 94, 95, 97, 98, 103], "knn": [4, 10, 13, 18, 26, 31, 50, 51, 52, 53, 54, 70, 94, 103], "graph": [4, 5, 10, 13, 16, 18, 26, 31, 50, 51], "calcul": [4, 10, 18, 26, 40, 48, 50, 51, 54, 61, 65, 66, 68, 69, 70, 73, 77, 92, 96], "directli": [4, 5, 14, 16, 33, 34, 40, 53, 60, 61, 87, 91, 95, 97, 101, 102, 105], "lowest": [4, 10, 61, 69, 91, 92, 97, 100, 101, 102, 106], "fall": [4, 10, 68, 77, 81, 98, 103], "flag": [4, 10, 22, 26, 43, 48, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 103, 105, 106], "approxim": [4, 10, 18, 40, 53, 70, 100], "top": [4, 5, 10, 36, 40, 42, 43, 56, 63, 66, 69, 71, 78, 82, 83, 87, 88, 90, 91, 94, 95, 96, 97, 98, 102, 103, 105, 107], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 103, 105, 107], "arxiv": [4, 18, 98], "ab": [4, 18, 98, 102], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 70, 83, 87, 88, 90, 91, 94, 95, 98, 101, 105], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 51, 63, 83, 87, 88, 90, 91, 92, 95, 97, 98, 103], "suppli": [4, 101, 102, 105], "2d": [4, 5, 16, 32, 40, 48, 49, 51, 55, 56, 61, 86, 88, 101], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 62, 88, 89, 90, 91, 92, 94, 95, 98], "num_featur": [4, 5, 16, 37, 41, 60], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 51, 52, 53, 54, 68, 70, 94, 103], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 50, 51, 53, 60], "nearestneighbor": [4, 5, 10, 18, 51, 53, 70, 94, 103], "cosin": [4, 10, 51, 52, 54, 70, 103], "dim": [4, 70, 92, 106], "euclidean": [4, 5, 10, 51, 52, 54, 68, 70, 94], "dimension": [4, 26, 52, 56, 88, 98, 103], "scikit": [4, 41, 52, 53, 56, 70, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 105], "fewer": [4, 10, 43, 56, 70, 102], "stabl": [4, 15, 21, 24, 29, 39, 44, 53, 56, 59, 70, 84], "exce": [4, 51, 89, 92], "transform": [4, 10, 32, 48, 51, 54, 56, 70, 71, 86, 87, 91, 92, 95, 103, 107], "rel": [4, 10, 36, 51, 61, 62, 70, 90, 91, 92, 94, 95, 98, 103], "adjust": [4, 38, 43, 51, 65, 70, 71, 83, 98], "closer": [4, 10, 68, 102], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 37, 41, 54, 56, 69, 96, 103], "convers": 4, "neg": [4, 10, 68, 69, 90, 91, 96], "valueerror": [4, 5, 12, 13, 34, 45, 48, 51, 54, 97], "neither": [4, 5, 10, 14, 52, 102], "nor": [4, 5, 10, 14], "larger": [4, 18, 51, 52, 73, 75, 77, 89, 92, 95, 96, 97], "55": [4, 55, 96, 102, 105], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 88, 92, 93, 94, 95, 97, 98, 101, 102, 105], "kind": [5, 6, 7, 10, 88, 89, 90, 92, 94, 95, 96, 98], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 51, 53, 57, 61, 69, 78, 79, 86, 87, 88, 90, 94, 95, 98, 100, 103, 104], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 56, 59, 63, 70, 73, 74, 83], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 59, 60, 75, 77], "pip": [5, 7, 9, 11, 35, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "github": [5, 7, 9, 11, 35, 37, 38, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 56, 70, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "egg": [5, 7, 9, 11, 35, 83, 96], "label_nam": [5, 7, 8, 10, 12, 18, 31, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "image_kei": [5, 10, 92], "interfac": [5, 9, 10, 53, 83, 97, 98], "librari": [5, 10, 41, 53, 66, 69, 70, 83, 87, 90, 95, 96, 97], "goal": [5, 105], "track": [5, 7, 13, 14, 83, 89, 90, 96, 97, 98], "intermedi": [5, 9, 91], "statist": [5, 10, 13, 22, 26, 36, 61, 62, 69, 91, 94, 95, 98], "convert": [5, 10, 12, 34, 37, 41, 49, 54, 57, 61, 68, 77, 81, 84, 87, 88, 92, 95, 96, 97, 100, 101, 102], "hug": [5, 10, 12, 92], "face": [5, 10, 12, 16, 92, 96, 101], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 61, 62, 68, 70, 89, 90, 91, 92, 95, 97, 98, 100, 102], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 56, 61, 62, 74, 78, 81, 82, 87, 94, 95, 97, 100, 101, 107], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 56, 61, 62, 65, 66, 68, 69, 90, 91, 94, 95, 98, 100, 101, 102], "path": [5, 12, 37, 40, 41, 69, 88, 90, 97, 102], "local": [5, 7, 10, 12, 37, 38, 41, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 70, 79, 81, 82, 83, 85, 90, 91, 93, 96, 97, 98, 99, 100, 103], "txt": [5, 12, 107], "csv": [5, 12, 86, 87, 94, 95, 105], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 56, 61, 101], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 87, 89, 90, 91, 95, 99, 100, 103], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 101], "imag": [5, 9, 36, 41, 66, 68, 69, 70, 75, 77, 78, 83, 90, 91, 93, 96, 97, 99, 100, 101, 102, 104, 106], "field": [5, 10, 37, 41], "themselv": [5, 86, 87, 105], "pil": [5, 92], "cleanvis": [5, 10], "level": [5, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 51, 55, 79, 81, 91, 92, 97, 99, 101, 106], "load_dataset": [5, 12, 92], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 89], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 62, 69, 78, 82, 83, 96, 98, 102, 106, 107], "empti": [5, 12, 46, 61, 91, 97, 101], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "sort": [5, 16, 40, 43, 48, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 105, 106, 107], "common": [5, 13, 16, 91, 93, 96, 97, 98, 101, 102, 106], "real": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "world": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "interact": [5, 16, 95, 97], "thereof": [5, 16], "insight": [5, 16, 69, 100], "best": [5, 9, 10, 16, 47, 61, 71, 86, 87, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 107], "properli": [5, 10, 40, 47, 51, 56, 57, 75, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 105, 106], "respect": [5, 37, 41, 66, 69, 88, 89, 90, 91, 92, 94, 95, 98, 101, 102], "lexicograph": [5, 47, 56, 88, 89, 90, 91, 92, 94, 95, 98, 101], "squar": [5, 56, 73, 96, 105], "csr": [5, 51], "evenli": 5, "omit": [5, 68, 69, 92, 102], "itself": [5, 32, 37, 41, 51, 102], "three": [5, 10, 36, 61, 62, 73, 78, 86, 88, 89, 90, 91, 94, 96, 98, 100, 104, 105, 106, 107], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 83, 94, 101, 107], "th": [5, 42, 47, 55, 56, 61, 63, 66, 68, 69, 70, 79, 81, 82, 95, 101, 102, 107], "ascend": [5, 36, 62, 92, 98], "segment": [5, 75, 77, 78, 99], "reflect": [5, 51, 86, 87, 94, 95, 100, 102, 103, 105], "maintain": [5, 60], "kneighbors_graph": [5, 18, 53, 94], "illustr": 5, "todens": 5, "second": [5, 48, 56, 69, 71, 90, 97, 98, 107], "duplic": [5, 9, 21, 22, 37, 41, 51, 83, 89, 90, 98, 105], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 61, 97, 100, 107], "unspecifi": [5, 16, 43, 63], "interest": [5, 16, 22, 78, 82, 86, 87, 95, 98, 105, 106, 107], "constructor": [5, 10, 16, 23, 30, 51, 53], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 53, 73, 74, 96, 105, 107], "random_st": [5, 86, 88, 89, 90, 91, 92, 98, 101, 103], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105], "comprehens": [5, 83, 92, 101, 105], "nbr": 5, "n_neighbor": [5, 10, 18, 51, 53, 70], "mode": [5, 11, 18, 37, 40, 41, 103], "4x4": 5, "float64": [5, 26, 37, 41, 81], "compress": [5, 10, 51, 56, 75, 77], "toarrai": [5, 51], "NOT": [5, 40, 95], "23606798": 5, "41421356": [5, 51], "configur": [5, 16, 48, 91], "suppos": [5, 10, 66, 86, 87, 103, 105], "who": [5, 68, 86, 94, 98, 107], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 60, 90, 97], "clean_learning_kwarg": [5, 10, 23, 30, 97, 105], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 84], "prune_by_noise_r": [5, 43, 63, 98], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 82, 83, 88, 89, 90, 91, 94, 95, 97, 98, 101, 105, 107], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 105, 106, 107], "show": [5, 7, 26, 37, 41, 47, 56, 69, 78, 82, 86, 89, 91, 92, 94, 95, 96, 97, 98, 100, 103, 105, 106, 107], "suffer": [5, 10, 13, 22, 63, 71, 82, 107], "onc": [5, 22, 36, 37, 41, 86, 89, 90, 97, 98, 101, 102], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 102, 107], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 102, 103, 107], "compar": [5, 61, 70, 81, 90, 91, 94, 98, 102], "issue_summari": [5, 7, 10, 13, 89, 90], "With": [5, 9, 10, 40, 87, 95, 97, 98, 100, 105, 106, 107], "usag": [5, 40, 60], "usual": [5, 12, 32, 33, 92, 100, 105], "ti": [5, 61], "exhibit": [5, 7, 10, 13, 78, 91, 92, 94, 95, 98, 102], "ie": [5, 73], "likelihood": [5, 10, 40, 42, 43, 63, 68, 70, 71, 75, 79], "wherea": [5, 56, 63, 86, 87, 104], "outlier": [5, 9, 14, 21, 22, 31, 44, 51, 71, 83, 90, 91, 98, 99, 105], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 98, 105], "global": [5, 7, 22, 37, 41, 96], "non_iid": [5, 10, 14, 26, 91, 92, 94, 95, 98], "hypothesi": 5, "iid": [5, 7, 9, 26, 94, 98], "never": [5, 88, 98, 101, 103, 104], "someth": [5, 7, 10, 37, 41, 71, 102], "123": [5, 89, 90, 91], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 48, 49, 60, 79, 81, 86, 87, 88, 90, 91, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 65, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "distance_to_nearest_neighbor": [5, 90, 91, 92, 94, 95, 98], "789": 5, "get_issu": [5, 10, 13, 88, 89, 91, 92, 94, 95, 97, 101, 105], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90, 91], "focu": [5, 10, 13, 95, 106, 107], "full": [5, 10, 13, 40, 60, 69, 89, 92, 107], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 62, 78, 82, 83, 106], "specific_issu": [5, 13], "lie": [5, 10, 70, 71, 87, 88, 90, 91, 92, 94, 95, 98], "get_issue_summari": [5, 13, 89, 91], "get_info": [5, 13, 91, 95, 96], "yet": [5, 17, 27, 60, 96, 100], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 90], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 88, 90, 92], "load": [5, 12, 40, 69, 92, 96, 97, 98, 102, 103, 106, 107], "futur": [5, 10, 22, 37, 41, 61, 83, 87, 88, 90, 95, 97], "overwrit": [5, 90], "separ": [5, 36, 48, 65, 90, 91, 92, 97, 102, 104], "static": 5, "rememb": [5, 95, 97, 98], "part": [5, 10, 37, 41, 43, 66, 68, 69, 88, 90, 96, 106, 107], "ident": [5, 10, 22, 56, 89, 95], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 83, 86, 87, 96, 97, 100, 105], "walk": 7, "alongsid": [7, 37, 41, 90, 97], "pre": [7, 8, 10, 37, 41, 90, 91, 105], "runtim": [7, 37, 40, 41, 73, 75, 77, 88, 92, 97], "issue_manager_factori": [7, 14, 90], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "thing": [7, 41, 87, 98, 105], "next": [7, 61, 83, 86, 87, 88, 89, 94, 95, 97, 100, 102, 105, 107], "dummi": 7, "randint": [7, 31, 48, 89, 90, 91, 97], "mark": [7, 10, 84, 102, 103, 105], "regard": [7, 91, 98], "rand": [7, 48, 51, 89, 90, 91], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "whole": [7, 26, 37, 41, 91], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "popul": [7, 91, 95], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 102], "raw_scor": 7, "bit": 7, "involv": [7, 40, 78, 82, 89, 97, 101], "intermediate_arg": 7, "min": [7, 48, 68, 81, 90, 97, 103], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 52, 75, 81, 95, 97], "easili": [7, 46, 84, 86, 87, 88, 89, 91, 94, 95, 98, 100, 101, 103, 104, 105, 106], "hard": [7, 41, 96, 103], "sai": [7, 10, 37, 41, 101, 106], "anoth": [7, 22, 36, 40, 52, 55, 68, 71, 87, 94, 95, 97, 98, 100, 103], "try": [7, 9, 10, 40, 43, 60, 61, 75, 77, 83, 89, 91, 92, 94, 95, 97, 98, 106], "won": [7, 37, 41, 90, 91, 97, 101], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 90], "instanti": [7, 16, 40, 60, 70, 87, 88, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 46, 56, 69, 88, 89, 90, 91, 92, 94, 95, 98], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 102, 103, 105, 106, 107], "003042": 7, "058117": 7, "11": [7, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "121908": 7, "15": [7, 54, 60, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "169312": 7, "17": [7, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 98], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 96, 102, 107], "dbscan": [8, 10, 31, 97], "hdbscan": [8, 97], "etc": [8, 10, 22, 32, 37, 41, 46, 60, 61, 79, 83, 90, 91, 94, 95, 97, 98, 101, 105], "sensit": [8, 10, 54], "ep": [8, 31, 69], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 97], "your_data": 8, "get_pred_prob": [8, 89], "n_cluster": [8, 31, 97], "cluster_id": [8, 10, 31, 97], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 91, 92, 94, 95, 97, 98], "search": [9, 10, 20, 26, 27, 44, 50, 51, 52, 55, 73, 97, 104], "nondefault": 9, "Near": [9, 97], "imbal": [9, 21, 65, 70, 71, 91], "null": [9, 14, 21, 91, 92, 95, 98], "togeth": [9, 10, 46, 87, 90, 91, 92, 94, 95, 98, 105, 107], "built": [9, 48], "own": [9, 37, 39, 41, 53, 59, 65, 66, 69, 75, 79, 86, 87, 88, 91, 92, 94, 95, 97, 100, 101, 105, 106, 107], "prerequisit": 9, "basic": [9, 41, 60, 94, 95, 103], "fulli": [9, 10, 37, 41, 60, 97], "platform": [9, 10, 83, 92, 94, 95, 97], "write": [9, 10], "code": [9, 10, 37, 41, 46, 56, 60, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "being": [9, 10, 13, 36, 37, 41, 43, 48, 55, 56, 71, 86, 94, 97, 98, 105, 106], "100x": [9, 10], "faster": [9, 10, 40, 70, 73, 75, 77, 97, 98], "intellig": [9, 10], "quickli": [9, 10, 38, 86, 88, 92, 94, 95, 97, 101, 103, 106, 107], "fix": [9, 10, 61, 87, 89, 95, 98, 105], "scientist": [9, 10], "million": [9, 10, 107], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 103, 105, 107], "suggest": [9, 10, 36, 61, 62, 68, 87, 92, 95, 97, 105], "power": [9, 10, 92, 94, 95, 96, 98, 107], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 89, 92, 94, 95, 106], "foundat": [9, 10, 83], "improv": [9, 10, 61, 86, 87, 91, 92, 96, 97, 98, 105, 106], "click": [9, 10, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "tune": [9, 10, 87, 88, 95, 96, 103], "serv": [9, 10, 13, 16, 100], "free": [9, 10, 83, 88, 91, 92, 94, 95, 97, 98], "page": [10, 91, 97, 98], "variou": [10, 13, 30, 39, 57, 59, 83, 86, 90, 91, 94, 95, 96, 97, 98, 100, 102], "why": [10, 89, 95], "matter": [10, 36, 62, 87, 95], "didn": 10, "plu": [10, 105], "_score": 10, "badli": [10, 68, 86, 87, 107], "issue_scor": 10, "outlier_scor": [10, 28, 89, 90, 91, 92, 94, 95, 98, 103], "atyp": [10, 70, 90, 91, 92, 94, 95, 98, 103], "datapoint": [10, 31, 43, 48, 56, 71, 74, 83, 86, 87, 88, 90, 91, 94, 95, 97, 104, 105], "is_issu": [10, 22], "is_outlier_issu": [10, 89, 90, 91, 92, 94, 95, 98], "annot": [10, 36, 47, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 92, 94, 95, 98, 102, 105], "due": [10, 40, 43, 71, 75, 77, 88, 89, 90, 91, 92, 94, 95, 98, 105], "appear": [10, 36, 47, 62, 63, 66, 74, 91, 92, 94, 95, 105, 106], "now": [10, 40, 84, 86, 87, 88, 89, 91, 100, 102, 103, 105, 107], "token": [10, 42, 55, 77, 78, 79, 80, 81, 82, 97, 98, 99], "hamper": [10, 92, 96], "analyt": [10, 83, 97, 100], "lead": [10, 68, 71, 92, 102], "draw": [10, 89, 90, 91], "conclus": [10, 95], "veri": [10, 36, 62, 66, 68, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105], "rare": [10, 43, 69, 89, 90, 91, 92, 94, 95, 97, 98], "anomal": [10, 71, 89, 90, 91, 92, 94, 95, 98], "articl": [10, 40, 97], "blog": 10, "unexpect": [10, 37, 41, 95], "consequ": 10, "inspect": [10, 87, 88, 89, 91, 92, 98, 102, 105], "extrem": [10, 90, 91, 92, 94, 95, 97, 98], "record": [10, 37, 41, 88, 94, 105], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 90, 91, 93, 97], "minor": [10, 55], "variat": 10, "translat": 10, "d": [10, 54, 86, 94, 95, 97, 98, 101, 105, 107], "constant": [10, 31, 73], "median": [10, 30, 54], "question": [10, 22, 83, 98], "nearli": [10, 22, 91, 92, 94, 95], "awar": [10, 84, 98], "presenc": [10, 51, 53, 98], "near_dupl": [10, 14, 19, 89, 90, 91, 92, 94, 95, 97, 98], "signific": [10, 94, 95, 98], "violat": [10, 94, 95, 98], "assumpt": [10, 94, 95, 98], "changepoint": [10, 94, 95, 98], "shift": [10, 51, 53, 94, 95, 98], "drift": [10, 91, 94, 98], "autocorrel": [10, 94, 95, 98], "almost": [10, 94, 95, 98], "adjac": [10, 51, 94, 95, 98], "tend": [10, 36, 46, 94, 95, 98, 106, 107], "sequenti": [10, 37, 41, 60, 92], "realli": [10, 87, 95, 100, 106], "mere": 10, "highlight": [10, 78, 82, 89, 90, 91, 94, 106], "necessarili": [10, 61, 69, 95, 98], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 91, 95, 97, 98, 102], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 55, 56, 81, 86, 94, 95, 96, 97, 98, 104, 107], "x1": [10, 66, 69, 102], "x2": [10, 66, 69, 102], "10th": 10, "100th": 10, "90": [10, 81, 86, 94, 98, 104, 105], "similarli": [10, 37, 41, 90, 92, 94, 97, 102], "math": [10, 92], "behind": [10, 70, 98], "proper": [10, 56, 61, 66, 69, 86, 92, 95, 97, 100, 102], "scenario": [10, 51, 53, 71, 89, 90, 91], "underli": [10, 42, 53, 70, 79, 81, 107], "stem": [10, 70, 103], "evolv": 10, "influenc": 10, "act": [10, 68, 90], "accordingli": [10, 32, 51], "emploi": [10, 101, 103], "partit": [10, 104], "ahead": 10, "good": [10, 37, 41, 54, 60, 62, 68, 71, 75, 77, 78, 83, 89, 92, 94, 95], "problem": [10, 32, 40, 48, 78, 83, 90, 91, 92, 95, 97], "deploy": [10, 86, 87, 98, 105], "overlook": [10, 68, 102], "fact": 10, "thu": [10, 36, 41, 62, 86, 88, 94, 95, 98, 104, 107], "diagnos": [10, 91, 97], "rarest": [10, 91], "q": [10, 102], "subpar": 10, "special": [10, 51, 55], "techniqu": [10, 102], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 91, 92, 94, 95, 98], "excess": [10, 92], "dark": [10, 106], "bright": [10, 107], "blurri": [10, 92], "lack": [10, 60], "unusu": [10, 102, 103], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 83, 91, 92, 94, 95, 99], "get_self_confidence_for_each_label": [10, 48, 71], "r": [10, 40, 73, 89, 90, 91, 105, 106], "tabular": [10, 83, 85, 90, 91, 93, 97, 100], "categor": [10, 70, 85, 86, 90, 91, 93, 97, 105], "encod": [10, 49, 69, 75, 78, 86, 87, 94, 95, 97, 105, 106], "miss": [10, 27, 37, 41, 51, 56, 66, 68, 89, 94, 97, 102, 105], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 56, 70, 97], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 37, 41, 42, 43, 77, 79, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 107], "ood_kwarg": 10, "outofdistribut": [10, 28, 70, 103], "outsid": [10, 97, 101], "outlierissuemanag": [10, 14, 21, 28, 90], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 51, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106], "howev": [10, 37, 41, 51, 56, 86, 87, 88, 92, 94, 95, 100, 104, 106], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 88, 90, 96, 100, 102], "vice": [10, 62], "versa": [10, 62], "light": [10, 92, 96, 102, 106], "29": [10, 89, 92, 96, 100, 101, 102, 106, 107], "low_inform": [10, 92], "odd_aspect_ratio": [10, 92], "35": [10, 89, 90, 96, 100, 101, 102], "odd_siz": [10, 92], "doc": [10, 37, 41, 70, 83, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "studio": [11, 83, 91, 92, 94, 95, 97], "data_issu": [11, 15, 16, 33, 90], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 60, 71, 89, 90, 91, 92, 100], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 69, 100], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 92], "dataissu": [13, 15, 16, 33], "central": [13, 107], "repositori": 13, "strategi": [13, 48, 97], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 51, 56, 63, 66, 69, 73, 75, 77, 89, 90, 91, 97], "recomput": [13, 87], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 62, 83], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 70, 90], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 75, 77], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 98, 102, 106, 107], "creation": [16, 41], "execut": [16, 37, 41, 90, 97, 102], "coordin": [16, 66, 68, 69, 102, 107], "behavior": [16, 36, 37, 41, 69, 89, 97], "At": [16, 69, 97], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 53, 60], "valuabl": 18, "vstack": [18, 56, 92, 96, 97, 98, 100, 101], "25": [18, 26, 37, 48, 54, 89, 91, 92, 96, 98, 100, 101, 102, 107], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 55, 56], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 89, 90, 91, 92, 97, 98, 100, 101], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 87, 95, 103], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 55, 56, 86, 88, 90, 92, 96, 98, 101], "near_duplicate_set": [19, 21, 90, 91, 92, 94, 95, 97, 98], "occurr": [19, 20, 22, 26, 27, 28, 31, 55], "median_nn_dist": 19, "near_duplicate_scor": [19, 90, 91, 92, 94, 95, 97, 98], "class_imbalance_scor": [20, 91], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 68, 83, 98, 107], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 70, 71, 89, 90, 91, 92, 95, 98, 103], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 106], "priori": [22, 98], "abstract": [22, 32], "applic": [23, 61, 97, 98, 100, 107], "typevar": [23, 25, 37, 41, 55, 65, 68, 69], "scalartyp": [23, 25], "covari": [23, 25, 73, 105], "summary_dict": 23, "label_scor": [23, 25, 30, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 51, 71, 75, 77, 102, 106], "empir": [26, 47, 61], "cumul": 26, "ecdf": 26, "histogram": [26, 94, 105], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 91, 94, 95, 98], "null_track": 27, "extend": [27, 49, 60, 92, 102, 103, 107], "superclass": 27, "arbitrari": [27, 36, 77, 81, 90, 103, 105], "prompt": 27, "address": [27, 87, 90, 91, 95, 97], "enabl": [27, 41, 51, 53], "null_scor": [27, 91], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "issue_threshold": 28, "multipli": [30, 54], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 56, 69, 87, 107], "50": [31, 41, 89, 97, 98, 100, 102, 103, 105], "keepdim": [31, 97], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 88, 100], "npt": 31, "int_": 31, "id": [31, 61, 90, 92, 97, 100], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 91], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": [32, 53], "mainli": [32, 103, 107], "content": [32, 70, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "fetch": [32, 40, 88, 91, 97], "datset": 33, "exclud": [33, 42, 78, 82, 90, 97, 107], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 89, 90, 91], "continu": [34, 60, 86, 87, 92, 95, 97, 100, 102, 105, 107], "binari": [34, 48, 56, 63, 65, 98, 107], "simultan": [34, 105], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 90, 91], "typeerror": [34, 48], "12": [34, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 61, 62, 71, 89, 90, 91, 92, 96, 102, 104, 106], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 51, 86, 87, 88, 91, 92, 94, 95, 100, 102, 103, 105, 107], "modifi": [36, 37, 40, 41, 51, 53, 56, 97, 98], "rank_classes_by_label_qu": [36, 91], "merg": [36, 51, 55, 83, 96, 97, 107], "find_overlapping_class": [36, 97, 98], "problemat": [36, 62, 78, 82, 88, 102, 107], "unnorm": [36, 62, 98], "abov": [36, 37, 40, 41, 53, 56, 61, 68, 69, 71, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 105, 106, 107], "model_select": [36, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 105], "cross_val_predict": [36, 41, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 104, 105], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 98], "cv": [36, 48, 86, 88, 89, 90, 91, 94, 98, 100], "df": [36, 56, 82, 88, 97], "overall_label_qu": [36, 62], "col": 36, "prob": [36, 55, 98, 104], "divid": [36, 62, 71], "label_nois": [36, 62], "human": [36, 96, 106, 107], "clearli": [36, 51, 71, 92, 102, 106], "num": [36, 62, 96, 98], "overlap": [36, 83, 96, 97, 98], "ontolog": 36, "publish": [36, 107], "therefor": [36, 71], "vehicl": [36, 96], "truck": [36, 96, 103, 106], "intuit": [36, 62, 89], "car": [36, 96, 102, 106], "frequent": [36, 61, 94, 97, 105], "characterist": 36, "l": [36, 37, 41, 66, 68, 69], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 56, 62, 64, 78, 96, 97, 103, 104, 107], "cat": [36, 56, 62, 64, 96, 97, 103, 104], "captur": [36, 88, 102, 103, 106], "co": [36, 37, 38], "noisy_label": [36, 89, 90, 91, 101], "overlapping_class": 36, "descend": [36, 37, 41, 48, 62, 69], "overall_label_health_scor": [36, 62, 98], "half": [36, 37, 39, 41, 62, 96, 107], "health_scor": [36, 62], "classes_by_label_qu": [36, 91], "cnn": [37, 39, 41, 92], "cifar": [37, 38, 96, 103], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 69, 89, 90, 97, 100, 103, 104, 106, 107], "forward": [37, 38, 39, 41, 92, 100], "overridden": [37, 41], "although": [37, 41, 70, 86, 94], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 57, 62, 69, 77, 81, 97, 100, 101, 102, 104, 107], "former": [37, 41], "hook": [37, 41, 96], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 69], "recurs": [37, 41, 48], "submodul": [37, 41, 50], "children": [37, 39, 41, 107], "nn": [37, 38, 41, 51, 92], "init": [37, 41, 98], "no_grad": [37, 41, 92, 103], "init_weight": [37, 41], "linear": [37, 41, 87, 92, 95], "fill_": [37, 41], "net": [37, 41, 88, 92, 96], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 92], "tensor": [37, 38, 41, 87, 88, 92, 95, 103], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 88], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 103], "compil": [37, 39, 41, 60], "cpu": [37, 39, 41, 43, 88, 92], "move": [37, 41, 48, 84, 96], "cuda": [37, 39, 41, 88, 92], "devic": [37, 41, 88, 92], "gpu": [37, 41, 87, 88, 95], "live": [37, 41], "copi": [37, 41, 73, 86, 88, 89, 90, 91, 94, 97, 101, 104, 105], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 92, 101, 103], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 83, 90, 96, 100, 103, 107], "get_buff": [37, 39, 41], "target": [37, 38, 41, 73, 74, 103, 105], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 95], "resolv": [37, 41, 89, 107], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 51, 92, 106], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 92], "break": [37, 41, 92, 102], "pickl": [37, 41, 102], "get_paramet": [37, 39, 41], "let": [37, 41, 70, 71, 86, 87, 88, 89, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 92], "16": [37, 41, 48, 51, 60, 77, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 106, 107], "33": [37, 41, 96, 102], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 71, 89, 96, 102, 107], "diagram": [37, 41, 104], "degre": [37, 41], "queri": [37, 41, 51, 53, 91, 92, 97, 101], "named_modul": [37, 39, 41], "o": [37, 41, 54, 55, 88, 89, 90, 91, 96, 97, 98, 101, 102, 107], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 100], "preserv": [37, 41, 56], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 56, 57, 69, 90, 92, 97, 98, 100, 102, 103], "named_buff": [37, 39, 41], "prefix": [37, 41, 88, 107], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 87, 88, 95, 97], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 86, 94], "fire": [37, 41, 96], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 90, 91], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 92, 94, 105], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41, 51], "incompatible_kei": [37, 41], "modif": [37, 41, 51], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 87, 88, 95], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 60, 84, 88, 97], "design": [37, 41, 51, 89], "ordereddict": [37, 41], "detach": [37, 41, 92], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 62, 68], "complex": [37, 41, 88], "integr": [37, 41, 53, 83, 97], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 87, 95, 96], "desir": [37, 41, 51, 55, 69], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 88], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 87, 95], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 92], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 102], "noisili": [38, 98], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 60, 92], "decim": [38, 56], "forget": [38, 48, 107], "rate_schedul": 38, "epoch": [38, 39, 41, 92, 97], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 71, 97], "250": [38, 90, 91, 98, 102], "epoch_decay_start": 38, "80": [38, 86, 94, 101, 105], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 87, 92, 95, 98], "train_load": [38, 41], "model1": [38, 98], "optimizer1": 38, "model2": [38, 98], "optimizer2": 38, "dataload": [38, 92, 103], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 59, 107], "wish": [39, 59, 103, 106, 107], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 97], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 76, 77, 78, 79, 80, 81, 82, 106, 107], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 75, 77, 89, 92, 97, 103, 106], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 92], "loader": [39, 41, 92], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 84], "mini": [40, 75, 77, 97], "low_self_confid": [40, 43, 63], "self_confid": [40, 43, 44, 48, 63, 65, 71, 79, 81, 86, 87, 97, 98], "conveni": [40, 53, 86, 87, 88, 95], "script": 40, "labels_fil": [40, 97], "pred_probs_fil": [40, 97], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 61, 106], "read": [40, 45, 91, 97, 98, 103, 107], "zarr": [40, 97], "memmap": [40, 106], "pythonspe": 40, "mmap": [40, 97], "hdf5": 40, "further": [40, 42, 62, 63, 65, 68, 69, 77, 78, 88, 97], "yourfil": 40, "npy": [40, 96, 97, 106], "mmap_mod": [40, 106], "tip": [40, 43, 60, 97], "save_arrai": 40, "your_arrai": 40, "disk": [40, 96, 97], "npz": [40, 107], "maxim": [40, 61, 75, 77, 106], "multiprocess": [40, 43, 63, 75, 77, 92, 97], "linux": [40, 75, 77], "physic": [40, 43, 75, 77, 102], "psutil": [40, 43, 75, 77], "labels_arrai": [40, 57], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 51, 69, 90, 97, 102, 103], "store_result": 40, "becom": [40, 103], "verifi": [40, 53, 97, 100, 103], "long": [40, 61, 70, 100], "enough": [40, 56, 97], "chunk": [40, 104], "ram": [40, 96], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 97], "shortcut": 40, "encount": [40, 43, 75], "1000": [40, 88, 95, 97, 103], "aggreg": [40, 44, 48, 61, 65, 68, 71, 81, 97, 98, 100], "seen": [40, 89, 97, 103, 107], "far": [40, 61], "label_quality_scor": [40, 65, 68, 71, 74, 98, 102], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 63, 65, 71, 79, 81], "low_normalized_margin": [40, 43, 63], "issue_indic": [40, 68, 92], "update_num_issu": 40, "arr": [40, 97], "chunksiz": 40, "convnet": 41, "bespok": [41, 60], "download": [41, 88, 97, 103], "mnist": [41, 83, 88, 96], "handwritten": 41, "digit": [41, 88, 96], "last": [41, 48, 66, 69, 89, 90, 91, 97, 100, 102, 107], "sklearn_digits_test_s": 41, "64": [41, 86, 92, 94, 98, 102], "01": [41, 71, 73, 88, 98, 101, 102, 103], "templat": 41, "flexibli": 41, "among": [41, 61, 98], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 56, 103], "train_label": [41, 87, 103], "span": 42, "sentenc": [42, 55, 79, 81, 82, 87, 95], "token_classif": [42, 55, 79, 81, 82, 97], "encourag": [43, 63, 71, 74], "multilabel_classif": [43, 62, 63, 65, 71, 97, 101], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 63, 71, 98], "num_to_remove_per_class": [43, 63], "bad": [43, 51, 63, 68, 71, 95, 97], "seem": [43, 98, 101], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 63, 65, 71, 79, 81], "label_issues_idx": [43, 71], "entropi": [43, 45, 47, 48, 70, 71], "prune_by_class": [43, 63, 98], "predicted_neq_given": [43, 63, 98], "prune_counts_matrix": 43, "smallest": [43, 71], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 83, 87, 97], "too": [43, 48, 51, 70, 91, 92, 97, 102], "thread": [43, 63], "window": [43, 88, 96], "shorter": [43, 66], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 56], "clip_noise_r": [44, 56], "clip_valu": [44, 56], "value_count": [44, 56, 97], "value_counts_fill_missing_class": [44, 56], "get_missing_class": [44, 56], "round_preserving_sum": [44, 56], "round_preserving_row_tot": [44, 56], "estimate_pu_f1": [44, 56], "confusion_matrix": [44, 56], "print_square_matrix": [44, 56], "print_noise_matrix": [44, 56, 98], "print_inverse_noise_matrix": [44, 56], "print_joint_matrix": [44, 56, 98], "compress_int_arrai": [44, 56], "train_val_split": [44, 56], "subset_x_i": [44, 56], "subset_label": [44, 56], "subset_data": [44, 56], "extract_indices_tf": [44, 56], "unshuffle_tensorflow_dataset": [44, 56], "is_torch_dataset": [44, 56], "is_tensorflow_dataset": [44, 56], "csr_vstack": [44, 56], "append_extra_datapoint": [44, 56], "get_num_class": [44, 56], "num_unique_class": [44, 56], "get_unique_class": [44, 56], "format_label": [44, 56], "smart_display_datafram": [44, 56], "force_two_dimens": [44, 56], "latent_algebra": [44, 84], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 101], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 101], "onehot2int": [44, 49, 101], "multilabel_scor": [44, 65], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 65], "softmin": [44, 48, 65, 68, 77, 81], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "default_k": [44, 50, 51], "features_to_knn": [44, 50, 51], "construct_knn_graph_from_index": [44, 50, 51, 53], "create_knn_graph_and_index": [44, 50, 51], "correct_knn_graph": [44, 50, 51], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [44, 50, 51], "correct_knn_distances_and_indic": [44, 50, 51], "high_dimension_cutoff": [44, 50, 52], "row_count_cutoff": [44, 50, 52], "decide_euclidean_metr": [44, 50, 52], "decide_default_metr": [44, 50, 52], "construct_knn": [44, 50, 53], "transform_distances_to_scor": [44, 54], "correct_precision_error": [44, 54], "token_classification_util": [44, 107], "get_sent": [44, 55, 107], "filter_sent": [44, 55, 107], "process_token": [44, 55], "merge_prob": [44, 55], "color_sent": [44, 55], "assert_valid_input": [44, 57], "assert_valid_class_label": [44, 57], "assert_nonempty_input": [44, 57], "assert_indexing_work": [44, 57], "labels_to_arrai": [44, 57], "labels_to_list_multilabel": [44, 57], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 60, 61, 83, 100], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 56, 88], "behav": 45, "unnecessari": [45, 97], "slightli": [45, 86, 87, 89], "interv": [45, 48, 103], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 56, 73, 88, 100, 106, 107], "increas": [46, 54, 68, 70, 71, 88, 90, 97, 100, 101, 107], "dot": [46, 81, 97], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 61], "ensembl": [47, 48, 61, 71, 86, 94, 97, 101, 103, 105], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 61], "format_multiannotator_label": [47, 61, 100], "formatted_label": [47, 56], "old": [47, 56, 84, 88, 96], "check_consensus_label_class": 47, "consensus_label": [47, 61, 100], "consensus_method": [47, 61], "consensu": [47, 61, 83, 99, 107], "establish": [47, 60, 87, 105], "compute_soft_cross_entropi": 47, "soft": [47, 96], "find_best_temp_scal": 47, "coarse_search_rang": [47, 73, 97], "fine_search_s": [47, 73, 97], "temperatur": [47, 48, 68, 77, 81], "scale": [47, 54, 86, 96, 97, 103, 106], "factor": [47, 48, 54, 75, 77], "minim": [47, 68, 103], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 96], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 71], "get_confidence_weighted_entropy_for_each_label": [48, 71], "75": [48, 89, 90, 91, 96, 100, 101, 102, 105, 107], "scorer": 48, "alpha": [48, 65, 68, 89, 90, 91, 98, 101, 105], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 63, 94, 95, 98, 107], "formula": [48, 54], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 71, 98, 100, 106], "recent": [48, 107], "success": 48, "previou": [48, 51, 92, 97, 102], "discount": 48, "s_ema": 48, "175": [48, 92, 98, 102], "underflow": 48, "nan": [48, 61, 86, 94, 100, 105], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 65], "n_sampl": 48, "n_label": 48, "worst": [48, 100], "class_label_quality_scor": 48, "42": [48, 95, 96, 102, 107], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 64, 65], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 88], "wider": 48, "splitter": 48, "kfold": [48, 92], "onevsrestclassifi": [48, 101], "randomforestclassifi": [48, 98, 101], "n_split": [48, 91, 92, 101], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 63, 69, 75, 78, 86, 94, 96, 97, 105, 106], "onehot_matrix": 49, "pairwis": [50, 52, 70], "reli": [51, 70, 87, 88, 89, 90, 91, 95, 102, 103, 105], "sklearn_knn_kwarg": 51, "correction_featur": 51, "discourag": 51, "flexibl": [51, 97], "manner": [51, 65, 86, 87, 100, 105], "701": 51, "900": [51, 86, 94, 105], "436": 51, "000": [51, 87, 92, 95, 96, 107], "idea": [51, 71, 89, 102], "dens": [51, 60], "33140006": 51, "76210367": 51, "correct_exact_dupl": 51, "mutual": [51, 62, 101], "vari": [51, 68, 91], "exact_duplicate_set": 51, "main": [51, 61, 89], "front": [51, 96], "consider": 51, "capabl": [51, 83], "come": [51, 56, 89, 90, 91, 97, 106], "misidentif": 51, "enable_warn": 51, "warn": [51, 61, 90, 91, 92, 94, 95, 97, 98], "messag": 51, "corrected_dist": 51, "corrected_indic": 51, "userwarn": [51, 87, 88, 90, 91, 95], "slot": [51, 96], "sqrt": 51, "distant": 51, "suitabl": [52, 61, 86, 94], "slower": 52, "decid": [52, 61, 87, 95, 96, 100, 105, 107], "predefin": 52, "met": [52, 107], "euclidean_dist": [52, 70], "spatial": [52, 70], "decis": [52, 86, 89, 90, 91], "That": [52, 98, 101], "cosine_dist": 52, "knn_kwarg": 53, "html": [53, 56, 66, 69, 70, 94, 97, 98], "kneighbor": 53, "metric_param": 53, "n_features_in_": 53, "effective_metric_params_": 53, "effective_metric_": 53, "n_samples_fit_": 53, "__sklearn_is_fitted__": 53, "conduct": 53, "is_fit": 53, "trail": 53, "underscor": 53, "avg_dist": 54, "scaling_factor": 54, "exp": [54, 70, 71, 90], "dt": 54, "right": [54, 66, 69, 87, 95, 101, 102, 103], "strength": [54, 69], "pronounc": 54, "differenti": 54, "ly": 54, "rule": [54, 55, 96], "thumb": 54, "ood_features_scor": [54, 70, 103], "88988177": 54, "80519832": 54, "toler": 54, "minkowski": 54, "noth": 54, "epsilon": 54, "sensibl": 54, "fixed_scor": 54, "readabl": 55, "lambda": [55, 88, 90, 97, 100], "long_sent": 55, "headlin": 55, "charact": [55, 56], "s1": 55, "s2": 55, "processed_token": 55, "alecnlcb": 55, "entiti": [55, 83, 97, 107], "mapped_ent": 55, "unique_ident": 55, "loc": [55, 89, 90, 91, 92, 107], "nbitbas": [55, 65], "probs_merg": 55, "0125": [55, 81], "0375": 55, "075": 55, "025": 55, "color": [55, 78, 89, 90, 91, 94, 98, 101, 103, 105, 106], "red": [55, 69, 89, 90, 91, 96, 98, 101, 102, 103, 106], "colored_sent": 55, "termcolor": 55, "31msentenc": 55, "0m": 55, "ancillari": 56, "class_without_nois": 56, "any_other_class": 56, "choos": [56, 71, 86, 94, 97, 98, 105], "tradition": 56, "new_sum": 56, "fill": 56, "major": [56, 61, 84, 89, 92, 103], "versu": [56, 98], "obviou": 56, "cgdeboer": 56, "iteround": 56, "reach": 56, "prob_s_eq_1": 56, "claesen": 56, "f1": [56, 69, 95, 98], "BE": 56, "left_nam": 56, "top_nam": 56, "titl": [56, 89, 90, 91, 98, 101, 103], "short_titl": 56, "round_plac": 56, "pretti": [56, 89, 98], "joint_matrix": 56, "num_possible_valu": 56, "holdout_idx": 56, "extract": [56, 70, 87, 88, 95, 100, 103, 106], "allow_shuffl": 56, "turn": [56, 83, 102], "shuffledataset": 56, "histori": 56, "pre_x": 56, "buffer_s": 56, "csr_matric": 56, "append": [56, 88, 89, 92, 96, 97, 98, 100, 101, 102, 103, 107], "bottom": [56, 66, 69, 102], "to_data": 56, "from_data": 56, "taken": 56, "label_matrix": 56, "canon": 56, "displai": [56, 69, 78, 82, 87, 88, 89, 95, 98, 107], "jupyt": [56, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "notebook": [56, 61, 88, 89, 91, 96, 97, 98, 100, 101, 102, 106, 107], "consol": 56, "allow_missing_class": 57, "allow_one_class": 57, "length_x": 57, "labellik": 57, "labels_list": [57, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 101], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 107], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 95, 103], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 98, 100, 101], "get_label_quality_multiannot": [61, 100], "vote": 61, "crowdsourc": [61, 83, 100], "dawid": [61, 100], "skene": [61, 100], "analog": [61, 89, 96, 100], "chosen": [61, 71, 97, 100], "crowdlab": [61, 100], "unlabel": [61, 92, 94, 95, 100, 103, 106], "get_active_learning_scor": [61, 100], "activelab": [61, 100], "priorit": [61, 68, 102, 106, 107], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 94, 98, 100, 105], "majority_vot": 61, "broken": [61, 69, 96, 105], "highest": [61, 69, 90, 92, 104], "0th": 61, "consensus_quality_scor": [61, 100], "annotator_agr": [61, 100], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 100], "agre": 61, "prevent": [61, 97], "overconfid": [61, 104], "detailed_label_qu": [61, 100], "annotator_stat": [61, 100], "model_weight": 61, "annotator_weight": 61, "labels_info": 61, "num_annot": [61, 100], "deriv": [61, 100], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 100], "num_examples_label": [61, 100], "agreement_with_consensu": [61, 100], "worst_class": [61, 100], "trustworthi": [61, 100, 105], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 105], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 90, 100], "get_majority_vote_label": [61, 100], "event": 61, "lastli": [61, 94], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 101], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 92, 98], "anim": [64, 103], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 102], "object_detect": [66, 68, 69, 102], "return_indices_ranked_by_scor": [66, 102], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 102, 106, 107], "bbox": [66, 69, 102], "image_nam": [66, 69], "y1": [66, 69, 102], "y2": [66, 69, 102], "later": [66, 69, 70, 87, 107], "corner": [66, 69, 102], "xyxi": [66, 69, 102], "io": [66, 69, 88, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 102], "detectron": [66, 69, 102], "detectron2": [66, 69, 102], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 92, 105, 107], "draw_box": [66, 69], "mmdetect": [66, 69, 102], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 91], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 102, 106, 107], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 102], "bounding_box_size_distribut": [67, 69, 102], "class_label_distribut": [67, 69, 102], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97], "chose": [68, 100, 102], "imperfectli": [68, 102], "dirti": [68, 71, 74, 105], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 94, 95, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 106], "discov": [69, 91, 107], "abnorm": [69, 92, 102], "auxiliari": [69, 103, 106], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 91, 98, 101, 103, 105, 106], "sorted_idx": [69, 103], "class_to_show": 69, "hidden": [69, 89, 103], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "matplotlib": [69, 78, 89, 90, 91, 92, 98, 101, 102, 103, 105], "pyplot": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "prediction_threshold": 69, "overlai": [69, 102], "figsiz": [69, 89, 90, 91, 92, 98, 101, 103], "save_path": [69, 102], "blue": [69, 96, 98, 102], "overlaid": 69, "side": [69, 96, 102], "figur": [69, 98, 101, 103, 105], "extens": [69, 98, 100], "png": [69, 102], "pdf": [69, 70], "svg": 69, "num_proc": [69, 92], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 98, 100, 105], "truth": [69, 98, 100, 105], "bias": 69, "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 94, 96, 98, 105], "per_class_metr": 69, "Of": 70, "li": 70, "smaller": [70, 89, 101, 102], "find_top_issu": [70, 71, 103], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 92], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 103], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 95, 103], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 90, 91, 94, 95, 103, 104], "order_label_issu": [71, 84], "whichev": [71, 104], "argsort": [71, 87, 92, 95, 98, 102, 103, 105], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 98], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 95], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 103], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 95], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 105], "linearregress": [73, 97, 105], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 90, 100, 103], "bootstrap": [73, 97, 105], "resampl": [73, 88, 97], "epistem": [73, 97, 103, 105], "aleator": [73, 97, 105], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 95, 103], "grain": 73, "grid": 73, "varianc": [73, 98], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 102, 105], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 91, 92, 96, 97, 100, 102, 103, 105], "aka": [74, 88, 98, 102, 105, 107], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 99], "pixel": [75, 77, 78, 92, 103, 106], "h": [75, 77, 78, 106], "height": [75, 77, 78, 106], "w": [75, 77, 78, 106], "width": [75, 77, 78, 106], "labels_one_hot": [75, 78, 106], "stream": [75, 89, 103, 107], "downsampl": [75, 77, 106], "shrink": [75, 77], "divis": [75, 77, 90], "common_label_issu": [76, 78, 80, 82, 106, 107], "filter_by_class": [76, 78, 106], "segmant": [77, 78], "num_pixel_issu": [77, 106], "product": [77, 92, 97], "pixel_scor": [77, 106], "enter": 78, "legend": [78, 89, 90, 91, 101, 102, 105, 106], "colormap": 78, "background": 78, "person": [78, 97, 102, 106, 107], "ambigu": [78, 82, 87, 88, 95, 96, 98, 107], "systemat": [78, 82, 100], "misunderstood": [78, 82], "issues_df": [78, 92], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 107], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 107], "converg": 81, "toward": 81, "_softmin_sentence_scor": 81, "sentence_scor": [81, 107], "token_info": 81, "70": [81, 94], "02": [81, 90, 91, 98, 102], "03": [81, 94, 96, 98, 102, 107], "04": [81, 94, 102], "08": [81, 98, 102, 105, 107], "commonli": [82, 84, 90, 91, 101, 107], "But": [82, 95, 98, 105, 107], "restrict": [82, 97], "reliabl": [83, 86, 88, 97, 100, 106], "thousand": 83, "imagenet": [83, 96], "popular": [83, 100, 102], "centric": [83, 92, 94, 95, 99], "minut": [83, 86, 87, 88, 94, 95, 96, 100, 101, 102, 105, 106, 107], "conda": 83, "feature_embed": [83, 103], "Then": [83, 86, 87, 92, 97], "your_dataset": [83, 88, 90, 91, 92, 94, 95, 97], "column_name_of_label": [83, 88, 90, 91, 92, 94, 95], "plagu": [83, 91], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 91], "sklearn_compatible_model": 83, "framework": [83, 101, 102], "complianc": 83, "tag": [83, 101, 107], "sequenc": 83, "recognit": [83, 88, 97, 107], "train_data": [83, 86, 87, 103, 105], "gotten": 83, "test_data": [83, 86, 87, 89, 98, 101, 103, 105], "deal": [83, 91], "tutori": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "feel": [83, 88, 91, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 105], "welcom": 83, "commun": [83, 97], "guidelin": [83, 102], "piec": 83, "smart": [83, 92, 94, 95, 97], "edit": [83, 97], "easier": [83, 98], "unreli": [83, 86, 88, 94, 95], "link": [83, 88, 96, 102], "older": 84, "outlin": 84, "substitut": 84, "v2": [84, 86, 94], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 94, 96, 107], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 98], "research": [84, 98], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "sql": [86, 94], "databas": [86, 94], "excel": [86, 94], "parquet": [86, 94], "student": [86, 94, 105, 107], "grade": [86, 94, 105], "exam": [86, 94, 105], "letter": [86, 94, 107], "hundr": [86, 94], "mistak": [86, 87, 92, 94, 95], "No": [86, 87, 95, 97], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "preprocess": [86, 87, 91, 94, 103, 105], "standardscal": [86, 94, 103], "labelencod": [86, 87], "train_test_split": [86, 87, 89, 90, 91, 103], "accuracy_scor": [86, 87, 88, 95, 98], "grades_data": [86, 94], "read_csv": [86, 87, 94, 95, 105], "demo": [86, 91, 94, 101], "head": [86, 87, 88, 91, 92, 94, 95, 96, 98, 100, 105], "stud_id": [86, 94], "exam_1": [86, 94, 105], "exam_2": [86, 94, 105], "exam_3": [86, 94, 105], "letter_grad": [86, 94], "f48f73": [86, 94], "53": [86, 89, 90, 91, 94, 96, 101, 102], "00": [86, 90, 91, 94, 96, 103], "77": [86, 90, 91, 94, 102], "0bd4e7": [86, 94], "81": [86, 94, 95, 102, 105, 107], "great": [86, 89, 94, 96], "particip": [86, 94], "cb9d7a": [86, 94], "61": [86, 94, 98, 102, 105], "94": [86, 94, 96, 98, 102, 105], "78": [86, 94, 96, 98, 102, 105], "9acca4": [86, 94], "48": [86, 94, 96, 98, 102], "x_raw": [86, 94], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 105], "x_encod": [86, 94], "get_dummi": [86, 94, 105], "drop_first": [86, 94], "numeric_featur": [86, 94], "scaler": [86, 94, 103], "x_process": [86, 94], "fit_transform": [86, 94], "bring": [86, 87, 92, 94, 95, 100, 105], "byod": [86, 87, 92, 94, 95, 100, 105], "tress": 86, "held": [86, 88, 94, 95, 96, 102, 103, 104], "straightforward": [86, 88, 94], "benefit": [86, 88, 104, 106], "num_crossval_fold": [86, 88, 94, 100], "tabl": [86, 94, 96, 100], "212": [86, 98], "review": [86, 87, 91, 94, 95, 96, 97, 98, 102, 105, 106, 107], "iloc": [86, 87, 88, 94, 95, 105], "58": [86, 91, 94, 96, 98, 102], "92": [86, 90, 98, 102], "93": [86, 96, 102, 105, 107], "827": 86, "99": [86, 96, 98], "86": [86, 91, 92, 94, 98, 102, 105], "74": [86, 102, 105], "637": [86, 94], "79": [86, 96, 102], "65": [86, 90, 102], "cheat": 86, "0pt": 86, "120": [86, 90, 91], "97": [86, 96, 97, 98, 102, 105, 107], "233": 86, "68": [86, 96, 98, 102], "83": [86, 98, 102, 105, 107], "76": [86, 89, 98, 101, 102, 105], "suspici": [86, 94], "carefulli": [86, 92, 94, 95], "examin": [86, 89, 90, 91, 94, 102], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90, 91], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 105], "14": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "acc_cl": [86, 87], "8095238095238095": 86, "especi": [86, 87, 89, 92, 97, 105], "blindli": [86, 87, 88, 97, 105], "trust": [86, 87, 88, 97, 98, 100, 104, 105], "effort": [86, 87, 105], "intent": [87, 95], "servic": [87, 95, 97], "onlin": [87, 95], "bank": [87, 95, 96], "banking77": [87, 95], "oo": [87, 95], "categori": [87, 92, 95], "shortlist": [87, 95, 105], "scope": [87, 95], "logist": [87, 89, 90, 91, 95, 100, 103], "probabilit": [87, 88], "drop": [87, 97, 100, 105], "earlier": [87, 107], "sentence_transform": [87, 95], "sentencetransform": [87, 95], "payment": [87, 95], "cancel_transf": [87, 95], "transfer": [87, 95], "fund": [87, 95], "cancel": [87, 95], "transact": [87, 95], "my": [87, 95], "revert": [87, 95], "morn": [87, 95], "realis": [87, 95], "yesterdai": [87, 95], "rent": [87, 95], "tomorrow": [87, 95], "raw_text": [87, 95], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "39": [87, 88, 90, 92, 95, 96, 97, 102, 105, 106, 107], "supported_cards_and_curr": [87, 95], "visa_or_mastercard": [87, 95], "change_pin": [87, 95], "apple_pay_or_google_pai": [87, 95], "getting_spare_card": [87, 95], "card_about_to_expir": [87, 95], "lost_or_stolen_phon": [87, 95], "card_payment_fee_charg": [87, 95], "beneficiary_not_allow": [87, 95], "card": [87, 95, 96], "utter": [87, 95], "encond": 87, "test_label": [87, 98, 101, 103], "suit": [87, 95, 96, 97], "electra": [87, 95], "discrimin": [87, 95], "googl": [87, 89, 95], "train_text": 87, "test_text": 87, "home": [87, 90, 91, 95, 96], "runner": [87, 90, 91, 95], "google_electra": [87, 95], "pool": [87, 95, 97, 103], "opt": [87, 88, 91, 92, 94, 95, 98], "hostedtoolcach": [87, 88, 91, 92, 94, 95, 98], "x64": [87, 88, 91, 92, 94, 95, 98], "lib": [87, 88, 91, 92, 94, 95, 98], "python3": [87, 88, 91, 92, 94, 95, 98], "site": [87, 88, 91, 92, 94, 95, 98], "_util": [87, 95], "831": [87, 95], "typedstorag": [87, 95], "untypedstorag": [87, 95], "untyped_storag": [87, 95], "fget": [87, 95], "__get__": [87, 95], "owner": [87, 95], "leverag": [87, 88, 95, 97, 98, 100], "computation": [87, 88, 95], "intens": [87, 88, 95], "400": [87, 89, 95], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 105], "lowest_quality_label": [87, 88, 95, 98, 105], "to_numpi": [87, 95, 97, 105], "44": [87, 96, 101, 102], "646": 87, "390": 87, "628": 87, "121": [87, 89, 98], "702": 87, "863": [87, 88], "135": 87, "337": [87, 102], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 95], "cash": [87, 95], "holidai": [87, 95], "sent": [87, 95, 107], "mine": [87, 95], "expir": [87, 95], "fight": 87, "hors": [87, 96, 103], "duck": [87, 96], "me": [87, 95], "whoever": [87, 95], "consum": [87, 105], "18": [87, 88, 89, 95, 96, 97, 98, 102, 103, 105, 106], "baseline_model": [87, 105], "87": [87, 91, 92, 102, 105], "acceler": [87, 105], "19": [87, 88, 89, 92, 95, 96, 97, 98, 102, 103, 105, 106, 107], "89": [87, 89, 90, 94, 102, 105], "spoken": 88, "500": [88, 103, 107], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 90, 91, 92, 97], "voxceleb": 88, "speech": [88, 107], "your_pred_prob": [88, 89, 90, 91, 94, 95], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 94, 98, 100], "command": 88, "wget": [88, 102, 106, 107], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 107], "v1": 88, "tar": [88, 103], "gz": [88, 103], "mkdir": [88, 107], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 89, 92, 97], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "pulldown": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "colab": [88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "tfio": 88, "pathlib": 88, "ipython": 88, "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": 88, "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 92], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 92], "embeddings_arrai": 88, "650": 88, "stft": 88, "return_complex": 88, "view_as_r": 88, "recov": 88, "trigger": 88, "aten": 88, "src": 88, "nativ": 88, "spectralop": 88, "cpp": 88, "_vf": 88, "n_fft": 88, "hop_length": 88, "win_length": 88, "attr": 88, "512": [88, 92], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "24": [88, 89, 96, 98, 100, 102, 105, 107], "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 90, 96, 97, 98, 102, 105, 107], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 89, 92, 96, 98, 102, 105], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 98, 101], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "investig": [88, 89], "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 95], "sort_valu": [88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 105], "516": 88, "1946": 88, "469": [88, 92], "2132": 88, "worth": [88, 98], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 103], "22": [88, 89, 90, 92, 96, 97, 98, 101, 102, 107], "load_ext": 89, "autoreload": 89, "ve": [89, 96, 97, 98, 100, 102], "prove": 89, "monitor": [89, 96], "ran": 89, "data_monitor": 89, "your_datalab": 89, "new_data_batch": 89, "your_label": 89, "get_your_label": 89, "your_featur": [89, 95], "get_featur": 89, "websit": [89, 96], "todo": 89, "get_ipython": 89, "25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970": 89, "cmd": 89, "dep": 89, "dependencies_test": 89, "missing_depend": 89, "__import__": 89, "importerror": 89, "sep": [89, 107], "npleas": 89, "toi": [89, 90, 91, 92, 96, 98, 100], "mid": [89, 90, 91], "workflow": [89, 99, 105], "unseen": 89, "inf": [89, 90, 91], "bins_map": [89, 90, 91], "create_data": [89, 90, 91], "800": 89, "y_bin": [89, 90, 91], "y_i": [89, 90, 91], "y_bin_idx": [89, 90, 91], "y_train": [89, 90, 91, 98, 105], "y_test": [89, 90, 91, 98, 105], "y_train_idx": [89, 90, 91], "y_test_idx": [89, 90, 91], "slide": [89, 90, 91, 96], "frame": [89, 90, 91], "x_out": [89, 90, 91], "tini": [89, 90, 91], "concaten": [89, 90, 91, 97, 104], "y_out": [89, 90, 91], "y_out_bin": [89, 90, 91], "y_out_bin_idx": [89, 90, 91], "exact_duplicate_idx": [89, 90, 91], "x_duplic": [89, 90, 91], "y_duplic": [89, 90, 91], "y_duplicate_idx": [89, 90, 91], "noisy_labels_idx": [89, 90, 91, 101], "train_x": 89, "test_x": 89, "train_y_tru": 89, "test_y_tru": 89, "train_i": 89, "test_i": 89, "train_y_idx": 89, "test_y_idx": 89, "scatter": [89, 90, 91, 98, 101, 105], "black": [89, 90, 91, 96, 105], "cyan": [89, 90, 91], "plot_data": [89, 90, 91, 98, 101, 105], "fig": [89, 90, 91, 92, 96, 103, 105], "ax": [89, 90, 91, 92, 103, 105], "subplot": [89, 90, 91, 92, 103], "set_titl": [89, 90, 91, 92, 103], "set_xlabel": [89, 90, 91], "x_1": [89, 90, 91], "fontsiz": [89, 90, 91, 92, 98, 101], "set_ylabel": [89, 90, 91], "x_2": [89, 90, 91], "set_xlim": [89, 90, 91], "set_ylim": [89, 90, 91], "linestyl": [89, 90, 91], "circl": [89, 90, 91, 98, 101], "misclassifi": [89, 90, 91], "zip": [89, 90, 91, 92, 102, 107], "label_err": [89, 90, 91], "180": [89, 90, 91, 102], "marker": [89, 90, 91], "facecolor": [89, 90, 91], "edgecolor": [89, 90, 91], "linewidth": [89, 90, 91, 103], "title_fontproperti": [89, 90, 91], "semibold": [89, 90, 91], "first_legend": [89, 90, 91], "align": [89, 90, 91], "markerscal": 89, "second_legend": [89, 90, 91], "46": [89, 94, 96, 98, 102], "gca": [89, 90, 91], "add_artist": [89, 90, 91], "tight_layout": [89, 90, 91], "ideal": [89, 90, 91], "simplic": [89, 101], "327": [89, 102], "9297": 89, "000124": 89, "259": 89, "000725": 89, "269": 89, "000794": 89, "002061": 89, "125": [89, 90], "002908": 89, "fly": [89, 96], "feed": [89, 97], "simul": 89, "tqdm": [89, 92], "sleep": [89, 96], "generate_stream": 89, "sleep_tim": 89, "desc": 89, "singleton_stream": 89, "seamless": [89, 97], "singleton": 89, "batched_stream": 89, "processed_singleton": 89, "suggested_label": [89, 95], "250997": 89, "285757": 89, "43": [89, 90, 96, 98, 102], "120906": 89, "principl": 89, "processed_batch": 89, "51": [89, 90, 91, 94, 96, 98, 102], "002748": 89, "189996": 89, "093505": 89, "037250": 89, "149": [89, 102], "076397": 89, "154": 89, "294010": 89, "160": [89, 95, 105, 107], "073622": 89, "166": [89, 92], "140832": 89, "167": [89, 96, 98, 102], "041743": 89, "181": 89, "169429": 89, "127304": 89, "235": [89, 102], "090310": 89, "254": [89, 96, 102], "183343": 89, "256": [89, 96, 97, 102], "048720": 89, "263": [89, 101, 102], "138820": 89, "292": 89, "239609": 89, "295": [89, 102], "022075": 89, "306": 89, "103040": 89, "343": 89, "234755": 89, "354": 89, "001612": 89, "359": 89, "068359": 89, "367": [89, 105], "015793": 89, "368": 89, "029022": 89, "391": 89, "106761": 89, "troublesom": 89, "623844": 89, "812647": 89, "816854": 89, "661968": 89, "632244": 89, "395": 89, "474599": 89, "396": 89, "653901": 89, "397": 89, "584554": 89, "398": 89, "817287": 89, "399": 89, "881545": 89, "183": 89, "937927": 89, "309": 89, "939505": 89, "133": 89, "947290": 89, "177": 89, "952187": 89, "314": [89, 102], "997293": 89, "27": [89, 94, 96, 98, 102, 107], "655501": 89, "3603": 89, "173": [89, 102], "000330": 89, "000626": 89, "296": 89, "002004": 89, "304": 89, "165496": 89, "275": [89, 101], "179811": 89, "001317": 89, "005943": 89, "001426": 89, "320": [89, 102], "186355": 89, "349": 89, "187305": 89, "393": 89, "169838": 89, "185770": 89, "369889": 89, "285297": 89, "406162": 89, "516543": 89, "440142": 89, "476283": 89, "382757": 89, "466786": 89, "522078": 89, "276298": 89, "328181": 89, "409633": 89, "281425": 89, "518102": 89, "360596": 89, "underneath": 90, "hood": [90, 97], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "dup": [90, 91], "45": [90, 91, 96, 98, 102], "remaind": 90, "modal": [90, 91, 97, 100], "132": [90, 91, 98, 102], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96], "014828": 90, "107": [90, 91, 98, 101], "021241": 90, "026407": 90, "notic": [90, 98, 100, 102], "3558": [90, 91], "126": [90, 91, 98, 102], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "is_near_duplicate_issu": [90, 91, 92, 94, 95, 97, 98], "131": [90, 91, 106], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 98, 102, 105], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 101, 106, 107], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "348": 90, "378": 90, "357": 90, "34": [90, 96, 98, 100, 102, 107], "54": [90, 96, 98, 102], "039122": 90, "044598": 90, "105": [90, 102], "105196": 90, "133654": 90, "168033": 90, "101107": 90, "37": [90, 96, 107], "183382": 90, "109": [90, 96, 102], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 102, 107], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 102], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 98, 102], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 98, 100, 102, 107], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 98], "_split": 91, "776": 91, "thoroughli": 91, "904": 91, "_base": [91, 92, 94, 95, 98], "246": [91, 92, 94, 95, 98, 102], "efficiencywarn": [91, 92, 94, 95, 98], "sort_graph_by_row_valu": [91, 92, 94, 95, 98], "warn_when_not_sort": [91, 92, 94, 95, 98], "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "is_class_imbalance_issu": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "is_null_issu": 91, "is_non_iid_issu": [91, 94, 95, 98], "is_underperforming_group_issu": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 97], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 107], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 96], "952381": 91, "666667": 91, "portion": 91, "huge": [91, 98], "worri": [91, 95], "critic": 91, "60": [92, 98, 105], "torchvis": [92, 103], "tensordataset": 92, "stratifiedkfold": [92, 101], "autonotebook": 92, "fashion_mnist": 92, "num_row": 92, "60000": 92, "transformed_dataset": 92, "with_format": 92, "255": [92, 96], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 101, 103], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": 92, "get_test_accuraci": 92, "testload": [92, 103], "energi": 92, "trainload": [92, 103], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 105], "acc": [92, 98], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 107], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "673": 92, "329": [92, 102], "88": [92, 96, 97, 98, 101, 102, 105], "195": 92, "435": 92, "493": 92, "060": 92, "659": [92, 105], "330": [92, 102], "505": 92, "476": 92, "340": 92, "590": 92, "328": [92, 102], "310": 92, "372": 92, "reorder": 92, "hstack": [92, 97, 98, 100], "vision": 92, "grayscal": 92, "max_preval": 92, "7714": 92, "3772": 92, "3585": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 98, 102, 107], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 96], "shirt": [92, 96], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 96, 103, 104], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 107], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 96], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 103], "nrow": [92, 103], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 103], "cmap": [92, 105], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 101, 102, 103, 104, 106], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": 92, "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 97], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 102, 106], "dark_scor": 92, "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "28": [92, 95, 96, 98, 100, 107], "difficult": 92, "disproportion": 92, "lowinfo_issu": 92, "low_information_scor": 92, "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 97, 100, 105], "xgboost": [94, 97, 105], "think": [94, 95, 97, 101, 106, 107], "nonzero": 94, "358": 94, "294": [94, 102], "941": 94, "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 96, 102, 107], "187": [94, 96], "898": 94, "0014": [94, 96], "595": 94, "702427": 94, "147": [94, 98, 102], "711186": 94, "157": [94, 98], "721394": 94, "771": 94, "731979": 94, "740335": 94, "0014153602099278074": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 101, 102, 105], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 105], "96": [94, 96, 98, 101, 102, 105], "lt": [94, 95, 96, 100, 103], "style": [94, 106], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95], "duplicate_result": 94, "690": 94, "perhap": [94, 98, 100], "twice": 94, "67": [94, 96, 102, 105], "wari": [94, 95, 97], "dive": 95, "text_embed": 95, "data_dict": [95, 98, 100], "85": [95, 102], "38": [95, 96, 102], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 96], "000224": 95, "971": 95, "000507": 95, "980": [95, 96], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "095724": 95, "148": [95, 107], "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "0000": [95, 96, 98], "313": [95, 102], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 98, 100, 102], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 96], "gone": 95, "gt": [95, 100, 107], "samp": 95, "br": 95, "press": [95, 107], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "pai": 95, "go": [95, 96, 98], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "refin": 96, "instruct": 96, "studi": [96, 102], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 107], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 107], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 102], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 103], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 107], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "yellow": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 103], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 107], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "flat": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 107], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 107], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 106], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 107], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 102], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 106], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 102], "carousel": 96, "tool": [96, 98, 100], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 107], "chain": 96, "fenc": [96, 106], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 103], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "center": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 106], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 98], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 102], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 107], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 106], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "school": 96, "bu": [96, 106], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "door": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 107], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 107], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 106], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 107], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": 96, "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 106], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 102, 106], "sign": [96, 106, 107], "dust": 96, "jacket": [96, 102], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "orang": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 103], "automobil": [96, 103], "deer": [96, 103], "cifar100_test_set": 96, "aquarium_fish": 96, "babi": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 107], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 106], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 106], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 102], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 105], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 102], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 107], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "alt": 96, "atheism": 96, "comp": 96, "graphic": [96, 106], "misc": [96, 107], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "sci": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 107], "talk": [96, 107], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "interpret": [96, 97, 98, 101, 105], "capit": 96, "29780": 96, "780": 96, "medic": [96, 107], "doctor": 96, "359223": 96, "640777": 96, "184": [96, 98], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "670000": 96, "251": [96, 102], "252": 96, "112": 96, "253": [96, 102], "022989": 96, "049505": 96, "190": [96, 98, 102], "66": 96, "002216": 96, "000974": 96, "59": [96, 102], "000873": 96, "000739": 96, "32635": 96, "32636": 96, "47": [96, 102], "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "36": [96, 107], "41": [96, 102, 105], "71": [96, 98, 102, 105], "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 98], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 102], "98": [96, 97, 105], "452381": 96, "459770": 96, "72": [96, 98, 101, 105], "523364": 96, "460784": 96, "446602": 96, "57": [96, 98], "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "82": [96, 98, 102, 105], "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 98], "188": [96, 98, 101], "189": [96, 98], "snippet": 97, "nlp": [97, 107], "mind": [97, 98], "alphanumer": 97, "facilit": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "from_dict": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 102], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 98], "game": 97, "speedup": [97, 103], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 98, 107], "successfulli": 97, "meaning": [97, 103], "virtuou": [97, 100], "cycl": [97, 100], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 98], "true_error": [97, 98, 101], "101": [97, 102], "102": [97, 101, 102], "104": [97, 98, 102], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98], "max_depth": [97, 98], "magnitud": 97, "coeffici": [97, 105], "optin": 97, "environ": [97, 98], "rerun": [97, 98], "cell": [97, 98], "unabl": [97, 98], "render": [97, 98], "nbviewer": [97, 98], "nbsp": [97, 98], "cleanlearninginot": [97, 98], "fittedcleanlearn": [97, 98], "linearregressionlinearregress": 97, "n_init": 97, "fit_predict": 97, "continuous_column": 97, "categorical_column": 97, "data_df": 97, "feature_a": 97, "feature_b": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "tolist": [97, 101], "issubset": 97, "frozenset": 97, "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "idxmin": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 103], "kept": 97, "ids_to_remove_seri": 97, "tmp": 97, "ipykernel_7826": 97, "1995098996": 97, "deprecationwarn": 97, "dataframegroupbi": 97, "include_group": 97, "silenc": 97, "assist": 97, "streamlin": 97, "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "depth": 98, "survei": [98, 107], "focus": [98, 100, 101, 105], "scienc": 98, "multivariate_norm": [98, 100, 101], "make_data": [98, 100], "cov": [98, 100, 101], "avg_trac": [98, 101], "py_tru": 98, "noise_matrix_tru": 98, "noise_marix": 98, "s_test": 98, "noisy_test_label": 98, "purpl": 98, "val": 98, "namespac": 98, "exec": 98, "markerfacecolor": [98, 101], "markeredgecolor": [98, 101, 105], "markers": [98, 101, 105], "markeredgewidth": [98, 101, 105], "realist": 98, "7560": 98, "637318e": 98, "896262e": 98, "548391e": 98, "923417e": 98, "375075e": 98, "3454": 98, "014051": 98, "020451": 98, "249": [98, 102], "042594": 98, "043859": 98, "045954": 98, "6120": 98, "023714": 98, "007136": 98, "119": [98, 102], "107266": 98, "103": [98, 102], "033738": 98, "238": [98, 102], "119505": 98, "236": [98, 102], "037843": 98, "222": 98, "614915": 98, "122": [98, 102], "624422": 98, "625965": 98, "626079": 98, "118": 98, "627675": 98, "695223": 98, "323529": 98, "523015": 98, "013720": 98, "675727": 98, "646521": 98, "anyth": 98, "enhanc": [98, 100, 102], "magic": 98, "liter": 98, "identif": 98, "x27": 98, "logisticregressionlogisticregress": 98, "ever": 98, "092": 98, "040": 98, "024": 98, "004": 98, "surpris": 98, "1705": 98, "01936": 98, "ton": 98, "yourfavoritemodel1": 98, "merged_label": 98, "merged_test_label": 98, "newli": [98, 100], "yourfavoritemodel2": 98, "yourfavoritemodel3": 98, "cl3": 98, "takeawai": 98, "randomli": 98, "my_test_pred_prob": 98, "my_test_pr": 98, "issues_test": 98, "corrected_test_label": 98, "pretend": 98, "cl_test_pr": 98, "69": [98, 105], "fairli": 98, "label_acc": 98, "percentag": 98, "offset": 98, "nquestion": 98, "overestim": 98, "answer": 98, "experienc": 98, "knowledg": 98, "prioiri": 98, "known": 98, "versatil": 98, "label_issues_indic": 98, "213": [98, 102], "218": [98, 102], "152": 98, "197": [98, 102], "196": [98, 102], "170": 98, "214": 98, "164": [98, 101], "198": [98, 102], "191": [98, 102], "63": [98, 102, 105], "117": [98, 105], "62": [98, 102, 105], "206": [98, 102], "115": [98, 102], "193": 98, "194": 98, "201": [98, 102], "174": 98, "163": 98, "150": [98, 100, 102], "169": [98, 107], "151": [98, 102], "168": 98, "precision_scor": 98, "recall_scor": 98, "f1_score": 98, "true_label_issu": 98, "filter_by_list": 98, "718750": [98, 100], "807018": 98, "912": 98, "733333": 98, "800000": 98, "721311": 98, "792793": 98, "908": 98, "676923": 98, "765217": 98, "892": 98, "567901": 98, "702290": 98, "844": 98, "gaug": 98, "label_issues_count": 98, "155": [98, 102], "156": 98, "172": [98, 101, 107], "easiest": 98, "modular": 98, "penalti": 98, "l2": 98, "model3": 98, "n_estim": 98, "cv_pred_probs_1": 98, "cv_pred_probs_2": 98, "cv_pred_probs_3": 98, "label_quality_scores_best": 98, "cv_pred_probs_ensembl": 98, "label_quality_scores_bett": 98, "superior": [98, 104], "timm": 99, "glad": 100, "multiannotator_label": 100, "300": [100, 107], "noisier": 100, "111": [100, 105], "local_data": [100, 101], "true_labels_train": [100, 101], "noise_matrix_bett": 100, "noise_matrix_wors": 100, "transpos": [100, 103], "dropna": 100, "zfill": 100, "row_na_check": 100, "notna": 100, "reset_index": 100, "a0001": 100, "a0002": 100, "a0003": 100, "a0004": 100, "a0005": 100, "a0006": 100, "a0007": 100, "a0008": 100, "a0009": 100, "a0010": 100, "a0041": 100, "a0042": 100, "a0043": 100, "a0044": 100, "a0045": 100, "a0046": 100, "a0047": 100, "a0048": 100, "a0049": 100, "a0050": 100, "na": 100, "60856743": 100, "41693214": 100, "40908785": 100, "87147629": 100, "64941785": 100, "10774851": 100, "0524466": 100, "71853246": 100, "37169848": 100, "66031048": 100, "multiannotator_util": 100, "crude": 100, "straight": 100, "majority_vote_label": 100, "736118": 100, "757751": 100, "782232": 100, "715565": 100, "824256": 100, "quality_annotator_a0001": 100, "quality_annotator_a0002": 100, "quality_annotator_a0003": 100, "quality_annotator_a0004": 100, "quality_annotator_a0005": 100, "quality_annotator_a0006": 100, "quality_annotator_a0007": 100, "quality_annotator_a0008": 100, "quality_annotator_a0009": 100, "quality_annotator_a0010": 100, "quality_annotator_a0041": 100, "quality_annotator_a0042": 100, "quality_annotator_a0043": 100, "quality_annotator_a0044": 100, "quality_annotator_a0045": 100, "quality_annotator_a0046": 100, "quality_annotator_a0047": 100, "quality_annotator_a0048": 100, "quality_annotator_a0049": 100, "quality_annotator_a0050": 100, "070564": 100, "216078": 100, "119188": 100, "alongisd": 100, "244981": 100, "208333": 100, "295979": 100, "294118": 100, "324197": 100, "310345": 100, "355316": 100, "346154": 100, "439732": 100, "480000": 100, "a0031": 100, "523205": 100, "580645": 100, "a0034": 100, "535313": 100, "607143": 100, "a0021": 100, "606999": 100, "a0015": 100, "609526": 100, "678571": 100, "a0011": 100, "621103": 100, "692308": 100, "wors": 100, "improved_consensus_label": 100, "majority_vote_accuraci": 100, "cleanlab_label_accuraci": 100, "8581081081081081": 100, "9797297297297297": 100, "besid": 100, "sorted_consensus_quality_scor": 100, "worst_qual": 100, "better_qu": 100, "worst_quality_accuraci": 100, "better_quality_accuraci": 100, "9893238434163701": 100, "improved_pred_prob": 100, "treat": [100, 101, 105, 107], "analzi": 100, "copyright": 101, "advertis": 101, "violenc": 101, "nsfw": 101, "celeba": 101, "make_multilabel_data": 101, "boxes_coordin": 101, "box_multilabel": 101, "make_multi": 101, "bx1": 101, "by1": 101, "bx2": 101, "by2": 101, "label_list": 101, "ur": 101, "upper": 101, "inidx": 101, "logical_and": 101, "inv_d": 101, "labels_idx": 101, "true_labels_test": 101, "dict_unique_label": 101, "get_color_arrai": 101, "dcolor": 101, "aa4400": 101, "55227f": 101, "55a100": 101, "00ff00": 101, "007f7f": 101, "386b55": 101, "0000ff": 101, "y_onehot": 101, "single_class_label": 101, "stratifi": [101, 104], "kf": 101, "train_index": 101, "test_index": 101, "clf_cv": 101, "x_train_cv": 101, "x_test_cv": 101, "y_train_cv": 101, "y_test_cv": 101, "y_pred_cv": 101, "saw": 101, "num_to_displai": 101, "09": [101, 102, 105], "267": 101, "225": 101, "171": 101, "234": 101, "165": 101, "227": [101, 102], "262": [101, 102], "266": [101, 102], "139": 101, "143": [101, 102], "216": [101, 102, 107], "265": 101, "159": [101, 102], "despit": [101, 107], "suspect": 101, "888": 101, "8224": 101, "9632": 101, "968": 101, "6512": 101, "0444": 101, "774": 101, "labels_binary_format": 101, "labels_list_format": 101, "surround": 102, "scene": 102, "coco": 102, "everydai": 102, "has_label_issu": 102, "nc": [102, 106, 107], "s3": [102, 106, 107], "amazonaw": [102, 106, 107], "objectdetectionbenchmark": 102, "tutorial_obj": 102, "pkl": 102, "example_imag": 102, "unzip": [102, 107], "_separate_label": 102, "_separate_predict": 102, "begin": 102, "image_path": 102, "rb": 102, "image_to_visu": 102, "seg_map": 102, "334": 102, "float32": 102, "bboxes_ignor": 102, "290": 102, "286": 102, "285": 102, "224": 102, "231": 102, "293": 102, "289": 102, "282": 102, "281": 102, "271": 102, "280": 102, "277": 102, "279": 102, "287": 102, "299": 102, "276": 102, "307": 102, "321": 102, "326": 102, "333": 102, "261": 102, "319": 102, "257": 102, "283": 102, "243": 102, "303": 102, "316": 102, "247": [102, 107], "323": 102, "226": 102, "228": 102, "232": 102, "219": [102, 107], "239": 102, "240": 102, "209": 102, "242": 102, "202": 102, "230": 102, "215": 102, "220": 102, "229": 102, "217": 102, "237": 102, "207": 102, "204": 102, "84": [102, 105], "205": 102, "223": 102, "153": 102, "140": 102, "124": 102, "268": 102, "273": 102, "108": 102, "284": 102, "110": 102, "136": 102, "145": 102, "297": 102, "317": 102, "192": 102, "332": 102, "324": 102, "203": 102, "199": 102, "291": 102, "000000481413": 102, "jpg": 102, "42398": 102, "44503": 102, "29968": 102, "336": 102, "21005": 102, "9978472": 102, "forgot": 102, "drew": 102, "label_issue_idx": 102, "num_examples_to_show": 102, "138": 102, "candid": 102, "97489622": 102, "70610878": 102, "98764951": 102, "88899237": 102, "99085805": 102, "issue_idx": 102, "95569726e": 102, "03354841e": 102, "57510169e": 102, "58447666e": 102, "39755858e": 102, "issue_to_visu": 102, "000000009483": 102, "95569726168054e": 102, "addition": [102, 106], "visibl": 102, "missmatch": 102, "likelei": 102, "agnost": 102, "vaidat": 102, "inconsist": 102, "000000395701": 102, "033548411774308e": 102, "armchair": 102, "tv": 102, "000000154004": 102, "38300759625496356": 102, "foreground": 102, "000000448410": 102, "0008575101690203273": 102, "crowd": 102, "alon": 102, "explor": [102, 103], "resembl": [102, 103], "000000499768": 102, "9748962231208227": 102, "000000521141": 102, "8889923658893665": 102, "000000143931": 102, "9876495074395956": 102, "bonu": 102, "uncov": 102, "irregular": 102, "anomali": 102, "object_detection_util": 102, "calculate_bounding_box_area": 102, "num_imgs_to_show": 102, "lab_object_count": 102, "pred_object_count": 102, "000000430073": 102, "000000183709": 102, "000000189475": 102, "label_norm": 102, "pred_norm": 102, "area": [102, 106], "lab_area": 102, "pred_area": 102, "lab_area_mean": 102, "lab_area_std": 102, "max_deviation_valu": 102, "max_deviation_class": 102, "deviation_valu": 102, "deviation_class": 102, "mean_area": 102, "std_area": 102, "class_area": 102, "deviations_awai": 102, "max_deviation_index": 102, "num_imgs_to_show_per_class": 102, "class_num": 102, "sorted_indic": 102, "000000422886": 102, "000000341828": 102, "000000461009": 102, "train_feature_embed": 103, "ood_train_feature_scor": 103, "test_feature_embed": 103, "ood_test_feature_scor": 103, "ood_train_predictions_scor": 103, "train_pred_prob": 103, "ood_test_predictions_scor": 103, "test_pred_prob": 103, "pylab": 103, "rcparam": 103, "baggingclassifi": 103, "therebi": 103, "rescal": 103, "transform_norm": 103, "totensor": 103, "root": 103, "animal_class": 103, "non_animal_class": 103, "animal_idx": 103, "test_idx": 103, "toronto": 103, "edu": 103, "kriz": 103, "170498071": 103, "90014750": 103, "01it": 103, "5000": 103, "plot_imag": 103, "visualize_outli": 103, "txt_class": 103, "img": [103, 105], "npimg": 103, "show_label": 103, "data_subset": 103, "resnet50": 103, "corpu": 103, "2048": 103, "embed_imag": 103, "create_model": 103, "strang": 103, "odd": 103, "train_ood_features_scor": 103, "top_train_ood_features_idx": 103, "fun": 103, "negat": 103, "homogen": 103, "bottom_train_ood_features_idx": 103, "test_ood_features_scor": 103, "top_ood_features_idx": 103, "inevit": 103, "trade": 103, "5th": 103, "percentil": 103, "fifth_percentil": 103, "plt_rang": 103, "hist": 103, "train_outlier_scor": 103, "ylabel": 103, "axvlin": 103, "test_outlier_scor": 103, "ood_features_indic": 103, "revisit": 103, "return_invers": 103, "train_feature_embeddings_sc": 103, "test_feature_embeddings_sc": 103, "train_pred_label": 103, "9702": 103, "train_ood_predictions_scor": 103, "test_ood_predictions_scor": 103, "lost": 103, "unsuit": 104, "ok": [104, 107], "convention": 104, "aforement": 104, "hypothet": 104, "contrast": 104, "tradit": 104, "disjoint": 104, "out_of_sample_pred_probs_for_a": 104, "out_of_sample_pred_probs_for_b": 104, "out_of_sample_pred_probs_for_c": 104, "out_of_sample_pred_prob": 104, "price": 105, "incom": 105, "ag": 105, "sensor": 105, "histgradientboostingregressor": 105, "r2_score": 105, "student_grades_r": 105, "final_scor": 105, "true_final_scor": 105, "homework": 105, "3d": 105, "hue": 105, "mpl_toolkit": 105, "mplot3d": 105, "axes3d": 105, "errors_idx": 105, "add_subplot": 105, "z": 105, "colorbar": 105, "errors_mask": 105, "feature_column": 105, "predicted_column": 105, "x_train_raw": 105, "x_test_raw": 105, "randomforestregressor": 105, "385101": 105, "499503": 105, "698255": 105, "776647": 105, "109373": 105, "170547": 105, "481096": 105, "984759": 105, "645270": 105, "795928": 105, "141": 105, "318": 105, "305": 105, "560": 105, "657": 105, "688": 105, "view_datapoint": 105, "concat": 105, "preds_og": 105, "r2_og": 105, "838": 105, "found_label_issu": 105, "preds_cl": 105, "r2_cl": 105, "926": 105, "favorit": 105, "968627e": 105, "228799": 105, "646674e": 105, "402962": 105, "323818e": 105, "952758": 105, "422144e": 105, "456908": 105, "465815e": 105, "753968": 105, "791186e": 105, "110719": 105, "485156e": 105, "670640": 105, "225300e": 105, "749976": 105, "499679e": 105, "947007": 105, "067882e": 105, "648396": 105, "synthia": 106, "imagesegment": 106, "given_mask": 106, "predicted_mask": 106, "set_printopt": [106, 107], "sky": 106, "sidewalk": 106, "veget": 106, "terrain": 106, "rider": 106, "pred_probs_filepath": 106, "1088": 106, "1920": 106, "label_filepath": 106, "synthia_class": 106, "maunal": 106, "100000": 106, "244800": 106, "leftmost": 106, "middl": [106, 107], "infact": 106, "rightmost": 106, "discrep": 106, "3263230": 106, "783381": 106, "275110": 106, "255917": 106, "78225": 106, "55990": 106, "54315": 106, "33591": 106, "24645": 106, "21054": 106, "15045": 106, "14171": 106, "13832": 106, "13498": 106, "11490": 106, "9164": 106, "8769": 106, "6999": 106, "6031": 106, "5011": 106, "mistakenli": 106, "class_issu": 106, "aim": [106, 107], "domin": 106, "bunch": 107, "conll": 107, "2003": 107, "love": 107, "n_i": 107, "optional_list_of_ordered_class_nam": 107, "deepai": 107, "conll2003": 107, "rm": 107, "tokenclassif": 107, "2024": 107, "2400": 107, "52e0": 107, "1a00": 107, "845": 107, "connect": 107, "443": 107, "await": 107, "982975": 107, "960k": 107, "959": 107, "94k": 107, "kb": 107, "mb": 107, "directori": 107, "inflat": 107, "17045998": 107, "16m": 107, "octet": 107, "26m": 107, "bert": 107, "read_npz": 107, "filepath": 107, "corrsespond": 107, "iob2": 107, "given_ent": 107, "entity_map": 107, "readfil": 107, "startswith": 107, "docstart": 107, "isalpha": 107, "isupp": 107, "indices_to_preview": 107, "nsentenc": 107, "eu": 107, "reject": 107, "boycott": 107, "british": 107, "lamb": 107, "00030412": 107, "00023826": 107, "99936208": 107, "00007009": 107, "00002545": 107, "99998795": 107, "00000401": 107, "00000218": 107, "00000455": 107, "00000131": 107, "00000749": 107, "99996115": 107, "00001371": 107, "0000087": 107, "00000895": 107, "99998936": 107, "00000382": 107, "00000178": 107, "00000366": 107, "00000137": 107, "99999101": 107, "00000266": 107, "00000174": 107, "0000035": 107, "00000109": 107, "99998768": 107, "00000482": 107, "00000202": 107, "00000438": 107, "0000011": 107, "00000465": 107, "99996392": 107, "00001105": 107, "0000116": 107, "00000878": 107, "99998671": 107, "00000364": 107, "00000213": 107, "00000472": 107, "00000281": 107, "99999073": 107, "00000211": 107, "00000159": 107, "00000442": 107, "00000115": 107, "peter": 107, "blackburn": 107, "00000358": 107, "00000529": 107, "99995623": 107, "0000129": 107, "0000024": 107, "00001812": 107, "99994141": 107, "00001645": 107, "00002162": 107, "brussel": 107, "1996": 107, "00001172": 107, "00000821": 107, "00004661": 107, "0000618": 107, "99987167": 107, "99999061": 107, "00000201": 107, "00000195": 107, "00000408": 107, "00000135": 107, "2254": 107, "2907": 107, "19392": 107, "9962": 107, "8904": 107, "19303": 107, "12918": 107, "9256": 107, "11855": 107, "18392": 107, "20426": 107, "19402": 107, "14744": 107, "19371": 107, "4645": 107, "10331": 107, "9430": 107, "6143": 107, "18367": 107, "12914": 107, "todai": 107, "weather": 107, "march": 107, "scalfaro": 107, "northern": 107, "himself": 107, "said": 107, "germani": 107, "nastja": 107, "rysich": 107, "north": 107, "spla": 107, "fought": 107, "khartoum": 107, "govern": 107, "south": 107, "1983": 107, "autonomi": 107, "animist": 107, "region": 107, "moslem": 107, "arabis": 107, "mayor": 107, "antonio": 107, "gonzalez": 107, "garcia": 107, "revolutionari": 107, "parti": 107, "wednesdai": 107, "troop": 107, "raid": 107, "farm": 107, "stole": 107, "rape": 107, "women": 107, "spring": 107, "chg": 107, "hrw": 107, "12pct": 107, "princ": 107, "photo": 107, "moment": 107, "spokeswoman": 107, "rainier": 107, "told": 107, "reuter": 107, "danila": 107, "carib": 107, "w224": 107, "equip": 107, "radiomet": 107, "earn": 107, "19996": 107, "london": 107, "denom": 107, "sale": 107, "uk": 107, "jp": 107, "fr": 107, "maccabi": 107, "hapoel": 107, "haifa": 107, "tel": 107, "aviv": 107, "hospit": 107, "rever": 107, "roman": 107, "cathol": 107, "nun": 107, "admit": 107, "calcutta": 107, "week": 107, "ago": 107, "fever": 107, "vomit": 107, "allianc": 107, "embattl": 107, "kabul": 107, "salang": 107, "highwai": 107, "mondai": 107, "tuesdai": 107, "suprem": 107, "council": 107, "led": 107, "jumbish": 107, "milli": 107, "movement": 107, "warlord": 107, "abdul": 107, "rashid": 107, "dostum": 107, "dollar": 107, "exchang": 107, "3570": 107, "12049": 107, "born": 107, "1937": 107, "provinc": 107, "anhui": 107, "dai": 107, "came": 107, "shanghai": 107, "citi": 107, "prolif": 107, "author": 107, "teacher": 107, "chines": 107, "16764": 107, "1990": 107, "historian": 107, "alan": 107, "john": 107, "percival": 107, "taylor": 107, "di": 107, "20446": 107, "pace": 107, "bowler": 107, "ian": 107, "harvei": 107, "claim": 107, "victoria": 107, "15514": 107, "cotti": 107, "osc": 107, "foreign": 107, "minist": 107, "7525": 107, "sultan": 107, "specter": 107, "crown": 107, "abdullah": 107, "defenc": 107, "aviat": 107, "jeddah": 107, "saudi": 107, "agenc": 107, "2288": 107, "hi": 107, "customari": 107, "outfit": 107, "champion": 107, "damp": 107, "scalp": 107, "canada": 107, "reign": 107, "olymp": 107, "donovan": 107, "bailei": 107, "1992": 107, "linford": 107, "christi": 107, "britain": 107, "1984": 107, "1988": 107, "carl": 107, "lewi": 107, "ambigi": 107, "punctuat": 107, "chicago": 107, "digest": 107, "philadelphia": 107, "usda": 107, "york": 107, "token_issu": 107, "471": 107, "kean": 107, "year": 107, "contract": 107, "manchest": 107, "19072": 107, "societi": 107, "bite": 107, "deliv": 107, "19910": 107, "father": 107, "clarenc": 107, "woolmer": 107, "renam": 107, "uttar": 107, "pradesh": 107, "india": 107, "ranji": 107, "trophi": 107, "nation": 107, "championship": 107, "captain": 107, "1949": 107, "15658": 107, "19879": 107, "iii": 107, "brian": 107, "shimer": 107, "randi": 107, "jone": 107, "19104": 107}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "neighbor"], [54, 0, 0, "-", "outlier"], [55, 0, 0, "-", "token_classification_utils"], [56, 0, 0, "-", "util"], [57, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[51, 0, 0, "-", "knn_graph"], [52, 0, 0, "-", "metric"], [53, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[51, 7, 1, "", "DEFAULT_K"], [51, 1, 1, "", "construct_knn_graph_from_index"], [51, 1, 1, "", "correct_knn_distances_and_indices"], [51, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [51, 1, 1, "", "correct_knn_graph"], [51, 1, 1, "", "create_knn_graph_and_index"], [51, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[52, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [52, 7, 1, "", "ROW_COUNT_CUTOFF"], [52, 1, 1, "", "decide_default_metric"], [52, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[54, 1, 1, "", "correct_precision_errors"], [54, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, 1, 1, "", "color_sentence"], [55, 1, 1, "", "filter_sentence"], [55, 1, 1, "", "get_sentence"], [55, 1, 1, "", "mapping"], [55, 1, 1, "", "merge_probs"], [55, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[56, 1, 1, "", "append_extra_datapoint"], [56, 1, 1, "", "clip_noise_rates"], [56, 1, 1, "", "clip_values"], [56, 1, 1, "", "compress_int_array"], [56, 1, 1, "", "confusion_matrix"], [56, 1, 1, "", "csr_vstack"], [56, 1, 1, "", "estimate_pu_f1"], [56, 1, 1, "", "extract_indices_tf"], [56, 1, 1, "", "force_two_dimensions"], [56, 1, 1, "", "format_labels"], [56, 1, 1, "", "get_missing_classes"], [56, 1, 1, "", "get_num_classes"], [56, 1, 1, "", "get_unique_classes"], [56, 1, 1, "", "is_tensorflow_dataset"], [56, 1, 1, "", "is_torch_dataset"], [56, 1, 1, "", "num_unique_classes"], [56, 1, 1, "", "print_inverse_noise_matrix"], [56, 1, 1, "", "print_joint_matrix"], [56, 1, 1, "", "print_noise_matrix"], [56, 1, 1, "", "print_square_matrix"], [56, 1, 1, "", "remove_noise_from_class"], [56, 1, 1, "", "round_preserving_row_totals"], [56, 1, 1, "", "round_preserving_sum"], [56, 1, 1, "", "smart_display_dataframe"], [56, 1, 1, "", "subset_X_y"], [56, 1, 1, "", "subset_data"], [56, 1, 1, "", "subset_labels"], [56, 1, 1, "", "train_val_split"], [56, 1, 1, "", "unshuffle_tensorflow_dataset"], [56, 1, 1, "", "value_counts"], [56, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[57, 1, 1, "", "assert_indexing_works"], [57, 1, 1, "", "assert_nonempty_input"], [57, 1, 1, "", "assert_valid_class_labels"], [57, 1, 1, "", "assert_valid_inputs"], [57, 1, 1, "", "labels_to_array"], [57, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 92, 94, 95, 97, 98, 101, 107], "count": [3, 98], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 88, 89, 90, 91, 92, 93, 94, 95, 98, 101], "creat": [7, 89, 90, 91, 98, 100], "your": [7, 83, 90, 91, 95, 97, 98], "own": 7, "issu": [7, 9, 10, 21, 30, 83, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 90], "us": [7, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "gener": 8, "cluster": [8, 97], "id": 8, "guid": [9, 11], "type": [9, 10, 98], "custom": [9, 90], "cleanlab": [9, 10, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "studio": [9, 10], "easi": [9, 10, 83, 92, 94, 95], "mode": [9, 10, 83, 92, 94, 95], "can": [10, 89, 91, 96, 97, 98, 100], "detect": [10, 88, 91, 92, 94, 95, 97, 98, 102, 103], "estim": [10, 98, 100, 101], "each": 10, "label": [10, 23, 25, 30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "outlier": [10, 28, 54, 70, 89, 92, 94, 95, 101, 103], "Near": [10, 91, 92, 94, 95], "duplic": [10, 19, 91, 92, 94, 95, 97, 101], "non": [10, 95], "iid": [10, 95], "class": [10, 84, 98, 106], "imbal": [10, 20], "imag": [10, 92, 103], "specif": [10, 21, 106], "underperform": [10, 97], "group": [10, 97], "null": [10, 27], "data": [10, 12, 83, 86, 88, 89, 90, 91, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "valuat": 10, "option": 10, "paramet": [10, 98], "get": [11, 89, 90, 91, 100, 101, 102, 106, 107], "start": [11, 96], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 97, 98], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 72, 73, 74, 97, 105], "prioriti": 30, "order": 30, "find": [30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "underperforming_group": 31, "model_output": 32, "report": [33, 92], "dataset": [36, 62, 83, 87, 88, 89, 91, 92, 95, 96, 97, 98, 101, 102, 103, 105, 106, 107], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 63, 66, 75, 79, 98], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "neighbor": 50, "knn_graph": 51, "metric": 52, "search": [53, 90], "token_classification_util": 55, "util": 56, "valid": [57, 92, 104], "fasttext": 58, "model": [59, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105], "kera": 60, "multiannot": [61, 100], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 98], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 89, 91, 97, 98], "segment": [76, 106], "token_classif": [80, 107], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "instal": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "2": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "common": [83, 84, 107], "3": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "handl": [83, 97], "error": [83, 87, 92, 97, 98, 100, 101, 102, 105, 106, 107], "train": [83, 86, 87, 88, 97, 103, 105], "robust": [83, 86, 87, 98, 105], "noisi": [83, 86, 87, 98, 105], "4": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 102, 103, 105], "curat": 83, "fix": [83, 97], "level": [83, 96, 98, 107], "5": [83, 86, 88, 89, 91, 92, 94, 98, 100, 105], "improv": [83, 100], "via": [83, 98, 100], "mani": [83, 98], "other": [83, 100, 102, 105], "techniqu": 83, "contribut": 83, "how": [84, 97, 98, 100, 101, 107], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 91, 98, 105], "pre": [84, 88, 97, 103], "function": [84, 90], "name": 84, "chang": 84, "modul": [84, 98], "new": [84, 89], "remov": 84, "argument": [84, 90], "variabl": 84, "cleanlearn": [85, 97, 98], "tutori": [85, 93, 96, 99], "structur": 86, "tabular": [86, 94], "requir": [86, 87, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "depend": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "load": [86, 87, 88, 89, 90, 91, 94, 95, 105], "process": [86, 94, 103, 105], "select": [86, 94], "comput": [86, 88, 92, 94, 95, 97, 100, 104], "out": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "sampl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "predict": [86, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 104], "probabl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "more": [86, 87, 89, 91, 98, 105], "text": [87, 95, 107], "format": [87, 95, 97, 101, 102], "defin": [87, 92, 95, 105], "potenti": [87, 100, 105], "an": [88, 92, 97], "audio": 88, "import": [88, 89, 90, 91, 92, 96, 98, 100], "them": [88, 96, 98], "speechbrain": 88, "featur": [88, 92, 103], "fit": 88, "linear": 88, "datamonitor": 89, "leverag": 89, "statist": [89, 100], "audit": [89, 90, 91], "skip": [89, 91, 96, 98, 100], "detail": [89, 91, 96, 98, 100], "classifi": [89, 90, 91], "6": [89, 98], "about": [89, 91], "addit": [89, 91], "7": [89, 92, 98], "8": [89, 96, 98], "look": 89, "both": 89, "workflow": [90, 98], "instanti": 90, "object": [90, 102], "increment": 90, "specifi": [90, 97], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 98], "kind": [91, 102], "inform": [91, 92], "fetch": [92, 96], "normal": 92, "fashion": 92, "mnist": 92, "prepar": 92, "k": [92, 94, 104], "fold": [92, 104], "cross": [92, 104], "embed": [92, 103], "view": 92, "most": [92, 107], "like": 92, "exampl": [92, 97, 98, 103], "sever": 92, "set": [92, 98], "dark": 92, "top": [92, 106], "low": 92, "numer": 94, "categor": 94, "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": 94, "drift": [95, 101], "understand": 96, "evalu": 96, "health": [96, 98], "popular": 96, "faq": 97, "what": [97, 98, 104], "do": [97, 98], "i": [97, 98, 104], "infer": 97, "correct": 97, "ha": 97, "flag": 97, "should": 97, "v": 97, "test": [97, 98, 103], "big": 97, "limit": 97, "memori": 97, "why": 97, "isn": 97, "t": 97, "work": [97, 98, 100, 107], "me": 97, "differ": [97, 102], "clean": [97, 98], "final": 97, "hyperparamet": 97, "tune": 97, "onli": 97, "one": [97, 98, 101, 106], "doe": [97, 100, 107], "take": 97, "so": 97, "long": 97, "slice": 97, "when": [97, 98], "identifi": [97, 102], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "The": 98, "centric": 98, "ai": 98, "machin": 98, "find_label_issu": 98, "line": 98, "code": 98, "visual": [98, 102, 103, 106], "twenti": 98, "lowest": 98, "qualiti": [98, 100, 101, 102, 106, 107], "see": 98, "now": 98, "let": 98, "": 98, "happen": 98, "we": 98, "merg": 98, "seafoam": 98, "green": 98, "yellow": 98, "too": 98, "you": 98, "re": 98, "One": 98, "score": [98, 100, 101, 102, 106, 107], "rule": 98, "overal": [98, 106], "accur": 98, "thi": 98, "directli": 98, "fulli": 98, "character": 98, "nois": 98, "matrix": [98, 101], "joint": 98, "prior": 98, "true": 98, "distribut": 98, "flip": 98, "rate": 98, "ani": 98, "again": 98, "support": 98, "lot": 98, "method": 98, "filter_bi": 98, "automat": 98, "everi": 98, "uniqu": 98, "num_label_issu": 98, "threshold": 98, "found": 98, "Not": 98, "sure": 98, "ensembl": 98, "multipl": [98, 100], "predictor": 98, "consensu": 100, "annot": 100, "initi": 100, "major": 100, "vote": 100, "better": 100, "compar": 100, "inspect": 100, "retrain": 100, "further": 100, "multi": 101, "beyond": 101, "mislabel": [101, 106, 107], "given": 101, "hot": 101, "binari": 101, "without": 101, "applic": 101, "real": 101, "download": [102, 106, 107], "objectlab": 102, "exploratori": 102, "analysi": 102, "pytorch": 103, "timm": 103, "cifar10": 103, "some": 103, "pred_prob": [103, 106, 107], "wai": 105, "semant": 106, "which": 106, "ar": 106, "commonli": 106, "focus": 106, "token": 107, "word": 107, "sentenc": 107, "contain": 107, "particular": 107}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [54, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[50, "neighbor"]], "knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "search": [[53, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "util": [[56, "module-cleanlab.internal.util"]], "validation": [[57, "module-cleanlab.internal.validation"]], "fasttext": [[58, "fasttext"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [105, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [105, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [105, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[89, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[89, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [100, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[89, "2.-Create-and-load-the-data-(can-skip-these-details)"], [91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[89, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[89, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[89, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[89, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[89, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[89, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [98, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[97, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[98, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[98, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[98, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[98, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[98, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[98, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[98, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[98, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[98, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[98, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[98, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[98, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[98, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[98, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[98, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[98, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[98, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[98, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[98, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[99, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[100, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[100, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[100, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[100, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[100, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[100, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[100, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[100, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[100, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[101, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[101, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[101, "2.-Format-data,-labels,-and-model-predictions"], [102, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[101, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [106, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[101, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[101, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[101, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[101, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[101, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[102, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[102, "1.-Install-required-dependencies-and-download-data"], [106, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[102, "Get-label-quality-scores"], [106, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[102, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[102, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[102, "Other-uses-of-visualize"]], "Exploratory data analysis": [[102, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[103, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[103, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[103, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[103, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[103, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[103, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[104, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[104, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[104, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[105, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[105, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[105, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[106, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[106, "2.-Get-data,-labels,-and-pred_probs"], [107, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[106, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[106, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[106, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[107, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[107, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[107, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[107, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[107, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.neighbor"], [51, "module-cleanlab.internal.neighbor.knn_graph"], [52, "module-cleanlab.internal.neighbor.metric"], [53, "module-cleanlab.internal.neighbor.search"], [54, "module-cleanlab.internal.outlier"], [55, "module-cleanlab.internal.token_classification_utils"], [56, "module-cleanlab.internal.util"], [57, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[50, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[53, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[54, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[56, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[57, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 91, 98, 100, 101], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 91, 98, 100, 101], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 91, 98, 100, 101], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 54, 55, 56, 68, 92, 96, 107], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 90, 96, 104], "benchmark": [1, 37, 83, 84, 89, 90, 91, 98, 100, 101], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 51, 53, 54, 56, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "core": [1, 40, 43, 75, 77], "algorithm": [1, 2, 8, 10, 31, 38, 42, 53, 54, 56, 61, 70, 79, 81, 83, 97, 98, 100, 107], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 51, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "introduc": [1, 88, 97, 98], "synthet": [1, 100, 101, 106], "nois": [1, 2, 3, 36, 43, 46, 56, 62, 89, 90, 91, 96, 100, 105], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 90, 99, 103, 104], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 56, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 91, 99, 100, 103, 104, 105, 106], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 90, 94, 99, 100, 104], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 51, 52, 53, 59, 63, 66, 69, 78, 82, 92, 94, 95, 98, 102, 107], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 51, 53, 54, 56, 59, 61, 66, 69, 70, 71, 83, 92, 97, 101], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 51, 53, 54, 56, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 51, 53, 56, 57, 70, 71, 73, 78, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 51, 53, 54, 56, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "matric": [1, 3, 46, 97], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 52, 53, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "learn": [1, 2, 3, 4, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 53, 56, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 90, 92, 94, 95, 96, 100, 101, 105], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 89, 91, 97, 98, 100, 101, 102, 105, 106, 107], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 56, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 91, 94, 95, 97, 99, 100], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 51, 56, 57, 63, 66, 68, 69, 70, 71, 94, 102, 103], "trace": [1, 89, 90, 91, 98, 100, 101], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 51, 52, 53, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 51, 52, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 106, 107], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 106, 107], "noise_matrix": [1, 2, 3, 10, 46, 56, 89, 90, 91, 98, 100, 101], "py": [1, 3, 33, 37, 38, 43, 46, 48, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 90, 98, 100], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103, 105, 106], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 51, 52, 54, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 107], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 54, 56, 61, 69, 70, 71, 75, 94, 95, 98, 100, 107], "true_label": [1, 2, 3, 36, 46, 56, 98, 100], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 91, 97, 98, 100, 101, 102, 103, 106, 107], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 57, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 97, 98, 100, 101, 105], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 54, 68, 73, 87, 91, 95, 97, 98, 100, 101, 102, 103, 105], "achiev": [1, 2, 37, 38, 41, 73, 97, 100, 107], "better": [1, 5, 10, 43, 52, 61, 63, 71, 73, 74, 83, 87, 88, 91, 94, 95, 97, 98, 101, 102, 103, 107], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 51, 61, 71, 73, 86, 88, 89, 90, 91, 92, 94, 97, 98, 100, 101, 103], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 50, 51, 52, 69, 73, 83, 86, 87, 90, 97, 98, 100, 101, 104, 105], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 54, 61, 62, 69, 70, 71, 97, 100, 103], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 91, 92, 95], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 107], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 53, 54, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 96, 97, 98, 101, 102, 103, 106, 107], "condit": [1, 2, 3, 46, 52, 55, 56, 71, 92, 98, 107], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 98, 99, 101, 102, 103, 106, 107], "k_": [1, 2, 3, 46, 56], "k_y": [1, 2, 3, 46, 56], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 50, 51, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106], "fraction": [1, 2, 3, 10, 20, 38, 46, 56, 61, 73, 94, 97], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 100, 101, 102, 104, 105, 106, 107], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 55, 56, 63, 71, 73, 74, 86, 88, 89, 90, 91, 92, 94, 95, 97, 100, 102, 104, 106, 107], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 107], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 51, 56, 57, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 106, 107], "assum": [1, 2, 3, 12, 43, 46, 51, 55, 56, 71, 75, 78, 97, 101, 103, 105, 106, 107], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 52, 55, 56, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 56, 62, 63, 65, 68, 73, 89, 90, 91, 92, 97, 98, 100, 101, 106, 107], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 104], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 51, 55, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "return": [1, 2, 3, 4, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 101, 102, 105, 106, 107], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 51, 55, 56, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 51, 56, 61, 62, 63, 65, 66, 82, 87, 88, 91, 92, 94, 95, 96, 97, 98, 105, 107], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 51, 52, 54, 55, 56, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 106, 107], "perfect": [1, 2, 36, 73, 98, 102], "exactli": [1, 3, 10, 36, 37, 41, 43, 64, 70, 90, 91, 92, 94, 95, 98], "yield": [1, 37, 41, 89], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 51, 52, 53, 54, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 54, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 56, 57, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "loop": [1, 3, 46, 56, 92, 102], "implement": [1, 2, 3, 4, 9, 14, 22, 37, 38, 40, 41, 46, 50, 52, 53, 56, 70, 73, 83, 86, 88, 90, 94, 103, 104], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 51, 54, 57, 68, 69, 73, 75, 77, 81, 87, 88, 90, 91, 92, 94, 95, 96, 101, 105, 106], "do": [1, 2, 5, 9, 10, 36, 40, 41, 56, 57, 70, 71, 75, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 60, 73, 87, 88, 90, 91, 92, 94, 95, 96, 98, 103], "pseudocod": [1, 104], "happen": [1, 10, 43, 63, 89, 95, 100, 106], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 89, 92, 95, 96, 97, 100, 101, 102, 105, 106, 107], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 53, 65, 73, 83, 87, 88, 89, 95, 97, 98, 102, 103], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 54, 55, 56, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106], "distinct": [1, 18, 56, 107], "natur": [1, 10, 100, 103], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 106, 107], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 55, 56, 57, 70, 71, 73, 86, 87, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 56, 57, 60, 69, 73, 74, 87, 88, 89, 90, 91, 94, 97, 98, 100, 101, 103, 105], "round": [1, 40, 43, 56, 73, 97, 105], "astyp": [1, 100], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 51, 52, 53, 54, 55, 56, 57, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 90, 92, 102, 103], "rang": [1, 3, 5, 7, 12, 46, 48, 54, 56, 69, 73, 74, 89, 92, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "pragma": 1, "cover": [1, 3, 84, 96, 97], "choic": [1, 8, 43, 52, 54, 92, 97, 101, 103], "replac": [1, 55, 60, 71, 86, 87, 89, 90, 91, 92, 95, 96, 97, 100, 103], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 51, 71, 88, 89, 90, 91], "05": [1, 10, 26, 30, 55, 69, 73, 79, 81, 94, 96, 97, 98, 102, 107], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 91, 98, 100, 101], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 92, 97, 98, 100, 101, 106], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 73, 86, 88, 89, 90, 91, 94, 96, 98, 100, 101], "max_it": [1, 87, 88, 95, 103], "10000": [1, 40, 96, 97], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 51, 53, 55, 56, 57, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 103, 105], "diagon": [1, 3, 5, 43, 46, 56], "equal": [1, 3, 10, 12, 51, 63, 68, 78, 104], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 56, 73, 83, 87, 88, 92, 94, 95, 97, 106, 107], "impli": [1, 10, 36, 62, 69], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 54, 55, 56, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 91, 98, 100, 101], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 51, 54, 56, 61, 62, 63, 66, 86, 87, 94, 95, 98, 101, 102, 105], "maximum": [1, 10, 70, 78, 82, 106], "minimum": [1, 8, 10, 20, 43, 45, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 51, 68, 73, 90, 97, 98, 100, 102, 103], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 90, 92, 97, 105, 106], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 55, 56, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 51, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 55, 56, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "necessari": [1, 2, 3, 4, 7, 10, 12, 55, 89, 90], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 51, 60, 61, 62, 64, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 56, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 89, 91, 95, 97, 100, 101, 103, 105], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 51, 53, 56, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 96, 97, 98, 104], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 51, 53, 57, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 89, 91, 92, 95, 96, 97, 101, 102, 105, 107], "when": [1, 2, 3, 4, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 51, 53, 54, 56, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 92, 94, 95, 96, 100, 104, 105, 106, 107], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107], "rate": [1, 2, 3, 10, 38, 56, 88, 107], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 51, 52, 54, 56, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 91, 94, 95, 97, 100, 101, 103, 104, 105, 106, 107], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 51, 56, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 53, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "high": [1, 2, 16, 40, 43, 51, 52, 56, 68, 71, 73, 86, 87, 89, 90, 91, 92, 96, 98, 102, 105, 106, 107], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 51, 56, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "imposs": [1, 10, 98], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 55, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "low": [1, 10, 56, 61, 83, 89, 90, 91, 95, 98, 102, 106], "zero": [1, 3, 5, 37, 41, 45, 51, 56, 57, 90, 92, 101, 102, 103], "forc": [1, 2, 3, 5, 41, 90, 107], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 56, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 92, 94, 95, 97, 98, 101, 102, 103, 105, 106, 107], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 51, 52, 54, 55, 56, 57, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 90, 91, 92, 95, 100, 101, 102, 103, 104, 105, 106, 107], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 59, 84], "produc": [1, 2, 5, 9, 10, 16, 48, 61, 71, 73, 75, 77, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 106, 107], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 54, 60, 61, 62, 73, 91, 95, 97, 102], "opposit": [1, 107], "occur": [1, 3, 10, 36, 55, 68, 90, 91, 92, 97, 103], "small": [1, 3, 10, 36, 40, 48, 51, 54, 56, 62, 69, 87, 92, 95, 96, 101, 103], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 51, 54, 55, 57, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "max": [1, 43, 70, 71, 91, 92, 103], "tri": [1, 37, 41, 104], "befor": [1, 2, 3, 37, 41, 54, 56, 70, 73, 78, 86, 87, 89, 95, 97, 98, 100, 103, 105], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 30, 36, 37, 40, 41, 43, 46, 48, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 90, 91, 92, 94, 97, 98, 101, 105, 106], "left": [1, 2, 43, 45, 54, 56, 63, 66, 69, 89, 90, 91, 101, 102, 103, 106], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 51, 52, 61, 66, 68, 69, 70, 89, 90, 91, 96, 100, 101, 102, 107], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 60, 97, 98, 106], "length": [1, 5, 12, 26, 27, 36, 38, 43, 56, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 101, 103, 106, 107], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 54, 56, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 100, 104, 106, 107], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 56, 57, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 100, 101, 102, 106, 107], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 91, 103], "ensur": [1, 2, 10, 37, 41, 51, 53, 54, 56, 57, 60, 68, 71, 73, 86, 87, 88, 90, 91, 92, 95, 97, 98, 103, 104, 105], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106], "least": [1, 4, 10, 18, 31, 36, 40, 61, 62, 68, 71, 81, 91, 92, 97, 100, 103, 106], "int_arrai": [1, 56], "can": [2, 3, 4, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 51, 52, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 101, 102, 103, 104, 105, 106, 107], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 53, 55, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104, 106, 107], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 51, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 104, 106, 107], "regular": [2, 3, 40, 60], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 56, 57, 62, 63, 64, 65, 70, 71, 83, 97, 98, 99], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 54, 56, 61, 63, 71, 73, 83, 87, 88, 89, 95, 96, 97, 98, 101, 103, 105, 106, 107], "cleanlearn": [2, 3, 10, 23, 30, 37, 56, 60, 72, 73, 74, 83, 84, 86, 87, 105], "wrap": [2, 37, 41, 50, 60, 70, 73, 83, 86, 87, 89, 90, 91, 94, 95, 98, 105], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 60, 69, 70, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 102], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 53, 56, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105], "classifi": [2, 3, 41, 48, 56, 61, 64, 70, 71, 83, 84, 86, 87, 88, 94, 95, 97, 100, 101, 103, 104, 106, 107], "adher": [2, 41, 73], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 56, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "api": [2, 3, 14, 60, 66, 69, 70, 73, 84, 97, 105], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 71, 73, 75, 88, 90, 91, 94, 96, 97, 100, 103, 107], "four": [2, 10, 96, 98, 107], "clf": [2, 3, 5, 48, 73, 83, 86, 94, 97, 98, 101], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 51, 53, 59, 60, 70, 72, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105, 107], "sample_weight": [2, 41, 73, 98], "predict_proba": [2, 5, 36, 39, 41, 48, 59, 60, 86, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 103], "predict": [2, 3, 4, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 98, 99, 103, 105, 106, 107], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 54, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 103, 105], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 51, 52, 53, 56, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 92, 93, 99, 104], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 51, 56, 57, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 51, 52, 53, 56, 70, 73, 83, 86, 89, 90, 91, 94, 95, 97, 98, 100, 101, 105], "element": [2, 3, 5, 36, 42, 43, 45, 56, 61, 63, 71, 78, 79, 81, 87, 88, 95, 97, 107], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 51, 56, 61, 62, 66, 69, 71, 73, 86, 87, 88, 90, 92, 94, 97, 100, 101, 102, 103, 105, 106, 107], "index": [2, 10, 26, 36, 43, 50, 51, 53, 55, 56, 57, 62, 71, 73, 78, 81, 82, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 51, 53, 54, 55, 56, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 104, 105, 106, 107], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 51, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 51, 54, 56, 57, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 103, 104, 105], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 51, 52, 53, 63, 66, 69, 71, 73, 74, 83, 84, 87, 96, 97, 98, 99, 101, 102, 105, 106, 107], "size": [2, 10, 31, 37, 40, 41, 43, 48, 51, 52, 63, 68, 69, 73, 75, 77, 87, 89, 92, 94, 97, 98, 100, 101, 102, 104, 106], "here": [2, 5, 7, 10, 14, 40, 43, 46, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "re": [2, 5, 37, 41, 53, 55, 61, 73, 83, 86, 87, 88, 89, 90, 94, 95, 97, 105, 106, 107], "weight": [2, 10, 37, 38, 41, 48, 51, 61, 68, 71, 73, 87, 88, 89, 90, 91, 95], "loss": [2, 38, 60, 71, 73, 92], "while": [2, 3, 10, 37, 40, 41, 47, 48, 56, 73, 83, 92, 97, 98, 100, 101, 105], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 56, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 104, 106, 107], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 56, 57, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 92, 97], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 53, 56, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 89, 92, 94, 96, 100, 101, 102, 103, 104, 105, 106, 107], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 61, 90, 91, 92, 97, 104, 105], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 51, 57, 62, 63, 68, 69, 73, 75, 87, 95, 97, 101, 102, 105, 106], "clonabl": [2, 73], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 56, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "clone": [2, 73, 101], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 65, 69, 73, 79, 84, 88, 90, 97, 98, 100, 101, 102, 103, 105, 107], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 54, 55, 61, 62, 63, 65, 68, 69, 73, 83, 90, 91, 92, 97, 99, 101, 102, 105], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 51, 56, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "manual": [2, 73, 86, 87, 88, 97, 103, 104, 105, 107], "pytorch": [2, 37, 38, 41, 73, 83, 88, 92, 97, 99, 101, 106], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 56, 60, 70, 73, 87, 88, 89, 90, 91, 95, 97, 98, 101, 103, 104, 105, 106, 107], "__init__": [2, 38, 73, 92], "independ": [2, 3, 10, 62, 73, 95, 104, 105, 107], "compat": [2, 37, 40, 41, 53, 60, 73, 74, 77, 81, 83, 86, 87, 97, 104, 105], "neural": [2, 38, 60, 70, 73, 88, 92, 97, 101, 103, 105], "network": [2, 37, 38, 41, 60, 70, 73, 87, 88, 92, 95, 97, 101, 103, 105], "typic": [2, 37, 41, 53, 70, 73, 86, 87, 88, 91, 92, 94, 95, 103, 104], "initi": [2, 3, 13, 18, 37, 41, 51, 61, 73, 86, 95, 97], "insid": [2, 41, 73, 97, 98], "There": [2, 3, 7, 51, 83, 98, 100], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 51, 52, 53, 56, 66, 68, 69, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 55, 56, 61, 73, 87, 88, 90, 95, 96, 97, 103, 104, 107], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 92, 94, 95, 98, 100, 101, 102, 104, 106, 107], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 56, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "prune": [2, 3, 43, 63, 73, 84, 102], "everyth": [2, 69, 98], "els": [2, 69, 89, 90, 92, 96, 97, 100, 101, 102], "mathemat": [2, 3, 10, 46, 101], "keep": [2, 13, 14, 56, 83, 89, 90, 96, 97, 106], "belong": [2, 3, 10, 36, 43, 45, 46, 51, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 91, 92, 98, 101, 103, 106, 107], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 104], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 56, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 91, 94, 95, 96, 99], "erron": [2, 3, 36, 43, 46, 56, 62, 63, 71, 73, 74, 75, 103, 105], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 51, 54, 55, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 94, 95, 97, 101, 102, 103, 105, 106, 107], "linear_model": [2, 5, 36, 56, 73, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logisticregress": [2, 3, 5, 36, 56, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logreg": 2, "cl": [2, 14, 30, 73, 83, 86, 87, 97, 98, 105], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 51, 53, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 91, 95, 96, 97, 98, 100, 102, 103, 105], "x_train": [2, 86, 89, 90, 91, 98, 100, 101, 105], "labels_maybe_with_error": 2, "had": [2, 3, 73, 102], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 51, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 93, 99, 100, 104, 105], "pred": [2, 43, 56, 86, 87, 104, 105], "x_test": [2, 86, 89, 90, 91, 98, 101, 105], "might": [2, 5, 10, 51, 61, 73, 78, 86, 87, 90, 91, 92, 97, 102], "case": [2, 3, 10, 13, 36, 48, 51, 61, 73, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 103, 105, 107], "standard": [2, 3, 5, 30, 36, 43, 60, 62, 63, 65, 71, 73, 83, 86, 90, 91, 94, 96, 98, 102], "adapt": [2, 37, 39, 56, 59, 73, 103], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 102], "scikera": [2, 60, 73, 97], "open": [2, 40, 96, 102, 107], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 54, 55, 65, 70, 71, 73, 79, 81, 82, 83, 90, 91, 92, 94, 95, 96, 98, 101, 102, 105, 107], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 51, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 53, 55, 60, 66, 68, 70, 73, 83, 84, 86, 87, 90, 91, 95, 100, 107], "made": [2, 5, 16, 37, 41, 52, 73, 86, 87, 92, 95, 97, 100, 102, 104, 105], "easi": [2, 11, 46, 73, 90, 91, 96, 97, 98, 101], "inherit": [2, 7, 38, 73], "baseestim": [2, 41, 73], "yourmodel": [2, 73], "def": [2, 7, 14, 37, 41, 60, 73, 87, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 70, 71, 73, 86, 87, 90, 92, 95, 96, 101, 106, 107], "refer": [2, 10, 16, 37, 41, 42, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 90, 91, 92, 94, 95, 97, 98, 101, 104, 105], "origin": [2, 5, 10, 41, 42, 43, 55, 56, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 90, 92, 94, 95, 97, 98, 102, 103, 105, 107], "total": [2, 3, 4, 36, 40, 56, 62, 82, 89, 92, 97, 106], "state": [2, 3, 5, 37, 38, 41, 47, 73, 98, 101, 102, 107], "art": [2, 38, 98, 101], "northcutt": [2, 3, 36, 70, 71], "et": [2, 3, 36, 38, 70, 71], "al": [2, 3, 36, 38, 70, 71], "2021": [2, 3, 36, 70, 71], "weak": [2, 69], "supervis": [2, 10, 90, 91, 97, 100], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 53, 55, 56, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 90, 99, 104], "uncertainti": [2, 10, 45, 70, 73, 97, 103, 105], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 51, 52, 54, 61, 68, 69, 73, 83, 87, 90, 91, 92, 95, 97, 98, 101, 104], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 55, 56, 57, 60, 61, 71, 73, 83, 84, 87, 89, 90, 91, 96, 103, 105], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 51, 55, 56, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 107], "deep": [2, 39, 41, 59, 60, 73, 95], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 53, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "subfield": 2, "theori": [2, 98], "machin": [2, 4, 5, 9, 10, 14, 16, 33, 39, 54, 59, 73, 86, 87, 90, 91, 96, 100], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 62, 69, 70, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 104, 105], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 56, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "pu": [2, 56], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 55, 56, 57, 60, 69, 73, 83, 84, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "discret": [2, 34, 43, 46, 56, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 51, 56, 70, 71, 83, 87, 88, 90, 91, 92, 94, 95, 98, 101, 102, 103, 106, 107], "would": [2, 3, 5, 37, 40, 41, 43, 52, 56, 63, 73, 83, 87, 89, 90, 92, 97, 98, 103, 105, 107], "obtain": [2, 5, 8, 10, 16, 43, 61, 63, 66, 69, 71, 74, 88, 91, 95, 97, 100, 102, 104, 106, 107], "been": [2, 4, 36, 43, 46, 51, 55, 56, 61, 62, 66, 68, 70, 71, 73, 88, 90, 94, 97, 98, 100, 101, 102, 103, 106, 107], "dure": [2, 10, 16, 51, 53, 70, 73, 86, 87, 88, 89, 94, 95, 97, 98, 101, 104, 105, 107], "denot": [2, 3, 46, 48, 56, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 98, 100, 103, 105, 107], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 56, 61, 62, 65, 66, 69, 73, 74, 81, 87, 90, 95, 96, 97, 101, 102, 103, 104, 106, 107], "converge_latent_estim": [2, 3], "pulearn": [2, 56], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 98], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 91, 96, 105], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 56, 73, 88, 97, 98, 100, 101, 102], "messi": [2, 73, 98], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 91, 96, 97], "robust": [2, 46, 51, 73, 91, 97], "prone": [2, 73], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 51, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 61, 68, 73, 89, 90, 91, 97, 100, 102], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 51, 61, 77, 81, 88, 90, 91, 95, 98], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 98, 100, 102, 104, 107], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 54, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "experiment": [2, 37, 38, 40, 41, 42, 63, 84, 89, 97], "wrapper": [2, 60, 86, 87, 88, 105], "around": [2, 68, 89, 90, 91, 102, 103, 107], "fasttext": [2, 59], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 70, 73, 86, 87, 89, 94, 95, 96, 97, 106, 107], "along": [2, 48, 63, 81, 89, 90, 91, 92, 97, 103], "dimens": [2, 56, 75, 78, 92, 97, 103, 106], "select": [2, 9, 10, 26, 50, 61, 71, 92, 97, 100, 103], "split": [2, 3, 5, 10, 12, 40, 48, 55, 56, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 104, 107], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "fold": [2, 3, 36, 43, 46, 73, 86, 88, 94, 96, 97, 102, 106], "By": [2, 36, 62, 63, 73, 90, 97, 106], "need": [2, 3, 10, 36, 37, 40, 41, 43, 51, 53, 62, 63, 65, 70, 73, 83, 87, 88, 90, 91, 95, 97, 98, 100, 101, 102, 106], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 51, 52, 53, 56, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 90, 91, 96, 98, 99, 102, 103, 105, 106], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 53, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 106, 107], "numer": [2, 3, 4, 5, 10, 13, 22, 30, 34, 48, 51, 52, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 98, 100, 101, 103, 105], "consist": [2, 3, 37, 41, 50, 56, 61, 106, 107], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 51, 54, 56, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105, 107], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 56, 62, 73, 91, 95], "close": [2, 3, 10, 40, 46, 70, 88, 90, 91, 92, 94, 95, 97, 98, 102], "form": [2, 3, 10, 37, 38, 41, 46, 55, 56, 71, 73, 97], "equival": [2, 3, 37, 41, 46, 70, 103, 105], "iter": [2, 3, 36, 37, 41, 43, 56, 62, 63, 73, 89, 97, 100, 106], "enforc": [2, 37, 41, 56], "perfectli": [2, 36, 62, 98], "certain": [2, 3, 5, 37, 41, 60, 69, 73, 89, 90, 91, 96, 102, 103], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 92, 97, 107], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 53, 55, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 90], "filter": [2, 3, 10, 40, 42, 55, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 92, 95, 96, 97, 101, 102, 105, 106, 107], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 101, 102, 105, 106, 107], "particularli": [2, 83, 100, 103], "filter_bi": [2, 3, 40, 43, 63, 84, 97], "frac_nois": [2, 43, 63, 79, 97], "min_examples_per_class": [2, 43, 63, 91, 97, 98], "impact": [2, 4, 10, 90, 91, 92], "ml": [2, 4, 5, 9, 10, 15, 73, 83, 86, 87, 90, 91, 92, 94, 95, 100, 101, 105], "accuraci": [2, 38, 71, 86, 87, 88, 92, 97, 98, 100, 103, 105, 106], "n_job": [2, 40, 43, 63, 75, 77, 79, 97, 103, 106], "disabl": [2, 37, 41, 43, 103], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 51, 55, 61, 63, 69, 75, 77, 79, 87, 88, 89, 90, 97, 100, 104], "caus": [2, 43, 48, 90, 91, 97], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 90, 91, 96, 97, 101, 102, 103, 106, 107], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 98, 101, 102, 106, 107], "adjust_pred_prob": [2, 10, 65, 70, 71, 98], "control": [2, 5, 9, 10, 16, 40, 43, 61, 69, 70, 73, 79, 81, 90, 91, 96, 97], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 56, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 92, 94, 95, 96, 102, 103, 104, 105, 106], "much": [2, 10, 36, 40, 43, 73, 89, 96, 97, 98, 100, 103], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 56, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 90, 92, 95, 96, 97, 102, 103, 104, 105], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 56, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "suppress": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78, 106, 107], "statement": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 40, 63, 69, 73, 98], "limit": [2, 5, 16, 40, 51, 63, 89, 102, 106, 107], "memori": [2, 37, 40, 41, 63, 69, 75, 77, 89, 90, 106], "label_issues_batch": [2, 39, 63, 97], "find_label_issues_batch": [2, 39, 40, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 54, 68, 69, 70, 71, 77, 81, 90, 102, 103, 106, 107], "inverse_noise_matrix": [2, 3, 10, 46, 56, 84, 98], "label_issu": [2, 40, 43, 63, 66, 73, 75, 84, 86, 87, 88, 92, 95, 97, 98, 101, 105], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 51, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 92, 94, 95, 98, 100, 102, 104, 105], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 54, 56, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 105, 106, 107], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 51, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 103, 105, 106, 107], "final": [2, 10, 73, 86, 94, 102, 104, 105], "remain": [2, 73, 84, 86, 87, 92, 101, 105, 107], "datasetlik": [2, 56, 73], "beyond": [2, 5, 7, 9, 10, 11, 35, 83, 86, 87, 105, 106], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 60, 61, 62, 73, 81, 86, 87, 88, 90, 91, 94, 95, 97, 98, 100, 105, 107], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 56, 57, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105, 106, 107], "scipi": [2, 4, 5, 13, 52, 56, 70], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 51, 56, 57, 91, 92, 94, 95, 98], "csr_matrix": [2, 4, 5, 13, 16, 18, 31, 51], "torch": [2, 37, 38, 41, 87, 88, 92, 95, 96, 103], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 51, 60, 61, 66, 69, 73, 83, 84, 88, 90, 91, 92, 97, 98, 103], "tensorflow": [2, 56, 60, 83, 88, 97], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 51, 53, 56, 57, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 91, 92, 94, 97, 98, 99, 101, 105], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 51, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 101, 102, 105, 107], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 56, 71, 78, 82, 86, 87, 88, 92, 94, 95, 97, 101, 102, 103, 104, 105, 107], "wa": [2, 3, 12, 14, 40, 54, 56, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 104, 106, 107], "abl": [2, 3, 10, 73, 88, 97, 98, 100, 101], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 51, 56, 57, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 88, 90, 91, 92, 94, 96, 100, 105, 106, 107], "make": [2, 3, 5, 18, 37, 40, 41, 48, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "sure": [2, 5, 40, 43, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105], "shuffl": [2, 10, 56, 88, 92, 95, 101, 103], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 55, 56, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 98, 100, 101, 102, 103, 104, 105, 107], "batch": [2, 40, 56, 60, 61, 75, 77, 89, 92, 97, 103], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 54, 56, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 105, 106, 107], "destroi": [2, 56], "oper": [2, 37, 40, 41, 51, 56, 60, 71, 83, 86, 87, 95, 97, 103], "eg": [2, 5, 10, 56, 66, 69, 90, 91, 97], "repeat": [2, 56, 61, 100, 103], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 51, 55, 56, 65, 70, 79, 86, 87, 88, 89, 90, 91, 92, 94, 97, 100, 101, 103, 104, 105, 106], "array_lik": [2, 3, 36, 43, 56, 63, 70, 74], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 51, 55, 56, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "seri": [2, 3, 40, 56, 57, 73, 81, 97], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 51, 52, 56, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 103, 107], "rather": [2, 3, 5, 26, 36, 56, 60, 61, 68, 77, 81, 87, 96, 100, 104, 105, 106, 107], "leav": [2, 43], "per": [2, 3, 5, 7, 10, 13, 36, 40, 43, 48, 55, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 91, 97, 102, 107], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 51, 56, 61, 63, 66, 68, 71, 77, 81, 90, 97, 100, 102, 103, 105], "cutoff": [2, 3, 52, 103], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 51, 53, 56, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 92, 94, 95, 97, 98, 102, 103, 104, 105, 106], "section": [2, 3, 7, 10, 84, 92, 94, 97, 102], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 52, 54, 55, 56, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 104], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 68, 70, 81, 84, 91, 93, 97, 98], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 51, 60, 68, 70, 71, 73, 77, 81, 89, 98], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 53, 55, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 91, 92, 95, 100, 102, 105], "automat": [2, 3, 5, 26, 36, 83, 86, 87, 92, 94, 95, 96, 97, 100, 101, 102, 105, 106, 107], "greater": [2, 3, 4, 5, 7, 9, 10, 28, 40, 52, 56, 68, 91, 96, 97, 107], "count": [2, 22, 26, 36, 40, 43, 46, 56, 62, 63, 69, 84, 92, 97, 102], "observ": [2, 3, 46, 53, 88, 89, 90, 91, 100, 103, 105], "mislabel": [2, 10, 36, 40, 42, 43, 46, 61, 62, 63, 66, 68, 71, 77, 79, 81, 83, 86, 87, 88, 92, 94, 95, 97, 98, 102, 105], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 103, 104, 105, 107], "get_label_issu": [2, 39, 40, 72, 73, 86, 87, 98, 105], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 52, 61, 63, 68, 70, 71, 75, 77, 89, 91, 97, 101, 102], "boolean": [2, 7, 10, 22, 40, 43, 53, 55, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 91, 92, 95, 97, 102, 105, 106], "label_issues_mask": [2, 43, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 51, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 51, 53, 54, 55, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 104, 105, 106, 107], "return_indices_ranked_bi": [2, 40, 43, 63, 79, 84, 86, 87, 97, 98], "significantli": [2, 92, 98, 100, 104], "reduc": [2, 40, 43, 56, 88, 97], "time": [2, 10, 37, 40, 41, 56, 61, 84, 86, 87, 89, 90, 92, 96, 97, 98, 102, 103, 105, 106, 107], "take": [2, 5, 10, 36, 37, 41, 47, 48, 51, 53, 56, 60, 71, 86, 89, 92, 94, 100, 101, 102, 107], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 53, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 107], "skip": [2, 10, 37, 41, 73, 88, 97, 101, 107], "slow": [2, 3], "step": [2, 7, 26, 48, 69, 89, 92, 98, 100, 104], "caution": [2, 5, 97], "previous": [2, 5, 13, 56, 70, 73, 84, 86, 88, 90, 94, 95, 100, 104], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 56, 73, 86, 90, 92, 94, 97, 105, 106, 107], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 61, 65, 68, 71, 73, 79, 81, 84, 86, 91, 94, 96, 97, 100, 101, 102, 107], "still": [2, 40, 41, 56, 70, 86, 88, 92, 97, 103], "extra": [2, 37, 41, 56, 60, 61, 62, 73, 92, 95, 97, 100, 103], "receiv": [2, 10, 37, 41, 42, 62, 65, 66, 73, 75, 79, 91, 102], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 26, 37, 41, 48, 51, 52, 53, 55, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 55, 56, 69, 71, 73, 78, 88, 89, 90, 91, 92, 97, 98, 101, 107], "appropri": [2, 10, 16, 34, 52, 63, 71, 90, 94, 101, 102], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 22, 36, 56, 70, 86, 90, 92, 94, 101, 105, 107], "f": [2, 7, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "ignor": [2, 37, 41, 55, 60, 73, 78, 82, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "allow": [2, 36, 37, 40, 41, 45, 53, 56, 61, 69, 70, 73, 75, 77, 87, 88, 89, 92, 97, 104, 106], "access": [2, 10, 13, 37, 41, 73, 87, 91, 92, 95, 96, 101], "hyperparamet": [2, 65, 70, 92], "purpos": [2, 51, 90, 91, 97, 101, 105], "want": [2, 5, 10, 36, 40, 51, 57, 61, 63, 73, 87, 89, 90, 92, 95, 96, 100, 102, 103, 104, 106, 107], "explicitli": [2, 8, 10, 41, 51, 73, 97], "yourself": [2, 5, 40, 91], "altern": [2, 7, 10, 48, 53, 56, 60, 61, 71, 84, 87, 88, 92, 94, 95, 96, 97, 98, 100, 101, 103, 105], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 51, 56, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 105, 106], "effect": [2, 10, 27, 37, 41, 61, 70, 73, 92, 94, 95, 97, 103], "offer": [2, 5, 9, 10, 87, 88, 90, 91, 95, 97, 98, 101], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 61, 73, 87, 90, 92, 95, 97, 98, 100, 102, 103, 104, 105, 106], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 53, 70, 73, 86, 90], "label_issues_df": [2, 73, 92], "similar": [2, 10, 36, 37, 41, 53, 56, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 92, 94, 95, 97, 98, 102, 103, 106], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 55, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 56, 66, 73, 90, 91], "were": [2, 3, 5, 36, 41, 51, 62, 68, 81, 86, 88, 94, 97, 98, 100, 102, 104, 106], "present": [2, 3, 5, 10, 12, 13, 20, 36, 56, 70, 78, 83, 92, 94, 97, 103], "actual": [2, 3, 5, 36, 51, 61, 62, 71, 91, 97, 98, 107], "num_class": [2, 36, 40, 56, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103], "uniqu": [2, 31, 56, 78, 90, 97, 101, 103], "given_label": [2, 5, 25, 30, 36, 46, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106, 107], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 54, 55, 56, 71, 97, 98, 103], "trick": [2, 97], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 54, 61, 69, 70, 71, 83, 89, 90, 91, 92, 94, 95, 102, 103], "account": [2, 36, 61, 65, 70, 71, 87, 95, 97, 98, 100, 101, 103, 105], "word": [2, 3, 55, 81, 82, 97], "remov": [2, 10, 31, 36, 37, 41, 43, 73, 83, 86, 87, 91, 92, 94, 95, 96, 97, 98, 101, 103, 105], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 51, 56, 61, 62, 68, 71, 73, 77, 81, 88, 90, 91, 92, 95, 98, 101, 103, 106], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 56, 60, 71, 73, 75, 83, 84, 86, 87, 88, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 54, 55, 56, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 92, 95, 96, 97, 98, 103, 104, 105], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 51, 54, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 90, 93, 96, 99, 101, 105, 106, 107], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 56, 71, 73], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 51, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 26, 41, 48, 51, 60, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 104, 105, 107], "expect": [2, 3, 37, 41, 43, 48, 51, 61, 70, 71, 73, 86, 87, 97, 98, 100, 101, 102, 105, 107], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 69, 73, 86, 87, 88, 90, 91, 92, 97, 98, 100, 104, 105, 106], "simpli": [2, 10, 36, 71, 87, 90, 91, 94, 95, 97, 98, 101, 105, 106, 107], "quantifi": [2, 4, 5, 7, 10, 13, 43, 65, 70, 73, 83, 91, 92, 94, 95, 98, 102], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 36, 43, 55, 63, 66, 69, 71, 73, 75, 77, 84, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "cach": [2, 87, 95], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 56, 57, 60, 61, 62, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 100, 105, 106], "unlik": [2, 10, 43, 45, 48, 60, 62, 63, 65, 81, 90, 100, 101, 103, 105], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 51, 56, 61, 63, 71, 75, 77, 82, 83, 90, 92, 97, 98, 100, 107], "mask": [2, 40, 43, 55, 56, 63, 66, 71, 73, 75, 77, 78, 83, 89, 96, 97, 100, 102, 106, 107], "prefer": [2, 71, 79, 101], "plan": 2, "subsequ": [2, 3, 37, 41, 53, 87, 95, 97, 98, 102], "invok": [2, 37, 41, 98, 104], "scratch": [2, 51, 73], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "share": [2, 71, 73], "mostli": [2, 56, 68, 73, 101, 105], "longer": [2, 34, 47, 48, 55, 73, 84, 87, 95, 97, 102], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 73, 81, 90, 91, 96, 107], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 61, 62, 65, 69, 73, 78, 81, 88, 90, 92, 94, 95, 96, 97, 98, 100, 103], "docstr": [2, 36, 37, 41, 56, 73, 96, 98], "unless": [2, 37, 41, 51, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "is_label_issu": [2, 30, 73, 87, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "entir": [2, 10, 26, 40, 43, 46, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 91, 97, 102, 103, 104, 106, 107], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 52, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 91, 92, 94, 95, 97, 100, 105], "label_qu": [2, 61, 73, 87, 98, 100, 105], "measur": [2, 5, 36, 61, 62, 73, 83, 86, 96, 97, 98, 100, 101, 105, 106, 107], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 105], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 54, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "eas": 2, "comparison": [2, 37, 41, 69, 98, 100], "against": [2, 37, 41, 90, 94, 97, 100, 101], "predicted_label": [2, 5, 25, 30, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106], "ad": [2, 37, 41, 89, 91, 100, 105], "precis": [2, 52, 54, 63, 66, 69, 96, 97, 98, 106, 107], "definit": [2, 7, 34, 48, 73, 86, 94], "accessor": [2, 73], "describ": [2, 10, 18, 61, 70, 71, 73, 79, 81, 98, 100, 101, 102, 104, 107], "precomput": [2, 4, 5, 46, 51, 73, 91, 92, 94, 95, 96, 98], "clear": [2, 37, 41, 53, 73, 87, 95, 105], "save": [2, 5, 16, 37, 40, 41, 69, 73, 97, 102, 106, 107], "space": [2, 5, 10, 70, 73, 92, 94, 96], "place": [2, 37, 41, 51, 56, 73, 86, 100], "larg": [2, 9, 10, 40, 51, 73, 92, 94, 95, 97, 102, 103, 106, 107], "deploi": [2, 9, 10, 73, 92, 94, 95, 97], "care": [2, 10, 37, 41, 51, 73, 95, 97, 98], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 53, 73, 89, 97, 98, 100, 102, 105], "cannot": [2, 5, 12, 14, 56, 104, 107], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 73], "__init_subclass__": [2, 39, 41, 72, 73], "set_": [2, 41, 73], "_request": [2, 41, 73], "pep": [2, 41, 73], "487": [2, 41, 73], "look": [2, 5, 7, 16, 37, 41, 56, 73, 78, 86, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 106, 107], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 53, 56, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 90, 94, 95, 96, 98, 100, 103, 106, 107], "__metadata_request__": [2, 41, 73], "infer": [2, 41, 56, 73, 78, 82, 86, 87, 92, 100, 101], "signatur": [2, 37, 41, 73], "accept": [2, 37, 41, 53, 54, 71, 73, 90, 91, 97], "metadata": [2, 41, 73, 92, 94, 95, 107], "through": [2, 5, 7, 41, 73, 87, 88, 89, 91, 95, 96, 97, 100, 102, 103], "develop": [2, 9, 41, 53, 73, 97, 98, 107], "request": [2, 41, 73, 86, 87, 91, 95, 96, 101, 107], "those": [2, 3, 4, 10, 40, 41, 43, 50, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 92, 97, 102, 106], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 53, 56, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "www": [2, 41, 73, 103], "org": [2, 4, 18, 37, 38, 41, 53, 56, 70, 73, 97, 98, 107], "dev": [2, 41, 73], "0487": [2, 41, 73], "get_metadata_rout": [2, 39, 41, 72, 73], "rout": [2, 41, 73], "pleas": [2, 37, 41, 60, 73, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 105, 107], "guid": [2, 7, 10, 41, 73, 84, 92, 93], "mechan": [2, 37, 41, 73], "metadatarequest": [2, 41, 73], "encapsul": [2, 16, 41, 68, 73], "get_param": [2, 39, 41, 59, 60, 72, 73], "subobject": [2, 41, 73], "param": [2, 10, 37, 41, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "set_fit_request": [2, 39, 41, 72, 73], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 51, 52, 53, 54, 55, 56, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 90, 97, 100, 101, 102, 107], "unchang": [2, 37, 41, 73, 107], "relev": [2, 16, 26, 41, 73, 92], "enable_metadata_rout": [2, 41, 73], "set_config": [2, 41, 73], "meta": [2, 41, 73], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 51, 54, 73, 88, 97], "alia": [2, 37, 41, 73], "metadata_rout": [2, 41, 73], "retain": [2, 41, 56, 73], "chang": [2, 32, 34, 37, 40, 41, 45, 73, 81, 86, 87, 88, 90, 95, 97, 102, 103, 107], "version": [2, 4, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 56, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "sub": [2, 41, 68, 73], "pipelin": [2, 41, 73, 105], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 52, 54, 55, 56, 63, 73, 75, 77, 78, 82, 87, 95, 97], "updat": [2, 13, 37, 40, 41, 51, 60, 73, 84, 89, 90, 92], "set_param": [2, 39, 41, 59, 60, 72, 73], "simpl": [2, 37, 41, 43, 61, 71, 73, 86, 87, 89, 90, 91, 92, 94, 95, 100, 103, 105], "well": [2, 3, 9, 10, 37, 41, 45, 46, 61, 63, 69, 71, 73, 78, 81, 82, 84, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103], "nest": [2, 37, 41, 42, 57, 73, 79, 81, 82, 107], "latter": [2, 37, 41, 73, 103], "compon": [2, 41, 73], "__": [2, 41, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 89, 94, 97], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 61, 70, 71, 75, 77, 81, 91, 92, 94, 96, 97, 98, 102, 107], "channel": [3, 88, 98], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 56, 62, 87, 91, 96], "inv": 3, "confident_joint": [3, 22, 36, 43, 56, 62, 63, 84, 97, 98], "un": 3, "under": [3, 10, 37, 41, 62, 69, 70, 91, 103], "joint": [3, 36, 43, 46, 56, 62, 63, 96], "num_label_issu": [3, 40, 43, 63, 78, 82, 84], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 56, 57, 63, 101], "don": [3, 83, 91, 92, 94, 95, 98, 102, 105], "statis": 3, "compute_confident_joint": [3, 36, 43, 56, 63, 98], "off": [3, 43, 56, 68, 92, 98, 102, 103], "j": [3, 5, 36, 37, 41, 42, 43, 63, 66, 69, 70, 79, 81, 82, 89, 90, 91, 98, 106, 107], "confident_learn": [3, 43, 63, 98], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 56, 61, 100], "cj": [3, 46, 56], "axi": [3, 31, 46, 48, 54, 75, 78, 88, 89, 90, 91, 92, 97, 98, 100, 101, 103, 105, 106], "bincount": [3, 89, 90, 91, 98, 100, 101], "alwai": [3, 10, 37, 41, 56, 86, 87, 88, 98, 105], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 68, 69, 75, 77, 86, 91, 92, 94, 96, 97, 98, 103, 105], "As": [3, 7, 83, 90, 91, 95, 98, 105, 107], "add": [3, 5, 7, 12, 13, 37, 41, 60, 69, 87, 88, 89, 90, 91, 92, 95, 97, 98, 101], "approach": [3, 36, 40, 43, 60, 86, 89, 94, 98, 101, 103, 105], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 55, 71, 87, 91, 95, 98, 105], "know": [3, 10, 90, 91, 92, 94, 95, 97, 98, 100, 105], "cut": [3, 68, 83, 98], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 102, 103, 107], "underestim": 3, "few": [3, 9, 10, 69, 83, 91, 97, 100, 101, 102, 103, 107], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 55, 65, 66, 68, 69, 71, 74, 81, 96, 97, 101, 106, 107], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 101, 103, 107], "num_issu": [3, 7, 40, 88, 89, 90, 91, 92, 94, 95, 98], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 50, 60, 61, 87, 89, 96, 97, 102, 105, 107], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 98], "v": [3, 10, 40, 62, 63, 65, 71, 89, 90, 91, 101, 102, 103, 104], "rest": [3, 5, 7, 9, 10, 11, 35, 62, 63, 65, 73, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 36, 62, 63, 66, 94, 107], "calibrated_cj": 3, "c": [3, 10, 54, 55, 63, 71, 83, 86, 88, 90, 91, 94, 95, 97, 98, 101, 102, 103, 104, 105], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 51, 55, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 106, 107], "truli": [3, 103, 106], "estimate_joint": [3, 36, 98], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 98, 102, 104, 106, 107], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 61, 62, 69, 78, 102, 103], "done": [3, 10, 60, 73, 90, 97, 98, 101, 103, 104], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 92, 94, 95, 104], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 56, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 90, 97, 98, 101, 102], "baselin": [3, 37, 43, 87, 103, 105], "proxi": 3, "union": [3, 5, 12, 26, 48, 51, 52, 53, 56, 57, 63, 69, 73, 81, 97], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 55, 56, 61, 63, 69, 77, 79, 81, 82, 88, 107], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 40, 46, 51, 52, 61, 70, 75, 77, 83, 87, 89, 92, 97, 106], "practic": [3, 86, 87, 91, 92, 98, 103, 105], "complet": [3, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "gist": 3, "cj_ish": 3, "guess": [3, 46, 98, 100], "8": [3, 5, 7, 8, 47, 48, 49, 55, 65, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "parallel": [3, 43, 69, 79, 96], "again": [3, 60, 86, 97, 103], "simplifi": [3, 14, 97], "understand": [3, 9, 10, 36, 62, 69, 91, 98, 99, 105, 106, 107], "100": [3, 4, 37, 41, 51, 52, 54, 70, 71, 86, 87, 90, 91, 92, 94, 96, 97, 98, 101, 102, 103, 107], "optim": [3, 37, 38, 41, 60, 92, 100], "speed": [3, 43, 87, 96, 97, 105], "dtype": [3, 23, 25, 26, 31, 37, 41, 55, 56, 65, 81, 88, 102], "enumer": [3, 37, 41, 88, 89, 90, 91, 92, 107], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 56, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "num_confident_bin": 3, "argmax": [3, 43, 71, 75, 78, 88, 97, 98, 102, 103, 106], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 51, 56, 57, 65, 74, 86, 88], "eqn": [3, 46], "margin": [3, 43, 46, 48, 71], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 62, 98, 104], "poorli": [3, 46, 86], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 98], "variabl": [3, 7, 14, 27, 56, 73, 74, 88, 90, 94, 98, 101, 105], "exact": [3, 46, 51, 86, 89, 90, 91, 92, 94], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 63, 68, 77, 79, 81, 90, 91, 92, 97, 102, 106], "percent": 3, "often": [3, 36, 46, 62, 97, 98, 104, 106], "estimate_confident_joint_and_cv_pred_proba": 3, "multi_class": 3, "auto": [3, 9, 10, 86, 87, 89, 91, 96, 97, 105], "mani": [3, 9, 10, 56, 57, 69, 86, 87, 88, 89, 90, 92, 94, 95, 97, 101, 102, 103, 105], "wai": [3, 5, 51, 60, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 104], "pro": 3, "con": 3, "pred_proba": [3, 104], "combin": [3, 36, 90, 92, 96, 97, 98, 104, 105], "becaus": [3, 46, 52, 56, 68, 95, 97, 98, 100, 102], "littl": [3, 40, 96, 102, 107], "uniform": [3, 71, 96, 97, 98], "20": [3, 7, 42, 82, 88, 89, 92, 95, 96, 97, 98, 102, 105, 106, 107], "Such": [3, 92, 103], "bound": [3, 23, 25, 37, 41, 55, 65, 66, 68, 69, 102], "reason": [3, 22, 37, 41, 52, 70], "comment": [3, 55, 107], "end": [3, 5, 37, 41, 53, 69], "file": [3, 5, 12, 39, 40, 59, 69, 86, 88, 90, 94, 95, 96, 97, 102, 103, 106, 107], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 98], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 51, 52, 53, 84, 86, 87, 89, 90, 91, 92, 94, 95, 98, 106, 107], "five": [3, 66, 69, 98, 102], "estimate_cv_predicted_prob": [3, 98], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 102], "confident_threshold": [3, 10, 22, 23, 40, 70], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 51, 53, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100], "valuat": [4, 9, 18], "help": [4, 36, 37, 41, 69, 83, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 100, 101, 105, 106, 107], "u": [4, 86, 87, 88, 90, 92, 94, 97, 98, 100, 101, 104, 105, 106, 107], "assess": [4, 102], "contribut": [4, 10, 18, 102], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 44, 50, 94], "metric": [4, 5, 10, 18, 19, 26, 31, 44, 50, 51, 53, 54, 56, 60, 69, 70, 86, 87, 88, 92, 94, 95, 98, 105], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 51, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 51, 52, 53, 54, 70, 91, 95, 103], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 44, 51, 52, 53, 54, 70, 90, 91, 92, 94, 95, 97, 98, 103], "knn": [4, 10, 13, 18, 26, 31, 50, 51, 52, 53, 54, 70, 94, 103], "graph": [4, 5, 10, 13, 16, 18, 26, 31, 50, 51], "calcul": [4, 10, 18, 26, 40, 48, 50, 51, 54, 61, 65, 66, 68, 69, 70, 73, 77, 92, 96], "directli": [4, 5, 14, 16, 33, 34, 40, 53, 60, 61, 87, 91, 95, 97, 101, 102, 105], "lowest": [4, 10, 61, 69, 91, 92, 97, 100, 101, 102, 106], "fall": [4, 10, 68, 77, 81, 98, 103], "flag": [4, 10, 22, 26, 43, 48, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 103, 105, 106], "approxim": [4, 10, 18, 40, 53, 70, 100], "top": [4, 5, 10, 36, 40, 42, 43, 56, 63, 66, 69, 71, 78, 82, 83, 87, 88, 90, 91, 94, 95, 96, 97, 98, 102, 103, 105, 107], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 103, 105, 107], "arxiv": [4, 18, 98], "ab": [4, 18, 98, 102], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 70, 83, 87, 88, 90, 91, 94, 95, 98, 101, 105], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 51, 63, 83, 87, 88, 90, 91, 92, 95, 97, 98, 103], "suppli": [4, 101, 102, 105], "2d": [4, 5, 16, 32, 40, 48, 49, 51, 55, 56, 61, 86, 88, 101], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 62, 88, 89, 90, 91, 92, 94, 95, 98], "num_featur": [4, 5, 16, 37, 41, 60], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 51, 52, 53, 54, 68, 70, 94, 103], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 50, 51, 53, 60], "nearestneighbor": [4, 5, 10, 18, 51, 53, 70, 94, 103], "cosin": [4, 10, 51, 52, 54, 70, 103], "dim": [4, 70, 92, 106], "euclidean": [4, 5, 10, 51, 52, 54, 68, 70, 94], "dimension": [4, 26, 52, 56, 88, 98, 103], "scikit": [4, 41, 52, 53, 56, 70, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 105], "fewer": [4, 10, 43, 56, 70, 102], "stabl": [4, 15, 21, 24, 29, 39, 44, 53, 56, 59, 70, 84], "exce": [4, 51, 89, 92], "transform": [4, 10, 32, 48, 51, 54, 56, 70, 71, 86, 87, 91, 92, 95, 103, 107], "rel": [4, 10, 36, 51, 61, 62, 70, 90, 91, 92, 94, 95, 98, 103], "adjust": [4, 38, 43, 51, 65, 70, 71, 83, 98], "closer": [4, 10, 68, 102], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 37, 41, 54, 56, 69, 96, 103], "convers": 4, "neg": [4, 10, 68, 69, 90, 91, 96], "valueerror": [4, 5, 12, 13, 34, 45, 48, 51, 54, 97], "neither": [4, 5, 10, 14, 52, 102], "nor": [4, 5, 10, 14], "larger": [4, 18, 52, 73, 75, 77, 89, 92, 95, 96, 97], "55": [4, 55, 96, 102, 105], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 88, 92, 93, 94, 95, 97, 98, 101, 102, 105], "kind": [5, 6, 7, 10, 88, 89, 90, 92, 94, 95, 96, 98], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 51, 53, 57, 61, 69, 78, 79, 86, 87, 88, 90, 94, 95, 98, 100, 103, 104], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 56, 59, 63, 70, 73, 74, 83], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 59, 60, 75, 77], "pip": [5, 7, 9, 11, 35, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "github": [5, 7, 9, 11, 35, 37, 38, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 56, 70, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "egg": [5, 7, 9, 11, 35, 83, 96], "label_nam": [5, 7, 8, 10, 12, 18, 31, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "image_kei": [5, 10, 92], "interfac": [5, 9, 10, 53, 83, 97, 98], "librari": [5, 10, 41, 53, 66, 69, 70, 83, 87, 90, 95, 96, 97], "goal": [5, 105], "track": [5, 7, 13, 14, 83, 89, 90, 96, 97, 98], "intermedi": [5, 9, 91], "statist": [5, 10, 13, 22, 26, 36, 61, 62, 69, 91, 94, 95, 98], "convert": [5, 10, 12, 34, 37, 41, 49, 54, 57, 61, 68, 77, 81, 84, 87, 88, 92, 95, 96, 97, 100, 101, 102], "hug": [5, 10, 12, 92], "face": [5, 10, 12, 16, 92, 96, 101], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 61, 62, 68, 70, 89, 90, 91, 92, 95, 97, 98, 100, 102], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 56, 61, 62, 74, 78, 81, 82, 87, 94, 95, 97, 100, 101, 107], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 56, 61, 62, 65, 66, 68, 69, 90, 91, 94, 95, 98, 100, 101, 102], "path": [5, 12, 37, 40, 41, 69, 88, 90, 97, 102], "local": [5, 7, 10, 12, 37, 38, 41, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 70, 79, 81, 82, 83, 85, 90, 91, 93, 96, 97, 98, 99, 100, 103], "txt": [5, 12, 107], "csv": [5, 12, 86, 87, 94, 95, 105], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 56, 61, 101], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 87, 89, 90, 91, 95, 99, 100, 103], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 101], "imag": [5, 9, 36, 41, 66, 68, 69, 70, 75, 77, 78, 83, 90, 91, 93, 96, 97, 99, 100, 101, 102, 104, 106], "field": [5, 10, 37, 41], "themselv": [5, 86, 87, 105], "pil": [5, 92], "cleanvis": [5, 10], "level": [5, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 51, 55, 79, 81, 91, 92, 97, 99, 101, 106], "load_dataset": [5, 12, 92], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 89], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 62, 69, 78, 82, 83, 96, 98, 102, 106, 107], "empti": [5, 12, 46, 61, 91, 97, 101], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "sort": [5, 16, 40, 43, 48, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 105, 106, 107], "common": [5, 13, 16, 91, 93, 96, 97, 98, 101, 102, 106], "real": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "world": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "interact": [5, 16, 95, 97], "thereof": [5, 16], "insight": [5, 16, 69, 100], "best": [5, 9, 10, 16, 47, 61, 71, 86, 87, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 107], "properli": [5, 10, 40, 47, 51, 56, 57, 75, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 105, 106], "respect": [5, 37, 41, 66, 69, 88, 89, 90, 91, 92, 94, 95, 98, 101, 102], "lexicograph": [5, 47, 56, 88, 89, 90, 91, 92, 94, 95, 98, 101], "squar": [5, 56, 73, 96, 105], "csr": [5, 51], "evenli": 5, "omit": [5, 68, 69, 92, 102], "itself": [5, 32, 37, 41, 51, 102], "three": [5, 10, 36, 61, 62, 73, 78, 86, 88, 89, 90, 91, 94, 96, 98, 100, 104, 105, 106, 107], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 83, 94, 101, 107], "th": [5, 42, 47, 55, 56, 61, 63, 66, 68, 69, 70, 79, 81, 82, 95, 101, 102, 107], "ascend": [5, 36, 62, 92, 98], "segment": [5, 75, 77, 78, 99], "reflect": [5, 51, 86, 87, 94, 95, 100, 102, 103, 105], "maintain": [5, 60], "kneighbors_graph": [5, 18, 53, 94], "illustr": 5, "todens": 5, "second": [5, 48, 56, 69, 71, 90, 97, 98, 107], "duplic": [5, 9, 21, 22, 37, 41, 51, 83, 89, 90, 98, 105], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 61, 97, 100, 107], "unspecifi": [5, 16, 43, 63], "interest": [5, 16, 22, 78, 82, 86, 87, 95, 98, 105, 106, 107], "constructor": [5, 10, 16, 23, 30, 51, 53], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 53, 73, 74, 96, 105, 107], "random_st": [5, 86, 88, 89, 90, 91, 92, 98, 101, 103], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105], "comprehens": [5, 83, 92, 101, 105], "nbr": 5, "n_neighbor": [5, 10, 18, 51, 53, 70], "mode": [5, 11, 18, 37, 40, 41, 103], "4x4": 5, "float64": [5, 26, 37, 41, 81], "compress": [5, 10, 51, 56, 75, 77], "toarrai": [5, 51], "NOT": [5, 40, 95], "23606798": 5, "41421356": [5, 51], "configur": [5, 16, 48, 91], "suppos": [5, 10, 66, 86, 87, 103, 105], "who": [5, 68, 86, 94, 98, 107], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 60, 90, 97], "clean_learning_kwarg": [5, 10, 23, 30, 97, 105], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 84], "prune_by_noise_r": [5, 43, 63, 98], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 82, 83, 88, 89, 90, 91, 94, 95, 97, 98, 101, 105, 107], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 105, 106, 107], "show": [5, 7, 26, 37, 41, 47, 56, 69, 78, 82, 86, 89, 91, 92, 94, 95, 96, 97, 98, 100, 103, 105, 106, 107], "suffer": [5, 10, 13, 22, 63, 71, 82, 107], "onc": [5, 22, 36, 37, 41, 86, 89, 90, 97, 98, 101, 102], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 102, 107], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 102, 103, 107], "compar": [5, 61, 70, 81, 90, 91, 94, 98, 102], "issue_summari": [5, 7, 10, 13, 89, 90], "With": [5, 9, 10, 40, 87, 95, 97, 98, 100, 105, 106, 107], "usag": [5, 40, 60], "usual": [5, 12, 32, 33, 92, 100, 105], "ti": [5, 61], "exhibit": [5, 7, 10, 13, 78, 91, 92, 94, 95, 98, 102], "ie": [5, 73], "likelihood": [5, 10, 40, 42, 43, 63, 68, 70, 71, 75, 79], "wherea": [5, 56, 63, 86, 87, 104], "outlier": [5, 9, 14, 21, 22, 31, 44, 51, 71, 83, 90, 91, 98, 99, 105], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 98, 105], "global": [5, 7, 22, 37, 41, 96], "non_iid": [5, 10, 14, 26, 91, 92, 94, 95, 98], "hypothesi": 5, "iid": [5, 7, 9, 26, 94, 98], "never": [5, 88, 98, 101, 103, 104], "someth": [5, 7, 10, 37, 41, 71, 102], "123": [5, 89, 90, 91], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 48, 49, 60, 79, 81, 86, 87, 88, 90, 91, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 65, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "distance_to_nearest_neighbor": [5, 90, 91, 92, 94, 95, 98], "789": 5, "get_issu": [5, 10, 13, 88, 89, 91, 92, 94, 95, 97, 101, 105], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90, 91], "focu": [5, 10, 13, 95, 106, 107], "full": [5, 10, 13, 40, 60, 69, 89, 92, 107], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 62, 78, 82, 83, 106], "specific_issu": [5, 13], "lie": [5, 10, 70, 71, 87, 88, 90, 91, 92, 94, 95, 98], "get_issue_summari": [5, 13, 89, 91], "get_info": [5, 13, 91, 95, 96], "yet": [5, 17, 27, 60, 96, 100], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 90], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 88, 90, 92], "load": [5, 12, 40, 69, 92, 96, 97, 98, 102, 103, 106, 107], "futur": [5, 10, 22, 37, 41, 61, 83, 87, 88, 90, 95, 97], "overwrit": [5, 90], "separ": [5, 36, 48, 65, 90, 91, 92, 97, 102, 104], "static": 5, "rememb": [5, 95, 97, 98], "part": [5, 10, 37, 41, 43, 66, 68, 69, 88, 90, 96, 106, 107], "ident": [5, 10, 22, 56, 89, 95], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 83, 86, 87, 96, 97, 100, 105], "walk": 7, "alongsid": [7, 37, 41, 90, 97], "pre": [7, 8, 10, 37, 41, 90, 91, 105], "runtim": [7, 37, 40, 41, 73, 75, 77, 88, 92, 97], "issue_manager_factori": [7, 14, 90], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "thing": [7, 41, 87, 98, 105], "next": [7, 61, 83, 86, 87, 88, 89, 94, 95, 97, 100, 102, 105, 107], "dummi": 7, "randint": [7, 31, 48, 89, 90, 91, 97], "mark": [7, 10, 84, 102, 103, 105], "regard": [7, 91, 98], "rand": [7, 48, 51, 89, 90, 91], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "whole": [7, 26, 37, 41, 91], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "popul": [7, 91, 95], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 102], "raw_scor": 7, "bit": 7, "involv": [7, 40, 78, 82, 89, 97, 101], "intermediate_arg": 7, "min": [7, 48, 68, 81, 90, 97, 103], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 52, 75, 81, 95, 97], "easili": [7, 46, 84, 86, 87, 88, 89, 91, 94, 95, 98, 100, 101, 103, 104, 105, 106], "hard": [7, 41, 96, 103], "sai": [7, 10, 37, 41, 101, 106], "anoth": [7, 22, 36, 40, 52, 55, 68, 71, 87, 94, 95, 97, 98, 100, 103], "try": [7, 9, 10, 40, 43, 60, 61, 75, 77, 83, 89, 91, 92, 94, 95, 97, 98, 106], "won": [7, 37, 41, 90, 91, 97, 101], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 90], "instanti": [7, 16, 40, 60, 70, 87, 88, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 46, 56, 69, 88, 89, 90, 91, 92, 94, 95, 98], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 102, 103, 105, 106, 107], "003042": 7, "058117": 7, "11": [7, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "121908": 7, "15": [7, 54, 60, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "169312": 7, "17": [7, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 98], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 96, 102, 107], "dbscan": [8, 10, 31, 97], "hdbscan": [8, 97], "etc": [8, 10, 22, 32, 37, 41, 46, 60, 61, 79, 83, 90, 91, 94, 95, 97, 98, 101, 105], "sensit": [8, 10, 54], "ep": [8, 31, 69], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 97], "your_data": 8, "get_pred_prob": [8, 89], "n_cluster": [8, 31, 97], "cluster_id": [8, 10, 31, 97], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 91, 92, 94, 95, 97, 98], "search": [9, 10, 20, 26, 27, 44, 50, 51, 52, 55, 73, 97, 104], "nondefault": 9, "Near": [9, 97], "imbal": [9, 21, 65, 70, 71, 91], "null": [9, 14, 21, 91, 92, 95, 98], "togeth": [9, 10, 46, 87, 90, 91, 92, 94, 95, 98, 105, 107], "built": [9, 48], "own": [9, 37, 39, 41, 53, 59, 65, 66, 69, 75, 79, 86, 87, 88, 91, 92, 94, 95, 97, 100, 101, 105, 106, 107], "prerequisit": 9, "basic": [9, 41, 60, 94, 95, 103], "fulli": [9, 10, 37, 41, 60, 97], "platform": [9, 10, 83, 92, 94, 95, 97], "write": [9, 10], "code": [9, 10, 37, 41, 46, 56, 60, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "being": [9, 10, 13, 36, 37, 41, 43, 48, 55, 56, 71, 86, 94, 97, 98, 105, 106], "100x": [9, 10], "faster": [9, 10, 40, 70, 73, 75, 77, 97, 98], "intellig": [9, 10], "quickli": [9, 10, 38, 86, 88, 92, 94, 95, 97, 101, 103, 106, 107], "fix": [9, 10, 61, 87, 89, 95, 98, 105], "scientist": [9, 10], "million": [9, 10, 107], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 103, 105, 107], "suggest": [9, 10, 36, 61, 62, 68, 87, 92, 95, 97, 105], "power": [9, 10, 92, 94, 95, 96, 98, 107], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 89, 92, 94, 95, 106], "foundat": [9, 10, 83], "improv": [9, 10, 61, 86, 87, 91, 92, 96, 97, 98, 105, 106], "click": [9, 10, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "tune": [9, 10, 87, 88, 95, 96, 103], "serv": [9, 10, 13, 16, 100], "free": [9, 10, 83, 88, 91, 92, 94, 95, 97, 98], "page": [10, 91, 97, 98], "variou": [10, 13, 30, 39, 57, 59, 83, 86, 90, 91, 94, 95, 96, 97, 98, 100, 102], "why": [10, 89, 95], "matter": [10, 36, 62, 87, 95], "didn": 10, "plu": [10, 105], "_score": 10, "badli": [10, 68, 86, 87, 107], "issue_scor": 10, "outlier_scor": [10, 28, 89, 90, 91, 92, 94, 95, 98, 103], "atyp": [10, 70, 90, 91, 92, 94, 95, 98, 103], "datapoint": [10, 31, 43, 48, 56, 71, 74, 83, 86, 87, 88, 90, 91, 94, 95, 97, 104, 105], "is_issu": [10, 22], "is_outlier_issu": [10, 89, 90, 91, 92, 94, 95, 98], "annot": [10, 36, 47, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 92, 94, 95, 98, 102, 105], "due": [10, 40, 43, 71, 75, 77, 88, 89, 90, 91, 92, 94, 95, 98, 105], "appear": [10, 36, 47, 62, 63, 66, 74, 91, 92, 94, 95, 105, 106], "now": [10, 40, 84, 86, 87, 88, 89, 91, 100, 102, 103, 105, 107], "token": [10, 42, 55, 77, 78, 79, 80, 81, 82, 97, 98, 99], "hamper": [10, 92, 96], "analyt": [10, 83, 97, 100], "lead": [10, 68, 71, 92, 102], "draw": [10, 89, 90, 91], "conclus": [10, 95], "veri": [10, 36, 62, 66, 68, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105], "rare": [10, 43, 69, 89, 90, 91, 92, 94, 95, 97, 98], "anomal": [10, 71, 89, 90, 91, 92, 94, 95, 98], "articl": [10, 40, 97], "blog": 10, "unexpect": [10, 37, 41, 95], "consequ": 10, "inspect": [10, 87, 88, 89, 91, 92, 98, 102, 105], "extrem": [10, 90, 91, 92, 94, 95, 97, 98], "record": [10, 37, 41, 88, 94, 105], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 90, 91, 93, 97], "minor": [10, 55], "variat": 10, "translat": 10, "d": [10, 54, 86, 94, 95, 97, 98, 101, 105, 107], "constant": [10, 31, 73], "median": [10, 30, 54], "question": [10, 22, 83, 98], "nearli": [10, 22, 91, 92, 94, 95], "awar": [10, 84, 98], "presenc": [10, 51, 53, 98], "near_dupl": [10, 14, 19, 89, 90, 91, 92, 94, 95, 97, 98], "signific": [10, 94, 95, 98], "violat": [10, 94, 95, 98], "assumpt": [10, 94, 95, 98], "changepoint": [10, 94, 95, 98], "shift": [10, 51, 53, 94, 95, 98], "drift": [10, 91, 94, 98], "autocorrel": [10, 94, 95, 98], "almost": [10, 94, 95, 98], "adjac": [10, 51, 94, 95, 98], "tend": [10, 36, 46, 94, 95, 98, 106, 107], "sequenti": [10, 37, 41, 60, 92], "realli": [10, 87, 95, 100, 106], "mere": 10, "highlight": [10, 78, 82, 89, 90, 91, 94, 106], "necessarili": [10, 61, 69, 95, 98], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 91, 95, 97, 98, 102], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 55, 56, 81, 86, 94, 95, 96, 97, 98, 104, 107], "x1": [10, 66, 69, 102], "x2": [10, 66, 69, 102], "10th": 10, "100th": 10, "90": [10, 81, 86, 94, 98, 104, 105, 107], "similarli": [10, 37, 41, 90, 92, 94, 97, 102], "math": [10, 92], "behind": [10, 70, 98], "proper": [10, 56, 61, 66, 69, 86, 92, 95, 97, 100, 102], "scenario": [10, 51, 53, 71, 89, 90, 91], "underli": [10, 42, 53, 70, 79, 81, 107], "stem": [10, 70, 103], "evolv": 10, "influenc": 10, "act": [10, 68, 90], "accordingli": [10, 32, 51], "emploi": [10, 101, 103], "partit": [10, 104], "ahead": 10, "good": [10, 37, 41, 54, 60, 62, 68, 71, 75, 77, 78, 83, 89, 92, 94, 95], "problem": [10, 32, 40, 48, 78, 83, 90, 91, 92, 95, 97], "deploy": [10, 86, 87, 98, 105], "overlook": [10, 68, 102], "fact": 10, "thu": [10, 36, 41, 62, 86, 88, 94, 95, 98, 104, 107], "diagnos": [10, 91, 97], "rarest": [10, 91], "q": [10, 102], "subpar": 10, "special": [10, 51, 55], "techniqu": [10, 102], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 91, 92, 94, 95, 98], "excess": [10, 92], "dark": [10, 106], "bright": [10, 107], "blurri": [10, 92], "lack": [10, 60], "unusu": [10, 102, 103], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 83, 91, 92, 94, 95, 99], "get_self_confidence_for_each_label": [10, 48, 71], "r": [10, 40, 73, 89, 90, 91, 105, 106], "tabular": [10, 83, 85, 90, 91, 93, 97, 100], "categor": [10, 70, 85, 86, 90, 91, 93, 97, 105], "encod": [10, 49, 69, 75, 78, 86, 87, 94, 95, 97, 105, 106], "miss": [10, 27, 37, 41, 56, 66, 68, 89, 94, 97, 102, 105], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 56, 70, 97], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 37, 41, 42, 43, 77, 79, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 107], "ood_kwarg": 10, "outofdistribut": [10, 28, 70, 103], "outsid": [10, 97, 101], "outlierissuemanag": [10, 14, 21, 28, 90], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 51, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106], "howev": [10, 37, 41, 51, 56, 86, 87, 88, 92, 94, 95, 100, 104, 106], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 88, 90, 96, 100, 102], "vice": [10, 62], "versa": [10, 62], "light": [10, 92, 96, 102, 106], "29": [10, 89, 92, 96, 100, 101, 102, 106, 107], "low_inform": [10, 92], "odd_aspect_ratio": [10, 92], "35": [10, 89, 90, 96, 100, 101, 102], "odd_siz": [10, 92], "doc": [10, 37, 41, 70, 83, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "studio": [11, 83, 91, 92, 94, 95, 97], "data_issu": [11, 15, 16, 33, 90], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 60, 71, 89, 90, 91, 92, 100], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 69, 100], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 92], "dataissu": [13, 15, 16, 33], "central": [13, 107], "repositori": 13, "strategi": [13, 48, 97], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 51, 56, 63, 66, 69, 73, 75, 77, 89, 90, 91, 97], "recomput": [13, 87], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 62, 83], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 70, 90], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 75, 77], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 98, 102, 106, 107], "creation": [16, 41], "execut": [16, 37, 41, 90, 97, 102], "coordin": [16, 66, 68, 69, 102, 107], "behavior": [16, 36, 37, 41, 69, 89, 97], "At": [16, 69, 97], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 53, 60], "valuabl": 18, "vstack": [18, 56, 92, 96, 97, 98, 100, 101], "25": [18, 26, 37, 48, 54, 89, 91, 92, 96, 98, 100, 101, 102, 107], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 55, 56], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 89, 90, 91, 92, 97, 98, 100, 101], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 87, 95, 103], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 55, 56, 86, 88, 90, 92, 96, 98, 101], "near_duplicate_set": [19, 21, 90, 91, 92, 94, 95, 97, 98], "occurr": [19, 20, 22, 26, 27, 28, 31, 55], "median_nn_dist": 19, "near_duplicate_scor": [19, 90, 91, 92, 94, 95, 97, 98], "class_imbalance_scor": [20, 91], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 68, 83, 98, 107], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 70, 71, 89, 90, 91, 92, 95, 98, 103], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 106], "priori": [22, 98], "abstract": [22, 32], "applic": [23, 61, 97, 98, 100, 107], "typevar": [23, 25, 37, 41, 55, 65, 68, 69], "scalartyp": [23, 25], "covari": [23, 25, 73, 105], "summary_dict": 23, "label_scor": [23, 25, 30, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 51, 71, 75, 77, 102, 106], "empir": [26, 47, 61], "cumul": 26, "ecdf": 26, "histogram": [26, 94, 105], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 91, 94, 95, 98], "null_track": 27, "extend": [27, 49, 60, 92, 102, 103, 107], "superclass": 27, "arbitrari": [27, 36, 77, 81, 90, 103, 105], "prompt": 27, "address": [27, 87, 90, 91, 95, 97], "enabl": [27, 41, 53], "null_scor": [27, 91], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "issue_threshold": 28, "multipli": [30, 54], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 56, 69, 87, 107], "50": [31, 41, 89, 97, 98, 100, 102, 103, 105, 107], "keepdim": [31, 97], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 88, 100], "npt": 31, "int_": 31, "id": [31, 61, 90, 92, 97, 100], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 91], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": [32, 53], "mainli": [32, 103, 107], "content": [32, 70, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "fetch": [32, 40, 88, 91, 97], "datset": 33, "exclud": [33, 42, 78, 82, 90, 97, 107], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 89, 90, 91], "continu": [34, 60, 86, 87, 92, 95, 97, 100, 102, 105, 107], "binari": [34, 48, 56, 63, 65, 98, 107], "simultan": [34, 105], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 90, 91], "typeerror": [34, 48], "12": [34, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 61, 62, 71, 89, 90, 91, 92, 96, 102, 104, 106], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 51, 86, 87, 88, 91, 92, 94, 95, 100, 102, 103, 105, 107], "modifi": [36, 37, 40, 41, 51, 53, 56, 97, 98], "rank_classes_by_label_qu": [36, 91], "merg": [36, 51, 55, 83, 96, 97, 107], "find_overlapping_class": [36, 97, 98], "problemat": [36, 62, 78, 82, 88, 102, 107], "unnorm": [36, 62, 98], "abov": [36, 37, 40, 41, 53, 56, 61, 68, 69, 71, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 105, 106, 107], "model_select": [36, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 105], "cross_val_predict": [36, 41, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 104, 105], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 98], "cv": [36, 48, 86, 88, 89, 90, 91, 94, 98, 100], "df": [36, 56, 82, 88, 97], "overall_label_qu": [36, 62], "col": 36, "prob": [36, 55, 98, 104], "divid": [36, 62, 71], "label_nois": [36, 62], "human": [36, 96, 106, 107], "clearli": [36, 71, 92, 102, 106], "num": [36, 62, 96, 98], "overlap": [36, 83, 96, 97, 98], "ontolog": 36, "publish": [36, 107], "therefor": [36, 71], "vehicl": [36, 96], "truck": [36, 96, 103, 106], "intuit": [36, 62, 89], "car": [36, 96, 102, 106], "frequent": [36, 61, 94, 97, 105], "characterist": 36, "l": [36, 37, 41, 66, 68, 69], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 56, 62, 64, 78, 96, 97, 103, 104, 107], "cat": [36, 56, 62, 64, 96, 97, 103, 104], "captur": [36, 88, 102, 103, 106], "co": [36, 37, 38], "noisy_label": [36, 89, 90, 91, 101], "overlapping_class": 36, "descend": [36, 37, 41, 48, 62, 69], "overall_label_health_scor": [36, 62, 98], "half": [36, 37, 39, 41, 62, 96, 107], "health_scor": [36, 62], "classes_by_label_qu": [36, 91], "cnn": [37, 39, 41, 92], "cifar": [37, 38, 96, 103], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 69, 89, 90, 97, 100, 103, 104, 106, 107], "forward": [37, 38, 39, 41, 92, 100], "overridden": [37, 41], "although": [37, 41, 70, 86, 94], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 57, 62, 69, 77, 81, 97, 100, 101, 102, 104, 107], "former": [37, 41], "hook": [37, 41, 96], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 69], "recurs": [37, 41, 48], "submodul": [37, 41, 50], "children": [37, 39, 41, 107], "nn": [37, 38, 41, 51, 92], "init": [37, 41, 98], "no_grad": [37, 41, 92, 103], "init_weight": [37, 41], "linear": [37, 41, 87, 92, 95], "fill_": [37, 41], "net": [37, 41, 88, 92, 96], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 92], "tensor": [37, 38, 41, 87, 88, 92, 95, 103], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 88], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 103], "compil": [37, 39, 41, 60], "cpu": [37, 39, 41, 43, 88, 92], "move": [37, 41, 48, 84, 96], "cuda": [37, 39, 41, 88, 92], "devic": [37, 41, 88, 92], "gpu": [37, 41, 87, 88, 95], "live": [37, 41], "copi": [37, 41, 73, 86, 88, 89, 90, 91, 94, 97, 101, 104, 105], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 92, 101, 103], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 83, 90, 96, 100, 103, 107], "get_buff": [37, 39, 41], "target": [37, 38, 41, 73, 74, 103, 105], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 95], "resolv": [37, 41, 89, 107], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 51, 92, 106], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 92], "break": [37, 41, 92, 102], "pickl": [37, 41, 102], "get_paramet": [37, 39, 41], "let": [37, 41, 70, 71, 86, 87, 88, 89, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 92], "16": [37, 41, 48, 51, 60, 77, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 106, 107], "33": [37, 41, 96, 102], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 71, 89, 96, 102, 107], "diagram": [37, 41, 104], "degre": [37, 41], "queri": [37, 41, 51, 53, 91, 92, 97, 101], "named_modul": [37, 39, 41], "o": [37, 41, 54, 55, 88, 89, 90, 91, 96, 97, 98, 101, 102, 107], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 100], "preserv": [37, 41, 56], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 56, 57, 69, 90, 92, 97, 98, 100, 102, 103], "named_buff": [37, 39, 41], "prefix": [37, 41, 88, 107], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 87, 88, 95, 97], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 86, 94], "fire": [37, 41, 96], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 90, 91], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 92, 94, 105], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41, 51], "incompatible_kei": [37, 41], "modif": [37, 41, 51], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 87, 88, 95], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 60, 84, 88, 97], "design": [37, 41, 51, 89], "ordereddict": [37, 41], "detach": [37, 41, 92], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 62, 68], "complex": [37, 41, 88], "integr": [37, 41, 53, 83, 97], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 87, 95, 96], "desir": [37, 41, 51, 55, 69], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 88], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 87, 95], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 92], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 102], "noisili": [38, 98], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 60, 92], "decim": [38, 56], "forget": [38, 48, 107], "rate_schedul": 38, "epoch": [38, 39, 41, 92, 97], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 71, 97], "250": [38, 90, 91, 98, 102], "epoch_decay_start": 38, "80": [38, 86, 94, 101, 105], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 87, 92, 95, 98], "train_load": [38, 41], "model1": [38, 98], "optimizer1": 38, "model2": [38, 98], "optimizer2": 38, "dataload": [38, 92, 103], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 59, 107], "wish": [39, 59, 103, 106, 107], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 97], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 76, 77, 78, 79, 80, 81, 82, 106, 107], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 75, 77, 89, 92, 97, 103, 106], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 92], "loader": [39, 41, 92], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 84], "mini": [40, 75, 77, 97], "low_self_confid": [40, 43, 63], "self_confid": [40, 43, 44, 48, 63, 65, 71, 79, 81, 86, 87, 97, 98], "conveni": [40, 53, 86, 87, 88, 95], "script": 40, "labels_fil": [40, 97], "pred_probs_fil": [40, 97], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 61, 106], "read": [40, 45, 91, 97, 98, 103, 107], "zarr": [40, 97], "memmap": [40, 106], "pythonspe": 40, "mmap": [40, 97], "hdf5": 40, "further": [40, 42, 62, 63, 65, 68, 69, 77, 78, 88, 97], "yourfil": 40, "npy": [40, 96, 97, 106], "mmap_mod": [40, 106], "tip": [40, 43, 60, 97], "save_arrai": 40, "your_arrai": 40, "disk": [40, 96, 97], "npz": [40, 107], "maxim": [40, 61, 75, 77, 106], "multiprocess": [40, 43, 63, 75, 77, 92, 97], "linux": [40, 75, 77], "physic": [40, 43, 75, 77, 102], "psutil": [40, 43, 75, 77], "labels_arrai": [40, 57], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 51, 69, 90, 97, 102, 103], "store_result": 40, "becom": [40, 103], "verifi": [40, 53, 97, 100, 103], "long": [40, 61, 70, 100], "enough": [40, 56, 97], "chunk": [40, 104], "ram": [40, 96], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 97], "shortcut": 40, "encount": [40, 43, 75], "1000": [40, 88, 95, 97, 103], "aggreg": [40, 44, 48, 61, 65, 68, 71, 81, 97, 98, 100], "seen": [40, 89, 97, 103, 107], "far": [40, 61], "label_quality_scor": [40, 65, 68, 71, 74, 98, 102], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 63, 65, 71, 79, 81], "low_normalized_margin": [40, 43, 63], "issue_indic": [40, 68, 92], "update_num_issu": 40, "arr": [40, 97], "chunksiz": 40, "convnet": 41, "bespok": [41, 60], "download": [41, 88, 97, 103], "mnist": [41, 83, 88, 96], "handwritten": 41, "digit": [41, 88, 96], "last": [41, 48, 66, 69, 89, 90, 91, 97, 100, 102, 107], "sklearn_digits_test_s": 41, "64": [41, 86, 92, 94, 98, 102], "01": [41, 71, 73, 88, 98, 101, 102], "templat": 41, "flexibli": 41, "among": [41, 61, 98], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 56, 103], "train_label": [41, 87, 103], "span": 42, "sentenc": [42, 55, 79, 81, 82, 87, 95], "token_classif": [42, 55, 79, 81, 82, 97], "encourag": [43, 63, 71, 74], "multilabel_classif": [43, 62, 63, 65, 71, 97, 101], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 63, 71, 98], "num_to_remove_per_class": [43, 63], "bad": [43, 51, 63, 68, 71, 95, 97], "seem": [43, 98, 101], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 63, 65, 71, 79, 81], "label_issues_idx": [43, 71], "entropi": [43, 45, 47, 48, 70, 71], "prune_by_class": [43, 63, 98], "predicted_neq_given": [43, 63, 98], "prune_counts_matrix": 43, "smallest": [43, 71], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 83, 87, 97], "too": [43, 48, 51, 70, 91, 92, 97, 102], "thread": [43, 63], "window": [43, 88, 96], "shorter": [43, 66], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 56], "clip_noise_r": [44, 56], "clip_valu": [44, 56], "value_count": [44, 56, 97], "value_counts_fill_missing_class": [44, 56], "get_missing_class": [44, 56], "round_preserving_sum": [44, 56], "round_preserving_row_tot": [44, 56], "estimate_pu_f1": [44, 56], "confusion_matrix": [44, 56], "print_square_matrix": [44, 56], "print_noise_matrix": [44, 56, 98], "print_inverse_noise_matrix": [44, 56], "print_joint_matrix": [44, 56, 98], "compress_int_arrai": [44, 56], "train_val_split": [44, 56], "subset_x_i": [44, 56], "subset_label": [44, 56], "subset_data": [44, 56], "extract_indices_tf": [44, 56], "unshuffle_tensorflow_dataset": [44, 56], "is_torch_dataset": [44, 56], "is_tensorflow_dataset": [44, 56], "csr_vstack": [44, 56], "append_extra_datapoint": [44, 56], "get_num_class": [44, 56], "num_unique_class": [44, 56], "get_unique_class": [44, 56], "format_label": [44, 56], "smart_display_datafram": [44, 56], "force_two_dimens": [44, 56], "latent_algebra": [44, 84], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 101], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 101], "onehot2int": [44, 49, 101], "multilabel_scor": [44, 65], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 65], "softmin": [44, 48, 65, 68, 77, 81], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "default_k": [44, 50, 51], "features_to_knn": [44, 50, 51], "construct_knn_graph_from_index": [44, 50, 51, 53], "create_knn_graph_and_index": [44, 50, 51], "correct_knn_graph": [44, 50, 51], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [44, 50, 51], "correct_knn_distances_and_indic": [44, 50, 51], "high_dimension_cutoff": [44, 50, 52], "row_count_cutoff": [44, 50, 52], "decide_euclidean_metr": [44, 50, 52], "decide_default_metr": [44, 50, 52], "construct_knn": [44, 50, 53], "transform_distances_to_scor": [44, 54], "correct_precision_error": [44, 54], "token_classification_util": [44, 107], "get_sent": [44, 55, 107], "filter_sent": [44, 55, 107], "process_token": [44, 55], "merge_prob": [44, 55], "color_sent": [44, 55], "assert_valid_input": [44, 57], "assert_valid_class_label": [44, 57], "assert_nonempty_input": [44, 57], "assert_indexing_work": [44, 57], "labels_to_arrai": [44, 57], "labels_to_list_multilabel": [44, 57], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 60, 61, 83, 100], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 56, 88], "behav": 45, "unnecessari": [45, 97], "slightli": [45, 86, 87, 89], "interv": [45, 48, 103], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 56, 73, 88, 100, 106, 107], "increas": [46, 54, 68, 70, 71, 88, 90, 97, 100, 101, 107], "dot": [46, 81, 97], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 61], "ensembl": [47, 48, 61, 71, 86, 94, 97, 101, 103, 105], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 61], "format_multiannotator_label": [47, 61, 100], "formatted_label": [47, 56], "old": [47, 56, 84, 88, 96], "check_consensus_label_class": 47, "consensus_label": [47, 61, 100], "consensus_method": [47, 61], "consensu": [47, 61, 83, 99, 107], "establish": [47, 60, 87, 105], "compute_soft_cross_entropi": 47, "soft": [47, 96], "find_best_temp_scal": 47, "coarse_search_rang": [47, 73, 97], "fine_search_s": [47, 73, 97], "temperatur": [47, 48, 68, 77, 81], "scale": [47, 54, 86, 96, 97, 103, 106], "factor": [47, 48, 54, 75, 77], "minim": [47, 68, 103], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 96], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 71], "get_confidence_weighted_entropy_for_each_label": [48, 71], "75": [48, 89, 90, 91, 96, 100, 101, 102, 105, 107], "scorer": 48, "alpha": [48, 65, 68, 89, 90, 91, 98, 101, 105], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 63, 94, 95, 98, 107], "formula": [48, 54], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 71, 98, 100, 106], "recent": [48, 107], "success": 48, "previou": [48, 51, 92, 97, 102], "discount": 48, "s_ema": 48, "175": [48, 92, 98, 102], "underflow": 48, "nan": [48, 61, 86, 94, 100, 105], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 65], "n_sampl": 48, "n_label": 48, "worst": [48, 100], "class_label_quality_scor": 48, "42": [48, 95, 96, 102, 107], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 64, 65], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 88], "wider": 48, "splitter": 48, "kfold": [48, 92], "onevsrestclassifi": [48, 101], "randomforestclassifi": [48, 98, 101], "n_split": [48, 91, 92, 101], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 63, 69, 75, 78, 86, 94, 96, 97, 105, 106], "onehot_matrix": 49, "pairwis": [50, 52, 70], "reli": [51, 70, 87, 88, 89, 90, 91, 95, 102, 103, 105], "sklearn_knn_kwarg": 51, "correction_featur": 51, "discourag": 51, "flexibl": [51, 97], "manner": [51, 65, 86, 87, 100, 105], "701": 51, "900": [51, 86, 94, 105], "436": 51, "000": [51, 87, 92, 95, 96, 107], "idea": [51, 71, 89, 102], "dens": [51, 60], "33140006": 51, "76210367": 51, "correct_exact_dupl": 51, "mutual": [51, 62, 101], "vari": [51, 68, 91], "exact_duplicate_set": 51, "main": [51, 61, 89], "front": [51, 96], "consider": 51, "capabl": [51, 83], "come": [51, 56, 89, 90, 91, 97, 106], "misidentif": 51, "corrected_dist": 51, "corrected_indic": 51, "sqrt": 51, "distant": 51, "suitabl": [52, 61, 86, 94], "slower": 52, "decid": [52, 61, 87, 95, 96, 100, 105, 107], "predefin": 52, "met": [52, 107], "euclidean_dist": [52, 70], "spatial": [52, 70], "decis": [52, 86, 89, 90, 91], "That": [52, 98, 101], "cosine_dist": 52, "knn_kwarg": 53, "html": [53, 56, 66, 69, 70, 94, 97, 98], "kneighbor": 53, "metric_param": 53, "n_features_in_": 53, "effective_metric_params_": 53, "effective_metric_": 53, "n_samples_fit_": 53, "__sklearn_is_fitted__": 53, "conduct": 53, "is_fit": 53, "trail": 53, "underscor": 53, "avg_dist": 54, "scaling_factor": 54, "exp": [54, 70, 71, 90], "dt": 54, "right": [54, 66, 69, 87, 95, 101, 102, 103], "strength": [54, 69], "pronounc": 54, "differenti": 54, "ly": 54, "rule": [54, 55, 96], "thumb": 54, "ood_features_scor": [54, 70, 103], "88988177": 54, "80519832": 54, "toler": 54, "minkowski": 54, "noth": 54, "epsilon": 54, "sensibl": 54, "fixed_scor": 54, "readabl": 55, "lambda": [55, 88, 90, 97, 100], "long_sent": 55, "headlin": 55, "charact": [55, 56], "s1": 55, "s2": 55, "processed_token": 55, "alecnlcb": 55, "entiti": [55, 83, 97, 107], "mapped_ent": 55, "unique_ident": 55, "loc": [55, 89, 90, 91, 92, 107], "nbitbas": [55, 65], "probs_merg": 55, "0125": [55, 81], "0375": 55, "075": 55, "025": 55, "color": [55, 78, 89, 90, 91, 94, 98, 101, 103, 105, 106], "red": [55, 69, 89, 90, 91, 96, 98, 101, 102, 103, 106], "colored_sent": 55, "termcolor": 55, "31msentenc": 55, "0m": 55, "ancillari": 56, "class_without_nois": 56, "any_other_class": 56, "choos": [56, 71, 86, 94, 97, 98, 105], "tradition": 56, "new_sum": 56, "fill": 56, "major": [56, 61, 84, 89, 92, 103], "versu": [56, 98], "obviou": 56, "cgdeboer": 56, "iteround": 56, "reach": 56, "prob_s_eq_1": 56, "claesen": 56, "f1": [56, 69, 95, 98], "BE": 56, "left_nam": 56, "top_nam": 56, "titl": [56, 89, 90, 91, 98, 101, 103], "short_titl": 56, "round_plac": 56, "pretti": [56, 89, 98], "joint_matrix": 56, "num_possible_valu": 56, "holdout_idx": 56, "extract": [56, 70, 87, 88, 95, 100, 103, 106], "allow_shuffl": 56, "turn": [56, 83, 102], "shuffledataset": 56, "histori": 56, "pre_x": 56, "buffer_s": 56, "csr_matric": 56, "append": [56, 88, 89, 92, 96, 97, 98, 100, 101, 102, 103, 107], "bottom": [56, 66, 69, 102], "to_data": 56, "from_data": 56, "taken": 56, "label_matrix": 56, "canon": 56, "displai": [56, 69, 78, 82, 87, 88, 89, 95, 98, 107], "jupyt": [56, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "notebook": [56, 61, 88, 89, 91, 96, 97, 98, 100, 101, 102, 106, 107], "consol": 56, "allow_missing_class": 57, "allow_one_class": 57, "length_x": 57, "labellik": 57, "labels_list": [57, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 101], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 107], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 95, 103], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 98, 100, 101], "get_label_quality_multiannot": [61, 100], "vote": 61, "crowdsourc": [61, 83, 100], "dawid": [61, 100], "skene": [61, 100], "analog": [61, 89, 96, 100], "chosen": [61, 71, 97, 100], "crowdlab": [61, 100], "unlabel": [61, 92, 94, 95, 100, 103, 106], "get_active_learning_scor": [61, 100], "activelab": [61, 100], "priorit": [61, 68, 102, 106, 107], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 94, 98, 100, 105], "majority_vot": 61, "broken": [61, 69, 96, 105], "highest": [61, 69, 90, 92, 104], "0th": 61, "consensus_quality_scor": [61, 100], "annotator_agr": [61, 100], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 100], "agre": 61, "prevent": [61, 97], "overconfid": [61, 104], "detailed_label_qu": [61, 100], "annotator_stat": [61, 100], "model_weight": 61, "annotator_weight": 61, "warn": [61, 90, 91, 92, 94, 95, 97, 98], "labels_info": 61, "num_annot": [61, 100], "deriv": [61, 100], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 100], "num_examples_label": [61, 100], "agreement_with_consensu": [61, 100], "worst_class": [61, 100], "trustworthi": [61, 100, 105], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 105], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 90, 100], "get_majority_vote_label": [61, 100], "event": 61, "lastli": [61, 94], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 101], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 92, 98], "anim": [64, 103], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 102], "object_detect": [66, 68, 69, 102], "return_indices_ranked_by_scor": [66, 102], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 102, 106, 107], "bbox": [66, 69, 102], "image_nam": [66, 69], "y1": [66, 69, 102], "y2": [66, 69, 102], "later": [66, 69, 70, 87, 107], "corner": [66, 69, 102], "xyxi": [66, 69, 102], "io": [66, 69, 88, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 102], "detectron": [66, 69, 102], "detectron2": [66, 69, 102], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 92, 105, 107], "draw_box": [66, 69], "mmdetect": [66, 69, 102], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 91], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 102, 106, 107], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 102], "bounding_box_size_distribut": [67, 69, 102], "class_label_distribut": [67, 69, 102], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97], "chose": [68, 100, 102], "imperfectli": [68, 102], "dirti": [68, 71, 74, 105], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 94, 95, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 106], "discov": [69, 91, 107], "abnorm": [69, 92, 102], "auxiliari": [69, 103, 106], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 91, 98, 101, 103, 105, 106], "sorted_idx": [69, 103], "class_to_show": 69, "hidden": [69, 89, 103], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "matplotlib": [69, 78, 89, 90, 91, 92, 98, 101, 102, 103, 105], "pyplot": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "prediction_threshold": 69, "overlai": [69, 102], "figsiz": [69, 89, 90, 91, 92, 98, 101, 103], "save_path": [69, 102], "blue": [69, 96, 98, 102], "overlaid": 69, "side": [69, 96, 102], "figur": [69, 98, 101, 103, 105], "extens": [69, 98, 100], "png": [69, 102], "pdf": [69, 70], "svg": 69, "num_proc": [69, 92], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 98, 100, 105], "truth": [69, 98, 100, 105], "bias": 69, "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 94, 96, 98, 105], "per_class_metr": 69, "Of": 70, "li": 70, "smaller": [70, 89, 101, 102], "find_top_issu": [70, 71, 103], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 92], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 103], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 95, 103], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 90, 91, 94, 95, 103, 104], "order_label_issu": [71, 84], "whichev": [71, 104], "argsort": [71, 87, 92, 95, 98, 102, 103, 105], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 98], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 95], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 103], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 95], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 105], "linearregress": [73, 97, 105], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 90, 100, 103], "bootstrap": [73, 97, 105], "resampl": [73, 88, 97], "epistem": [73, 97, 103, 105], "aleator": [73, 97, 105], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 95, 103], "grain": 73, "grid": 73, "varianc": [73, 98], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 102, 105], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 91, 92, 96, 97, 100, 102, 103, 105], "aka": [74, 88, 98, 102, 105, 107], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 99], "pixel": [75, 77, 78, 92, 103, 106], "h": [75, 77, 78, 106], "height": [75, 77, 78, 106], "w": [75, 77, 78, 106], "width": [75, 77, 78, 106], "labels_one_hot": [75, 78, 106], "stream": [75, 89, 103, 107], "downsampl": [75, 77, 106], "shrink": [75, 77], "divis": [75, 77, 90], "common_label_issu": [76, 78, 80, 82, 106, 107], "filter_by_class": [76, 78, 106], "segmant": [77, 78], "num_pixel_issu": [77, 106], "product": [77, 92, 97], "pixel_scor": [77, 106], "enter": 78, "legend": [78, 89, 90, 91, 101, 102, 105, 106], "colormap": 78, "background": 78, "person": [78, 97, 102, 106, 107], "ambigu": [78, 82, 87, 88, 95, 96, 98, 107], "systemat": [78, 82, 100], "misunderstood": [78, 82], "issues_df": [78, 92], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 107], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 107], "converg": 81, "toward": 81, "_softmin_sentence_scor": 81, "sentence_scor": [81, 107], "token_info": 81, "70": [81, 94], "02": [81, 90, 91, 98, 102, 103], "03": [81, 94, 96, 98, 102, 107], "04": [81, 94, 102], "08": [81, 98, 102, 105, 107], "commonli": [82, 84, 90, 91, 101, 107], "But": [82, 95, 98, 105, 107], "restrict": [82, 97], "reliabl": [83, 86, 88, 97, 100, 106], "thousand": 83, "imagenet": [83, 96], "popular": [83, 100, 102], "centric": [83, 92, 94, 95, 99], "minut": [83, 86, 87, 88, 94, 95, 96, 100, 101, 102, 105, 106, 107], "conda": 83, "feature_embed": [83, 103], "Then": [83, 86, 87, 92, 97], "your_dataset": [83, 88, 90, 91, 92, 94, 95, 97], "column_name_of_label": [83, 88, 90, 91, 92, 94, 95], "plagu": [83, 91], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 91], "sklearn_compatible_model": 83, "framework": [83, 101, 102], "complianc": 83, "tag": [83, 101, 107], "sequenc": 83, "recognit": [83, 88, 97, 107], "train_data": [83, 86, 87, 103, 105], "gotten": 83, "test_data": [83, 86, 87, 89, 98, 101, 103, 105], "deal": [83, 91], "tutori": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "feel": [83, 88, 91, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 105], "welcom": 83, "commun": [83, 97], "guidelin": [83, 102], "piec": 83, "smart": [83, 92, 94, 95, 97], "edit": [83, 97], "easier": [83, 98], "unreli": [83, 86, 88, 94, 95], "link": [83, 88, 96, 102], "older": 84, "outlin": 84, "substitut": 84, "v2": [84, 86, 94], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 94, 96, 107], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 98], "research": [84, 98], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "sql": [86, 94], "databas": [86, 94], "excel": [86, 94], "parquet": [86, 94], "student": [86, 94, 105, 107], "grade": [86, 94, 105], "exam": [86, 94, 105], "letter": [86, 94, 107], "hundr": [86, 94], "mistak": [86, 87, 92, 94, 95], "No": [86, 87, 95, 97], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "preprocess": [86, 87, 91, 94, 103, 105], "standardscal": [86, 94, 103], "labelencod": [86, 87], "train_test_split": [86, 87, 89, 90, 91, 103], "accuracy_scor": [86, 87, 88, 95, 98], "grades_data": [86, 94], "read_csv": [86, 87, 94, 95, 105], "demo": [86, 91, 94, 101], "head": [86, 87, 88, 91, 92, 94, 95, 96, 98, 100, 105], "stud_id": [86, 94], "exam_1": [86, 94, 105], "exam_2": [86, 94, 105], "exam_3": [86, 94, 105], "letter_grad": [86, 94], "f48f73": [86, 94], "53": [86, 89, 90, 91, 94, 96, 101, 102], "00": [86, 90, 91, 94, 96, 103], "77": [86, 90, 91, 94, 102], "0bd4e7": [86, 94], "81": [86, 94, 95, 102, 105, 107], "great": [86, 89, 94, 96], "particip": [86, 94], "cb9d7a": [86, 94], "61": [86, 94, 98, 102, 105], "94": [86, 94, 96, 98, 102, 105], "78": [86, 94, 96, 98, 102, 105], "9acca4": [86, 94], "48": [86, 94, 96, 98, 102], "x_raw": [86, 94], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 105], "x_encod": [86, 94], "get_dummi": [86, 94, 105], "drop_first": [86, 94], "numeric_featur": [86, 94], "scaler": [86, 94, 103], "x_process": [86, 94], "fit_transform": [86, 94], "bring": [86, 87, 92, 94, 95, 100, 105], "byod": [86, 87, 92, 94, 95, 100, 105], "tress": 86, "held": [86, 88, 94, 95, 96, 102, 103, 104], "straightforward": [86, 88, 94], "benefit": [86, 88, 104, 106], "num_crossval_fold": [86, 88, 94, 100], "tabl": [86, 94, 96, 100], "212": [86, 98], "review": [86, 87, 91, 94, 95, 96, 97, 98, 102, 105, 106, 107], "iloc": [86, 87, 88, 94, 95, 105], "58": [86, 91, 94, 96, 98, 102], "92": [86, 90, 98, 102], "93": [86, 96, 102, 105, 107], "827": 86, "99": [86, 96, 98], "86": [86, 91, 92, 94, 98, 102, 105], "74": [86, 102, 105], "637": [86, 94], "79": [86, 96, 102], "65": [86, 90, 102], "cheat": 86, "0pt": 86, "120": [86, 90, 91], "97": [86, 96, 97, 98, 102, 105, 107], "233": [86, 107], "68": [86, 96, 98, 102], "83": [86, 98, 102, 105, 107], "76": [86, 89, 98, 101, 102, 105], "suspici": [86, 94], "carefulli": [86, 92, 94, 95], "examin": [86, 89, 90, 91, 94, 102], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90, 91], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 105], "14": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "acc_cl": [86, 87], "8095238095238095": 86, "especi": [86, 87, 89, 92, 97, 105], "blindli": [86, 87, 88, 97, 105], "trust": [86, 87, 88, 97, 98, 100, 104, 105], "effort": [86, 87, 105], "intent": [87, 95], "servic": [87, 95, 97], "onlin": [87, 95], "bank": [87, 95, 96], "banking77": [87, 95], "oo": [87, 95], "categori": [87, 92, 95], "shortlist": [87, 95, 105], "scope": [87, 95], "logist": [87, 89, 90, 91, 95, 100, 103], "probabilit": [87, 88], "drop": [87, 97, 100, 105], "earlier": [87, 107], "sentence_transform": [87, 95], "sentencetransform": [87, 95], "payment": [87, 95], "cancel_transf": [87, 95], "transfer": [87, 95], "fund": [87, 95], "cancel": [87, 95], "transact": [87, 95], "my": [87, 95], "revert": [87, 95], "morn": [87, 95], "realis": [87, 95], "yesterdai": [87, 95], "rent": [87, 95], "tomorrow": [87, 95], "raw_text": [87, 95], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "39": [87, 88, 90, 92, 95, 96, 97, 102, 105, 106, 107], "change_pin": [87, 95], "getting_spare_card": [87, 95], "card_payment_fee_charg": [87, 95], "card_about_to_expir": [87, 95], "apple_pay_or_google_pai": [87, 95], "lost_or_stolen_phon": [87, 95], "supported_cards_and_curr": [87, 95], "beneficiary_not_allow": [87, 95], "visa_or_mastercard": [87, 95], "card": [87, 95, 96], "utter": [87, 95], "encond": 87, "test_label": [87, 98, 101, 103], "suit": [87, 95, 96, 97], "electra": [87, 95], "discrimin": [87, 95], "googl": [87, 89, 95], "train_text": 87, "test_text": 87, "home": [87, 90, 91, 95, 96], "runner": [87, 90, 91, 95], "google_electra": [87, 95], "pool": [87, 95, 97, 103], "opt": [87, 88, 91, 92, 94, 95, 98], "hostedtoolcach": [87, 88, 91, 92, 94, 95, 98], "x64": [87, 88, 91, 92, 94, 95, 98], "lib": [87, 88, 91, 92, 94, 95, 98], "python3": [87, 88, 91, 92, 94, 95, 98], "site": [87, 88, 91, 92, 94, 95, 98], "_util": [87, 95], "831": [87, 95], "userwarn": [87, 88, 90, 91, 95], "typedstorag": [87, 95], "untypedstorag": [87, 95], "untyped_storag": [87, 95], "fget": [87, 95], "__get__": [87, 95], "owner": [87, 95], "leverag": [87, 88, 95, 97, 98, 100], "computation": [87, 88, 95], "intens": [87, 88, 95], "400": [87, 89, 95], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 105], "lowest_quality_label": [87, 88, 95, 98, 105], "to_numpi": [87, 95, 97, 105], "44": [87, 96, 101, 102], "646": 87, "390": 87, "628": 87, "121": [87, 89, 98], "702": 87, "863": [87, 88], "135": 87, "337": [87, 102], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 95], "cash": [87, 95], "holidai": [87, 95], "sent": [87, 95, 107], "mine": [87, 95], "expir": [87, 95], "fight": 87, "hors": [87, 96, 103], "duck": [87, 96], "me": [87, 95], "whoever": [87, 95], "consum": [87, 105], "18": [87, 88, 89, 95, 96, 97, 98, 102, 103, 105, 106], "baseline_model": [87, 105], "87": [87, 91, 92, 102, 105], "acceler": [87, 105], "19": [87, 88, 89, 92, 95, 96, 97, 98, 102, 103, 105, 106], "89": [87, 89, 90, 94, 102, 105], "spoken": 88, "500": [88, 103, 107], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 90, 91, 92, 97], "voxceleb": 88, "speech": [88, 107], "your_pred_prob": [88, 89, 90, 91, 94, 95], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 94, 98, 100], "command": 88, "wget": [88, 102, 106, 107], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 107], "v1": 88, "tar": [88, 103], "gz": [88, 103], "mkdir": [88, 107], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 89, 92, 97], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "pulldown": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "colab": [88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "tfio": 88, "pathlib": 88, "ipython": 88, "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": 88, "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 92], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 92], "embeddings_arrai": 88, "650": 88, "stft": 88, "return_complex": 88, "view_as_r": 88, "recov": 88, "trigger": 88, "aten": 88, "src": 88, "nativ": 88, "spectralop": 88, "cpp": 88, "_vf": 88, "n_fft": 88, "hop_length": 88, "win_length": 88, "attr": 88, "512": [88, 92], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "24": [88, 89, 96, 98, 100, 102, 105, 107], "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 90, 96, 97, 98, 102, 105, 107], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 89, 92, 96, 98, 102, 105], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 98, 101], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "investig": [88, 89], "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 95], "sort_valu": [88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 105], "516": 88, "1946": 88, "469": 88, "2132": 88, "worth": [88, 98], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 103], "22": [88, 89, 90, 92, 96, 97, 98, 101, 102, 107], "load_ext": 89, "autoreload": 89, "ve": [89, 96, 97, 98, 100, 102], "prove": 89, "monitor": [89, 96], "ran": 89, "data_monitor": 89, "your_datalab": 89, "new_data_batch": 89, "your_label": 89, "get_your_label": 89, "your_featur": [89, 95], "get_featur": 89, "websit": [89, 96], "todo": 89, "get_ipython": 89, "438899286262e4635f83b7d60da7bfdd1035aa5": 89, "cmd": 89, "dep": 89, "dependencies_test": 89, "missing_depend": 89, "__import__": 89, "importerror": 89, "sep": [89, 107], "npleas": 89, "toi": [89, 90, 91, 92, 96, 98, 100], "mid": [89, 90, 91], "workflow": [89, 99, 105], "unseen": 89, "inf": [89, 90, 91], "bins_map": [89, 90, 91], "create_data": [89, 90, 91], "800": 89, "y_bin": [89, 90, 91], "y_i": [89, 90, 91], "y_bin_idx": [89, 90, 91], "y_train": [89, 90, 91, 98, 105], "y_test": [89, 90, 91, 98, 105], "y_train_idx": [89, 90, 91], "y_test_idx": [89, 90, 91], "slide": [89, 90, 91, 96], "frame": [89, 90, 91], "x_out": [89, 90, 91], "tini": [89, 90, 91], "concaten": [89, 90, 91, 97, 104], "y_out": [89, 90, 91], "y_out_bin": [89, 90, 91], "y_out_bin_idx": [89, 90, 91], "exact_duplicate_idx": [89, 90, 91], "x_duplic": [89, 90, 91], "y_duplic": [89, 90, 91], "y_duplicate_idx": [89, 90, 91], "noisy_labels_idx": [89, 90, 91, 101], "train_x": 89, "test_x": 89, "train_y_tru": 89, "test_y_tru": 89, "train_i": 89, "test_i": 89, "train_y_idx": 89, "test_y_idx": 89, "scatter": [89, 90, 91, 98, 101, 105], "black": [89, 90, 91, 96, 105], "cyan": [89, 90, 91], "plot_data": [89, 90, 91, 98, 101, 105], "fig": [89, 90, 91, 92, 96, 103, 105], "ax": [89, 90, 91, 92, 103, 105], "subplot": [89, 90, 91, 92, 103], "set_titl": [89, 90, 91, 92, 103], "set_xlabel": [89, 90, 91], "x_1": [89, 90, 91], "fontsiz": [89, 90, 91, 92, 98, 101], "set_ylabel": [89, 90, 91], "x_2": [89, 90, 91], "set_xlim": [89, 90, 91], "set_ylim": [89, 90, 91], "linestyl": [89, 90, 91], "circl": [89, 90, 91, 98, 101], "misclassifi": [89, 90, 91], "zip": [89, 90, 91, 92, 102, 107], "label_err": [89, 90, 91], "180": [89, 90, 91, 102], "marker": [89, 90, 91], "facecolor": [89, 90, 91], "edgecolor": [89, 90, 91], "linewidth": [89, 90, 91, 103], "title_fontproperti": [89, 90, 91], "semibold": [89, 90, 91], "first_legend": [89, 90, 91], "align": [89, 90, 91], "markerscal": 89, "second_legend": [89, 90, 91], "46": [89, 94, 96, 98, 102], "gca": [89, 90, 91], "add_artist": [89, 90, 91], "tight_layout": [89, 90, 91], "ideal": [89, 90, 91], "simplic": [89, 101], "327": [89, 102], "9297": 89, "000124": 89, "259": 89, "000725": 89, "269": 89, "000794": 89, "002061": 89, "125": [89, 90], "002908": 89, "fly": [89, 96], "feed": [89, 97], "simul": 89, "tqdm": [89, 92], "sleep": [89, 96], "generate_stream": 89, "sleep_tim": 89, "desc": 89, "singleton_stream": 89, "seamless": [89, 97], "singleton": 89, "batched_stream": 89, "processed_singleton": 89, "suggested_label": [89, 95], "250997": 89, "285757": 89, "43": [89, 90, 96, 98, 102], "120906": 89, "principl": 89, "processed_batch": 89, "51": [89, 90, 91, 94, 96, 98, 102, 107], "002748": 89, "189996": 89, "093505": 89, "037250": 89, "149": [89, 102], "076397": 89, "154": 89, "294010": 89, "160": [89, 95, 105], "073622": 89, "166": [89, 92], "140832": 89, "167": [89, 96, 98, 102], "041743": 89, "181": 89, "169429": 89, "127304": 89, "235": [89, 102], "090310": 89, "254": [89, 96, 102], "183343": 89, "256": [89, 96, 97, 102], "048720": 89, "263": [89, 101, 102], "138820": 89, "292": 89, "239609": 89, "295": [89, 102], "022075": 89, "306": 89, "103040": 89, "343": 89, "234755": 89, "354": 89, "001612": 89, "359": 89, "068359": 89, "367": [89, 105], "015793": 89, "368": 89, "029022": 89, "391": 89, "106761": 89, "troublesom": 89, "623844": 89, "812647": 89, "816854": 89, "661968": 89, "632244": 89, "395": 89, "474599": 89, "396": 89, "653901": 89, "397": 89, "584554": 89, "398": 89, "817287": 89, "399": 89, "881545": 89, "183": 89, "937927": 89, "309": 89, "939505": 89, "133": 89, "947290": 89, "177": 89, "952187": 89, "314": [89, 102], "997293": 89, "27": [89, 94, 96, 98, 102, 107], "655501": 89, "3603": 89, "173": [89, 102], "000330": 89, "000626": 89, "296": 89, "002004": 89, "304": 89, "165496": 89, "275": [89, 101], "179811": 89, "001317": 89, "005943": 89, "001426": 89, "320": [89, 102], "186355": 89, "349": 89, "187305": 89, "393": 89, "169838": 89, "185770": 89, "369889": 89, "285297": 89, "406162": 89, "516543": 89, "440142": 89, "476283": 89, "382757": 89, "466786": 89, "522078": 89, "276298": 89, "328181": 89, "409633": 89, "281425": 89, "518102": 89, "360596": 89, "underneath": 90, "hood": [90, 97], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "dup": [90, 91], "45": [90, 91, 96, 98, 102], "remaind": 90, "modal": [90, 91, 97, 100], "132": [90, 91, 98, 102], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96], "014828": 90, "107": [90, 91, 98, 101], "021241": 90, "026407": 90, "notic": [90, 98, 100, 102], "3558": [90, 91], "126": [90, 91, 98, 102], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "is_near_duplicate_issu": [90, 91, 92, 94, 95, 97, 98], "131": [90, 91, 106], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 98, 102, 105], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 101, 106, 107], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "348": 90, "378": 90, "357": 90, "34": [90, 96, 98, 100, 102, 107], "54": [90, 96, 98, 102], "039122": 90, "044598": 90, "105": [90, 102], "105196": 90, "133654": 90, "168033": 90, "101107": 90, "37": [90, 96], "183382": 90, "109": [90, 96, 102], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 102, 107], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 102], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 98, 102, 107], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 98, 100, 102], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 98], "_split": 91, "776": 91, "thoroughli": 91, "904": 91, "_base": [91, 92, 94, 95, 98], "246": [91, 92, 94, 95, 98, 102, 107], "efficiencywarn": [91, 92, 94, 95, 98], "sort_graph_by_row_valu": [91, 92, 94, 95, 98], "warn_when_not_sort": [91, 92, 94, 95, 98], "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "is_class_imbalance_issu": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "is_null_issu": 91, "is_non_iid_issu": [91, 94, 95, 98], "is_underperforming_group_issu": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 97], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 107], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 96], "952381": 91, "666667": 91, "portion": 91, "huge": [91, 98], "worri": [91, 95], "critic": 91, "60": [92, 98, 105], "torchvis": [92, 103], "tensordataset": 92, "stratifiedkfold": [92, 101], "autonotebook": 92, "fashion_mnist": 92, "num_row": 92, "60000": 92, "transformed_dataset": 92, "with_format": 92, "255": [92, 96], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 101, 103], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": 92, "get_test_accuraci": 92, "testload": [92, 103], "energi": 92, "trainload": [92, 103], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 105], "acc": [92, 98], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 107], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "532": [92, 96], "329": [92, 102], "88": [92, 96, 97, 98, 101, 102, 105], "195": 92, "226": [92, 102], "493": 92, "060": 92, "334": [92, 102], "330": [92, 102], "505": 92, "031": [92, 96], "476": 92, "340": 92, "344": 92, "328": [92, 102], "310": 92, "913": 92, "reorder": 92, "hstack": [92, 97, 98, 100], "vision": 92, "grayscal": 92, "max_preval": 92, "7714": 92, "3772": 92, "3585": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 98, 102, 107], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 96], "shirt": [92, 96], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 96, 103, 104], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 107], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 96], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 103], "nrow": [92, 103], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 103], "cmap": [92, 105], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 101, 102, 103, 104, 106], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": 92, "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 97], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 102, 106], "dark_scor": 92, "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "28": [92, 95, 96, 98, 100, 107], "difficult": 92, "disproportion": 92, "lowinfo_issu": 92, "low_information_scor": 92, "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 97, 100, 105], "xgboost": [94, 97, 105], "think": [94, 95, 97, 101, 106, 107], "nonzero": 94, "358": 94, "294": [94, 102], "941": 94, "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 96, 102, 107], "187": [94, 96], "898": 94, "0014": [94, 96], "595": 94, "702427": 94, "147": [94, 98, 102], "711186": 94, "157": [94, 98], "721394": 94, "771": 94, "731979": 94, "740335": 94, "0014153602099278074": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 101, 102, 105], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 105], "96": [94, 96, 98, 101, 102, 105, 107], "lt": [94, 95, 96, 100, 103], "style": [94, 106], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95], "duplicate_result": 94, "690": 94, "perhap": [94, 98, 100], "twice": 94, "67": [94, 96, 102, 105], "wari": [94, 95, 97], "dive": 95, "text_embed": 95, "data_dict": [95, 98, 100], "85": [95, 102], "38": [95, 96, 102], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 96], "000224": 95, "971": 95, "000507": 95, "980": [95, 96], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "0000": [95, 96, 98], "313": [95, 102], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 98, 100, 102], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 96], "gone": 95, "gt": [95, 100, 107], "samp": 95, "br": 95, "press": [95, 107], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "pai": 95, "go": [95, 96, 98], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "refin": 96, "instruct": 96, "studi": [96, 102], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 107], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 107], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 102], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 103], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 107], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "yellow": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 103], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 107], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "flat": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 107], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 107], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 106], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 107], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 102], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 106], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 102], "carousel": 96, "tool": [96, 98, 100], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 107], "chain": 96, "fenc": [96, 106], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 103], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "center": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 106], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 98], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 102], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 107], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 106], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "school": 96, "bu": [96, 106], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 107], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 107], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 106], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 107], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": 96, "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 106], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 102, 106], "sign": [96, 106, 107], "dust": 96, "jacket": [96, 102], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "orang": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 103], "automobil": [96, 103], "deer": [96, 103], "cifar100_test_set": 96, "aquarium_fish": 96, "babi": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 107], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 106], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 106], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 102], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 105], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 102], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 107], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "alt": 96, "atheism": 96, "comp": 96, "graphic": [96, 106], "misc": [96, 107], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "sci": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 107], "talk": [96, 107], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "interpret": [96, 97, 98, 101, 105], "capit": 96, "29780": 96, "780": 96, "medic": [96, 107], "doctor": 96, "359223": 96, "640777": 96, "184": [96, 98], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "670000": 96, "251": [96, 102], "252": 96, "112": 96, "253": [96, 102], "022989": 96, "049505": 96, "190": [96, 98, 102], "66": 96, "002216": 96, "000974": 96, "59": [96, 102], "000873": 96, "000739": 96, "32635": 96, "32636": 96, "47": [96, 102], "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "36": [96, 107], "41": [96, 102, 105], "71": [96, 98, 102, 105, 107], "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 98], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 102], "98": [96, 97, 105], "452381": 96, "459770": 96, "72": [96, 98, 101, 105], "523364": 96, "460784": 96, "446602": 96, "57": [96, 98], "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "82": [96, 98, 102, 105], "7532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 98], "188": [96, 98, 101], "189": [96, 98], "snippet": 97, "nlp": [97, 107], "mind": [97, 98], "alphanumer": 97, "facilit": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "from_dict": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 102], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 98], "game": 97, "speedup": [97, 103], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 98, 107], "successfulli": 97, "meaning": [97, 103], "virtuou": [97, 100], "cycl": [97, 100], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 98], "true_error": [97, 98, 101], "101": [97, 102], "102": [97, 101, 102], "104": [97, 98, 102], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98], "max_depth": [97, 98], "magnitud": 97, "coeffici": [97, 105], "optin": 97, "environ": [97, 98], "rerun": [97, 98], "cell": [97, 98], "unabl": [97, 98], "render": [97, 98], "nbviewer": [97, 98], "nbsp": [97, 98], "cleanlearninginot": [97, 98], "fittedcleanlearn": [97, 98], "linearregressionlinearregress": 97, "n_init": 97, "fit_predict": 97, "continuous_column": 97, "categorical_column": 97, "data_df": 97, "feature_a": 97, "feature_b": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "tolist": [97, 101], "issubset": 97, "frozenset": 97, "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "idxmin": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 103], "kept": 97, "ids_to_remove_seri": 97, "tmp": 97, "ipykernel_7751": 97, "1995098996": 97, "deprecationwarn": 97, "dataframegroupbi": 97, "include_group": 97, "silenc": 97, "assist": 97, "streamlin": 97, "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "depth": 98, "survei": [98, 107], "focus": [98, 100, 101, 105], "scienc": 98, "multivariate_norm": [98, 100, 101], "make_data": [98, 100], "cov": [98, 100, 101], "avg_trac": [98, 101], "py_tru": 98, "noise_matrix_tru": 98, "noise_marix": 98, "s_test": 98, "noisy_test_label": 98, "purpl": 98, "val": 98, "namespac": 98, "exec": 98, "markerfacecolor": [98, 101], "markeredgecolor": [98, 101, 105], "markers": [98, 101, 105], "markeredgewidth": [98, 101, 105], "realist": 98, "7560": 98, "637318e": 98, "896262e": 98, "548391e": 98, "923417e": 98, "375075e": 98, "3454": 98, "014051": 98, "020451": 98, "249": [98, 102], "042594": 98, "043859": 98, "045954": 98, "6120": 98, "023714": 98, "007136": 98, "119": [98, 102], "107266": 98, "103": [98, 102], "033738": 98, "238": [98, 102], "119505": 98, "236": [98, 102], "037843": 98, "222": 98, "614915": 98, "122": [98, 102], "624422": 98, "625965": 98, "626079": 98, "118": 98, "627675": 98, "695223": 98, "323529": 98, "523015": 98, "013720": 98, "675727": 98, "646521": 98, "anyth": 98, "enhanc": [98, 100, 102], "magic": 98, "liter": 98, "identif": 98, "x27": 98, "logisticregressionlogisticregress": 98, "ever": 98, "092": 98, "040": 98, "024": 98, "004": 98, "surpris": 98, "1705": 98, "01936": 98, "ton": 98, "yourfavoritemodel1": 98, "merged_label": 98, "merged_test_label": 98, "newli": [98, 100], "yourfavoritemodel2": 98, "yourfavoritemodel3": 98, "cl3": 98, "takeawai": 98, "randomli": 98, "my_test_pred_prob": 98, "my_test_pr": 98, "issues_test": 98, "corrected_test_label": 98, "pretend": 98, "cl_test_pr": 98, "69": [98, 105], "fairli": 98, "label_acc": 98, "percentag": 98, "offset": 98, "nquestion": 98, "overestim": 98, "answer": 98, "experienc": 98, "knowledg": 98, "prioiri": 98, "known": 98, "versatil": 98, "label_issues_indic": 98, "213": [98, 102], "218": [98, 102], "152": 98, "197": [98, 102], "196": [98, 102], "170": 98, "214": 98, "164": [98, 101], "198": [98, 102], "191": [98, 102], "63": [98, 102, 105], "117": [98, 105], "62": [98, 102, 105], "206": [98, 102], "115": [98, 102], "193": 98, "194": 98, "201": [98, 102], "174": 98, "163": 98, "150": [98, 100, 102], "169": 98, "151": [98, 102], "168": 98, "precision_scor": 98, "recall_scor": 98, "f1_score": 98, "true_label_issu": 98, "filter_by_list": 98, "718750": [98, 100], "807018": 98, "912": 98, "733333": 98, "800000": 98, "721311": 98, "792793": 98, "908": 98, "676923": 98, "765217": 98, "892": 98, "567901": 98, "702290": 98, "844": 98, "gaug": 98, "label_issues_count": 98, "155": [98, 102], "156": 98, "172": [98, 101], "easiest": 98, "modular": 98, "penalti": 98, "l2": 98, "model3": 98, "n_estim": 98, "cv_pred_probs_1": 98, "cv_pred_probs_2": 98, "cv_pred_probs_3": 98, "label_quality_scores_best": 98, "cv_pred_probs_ensembl": 98, "label_quality_scores_bett": 98, "superior": [98, 104], "timm": 99, "glad": 100, "multiannotator_label": 100, "300": [100, 107], "noisier": 100, "111": [100, 105], "local_data": [100, 101], "true_labels_train": [100, 101], "noise_matrix_bett": 100, "noise_matrix_wors": 100, "transpos": [100, 103], "dropna": 100, "zfill": 100, "row_na_check": 100, "notna": 100, "reset_index": 100, "a0001": 100, "a0002": 100, "a0003": 100, "a0004": 100, "a0005": 100, "a0006": 100, "a0007": 100, "a0008": 100, "a0009": 100, "a0010": 100, "a0041": 100, "a0042": 100, "a0043": 100, "a0044": 100, "a0045": 100, "a0046": 100, "a0047": 100, "a0048": 100, "a0049": 100, "a0050": 100, "na": 100, "60856743": 100, "41693214": 100, "40908785": 100, "87147629": 100, "64941785": 100, "10774851": 100, "0524466": 100, "71853246": 100, "37169848": 100, "66031048": 100, "multiannotator_util": 100, "crude": 100, "straight": 100, "majority_vote_label": 100, "736118": 100, "757751": 100, "782232": 100, "715565": 100, "824256": 100, "quality_annotator_a0001": 100, "quality_annotator_a0002": 100, "quality_annotator_a0003": 100, "quality_annotator_a0004": 100, "quality_annotator_a0005": 100, "quality_annotator_a0006": 100, "quality_annotator_a0007": 100, "quality_annotator_a0008": 100, "quality_annotator_a0009": 100, "quality_annotator_a0010": 100, "quality_annotator_a0041": 100, "quality_annotator_a0042": 100, "quality_annotator_a0043": 100, "quality_annotator_a0044": 100, "quality_annotator_a0045": 100, "quality_annotator_a0046": 100, "quality_annotator_a0047": 100, "quality_annotator_a0048": 100, "quality_annotator_a0049": 100, "quality_annotator_a0050": 100, "070564": 100, "216078": 100, "119188": 100, "alongisd": 100, "244981": 100, "208333": 100, "295979": 100, "294118": 100, "324197": 100, "310345": 100, "355316": 100, "346154": 100, "439732": 100, "480000": 100, "a0031": 100, "523205": 100, "580645": 100, "a0034": 100, "535313": 100, "607143": 100, "a0021": 100, "606999": 100, "a0015": 100, "609526": 100, "678571": 100, "a0011": 100, "621103": 100, "692308": 100, "wors": 100, "improved_consensus_label": 100, "majority_vote_accuraci": 100, "cleanlab_label_accuraci": 100, "8581081081081081": 100, "9797297297297297": 100, "besid": 100, "sorted_consensus_quality_scor": 100, "worst_qual": 100, "better_qu": 100, "worst_quality_accuraci": 100, "better_quality_accuraci": 100, "9893238434163701": 100, "improved_pred_prob": 100, "treat": [100, 101, 105, 107], "analzi": 100, "copyright": 101, "advertis": 101, "violenc": 101, "nsfw": 101, "celeba": 101, "make_multilabel_data": 101, "boxes_coordin": 101, "box_multilabel": 101, "make_multi": 101, "bx1": 101, "by1": 101, "bx2": 101, "by2": 101, "label_list": 101, "ur": 101, "upper": 101, "inidx": 101, "logical_and": 101, "inv_d": 101, "labels_idx": 101, "true_labels_test": 101, "dict_unique_label": 101, "get_color_arrai": 101, "dcolor": 101, "aa4400": 101, "55227f": 101, "55a100": 101, "00ff00": 101, "007f7f": 101, "386b55": 101, "0000ff": 101, "y_onehot": 101, "single_class_label": 101, "stratifi": [101, 104], "kf": 101, "train_index": 101, "test_index": 101, "clf_cv": 101, "x_train_cv": 101, "x_test_cv": 101, "y_train_cv": 101, "y_test_cv": 101, "y_pred_cv": 101, "saw": 101, "num_to_displai": 101, "09": [101, 102, 105], "267": 101, "225": 101, "171": 101, "234": 101, "165": 101, "227": [101, 102], "262": [101, 102], "266": [101, 102], "139": 101, "143": [101, 102], "216": [101, 102, 107], "265": 101, "159": [101, 102], "despit": [101, 107], "suspect": 101, "888": 101, "8224": 101, "9632": 101, "968": 101, "6512": 101, "0444": 101, "774": 101, "labels_binary_format": 101, "labels_list_format": 101, "surround": 102, "scene": 102, "coco": 102, "everydai": 102, "has_label_issu": 102, "nc": [102, 106, 107], "s3": [102, 106, 107], "amazonaw": [102, 106, 107], "objectdetectionbenchmark": 102, "tutorial_obj": 102, "pkl": 102, "example_imag": 102, "unzip": [102, 107], "_separate_label": 102, "_separate_predict": 102, "begin": 102, "image_path": 102, "rb": 102, "image_to_visu": 102, "seg_map": 102, "float32": 102, "bboxes_ignor": 102, "290": 102, "286": 102, "285": 102, "224": 102, "231": 102, "293": 102, "289": 102, "282": 102, "281": 102, "271": 102, "280": 102, "277": 102, "279": 102, "287": 102, "299": 102, "276": 102, "307": 102, "321": 102, "326": 102, "333": 102, "261": 102, "319": 102, "257": 102, "283": 102, "243": 102, "303": 102, "316": 102, "247": 102, "323": 102, "228": 102, "232": 102, "219": 102, "239": 102, "240": 102, "209": 102, "242": 102, "202": 102, "230": 102, "215": 102, "220": 102, "229": 102, "217": [102, 107], "237": 102, "207": 102, "204": 102, "84": [102, 105], "205": 102, "223": 102, "153": 102, "140": 102, "124": 102, "268": 102, "273": 102, "108": [102, 107], "284": 102, "110": 102, "136": 102, "145": 102, "297": 102, "317": 102, "192": 102, "332": 102, "324": 102, "203": 102, "199": 102, "291": 102, "000000481413": 102, "jpg": 102, "42398": 102, "44503": 102, "29968": 102, "336": 102, "21005": 102, "9978472": 102, "forgot": 102, "drew": 102, "label_issue_idx": 102, "num_examples_to_show": 102, "138": 102, "candid": 102, "97489622": 102, "70610878": 102, "98764951": 102, "88899237": 102, "99085805": 102, "issue_idx": 102, "95569726e": 102, "03354841e": 102, "57510169e": 102, "58447666e": 102, "39755858e": 102, "issue_to_visu": 102, "000000009483": 102, "95569726168054e": 102, "addition": [102, 106], "visibl": 102, "missmatch": 102, "likelei": 102, "agnost": 102, "vaidat": 102, "inconsist": 102, "000000395701": 102, "033548411774308e": 102, "armchair": 102, "tv": 102, "000000154004": 102, "38300759625496356": 102, "foreground": 102, "000000448410": 102, "0008575101690203273": 102, "crowd": 102, "alon": 102, "explor": [102, 103], "resembl": [102, 103], "000000499768": 102, "9748962231208227": 102, "000000521141": 102, "8889923658893665": 102, "000000143931": 102, "9876495074395956": 102, "bonu": 102, "uncov": 102, "irregular": 102, "anomali": 102, "object_detection_util": 102, "calculate_bounding_box_area": 102, "num_imgs_to_show": 102, "lab_object_count": 102, "pred_object_count": 102, "000000430073": 102, "000000183709": 102, "000000189475": 102, "label_norm": 102, "pred_norm": 102, "area": [102, 106], "lab_area": 102, "pred_area": 102, "lab_area_mean": 102, "lab_area_std": 102, "max_deviation_valu": 102, "max_deviation_class": 102, "deviation_valu": 102, "deviation_class": 102, "mean_area": 102, "std_area": 102, "class_area": 102, "deviations_awai": 102, "max_deviation_index": 102, "num_imgs_to_show_per_class": 102, "class_num": 102, "sorted_indic": 102, "000000422886": 102, "000000341828": 102, "000000461009": 102, "train_feature_embed": 103, "ood_train_feature_scor": 103, "test_feature_embed": 103, "ood_test_feature_scor": 103, "ood_train_predictions_scor": 103, "train_pred_prob": 103, "ood_test_predictions_scor": 103, "test_pred_prob": 103, "pylab": 103, "rcparam": 103, "baggingclassifi": 103, "therebi": 103, "rescal": 103, "transform_norm": 103, "totensor": 103, "root": 103, "animal_class": 103, "non_animal_class": 103, "animal_idx": 103, "test_idx": 103, "toronto": 103, "edu": 103, "kriz": 103, "170498071": 103, "58138838": 103, "87it": 103, "5000": 103, "plot_imag": 103, "visualize_outli": 103, "txt_class": 103, "img": [103, 105], "npimg": 103, "show_label": 103, "data_subset": 103, "resnet50": 103, "corpu": 103, "2048": 103, "embed_imag": 103, "create_model": 103, "strang": 103, "odd": 103, "train_ood_features_scor": 103, "top_train_ood_features_idx": 103, "fun": 103, "negat": 103, "homogen": 103, "bottom_train_ood_features_idx": 103, "test_ood_features_scor": 103, "top_ood_features_idx": 103, "inevit": 103, "trade": 103, "5th": 103, "percentil": 103, "fifth_percentil": 103, "plt_rang": 103, "hist": 103, "train_outlier_scor": 103, "ylabel": 103, "axvlin": 103, "test_outlier_scor": 103, "ood_features_indic": 103, "revisit": 103, "return_invers": 103, "train_feature_embeddings_sc": 103, "test_feature_embeddings_sc": 103, "train_pred_label": 103, "9702": 103, "train_ood_predictions_scor": 103, "test_ood_predictions_scor": 103, "lost": 103, "unsuit": 104, "ok": [104, 107], "convention": 104, "aforement": 104, "hypothet": 104, "contrast": 104, "tradit": 104, "disjoint": 104, "out_of_sample_pred_probs_for_a": 104, "out_of_sample_pred_probs_for_b": 104, "out_of_sample_pred_probs_for_c": 104, "out_of_sample_pred_prob": 104, "price": 105, "incom": 105, "ag": 105, "sensor": 105, "histgradientboostingregressor": 105, "r2_score": 105, "student_grades_r": 105, "final_scor": 105, "true_final_scor": 105, "homework": 105, "3d": 105, "hue": 105, "mpl_toolkit": 105, "mplot3d": 105, "axes3d": 105, "errors_idx": 105, "add_subplot": 105, "z": 105, "colorbar": 105, "errors_mask": 105, "feature_column": 105, "predicted_column": 105, "x_train_raw": 105, "x_test_raw": 105, "randomforestregressor": 105, "385101": 105, "499503": 105, "698255": 105, "776647": 105, "109373": 105, "170547": 105, "481096": 105, "984759": 105, "645270": 105, "795928": 105, "141": 105, "659": 105, "318": 105, "305": 105, "560": 105, "657": 105, "688": 105, "view_datapoint": 105, "concat": 105, "preds_og": 105, "r2_og": 105, "838": 105, "found_label_issu": 105, "preds_cl": 105, "r2_cl": 105, "926": 105, "favorit": 105, "968627e": 105, "228799": 105, "646674e": 105, "402962": 105, "323818e": 105, "952758": 105, "422144e": 105, "456908": 105, "465815e": 105, "753968": 105, "791186e": 105, "110719": 105, "485156e": 105, "670640": 105, "225300e": 105, "749976": 105, "499679e": 105, "947007": 105, "067882e": 105, "648396": 105, "synthia": 106, "imagesegment": 106, "given_mask": 106, "predicted_mask": 106, "set_printopt": [106, 107], "sky": 106, "sidewalk": 106, "veget": 106, "terrain": 106, "rider": 106, "pred_probs_filepath": 106, "1088": 106, "1920": 106, "label_filepath": 106, "synthia_class": 106, "maunal": 106, "100000": 106, "244800": 106, "leftmost": 106, "middl": [106, 107], "infact": 106, "rightmost": 106, "discrep": 106, "3263230": 106, "783381": 106, "275110": 106, "255917": 106, "78225": 106, "55990": 106, "54315": 106, "33591": 106, "24645": 106, "21054": 106, "15045": 106, "14171": 106, "13832": 106, "13498": 106, "11490": 106, "9164": 106, "8769": 106, "6999": 106, "6031": 106, "5011": 106, "mistakenli": 106, "class_issu": 106, "aim": [106, 107], "domin": 106, "bunch": 107, "conll": 107, "2003": 107, "love": 107, "n_i": 107, "optional_list_of_ordered_class_nam": 107, "deepai": 107, "conll2003": 107, "rm": 107, "tokenclassif": 107, "2024": 107, "2400": 107, "52e0": 107, "1a00": 107, "1068": 107, "connect": 107, "443": 107, "await": 107, "982975": 107, "960k": 107, "959": 107, "94k": 107, "90mb": 107, "mb": 107, "directori": 107, "inflat": 107, "179": 107, "17045998": 107, "16m": 107, "octet": 107, "26m": 107, "8mb": 107, "bert": 107, "read_npz": 107, "filepath": 107, "corrsespond": 107, "iob2": 107, "given_ent": 107, "entity_map": 107, "readfil": 107, "startswith": 107, "docstart": 107, "isalpha": 107, "isupp": 107, "indices_to_preview": 107, "nsentenc": 107, "eu": 107, "reject": 107, "boycott": 107, "british": 107, "lamb": 107, "00030412": 107, "00023826": 107, "99936208": 107, "00007009": 107, "00002545": 107, "99998795": 107, "00000401": 107, "00000218": 107, "00000455": 107, "00000131": 107, "00000749": 107, "99996115": 107, "00001371": 107, "0000087": 107, "00000895": 107, "99998936": 107, "00000382": 107, "00000178": 107, "00000366": 107, "00000137": 107, "99999101": 107, "00000266": 107, "00000174": 107, "0000035": 107, "00000109": 107, "99998768": 107, "00000482": 107, "00000202": 107, "00000438": 107, "0000011": 107, "00000465": 107, "99996392": 107, "00001105": 107, "0000116": 107, "00000878": 107, "99998671": 107, "00000364": 107, "00000213": 107, "00000472": 107, "00000281": 107, "99999073": 107, "00000211": 107, "00000159": 107, "00000442": 107, "00000115": 107, "peter": 107, "blackburn": 107, "00000358": 107, "00000529": 107, "99995623": 107, "0000129": 107, "0000024": 107, "00001812": 107, "99994141": 107, "00001645": 107, "00002162": 107, "brussel": 107, "1996": 107, "00001172": 107, "00000821": 107, "00004661": 107, "0000618": 107, "99987167": 107, "99999061": 107, "00000201": 107, "00000195": 107, "00000408": 107, "00000135": 107, "2254": 107, "2907": 107, "19392": 107, "9962": 107, "8904": 107, "19303": 107, "12918": 107, "9256": 107, "11855": 107, "18392": 107, "20426": 107, "19402": 107, "14744": 107, "19371": 107, "4645": 107, "10331": 107, "9430": 107, "6143": 107, "18367": 107, "12914": 107, "todai": 107, "weather": 107, "march": 107, "scalfaro": 107, "northern": 107, "himself": 107, "said": 107, "germani": 107, "nastja": 107, "rysich": 107, "north": 107, "spla": 107, "fought": 107, "khartoum": 107, "govern": 107, "south": 107, "1983": 107, "autonomi": 107, "animist": 107, "region": 107, "moslem": 107, "arabis": 107, "mayor": 107, "antonio": 107, "gonzalez": 107, "garcia": 107, "revolutionari": 107, "parti": 107, "wednesdai": 107, "troop": 107, "raid": 107, "farm": 107, "stole": 107, "rape": 107, "women": 107, "spring": 107, "chg": 107, "hrw": 107, "12pct": 107, "princ": 107, "photo": 107, "moment": 107, "spokeswoman": 107, "rainier": 107, "told": 107, "reuter": 107, "danila": 107, "carib": 107, "w224": 107, "equip": 107, "radiomet": 107, "earn": 107, "19996": 107, "london": 107, "denom": 107, "sale": 107, "uk": 107, "jp": 107, "fr": 107, "maccabi": 107, "hapoel": 107, "haifa": 107, "tel": 107, "aviv": 107, "hospit": 107, "rever": 107, "roman": 107, "cathol": 107, "nun": 107, "admit": 107, "calcutta": 107, "week": 107, "ago": 107, "fever": 107, "vomit": 107, "allianc": 107, "embattl": 107, "kabul": 107, "salang": 107, "highwai": 107, "mondai": 107, "tuesdai": 107, "suprem": 107, "council": 107, "led": 107, "jumbish": 107, "milli": 107, "movement": 107, "warlord": 107, "abdul": 107, "rashid": 107, "dostum": 107, "dollar": 107, "exchang": 107, "3570": 107, "12049": 107, "born": 107, "1937": 107, "provinc": 107, "anhui": 107, "dai": 107, "came": 107, "shanghai": 107, "citi": 107, "prolif": 107, "author": 107, "teacher": 107, "chines": 107, "16764": 107, "1990": 107, "historian": 107, "alan": 107, "john": 107, "percival": 107, "taylor": 107, "di": 107, "20446": 107, "pace": 107, "bowler": 107, "ian": 107, "harvei": 107, "claim": 107, "victoria": 107, "15514": 107, "cotti": 107, "osc": 107, "foreign": 107, "minist": 107, "7525": 107, "sultan": 107, "specter": 107, "crown": 107, "abdullah": 107, "defenc": 107, "aviat": 107, "jeddah": 107, "saudi": 107, "agenc": 107, "2288": 107, "hi": 107, "customari": 107, "outfit": 107, "champion": 107, "damp": 107, "scalp": 107, "canada": 107, "reign": 107, "olymp": 107, "donovan": 107, "bailei": 107, "1992": 107, "linford": 107, "christi": 107, "britain": 107, "1984": 107, "1988": 107, "carl": 107, "lewi": 107, "ambigi": 107, "punctuat": 107, "chicago": 107, "digest": 107, "philadelphia": 107, "usda": 107, "york": 107, "token_issu": 107, "471": 107, "kean": 107, "year": 107, "contract": 107, "manchest": 107, "19072": 107, "societi": 107, "bite": 107, "deliv": 107, "19910": 107, "father": 107, "clarenc": 107, "woolmer": 107, "renam": 107, "uttar": 107, "pradesh": 107, "india": 107, "ranji": 107, "trophi": 107, "nation": 107, "championship": 107, "captain": 107, "1949": 107, "15658": 107, "19879": 107, "iii": 107, "brian": 107, "shimer": 107, "randi": 107, "jone": 107, "19104": 107}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "neighbor"], [54, 0, 0, "-", "outlier"], [55, 0, 0, "-", "token_classification_utils"], [56, 0, 0, "-", "util"], [57, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[51, 0, 0, "-", "knn_graph"], [52, 0, 0, "-", "metric"], [53, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[51, 7, 1, "", "DEFAULT_K"], [51, 1, 1, "", "construct_knn_graph_from_index"], [51, 1, 1, "", "correct_knn_distances_and_indices"], [51, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [51, 1, 1, "", "correct_knn_graph"], [51, 1, 1, "", "create_knn_graph_and_index"], [51, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[52, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [52, 7, 1, "", "ROW_COUNT_CUTOFF"], [52, 1, 1, "", "decide_default_metric"], [52, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[54, 1, 1, "", "correct_precision_errors"], [54, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, 1, 1, "", "color_sentence"], [55, 1, 1, "", "filter_sentence"], [55, 1, 1, "", "get_sentence"], [55, 1, 1, "", "mapping"], [55, 1, 1, "", "merge_probs"], [55, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[56, 1, 1, "", "append_extra_datapoint"], [56, 1, 1, "", "clip_noise_rates"], [56, 1, 1, "", "clip_values"], [56, 1, 1, "", "compress_int_array"], [56, 1, 1, "", "confusion_matrix"], [56, 1, 1, "", "csr_vstack"], [56, 1, 1, "", "estimate_pu_f1"], [56, 1, 1, "", "extract_indices_tf"], [56, 1, 1, "", "force_two_dimensions"], [56, 1, 1, "", "format_labels"], [56, 1, 1, "", "get_missing_classes"], [56, 1, 1, "", "get_num_classes"], [56, 1, 1, "", "get_unique_classes"], [56, 1, 1, "", "is_tensorflow_dataset"], [56, 1, 1, "", "is_torch_dataset"], [56, 1, 1, "", "num_unique_classes"], [56, 1, 1, "", "print_inverse_noise_matrix"], [56, 1, 1, "", "print_joint_matrix"], [56, 1, 1, "", "print_noise_matrix"], [56, 1, 1, "", "print_square_matrix"], [56, 1, 1, "", "remove_noise_from_class"], [56, 1, 1, "", "round_preserving_row_totals"], [56, 1, 1, "", "round_preserving_sum"], [56, 1, 1, "", "smart_display_dataframe"], [56, 1, 1, "", "subset_X_y"], [56, 1, 1, "", "subset_data"], [56, 1, 1, "", "subset_labels"], [56, 1, 1, "", "train_val_split"], [56, 1, 1, "", "unshuffle_tensorflow_dataset"], [56, 1, 1, "", "value_counts"], [56, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[57, 1, 1, "", "assert_indexing_works"], [57, 1, 1, "", "assert_nonempty_input"], [57, 1, 1, "", "assert_valid_class_labels"], [57, 1, 1, "", "assert_valid_inputs"], [57, 1, 1, "", "labels_to_array"], [57, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 92, 94, 95, 97, 98, 101, 107], "count": [3, 98], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 88, 89, 90, 91, 92, 93, 94, 95, 98, 101], "creat": [7, 89, 90, 91, 98, 100], "your": [7, 83, 90, 91, 95, 97, 98], "own": 7, "issu": [7, 9, 10, 21, 30, 83, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 90], "us": [7, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "gener": 8, "cluster": [8, 97], "id": 8, "guid": [9, 11], "type": [9, 10, 98], "custom": [9, 90], "cleanlab": [9, 10, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "studio": [9, 10], "easi": [9, 10, 83, 92, 94, 95], "mode": [9, 10, 83, 92, 94, 95], "can": [10, 89, 91, 96, 97, 98, 100], "detect": [10, 88, 91, 92, 94, 95, 97, 98, 102, 103], "estim": [10, 98, 100, 101], "each": 10, "label": [10, 23, 25, 30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "outlier": [10, 28, 54, 70, 89, 92, 94, 95, 101, 103], "Near": [10, 91, 92, 94, 95], "duplic": [10, 19, 91, 92, 94, 95, 97, 101], "non": [10, 95], "iid": [10, 95], "class": [10, 84, 98, 106], "imbal": [10, 20], "imag": [10, 92, 103], "specif": [10, 21, 106], "underperform": [10, 97], "group": [10, 97], "null": [10, 27], "data": [10, 12, 83, 86, 88, 89, 90, 91, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "valuat": 10, "option": 10, "paramet": [10, 98], "get": [11, 89, 90, 91, 100, 101, 102, 106, 107], "start": [11, 96], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 97, 98], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 72, 73, 74, 97, 105], "prioriti": 30, "order": 30, "find": [30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "underperforming_group": 31, "model_output": 32, "report": [33, 92], "dataset": [36, 62, 83, 87, 88, 89, 91, 92, 95, 96, 97, 98, 101, 102, 103, 105, 106, 107], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 63, 66, 75, 79, 98], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "neighbor": 50, "knn_graph": 51, "metric": 52, "search": [53, 90], "token_classification_util": 55, "util": 56, "valid": [57, 92, 104], "fasttext": 58, "model": [59, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105], "kera": 60, "multiannot": [61, 100], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 98], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 89, 91, 97, 98], "segment": [76, 106], "token_classif": [80, 107], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "instal": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "2": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "common": [83, 84, 107], "3": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "handl": [83, 97], "error": [83, 87, 92, 97, 98, 100, 101, 102, 105, 106, 107], "train": [83, 86, 87, 88, 97, 103, 105], "robust": [83, 86, 87, 98, 105], "noisi": [83, 86, 87, 98, 105], "4": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 102, 103, 105], "curat": 83, "fix": [83, 97], "level": [83, 96, 98, 107], "5": [83, 86, 88, 89, 91, 92, 94, 98, 100, 105], "improv": [83, 100], "via": [83, 98, 100], "mani": [83, 98], "other": [83, 100, 102, 105], "techniqu": 83, "contribut": 83, "how": [84, 97, 98, 100, 101, 107], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 91, 98, 105], "pre": [84, 88, 97, 103], "function": [84, 90], "name": 84, "chang": 84, "modul": [84, 98], "new": [84, 89], "remov": 84, "argument": [84, 90], "variabl": 84, "cleanlearn": [85, 97, 98], "tutori": [85, 93, 96, 99], "structur": 86, "tabular": [86, 94], "requir": [86, 87, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "depend": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "load": [86, 87, 88, 89, 90, 91, 94, 95, 105], "process": [86, 94, 103, 105], "select": [86, 94], "comput": [86, 88, 92, 94, 95, 97, 100, 104], "out": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "sampl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "predict": [86, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 104], "probabl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "more": [86, 87, 89, 91, 98, 105], "text": [87, 95, 107], "format": [87, 95, 97, 101, 102], "defin": [87, 92, 95, 105], "potenti": [87, 100, 105], "an": [88, 92, 97], "audio": 88, "import": [88, 89, 90, 91, 92, 96, 98, 100], "them": [88, 96, 98], "speechbrain": 88, "featur": [88, 92, 103], "fit": 88, "linear": 88, "datamonitor": 89, "leverag": 89, "statist": [89, 100], "audit": [89, 90, 91], "skip": [89, 91, 96, 98, 100], "detail": [89, 91, 96, 98, 100], "classifi": [89, 90, 91], "6": [89, 98], "about": [89, 91], "addit": [89, 91], "7": [89, 92, 98], "8": [89, 96, 98], "look": 89, "both": 89, "workflow": [90, 98], "instanti": 90, "object": [90, 102], "increment": 90, "specifi": [90, 97], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 98], "kind": [91, 102], "inform": [91, 92], "fetch": [92, 96], "normal": 92, "fashion": 92, "mnist": 92, "prepar": 92, "k": [92, 94, 104], "fold": [92, 104], "cross": [92, 104], "embed": [92, 103], "view": 92, "most": [92, 107], "like": 92, "exampl": [92, 97, 98, 103], "sever": 92, "set": [92, 98], "dark": 92, "top": [92, 106], "low": 92, "numer": 94, "categor": 94, "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": 94, "drift": [95, 101], "understand": 96, "evalu": 96, "health": [96, 98], "popular": 96, "faq": 97, "what": [97, 98, 104], "do": [97, 98], "i": [97, 98, 104], "infer": 97, "correct": 97, "ha": 97, "flag": 97, "should": 97, "v": 97, "test": [97, 98, 103], "big": 97, "limit": 97, "memori": 97, "why": 97, "isn": 97, "t": 97, "work": [97, 98, 100, 107], "me": 97, "differ": [97, 102], "clean": [97, 98], "final": 97, "hyperparamet": 97, "tune": 97, "onli": 97, "one": [97, 98, 101, 106], "doe": [97, 100, 107], "take": 97, "so": 97, "long": 97, "slice": 97, "when": [97, 98], "identifi": [97, 102], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "The": 98, "centric": 98, "ai": 98, "machin": 98, "find_label_issu": 98, "line": 98, "code": 98, "visual": [98, 102, 103, 106], "twenti": 98, "lowest": 98, "qualiti": [98, 100, 101, 102, 106, 107], "see": 98, "now": 98, "let": 98, "": 98, "happen": 98, "we": 98, "merg": 98, "seafoam": 98, "green": 98, "yellow": 98, "too": 98, "you": 98, "re": 98, "One": 98, "score": [98, 100, 101, 102, 106, 107], "rule": 98, "overal": [98, 106], "accur": 98, "thi": 98, "directli": 98, "fulli": 98, "character": 98, "nois": 98, "matrix": [98, 101], "joint": 98, "prior": 98, "true": 98, "distribut": 98, "flip": 98, "rate": 98, "ani": 98, "again": 98, "support": 98, "lot": 98, "method": 98, "filter_bi": 98, "automat": 98, "everi": 98, "uniqu": 98, "num_label_issu": 98, "threshold": 98, "found": 98, "Not": 98, "sure": 98, "ensembl": 98, "multipl": [98, 100], "predictor": 98, "consensu": 100, "annot": 100, "initi": 100, "major": 100, "vote": 100, "better": 100, "compar": 100, "inspect": 100, "retrain": 100, "further": 100, "multi": 101, "beyond": 101, "mislabel": [101, 106, 107], "given": 101, "hot": 101, "binari": 101, "without": 101, "applic": 101, "real": 101, "download": [102, 106, 107], "objectlab": 102, "exploratori": 102, "analysi": 102, "pytorch": 103, "timm": 103, "cifar10": 103, "some": 103, "pred_prob": [103, 106, 107], "wai": 105, "semant": 106, "which": 106, "ar": 106, "commonli": 106, "focus": 106, "token": 107, "word": 107, "sentenc": 107, "contain": 107, "particular": 107}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [54, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[50, "neighbor"]], "knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "search": [[53, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "util": [[56, "module-cleanlab.internal.util"]], "validation": [[57, "module-cleanlab.internal.validation"]], "fasttext": [[58, "fasttext"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [105, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [105, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [105, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[89, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[89, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [100, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[89, "2.-Create-and-load-the-data-(can-skip-these-details)"], [91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[89, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[89, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[89, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[89, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[89, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[89, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [98, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[97, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[98, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[98, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[98, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[98, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[98, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[98, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[98, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[98, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[98, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[98, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[98, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[98, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[98, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[98, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[98, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[98, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[98, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[98, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[98, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[99, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[100, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[100, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[100, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[100, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[100, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[100, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[100, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[100, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[100, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[101, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[101, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[101, "2.-Format-data,-labels,-and-model-predictions"], [102, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[101, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [106, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[101, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[101, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[101, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[101, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[101, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[102, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[102, "1.-Install-required-dependencies-and-download-data"], [106, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[102, "Get-label-quality-scores"], [106, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[102, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[102, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[102, "Other-uses-of-visualize"]], "Exploratory data analysis": [[102, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[103, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[103, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[103, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[103, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[103, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[103, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[104, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[104, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[104, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[105, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[105, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[105, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[106, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[106, "2.-Get-data,-labels,-and-pred_probs"], [107, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[106, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[106, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[106, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[107, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[107, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[107, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[107, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[107, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.neighbor"], [51, "module-cleanlab.internal.neighbor.knn_graph"], [52, "module-cleanlab.internal.neighbor.metric"], [53, "module-cleanlab.internal.neighbor.search"], [54, "module-cleanlab.internal.outlier"], [55, "module-cleanlab.internal.token_classification_utils"], [56, "module-cleanlab.internal.util"], [57, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[50, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[53, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[54, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[56, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[57, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 80c985082..8cc902e01 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:26.493704Z", - "iopub.status.busy": "2024-05-24T14:08:26.493360Z", - "iopub.status.idle": "2024-05-24T14:08:27.679203Z", - "shell.execute_reply": "2024-05-24T14:08:27.678594Z" + "iopub.execute_input": "2024-05-24T14:38:02.264239Z", + "iopub.status.busy": "2024-05-24T14:38:02.264008Z", + "iopub.status.idle": "2024-05-24T14:38:03.644677Z", + "shell.execute_reply": "2024-05-24T14:38:03.644088Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:27.682002Z", - "iopub.status.busy": "2024-05-24T14:08:27.681482Z", - "iopub.status.idle": "2024-05-24T14:08:27.699948Z", - "shell.execute_reply": "2024-05-24T14:08:27.699539Z" + "iopub.execute_input": "2024-05-24T14:38:03.647964Z", + "iopub.status.busy": "2024-05-24T14:38:03.647279Z", + "iopub.status.idle": "2024-05-24T14:38:03.667766Z", + "shell.execute_reply": "2024-05-24T14:38:03.667215Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:27.702243Z", - "iopub.status.busy": "2024-05-24T14:08:27.701841Z", - "iopub.status.idle": "2024-05-24T14:08:27.893550Z", - "shell.execute_reply": "2024-05-24T14:08:27.893000Z" + "iopub.execute_input": "2024-05-24T14:38:03.670956Z", + "iopub.status.busy": "2024-05-24T14:38:03.670239Z", + "iopub.status.idle": "2024-05-24T14:38:03.784377Z", + "shell.execute_reply": "2024-05-24T14:38:03.783768Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:27.924466Z", - "iopub.status.busy": "2024-05-24T14:08:27.924250Z", - "iopub.status.idle": "2024-05-24T14:08:27.927908Z", - "shell.execute_reply": "2024-05-24T14:08:27.927443Z" + "iopub.execute_input": "2024-05-24T14:38:03.817907Z", + "iopub.status.busy": "2024-05-24T14:38:03.817331Z", + "iopub.status.idle": "2024-05-24T14:38:03.821631Z", + "shell.execute_reply": "2024-05-24T14:38:03.821138Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:27.929957Z", - "iopub.status.busy": "2024-05-24T14:08:27.929626Z", - "iopub.status.idle": "2024-05-24T14:08:27.937567Z", - "shell.execute_reply": "2024-05-24T14:08:27.937163Z" + "iopub.execute_input": "2024-05-24T14:38:03.823973Z", + "iopub.status.busy": "2024-05-24T14:38:03.823607Z", + "iopub.status.idle": "2024-05-24T14:38:03.832808Z", + "shell.execute_reply": "2024-05-24T14:38:03.832300Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:27.939583Z", - "iopub.status.busy": "2024-05-24T14:08:27.939260Z", - "iopub.status.idle": "2024-05-24T14:08:27.941863Z", - "shell.execute_reply": "2024-05-24T14:08:27.941419Z" + "iopub.execute_input": "2024-05-24T14:38:03.835418Z", + "iopub.status.busy": "2024-05-24T14:38:03.835184Z", + "iopub.status.idle": "2024-05-24T14:38:03.838193Z", + "shell.execute_reply": "2024-05-24T14:38:03.837715Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:27.943877Z", - "iopub.status.busy": "2024-05-24T14:08:27.943569Z", - "iopub.status.idle": "2024-05-24T14:08:28.460584Z", - "shell.execute_reply": "2024-05-24T14:08:28.459965Z" + "iopub.execute_input": "2024-05-24T14:38:03.840358Z", + "iopub.status.busy": "2024-05-24T14:38:03.840169Z", + "iopub.status.idle": "2024-05-24T14:38:04.384563Z", + "shell.execute_reply": "2024-05-24T14:38:04.383974Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:28.463019Z", - "iopub.status.busy": "2024-05-24T14:08:28.462840Z", - "iopub.status.idle": "2024-05-24T14:08:30.052137Z", - "shell.execute_reply": "2024-05-24T14:08:30.051487Z" + "iopub.execute_input": "2024-05-24T14:38:04.387188Z", + "iopub.status.busy": "2024-05-24T14:38:04.386978Z", + "iopub.status.idle": "2024-05-24T14:38:06.298800Z", + "shell.execute_reply": "2024-05-24T14:38:06.298193Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:30.054764Z", - "iopub.status.busy": "2024-05-24T14:08:30.054150Z", - "iopub.status.idle": "2024-05-24T14:08:30.064272Z", - "shell.execute_reply": "2024-05-24T14:08:30.063816Z" + "iopub.execute_input": "2024-05-24T14:38:06.301592Z", + "iopub.status.busy": "2024-05-24T14:38:06.300905Z", + "iopub.status.idle": "2024-05-24T14:38:06.312244Z", + "shell.execute_reply": "2024-05-24T14:38:06.311621Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:30.066384Z", - "iopub.status.busy": "2024-05-24T14:08:30.065951Z", - "iopub.status.idle": "2024-05-24T14:08:30.069955Z", - "shell.execute_reply": "2024-05-24T14:08:30.069422Z" + "iopub.execute_input": "2024-05-24T14:38:06.314697Z", + "iopub.status.busy": "2024-05-24T14:38:06.314234Z", + "iopub.status.idle": "2024-05-24T14:38:06.319319Z", + "shell.execute_reply": "2024-05-24T14:38:06.318667Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:30.072012Z", - "iopub.status.busy": "2024-05-24T14:08:30.071624Z", - "iopub.status.idle": "2024-05-24T14:08:30.078901Z", - "shell.execute_reply": "2024-05-24T14:08:30.078334Z" + "iopub.execute_input": "2024-05-24T14:38:06.321928Z", + "iopub.status.busy": "2024-05-24T14:38:06.321561Z", + "iopub.status.idle": "2024-05-24T14:38:06.329746Z", + "shell.execute_reply": "2024-05-24T14:38:06.329156Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:30.080908Z", - "iopub.status.busy": "2024-05-24T14:08:30.080516Z", - "iopub.status.idle": "2024-05-24T14:08:30.192022Z", - "shell.execute_reply": "2024-05-24T14:08:30.191569Z" + "iopub.execute_input": "2024-05-24T14:38:06.332254Z", + "iopub.status.busy": "2024-05-24T14:38:06.331835Z", + "iopub.status.idle": "2024-05-24T14:38:06.449344Z", + "shell.execute_reply": "2024-05-24T14:38:06.448743Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:30.194030Z", - "iopub.status.busy": "2024-05-24T14:08:30.193853Z", - "iopub.status.idle": "2024-05-24T14:08:30.196544Z", - "shell.execute_reply": "2024-05-24T14:08:30.196109Z" + "iopub.execute_input": "2024-05-24T14:38:06.451931Z", + "iopub.status.busy": "2024-05-24T14:38:06.451532Z", + "iopub.status.idle": "2024-05-24T14:38:06.454569Z", + "shell.execute_reply": "2024-05-24T14:38:06.454103Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:30.198565Z", - "iopub.status.busy": "2024-05-24T14:08:30.198253Z", - "iopub.status.idle": "2024-05-24T14:08:32.101202Z", - "shell.execute_reply": "2024-05-24T14:08:32.100454Z" + "iopub.execute_input": "2024-05-24T14:38:06.456598Z", + "iopub.status.busy": "2024-05-24T14:38:06.456411Z", + "iopub.status.idle": "2024-05-24T14:38:08.631965Z", + "shell.execute_reply": "2024-05-24T14:38:08.631167Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:32.104243Z", - "iopub.status.busy": "2024-05-24T14:08:32.103680Z", - "iopub.status.idle": "2024-05-24T14:08:32.114913Z", - "shell.execute_reply": "2024-05-24T14:08:32.114469Z" + "iopub.execute_input": "2024-05-24T14:38:08.635619Z", + "iopub.status.busy": "2024-05-24T14:38:08.634632Z", + "iopub.status.idle": "2024-05-24T14:38:08.650105Z", + "shell.execute_reply": "2024-05-24T14:38:08.649476Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:32.116759Z", - "iopub.status.busy": "2024-05-24T14:08:32.116586Z", - "iopub.status.idle": "2024-05-24T14:08:32.147680Z", - "shell.execute_reply": "2024-05-24T14:08:32.147262Z" + "iopub.execute_input": "2024-05-24T14:38:08.652403Z", + "iopub.status.busy": "2024-05-24T14:38:08.652043Z", + "iopub.status.idle": "2024-05-24T14:38:08.686465Z", + "shell.execute_reply": "2024-05-24T14:38:08.685950Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 1d4d193cf..0a8fcec5c 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -798,7 +798,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'supported_cards_and_currencies', 'visa_or_mastercard', 'change_pin', 'apple_pay_or_google_pay', 'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'cancel_transfer', 'card_payment_fee_charged', 'beneficiary_not_allowed'}
    +Classes: {'change_pin', 'cancel_transfer', 'getting_spare_card', 'card_payment_fee_charged', 'card_about_to_expire', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'visa_or_mastercard'}
     

    Let’s print the first example in the train set.

    @@ -861,43 +861,43 @@

    2. Load and format the text dataset

    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    @@ -1196,7 +1196,7 @@

    4. Train a more robust model from noisy labels -{"state": {"fafe1c79f47649a9bdb1b228d7d6b9ac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "acbaf79262404d61a9941e8f03f25470": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "db819aab9593471f98738b28bc9f04be": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fafe1c79f47649a9bdb1b228d7d6b9ac", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_acbaf79262404d61a9941e8f03f25470", "tabbable": null, "tooltip": null, "value": 391.0}}, "cca4df9786b14523b9d12738ab4e23db": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "156ccb162aa844f883adf8775e7e4825": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a3d670660cd64571a43203a72160508f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cca4df9786b14523b9d12738ab4e23db", "placeholder": "\u200b", "style": "IPY_MODEL_156ccb162aa844f883adf8775e7e4825", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "62ba90ea651a40f7a049f12da0033bc4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7beff793e30c42c990e55db47aa41765": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a3311fa3077b4fa192af635d10a01e6d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_62ba90ea651a40f7a049f12da0033bc4", "placeholder": "\u200b", "style": "IPY_MODEL_7beff793e30c42c990e55db47aa41765", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200766.1kB/s]"}}, "ac6e7f092aab449ebd4a0ef2d651facf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "61902606363948da8d5d110cc7550cb1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a3d670660cd64571a43203a72160508f", "IPY_MODEL_db819aab9593471f98738b28bc9f04be", "IPY_MODEL_a3311fa3077b4fa192af635d10a01e6d"], "layout": "IPY_MODEL_ac6e7f092aab449ebd4a0ef2d651facf", "tabbable": null, "tooltip": null}}, "c656748a5bc5448cb218c34ea2151279": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "46cc119951c14aa0a90a73cb64818b6a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0697a1a5a2fa44b69ea5bf3e2917e3df": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c656748a5bc5448cb218c34ea2151279", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_46cc119951c14aa0a90a73cb64818b6a", "tabbable": null, "tooltip": null, "value": 2211.0}}, "bdfc6e9bb4de4e08ab056977a8c26037": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1d257599af5d47dfa4455b627590065c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3c1b653647e64efaaaced04ba585e00a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bdfc6e9bb4de4e08ab056977a8c26037", "placeholder": "\u200b", "style": "IPY_MODEL_1d257599af5d47dfa4455b627590065c", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "9b5c19b81aef477dab0d53cf66f561c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "97c3e010793c4e249bd7cd4b68964a56": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "045ece2feba647a0af583cf2b69ffeac": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9b5c19b81aef477dab0d53cf66f561c3", "placeholder": "\u200b", "style": "IPY_MODEL_97c3e010793c4e249bd7cd4b68964a56", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007396kB/s]"}}, "de9ae1b5fe8642819fd883ff99111a0a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a6a20c4fcff54c0aa854cf655e8226ad": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3c1b653647e64efaaaced04ba585e00a", "IPY_MODEL_0697a1a5a2fa44b69ea5bf3e2917e3df", "IPY_MODEL_045ece2feba647a0af583cf2b69ffeac"], "layout": "IPY_MODEL_de9ae1b5fe8642819fd883ff99111a0a", "tabbable": null, "tooltip": null}}, "7eb12e7cc034429399528a0f14566754": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e0beeaeeaf894a269dea99dd59f60c8c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6a350cc6987f4da3ae27ae7a62a0c1fa": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7eb12e7cc034429399528a0f14566754", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e0beeaeeaf894a269dea99dd59f60c8c", "tabbable": null, "tooltip": null, "value": 665.0}}, "9298c2b795f442ba91828feed3bbe946": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cf404c5edd0f4e968b9636a5cb289e9d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "746b691fa2bc48e99d75dfc3cb953ac7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9298c2b795f442ba91828feed3bbe946", "placeholder": "\u200b", "style": "IPY_MODEL_cf404c5edd0f4e968b9636a5cb289e9d", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "5d7a83d1cf5d46ca98d2e381eaa209d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ced7a8270867420590cd7b0cada88cfc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b624020f4ef341399cb7eeadd1697fcc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5d7a83d1cf5d46ca98d2e381eaa209d2", "placeholder": "\u200b", "style": "IPY_MODEL_ced7a8270867420590cd7b0cada88cfc", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007124kB/s]"}}, "515239a7a7ea4f639cb0a100104c0c49": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "da43f1a9fabf4755967f0ded68b34709": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_746b691fa2bc48e99d75dfc3cb953ac7", "IPY_MODEL_6a350cc6987f4da3ae27ae7a62a0c1fa", "IPY_MODEL_b624020f4ef341399cb7eeadd1697fcc"], "layout": "IPY_MODEL_515239a7a7ea4f639cb0a100104c0c49", "tabbable": null, "tooltip": null}}, "a2f0c4cda6894ed2acd8c3f4a38feb9e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c387d31b5159431881d4988c46ef5503": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0033d8b95cec404a9089c1cf3143e5ae": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a2f0c4cda6894ed2acd8c3f4a38feb9e", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c387d31b5159431881d4988c46ef5503", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "cddc9bef7ba44e8cbade2878488fa874": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1dddfaa0897f4307a56a3982bdc43755": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "983495b2e9cf42e48d3ef98b40af75fc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cddc9bef7ba44e8cbade2878488fa874", "placeholder": "\u200b", "style": "IPY_MODEL_1dddfaa0897f4307a56a3982bdc43755", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "302263af8dad4577bdfeee199fd14219": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8bd2ce0818f44832b4e5beeb240b310c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f6fe6c4503ad490da82d1b43b6a97e97": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_302263af8dad4577bdfeee199fd14219", "placeholder": "\u200b", "style": "IPY_MODEL_8bd2ce0818f44832b4e5beeb240b310c", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007300MB/s]"}}, "34445f9dcaf1442fb483f167e9107478": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e0adef9ed4ab48918c1426a5e293efff": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_983495b2e9cf42e48d3ef98b40af75fc", "IPY_MODEL_0033d8b95cec404a9089c1cf3143e5ae", "IPY_MODEL_f6fe6c4503ad490da82d1b43b6a97e97"], "layout": "IPY_MODEL_34445f9dcaf1442fb483f167e9107478", "tabbable": null, "tooltip": null}}, "4dadaa73ba6b4bb58d9c2af13f5a66bc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a1af7cdbff04254b8d0e22f7e34cd1b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "af3e554ff11943dea57aa0b7ba19889a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4dadaa73ba6b4bb58d9c2af13f5a66bc", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4a1af7cdbff04254b8d0e22f7e34cd1b", "tabbable": null, "tooltip": null, "value": 466062.0}}, "3ddc684595a9400b83408a56fdfe0591": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a7853888b8354e9daf195699379f4c4f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1ad3fcc288684f6583bfe008b8355446": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3ddc684595a9400b83408a56fdfe0591", "placeholder": "\u200b", "style": "IPY_MODEL_a7853888b8354e9daf195699379f4c4f", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "829d5e7637db4d6c82d366e41800e742": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0e9b9214886142308950d5fa7fd1e99e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3ef3b456c004474d91187eed0deb54c4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_829d5e7637db4d6c82d366e41800e742", "placeholder": "\u200b", "style": "IPY_MODEL_0e9b9214886142308950d5fa7fd1e99e", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200743.4MB/s]"}}, "2b77633dcfb04e46999dfe250e0cbaa4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "993139e945be4ef1895d5607480d5a01": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1ad3fcc288684f6583bfe008b8355446", "IPY_MODEL_af3e554ff11943dea57aa0b7ba19889a", "IPY_MODEL_3ef3b456c004474d91187eed0deb54c4"], "layout": "IPY_MODEL_2b77633dcfb04e46999dfe250e0cbaa4", "tabbable": null, "tooltip": null}}, "b5dbd2c910e34f57a33986c4559c280f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3114326df0c43af926c55a8439b6e51": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "636335485ef847cea1c8d84567710265": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b5dbd2c910e34f57a33986c4559c280f", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c3114326df0c43af926c55a8439b6e51", "tabbable": null, "tooltip": null, "value": 48.0}}, "e8aa770be1f248e3969fa055c399cbb2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "176b2eb54f574eda9fd729f00eab84b5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2fd6f21959e04d38be462524b6b9bdab": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e8aa770be1f248e3969fa055c399cbb2", "placeholder": "\u200b", "style": "IPY_MODEL_176b2eb54f574eda9fd729f00eab84b5", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "8c378a35f16249e8a07d2132b22b75b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f79060d9068243afb9cb990e707d5541": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dc16f159906c47f196e11b5383a0c115": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c378a35f16249e8a07d2132b22b75b3", "placeholder": "\u200b", "style": "IPY_MODEL_f79060d9068243afb9cb990e707d5541", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.81kB/s]"}}, "e8e9405d3ddf49d198ac72490266144d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "00fe39379af24317b494f09addaf1f1a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2fd6f21959e04d38be462524b6b9bdab", "IPY_MODEL_636335485ef847cea1c8d84567710265", "IPY_MODEL_dc16f159906c47f196e11b5383a0c115"], "layout": "IPY_MODEL_e8e9405d3ddf49d198ac72490266144d", "tabbable": null, "tooltip": null}}, "748ba25e7be046abaa4bb609428fc96e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "229337b1a0d048589cf8c0922f1e0a71": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2322399753e94acc899f3f7f36e12177": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_748ba25e7be046abaa4bb609428fc96e", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_229337b1a0d048589cf8c0922f1e0a71", "tabbable": null, "tooltip": null, "value": 231508.0}}, "f562630746f1450093d9e3cdefdc0ea9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f8f423acf4cf4b61bec6f59e6ac30a0e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "84a069054979450299258cc54c8e5726": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f562630746f1450093d9e3cdefdc0ea9", "placeholder": "\u200b", "style": "IPY_MODEL_f8f423acf4cf4b61bec6f59e6ac30a0e", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "e63b2eab37b142a6b8a3edea4d89a6c8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f956d87ba4d46cfa1c04ff36efe96a4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d41cf8cf44d5417fb6cf5fcc9f6c82da": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e63b2eab37b142a6b8a3edea4d89a6c8", "placeholder": "\u200b", "style": "IPY_MODEL_3f956d87ba4d46cfa1c04ff36efe96a4", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200730.8MB/s]"}}, "dd615d9ade4042368bfd034355a550e2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "df4bf532e7054d55ac04f6fe3d58e5d8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_84a069054979450299258cc54c8e5726", "IPY_MODEL_2322399753e94acc899f3f7f36e12177", "IPY_MODEL_d41cf8cf44d5417fb6cf5fcc9f6c82da"], "layout": "IPY_MODEL_dd615d9ade4042368bfd034355a550e2", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"e55779ee19624eb4b12f99261bc31b68": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4fd45c34fb8041f4810308e9533fa6df": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e7d824bbd2df4b6eb873494a85651f5e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e55779ee19624eb4b12f99261bc31b68", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4fd45c34fb8041f4810308e9533fa6df", "tabbable": null, "tooltip": null, "value": 391.0}}, "ea4feb4bf3ec4c12a410230590f019c4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "618d110760a048f18a6feb2b9a06e470": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fe3d3d13a8bf4cd0bb0bc7717e88c5c6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ea4feb4bf3ec4c12a410230590f019c4", "placeholder": "\u200b", "style": "IPY_MODEL_618d110760a048f18a6feb2b9a06e470", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "cc04cfd1250342d6bdf4807ad26f9880": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "397f461645a145c6a4f3caf85b56825c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e7204f291a55405884eba7067a9beb53": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cc04cfd1250342d6bdf4807ad26f9880", "placeholder": "\u200b", "style": "IPY_MODEL_397f461645a145c6a4f3caf85b56825c", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200745.0kB/s]"}}, "229d26480a304e128f9687c7dce5b0a0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f53e9db2d70d48c98d3bc0e8ba7f98c3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fe3d3d13a8bf4cd0bb0bc7717e88c5c6", "IPY_MODEL_e7d824bbd2df4b6eb873494a85651f5e", "IPY_MODEL_e7204f291a55405884eba7067a9beb53"], "layout": "IPY_MODEL_229d26480a304e128f9687c7dce5b0a0", "tabbable": null, "tooltip": null}}, "a960448e50c349738c05447d502b17cf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6520fc2dc4864f9b87d2a54b3b9957bf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "00c094dc02bb4290b6f66071af9854a8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a960448e50c349738c05447d502b17cf", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6520fc2dc4864f9b87d2a54b3b9957bf", "tabbable": null, "tooltip": null, "value": 2211.0}}, "a50355003f644e059264813658298afc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "628f44c194244f4b877593a58dc4f3a8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0b8caf0e72bd41bda1cc80a1d6d7c01a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a50355003f644e059264813658298afc", "placeholder": "\u200b", "style": "IPY_MODEL_628f44c194244f4b877593a58dc4f3a8", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "3ec4ba4ab19d4ca3aab72391e1e6a8f8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1d02400adec6477bb47bc20d319c0e92": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f42ad7724e274bc8adf92822b4d78659": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3ec4ba4ab19d4ca3aab72391e1e6a8f8", "placeholder": "\u200b", "style": "IPY_MODEL_1d02400adec6477bb47bc20d319c0e92", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007367kB/s]"}}, "4d09d4135394453494cfeb012e066c93": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f3b89498b0ba442786e6adcad19ade7b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0b8caf0e72bd41bda1cc80a1d6d7c01a", "IPY_MODEL_00c094dc02bb4290b6f66071af9854a8", "IPY_MODEL_f42ad7724e274bc8adf92822b4d78659"], "layout": "IPY_MODEL_4d09d4135394453494cfeb012e066c93", "tabbable": null, "tooltip": null}}, "622de0159e89415ca2b6c525818e526e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4f8e2ca5f6ca49b09275a6fccc9ca000": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "61d1b60c81b944bcade2969352e8cff9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_622de0159e89415ca2b6c525818e526e", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4f8e2ca5f6ca49b09275a6fccc9ca000", "tabbable": null, "tooltip": null, "value": 665.0}}, "f91d65b5645a45f99d7285a43a979a2e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5a9b45baa69c4de28a6d7ccaeb7ffdf5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4e88ed8607e64ea582a0483402a68cf9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f91d65b5645a45f99d7285a43a979a2e", "placeholder": "\u200b", "style": "IPY_MODEL_5a9b45baa69c4de28a6d7ccaeb7ffdf5", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "303211f071554478bdafd84c76952268": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a883ba7b5cba4152a426e7747a38a8b9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bbac52581f7d4a168432e80c2f51dae9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_303211f071554478bdafd84c76952268", "placeholder": "\u200b", "style": "IPY_MODEL_a883ba7b5cba4152a426e7747a38a8b9", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007109kB/s]"}}, "1dd6af4af8be4fd3a9656674bb901a5d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "231bf5f16cc745469164c6909eb17a5e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4e88ed8607e64ea582a0483402a68cf9", "IPY_MODEL_61d1b60c81b944bcade2969352e8cff9", "IPY_MODEL_bbac52581f7d4a168432e80c2f51dae9"], "layout": "IPY_MODEL_1dd6af4af8be4fd3a9656674bb901a5d", "tabbable": null, "tooltip": null}}, "ea53ca10eb1d47a0ba8dbff2bf50f4d8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ff1d4977ee0444a9b7b29dd31e65269": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7da38b6516db4d8fb46bd762dd51ce96": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ea53ca10eb1d47a0ba8dbff2bf50f4d8", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8ff1d4977ee0444a9b7b29dd31e65269", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "52e5f34375bc4e48a9a2eb2b834752c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85342103b4ef424aa667dc7ba46cf6b2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a03f25466c2f44a9949ff4da845f1a7c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_52e5f34375bc4e48a9a2eb2b834752c1", "placeholder": "\u200b", "style": "IPY_MODEL_85342103b4ef424aa667dc7ba46cf6b2", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "050bc0fca31e4b8396328cd979ca92c8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4c5b0cc317042eaa2a23d549e29fb49": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "79aad8c549ba4faebb759ac9de89c7cb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_050bc0fca31e4b8396328cd979ca92c8", "placeholder": "\u200b", "style": "IPY_MODEL_d4c5b0cc317042eaa2a23d549e29fb49", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007288MB/s]"}}, "8a338984828e4285aacc2f320a4e2dbe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "23508b0e1438429c8845cd20fc8f19c1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a03f25466c2f44a9949ff4da845f1a7c", "IPY_MODEL_7da38b6516db4d8fb46bd762dd51ce96", "IPY_MODEL_79aad8c549ba4faebb759ac9de89c7cb"], "layout": "IPY_MODEL_8a338984828e4285aacc2f320a4e2dbe", "tabbable": null, "tooltip": null}}, "d33e4a15ba1e4323b951f20beacba582": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4a8b5be7bfe4490bbc1d3f48ca18483": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "04b52e6b587f43e2b517e7b2197a02c1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d33e4a15ba1e4323b951f20beacba582", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b4a8b5be7bfe4490bbc1d3f48ca18483", "tabbable": null, "tooltip": null, "value": 466062.0}}, "bd1ba71ae9d64de9aa346bcb0370acce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6ef22893a9604bcba68b095b7a40e021": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6db11f58500b4ad2996124bd31a72d6b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bd1ba71ae9d64de9aa346bcb0370acce", "placeholder": "\u200b", "style": "IPY_MODEL_6ef22893a9604bcba68b095b7a40e021", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "908e1b0bcbeb4fd499d10dd115f5b7ad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d9680e8051a84b7785d5b61b08ae03fd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "704b3a489edb47109fe08aaefab13537": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_908e1b0bcbeb4fd499d10dd115f5b7ad", "placeholder": "\u200b", "style": "IPY_MODEL_d9680e8051a84b7785d5b61b08ae03fd", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200722.8MB/s]"}}, "e931daf9bae6490ca0aabe3ac20244b2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "397c364933fb4652836b6dff58e11b71": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6db11f58500b4ad2996124bd31a72d6b", "IPY_MODEL_04b52e6b587f43e2b517e7b2197a02c1", "IPY_MODEL_704b3a489edb47109fe08aaefab13537"], "layout": "IPY_MODEL_e931daf9bae6490ca0aabe3ac20244b2", "tabbable": null, "tooltip": null}}, "72ce541c30124b1680a804fea69ff8da": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d91e11fbde3448987300040fd442856": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a0418a9534f7401f91cea70a48198ba5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_72ce541c30124b1680a804fea69ff8da", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6d91e11fbde3448987300040fd442856", "tabbable": null, "tooltip": null, "value": 48.0}}, "296041b42d0a4d20b28975bff9c071c2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40a81de27242415890466b6b57e571e0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c855525f07d7401c8c33e703c28c72c3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_296041b42d0a4d20b28975bff9c071c2", "placeholder": "\u200b", "style": "IPY_MODEL_40a81de27242415890466b6b57e571e0", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "dc7d1c66717c41bfb3a016c70baeb393": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d08ad4580b0413ea7e0a1b71bca5863": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "41a158857d60475386edeb5b135fea28": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dc7d1c66717c41bfb3a016c70baeb393", "placeholder": "\u200b", "style": "IPY_MODEL_6d08ad4580b0413ea7e0a1b71bca5863", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20077.71kB/s]"}}, "0b8ed1ac0548424bac16796a9472b777": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e306bc1c27994b45bf12a624e8b637ab": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c855525f07d7401c8c33e703c28c72c3", "IPY_MODEL_a0418a9534f7401f91cea70a48198ba5", "IPY_MODEL_41a158857d60475386edeb5b135fea28"], "layout": "IPY_MODEL_0b8ed1ac0548424bac16796a9472b777", "tabbable": null, "tooltip": null}}, "0649e2673b2d4abc918784b821a4ec60": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "07f25892b39f4446b0be4b555992b684": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1534a1b2c2f54717a418350b408a516a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0649e2673b2d4abc918784b821a4ec60", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_07f25892b39f4446b0be4b555992b684", "tabbable": null, "tooltip": null, "value": 231508.0}}, "6694fd6451e2495584cbac083085df01": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4239d1516294a94802ea6a46d25ee52": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9497608b85124cac85abd0e78ad39460": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6694fd6451e2495584cbac083085df01", "placeholder": "\u200b", "style": "IPY_MODEL_b4239d1516294a94802ea6a46d25ee52", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "5aeb8f7daed54209bf51c1957111dc8f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "18fa9214d5a645e4b6fd71704b99cb81": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "05a50878b8c448a1bc8e6766d6590ee2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5aeb8f7daed54209bf51c1957111dc8f", "placeholder": "\u200b", "style": "IPY_MODEL_18fa9214d5a645e4b6fd71704b99cb81", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200732.3MB/s]"}}, "d99696dcc533459bac5b401036bdfba7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3120577edb0f4121942c017600979d25": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9497608b85124cac85abd0e78ad39460", "IPY_MODEL_1534a1b2c2f54717a418350b408a516a", "IPY_MODEL_05a50878b8c448a1bc8e6766d6590ee2"], "layout": "IPY_MODEL_d99696dcc533459bac5b401036bdfba7", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 342287ae4..c000784c0 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:35.115775Z", - "iopub.status.busy": "2024-05-24T14:08:35.115607Z", - "iopub.status.idle": "2024-05-24T14:08:38.077286Z", - "shell.execute_reply": "2024-05-24T14:08:38.076555Z" + "iopub.execute_input": "2024-05-24T14:38:12.171246Z", + "iopub.status.busy": "2024-05-24T14:38:12.171056Z", + "iopub.status.idle": "2024-05-24T14:38:15.365150Z", + "shell.execute_reply": "2024-05-24T14:38:15.364467Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:38.080144Z", - "iopub.status.busy": "2024-05-24T14:08:38.079630Z", - "iopub.status.idle": "2024-05-24T14:08:38.083651Z", - "shell.execute_reply": "2024-05-24T14:08:38.083143Z" + "iopub.execute_input": "2024-05-24T14:38:15.368291Z", + "iopub.status.busy": "2024-05-24T14:38:15.367880Z", + "iopub.status.idle": "2024-05-24T14:38:15.371800Z", + "shell.execute_reply": "2024-05-24T14:38:15.371297Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:38.085755Z", - "iopub.status.busy": "2024-05-24T14:08:38.085394Z", - "iopub.status.idle": "2024-05-24T14:08:38.089036Z", - "shell.execute_reply": "2024-05-24T14:08:38.088539Z" + "iopub.execute_input": "2024-05-24T14:38:15.373880Z", + "iopub.status.busy": "2024-05-24T14:38:15.373558Z", + "iopub.status.idle": "2024-05-24T14:38:15.376903Z", + "shell.execute_reply": "2024-05-24T14:38:15.376353Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:38.091351Z", - "iopub.status.busy": "2024-05-24T14:08:38.091029Z", - "iopub.status.idle": "2024-05-24T14:08:38.125892Z", - "shell.execute_reply": "2024-05-24T14:08:38.125420Z" + "iopub.execute_input": "2024-05-24T14:38:15.379040Z", + "iopub.status.busy": "2024-05-24T14:38:15.378763Z", + "iopub.status.idle": "2024-05-24T14:38:15.420024Z", + "shell.execute_reply": "2024-05-24T14:38:15.419401Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:38.127989Z", - "iopub.status.busy": "2024-05-24T14:08:38.127584Z", - "iopub.status.idle": "2024-05-24T14:08:38.131233Z", - "shell.execute_reply": "2024-05-24T14:08:38.130793Z" + "iopub.execute_input": "2024-05-24T14:38:15.422269Z", + "iopub.status.busy": "2024-05-24T14:38:15.422072Z", + "iopub.status.idle": "2024-05-24T14:38:15.426041Z", + "shell.execute_reply": "2024-05-24T14:38:15.425544Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:38.133246Z", - "iopub.status.busy": "2024-05-24T14:08:38.132834Z", - "iopub.status.idle": "2024-05-24T14:08:38.136037Z", - "shell.execute_reply": "2024-05-24T14:08:38.135608Z" + "iopub.execute_input": "2024-05-24T14:38:15.428098Z", + "iopub.status.busy": "2024-05-24T14:38:15.427914Z", + "iopub.status.idle": "2024-05-24T14:38:15.431751Z", + "shell.execute_reply": "2024-05-24T14:38:15.431246Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'supported_cards_and_currencies', 'visa_or_mastercard', 'change_pin', 'apple_pay_or_google_pay', 'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'cancel_transfer', 'card_payment_fee_charged', 'beneficiary_not_allowed'}\n" + "Classes: {'change_pin', 'cancel_transfer', 'getting_spare_card', 'card_payment_fee_charged', 'card_about_to_expire', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'visa_or_mastercard'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:38.137819Z", - "iopub.status.busy": "2024-05-24T14:08:38.137651Z", - "iopub.status.idle": "2024-05-24T14:08:38.140898Z", - "shell.execute_reply": "2024-05-24T14:08:38.140444Z" + "iopub.execute_input": "2024-05-24T14:38:15.433907Z", + "iopub.status.busy": "2024-05-24T14:38:15.433573Z", + "iopub.status.idle": "2024-05-24T14:38:15.437075Z", + "shell.execute_reply": "2024-05-24T14:38:15.436573Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:38.142964Z", - "iopub.status.busy": "2024-05-24T14:08:38.142558Z", - "iopub.status.idle": "2024-05-24T14:08:38.145918Z", - "shell.execute_reply": "2024-05-24T14:08:38.145330Z" + "iopub.execute_input": "2024-05-24T14:38:15.439170Z", + "iopub.status.busy": "2024-05-24T14:38:15.438838Z", + "iopub.status.idle": "2024-05-24T14:38:15.442193Z", + "shell.execute_reply": "2024-05-24T14:38:15.441741Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:38.147920Z", - "iopub.status.busy": "2024-05-24T14:08:38.147550Z", - "iopub.status.idle": "2024-05-24T14:08:42.333653Z", - "shell.execute_reply": "2024-05-24T14:08:42.332993Z" + "iopub.execute_input": "2024-05-24T14:38:15.444398Z", + "iopub.status.busy": "2024-05-24T14:38:15.444073Z", + "iopub.status.idle": "2024-05-24T14:38:20.697132Z", + "shell.execute_reply": "2024-05-24T14:38:20.696477Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "61902606363948da8d5d110cc7550cb1", + "model_id": "f53e9db2d70d48c98d3bc0e8ba7f98c3", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6a20c4fcff54c0aa854cf655e8226ad", + "model_id": "f3b89498b0ba442786e6adcad19ade7b", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "da43f1a9fabf4755967f0ded68b34709", + "model_id": "231bf5f16cc745469164c6909eb17a5e", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e0adef9ed4ab48918c1426a5e293efff", + "model_id": "23508b0e1438429c8845cd20fc8f19c1", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "993139e945be4ef1895d5607480d5a01", + "model_id": "397c364933fb4652836b6dff58e11b71", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "00fe39379af24317b494f09addaf1f1a", + "model_id": "e306bc1c27994b45bf12a624e8b637ab", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "df4bf532e7054d55ac04f6fe3d58e5d8", + "model_id": "3120577edb0f4121942c017600979d25", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:42.336546Z", - "iopub.status.busy": "2024-05-24T14:08:42.336131Z", - "iopub.status.idle": "2024-05-24T14:08:42.339241Z", - "shell.execute_reply": "2024-05-24T14:08:42.338749Z" + "iopub.execute_input": "2024-05-24T14:38:20.700576Z", + "iopub.status.busy": "2024-05-24T14:38:20.699938Z", + "iopub.status.idle": "2024-05-24T14:38:20.703212Z", + "shell.execute_reply": "2024-05-24T14:38:20.702731Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:42.341324Z", - "iopub.status.busy": "2024-05-24T14:08:42.340983Z", - "iopub.status.idle": "2024-05-24T14:08:42.343732Z", - "shell.execute_reply": "2024-05-24T14:08:42.343268Z" + "iopub.execute_input": "2024-05-24T14:38:20.705605Z", + "iopub.status.busy": "2024-05-24T14:38:20.705382Z", + "iopub.status.idle": "2024-05-24T14:38:20.708395Z", + "shell.execute_reply": "2024-05-24T14:38:20.707932Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:42.345642Z", - "iopub.status.busy": "2024-05-24T14:08:42.345318Z", - "iopub.status.idle": "2024-05-24T14:08:44.551896Z", - "shell.execute_reply": "2024-05-24T14:08:44.551282Z" + "iopub.execute_input": "2024-05-24T14:38:20.710833Z", + "iopub.status.busy": "2024-05-24T14:38:20.710400Z", + "iopub.status.idle": "2024-05-24T14:38:23.206194Z", + "shell.execute_reply": "2024-05-24T14:38:23.205551Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:44.554985Z", - "iopub.status.busy": "2024-05-24T14:08:44.554330Z", - "iopub.status.idle": "2024-05-24T14:08:44.561770Z", - "shell.execute_reply": "2024-05-24T14:08:44.561305Z" + "iopub.execute_input": "2024-05-24T14:38:23.209333Z", + "iopub.status.busy": "2024-05-24T14:38:23.208570Z", + "iopub.status.idle": "2024-05-24T14:38:23.216238Z", + "shell.execute_reply": "2024-05-24T14:38:23.215678Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:44.563861Z", - "iopub.status.busy": "2024-05-24T14:08:44.563548Z", - "iopub.status.idle": "2024-05-24T14:08:44.567454Z", - "shell.execute_reply": "2024-05-24T14:08:44.566883Z" + "iopub.execute_input": "2024-05-24T14:38:23.218413Z", + "iopub.status.busy": "2024-05-24T14:38:23.218108Z", + "iopub.status.idle": "2024-05-24T14:38:23.222391Z", + "shell.execute_reply": "2024-05-24T14:38:23.221820Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:44.569426Z", - "iopub.status.busy": "2024-05-24T14:08:44.569131Z", - "iopub.status.idle": "2024-05-24T14:08:44.572144Z", - "shell.execute_reply": "2024-05-24T14:08:44.571627Z" + "iopub.execute_input": "2024-05-24T14:38:23.224567Z", + "iopub.status.busy": "2024-05-24T14:38:23.224265Z", + "iopub.status.idle": "2024-05-24T14:38:23.227645Z", + "shell.execute_reply": "2024-05-24T14:38:23.227163Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:44.574162Z", - "iopub.status.busy": "2024-05-24T14:08:44.573844Z", - "iopub.status.idle": "2024-05-24T14:08:44.576869Z", - "shell.execute_reply": "2024-05-24T14:08:44.576418Z" + "iopub.execute_input": "2024-05-24T14:38:23.229668Z", + "iopub.status.busy": "2024-05-24T14:38:23.229345Z", + "iopub.status.idle": "2024-05-24T14:38:23.232370Z", + "shell.execute_reply": "2024-05-24T14:38:23.231908Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:44.578855Z", - "iopub.status.busy": "2024-05-24T14:08:44.578450Z", - "iopub.status.idle": "2024-05-24T14:08:44.585370Z", - "shell.execute_reply": "2024-05-24T14:08:44.584831Z" + "iopub.execute_input": "2024-05-24T14:38:23.234316Z", + "iopub.status.busy": "2024-05-24T14:38:23.233995Z", + "iopub.status.idle": "2024-05-24T14:38:23.241304Z", + "shell.execute_reply": "2024-05-24T14:38:23.240763Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:44.587537Z", - "iopub.status.busy": "2024-05-24T14:08:44.587131Z", - "iopub.status.idle": "2024-05-24T14:08:44.809893Z", - "shell.execute_reply": "2024-05-24T14:08:44.809385Z" + "iopub.execute_input": "2024-05-24T14:38:23.243548Z", + "iopub.status.busy": "2024-05-24T14:38:23.243127Z", + "iopub.status.idle": "2024-05-24T14:38:23.467272Z", + "shell.execute_reply": "2024-05-24T14:38:23.466668Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:44.812336Z", - "iopub.status.busy": "2024-05-24T14:08:44.811969Z", - "iopub.status.idle": "2024-05-24T14:08:44.984748Z", - "shell.execute_reply": "2024-05-24T14:08:44.984247Z" + "iopub.execute_input": "2024-05-24T14:38:23.470317Z", + "iopub.status.busy": "2024-05-24T14:38:23.469904Z", + "iopub.status.idle": "2024-05-24T14:38:23.645241Z", + "shell.execute_reply": "2024-05-24T14:38:23.644674Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:44.987152Z", - "iopub.status.busy": "2024-05-24T14:08:44.986829Z", - "iopub.status.idle": "2024-05-24T14:08:44.990417Z", - "shell.execute_reply": "2024-05-24T14:08:44.989905Z" + "iopub.execute_input": "2024-05-24T14:38:23.647985Z", + "iopub.status.busy": "2024-05-24T14:38:23.647606Z", + "iopub.status.idle": "2024-05-24T14:38:23.651600Z", + "shell.execute_reply": "2024-05-24T14:38:23.651071Z" }, "nbsphinx": "hidden" }, @@ -1113,7 +1113,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0033d8b95cec404a9089c1cf3143e5ae": { + "00c094dc02bb4290b6f66071af9854a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1129,64 +1129,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a2f0c4cda6894ed2acd8c3f4a38feb9e", - "max": 54245363.0, + "layout": "IPY_MODEL_a960448e50c349738c05447d502b17cf", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c387d31b5159431881d4988c46ef5503", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "00fe39379af24317b494f09addaf1f1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2fd6f21959e04d38be462524b6b9bdab", - "IPY_MODEL_636335485ef847cea1c8d84567710265", - "IPY_MODEL_dc16f159906c47f196e11b5383a0c115" - ], - "layout": "IPY_MODEL_e8e9405d3ddf49d198ac72490266144d", - "tabbable": null, - "tooltip": null - } - }, - "045ece2feba647a0af583cf2b69ffeac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9b5c19b81aef477dab0d53cf66f561c3", - "placeholder": "​", - "style": "IPY_MODEL_97c3e010793c4e249bd7cd4b68964a56", + "style": "IPY_MODEL_6520fc2dc4864f9b87d2a54b3b9957bf", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 396kB/s]" + "value": 2211.0 } }, - "0697a1a5a2fa44b69ea5bf3e2917e3df": { + "04b52e6b587f43e2b517e7b2197a02c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1202,71 +1155,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c656748a5bc5448cb218c34ea2151279", - "max": 2211.0, + "layout": "IPY_MODEL_d33e4a15ba1e4323b951f20beacba582", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_46cc119951c14aa0a90a73cb64818b6a", + "style": "IPY_MODEL_b4a8b5be7bfe4490bbc1d3f48ca18483", "tabbable": null, "tooltip": null, - "value": 2211.0 - } - }, - "0e9b9214886142308950d5fa7fd1e99e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "156ccb162aa844f883adf8775e7e4825": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 466062.0 } }, - "176b2eb54f574eda9fd729f00eab84b5": { - "model_module": "@jupyter-widgets/controls", + "050bc0fca31e4b8396328cd979ca92c8": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1ad3fcc288684f6583bfe008b8355446": { + "05a50878b8c448a1bc8e6766d6590ee2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1281,51 +1233,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3ddc684595a9400b83408a56fdfe0591", + "layout": "IPY_MODEL_5aeb8f7daed54209bf51c1957111dc8f", "placeholder": "​", - "style": "IPY_MODEL_a7853888b8354e9daf195699379f4c4f", + "style": "IPY_MODEL_18fa9214d5a645e4b6fd71704b99cb81", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "1d257599af5d47dfa4455b627590065c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 232k/232k [00:00<00:00, 32.3MB/s]" } }, - "1dddfaa0897f4307a56a3982bdc43755": { - "model_module": "@jupyter-widgets/controls", + "0649e2673b2d4abc918784b821a4ec60": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "229337b1a0d048589cf8c0922f1e0a71": { + "07f25892b39f4446b0be4b555992b684": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1341,33 +1310,30 @@ "description_width": "" } }, - "2322399753e94acc899f3f7f36e12177": { + "0b8caf0e72bd41bda1cc80a1d6d7c01a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_748ba25e7be046abaa4bb609428fc96e", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_229337b1a0d048589cf8c0922f1e0a71", + "layout": "IPY_MODEL_a50355003f644e059264813658298afc", + "placeholder": "​", + "style": "IPY_MODEL_628f44c194244f4b877593a58dc4f3a8", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": "README.md: 100%" } }, - "2b77633dcfb04e46999dfe250e0cbaa4": { + "0b8ed1ac0548424bac16796a9472b777": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1420,30 +1386,69 @@ "width": null } }, - "2fd6f21959e04d38be462524b6b9bdab": { + "1534a1b2c2f54717a418350b408a516a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e8aa770be1f248e3969fa055c399cbb2", - "placeholder": "​", - "style": "IPY_MODEL_176b2eb54f574eda9fd729f00eab84b5", + "layout": "IPY_MODEL_0649e2673b2d4abc918784b821a4ec60", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_07f25892b39f4446b0be4b555992b684", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": 231508.0 + } + }, + "18fa9214d5a645e4b6fd71704b99cb81": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1d02400adec6477bb47bc20d319c0e92": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "302263af8dad4577bdfeee199fd14219": { + "1dd6af4af8be4fd3a9656674bb901a5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1496,7 +1501,7 @@ "width": null } }, - "34445f9dcaf1442fb483f167e9107478": { + "229d26480a304e128f9687c7dce5b0a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1549,30 +1554,55 @@ "width": null } }, - "3c1b653647e64efaaaced04ba585e00a": { + "231bf5f16cc745469164c6909eb17a5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bdfc6e9bb4de4e08ab056977a8c26037", - "placeholder": "​", - "style": "IPY_MODEL_1d257599af5d47dfa4455b627590065c", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4e88ed8607e64ea582a0483402a68cf9", + "IPY_MODEL_61d1b60c81b944bcade2969352e8cff9", + "IPY_MODEL_bbac52581f7d4a168432e80c2f51dae9" + ], + "layout": "IPY_MODEL_1dd6af4af8be4fd3a9656674bb901a5d", "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "tooltip": null + } + }, + "23508b0e1438429c8845cd20fc8f19c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a03f25466c2f44a9949ff4da845f1a7c", + "IPY_MODEL_7da38b6516db4d8fb46bd762dd51ce96", + "IPY_MODEL_79aad8c549ba4faebb759ac9de89c7cb" + ], + "layout": "IPY_MODEL_8a338984828e4285aacc2f320a4e2dbe", + "tabbable": null, + "tooltip": null } }, - "3ddc684595a9400b83408a56fdfe0591": { + "296041b42d0a4d20b28975bff9c071c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1625,80 +1655,126 @@ "width": null } }, - "3ef3b456c004474d91187eed0deb54c4": { - "model_module": "@jupyter-widgets/controls", + "303211f071554478bdafd84c76952268": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_829d5e7637db4d6c82d366e41800e742", - "placeholder": "​", - "style": "IPY_MODEL_0e9b9214886142308950d5fa7fd1e99e", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 43.4MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3f956d87ba4d46cfa1c04ff36efe96a4": { + "3120577edb0f4121942c017600979d25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9497608b85124cac85abd0e78ad39460", + "IPY_MODEL_1534a1b2c2f54717a418350b408a516a", + "IPY_MODEL_05a50878b8c448a1bc8e6766d6590ee2" + ], + "layout": "IPY_MODEL_d99696dcc533459bac5b401036bdfba7", + "tabbable": null, + "tooltip": null } }, - "46cc119951c14aa0a90a73cb64818b6a": { + "397c364933fb4652836b6dff58e11b71": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6db11f58500b4ad2996124bd31a72d6b", + "IPY_MODEL_04b52e6b587f43e2b517e7b2197a02c1", + "IPY_MODEL_704b3a489edb47109fe08aaefab13537" + ], + "layout": "IPY_MODEL_e931daf9bae6490ca0aabe3ac20244b2", + "tabbable": null, + "tooltip": null } }, - "4a1af7cdbff04254b8d0e22f7e34cd1b": { + "397f461645a145c6a4f3caf85b56825c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4dadaa73ba6b4bb58d9c2af13f5a66bc": { + "3ec4ba4ab19d4ca3aab72391e1e6a8f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1751,7 +1827,48 @@ "width": null } }, - "515239a7a7ea4f639cb0a100104c0c49": { + "40a81de27242415890466b6b57e571e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "41a158857d60475386edeb5b135fea28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dc7d1c66717c41bfb3a016c70baeb393", + "placeholder": "​", + "style": "IPY_MODEL_6d08ad4580b0413ea7e0a1b71bca5863", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 7.71kB/s]" + } + }, + "4d09d4135394453494cfeb012e066c93": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1804,7 +1921,62 @@ "width": null } }, - "5d7a83d1cf5d46ca98d2e381eaa209d2": { + "4e88ed8607e64ea582a0483402a68cf9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f91d65b5645a45f99d7285a43a979a2e", + "placeholder": "​", + "style": "IPY_MODEL_5a9b45baa69c4de28a6d7ccaeb7ffdf5", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "4f8e2ca5f6ca49b09275a6fccc9ca000": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4fd45c34fb8041f4810308e9533fa6df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "52e5f34375bc4e48a9a2eb2b834752c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1857,31 +2029,25 @@ "width": null } }, - "61902606363948da8d5d110cc7550cb1": { + "5a9b45baa69c4de28a6d7ccaeb7ffdf5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a3d670660cd64571a43203a72160508f", - "IPY_MODEL_db819aab9593471f98738b28bc9f04be", - "IPY_MODEL_a3311fa3077b4fa192af635d10a01e6d" - ], - "layout": "IPY_MODEL_ac6e7f092aab449ebd4a0ef2d651facf", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "62ba90ea651a40f7a049f12da0033bc4": { + "5aeb8f7daed54209bf51c1957111dc8f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1934,33 +2100,25 @@ "width": null } }, - "636335485ef847cea1c8d84567710265": { + "618d110760a048f18a6feb2b9a06e470": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b5dbd2c910e34f57a33986c4559c280f", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c3114326df0c43af926c55a8439b6e51", - "tabbable": null, - "tooltip": null, - "value": 48.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6a350cc6987f4da3ae27ae7a62a0c1fa": { + "61d1b60c81b944bcade2969352e8cff9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1976,40 +2134,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7eb12e7cc034429399528a0f14566754", + "layout": "IPY_MODEL_622de0159e89415ca2b6c525818e526e", "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e0beeaeeaf894a269dea99dd59f60c8c", + "style": "IPY_MODEL_4f8e2ca5f6ca49b09275a6fccc9ca000", "tabbable": null, "tooltip": null, "value": 665.0 } }, - "746b691fa2bc48e99d75dfc3cb953ac7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9298c2b795f442ba91828feed3bbe946", - "placeholder": "​", - "style": "IPY_MODEL_cf404c5edd0f4e968b9636a5cb289e9d", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "748ba25e7be046abaa4bb609428fc96e": { + "622de0159e89415ca2b6c525818e526e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2062,7 +2197,7 @@ "width": null } }, - "7beff793e30c42c990e55db47aa41765": { + "628f44c194244f4b877593a58dc4f3a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2080,60 +2215,23 @@ "text_color": null } }, - "7eb12e7cc034429399528a0f14566754": { - "model_module": "@jupyter-widgets/base", + "6520fc2dc4864f9b87d2a54b3b9957bf": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "829d5e7637db4d6c82d366e41800e742": { + "6694fd6451e2495584cbac083085df01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2186,7 +2284,41 @@ "width": null } }, - "84a069054979450299258cc54c8e5726": { + "6d08ad4580b0413ea7e0a1b71bca5863": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6d91e11fbde3448987300040fd442856": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6db11f58500b4ad2996124bd31a72d6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2201,15 +2333,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f562630746f1450093d9e3cdefdc0ea9", + "layout": "IPY_MODEL_bd1ba71ae9d64de9aa346bcb0370acce", "placeholder": "​", - "style": "IPY_MODEL_f8f423acf4cf4b61bec6f59e6ac30a0e", + "style": "IPY_MODEL_6ef22893a9604bcba68b095b7a40e021", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" + "value": "tokenizer.json: 100%" } }, - "8bd2ce0818f44832b4e5beeb240b310c": { + "6ef22893a9604bcba68b095b7a40e021": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2227,60 +2359,30 @@ "text_color": null } }, - "8c378a35f16249e8a07d2132b22b75b3": { - "model_module": "@jupyter-widgets/base", + "704b3a489edb47109fe08aaefab13537": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_908e1b0bcbeb4fd499d10dd115f5b7ad", + "placeholder": "​", + "style": "IPY_MODEL_d9680e8051a84b7785d5b61b08ae03fd", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 22.8MB/s]" } }, - "9298c2b795f442ba91828feed3bbe946": { + "72ce541c30124b1680a804fea69ff8da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2333,72 +2435,74 @@ "width": null } }, - "97c3e010793c4e249bd7cd4b68964a56": { + "79aad8c549ba4faebb759ac9de89c7cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_050bc0fca31e4b8396328cd979ca92c8", + "placeholder": "​", + "style": "IPY_MODEL_d4c5b0cc317042eaa2a23d549e29fb49", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 288MB/s]" } }, - "983495b2e9cf42e48d3ef98b40af75fc": { + "7da38b6516db4d8fb46bd762dd51ce96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cddc9bef7ba44e8cbade2878488fa874", - "placeholder": "​", - "style": "IPY_MODEL_1dddfaa0897f4307a56a3982bdc43755", + "layout": "IPY_MODEL_ea53ca10eb1d47a0ba8dbff2bf50f4d8", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8ff1d4977ee0444a9b7b29dd31e65269", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": 54245363.0 } }, - "993139e945be4ef1895d5607480d5a01": { + "85342103b4ef424aa667dc7ba46cf6b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1ad3fcc288684f6583bfe008b8355446", - "IPY_MODEL_af3e554ff11943dea57aa0b7ba19889a", - "IPY_MODEL_3ef3b456c004474d91187eed0deb54c4" - ], - "layout": "IPY_MODEL_2b77633dcfb04e46999dfe250e0cbaa4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9b5c19b81aef477dab0d53cf66f561c3": { + "8a338984828e4285aacc2f320a4e2dbe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2451,7 +2555,23 @@ "width": null } }, - "a2f0c4cda6894ed2acd8c3f4a38feb9e": { + "8ff1d4977ee0444a9b7b29dd31e65269": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "908e1b0bcbeb4fd499d10dd115f5b7ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2504,7 +2624,7 @@ "width": null } }, - "a3311fa3077b4fa192af635d10a01e6d": { + "9497608b85124cac85abd0e78ad39460": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2519,15 +2639,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_62ba90ea651a40f7a049f12da0033bc4", + "layout": "IPY_MODEL_6694fd6451e2495584cbac083085df01", "placeholder": "​", - "style": "IPY_MODEL_7beff793e30c42c990e55db47aa41765", + "style": "IPY_MODEL_b4239d1516294a94802ea6a46d25ee52", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 66.1kB/s]" + "value": "vocab.txt: 100%" } }, - "a3d670660cd64571a43203a72160508f": { + "a03f25466c2f44a9949ff4da845f1a7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2542,57 +2662,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cca4df9786b14523b9d12738ab4e23db", + "layout": "IPY_MODEL_52e5f34375bc4e48a9a2eb2b834752c1", "placeholder": "​", - "style": "IPY_MODEL_156ccb162aa844f883adf8775e7e4825", + "style": "IPY_MODEL_85342103b4ef424aa667dc7ba46cf6b2", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": "pytorch_model.bin: 100%" } }, - "a6a20c4fcff54c0aa854cf655e8226ad": { + "a0418a9534f7401f91cea70a48198ba5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3c1b653647e64efaaaced04ba585e00a", - "IPY_MODEL_0697a1a5a2fa44b69ea5bf3e2917e3df", - "IPY_MODEL_045ece2feba647a0af583cf2b69ffeac" - ], - "layout": "IPY_MODEL_de9ae1b5fe8642819fd883ff99111a0a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_72ce541c30124b1680a804fea69ff8da", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6d91e11fbde3448987300040fd442856", "tabbable": null, - "tooltip": null - } - }, - "a7853888b8354e9daf195699379f4c4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 48.0 } }, - "ac6e7f092aab449ebd4a0ef2d651facf": { + "a50355003f644e059264813658298afc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2645,49 +2749,25 @@ "width": null } }, - "acbaf79262404d61a9941e8f03f25470": { + "a883ba7b5cba4152a426e7747a38a8b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "af3e554ff11943dea57aa0b7ba19889a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4dadaa73ba6b4bb58d9c2af13f5a66bc", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4a1af7cdbff04254b8d0e22f7e34cd1b", - "tabbable": null, - "tooltip": null, - "value": 466062.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b5dbd2c910e34f57a33986c4559c280f": { + "a960448e50c349738c05447d502b17cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2740,83 +2820,25 @@ "width": null } }, - "b624020f4ef341399cb7eeadd1697fcc": { + "b4239d1516294a94802ea6a46d25ee52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5d7a83d1cf5d46ca98d2e381eaa209d2", - "placeholder": "​", - "style": "IPY_MODEL_ced7a8270867420590cd7b0cada88cfc", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 124kB/s]" - } - }, - "bdfc6e9bb4de4e08ab056977a8c26037": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c3114326df0c43af926c55a8439b6e51": { + "b4a8b5be7bfe4490bbc1d3f48ca18483": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2832,23 +2854,30 @@ "description_width": "" } }, - "c387d31b5159431881d4988c46ef5503": { + "bbac52581f7d4a168432e80c2f51dae9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_303211f071554478bdafd84c76952268", + "placeholder": "​", + "style": "IPY_MODEL_a883ba7b5cba4152a426e7747a38a8b9", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 109kB/s]" } }, - "c656748a5bc5448cb218c34ea2151279": { + "bd1ba71ae9d64de9aa346bcb0370acce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2901,7 +2930,30 @@ "width": null } }, - "cca4df9786b14523b9d12738ab4e23db": { + "c855525f07d7401c8c33e703c28c72c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_296041b42d0a4d20b28975bff9c071c2", + "placeholder": "​", + "style": "IPY_MODEL_40a81de27242415890466b6b57e571e0", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "cc04cfd1250342d6bdf4807ad26f9880": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2954,7 +3006,7 @@ "width": null } }, - "cddc9bef7ba44e8cbade2878488fa874": { + "d33e4a15ba1e4323b951f20beacba582": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3007,7 +3059,7 @@ "width": null } }, - "ced7a8270867420590cd7b0cada88cfc": { + "d4c5b0cc317042eaa2a23d549e29fb49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3025,7 +3077,7 @@ "text_color": null } }, - "cf404c5edd0f4e968b9636a5cb289e9d": { + "d9680e8051a84b7785d5b61b08ae03fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3043,103 +3095,7 @@ "text_color": null } }, - "d41cf8cf44d5417fb6cf5fcc9f6c82da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e63b2eab37b142a6b8a3edea4d89a6c8", - "placeholder": "​", - "style": "IPY_MODEL_3f956d87ba4d46cfa1c04ff36efe96a4", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 30.8MB/s]" - } - }, - "da43f1a9fabf4755967f0ded68b34709": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_746b691fa2bc48e99d75dfc3cb953ac7", - "IPY_MODEL_6a350cc6987f4da3ae27ae7a62a0c1fa", - "IPY_MODEL_b624020f4ef341399cb7eeadd1697fcc" - ], - "layout": "IPY_MODEL_515239a7a7ea4f639cb0a100104c0c49", - "tabbable": null, - "tooltip": null - } - }, - "db819aab9593471f98738b28bc9f04be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fafe1c79f47649a9bdb1b228d7d6b9ac", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_acbaf79262404d61a9941e8f03f25470", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "dc16f159906c47f196e11b5383a0c115": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8c378a35f16249e8a07d2132b22b75b3", - "placeholder": "​", - "style": "IPY_MODEL_f79060d9068243afb9cb990e707d5541", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.81kB/s]" - } - }, - "dd615d9ade4042368bfd034355a550e2": { + "d99696dcc533459bac5b401036bdfba7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3192,7 +3148,7 @@ "width": null } }, - "de9ae1b5fe8642819fd883ff99111a0a": { + "dc7d1c66717c41bfb3a016c70baeb393": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3245,31 +3201,7 @@ "width": null } }, - "df4bf532e7054d55ac04f6fe3d58e5d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_84a069054979450299258cc54c8e5726", - "IPY_MODEL_2322399753e94acc899f3f7f36e12177", - "IPY_MODEL_d41cf8cf44d5417fb6cf5fcc9f6c82da" - ], - "layout": "IPY_MODEL_dd615d9ade4042368bfd034355a550e2", - "tabbable": null, - "tooltip": null - } - }, - "e0adef9ed4ab48918c1426a5e293efff": { + "e306bc1c27994b45bf12a624e8b637ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3284,32 +3216,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_983495b2e9cf42e48d3ef98b40af75fc", - "IPY_MODEL_0033d8b95cec404a9089c1cf3143e5ae", - "IPY_MODEL_f6fe6c4503ad490da82d1b43b6a97e97" + "IPY_MODEL_c855525f07d7401c8c33e703c28c72c3", + "IPY_MODEL_a0418a9534f7401f91cea70a48198ba5", + "IPY_MODEL_41a158857d60475386edeb5b135fea28" ], - "layout": "IPY_MODEL_34445f9dcaf1442fb483f167e9107478", + "layout": "IPY_MODEL_0b8ed1ac0548424bac16796a9472b777", "tabbable": null, "tooltip": null } }, - "e0beeaeeaf894a269dea99dd59f60c8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e63b2eab37b142a6b8a3edea4d89a6c8": { + "e55779ee19624eb4b12f99261bc31b68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3362,7 +3278,56 @@ "width": null } }, - "e8aa770be1f248e3969fa055c399cbb2": { + "e7204f291a55405884eba7067a9beb53": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cc04cfd1250342d6bdf4807ad26f9880", + "placeholder": "​", + "style": "IPY_MODEL_397f461645a145c6a4f3caf85b56825c", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 45.0kB/s]" + } + }, + "e7d824bbd2df4b6eb873494a85651f5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e55779ee19624eb4b12f99261bc31b68", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4fd45c34fb8041f4810308e9533fa6df", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "e931daf9bae6490ca0aabe3ac20244b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3415,7 +3380,7 @@ "width": null } }, - "e8e9405d3ddf49d198ac72490266144d": { + "ea4feb4bf3ec4c12a410230590f019c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3468,7 +3433,7 @@ "width": null } }, - "f562630746f1450093d9e3cdefdc0ea9": { + "ea53ca10eb1d47a0ba8dbff2bf50f4d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3521,66 +3486,78 @@ "width": null } }, - "f6fe6c4503ad490da82d1b43b6a97e97": { + "f3b89498b0ba442786e6adcad19ade7b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_302263af8dad4577bdfeee199fd14219", - "placeholder": "​", - "style": "IPY_MODEL_8bd2ce0818f44832b4e5beeb240b310c", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0b8caf0e72bd41bda1cc80a1d6d7c01a", + "IPY_MODEL_00c094dc02bb4290b6f66071af9854a8", + "IPY_MODEL_f42ad7724e274bc8adf92822b4d78659" + ], + "layout": "IPY_MODEL_4d09d4135394453494cfeb012e066c93", "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 300MB/s]" + "tooltip": null } }, - "f79060d9068243afb9cb990e707d5541": { + "f42ad7724e274bc8adf92822b4d78659": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3ec4ba4ab19d4ca3aab72391e1e6a8f8", + "placeholder": "​", + "style": "IPY_MODEL_1d02400adec6477bb47bc20d319c0e92", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 367kB/s]" } }, - "f8f423acf4cf4b61bec6f59e6ac30a0e": { + "f53e9db2d70d48c98d3bc0e8ba7f98c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fe3d3d13a8bf4cd0bb0bc7717e88c5c6", + "IPY_MODEL_e7d824bbd2df4b6eb873494a85651f5e", + "IPY_MODEL_e7204f291a55405884eba7067a9beb53" + ], + "layout": "IPY_MODEL_229d26480a304e128f9687c7dce5b0a0", + "tabbable": null, + "tooltip": null } }, - "fafe1c79f47649a9bdb1b228d7d6b9ac": { + "f91d65b5645a45f99d7285a43a979a2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3632,6 +3609,29 @@ "visibility": null, "width": null } + }, + "fe3d3d13a8bf4cd0bb0bc7717e88c5c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ea4feb4bf3ec4c12a410230590f019c4", + "placeholder": "​", + "style": "IPY_MODEL_618d110760a048f18a6feb2b9a06e470", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index edd4239a0..3ed2ddd65 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1333,7 +1333,7 @@

    5. Use cleanlab to find label issues -{"state": {"f1301eca03b94f1db2a540d8f3c5686e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2e08ad7ef0f44ff4a7f20debd037e0d2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8ec521f3910941a3895cce4154ef50c6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f1301eca03b94f1db2a540d8f3c5686e", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2e08ad7ef0f44ff4a7f20debd037e0d2", "tabbable": null, "tooltip": null, "value": 2041.0}}, "e536bb16e64d4ce089a62aac5e2a90f8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d26d35697eee40a5977484acd3c4a00a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "05df4912bfca43a799d00e23b416c339": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e536bb16e64d4ce089a62aac5e2a90f8", "placeholder": "\u200b", "style": "IPY_MODEL_d26d35697eee40a5977484acd3c4a00a", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "4a508a96bc5549d0a186aba6785a8e5e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c2ba6879931d4ec6ac77b91ded97b6bd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d72ac05576254d009ce2ccc2abdcc281": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a508a96bc5549d0a186aba6785a8e5e", "placeholder": "\u200b", "style": "IPY_MODEL_c2ba6879931d4ec6ac77b91ded97b6bd", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007514kB/s]"}}, "1cb3d085bd3648e3ac22697de16f4f42": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "31168c1cbda04f02beb7397c294b4cad": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_05df4912bfca43a799d00e23b416c339", "IPY_MODEL_8ec521f3910941a3895cce4154ef50c6", "IPY_MODEL_d72ac05576254d009ce2ccc2abdcc281"], "layout": "IPY_MODEL_1cb3d085bd3648e3ac22697de16f4f42", "tabbable": null, "tooltip": null}}, "35763b2d9a0f4e158738b2c6f0ad1eed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "89fec8ea65ea4137940cc867646952ed": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8326f9a959c049cb946a1ba6a9d49e04": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_35763b2d9a0f4e158738b2c6f0ad1eed", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_89fec8ea65ea4137940cc867646952ed", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "d088022da22c403c850140e3505d9ffa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "71d67c5b450448f8a60ef0b6cbe718d1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f964e42a5e9842feb0c3967606994251": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d088022da22c403c850140e3505d9ffa", "placeholder": "\u200b", "style": "IPY_MODEL_71d67c5b450448f8a60ef0b6cbe718d1", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "4c22f63368db4307b604ef94a04b62db": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a7017b77185408cbd44d4f1dd3c65ac": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "88ac66904c9a4540be1e7266cb83380a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4c22f63368db4307b604ef94a04b62db", "placeholder": "\u200b", "style": "IPY_MODEL_4a7017b77185408cbd44d4f1dd3c65ac", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007270MB/s]"}}, "f2774acfdfc44556a229e8ed3dfbe650": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "265142b8704143789eeadc5d18e7acf2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f964e42a5e9842feb0c3967606994251", "IPY_MODEL_8326f9a959c049cb946a1ba6a9d49e04", "IPY_MODEL_88ac66904c9a4540be1e7266cb83380a"], "layout": "IPY_MODEL_f2774acfdfc44556a229e8ed3dfbe650", "tabbable": null, "tooltip": null}}, "69c34490bce748109a2e81cac0ed43cd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f636f98096c643d79c536f683230c596": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a09c69c233a1477db302f2283ac56312": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_69c34490bce748109a2e81cac0ed43cd", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f636f98096c643d79c536f683230c596", "tabbable": null, "tooltip": null, "value": 3201.0}}, "5afc046f352b40be85a6a3e235b7eacb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "28785ad7a2ef421fa6feb3c774f33b12": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f2e35846f95941349c0056d236393c6d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5afc046f352b40be85a6a3e235b7eacb", "placeholder": "\u200b", "style": "IPY_MODEL_28785ad7a2ef421fa6feb3c774f33b12", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "3892395d706746cd9c4065c0ea22800d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "537fa67bf6b141d2a943dc7e93b8c54c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "212f2d295a0748fcb79545835de9ef3f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3892395d706746cd9c4065c0ea22800d", "placeholder": "\u200b", "style": "IPY_MODEL_537fa67bf6b141d2a943dc7e93b8c54c", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007821kB/s]"}}, "18776b630be4492f9b839c41d3f52e0f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d3fd848d842c4b4280cb0207bed72a09": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f2e35846f95941349c0056d236393c6d", "IPY_MODEL_a09c69c233a1477db302f2283ac56312", "IPY_MODEL_212f2d295a0748fcb79545835de9ef3f"], "layout": "IPY_MODEL_18776b630be4492f9b839c41d3f52e0f", "tabbable": null, "tooltip": null}}, "b85a96e763fd4480b5d2d0a8ef4ad698": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ac5ae93f91e410eaf4dfeb57d85875a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5325e617fbf24e9f9d528d44540cc848": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b85a96e763fd4480b5d2d0a8ef4ad698", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8ac5ae93f91e410eaf4dfeb57d85875a", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "4de0598147bd421c9db43282be415e8d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b14b55587ab94704afb2c11f26118c08": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "863693071a6d4f36a9bb6b791d4e5d2f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4de0598147bd421c9db43282be415e8d", "placeholder": "\u200b", "style": "IPY_MODEL_b14b55587ab94704afb2c11f26118c08", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "5ee08e4d9c714907afcb2a6d9d87e801": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1210702982644760ab5e1420f701a61a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ccab94b6ed3f473ea5a254687a6d3828": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5ee08e4d9c714907afcb2a6d9d87e801", "placeholder": "\u200b", "style": "IPY_MODEL_1210702982644760ab5e1420f701a61a", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007282MB/s]"}}, "3ec66246c57a479d8ea312f834e3e04a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "68872f1cbc05473fbb1eeb8f065648df": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_863693071a6d4f36a9bb6b791d4e5d2f", "IPY_MODEL_5325e617fbf24e9f9d528d44540cc848", "IPY_MODEL_ccab94b6ed3f473ea5a254687a6d3828"], "layout": "IPY_MODEL_3ec66246c57a479d8ea312f834e3e04a", "tabbable": null, "tooltip": null}}, "c8c1e68f272d4c92b2a642186c4c3449": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "916068bdd297424ba51069608effc8dd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c57da0f2f24347558dee040e22021624": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c8c1e68f272d4c92b2a642186c4c3449", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_916068bdd297424ba51069608effc8dd", "tabbable": null, "tooltip": null, "value": 128619.0}}, "28e8821fa4804fd1b433fcbbb8f74546": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "335d5a055a654d01a262ecd9b39d190f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8e5cda5a715b4dfa91d82a66897cf9ee": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_28e8821fa4804fd1b433fcbbb8f74546", "placeholder": "\u200b", "style": "IPY_MODEL_335d5a055a654d01a262ecd9b39d190f", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "8ceebdd3187a47f3b890d5bd3dc2f377": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e47076e91cf843a68ef4ca5acd443720": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "27ddf6b9bbe94adea539999959b3c7e9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8ceebdd3187a47f3b890d5bd3dc2f377", "placeholder": "\u200b", "style": "IPY_MODEL_e47076e91cf843a68ef4ca5acd443720", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200720.2MB/s]"}}, "561e1f2fc44e4e5ab6df405ddc86a22b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "01685492a55c4e66b4edd757d146af7f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8e5cda5a715b4dfa91d82a66897cf9ee", "IPY_MODEL_c57da0f2f24347558dee040e22021624", "IPY_MODEL_27ddf6b9bbe94adea539999959b3c7e9"], "layout": "IPY_MODEL_561e1f2fc44e4e5ab6df405ddc86a22b", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"4ef53a25f22e466896ecb62a8ed6e7b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ca4fb7bb7f64ee68a4f4d15d601a143": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "14789c3feb86474ea04517a279e3ffe0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4ef53a25f22e466896ecb62a8ed6e7b1", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7ca4fb7bb7f64ee68a4f4d15d601a143", "tabbable": null, "tooltip": null, "value": 2041.0}}, "1c47a86eb21248f5bf996cb80e91f118": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bee4e881745b44cfa27c847ae4f7fa62": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1403076c3d5a464abeed9225921667c2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c47a86eb21248f5bf996cb80e91f118", "placeholder": "\u200b", "style": "IPY_MODEL_bee4e881745b44cfa27c847ae4f7fa62", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "69ec400088c941669d5f5830c7f1c7a9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b87c3ae67e1f4a10bbf480a7c2646100": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e9b8abcb19c34bf0b6bd2521f789d7af": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_69ec400088c941669d5f5830c7f1c7a9", "placeholder": "\u200b", "style": "IPY_MODEL_b87c3ae67e1f4a10bbf480a7c2646100", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007435kB/s]"}}, "9580c2aa1c8f41168d6038b4b6b8a649": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d80fd3b6c9b4bbf8afac8b68f1fc3d0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1403076c3d5a464abeed9225921667c2", "IPY_MODEL_14789c3feb86474ea04517a279e3ffe0", "IPY_MODEL_e9b8abcb19c34bf0b6bd2521f789d7af"], "layout": "IPY_MODEL_9580c2aa1c8f41168d6038b4b6b8a649", "tabbable": null, "tooltip": null}}, "7bb2fb4468144fa4a116e77f77b42f79": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "20def057f44343908b08d7f838190650": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "aa307c0979ad4fafb65ff3cbc24c3be3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7bb2fb4468144fa4a116e77f77b42f79", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_20def057f44343908b08d7f838190650", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "0c4d2a27905c4c388de07f64842bfb3a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aba86ba98c2f4396a2fa488cf910a813": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0ca87122e582417d9eb193e9cd2c6993": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0c4d2a27905c4c388de07f64842bfb3a", "placeholder": "\u200b", "style": "IPY_MODEL_aba86ba98c2f4396a2fa488cf910a813", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "484a022034a444d3955967908af6e774": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3255808a616a446daa3d5d45cd250db7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9a8c0622c24d467a975ed6d18ce3de0f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_484a022034a444d3955967908af6e774", "placeholder": "\u200b", "style": "IPY_MODEL_3255808a616a446daa3d5d45cd250db7", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007251MB/s]"}}, "58572314d2364e38b4aeeb2e81b47bed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "90623b0050b54d028e22158fec73f4d6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0ca87122e582417d9eb193e9cd2c6993", "IPY_MODEL_aa307c0979ad4fafb65ff3cbc24c3be3", "IPY_MODEL_9a8c0622c24d467a975ed6d18ce3de0f"], "layout": "IPY_MODEL_58572314d2364e38b4aeeb2e81b47bed", "tabbable": null, "tooltip": null}}, "539b9e52337843388630eb24b636d311": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a7cb469a1fcd41568790a6955a37dfb7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b264a3e8ae96451da6df1ad3b3c5cfca": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_539b9e52337843388630eb24b636d311", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a7cb469a1fcd41568790a6955a37dfb7", "tabbable": null, "tooltip": null, "value": 3201.0}}, "ea3685807eda4c7d8f18b85074394f0c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "feb801735e6842b8a125b0873337af9d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "917eb6288bd2441fa44beefaaade6a45": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ea3685807eda4c7d8f18b85074394f0c", "placeholder": "\u200b", "style": "IPY_MODEL_feb801735e6842b8a125b0873337af9d", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "0449e6d3c40347968b23ebc5475d19d1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "90b8e2fb02804b98a066a5963c8815b1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9d5cea08182045d29d7cf794b20d1e8b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0449e6d3c40347968b23ebc5475d19d1", "placeholder": "\u200b", "style": "IPY_MODEL_90b8e2fb02804b98a066a5963c8815b1", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007811kB/s]"}}, "87171a081cff4d2f8d6f39dcc9cbb230": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "66ec03974d40451bb3aa3ac52aba7edb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_917eb6288bd2441fa44beefaaade6a45", "IPY_MODEL_b264a3e8ae96451da6df1ad3b3c5cfca", "IPY_MODEL_9d5cea08182045d29d7cf794b20d1e8b"], "layout": "IPY_MODEL_87171a081cff4d2f8d6f39dcc9cbb230", "tabbable": null, "tooltip": null}}, "30f0625b7b28472d8de8026c4705e84e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95dc1074241447b58ab42fc484c4c8a5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5fe7ed9d8cf84c9ba59517d660c04315": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_30f0625b7b28472d8de8026c4705e84e", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_95dc1074241447b58ab42fc484c4c8a5", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "1a4738a2ffe4417f9b3827a5a8850ec9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fa3418e74ae94bc99eb67b50f149a4ce": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b79627037c9044a1862df3226ca31bde": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1a4738a2ffe4417f9b3827a5a8850ec9", "placeholder": "\u200b", "style": "IPY_MODEL_fa3418e74ae94bc99eb67b50f149a4ce", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "4cc62245d66e41fd996842c9d877c09c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f355cb2307ac45028f7a8093f3129411": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dbe1d7cb0251461bb108a42a1ad4c336": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4cc62245d66e41fd996842c9d877c09c", "placeholder": "\u200b", "style": "IPY_MODEL_f355cb2307ac45028f7a8093f3129411", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007323MB/s]"}}, "38510935295242e494ec445753c7bbae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "380c0d8a798d4498a2e9bf08544380ab": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b79627037c9044a1862df3226ca31bde", "IPY_MODEL_5fe7ed9d8cf84c9ba59517d660c04315", "IPY_MODEL_dbe1d7cb0251461bb108a42a1ad4c336"], "layout": "IPY_MODEL_38510935295242e494ec445753c7bbae", "tabbable": null, "tooltip": null}}, "ddc32d719b0748fdbe0eb58d480faa02": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "88d2448a658c45119888da05191cfbdd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fe1eea6073a54a6582c3f73596fde981": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ddc32d719b0748fdbe0eb58d480faa02", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_88d2448a658c45119888da05191cfbdd", "tabbable": null, "tooltip": null, "value": 128619.0}}, "c6296c1365b54dc68cdac2a8f4a9697e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a2fa4bd5af3c4f1da5a3a8141148b43b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "aa4f5f51e5c44065a27e7af4b4212268": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c6296c1365b54dc68cdac2a8f4a9697e", "placeholder": "\u200b", "style": "IPY_MODEL_a2fa4bd5af3c4f1da5a3a8141148b43b", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "49b225c8d6e448c5bbd609161017414f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ffe46cc511494999b76236397b3c95ba": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "61dadabdaa0143739b1f9e8623a0e0c5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_49b225c8d6e448c5bbd609161017414f", "placeholder": "\u200b", "style": "IPY_MODEL_ffe46cc511494999b76236397b3c95ba", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200717.1MB/s]"}}, "dc356c9f53224c6a8dc009826a6b6a29": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "abc602ff50c54f9d8142d235dc0bffb0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_aa4f5f51e5c44065a27e7af4b4212268", "IPY_MODEL_fe1eea6073a54a6582c3f73596fde981", "IPY_MODEL_61dadabdaa0143739b1f9e8623a0e0c5"], "layout": "IPY_MODEL_dc356c9f53224c6a8dc009826a6b6a29", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 09eafb085..57eb80416 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:48.995726Z", - "iopub.status.busy": "2024-05-24T14:08:48.995556Z", - "iopub.status.idle": "2024-05-24T14:08:53.517187Z", - "shell.execute_reply": "2024-05-24T14:08:53.516675Z" + "iopub.execute_input": "2024-05-24T14:38:28.042324Z", + "iopub.status.busy": "2024-05-24T14:38:28.041898Z", + "iopub.status.idle": "2024-05-24T14:38:33.240485Z", + "shell.execute_reply": "2024-05-24T14:38:33.239900Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:53.519894Z", - "iopub.status.busy": "2024-05-24T14:08:53.519414Z", - "iopub.status.idle": "2024-05-24T14:08:53.522499Z", - "shell.execute_reply": "2024-05-24T14:08:53.522031Z" + "iopub.execute_input": "2024-05-24T14:38:33.243443Z", + "iopub.status.busy": "2024-05-24T14:38:33.242824Z", + "iopub.status.idle": "2024-05-24T14:38:33.246235Z", + "shell.execute_reply": "2024-05-24T14:38:33.245774Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:53.524545Z", - "iopub.status.busy": "2024-05-24T14:08:53.524153Z", - "iopub.status.idle": "2024-05-24T14:08:53.528763Z", - "shell.execute_reply": "2024-05-24T14:08:53.528217Z" + "iopub.execute_input": "2024-05-24T14:38:33.248299Z", + "iopub.status.busy": "2024-05-24T14:38:33.247955Z", + "iopub.status.idle": "2024-05-24T14:38:33.252886Z", + "shell.execute_reply": "2024-05-24T14:38:33.252292Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-24T14:08:53.530968Z", - "iopub.status.busy": "2024-05-24T14:08:53.530655Z", - "iopub.status.idle": "2024-05-24T14:08:55.084232Z", - "shell.execute_reply": "2024-05-24T14:08:55.083611Z" + "iopub.execute_input": "2024-05-24T14:38:33.255233Z", + "iopub.status.busy": "2024-05-24T14:38:33.254911Z", + "iopub.status.idle": "2024-05-24T14:38:34.854793Z", + "shell.execute_reply": "2024-05-24T14:38:34.854046Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-24T14:08:55.086798Z", - "iopub.status.busy": "2024-05-24T14:08:55.086600Z", - "iopub.status.idle": "2024-05-24T14:08:55.097194Z", - "shell.execute_reply": "2024-05-24T14:08:55.096748Z" + "iopub.execute_input": "2024-05-24T14:38:34.857798Z", + "iopub.status.busy": "2024-05-24T14:38:34.857421Z", + "iopub.status.idle": "2024-05-24T14:38:34.868250Z", + "shell.execute_reply": "2024-05-24T14:38:34.867584Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:55.099250Z", - "iopub.status.busy": "2024-05-24T14:08:55.099075Z", - "iopub.status.idle": "2024-05-24T14:08:55.104375Z", - "shell.execute_reply": "2024-05-24T14:08:55.103947Z" + "iopub.execute_input": "2024-05-24T14:38:34.870543Z", + "iopub.status.busy": "2024-05-24T14:38:34.870213Z", + "iopub.status.idle": "2024-05-24T14:38:34.875971Z", + "shell.execute_reply": "2024-05-24T14:38:34.875430Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-24T14:08:55.106381Z", - "iopub.status.busy": "2024-05-24T14:08:55.106057Z", - "iopub.status.idle": "2024-05-24T14:08:55.547649Z", - "shell.execute_reply": "2024-05-24T14:08:55.547069Z" + "iopub.execute_input": "2024-05-24T14:38:34.878179Z", + "iopub.status.busy": "2024-05-24T14:38:34.877833Z", + "iopub.status.idle": "2024-05-24T14:38:35.348718Z", + "shell.execute_reply": "2024-05-24T14:38:35.348162Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:55.550115Z", - "iopub.status.busy": "2024-05-24T14:08:55.549638Z", - "iopub.status.idle": "2024-05-24T14:08:56.233340Z", - "shell.execute_reply": "2024-05-24T14:08:56.232788Z" + "iopub.execute_input": "2024-05-24T14:38:35.351094Z", + "iopub.status.busy": "2024-05-24T14:38:35.350724Z", + "iopub.status.idle": "2024-05-24T14:38:36.041522Z", + "shell.execute_reply": "2024-05-24T14:38:36.040976Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-05-24T14:08:56.235741Z", - "iopub.status.busy": "2024-05-24T14:08:56.235551Z", - "iopub.status.idle": "2024-05-24T14:08:56.254015Z", - "shell.execute_reply": "2024-05-24T14:08:56.253441Z" + "iopub.execute_input": "2024-05-24T14:38:36.044224Z", + "iopub.status.busy": "2024-05-24T14:38:36.043983Z", + "iopub.status.idle": "2024-05-24T14:38:36.063883Z", + "shell.execute_reply": "2024-05-24T14:38:36.063276Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:56.256130Z", - "iopub.status.busy": "2024-05-24T14:08:56.255809Z", - "iopub.status.idle": "2024-05-24T14:08:56.258959Z", - "shell.execute_reply": "2024-05-24T14:08:56.258410Z" + "iopub.execute_input": "2024-05-24T14:38:36.066307Z", + "iopub.status.busy": "2024-05-24T14:38:36.066070Z", + "iopub.status.idle": "2024-05-24T14:38:36.069866Z", + "shell.execute_reply": "2024-05-24T14:38:36.069372Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:08:56.260853Z", - "iopub.status.busy": "2024-05-24T14:08:56.260554Z", - "iopub.status.idle": "2024-05-24T14:09:10.581253Z", - "shell.execute_reply": "2024-05-24T14:09:10.580698Z" + "iopub.execute_input": "2024-05-24T14:38:36.072411Z", + "iopub.status.busy": "2024-05-24T14:38:36.071951Z", + "iopub.status.idle": "2024-05-24T14:38:52.669673Z", + "shell.execute_reply": "2024-05-24T14:38:52.668932Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-24T14:09:10.584167Z", - "iopub.status.busy": "2024-05-24T14:09:10.583543Z", - "iopub.status.idle": "2024-05-24T14:09:10.587413Z", - "shell.execute_reply": "2024-05-24T14:09:10.586942Z" + "iopub.execute_input": "2024-05-24T14:38:52.672954Z", + "iopub.status.busy": "2024-05-24T14:38:52.672471Z", + "iopub.status.idle": "2024-05-24T14:38:52.676746Z", + "shell.execute_reply": "2024-05-24T14:38:52.676197Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:10.589560Z", - "iopub.status.busy": "2024-05-24T14:09:10.589267Z", - "iopub.status.idle": "2024-05-24T14:09:11.310739Z", - "shell.execute_reply": "2024-05-24T14:09:11.310119Z" + "iopub.execute_input": "2024-05-24T14:38:52.678834Z", + "iopub.status.busy": "2024-05-24T14:38:52.678652Z", + "iopub.status.idle": "2024-05-24T14:38:53.397581Z", + "shell.execute_reply": "2024-05-24T14:38:53.396992Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-24T14:09:11.313523Z", - "iopub.status.busy": "2024-05-24T14:09:11.313143Z", - "iopub.status.idle": "2024-05-24T14:09:11.318232Z", - "shell.execute_reply": "2024-05-24T14:09:11.317680Z" + "iopub.execute_input": "2024-05-24T14:38:53.400407Z", + "iopub.status.busy": "2024-05-24T14:38:53.400006Z", + "iopub.status.idle": "2024-05-24T14:38:53.405174Z", + "shell.execute_reply": "2024-05-24T14:38:53.404662Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:11.320653Z", - "iopub.status.busy": "2024-05-24T14:09:11.320263Z", - "iopub.status.idle": "2024-05-24T14:09:11.415255Z", - "shell.execute_reply": "2024-05-24T14:09:11.414628Z" + "iopub.execute_input": "2024-05-24T14:38:53.407647Z", + "iopub.status.busy": "2024-05-24T14:38:53.407247Z", + "iopub.status.idle": "2024-05-24T14:38:53.504566Z", + "shell.execute_reply": "2024-05-24T14:38:53.503989Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:11.417703Z", - "iopub.status.busy": "2024-05-24T14:09:11.417392Z", - "iopub.status.idle": "2024-05-24T14:09:11.430300Z", - "shell.execute_reply": "2024-05-24T14:09:11.429696Z" + "iopub.execute_input": "2024-05-24T14:38:53.507054Z", + "iopub.status.busy": "2024-05-24T14:38:53.506688Z", + "iopub.status.idle": "2024-05-24T14:38:53.519402Z", + "shell.execute_reply": "2024-05-24T14:38:53.518899Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:11.432519Z", - "iopub.status.busy": "2024-05-24T14:09:11.432109Z", - "iopub.status.idle": "2024-05-24T14:09:11.440123Z", - "shell.execute_reply": "2024-05-24T14:09:11.439659Z" + "iopub.execute_input": "2024-05-24T14:38:53.521736Z", + "iopub.status.busy": "2024-05-24T14:38:53.521387Z", + "iopub.status.idle": "2024-05-24T14:38:53.529281Z", + "shell.execute_reply": "2024-05-24T14:38:53.528730Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:11.442299Z", - "iopub.status.busy": "2024-05-24T14:09:11.441844Z", - "iopub.status.idle": "2024-05-24T14:09:11.446136Z", - "shell.execute_reply": "2024-05-24T14:09:11.445643Z" + "iopub.execute_input": "2024-05-24T14:38:53.531513Z", + "iopub.status.busy": "2024-05-24T14:38:53.531171Z", + "iopub.status.idle": "2024-05-24T14:38:53.535292Z", + "shell.execute_reply": "2024-05-24T14:38:53.534752Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-05-24T14:09:11.447986Z", - "iopub.status.busy": "2024-05-24T14:09:11.447809Z", - "iopub.status.idle": "2024-05-24T14:09:11.453609Z", - "shell.execute_reply": "2024-05-24T14:09:11.453135Z" + "iopub.execute_input": "2024-05-24T14:38:53.537438Z", + "iopub.status.busy": "2024-05-24T14:38:53.537100Z", + "iopub.status.idle": "2024-05-24T14:38:53.543431Z", + "shell.execute_reply": "2024-05-24T14:38:53.542819Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-24T14:09:11.455473Z", - "iopub.status.busy": "2024-05-24T14:09:11.455298Z", - "iopub.status.idle": "2024-05-24T14:09:11.567621Z", - "shell.execute_reply": "2024-05-24T14:09:11.567058Z" + "iopub.execute_input": "2024-05-24T14:38:53.545830Z", + "iopub.status.busy": "2024-05-24T14:38:53.545368Z", + "iopub.status.idle": "2024-05-24T14:38:53.661495Z", + "shell.execute_reply": "2024-05-24T14:38:53.660917Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-24T14:09:11.569662Z", - "iopub.status.busy": "2024-05-24T14:09:11.569478Z", - "iopub.status.idle": "2024-05-24T14:09:11.678207Z", - "shell.execute_reply": "2024-05-24T14:09:11.677566Z" + "iopub.execute_input": "2024-05-24T14:38:53.663781Z", + "iopub.status.busy": "2024-05-24T14:38:53.663434Z", + "iopub.status.idle": "2024-05-24T14:38:53.771057Z", + "shell.execute_reply": "2024-05-24T14:38:53.770476Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-24T14:09:11.680736Z", - "iopub.status.busy": "2024-05-24T14:09:11.680269Z", - "iopub.status.idle": "2024-05-24T14:09:11.789918Z", - "shell.execute_reply": "2024-05-24T14:09:11.789412Z" + "iopub.execute_input": "2024-05-24T14:38:53.773216Z", + "iopub.status.busy": "2024-05-24T14:38:53.773000Z", + "iopub.status.idle": "2024-05-24T14:38:53.879659Z", + "shell.execute_reply": "2024-05-24T14:38:53.879106Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:11.791957Z", - "iopub.status.busy": "2024-05-24T14:09:11.791777Z", - "iopub.status.idle": "2024-05-24T14:09:11.897630Z", - "shell.execute_reply": "2024-05-24T14:09:11.897043Z" + "iopub.execute_input": "2024-05-24T14:38:53.881740Z", + "iopub.status.busy": "2024-05-24T14:38:53.881523Z", + "iopub.status.idle": "2024-05-24T14:38:54.243349Z", + "shell.execute_reply": "2024-05-24T14:38:54.242721Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:11.900027Z", - "iopub.status.busy": "2024-05-24T14:09:11.899546Z", - "iopub.status.idle": "2024-05-24T14:09:11.902887Z", - "shell.execute_reply": "2024-05-24T14:09:11.902400Z" + "iopub.execute_input": "2024-05-24T14:38:54.245790Z", + "iopub.status.busy": "2024-05-24T14:38:54.245403Z", + "iopub.status.idle": "2024-05-24T14:38:54.249197Z", + "shell.execute_reply": "2024-05-24T14:38:54.248670Z" }, "nbsphinx": "hidden" }, @@ -1397,72 +1397,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01685492a55c4e66b4edd757d146af7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8e5cda5a715b4dfa91d82a66897cf9ee", - "IPY_MODEL_c57da0f2f24347558dee040e22021624", - "IPY_MODEL_27ddf6b9bbe94adea539999959b3c7e9" - ], - "layout": "IPY_MODEL_561e1f2fc44e4e5ab6df405ddc86a22b", - "tabbable": null, - "tooltip": null - } - }, - "05df4912bfca43a799d00e23b416c339": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e536bb16e64d4ce089a62aac5e2a90f8", - "placeholder": "​", - "style": "IPY_MODEL_d26d35697eee40a5977484acd3c4a00a", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "1210702982644760ab5e1420f701a61a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "18776b630be4492f9b839c41d3f52e0f": { + "0449e6d3c40347968b23ebc5475d19d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1515,7 +1450,7 @@ "width": null } }, - "1cb3d085bd3648e3ac22697de16f4f42": { + "0c4d2a27905c4c388de07f64842bfb3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1568,7 +1503,7 @@ "width": null } }, - "212f2d295a0748fcb79545835de9ef3f": { + "0ca87122e582417d9eb193e9cd2c6993": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1583,80 +1518,117 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3892395d706746cd9c4065c0ea22800d", + "layout": "IPY_MODEL_0c4d2a27905c4c388de07f64842bfb3a", "placeholder": "​", - "style": "IPY_MODEL_537fa67bf6b141d2a943dc7e93b8c54c", + "style": "IPY_MODEL_aba86ba98c2f4396a2fa488cf910a813", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 821kB/s]" + "value": "embedding_model.ckpt: 100%" } }, - "265142b8704143789eeadc5d18e7acf2": { + "1403076c3d5a464abeed9225921667c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f964e42a5e9842feb0c3967606994251", - "IPY_MODEL_8326f9a959c049cb946a1ba6a9d49e04", - "IPY_MODEL_88ac66904c9a4540be1e7266cb83380a" - ], - "layout": "IPY_MODEL_f2774acfdfc44556a229e8ed3dfbe650", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1c47a86eb21248f5bf996cb80e91f118", + "placeholder": "​", + "style": "IPY_MODEL_bee4e881745b44cfa27c847ae4f7fa62", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "hyperparams.yaml: 100%" } }, - "27ddf6b9bbe94adea539999959b3c7e9": { + "14789c3feb86474ea04517a279e3ffe0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8ceebdd3187a47f3b890d5bd3dc2f377", - "placeholder": "​", - "style": "IPY_MODEL_e47076e91cf843a68ef4ca5acd443720", + "layout": "IPY_MODEL_4ef53a25f22e466896ecb62a8ed6e7b1", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7ca4fb7bb7f64ee68a4f4d15d601a143", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 20.2MB/s]" + "value": 2041.0 } }, - "28785ad7a2ef421fa6feb3c774f33b12": { - "model_module": "@jupyter-widgets/controls", + "1a4738a2ffe4417f9b3827a5a8850ec9": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "28e8821fa4804fd1b433fcbbb8f74546": { + "1c47a86eb21248f5bf996cb80e91f118": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1709,7 +1681,7 @@ "width": null } }, - "2e08ad7ef0f44ff4a7f20debd037e0d2": { + "20def057f44343908b08d7f838190650": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1725,31 +1697,60 @@ "description_width": "" } }, - "31168c1cbda04f02beb7397c294b4cad": { - "model_module": "@jupyter-widgets/controls", + "30f0625b7b28472d8de8026c4705e84e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_05df4912bfca43a799d00e23b416c339", - "IPY_MODEL_8ec521f3910941a3895cce4154ef50c6", - "IPY_MODEL_d72ac05576254d009ce2ccc2abdcc281" - ], - "layout": "IPY_MODEL_1cb3d085bd3648e3ac22697de16f4f42", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "335d5a055a654d01a262ecd9b39d190f": { + "3255808a616a446daa3d5d45cd250db7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1767,7 +1768,31 @@ "text_color": null } }, - "35763b2d9a0f4e158738b2c6f0ad1eed": { + "380c0d8a798d4498a2e9bf08544380ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b79627037c9044a1862df3226ca31bde", + "IPY_MODEL_5fe7ed9d8cf84c9ba59517d660c04315", + "IPY_MODEL_dbe1d7cb0251461bb108a42a1ad4c336" + ], + "layout": "IPY_MODEL_38510935295242e494ec445753c7bbae", + "tabbable": null, + "tooltip": null + } + }, + "38510935295242e494ec445753c7bbae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1820,7 +1845,31 @@ "width": null } }, - "3892395d706746cd9c4065c0ea22800d": { + "3d80fd3b6c9b4bbf8afac8b68f1fc3d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1403076c3d5a464abeed9225921667c2", + "IPY_MODEL_14789c3feb86474ea04517a279e3ffe0", + "IPY_MODEL_e9b8abcb19c34bf0b6bd2521f789d7af" + ], + "layout": "IPY_MODEL_9580c2aa1c8f41168d6038b4b6b8a649", + "tabbable": null, + "tooltip": null + } + }, + "484a022034a444d3955967908af6e774": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1873,7 +1922,7 @@ "width": null } }, - "3ec66246c57a479d8ea312f834e3e04a": { + "49b225c8d6e448c5bbd609161017414f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1926,7 +1975,7 @@ "width": null } }, - "4a508a96bc5549d0a186aba6785a8e5e": { + "4cc62245d66e41fd996842c9d877c09c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1979,25 +2028,7 @@ "width": null } }, - "4a7017b77185408cbd44d4f1dd3c65ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4c22f63368db4307b604ef94a04b62db": { + "4ef53a25f22e466896ecb62a8ed6e7b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2050,7 +2081,7 @@ "width": null } }, - "4de0598147bd421c9db43282be415e8d": { + "539b9e52337843388630eb24b636d311": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2103,56 +2134,12 @@ "width": null } }, - "5325e617fbf24e9f9d528d44540cc848": { - "model_module": "@jupyter-widgets/controls", + "58572314d2364e38b4aeeb2e81b47bed": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b85a96e763fd4480b5d2d0a8ef4ad698", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8ac5ae93f91e410eaf4dfeb57d85875a", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "537fa67bf6b141d2a943dc7e93b8c54c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "561e1f2fc44e4e5ab6df405ddc86a22b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, @@ -2200,7 +2187,80 @@ "width": null } }, - "5afc046f352b40be85a6a3e235b7eacb": { + "5fe7ed9d8cf84c9ba59517d660c04315": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_30f0625b7b28472d8de8026c4705e84e", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_95dc1074241447b58ab42fc484c4c8a5", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "61dadabdaa0143739b1f9e8623a0e0c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_49b225c8d6e448c5bbd609161017414f", + "placeholder": "​", + "style": "IPY_MODEL_ffe46cc511494999b76236397b3c95ba", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 17.1MB/s]" + } + }, + "66ec03974d40451bb3aa3ac52aba7edb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_917eb6288bd2441fa44beefaaade6a45", + "IPY_MODEL_b264a3e8ae96451da6df1ad3b3c5cfca", + "IPY_MODEL_9d5cea08182045d29d7cf794b20d1e8b" + ], + "layout": "IPY_MODEL_87171a081cff4d2f8d6f39dcc9cbb230", + "tabbable": null, + "tooltip": null + } + }, + "69ec400088c941669d5f5830c7f1c7a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2253,7 +2313,7 @@ "width": null } }, - "5ee08e4d9c714907afcb2a6d9d87e801": { + "7bb2fb4468144fa4a116e77f77b42f79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2306,31 +2366,23 @@ "width": null } }, - "68872f1cbc05473fbb1eeb8f065648df": { + "7ca4fb7bb7f64ee68a4f4d15d601a143": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_863693071a6d4f36a9bb6b791d4e5d2f", - "IPY_MODEL_5325e617fbf24e9f9d528d44540cc848", - "IPY_MODEL_ccab94b6ed3f473ea5a254687a6d3828" - ], - "layout": "IPY_MODEL_3ec66246c57a479d8ea312f834e3e04a", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "69c34490bce748109a2e81cac0ed43cd": { + "87171a081cff4d2f8d6f39dcc9cbb230": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2383,74 +2435,65 @@ "width": null } }, - "71d67c5b450448f8a60ef0b6cbe718d1": { + "88d2448a658c45119888da05191cfbdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "8326f9a959c049cb946a1ba6a9d49e04": { + "90623b0050b54d028e22158fec73f4d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_35763b2d9a0f4e158738b2c6f0ad1eed", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_89fec8ea65ea4137940cc867646952ed", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0ca87122e582417d9eb193e9cd2c6993", + "IPY_MODEL_aa307c0979ad4fafb65ff3cbc24c3be3", + "IPY_MODEL_9a8c0622c24d467a975ed6d18ce3de0f" + ], + "layout": "IPY_MODEL_58572314d2364e38b4aeeb2e81b47bed", "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "tooltip": null } }, - "863693071a6d4f36a9bb6b791d4e5d2f": { + "90b8e2fb02804b98a066a5963c8815b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4de0598147bd421c9db43282be415e8d", - "placeholder": "​", - "style": "IPY_MODEL_b14b55587ab94704afb2c11f26118c08", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "88ac66904c9a4540be1e7266cb83380a": { + "917eb6288bd2441fa44beefaaade6a45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2465,47 +2508,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c22f63368db4307b604ef94a04b62db", + "layout": "IPY_MODEL_ea3685807eda4c7d8f18b85074394f0c", "placeholder": "​", - "style": "IPY_MODEL_4a7017b77185408cbd44d4f1dd3c65ac", + "style": "IPY_MODEL_feb801735e6842b8a125b0873337af9d", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 270MB/s]" - } - }, - "89fec8ea65ea4137940cc867646952ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8ac5ae93f91e410eaf4dfeb57d85875a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "8ceebdd3187a47f3b890d5bd3dc2f377": { + "9580c2aa1c8f41168d6038b4b6b8a649": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2558,7 +2569,23 @@ "width": null } }, - "8e5cda5a715b4dfa91d82a66897cf9ee": { + "95dc1074241447b58ab42fc484c4c8a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9a8c0622c24d467a975ed6d18ce3de0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2573,41 +2600,56 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_28e8821fa4804fd1b433fcbbb8f74546", + "layout": "IPY_MODEL_484a022034a444d3955967908af6e774", "placeholder": "​", - "style": "IPY_MODEL_335d5a055a654d01a262ecd9b39d190f", + "style": "IPY_MODEL_3255808a616a446daa3d5d45cd250db7", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": " 16.9M/16.9M [00:00<00:00, 251MB/s]" } }, - "8ec521f3910941a3895cce4154ef50c6": { + "9d5cea08182045d29d7cf794b20d1e8b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f1301eca03b94f1db2a540d8f3c5686e", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2e08ad7ef0f44ff4a7f20debd037e0d2", + "layout": "IPY_MODEL_0449e6d3c40347968b23ebc5475d19d1", + "placeholder": "​", + "style": "IPY_MODEL_90b8e2fb02804b98a066a5963c8815b1", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": " 3.20k/3.20k [00:00<00:00, 811kB/s]" + } + }, + "a2fa4bd5af3c4f1da5a3a8141148b43b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "916068bdd297424ba51069608effc8dd": { + "a7cb469a1fcd41568790a6955a37dfb7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2623,7 +2665,7 @@ "description_width": "" } }, - "a09c69c233a1477db302f2283ac56312": { + "aa307c0979ad4fafb65ff3cbc24c3be3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2639,88 +2681,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_69c34490bce748109a2e81cac0ed43cd", - "max": 3201.0, + "layout": "IPY_MODEL_7bb2fb4468144fa4a116e77f77b42f79", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f636f98096c643d79c536f683230c596", + "style": "IPY_MODEL_20def057f44343908b08d7f838190650", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": 16887676.0 } }, - "b14b55587ab94704afb2c11f26118c08": { + "aa4f5f51e5c44065a27e7af4b4212268": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b85a96e763fd4480b5d2d0a8ef4ad698": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c6296c1365b54dc68cdac2a8f4a9697e", + "placeholder": "​", + "style": "IPY_MODEL_a2fa4bd5af3c4f1da5a3a8141148b43b", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" } }, - "c2ba6879931d4ec6ac77b91ded97b6bd": { + "aba86ba98c2f4396a2fa488cf910a813": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2738,7 +2732,31 @@ "text_color": null } }, - "c57da0f2f24347558dee040e22021624": { + "abc602ff50c54f9d8142d235dc0bffb0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aa4f5f51e5c44065a27e7af4b4212268", + "IPY_MODEL_fe1eea6073a54a6582c3f73596fde981", + "IPY_MODEL_61dadabdaa0143739b1f9e8623a0e0c5" + ], + "layout": "IPY_MODEL_dc356c9f53224c6a8dc009826a6b6a29", + "tabbable": null, + "tooltip": null + } + }, + "b264a3e8ae96451da6df1ad3b3c5cfca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2754,70 +2772,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c8c1e68f272d4c92b2a642186c4c3449", - "max": 128619.0, + "layout": "IPY_MODEL_539b9e52337843388630eb24b636d311", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_916068bdd297424ba51069608effc8dd", + "style": "IPY_MODEL_a7cb469a1fcd41568790a6955a37dfb7", "tabbable": null, "tooltip": null, - "value": 128619.0 - } - }, - "c8c1e68f272d4c92b2a642186c4c3449": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": 3201.0 } }, - "ccab94b6ed3f473ea5a254687a6d3828": { + "b79627037c9044a1862df3226ca31bde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2832,15 +2797,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5ee08e4d9c714907afcb2a6d9d87e801", + "layout": "IPY_MODEL_1a4738a2ffe4417f9b3827a5a8850ec9", "placeholder": "​", - "style": "IPY_MODEL_1210702982644760ab5e1420f701a61a", + "style": "IPY_MODEL_fa3418e74ae94bc99eb67b50f149a4ce", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 282MB/s]" + "value": "classifier.ckpt: 100%" + } + }, + "b87c3ae67e1f4a10bbf480a7c2646100": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bee4e881745b44cfa27c847ae4f7fa62": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d088022da22c403c850140e3505d9ffa": { + "c6296c1365b54dc68cdac2a8f4a9697e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2893,49 +2894,7 @@ "width": null } }, - "d26d35697eee40a5977484acd3c4a00a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d3fd848d842c4b4280cb0207bed72a09": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f2e35846f95941349c0056d236393c6d", - "IPY_MODEL_a09c69c233a1477db302f2283ac56312", - "IPY_MODEL_212f2d295a0748fcb79545835de9ef3f" - ], - "layout": "IPY_MODEL_18776b630be4492f9b839c41d3f52e0f", - "tabbable": null, - "tooltip": null - } - }, - "d72ac05576254d009ce2ccc2abdcc281": { + "dbe1d7cb0251461bb108a42a1ad4c336": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2950,33 +2909,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4a508a96bc5549d0a186aba6785a8e5e", + "layout": "IPY_MODEL_4cc62245d66e41fd996842c9d877c09c", "placeholder": "​", - "style": "IPY_MODEL_c2ba6879931d4ec6ac77b91ded97b6bd", + "style": "IPY_MODEL_f355cb2307ac45028f7a8093f3129411", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 514kB/s]" + "value": " 15.9M/15.9M [00:00<00:00, 323MB/s]" } }, - "e47076e91cf843a68ef4ca5acd443720": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e536bb16e64d4ce089a62aac5e2a90f8": { + "dc356c9f53224c6a8dc009826a6b6a29": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3029,7 +2970,7 @@ "width": null } }, - "f1301eca03b94f1db2a540d8f3c5686e": { + "ddc32d719b0748fdbe0eb58d480faa02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3082,7 +3023,30 @@ "width": null } }, - "f2774acfdfc44556a229e8ed3dfbe650": { + "e9b8abcb19c34bf0b6bd2521f789d7af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_69ec400088c941669d5f5830c7f1c7a9", + "placeholder": "​", + "style": "IPY_MODEL_b87c3ae67e1f4a10bbf480a7c2646100", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 435kB/s]" + } + }, + "ea3685807eda4c7d8f18b85074394f0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3135,66 +3099,102 @@ "width": null } }, - "f2e35846f95941349c0056d236393c6d": { + "f355cb2307ac45028f7a8093f3129411": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5afc046f352b40be85a6a3e235b7eacb", - "placeholder": "​", - "style": "IPY_MODEL_28785ad7a2ef421fa6feb3c774f33b12", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f636f98096c643d79c536f683230c596": { + "fa3418e74ae94bc99eb67b50f149a4ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f964e42a5e9842feb0c3967606994251": { + "fe1eea6073a54a6582c3f73596fde981": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d088022da22c403c850140e3505d9ffa", - "placeholder": "​", - "style": "IPY_MODEL_71d67c5b450448f8a60ef0b6cbe718d1", + "layout": "IPY_MODEL_ddc32d719b0748fdbe0eb58d480faa02", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_88d2448a658c45119888da05191cfbdd", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": 128619.0 + } + }, + "feb801735e6842b8a125b0873337af9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ffe46cc511494999b76236397b3c95ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/datalab/data_monitor.html b/master/tutorials/datalab/data_monitor.html index 1992cfd54..f66bb24da 100644 --- a/master/tutorials/datalab/data_monitor.html +++ b/master/tutorials/datalab/data_monitor.html @@ -686,7 +686,7 @@

    1. Install and import required dependenciesdependencies = ["cleanlab", "matplotlib", "datasets"] # TODO: make sure this list is updated if "google.colab" in str(get_ipython()): # Check if it's running in Google Colab - %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970 + %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e cmd = ' '.join([dep for dep in dependencies if dep != "cleanlab"]) %pip install $cmd else: @@ -1169,7 +1169,7 @@

    5. Use DataMonitor to find issues in new data

    -
    +
    @@ -1908,7 +1908,7 @@

    8. Looking for both label issues and outliers -{"state": {"661591454cdf4f2bb1a2fa13aca3ad6f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dcae186df1ad4e6c904948ac8032e31a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "70cd0a762b644892bb2315460aa97dbe": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_661591454cdf4f2bb1a2fa13aca3ad6f", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_dcae186df1ad4e6c904948ac8032e31a", "tabbable": null, "tooltip": null, "value": 50.0}}, "ec5b503842534cc1a4bb8420a16db9a0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "efe0d3829a734fcaa533ebd3a55db61e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "06af1a92a76548058090e3e76ba4772f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ec5b503842534cc1a4bb8420a16db9a0", "placeholder": "\u200b", "style": "IPY_MODEL_efe0d3829a734fcaa533ebd3a55db61e", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "d62875f14f11427a93aaf8ac50f9132d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a02e475d73b0452ebfcf5d699125adea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b7e0109a650649a285ad742b98916928": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d62875f14f11427a93aaf8ac50f9132d", "placeholder": "\u200b", "style": "IPY_MODEL_a02e475d73b0452ebfcf5d699125adea", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.89it/s]"}}, "37eb1a6d44514045b2aa8860476067cf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "662be85c83fb4299927b984583f2a0aa": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_06af1a92a76548058090e3e76ba4772f", "IPY_MODEL_70cd0a762b644892bb2315460aa97dbe", "IPY_MODEL_b7e0109a650649a285ad742b98916928"], "layout": "IPY_MODEL_37eb1a6d44514045b2aa8860476067cf", "tabbable": null, "tooltip": null}}, "aadb04088b434f3081d41bf91a16ace4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c0baf6e168bc46b2827885bc356844aa": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cf00dadf34a14d97a595f7d7e985bce3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aadb04088b434f3081d41bf91a16ace4", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c0baf6e168bc46b2827885bc356844aa", "tabbable": null, "tooltip": null, "value": 7.0}}, "c29501c3d7224ae5b57d3f3d196c173e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "46d4335d3fa24c0f9fe7ae1913153dd9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ee6fed3219314eb599d3c2009b7b83e5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c29501c3d7224ae5b57d3f3d196c173e", "placeholder": "\u200b", "style": "IPY_MODEL_46d4335d3fa24c0f9fe7ae1913153dd9", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "987b4aa1d8da4379b3f56457878ed8c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "879c676471c940628823acc2f3d2dfb8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6c2cbde15de3427184e11909c3646b9e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_987b4aa1d8da4379b3f56457878ed8c1", "placeholder": "\u200b", "style": "IPY_MODEL_879c676471c940628823acc2f3d2dfb8", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "f11bf373f513460e8a85dcb35388b46f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab646e85b72c41ca8755ce66562dedc7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ee6fed3219314eb599d3c2009b7b83e5", "IPY_MODEL_cf00dadf34a14d97a595f7d7e985bce3", "IPY_MODEL_6c2cbde15de3427184e11909c3646b9e"], "layout": "IPY_MODEL_f11bf373f513460e8a85dcb35388b46f", "tabbable": null, "tooltip": null}}, "03fbed958f68403a8e90a9d4cc222c16": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0a6408fbe072425c9900df39e2607a3f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1608c942525c440688cd8bdc9fc357a1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_03fbed958f68403a8e90a9d4cc222c16", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0a6408fbe072425c9900df39e2607a3f", "tabbable": null, "tooltip": null, "value": 50.0}}, "126e33fe51094756bb174dfbccd6f6e7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2f13e4307f3417aad9ca0ee51644e22": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3322288d06af4bb485b93cbf94591098": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_126e33fe51094756bb174dfbccd6f6e7", "placeholder": "\u200b", "style": "IPY_MODEL_e2f13e4307f3417aad9ca0ee51644e22", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "0255ae439abc4be195d7ee8d287a0f72": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5687275c9ff948108710b4c158d6e3ca": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a4e225d0157842139dbd9761a19f7511": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0255ae439abc4be195d7ee8d287a0f72", "placeholder": "\u200b", "style": "IPY_MODEL_5687275c9ff948108710b4c158d6e3ca", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.81it/s]"}}, "a0d10db507da4fc68c03aef0a6a78dbd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c2a6e4b076ef4712a9b5d3b5de511099": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3322288d06af4bb485b93cbf94591098", "IPY_MODEL_1608c942525c440688cd8bdc9fc357a1", "IPY_MODEL_a4e225d0157842139dbd9761a19f7511"], "layout": "IPY_MODEL_a0d10db507da4fc68c03aef0a6a78dbd", "tabbable": null, "tooltip": null}}, "a3130b785b5f4b27b2711c0844998a2e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ffff5bcc0b084125ba6bab0f6fe839fa": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b57c3dd4bfb946e582424a8dd0d3c71b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a3130b785b5f4b27b2711c0844998a2e", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ffff5bcc0b084125ba6bab0f6fe839fa", "tabbable": null, "tooltip": null, "value": 7.0}}, "fece962ccb2b4eb280e2576e8d11d95e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3534b031ff7241a5a8392414b1471ccc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f183894c27a643cc8943d0ea97f3f7ca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fece962ccb2b4eb280e2576e8d11d95e", "placeholder": "\u200b", "style": "IPY_MODEL_3534b031ff7241a5a8392414b1471ccc", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "2f87152650444f0c80a964b30cb08fbe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "77294877ba544f4393514b9f09e58dce": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a75988e40d194c9fa07010ccba004c1d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2f87152650444f0c80a964b30cb08fbe", "placeholder": "\u200b", "style": "IPY_MODEL_77294877ba544f4393514b9f09e58dce", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.33it/s]"}}, "1cbfc79990db4fe78affa2c5379ee1a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d4293023da84faf8077ec698a653354": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f183894c27a643cc8943d0ea97f3f7ca", "IPY_MODEL_b57c3dd4bfb946e582424a8dd0d3c71b", "IPY_MODEL_a75988e40d194c9fa07010ccba004c1d"], "layout": "IPY_MODEL_1cbfc79990db4fe78affa2c5379ee1a6", "tabbable": null, "tooltip": null}}, "72279ad6c55f45259474396f19bac8ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "693f62296ece4b2f9cb5496999a68468": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e5dd85c536eb47b2b72625b663b3a713": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_72279ad6c55f45259474396f19bac8ab", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_693f62296ece4b2f9cb5496999a68468", "tabbable": null, "tooltip": null, "value": 50.0}}, "c5389387fc3d4445aecaeac81e398950": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c893e5b6b65a4684969890841c9bb4cf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b8a302fef7d94f3e8b30aeac868299ed": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c5389387fc3d4445aecaeac81e398950", "placeholder": "\u200b", "style": "IPY_MODEL_c893e5b6b65a4684969890841c9bb4cf", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "f3aa620b60714f50bbd95231517a4d4b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6cf68323fd514c1aadc172b5fb2ea182": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2d6814248a754c77a35cb0368bea87a7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3aa620b60714f50bbd95231517a4d4b", "placeholder": "\u200b", "style": "IPY_MODEL_6cf68323fd514c1aadc172b5fb2ea182", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.76it/s]"}}, "f1aeb42b97ac4aa2bd59c69e26ea4af2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5784d50158614a70ace7ff01ee20f5e3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b8a302fef7d94f3e8b30aeac868299ed", "IPY_MODEL_e5dd85c536eb47b2b72625b663b3a713", "IPY_MODEL_2d6814248a754c77a35cb0368bea87a7"], "layout": "IPY_MODEL_f1aeb42b97ac4aa2bd59c69e26ea4af2", "tabbable": null, "tooltip": null}}, "684c216c883a4b799de296ebd9d3ced6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d93f40a7d0b4c0b9ceddca0af89bfb4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f3be3c0a0cbb4afa93beaff8154ad4a1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_684c216c883a4b799de296ebd9d3ced6", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9d93f40a7d0b4c0b9ceddca0af89bfb4", "tabbable": null, "tooltip": null, "value": 7.0}}, "edfdc2445dca4165a9c36ff578004129": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b731696c62234b38a0080a7c74715e7f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3c028cd4eaa847ab86562224646afb45": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_edfdc2445dca4165a9c36ff578004129", "placeholder": "\u200b", "style": "IPY_MODEL_b731696c62234b38a0080a7c74715e7f", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "81347cbf2b4d4f01b5d2da589e43c7a5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f6dc04a46c304ef08021dfeea8eb0ba4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "51f37be35d5b4a28a5a5faba9d49d8fd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_81347cbf2b4d4f01b5d2da589e43c7a5", "placeholder": "\u200b", "style": "IPY_MODEL_f6dc04a46c304ef08021dfeea8eb0ba4", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "a39d5f6727c349c3a66e7d5ce571f22e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "04bf8bf454c44f7eafc0e772463ec330": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3c028cd4eaa847ab86562224646afb45", "IPY_MODEL_f3be3c0a0cbb4afa93beaff8154ad4a1", "IPY_MODEL_51f37be35d5b4a28a5a5faba9d49d8fd"], "layout": "IPY_MODEL_a39d5f6727c349c3a66e7d5ce571f22e", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"cd6d772de1a241c6a79eab5193ec7735": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa316fdef6e342e49e0f244c72a8ff70": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "11b57c37d4d843619e5be6882d08df17": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cd6d772de1a241c6a79eab5193ec7735", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_aa316fdef6e342e49e0f244c72a8ff70", "tabbable": null, "tooltip": null, "value": 50.0}}, "a20a1426cb1d4a048fdf3edd762bcafe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "242158f7615a49188180e51cec349fcb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3ce827c7eec8458d8e8690a466ada004": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a20a1426cb1d4a048fdf3edd762bcafe", "placeholder": "\u200b", "style": "IPY_MODEL_242158f7615a49188180e51cec349fcb", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "c66a6bc01d4b48f7b367574875d6aa35": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60df86fc0a1b4e7b93f4ca0c434e9708": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "83c1029db0bf4e9680d036695d61db9b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c66a6bc01d4b48f7b367574875d6aa35", "placeholder": "\u200b", "style": "IPY_MODEL_60df86fc0a1b4e7b93f4ca0c434e9708", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.84it/s]"}}, "5e657761821843fcac2f0752ba6a9333": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6250e7600adc4b8db8a1048afdf59bd5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3ce827c7eec8458d8e8690a466ada004", "IPY_MODEL_11b57c37d4d843619e5be6882d08df17", "IPY_MODEL_83c1029db0bf4e9680d036695d61db9b"], "layout": "IPY_MODEL_5e657761821843fcac2f0752ba6a9333", "tabbable": null, "tooltip": null}}, "cc645f6771444e6eb369d57970221140": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c16ad5f806504a7c97ff19b402425a8a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0fee170d72d7454484d274fc37ccf113": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cc645f6771444e6eb369d57970221140", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c16ad5f806504a7c97ff19b402425a8a", "tabbable": null, "tooltip": null, "value": 7.0}}, "bfbfa9193e074b2f90fe0c70d8723e8e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "665ae2b54b284fe48a2e05de71d398fb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "abe7607cbfa645698b6223418e065dd5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bfbfa9193e074b2f90fe0c70d8723e8e", "placeholder": "\u200b", "style": "IPY_MODEL_665ae2b54b284fe48a2e05de71d398fb", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "af339cbac14e424598ac75a2d30e3257": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1249f00b15764bba91d3131fb0b65128": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dae5eadd51054cb78f3d19e37984385a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_af339cbac14e424598ac75a2d30e3257", "placeholder": "\u200b", "style": "IPY_MODEL_1249f00b15764bba91d3131fb0b65128", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "735e9213128f4151941d86acbe79e9cb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "18f319d617234733a734397a965d8ff0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_abe7607cbfa645698b6223418e065dd5", "IPY_MODEL_0fee170d72d7454484d274fc37ccf113", "IPY_MODEL_dae5eadd51054cb78f3d19e37984385a"], "layout": "IPY_MODEL_735e9213128f4151941d86acbe79e9cb", "tabbable": null, "tooltip": null}}, "11ccc806fe6446119de3666c5a76a894": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "08918ee0158d48cfa4f659fc3be376ca": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "96601ee3de2f4eb7913e668928d37995": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_11ccc806fe6446119de3666c5a76a894", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_08918ee0158d48cfa4f659fc3be376ca", "tabbable": null, "tooltip": null, "value": 50.0}}, "b19858316d904bbebc66fb73ce1f3085": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "46fcc3d78b1b4dd0b108dae8ac7a175f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fe6a8d37b8a94191a892ecb3befa0047": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b19858316d904bbebc66fb73ce1f3085", "placeholder": "\u200b", "style": "IPY_MODEL_46fcc3d78b1b4dd0b108dae8ac7a175f", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "1c1a7c56ff61495587b805c1685b980c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9e32b91c83bf4375a8267f88e5e34578": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e83934a39003467fbbae97300ea1ab22": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c1a7c56ff61495587b805c1685b980c", "placeholder": "\u200b", "style": "IPY_MODEL_9e32b91c83bf4375a8267f88e5e34578", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.77it/s]"}}, "18ba386ec0b34255ad88affe629a1618": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64269642e57f4cef9fee7191358f0f27": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fe6a8d37b8a94191a892ecb3befa0047", "IPY_MODEL_96601ee3de2f4eb7913e668928d37995", "IPY_MODEL_e83934a39003467fbbae97300ea1ab22"], "layout": "IPY_MODEL_18ba386ec0b34255ad88affe629a1618", "tabbable": null, "tooltip": null}}, "57b537205a684459803d265aa3df1cb4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "620284fd909541a694498fdb236833f7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9d09f185d0e545759d8656783d1c48a3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_57b537205a684459803d265aa3df1cb4", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_620284fd909541a694498fdb236833f7", "tabbable": null, "tooltip": null, "value": 7.0}}, "6c64d523e32b49bf935e2ad9cd7e4a92": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d893352ff424d6297470e903a8afec6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8c5be90edcc74cc994140527c97cc033": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6c64d523e32b49bf935e2ad9cd7e4a92", "placeholder": "\u200b", "style": "IPY_MODEL_2d893352ff424d6297470e903a8afec6", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "6702549af6a04240a4f8a0c2ed06d9d0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "00ed418f337b452790956244941e991e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e10597080a7c42e5950c4cb9f71fda68": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6702549af6a04240a4f8a0c2ed06d9d0", "placeholder": "\u200b", "style": "IPY_MODEL_00ed418f337b452790956244941e991e", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "79e7ff75273b4e3f9cddc03c8a5b0c3d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd77b343f785457d98ccfd14dc8b67bb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8c5be90edcc74cc994140527c97cc033", "IPY_MODEL_9d09f185d0e545759d8656783d1c48a3", "IPY_MODEL_e10597080a7c42e5950c4cb9f71fda68"], "layout": "IPY_MODEL_79e7ff75273b4e3f9cddc03c8a5b0c3d", "tabbable": null, "tooltip": null}}, "d39adadb6c644d3f98cc23ce186cf97a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc6ce21879da4c25b0f6f50969506c23": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6df8f5a7c0b547d9afe2ebb2d2a11ba0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d39adadb6c644d3f98cc23ce186cf97a", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bc6ce21879da4c25b0f6f50969506c23", "tabbable": null, "tooltip": null, "value": 50.0}}, "720b6630a3864274912eee982d3d40df": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "34ff8a946fc74082964af0feb7bd1927": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2fc6cfa07ee84ee0b1748086bcc09116": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_720b6630a3864274912eee982d3d40df", "placeholder": "\u200b", "style": "IPY_MODEL_34ff8a946fc74082964af0feb7bd1927", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "bd42b672639e40e680b9e24bb98b8f82": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "df04e1a0affd4d64ae459d932e7f53a4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cec8abb542ab451c84fb42ff4af197f7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bd42b672639e40e680b9e24bb98b8f82", "placeholder": "\u200b", "style": "IPY_MODEL_df04e1a0affd4d64ae459d932e7f53a4", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.70it/s]"}}, "a96a168d51d34773bbb8f0b4d9d88c32": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "678a46e1cb964a95b0ea0ed22856c15d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2fc6cfa07ee84ee0b1748086bcc09116", "IPY_MODEL_6df8f5a7c0b547d9afe2ebb2d2a11ba0", "IPY_MODEL_cec8abb542ab451c84fb42ff4af197f7"], "layout": "IPY_MODEL_a96a168d51d34773bbb8f0b4d9d88c32", "tabbable": null, "tooltip": null}}, "0df302324b5f4bcb920b4706af89d5df": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "adf0261005ba4ab3924095ddd548e1b1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8d023353dc244b7c97ff8d1608ccbc64": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0df302324b5f4bcb920b4706af89d5df", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_adf0261005ba4ab3924095ddd548e1b1", "tabbable": null, "tooltip": null, "value": 7.0}}, "469c6abacbe246cb9b9785e95ee5c0c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fdec7ef947ce450d9d8fc42dd41ac427": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a1962b4ba4204167974ca9b284bcd4f1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_469c6abacbe246cb9b9785e95ee5c0c3", "placeholder": "\u200b", "style": "IPY_MODEL_fdec7ef947ce450d9d8fc42dd41ac427", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "7dc8047ea1c84011b5ab7e018da01d8d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a66c588f08d04e40ab5c212c43eb6a7c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f7e3627324384ddf9bc5abb278f53f6d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7dc8047ea1c84011b5ab7e018da01d8d", "placeholder": "\u200b", "style": "IPY_MODEL_a66c588f08d04e40ab5c212c43eb6a7c", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "6836c3ebde754af0995beaf8a2cb7bc0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1d205ee31bb74845948023f37e3e0a0f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a1962b4ba4204167974ca9b284bcd4f1", "IPY_MODEL_8d023353dc244b7c97ff8d1608ccbc64", "IPY_MODEL_f7e3627324384ddf9bc5abb278f53f6d"], "layout": "IPY_MODEL_6836c3ebde754af0995beaf8a2cb7bc0", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/data_monitor.ipynb b/master/tutorials/datalab/data_monitor.ipynb index f68290024..15be77829 100644 --- a/master/tutorials/datalab/data_monitor.ipynb +++ b/master/tutorials/datalab/data_monitor.ipynb @@ -5,10 +5,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:16.449649Z", - "iopub.status.busy": "2024-05-24T14:09:16.449474Z", - "iopub.status.idle": "2024-05-24T14:09:16.460318Z", - "shell.execute_reply": "2024-05-24T14:09:16.459782Z" + "iopub.execute_input": "2024-05-24T14:38:57.981492Z", + "iopub.status.busy": "2024-05-24T14:38:57.981324Z", + "iopub.status.idle": "2024-05-24T14:38:57.992789Z", + "shell.execute_reply": "2024-05-24T14:38:57.992293Z" } }, "outputs": [], @@ -85,10 +85,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:16.462477Z", - "iopub.status.busy": "2024-05-24T14:09:16.462171Z", - "iopub.status.idle": "2024-05-24T14:09:17.620745Z", - "shell.execute_reply": "2024-05-24T14:09:17.620123Z" + "iopub.execute_input": "2024-05-24T14:38:57.995161Z", + "iopub.status.busy": "2024-05-24T14:38:57.994868Z", + "iopub.status.idle": "2024-05-24T14:38:59.304681Z", + "shell.execute_reply": "2024-05-24T14:38:59.304001Z" } }, "outputs": [], @@ -97,7 +97,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -122,10 +122,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:17.623321Z", - "iopub.status.busy": "2024-05-24T14:09:17.623063Z", - "iopub.status.idle": "2024-05-24T14:09:17.640219Z", - "shell.execute_reply": "2024-05-24T14:09:17.639689Z" + "iopub.execute_input": "2024-05-24T14:38:59.307618Z", + "iopub.status.busy": "2024-05-24T14:38:59.307228Z", + "iopub.status.idle": "2024-05-24T14:38:59.328136Z", + "shell.execute_reply": "2024-05-24T14:38:59.327593Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:17.642620Z", - "iopub.status.busy": "2024-05-24T14:09:17.642295Z", - "iopub.status.idle": "2024-05-24T14:09:17.660253Z", - "shell.execute_reply": "2024-05-24T14:09:17.659809Z" + "iopub.execute_input": "2024-05-24T14:38:59.330873Z", + "iopub.status.busy": "2024-05-24T14:38:59.330435Z", + "iopub.status.idle": "2024-05-24T14:38:59.353547Z", + "shell.execute_reply": "2024-05-24T14:38:59.352999Z" } }, "outputs": [], @@ -353,10 +353,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:17.662298Z", - "iopub.status.busy": "2024-05-24T14:09:17.661967Z", - "iopub.status.idle": "2024-05-24T14:09:17.675804Z", - "shell.execute_reply": "2024-05-24T14:09:17.675395Z" + "iopub.execute_input": "2024-05-24T14:38:59.356582Z", + "iopub.status.busy": "2024-05-24T14:38:59.356174Z", + "iopub.status.idle": "2024-05-24T14:38:59.375458Z", + "shell.execute_reply": "2024-05-24T14:38:59.374898Z" } }, "outputs": [], @@ -369,10 +369,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:17.677890Z", - "iopub.status.busy": "2024-05-24T14:09:17.677601Z", - "iopub.status.idle": "2024-05-24T14:09:17.692021Z", - "shell.execute_reply": "2024-05-24T14:09:17.691455Z" + "iopub.execute_input": "2024-05-24T14:38:59.378223Z", + "iopub.status.busy": "2024-05-24T14:38:59.377957Z", + "iopub.status.idle": "2024-05-24T14:38:59.395545Z", + "shell.execute_reply": "2024-05-24T14:38:59.395001Z" } }, "outputs": [], @@ -450,10 +450,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:17.694402Z", - "iopub.status.busy": "2024-05-24T14:09:17.693875Z", - "iopub.status.idle": "2024-05-24T14:09:17.885204Z", - "shell.execute_reply": "2024-05-24T14:09:17.884607Z" + "iopub.execute_input": "2024-05-24T14:38:59.398159Z", + "iopub.status.busy": "2024-05-24T14:38:59.397943Z", + "iopub.status.idle": "2024-05-24T14:38:59.612356Z", + "shell.execute_reply": "2024-05-24T14:38:59.611821Z" } }, "outputs": [], @@ -507,10 +507,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:17.887679Z", - "iopub.status.busy": "2024-05-24T14:09:17.887492Z", - "iopub.status.idle": "2024-05-24T14:09:18.244192Z", - "shell.execute_reply": "2024-05-24T14:09:18.243633Z" + "iopub.execute_input": "2024-05-24T14:38:59.614879Z", + "iopub.status.busy": "2024-05-24T14:38:59.614679Z", + "iopub.status.idle": "2024-05-24T14:38:59.996105Z", + "shell.execute_reply": "2024-05-24T14:38:59.995490Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:18.246419Z", - "iopub.status.busy": "2024-05-24T14:09:18.246154Z", - "iopub.status.idle": "2024-05-24T14:09:18.282191Z", - "shell.execute_reply": "2024-05-24T14:09:18.281765Z" + "iopub.execute_input": "2024-05-24T14:38:59.998486Z", + "iopub.status.busy": "2024-05-24T14:38:59.998279Z", + "iopub.status.idle": "2024-05-24T14:39:00.038131Z", + "shell.execute_reply": "2024-05-24T14:39:00.037603Z" } }, "outputs": [], @@ -581,10 +581,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:18.284298Z", - "iopub.status.busy": "2024-05-24T14:09:18.283974Z", - "iopub.status.idle": "2024-05-24T14:09:19.882878Z", - "shell.execute_reply": "2024-05-24T14:09:19.882238Z" + "iopub.execute_input": "2024-05-24T14:39:00.040758Z", + "iopub.status.busy": "2024-05-24T14:39:00.040556Z", + "iopub.status.idle": "2024-05-24T14:39:02.025079Z", + "shell.execute_reply": "2024-05-24T14:39:02.024246Z" } }, "outputs": [ @@ -667,10 +667,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:19.885497Z", - "iopub.status.busy": "2024-05-24T14:09:19.885034Z", - "iopub.status.idle": "2024-05-24T14:09:19.913727Z", - "shell.execute_reply": "2024-05-24T14:09:19.913155Z" + "iopub.execute_input": "2024-05-24T14:39:02.028410Z", + "iopub.status.busy": "2024-05-24T14:39:02.027681Z", + "iopub.status.idle": "2024-05-24T14:39:02.071965Z", + "shell.execute_reply": "2024-05-24T14:39:02.071183Z" } }, "outputs": [], @@ -701,10 +701,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:19.916113Z", - "iopub.status.busy": "2024-05-24T14:09:19.915712Z", - "iopub.status.idle": "2024-05-24T14:09:19.947061Z", - "shell.execute_reply": "2024-05-24T14:09:19.946493Z" + "iopub.execute_input": "2024-05-24T14:39:02.075014Z", + "iopub.status.busy": "2024-05-24T14:39:02.074550Z", + "iopub.status.idle": "2024-05-24T14:39:02.118523Z", + "shell.execute_reply": "2024-05-24T14:39:02.117865Z" } }, "outputs": [], @@ -741,17 +741,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:19.949374Z", - "iopub.status.busy": "2024-05-24T14:09:19.949067Z", - "iopub.status.idle": "2024-05-24T14:09:25.042990Z", - "shell.execute_reply": "2024-05-24T14:09:25.042388Z" + "iopub.execute_input": "2024-05-24T14:39:02.121571Z", + "iopub.status.busy": "2024-05-24T14:39:02.121213Z", + "iopub.status.idle": "2024-05-24T14:39:07.244006Z", + "shell.execute_reply": "2024-05-24T14:39:07.243239Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "662be85c83fb4299927b984583f2a0aa", + "model_id": "6250e7600adc4b8db8a1048afdf59bd5", "version_major": 2, "version_minor": 0 }, @@ -811,17 +811,17 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:25.045136Z", - "iopub.status.busy": "2024-05-24T14:09:25.044800Z", - "iopub.status.idle": "2024-05-24T14:09:30.366345Z", - "shell.execute_reply": "2024-05-24T14:09:30.365706Z" + "iopub.execute_input": "2024-05-24T14:39:07.246643Z", + "iopub.status.busy": "2024-05-24T14:39:07.246370Z", + "iopub.status.idle": "2024-05-24T14:39:12.575525Z", + "shell.execute_reply": "2024-05-24T14:39:12.574812Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ab646e85b72c41ca8755ce66562dedc7", + "model_id": "18f319d617234733a734397a965d8ff0", "version_major": 2, "version_minor": 0 }, @@ -949,10 +949,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:30.368601Z", - "iopub.status.busy": "2024-05-24T14:09:30.368420Z", - "iopub.status.idle": "2024-05-24T14:09:30.403863Z", - "shell.execute_reply": "2024-05-24T14:09:30.403442Z" + "iopub.execute_input": "2024-05-24T14:39:12.578565Z", + "iopub.status.busy": "2024-05-24T14:39:12.578268Z", + "iopub.status.idle": "2024-05-24T14:39:12.616079Z", + "shell.execute_reply": "2024-05-24T14:39:12.615604Z" } }, "outputs": [ @@ -1185,10 +1185,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:30.405718Z", - "iopub.status.busy": "2024-05-24T14:09:30.405542Z", - "iopub.status.idle": "2024-05-24T14:09:30.436207Z", - "shell.execute_reply": "2024-05-24T14:09:30.435785Z" + "iopub.execute_input": "2024-05-24T14:39:12.618239Z", + "iopub.status.busy": "2024-05-24T14:39:12.617904Z", + "iopub.status.idle": "2024-05-24T14:39:12.650787Z", + "shell.execute_reply": "2024-05-24T14:39:12.650206Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:30.438199Z", - "iopub.status.busy": "2024-05-24T14:09:30.438012Z", - "iopub.status.idle": "2024-05-24T14:09:30.482833Z", - "shell.execute_reply": "2024-05-24T14:09:30.482403Z" + "iopub.execute_input": "2024-05-24T14:39:12.653120Z", + "iopub.status.busy": "2024-05-24T14:39:12.652762Z", + "iopub.status.idle": "2024-05-24T14:39:12.701538Z", + "shell.execute_reply": "2024-05-24T14:39:12.701013Z" } }, "outputs": [ @@ -1314,10 +1314,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:30.484752Z", - "iopub.status.busy": "2024-05-24T14:09:30.484577Z", - "iopub.status.idle": "2024-05-24T14:09:30.510315Z", - "shell.execute_reply": "2024-05-24T14:09:30.509877Z" + "iopub.execute_input": "2024-05-24T14:39:12.703797Z", + "iopub.status.busy": "2024-05-24T14:39:12.703449Z", + "iopub.status.idle": "2024-05-24T14:39:12.731481Z", + "shell.execute_reply": "2024-05-24T14:39:12.730963Z" } }, "outputs": [], @@ -1331,10 +1331,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:30.512385Z", - "iopub.status.busy": "2024-05-24T14:09:30.511996Z", - "iopub.status.idle": "2024-05-24T14:09:30.535231Z", - "shell.execute_reply": "2024-05-24T14:09:30.534669Z" + "iopub.execute_input": "2024-05-24T14:39:12.734070Z", + "iopub.status.busy": "2024-05-24T14:39:12.733697Z", + "iopub.status.idle": "2024-05-24T14:39:12.765523Z", + "shell.execute_reply": "2024-05-24T14:39:12.764993Z" } }, "outputs": [], @@ -1363,17 +1363,17 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:30.537330Z", - "iopub.status.busy": "2024-05-24T14:09:30.537032Z", - "iopub.status.idle": "2024-05-24T14:09:40.946389Z", - "shell.execute_reply": "2024-05-24T14:09:40.945821Z" + "iopub.execute_input": "2024-05-24T14:39:12.768178Z", + "iopub.status.busy": "2024-05-24T14:39:12.767814Z", + "iopub.status.idle": "2024-05-24T14:39:23.214616Z", + "shell.execute_reply": "2024-05-24T14:39:23.213897Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c2a6e4b076ef4712a9b5d3b5de511099", + "model_id": "64269642e57f4cef9fee7191358f0f27", "version_major": 2, "version_minor": 0 }, @@ -1397,7 +1397,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0d4293023da84faf8077ec698a653354", + "model_id": "fd77b343f785457d98ccfd14dc8b67bb", "version_major": 2, "version_minor": 0 }, @@ -1463,10 +1463,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:40.949165Z", - "iopub.status.busy": "2024-05-24T14:09:40.948833Z", - "iopub.status.idle": "2024-05-24T14:09:41.026535Z", - "shell.execute_reply": "2024-05-24T14:09:41.025963Z" + "iopub.execute_input": "2024-05-24T14:39:23.217587Z", + "iopub.status.busy": "2024-05-24T14:39:23.217230Z", + "iopub.status.idle": "2024-05-24T14:39:23.313142Z", + "shell.execute_reply": "2024-05-24T14:39:23.312414Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:41.028776Z", - "iopub.status.busy": "2024-05-24T14:09:41.028410Z", - "iopub.status.idle": "2024-05-24T14:09:41.058692Z", - "shell.execute_reply": "2024-05-24T14:09:41.058266Z" + "iopub.execute_input": "2024-05-24T14:39:23.315468Z", + "iopub.status.busy": "2024-05-24T14:39:23.315092Z", + "iopub.status.idle": "2024-05-24T14:39:23.348251Z", + "shell.execute_reply": "2024-05-24T14:39:23.347609Z" } }, "outputs": [], @@ -1562,10 +1562,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:41.060943Z", - "iopub.status.busy": "2024-05-24T14:09:41.060580Z", - "iopub.status.idle": "2024-05-24T14:09:41.089864Z", - "shell.execute_reply": "2024-05-24T14:09:41.089259Z" + "iopub.execute_input": "2024-05-24T14:39:23.350971Z", + "iopub.status.busy": "2024-05-24T14:39:23.350594Z", + "iopub.status.idle": "2024-05-24T14:39:23.383047Z", + "shell.execute_reply": "2024-05-24T14:39:23.382442Z" } }, "outputs": [], @@ -1594,17 +1594,17 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:41.092266Z", - "iopub.status.busy": "2024-05-24T14:09:41.091933Z", - "iopub.status.idle": "2024-05-24T14:09:51.554457Z", - "shell.execute_reply": "2024-05-24T14:09:51.553898Z" + "iopub.execute_input": "2024-05-24T14:39:23.386070Z", + "iopub.status.busy": "2024-05-24T14:39:23.385642Z", + "iopub.status.idle": "2024-05-24T14:39:33.888316Z", + "shell.execute_reply": "2024-05-24T14:39:33.887714Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5784d50158614a70ace7ff01ee20f5e3", + "model_id": "678a46e1cb964a95b0ea0ed22856c15d", "version_major": 2, "version_minor": 0 }, @@ -1658,7 +1658,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "04bf8bf454c44f7eafc0e772463ec330", + "model_id": "1d205ee31bb74845948023f37e3e0a0f", "version_major": 2, "version_minor": 0 }, @@ -1776,10 +1776,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:51.557262Z", - "iopub.status.busy": "2024-05-24T14:09:51.556928Z", - "iopub.status.idle": "2024-05-24T14:09:51.586376Z", - "shell.execute_reply": "2024-05-24T14:09:51.585804Z" + "iopub.execute_input": "2024-05-24T14:39:33.891263Z", + "iopub.status.busy": "2024-05-24T14:39:33.891044Z", + "iopub.status.idle": "2024-05-24T14:39:33.926280Z", + "shell.execute_reply": "2024-05-24T14:39:33.925699Z" } }, "outputs": [ @@ -1863,60 +1863,41 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0255ae439abc4be195d7ee8d287a0f72": { - "model_module": "@jupyter-widgets/base", + "00ed418f337b452790956244941e991e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "08918ee0158d48cfa4f659fc3be376ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "03fbed958f68403a8e90a9d4cc222c16": { + "0df302324b5f4bcb920b4706af89d5df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1969,94 +1950,59 @@ "width": null } }, - "04bf8bf454c44f7eafc0e772463ec330": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3c028cd4eaa847ab86562224646afb45", - "IPY_MODEL_f3be3c0a0cbb4afa93beaff8154ad4a1", - "IPY_MODEL_51f37be35d5b4a28a5a5faba9d49d8fd" - ], - "layout": "IPY_MODEL_a39d5f6727c349c3a66e7d5ce571f22e", - "tabbable": null, - "tooltip": null - } - }, - "06af1a92a76548058090e3e76ba4772f": { + "0fee170d72d7454484d274fc37ccf113": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec5b503842534cc1a4bb8420a16db9a0", - "placeholder": "​", - "style": "IPY_MODEL_efe0d3829a734fcaa533ebd3a55db61e", + "layout": "IPY_MODEL_cc645f6771444e6eb369d57970221140", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c16ad5f806504a7c97ff19b402425a8a", "tabbable": null, "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "0a6408fbe072425c9900df39e2607a3f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 7.0 } }, - "0d4293023da84faf8077ec698a653354": { + "11b57c37d4d843619e5be6882d08df17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f183894c27a643cc8943d0ea97f3f7ca", - "IPY_MODEL_b57c3dd4bfb946e582424a8dd0d3c71b", - "IPY_MODEL_a75988e40d194c9fa07010ccba004c1d" - ], - "layout": "IPY_MODEL_1cbfc79990db4fe78affa2c5379ee1a6", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cd6d772de1a241c6a79eab5193ec7735", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aa316fdef6e342e49e0f244c72a8ff70", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 50.0 } }, - "126e33fe51094756bb174dfbccd6f6e7": { + "11ccc806fe6446119de3666c5a76a894": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2109,33 +2055,25 @@ "width": null } }, - "1608c942525c440688cd8bdc9fc357a1": { + "1249f00b15764bba91d3131fb0b65128": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_03fbed958f68403a8e90a9d4cc222c16", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0a6408fbe072425c9900df39e2607a3f", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1cbfc79990db4fe78affa2c5379ee1a6": { + "18ba386ec0b34255ad88affe629a1618": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2188,30 +2126,31 @@ "width": null } }, - "2d6814248a754c77a35cb0368bea87a7": { + "18f319d617234733a734397a965d8ff0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3aa620b60714f50bbd95231517a4d4b", - "placeholder": "​", - "style": "IPY_MODEL_6cf68323fd514c1aadc172b5fb2ea182", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_abe7607cbfa645698b6223418e065dd5", + "IPY_MODEL_0fee170d72d7454484d274fc37ccf113", + "IPY_MODEL_dae5eadd51054cb78f3d19e37984385a" + ], + "layout": "IPY_MODEL_735e9213128f4151941d86acbe79e9cb", "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.76it/s]" + "tooltip": null } }, - "2f87152650444f0c80a964b30cb08fbe": { + "1c1a7c56ff61495587b805c1685b980c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2264,30 +2203,31 @@ "width": null } }, - "3322288d06af4bb485b93cbf94591098": { + "1d205ee31bb74845948023f37e3e0a0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_126e33fe51094756bb174dfbccd6f6e7", - "placeholder": "​", - "style": "IPY_MODEL_e2f13e4307f3417aad9ca0ee51644e22", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a1962b4ba4204167974ca9b284bcd4f1", + "IPY_MODEL_8d023353dc244b7c97ff8d1608ccbc64", + "IPY_MODEL_f7e3627324384ddf9bc5abb278f53f6d" + ], + "layout": "IPY_MODEL_6836c3ebde754af0995beaf8a2cb7bc0", "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "tooltip": null } }, - "3534b031ff7241a5a8392414b1471ccc": { + "242158f7615a49188180e51cec349fcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2305,60 +2245,25 @@ "text_color": null } }, - "37eb1a6d44514045b2aa8860476067cf": { - "model_module": "@jupyter-widgets/base", + "2d893352ff424d6297470e903a8afec6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3c028cd4eaa847ab86562224646afb45": { + "2fc6cfa07ee84ee0b1748086bcc09116": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2373,15 +2278,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_edfdc2445dca4165a9c36ff578004129", + "layout": "IPY_MODEL_720b6630a3864274912eee982d3d40df", "placeholder": "​", - "style": "IPY_MODEL_b731696c62234b38a0080a7c74715e7f", + "style": "IPY_MODEL_34ff8a946fc74082964af0feb7bd1927", "tabbable": null, "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "46d4335d3fa24c0f9fe7ae1913153dd9": { + "34ff8a946fc74082964af0feb7bd1927": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2399,7 +2304,7 @@ "text_color": null } }, - "51f37be35d5b4a28a5a5faba9d49d8fd": { + "3ce827c7eec8458d8e8690a466ada004": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2414,57 +2319,86 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_81347cbf2b4d4f01b5d2da589e43c7a5", + "layout": "IPY_MODEL_a20a1426cb1d4a048fdf3edd762bcafe", "placeholder": "​", - "style": "IPY_MODEL_f6dc04a46c304ef08021dfeea8eb0ba4", + "style": "IPY_MODEL_242158f7615a49188180e51cec349fcb", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "5687275c9ff948108710b4c158d6e3ca": { - "model_module": "@jupyter-widgets/controls", + "469c6abacbe246cb9b9785e95ee5c0c3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5784d50158614a70ace7ff01ee20f5e3": { + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "46fcc3d78b1b4dd0b108dae8ac7a175f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b8a302fef7d94f3e8b30aeac868299ed", - "IPY_MODEL_e5dd85c536eb47b2b72625b663b3a713", - "IPY_MODEL_2d6814248a754c77a35cb0368bea87a7" - ], - "layout": "IPY_MODEL_f1aeb42b97ac4aa2bd59c69e26ea4af2", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "661591454cdf4f2bb1a2fa13aca3ad6f": { + "57b537205a684459803d265aa3df1cb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2517,31 +2451,7 @@ "width": null } }, - "662be85c83fb4299927b984583f2a0aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_06af1a92a76548058090e3e76ba4772f", - "IPY_MODEL_70cd0a762b644892bb2315460aa97dbe", - "IPY_MODEL_b7e0109a650649a285ad742b98916928" - ], - "layout": "IPY_MODEL_37eb1a6d44514045b2aa8860476067cf", - "tabbable": null, - "tooltip": null - } - }, - "684c216c883a4b799de296ebd9d3ced6": { + "5e657761821843fcac2f0752ba6a9333": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2594,7 +2504,25 @@ "width": null } }, - "693f62296ece4b2f9cb5496999a68468": { + "60df86fc0a1b4e7b93f4ca0c434e9708": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "620284fd909541a694498fdb236833f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2610,74 +2538,73 @@ "description_width": "" } }, - "6c2cbde15de3427184e11909c3646b9e": { + "6250e7600adc4b8db8a1048afdf59bd5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_987b4aa1d8da4379b3f56457878ed8c1", - "placeholder": "​", - "style": "IPY_MODEL_879c676471c940628823acc2f3d2dfb8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3ce827c7eec8458d8e8690a466ada004", + "IPY_MODEL_11b57c37d4d843619e5be6882d08df17", + "IPY_MODEL_83c1029db0bf4e9680d036695d61db9b" + ], + "layout": "IPY_MODEL_5e657761821843fcac2f0752ba6a9333", "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" + "tooltip": null } }, - "6cf68323fd514c1aadc172b5fb2ea182": { + "64269642e57f4cef9fee7191358f0f27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fe6a8d37b8a94191a892ecb3befa0047", + "IPY_MODEL_96601ee3de2f4eb7913e668928d37995", + "IPY_MODEL_e83934a39003467fbbae97300ea1ab22" + ], + "layout": "IPY_MODEL_18ba386ec0b34255ad88affe629a1618", + "tabbable": null, + "tooltip": null } }, - "70cd0a762b644892bb2315460aa97dbe": { + "665ae2b54b284fe48a2e05de71d398fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_661591454cdf4f2bb1a2fa13aca3ad6f", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dcae186df1ad4e6c904948ac8032e31a", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "72279ad6c55f45259474396f19bac8ab": { + "6702549af6a04240a4f8a0c2ed06d9d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2730,25 +2657,31 @@ "width": null } }, - "77294877ba544f4393514b9f09e58dce": { + "678a46e1cb964a95b0ea0ed22856c15d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2fc6cfa07ee84ee0b1748086bcc09116", + "IPY_MODEL_6df8f5a7c0b547d9afe2ebb2d2a11ba0", + "IPY_MODEL_cec8abb542ab451c84fb42ff4af197f7" + ], + "layout": "IPY_MODEL_a96a168d51d34773bbb8f0b4d9d88c32", + "tabbable": null, + "tooltip": null } }, - "81347cbf2b4d4f01b5d2da589e43c7a5": { + "6836c3ebde754af0995beaf8a2cb7bc0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2801,25 +2734,7 @@ "width": null } }, - "879c676471c940628823acc2f3d2dfb8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "987b4aa1d8da4379b3f56457878ed8c1": { + "6c64d523e32b49bf935e2ad9cd7e4a92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2872,41 +2787,33 @@ "width": null } }, - "9d93f40a7d0b4c0b9ceddca0af89bfb4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a02e475d73b0452ebfcf5d699125adea": { + "6df8f5a7c0b547d9afe2ebb2d2a11ba0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d39adadb6c644d3f98cc23ce186cf97a", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bc6ce21879da4c25b0f6f50969506c23", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "a0d10db507da4fc68c03aef0a6a78dbd": { + "720b6630a3864274912eee982d3d40df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2959,7 +2866,7 @@ "width": null } }, - "a3130b785b5f4b27b2711c0844998a2e": { + "735e9213128f4151941d86acbe79e9cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3012,7 +2919,7 @@ "width": null } }, - "a39d5f6727c349c3a66e7d5ce571f22e": { + "79e7ff75273b4e3f9cddc03c8a5b0c3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3065,62 +2972,16 @@ "width": null } }, - "a4e225d0157842139dbd9761a19f7511": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0255ae439abc4be195d7ee8d287a0f72", - "placeholder": "​", - "style": "IPY_MODEL_5687275c9ff948108710b4c158d6e3ca", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.81it/s]" - } - }, - "a75988e40d194c9fa07010ccba004c1d": { - "model_module": "@jupyter-widgets/controls", + "7dc8047ea1c84011b5ab7e018da01d8d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f87152650444f0c80a964b30cb08fbe", - "placeholder": "​", - "style": "IPY_MODEL_77294877ba544f4393514b9f09e58dce", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" - } - }, - "aadb04088b434f3081d41bf91a16ace4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -3164,31 +3025,53 @@ "width": null } }, - "ab646e85b72c41ca8755ce66562dedc7": { + "83c1029db0bf4e9680d036695d61db9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ee6fed3219314eb599d3c2009b7b83e5", - "IPY_MODEL_cf00dadf34a14d97a595f7d7e985bce3", - "IPY_MODEL_6c2cbde15de3427184e11909c3646b9e" - ], - "layout": "IPY_MODEL_f11bf373f513460e8a85dcb35388b46f", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c66a6bc01d4b48f7b367574875d6aa35", + "placeholder": "​", + "style": "IPY_MODEL_60df86fc0a1b4e7b93f4ca0c434e9708", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.84it/s]" } }, - "b57c3dd4bfb946e582424a8dd0d3c71b": { + "8c5be90edcc74cc994140527c97cc033": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6c64d523e32b49bf935e2ad9cd7e4a92", + "placeholder": "​", + "style": "IPY_MODEL_2d893352ff424d6297470e903a8afec6", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "8d023353dc244b7c97ff8d1608ccbc64": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3204,58 +3087,87 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a3130b785b5f4b27b2711c0844998a2e", + "layout": "IPY_MODEL_0df302324b5f4bcb920b4706af89d5df", "max": 7.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ffff5bcc0b084125ba6bab0f6fe839fa", + "style": "IPY_MODEL_adf0261005ba4ab3924095ddd548e1b1", "tabbable": null, "tooltip": null, "value": 7.0 } }, - "b731696c62234b38a0080a7c74715e7f": { + "96601ee3de2f4eb7913e668928d37995": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_11ccc806fe6446119de3666c5a76a894", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_08918ee0158d48cfa4f659fc3be376ca", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "b7e0109a650649a285ad742b98916928": { + "9d09f185d0e545759d8656783d1c48a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d62875f14f11427a93aaf8ac50f9132d", - "placeholder": "​", - "style": "IPY_MODEL_a02e475d73b0452ebfcf5d699125adea", + "layout": "IPY_MODEL_57b537205a684459803d265aa3df1cb4", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_620284fd909541a694498fdb236833f7", "tabbable": null, "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.89it/s]" + "value": 7.0 + } + }, + "9e32b91c83bf4375a8267f88e5e34578": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b8a302fef7d94f3e8b30aeac868299ed": { + "a1962b4ba4204167974ca9b284bcd4f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3270,31 +3182,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c5389387fc3d4445aecaeac81e398950", + "layout": "IPY_MODEL_469c6abacbe246cb9b9785e95ee5c0c3", "placeholder": "​", - "style": "IPY_MODEL_c893e5b6b65a4684969890841c9bb4cf", + "style": "IPY_MODEL_fdec7ef947ce450d9d8fc42dd41ac427", "tabbable": null, "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "c0baf6e168bc46b2827885bc356844aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "c29501c3d7224ae5b57d3f3d196c173e": { + "a20a1426cb1d4a048fdf3edd762bcafe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3347,31 +3243,25 @@ "width": null } }, - "c2a6e4b076ef4712a9b5d3b5de511099": { + "a66c588f08d04e40ab5c212c43eb6a7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3322288d06af4bb485b93cbf94591098", - "IPY_MODEL_1608c942525c440688cd8bdc9fc357a1", - "IPY_MODEL_a4e225d0157842139dbd9761a19f7511" - ], - "layout": "IPY_MODEL_a0d10db507da4fc68c03aef0a6a78dbd", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c5389387fc3d4445aecaeac81e398950": { + "a96a168d51d34773bbb8f0b4d9d88c32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3424,51 +3314,62 @@ "width": null } }, - "c893e5b6b65a4684969890841c9bb4cf": { + "aa316fdef6e342e49e0f244c72a8ff70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "cf00dadf34a14d97a595f7d7e985bce3": { + "abe7607cbfa645698b6223418e065dd5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_aadb04088b434f3081d41bf91a16ace4", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0baf6e168bc46b2827885bc356844aa", + "layout": "IPY_MODEL_bfbfa9193e074b2f90fe0c70d8723e8e", + "placeholder": "​", + "style": "IPY_MODEL_665ae2b54b284fe48a2e05de71d398fb", "tabbable": null, "tooltip": null, - "value": 7.0 + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "adf0261005ba4ab3924095ddd548e1b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d62875f14f11427a93aaf8ac50f9132d": { + "af339cbac14e424598ac75a2d30e3257": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3521,67 +3422,76 @@ "width": null } }, - "dcae186df1ad4e6c904948ac8032e31a": { - "model_module": "@jupyter-widgets/controls", + "b19858316d904bbebc66fb73ce1f3085": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e2f13e4307f3417aad9ca0ee51644e22": { + "bc6ce21879da4c25b0f6f50969506c23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e5dd85c536eb47b2b72625b663b3a713": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_72279ad6c55f45259474396f19bac8ab", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_693f62296ece4b2f9cb5496999a68468", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "bar_color": null, + "description_width": "" } }, - "ec5b503842534cc1a4bb8420a16db9a0": { + "bd42b672639e40e680b9e24bb98b8f82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3634,7 +3544,7 @@ "width": null } }, - "edfdc2445dca4165a9c36ff578004129": { + "bfbfa9193e074b2f90fe0c70d8723e8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3687,48 +3597,23 @@ "width": null } }, - "ee6fed3219314eb599d3c2009b7b83e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c29501c3d7224ae5b57d3f3d196c173e", - "placeholder": "​", - "style": "IPY_MODEL_46d4335d3fa24c0f9fe7ae1913153dd9", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "efe0d3829a734fcaa533ebd3a55db61e": { + "c16ad5f806504a7c97ff19b402425a8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "f11bf373f513460e8a85dcb35388b46f": { + "c66a6bc01d4b48f7b367574875d6aa35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3781,30 +3666,7 @@ "width": null } }, - "f183894c27a643cc8943d0ea97f3f7ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fece962ccb2b4eb280e2576e8d11d95e", - "placeholder": "​", - "style": "IPY_MODEL_3534b031ff7241a5a8392414b1471ccc", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "f1aeb42b97ac4aa2bd59c69e26ea4af2": { + "cc645f6771444e6eb369d57970221140": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3857,7 +3719,7 @@ "width": null } }, - "f3aa620b60714f50bbd95231517a4d4b": { + "cd6d772de1a241c6a79eab5193ec7735": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3910,51 +3772,30 @@ "width": null } }, - "f3be3c0a0cbb4afa93beaff8154ad4a1": { + "cec8abb542ab451c84fb42ff4af197f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_684c216c883a4b799de296ebd9d3ced6", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9d93f40a7d0b4c0b9ceddca0af89bfb4", + "layout": "IPY_MODEL_bd42b672639e40e680b9e24bb98b8f82", + "placeholder": "​", + "style": "IPY_MODEL_df04e1a0affd4d64ae459d932e7f53a4", "tabbable": null, "tooltip": null, - "value": 7.0 - } - }, - "f6dc04a46c304ef08021dfeea8eb0ba4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 50/50 [00:05<00:00,  9.70it/s]" } }, - "fece962ccb2b4eb280e2576e8d11d95e": { + "d39adadb6c644d3f98cc23ce186cf97a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4007,20 +3848,179 @@ "width": null } }, - "ffff5bcc0b084125ba6bab0f6fe839fa": { + "dae5eadd51054cb78f3d19e37984385a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_af339cbac14e424598ac75a2d30e3257", + "placeholder": "​", + "style": "IPY_MODEL_1249f00b15764bba91d3131fb0b65128", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "df04e1a0affd4d64ae459d932e7f53a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e10597080a7c42e5950c4cb9f71fda68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6702549af6a04240a4f8a0c2ed06d9d0", + "placeholder": "​", + "style": "IPY_MODEL_00ed418f337b452790956244941e991e", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "e83934a39003467fbbae97300ea1ab22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1c1a7c56ff61495587b805c1685b980c", + "placeholder": "​", + "style": "IPY_MODEL_9e32b91c83bf4375a8267f88e5e34578", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.77it/s]" + } + }, + "f7e3627324384ddf9bc5abb278f53f6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7dc8047ea1c84011b5ab7e018da01d8d", + "placeholder": "​", + "style": "IPY_MODEL_a66c588f08d04e40ab5c212c43eb6a7c", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "fd77b343f785457d98ccfd14dc8b67bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8c5be90edcc74cc994140527c97cc033", + "IPY_MODEL_9d09f185d0e545759d8656783d1c48a3", + "IPY_MODEL_e10597080a7c42e5950c4cb9f71fda68" + ], + "layout": "IPY_MODEL_79e7ff75273b4e3f9cddc03c8a5b0c3d", + "tabbable": null, + "tooltip": null + } + }, + "fdec7ef947ce450d9d8fc42dd41ac427": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fe6a8d37b8a94191a892ecb3befa0047": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b19858316d904bbebc66fb73ce1f3085", + "placeholder": "​", + "style": "IPY_MODEL_46fcc3d78b1b4dd0b108dae8ac7a175f", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 5164da6de..3eb89dc02 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1267,7 +1267,7 @@

    Functionality 3: Save and load Datalab objects

    -
    +
    @@ -1532,7 +1532,7 @@

    Functionality 4: Adding a custom IssueManager -{"state": {"b9f02f78bf384af9bfd0ae5756b1cd18": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "09d1fd4295364ab0b7241adf44dfc45e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "020e151cb9a843eb829e6f2d5471ee41": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b9f02f78bf384af9bfd0ae5756b1cd18", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_09d1fd4295364ab0b7241adf44dfc45e", "tabbable": null, "tooltip": null, "value": 132.0}}, "6844251f088441e1b4e0cddd9ecd4621": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6f6e091cf43944788602dd3845696282": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5dce0e4496f6438a81b1b7df6a62a9d4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6844251f088441e1b4e0cddd9ecd4621", "placeholder": "\u200b", "style": "IPY_MODEL_6f6e091cf43944788602dd3845696282", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "7ed627a7e944436ab831a963233c3c3d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea9a3f7c705846b09a501e5d189aebe5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9a5e82581968475aac694f13ac10da0b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7ed627a7e944436ab831a963233c3c3d", "placeholder": "\u200b", "style": "IPY_MODEL_ea9a3f7c705846b09a501e5d189aebe5", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713715.02\u2007examples/s]"}}, "ab1de18cbd944c67a3bad60547b64da5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eb3555b3247844ec83c188729d1bd005": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5dce0e4496f6438a81b1b7df6a62a9d4", "IPY_MODEL_020e151cb9a843eb829e6f2d5471ee41", "IPY_MODEL_9a5e82581968475aac694f13ac10da0b"], "layout": "IPY_MODEL_ab1de18cbd944c67a3bad60547b64da5", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"3256cbd3b8804115be539812715c7445": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0f3fcbca71ca4ac2bc4a766a4fd82dba": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e0bf868747574641a87e3c4b0870dba2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3256cbd3b8804115be539812715c7445", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0f3fcbca71ca4ac2bc4a766a4fd82dba", "tabbable": null, "tooltip": null, "value": 132.0}}, "f6c54b2a53ad40e8ba17c8f74bb18a33": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d0f6b651acf458b9b46f33f226b10a4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "374e0422c90746a9ad7c66c4bf98fe27": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f6c54b2a53ad40e8ba17c8f74bb18a33", "placeholder": "\u200b", "style": "IPY_MODEL_3d0f6b651acf458b9b46f33f226b10a4", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "3f3f21850a164eae9a851d6c6586542b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "982e2c84d37a4caf8b4749d94c770790": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cf1ef50a0a974fb3bcb57ecac66ad5db": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3f3f21850a164eae9a851d6c6586542b", "placeholder": "\u200b", "style": "IPY_MODEL_982e2c84d37a4caf8b4749d94c770790", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712548.97\u2007examples/s]"}}, "f9e9974ca3744482b197a014d79e041c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "96a1502e04e4437cadfa82c07e418096": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_374e0422c90746a9ad7c66c4bf98fe27", "IPY_MODEL_e0bf868747574641a87e3c4b0870dba2", "IPY_MODEL_cf1ef50a0a974fb3bcb57ecac66ad5db"], "layout": "IPY_MODEL_f9e9974ca3744482b197a014d79e041c", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 127b1552c..fc496a8e6 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:54.043523Z", - "iopub.status.busy": "2024-05-24T14:09:54.043116Z", - "iopub.status.idle": "2024-05-24T14:09:55.169795Z", - "shell.execute_reply": "2024-05-24T14:09:55.169246Z" + "iopub.execute_input": "2024-05-24T14:39:36.929115Z", + "iopub.status.busy": "2024-05-24T14:39:36.928639Z", + "iopub.status.idle": "2024-05-24T14:39:38.226330Z", + "shell.execute_reply": "2024-05-24T14:39:38.225794Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:55.172429Z", - "iopub.status.busy": "2024-05-24T14:09:55.172016Z", - "iopub.status.idle": "2024-05-24T14:09:55.174896Z", - "shell.execute_reply": "2024-05-24T14:09:55.174467Z" + "iopub.execute_input": "2024-05-24T14:39:38.229131Z", + "iopub.status.busy": "2024-05-24T14:39:38.228651Z", + "iopub.status.idle": "2024-05-24T14:39:38.231818Z", + "shell.execute_reply": "2024-05-24T14:39:38.231287Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:55.176987Z", - "iopub.status.busy": "2024-05-24T14:09:55.176690Z", - "iopub.status.idle": "2024-05-24T14:09:55.185625Z", - "shell.execute_reply": "2024-05-24T14:09:55.185073Z" + "iopub.execute_input": "2024-05-24T14:39:38.234187Z", + "iopub.status.busy": "2024-05-24T14:39:38.233896Z", + "iopub.status.idle": "2024-05-24T14:39:38.243902Z", + "shell.execute_reply": "2024-05-24T14:39:38.243261Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:55.187691Z", - "iopub.status.busy": "2024-05-24T14:09:55.187493Z", - "iopub.status.idle": "2024-05-24T14:09:55.191831Z", - "shell.execute_reply": "2024-05-24T14:09:55.191420Z" + "iopub.execute_input": "2024-05-24T14:39:38.246119Z", + "iopub.status.busy": "2024-05-24T14:39:38.245921Z", + "iopub.status.idle": "2024-05-24T14:39:38.251040Z", + "shell.execute_reply": "2024-05-24T14:39:38.250596Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:55.193910Z", - "iopub.status.busy": "2024-05-24T14:09:55.193528Z", - "iopub.status.idle": "2024-05-24T14:09:55.375800Z", - "shell.execute_reply": "2024-05-24T14:09:55.375203Z" + "iopub.execute_input": "2024-05-24T14:39:38.253466Z", + "iopub.status.busy": "2024-05-24T14:39:38.253105Z", + "iopub.status.idle": "2024-05-24T14:39:38.458836Z", + "shell.execute_reply": "2024-05-24T14:39:38.458095Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:55.378201Z", - "iopub.status.busy": "2024-05-24T14:09:55.377830Z", - "iopub.status.idle": "2024-05-24T14:09:55.692204Z", - "shell.execute_reply": "2024-05-24T14:09:55.691600Z" + "iopub.execute_input": "2024-05-24T14:39:38.461763Z", + "iopub.status.busy": "2024-05-24T14:39:38.461497Z", + "iopub.status.idle": "2024-05-24T14:39:38.806779Z", + "shell.execute_reply": "2024-05-24T14:39:38.806168Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:55.694467Z", - "iopub.status.busy": "2024-05-24T14:09:55.694114Z", - "iopub.status.idle": "2024-05-24T14:09:55.716962Z", - "shell.execute_reply": "2024-05-24T14:09:55.716525Z" + "iopub.execute_input": "2024-05-24T14:39:38.809290Z", + "iopub.status.busy": "2024-05-24T14:39:38.808860Z", + "iopub.status.idle": "2024-05-24T14:39:38.833522Z", + "shell.execute_reply": "2024-05-24T14:39:38.832882Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:55.719050Z", - "iopub.status.busy": "2024-05-24T14:09:55.718712Z", - "iopub.status.idle": "2024-05-24T14:09:55.729381Z", - "shell.execute_reply": "2024-05-24T14:09:55.728948Z" + "iopub.execute_input": "2024-05-24T14:39:38.836340Z", + "iopub.status.busy": "2024-05-24T14:39:38.835866Z", + "iopub.status.idle": "2024-05-24T14:39:38.848683Z", + "shell.execute_reply": "2024-05-24T14:39:38.848097Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:55.731475Z", - "iopub.status.busy": "2024-05-24T14:09:55.731141Z", - "iopub.status.idle": "2024-05-24T14:09:57.314769Z", - "shell.execute_reply": "2024-05-24T14:09:57.314154Z" + "iopub.execute_input": "2024-05-24T14:39:38.851602Z", + "iopub.status.busy": "2024-05-24T14:39:38.851195Z", + "iopub.status.idle": "2024-05-24T14:39:40.763015Z", + "shell.execute_reply": "2024-05-24T14:39:40.762333Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:57.317204Z", - "iopub.status.busy": "2024-05-24T14:09:57.316886Z", - "iopub.status.idle": "2024-05-24T14:09:57.338989Z", - "shell.execute_reply": "2024-05-24T14:09:57.338430Z" + "iopub.execute_input": "2024-05-24T14:39:40.765720Z", + "iopub.status.busy": "2024-05-24T14:39:40.765229Z", + "iopub.status.idle": "2024-05-24T14:39:40.791460Z", + "shell.execute_reply": "2024-05-24T14:39:40.790815Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:57.341145Z", - "iopub.status.busy": "2024-05-24T14:09:57.340712Z", - "iopub.status.idle": "2024-05-24T14:09:57.360701Z", - "shell.execute_reply": "2024-05-24T14:09:57.360172Z" + "iopub.execute_input": "2024-05-24T14:39:40.793882Z", + "iopub.status.busy": "2024-05-24T14:39:40.793549Z", + "iopub.status.idle": "2024-05-24T14:39:40.816473Z", + "shell.execute_reply": "2024-05-24T14:39:40.815869Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:57.362754Z", - "iopub.status.busy": "2024-05-24T14:09:57.362421Z", - "iopub.status.idle": "2024-05-24T14:09:57.376547Z", - "shell.execute_reply": "2024-05-24T14:09:57.375987Z" + "iopub.execute_input": "2024-05-24T14:39:40.818822Z", + "iopub.status.busy": "2024-05-24T14:39:40.818387Z", + "iopub.status.idle": "2024-05-24T14:39:40.834172Z", + "shell.execute_reply": "2024-05-24T14:39:40.833556Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:57.378777Z", - "iopub.status.busy": "2024-05-24T14:09:57.378444Z", - "iopub.status.idle": "2024-05-24T14:09:57.396845Z", - "shell.execute_reply": "2024-05-24T14:09:57.396278Z" + "iopub.execute_input": "2024-05-24T14:39:40.836529Z", + "iopub.status.busy": "2024-05-24T14:39:40.836095Z", + "iopub.status.idle": "2024-05-24T14:39:40.856343Z", + "shell.execute_reply": "2024-05-24T14:39:40.855768Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eb3555b3247844ec83c188729d1bd005", + "model_id": "96a1502e04e4437cadfa82c07e418096", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:57.399055Z", - "iopub.status.busy": "2024-05-24T14:09:57.398674Z", - "iopub.status.idle": "2024-05-24T14:09:57.413328Z", - "shell.execute_reply": "2024-05-24T14:09:57.412798Z" + "iopub.execute_input": "2024-05-24T14:39:40.858486Z", + "iopub.status.busy": "2024-05-24T14:39:40.858250Z", + "iopub.status.idle": "2024-05-24T14:39:40.874621Z", + "shell.execute_reply": "2024-05-24T14:39:40.874035Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:57.415426Z", - "iopub.status.busy": "2024-05-24T14:09:57.415022Z", - "iopub.status.idle": "2024-05-24T14:09:57.420803Z", - "shell.execute_reply": "2024-05-24T14:09:57.420257Z" + "iopub.execute_input": "2024-05-24T14:39:40.877065Z", + "iopub.status.busy": "2024-05-24T14:39:40.876647Z", + "iopub.status.idle": "2024-05-24T14:39:40.882914Z", + "shell.execute_reply": "2024-05-24T14:39:40.882327Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:09:57.422755Z", - "iopub.status.busy": "2024-05-24T14:09:57.422434Z", - "iopub.status.idle": "2024-05-24T14:09:57.440428Z", - "shell.execute_reply": "2024-05-24T14:09:57.439980Z" + "iopub.execute_input": "2024-05-24T14:39:40.885157Z", + "iopub.status.busy": "2024-05-24T14:39:40.884821Z", + "iopub.status.idle": "2024-05-24T14:39:40.904555Z", + "shell.execute_reply": "2024-05-24T14:39:40.903946Z" } }, "outputs": [ @@ -1431,33 +1431,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "020e151cb9a843eb829e6f2d5471ee41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b9f02f78bf384af9bfd0ae5756b1cd18", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_09d1fd4295364ab0b7241adf44dfc45e", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "09d1fd4295364ab0b7241adf44dfc45e": { + "0f3fcbca71ca4ac2bc4a766a4fd82dba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1473,30 +1447,7 @@ "description_width": "" } }, - "5dce0e4496f6438a81b1b7df6a62a9d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6844251f088441e1b4e0cddd9ecd4621", - "placeholder": "​", - "style": "IPY_MODEL_6f6e091cf43944788602dd3845696282", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "6844251f088441e1b4e0cddd9ecd4621": { + "3256cbd3b8804115be539812715c7445": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1549,7 +1500,30 @@ "width": null } }, - "6f6e091cf43944788602dd3845696282": { + "374e0422c90746a9ad7c66c4bf98fe27": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f6c54b2a53ad40e8ba17c8f74bb18a33", + "placeholder": "​", + "style": "IPY_MODEL_3d0f6b651acf458b9b46f33f226b10a4", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "3d0f6b651acf458b9b46f33f226b10a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1567,7 +1541,7 @@ "text_color": null } }, - "7ed627a7e944436ab831a963233c3c3d": { + "3f3f21850a164eae9a851d6c6586542b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1620,7 +1594,49 @@ "width": null } }, - "9a5e82581968475aac694f13ac10da0b": { + "96a1502e04e4437cadfa82c07e418096": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_374e0422c90746a9ad7c66c4bf98fe27", + "IPY_MODEL_e0bf868747574641a87e3c4b0870dba2", + "IPY_MODEL_cf1ef50a0a974fb3bcb57ecac66ad5db" + ], + "layout": "IPY_MODEL_f9e9974ca3744482b197a014d79e041c", + "tabbable": null, + "tooltip": null + } + }, + "982e2c84d37a4caf8b4749d94c770790": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cf1ef50a0a974fb3bcb57ecac66ad5db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1635,15 +1651,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7ed627a7e944436ab831a963233c3c3d", + "layout": "IPY_MODEL_3f3f21850a164eae9a851d6c6586542b", "placeholder": "​", - "style": "IPY_MODEL_ea9a3f7c705846b09a501e5d189aebe5", + "style": "IPY_MODEL_982e2c84d37a4caf8b4749d94c770790", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 13715.02 examples/s]" + "value": " 132/132 [00:00<00:00, 12548.97 examples/s]" } }, - "ab1de18cbd944c67a3bad60547b64da5": { + "e0bf868747574641a87e3c4b0870dba2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3256cbd3b8804115be539812715c7445", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0f3fcbca71ca4ac2bc4a766a4fd82dba", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "f6c54b2a53ad40e8ba17c8f74bb18a33": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1696,7 +1738,7 @@ "width": null } }, - "b9f02f78bf384af9bfd0ae5756b1cd18": { + "f9e9974ca3744482b197a014d79e041c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1748,48 +1790,6 @@ "visibility": null, "width": null } - }, - "ea9a3f7c705846b09a501e5d189aebe5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "eb3555b3247844ec83c188729d1bd005": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5dce0e4496f6438a81b1b7df6a62a9d4", - "IPY_MODEL_020e151cb9a843eb829e6f2d5471ee41", - "IPY_MODEL_9a5e82581968475aac694f13ac10da0b" - ], - "layout": "IPY_MODEL_ab1de18cbd944c67a3bad60547b64da5", - "tabbable": null, - "tooltip": null - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index aa349e5f1..0a1d6f071 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:00.027159Z", - "iopub.status.busy": "2024-05-24T14:10:00.026986Z", - "iopub.status.idle": "2024-05-24T14:10:01.179160Z", - "shell.execute_reply": "2024-05-24T14:10:01.178566Z" + "iopub.execute_input": "2024-05-24T14:39:44.078513Z", + "iopub.status.busy": "2024-05-24T14:39:44.077961Z", + "iopub.status.idle": "2024-05-24T14:39:45.421679Z", + "shell.execute_reply": "2024-05-24T14:39:45.421075Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:01.181762Z", - "iopub.status.busy": "2024-05-24T14:10:01.181269Z", - "iopub.status.idle": "2024-05-24T14:10:01.184305Z", - "shell.execute_reply": "2024-05-24T14:10:01.183875Z" + "iopub.execute_input": "2024-05-24T14:39:45.424447Z", + "iopub.status.busy": "2024-05-24T14:39:45.423965Z", + "iopub.status.idle": "2024-05-24T14:39:45.427303Z", + "shell.execute_reply": "2024-05-24T14:39:45.426743Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:01.186447Z", - "iopub.status.busy": "2024-05-24T14:10:01.186120Z", - "iopub.status.idle": "2024-05-24T14:10:01.195461Z", - "shell.execute_reply": "2024-05-24T14:10:01.195009Z" + "iopub.execute_input": "2024-05-24T14:39:45.429645Z", + "iopub.status.busy": "2024-05-24T14:39:45.429327Z", + "iopub.status.idle": "2024-05-24T14:39:45.440139Z", + "shell.execute_reply": "2024-05-24T14:39:45.439471Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:01.197374Z", - "iopub.status.busy": "2024-05-24T14:10:01.197051Z", - "iopub.status.idle": "2024-05-24T14:10:01.201383Z", - "shell.execute_reply": "2024-05-24T14:10:01.200983Z" + "iopub.execute_input": "2024-05-24T14:39:45.442704Z", + "iopub.status.busy": "2024-05-24T14:39:45.442225Z", + "iopub.status.idle": "2024-05-24T14:39:45.447705Z", + "shell.execute_reply": "2024-05-24T14:39:45.447168Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:01.203437Z", - "iopub.status.busy": "2024-05-24T14:10:01.203054Z", - "iopub.status.idle": "2024-05-24T14:10:01.385015Z", - "shell.execute_reply": "2024-05-24T14:10:01.384416Z" + "iopub.execute_input": "2024-05-24T14:39:45.450299Z", + "iopub.status.busy": "2024-05-24T14:39:45.449900Z", + "iopub.status.idle": "2024-05-24T14:39:45.653918Z", + "shell.execute_reply": "2024-05-24T14:39:45.653327Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:01.387593Z", - "iopub.status.busy": "2024-05-24T14:10:01.387402Z", - "iopub.status.idle": "2024-05-24T14:10:01.752479Z", - "shell.execute_reply": "2024-05-24T14:10:01.751898Z" + "iopub.execute_input": "2024-05-24T14:39:45.656640Z", + "iopub.status.busy": "2024-05-24T14:39:45.656260Z", + "iopub.status.idle": "2024-05-24T14:39:46.054293Z", + "shell.execute_reply": "2024-05-24T14:39:46.053627Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:01.754875Z", - "iopub.status.busy": "2024-05-24T14:10:01.754513Z", - "iopub.status.idle": "2024-05-24T14:10:01.757205Z", - "shell.execute_reply": "2024-05-24T14:10:01.756759Z" + "iopub.execute_input": "2024-05-24T14:39:46.056959Z", + "iopub.status.busy": "2024-05-24T14:39:46.056512Z", + "iopub.status.idle": "2024-05-24T14:39:46.060530Z", + "shell.execute_reply": "2024-05-24T14:39:46.059818Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:01.759373Z", - "iopub.status.busy": "2024-05-24T14:10:01.759037Z", - "iopub.status.idle": "2024-05-24T14:10:01.794293Z", - "shell.execute_reply": "2024-05-24T14:10:01.793762Z" + "iopub.execute_input": "2024-05-24T14:39:46.063440Z", + "iopub.status.busy": "2024-05-24T14:39:46.062903Z", + "iopub.status.idle": "2024-05-24T14:39:46.102038Z", + "shell.execute_reply": "2024-05-24T14:39:46.101383Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:01.796390Z", - "iopub.status.busy": "2024-05-24T14:10:01.796053Z", - "iopub.status.idle": "2024-05-24T14:10:03.399924Z", - "shell.execute_reply": "2024-05-24T14:10:03.399219Z" + "iopub.execute_input": "2024-05-24T14:39:46.104587Z", + "iopub.status.busy": "2024-05-24T14:39:46.104203Z", + "iopub.status.idle": "2024-05-24T14:39:48.022349Z", + "shell.execute_reply": "2024-05-24T14:39:48.021617Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:03.402306Z", - "iopub.status.busy": "2024-05-24T14:10:03.401892Z", - "iopub.status.idle": "2024-05-24T14:10:03.420281Z", - "shell.execute_reply": "2024-05-24T14:10:03.419811Z" + "iopub.execute_input": "2024-05-24T14:39:48.024948Z", + "iopub.status.busy": "2024-05-24T14:39:48.024531Z", + "iopub.status.idle": "2024-05-24T14:39:48.045962Z", + "shell.execute_reply": "2024-05-24T14:39:48.045375Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:03.422372Z", - "iopub.status.busy": "2024-05-24T14:10:03.422033Z", - "iopub.status.idle": "2024-05-24T14:10:03.428350Z", - "shell.execute_reply": "2024-05-24T14:10:03.427908Z" + "iopub.execute_input": "2024-05-24T14:39:48.048457Z", + "iopub.status.busy": "2024-05-24T14:39:48.048031Z", + "iopub.status.idle": "2024-05-24T14:39:48.056632Z", + "shell.execute_reply": "2024-05-24T14:39:48.056055Z" } }, "outputs": [ @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:03.430386Z", - "iopub.status.busy": "2024-05-24T14:10:03.430038Z", - "iopub.status.idle": "2024-05-24T14:10:03.435518Z", - "shell.execute_reply": "2024-05-24T14:10:03.435052Z" + "iopub.execute_input": "2024-05-24T14:39:48.059219Z", + "iopub.status.busy": "2024-05-24T14:39:48.058782Z", + "iopub.status.idle": "2024-05-24T14:39:48.066010Z", + "shell.execute_reply": "2024-05-24T14:39:48.065383Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:03.437512Z", - "iopub.status.busy": "2024-05-24T14:10:03.437188Z", - "iopub.status.idle": "2024-05-24T14:10:03.447302Z", - "shell.execute_reply": "2024-05-24T14:10:03.446856Z" + "iopub.execute_input": "2024-05-24T14:39:48.068572Z", + "iopub.status.busy": "2024-05-24T14:39:48.068202Z", + "iopub.status.idle": "2024-05-24T14:39:48.080549Z", + "shell.execute_reply": "2024-05-24T14:39:48.079915Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:03.449231Z", - "iopub.status.busy": "2024-05-24T14:10:03.448925Z", - "iopub.status.idle": "2024-05-24T14:10:03.457750Z", - "shell.execute_reply": "2024-05-24T14:10:03.457229Z" + "iopub.execute_input": "2024-05-24T14:39:48.083117Z", + "iopub.status.busy": "2024-05-24T14:39:48.082731Z", + "iopub.status.idle": "2024-05-24T14:39:48.093131Z", + "shell.execute_reply": "2024-05-24T14:39:48.092524Z" } }, "outputs": [ @@ -1340,10 +1340,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:03.459762Z", - "iopub.status.busy": "2024-05-24T14:10:03.459439Z", - "iopub.status.idle": "2024-05-24T14:10:03.466329Z", - "shell.execute_reply": "2024-05-24T14:10:03.465754Z" + "iopub.execute_input": "2024-05-24T14:39:48.095468Z", + "iopub.status.busy": "2024-05-24T14:39:48.095103Z", + "iopub.status.idle": "2024-05-24T14:39:48.102708Z", + "shell.execute_reply": "2024-05-24T14:39:48.102137Z" }, "scrolled": true }, @@ -1468,10 +1468,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:03.468334Z", - "iopub.status.busy": "2024-05-24T14:10:03.468016Z", - "iopub.status.idle": "2024-05-24T14:10:03.476918Z", - "shell.execute_reply": "2024-05-24T14:10:03.476414Z" + "iopub.execute_input": "2024-05-24T14:39:48.105035Z", + "iopub.status.busy": "2024-05-24T14:39:48.104667Z", + "iopub.status.idle": "2024-05-24T14:39:48.115478Z", + "shell.execute_reply": "2024-05-24T14:39:48.114843Z" } }, "outputs": [ @@ -1574,10 +1574,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:03.479054Z", - "iopub.status.busy": "2024-05-24T14:10:03.478651Z", - "iopub.status.idle": "2024-05-24T14:10:03.490503Z", - "shell.execute_reply": "2024-05-24T14:10:03.489934Z" + "iopub.execute_input": "2024-05-24T14:39:48.117804Z", + "iopub.status.busy": "2024-05-24T14:39:48.117583Z", + "iopub.status.idle": "2024-05-24T14:39:48.132209Z", + "shell.execute_reply": "2024-05-24T14:39:48.131685Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 93a0a739e..e874415bb 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -708,25 +708,25 @@

    2. Fetch and normalize the Fashion-MNIST dataset

    -
    +
    -
    +
    -
    +
    -
    +

    Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

    @@ -1039,7 +1039,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1071,7 +1071,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1103,7 +1103,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -2077,7 +2077,7 @@

    Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index c30ae4dee..a782ae45c 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:06.073310Z", - "iopub.status.busy": "2024-05-24T14:10:06.072907Z", - "iopub.status.idle": "2024-05-24T14:10:08.920738Z", - "shell.execute_reply": "2024-05-24T14:10:08.920191Z" + "iopub.execute_input": "2024-05-24T14:39:51.401534Z", + "iopub.status.busy": "2024-05-24T14:39:51.401113Z", + "iopub.status.idle": "2024-05-24T14:39:54.721030Z", + "shell.execute_reply": "2024-05-24T14:39:54.720360Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:08.923304Z", - "iopub.status.busy": "2024-05-24T14:10:08.922858Z", - "iopub.status.idle": "2024-05-24T14:10:08.926527Z", - "shell.execute_reply": "2024-05-24T14:10:08.926059Z" + "iopub.execute_input": "2024-05-24T14:39:54.724172Z", + "iopub.status.busy": "2024-05-24T14:39:54.723586Z", + "iopub.status.idle": "2024-05-24T14:39:54.727697Z", + "shell.execute_reply": "2024-05-24T14:39:54.727140Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:08.928488Z", - "iopub.status.busy": "2024-05-24T14:10:08.928160Z", - "iopub.status.idle": "2024-05-24T14:10:10.113056Z", - "shell.execute_reply": "2024-05-24T14:10:10.112471Z" + "iopub.execute_input": "2024-05-24T14:39:54.730054Z", + "iopub.status.busy": "2024-05-24T14:39:54.729681Z", + "iopub.status.idle": "2024-05-24T14:39:56.012074Z", + "shell.execute_reply": "2024-05-24T14:39:56.011470Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "20928c42639c40d19008649453d96b2d", + "model_id": "eb73512244bd426c86fb781343718302", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0e9ede0b093f468f8f3fd69c4f80a03d", + "model_id": "016a7a75a2b645a4be4fc7565a3feffb", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "acbb7092c3624d1db7690371aa52add2", + "model_id": "06eebd2cb0b94c568a5db381a8530569", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f7564a055b104dcfad12b4171b8c013a", + "model_id": "ce9901284426434a9b5f9a77243c05c6", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:10.115249Z", - "iopub.status.busy": "2024-05-24T14:10:10.115062Z", - "iopub.status.idle": "2024-05-24T14:10:10.119023Z", - "shell.execute_reply": "2024-05-24T14:10:10.118570Z" + "iopub.execute_input": "2024-05-24T14:39:56.014461Z", + "iopub.status.busy": "2024-05-24T14:39:56.014103Z", + "iopub.status.idle": "2024-05-24T14:39:56.018169Z", + "shell.execute_reply": "2024-05-24T14:39:56.017636Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:10.120914Z", - "iopub.status.busy": "2024-05-24T14:10:10.120736Z", - "iopub.status.idle": "2024-05-24T14:10:20.994419Z", - "shell.execute_reply": "2024-05-24T14:10:20.993838Z" + "iopub.execute_input": "2024-05-24T14:39:56.020642Z", + "iopub.status.busy": "2024-05-24T14:39:56.020238Z", + "iopub.status.idle": "2024-05-24T14:40:07.664607Z", + "shell.execute_reply": "2024-05-24T14:40:07.663851Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b82540d1d36435d8d3f12c70565158d", + "model_id": "0311a66b3899492e96791b9ec51f70dc", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:20.996883Z", - "iopub.status.busy": "2024-05-24T14:10:20.996528Z", - "iopub.status.idle": "2024-05-24T14:10:39.351446Z", - "shell.execute_reply": "2024-05-24T14:10:39.350906Z" + "iopub.execute_input": "2024-05-24T14:40:07.668254Z", + "iopub.status.busy": "2024-05-24T14:40:07.667800Z", + "iopub.status.idle": "2024-05-24T14:40:26.400120Z", + "shell.execute_reply": "2024-05-24T14:40:26.399309Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:39.353941Z", - "iopub.status.busy": "2024-05-24T14:10:39.353763Z", - "iopub.status.idle": "2024-05-24T14:10:39.358516Z", - "shell.execute_reply": "2024-05-24T14:10:39.358093Z" + "iopub.execute_input": "2024-05-24T14:40:26.403345Z", + "iopub.status.busy": "2024-05-24T14:40:26.402927Z", + "iopub.status.idle": "2024-05-24T14:40:26.408261Z", + "shell.execute_reply": "2024-05-24T14:40:26.407613Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:39.360304Z", - "iopub.status.busy": "2024-05-24T14:10:39.360126Z", - "iopub.status.idle": "2024-05-24T14:10:39.364229Z", - "shell.execute_reply": "2024-05-24T14:10:39.363697Z" + "iopub.execute_input": "2024-05-24T14:40:26.410749Z", + "iopub.status.busy": "2024-05-24T14:40:26.410358Z", + "iopub.status.idle": "2024-05-24T14:40:26.414977Z", + "shell.execute_reply": "2024-05-24T14:40:26.414497Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:39.366381Z", - "iopub.status.busy": "2024-05-24T14:10:39.366055Z", - "iopub.status.idle": "2024-05-24T14:10:39.374892Z", - "shell.execute_reply": "2024-05-24T14:10:39.374422Z" + "iopub.execute_input": "2024-05-24T14:40:26.417519Z", + "iopub.status.busy": "2024-05-24T14:40:26.417128Z", + "iopub.status.idle": "2024-05-24T14:40:26.426990Z", + "shell.execute_reply": "2024-05-24T14:40:26.426373Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:39.376897Z", - "iopub.status.busy": "2024-05-24T14:10:39.376573Z", - "iopub.status.idle": "2024-05-24T14:10:39.402869Z", - "shell.execute_reply": "2024-05-24T14:10:39.402406Z" + "iopub.execute_input": "2024-05-24T14:40:26.429640Z", + "iopub.status.busy": "2024-05-24T14:40:26.429171Z", + "iopub.status.idle": "2024-05-24T14:40:26.457392Z", + "shell.execute_reply": "2024-05-24T14:40:26.456837Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:10:39.404868Z", - "iopub.status.busy": "2024-05-24T14:10:39.404539Z", - "iopub.status.idle": "2024-05-24T14:11:10.629979Z", - "shell.execute_reply": "2024-05-24T14:11:10.629317Z" + "iopub.execute_input": "2024-05-24T14:40:26.460392Z", + "iopub.status.busy": "2024-05-24T14:40:26.459839Z", + "iopub.status.idle": "2024-05-24T14:41:02.324665Z", + "shell.execute_reply": "2024-05-24T14:41:02.323997Z" } }, "outputs": [ @@ -726,21 +726,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.673\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.532\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.435\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 5.226\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0f98d33dc3b54e0bb570418033290a10", + "model_id": "df3eb5942e94463d8ef4681e64d74811", "version_major": 2, "version_minor": 0 }, @@ -761,7 +761,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "941ce9ad8c97424cb79a597244bec856", + "model_id": "0c96a3f2323b4792a6a2959bdfd9966c", "version_major": 2, "version_minor": 0 }, @@ -784,21 +784,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.659\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.334\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.469\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 5.031\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2365870067d44d6b5105d0c496b2126", + "model_id": "bce4e34808954d08a06d5d174764aee5", "version_major": 2, "version_minor": 0 }, @@ -819,7 +819,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "40b4bb6b0525445faa3a71aab418104a", + "model_id": "075a356c128b421097ba7828f20c2808", "version_major": 2, "version_minor": 0 }, @@ -842,21 +842,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.590\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.344\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.372\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.913\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "02cfa49961f9497cb9ecbe65e96f8441", + "model_id": "0e6de3035fd743809c30b1e2f209bd90", "version_major": 2, "version_minor": 0 }, @@ -877,7 +877,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fd83501a7a8245c7ac9fda5f0e9df22d", + "model_id": "c3a7eece24944ea4981012166d0b749a", "version_major": 2, "version_minor": 0 }, @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:11:10.632628Z", - "iopub.status.busy": "2024-05-24T14:11:10.632390Z", - "iopub.status.idle": "2024-05-24T14:11:10.649457Z", - "shell.execute_reply": "2024-05-24T14:11:10.648901Z" + "iopub.execute_input": "2024-05-24T14:41:02.327216Z", + "iopub.status.busy": "2024-05-24T14:41:02.326883Z", + "iopub.status.idle": "2024-05-24T14:41:02.344507Z", + "shell.execute_reply": "2024-05-24T14:41:02.343999Z" } }, "outputs": [], @@ -984,10 +984,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:11:10.651614Z", - "iopub.status.busy": "2024-05-24T14:11:10.651222Z", - "iopub.status.idle": "2024-05-24T14:11:11.097614Z", - "shell.execute_reply": "2024-05-24T14:11:11.096994Z" + "iopub.execute_input": "2024-05-24T14:41:02.347058Z", + "iopub.status.busy": "2024-05-24T14:41:02.346641Z", + "iopub.status.idle": "2024-05-24T14:41:02.846262Z", + "shell.execute_reply": "2024-05-24T14:41:02.845616Z" } }, "outputs": [], @@ -1007,10 +1007,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:11:11.100272Z", - "iopub.status.busy": "2024-05-24T14:11:11.099945Z", - "iopub.status.idle": "2024-05-24T14:14:48.052908Z", - "shell.execute_reply": "2024-05-24T14:14:48.052297Z" + "iopub.execute_input": "2024-05-24T14:41:02.849042Z", + "iopub.status.busy": "2024-05-24T14:41:02.848683Z", + "iopub.status.idle": "2024-05-24T14:44:45.648449Z", + "shell.execute_reply": "2024-05-24T14:44:45.647817Z" } }, "outputs": [ @@ -1058,7 +1058,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "31134bbba8f44b82a41291a10ff5c70d", + "model_id": "6c4fa066416d431b934093b5c1c09e92", "version_major": 2, "version_minor": 0 }, @@ -1097,10 +1097,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:48.055446Z", - "iopub.status.busy": "2024-05-24T14:14:48.055024Z", - "iopub.status.idle": "2024-05-24T14:14:48.517330Z", - "shell.execute_reply": "2024-05-24T14:14:48.516784Z" + "iopub.execute_input": "2024-05-24T14:44:45.650979Z", + "iopub.status.busy": "2024-05-24T14:44:45.650479Z", + "iopub.status.idle": "2024-05-24T14:44:46.123901Z", + "shell.execute_reply": "2024-05-24T14:44:46.123320Z" } }, "outputs": [ @@ -1241,10 +1241,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:48.519979Z", - "iopub.status.busy": "2024-05-24T14:14:48.519653Z", - "iopub.status.idle": "2024-05-24T14:14:48.581345Z", - "shell.execute_reply": "2024-05-24T14:14:48.580825Z" + "iopub.execute_input": "2024-05-24T14:44:46.126867Z", + "iopub.status.busy": "2024-05-24T14:44:46.126350Z", + "iopub.status.idle": "2024-05-24T14:44:46.188788Z", + "shell.execute_reply": "2024-05-24T14:44:46.188215Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:48.583708Z", - "iopub.status.busy": "2024-05-24T14:14:48.583376Z", - "iopub.status.idle": "2024-05-24T14:14:48.592238Z", - "shell.execute_reply": "2024-05-24T14:14:48.591802Z" + "iopub.execute_input": "2024-05-24T14:44:46.191154Z", + "iopub.status.busy": "2024-05-24T14:44:46.190843Z", + "iopub.status.idle": "2024-05-24T14:44:46.200732Z", + "shell.execute_reply": "2024-05-24T14:44:46.200202Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:48.594350Z", - "iopub.status.busy": "2024-05-24T14:14:48.593998Z", - "iopub.status.idle": "2024-05-24T14:14:48.598612Z", - "shell.execute_reply": "2024-05-24T14:14:48.598154Z" + "iopub.execute_input": "2024-05-24T14:44:46.203135Z", + "iopub.status.busy": "2024-05-24T14:44:46.202741Z", + "iopub.status.idle": "2024-05-24T14:44:46.207957Z", + "shell.execute_reply": "2024-05-24T14:44:46.207400Z" }, "nbsphinx": "hidden" }, @@ -1530,10 +1530,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:48.600526Z", - "iopub.status.busy": "2024-05-24T14:14:48.600354Z", - "iopub.status.idle": "2024-05-24T14:14:49.096890Z", - "shell.execute_reply": "2024-05-24T14:14:49.096358Z" + "iopub.execute_input": "2024-05-24T14:44:46.210322Z", + "iopub.status.busy": "2024-05-24T14:44:46.209948Z", + "iopub.status.idle": "2024-05-24T14:44:46.759504Z", + "shell.execute_reply": "2024-05-24T14:44:46.758890Z" } }, "outputs": [ @@ -1568,10 +1568,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:49.098963Z", - "iopub.status.busy": "2024-05-24T14:14:49.098785Z", - "iopub.status.idle": "2024-05-24T14:14:49.107340Z", - "shell.execute_reply": "2024-05-24T14:14:49.106910Z" + "iopub.execute_input": "2024-05-24T14:44:46.761720Z", + "iopub.status.busy": "2024-05-24T14:44:46.761534Z", + "iopub.status.idle": "2024-05-24T14:44:46.770434Z", + "shell.execute_reply": "2024-05-24T14:44:46.769873Z" } }, "outputs": [ @@ -1738,10 +1738,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:49.109526Z", - "iopub.status.busy": "2024-05-24T14:14:49.109117Z", - "iopub.status.idle": "2024-05-24T14:14:49.116331Z", - "shell.execute_reply": "2024-05-24T14:14:49.115802Z" + "iopub.execute_input": "2024-05-24T14:44:46.772713Z", + "iopub.status.busy": "2024-05-24T14:44:46.772399Z", + "iopub.status.idle": "2024-05-24T14:44:46.779606Z", + "shell.execute_reply": "2024-05-24T14:44:46.779126Z" }, "nbsphinx": "hidden" }, @@ -1817,10 +1817,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:49.118535Z", - "iopub.status.busy": "2024-05-24T14:14:49.118010Z", - "iopub.status.idle": "2024-05-24T14:14:49.583947Z", - "shell.execute_reply": "2024-05-24T14:14:49.583351Z" + "iopub.execute_input": "2024-05-24T14:44:46.781638Z", + "iopub.status.busy": "2024-05-24T14:44:46.781307Z", + "iopub.status.idle": "2024-05-24T14:44:47.272826Z", + "shell.execute_reply": "2024-05-24T14:44:47.272237Z" } }, "outputs": [ @@ -1857,10 +1857,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:49.586205Z", - "iopub.status.busy": "2024-05-24T14:14:49.585797Z", - "iopub.status.idle": "2024-05-24T14:14:49.601251Z", - "shell.execute_reply": "2024-05-24T14:14:49.600784Z" + "iopub.execute_input": "2024-05-24T14:44:47.275640Z", + "iopub.status.busy": "2024-05-24T14:44:47.275262Z", + "iopub.status.idle": "2024-05-24T14:44:47.292474Z", + "shell.execute_reply": "2024-05-24T14:44:47.291889Z" } }, "outputs": [ @@ -2017,10 +2017,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:49.603488Z", - "iopub.status.busy": "2024-05-24T14:14:49.603154Z", - "iopub.status.idle": "2024-05-24T14:14:49.608600Z", - "shell.execute_reply": "2024-05-24T14:14:49.608100Z" + "iopub.execute_input": "2024-05-24T14:44:47.294879Z", + "iopub.status.busy": "2024-05-24T14:44:47.294488Z", + "iopub.status.idle": "2024-05-24T14:44:47.300729Z", + "shell.execute_reply": "2024-05-24T14:44:47.300111Z" }, "nbsphinx": "hidden" }, @@ -2065,10 +2065,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:49.610524Z", - "iopub.status.busy": "2024-05-24T14:14:49.610265Z", - "iopub.status.idle": "2024-05-24T14:14:50.068831Z", - "shell.execute_reply": "2024-05-24T14:14:50.068303Z" + "iopub.execute_input": "2024-05-24T14:44:47.303050Z", + "iopub.status.busy": "2024-05-24T14:44:47.302711Z", + "iopub.status.idle": "2024-05-24T14:44:47.802911Z", + "shell.execute_reply": "2024-05-24T14:44:47.802299Z" } }, "outputs": [ @@ -2150,10 +2150,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:50.071357Z", - "iopub.status.busy": "2024-05-24T14:14:50.070986Z", - "iopub.status.idle": "2024-05-24T14:14:50.080349Z", - "shell.execute_reply": "2024-05-24T14:14:50.079849Z" + "iopub.execute_input": "2024-05-24T14:44:47.805882Z", + "iopub.status.busy": "2024-05-24T14:44:47.805637Z", + "iopub.status.idle": "2024-05-24T14:44:47.815882Z", + "shell.execute_reply": "2024-05-24T14:44:47.815245Z" } }, "outputs": [ @@ -2281,10 +2281,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:50.082953Z", - "iopub.status.busy": "2024-05-24T14:14:50.082447Z", - "iopub.status.idle": "2024-05-24T14:14:50.088477Z", - "shell.execute_reply": "2024-05-24T14:14:50.087919Z" + "iopub.execute_input": "2024-05-24T14:44:47.818859Z", + "iopub.status.busy": "2024-05-24T14:44:47.818621Z", + "iopub.status.idle": "2024-05-24T14:44:47.824871Z", + "shell.execute_reply": "2024-05-24T14:44:47.824227Z" }, "nbsphinx": "hidden" }, @@ -2321,10 +2321,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:50.090690Z", - "iopub.status.busy": "2024-05-24T14:14:50.090407Z", - "iopub.status.idle": "2024-05-24T14:14:50.293611Z", - "shell.execute_reply": "2024-05-24T14:14:50.293064Z" + "iopub.execute_input": "2024-05-24T14:44:47.827687Z", + "iopub.status.busy": "2024-05-24T14:44:47.827465Z", + "iopub.status.idle": "2024-05-24T14:44:48.041176Z", + "shell.execute_reply": "2024-05-24T14:44:48.040570Z" } }, "outputs": [ @@ -2366,10 +2366,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:50.295678Z", - "iopub.status.busy": "2024-05-24T14:14:50.295498Z", - "iopub.status.idle": "2024-05-24T14:14:50.303587Z", - "shell.execute_reply": "2024-05-24T14:14:50.303124Z" + "iopub.execute_input": "2024-05-24T14:44:48.043520Z", + "iopub.status.busy": "2024-05-24T14:44:48.043163Z", + "iopub.status.idle": "2024-05-24T14:44:48.051880Z", + "shell.execute_reply": "2024-05-24T14:44:48.051373Z" } }, "outputs": [ @@ -2455,10 +2455,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:50.305555Z", - "iopub.status.busy": "2024-05-24T14:14:50.305373Z", - "iopub.status.idle": "2024-05-24T14:14:50.496998Z", - "shell.execute_reply": "2024-05-24T14:14:50.496437Z" + "iopub.execute_input": "2024-05-24T14:44:48.054225Z", + "iopub.status.busy": "2024-05-24T14:44:48.053784Z", + "iopub.status.idle": "2024-05-24T14:44:48.266174Z", + "shell.execute_reply": "2024-05-24T14:44:48.265573Z" } }, "outputs": [ @@ -2498,10 +2498,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:50.499348Z", - "iopub.status.busy": "2024-05-24T14:14:50.499003Z", - "iopub.status.idle": "2024-05-24T14:14:50.503429Z", - "shell.execute_reply": "2024-05-24T14:14:50.502998Z" + "iopub.execute_input": "2024-05-24T14:44:48.268616Z", + "iopub.status.busy": "2024-05-24T14:44:48.268272Z", + "iopub.status.idle": "2024-05-24T14:44:48.273060Z", + "shell.execute_reply": "2024-05-24T14:44:48.272429Z" }, "nbsphinx": "hidden" }, @@ -2538,56 +2538,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "005ec29fdab54f8c93d16dfaedd0b765": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_04af28333abe4e8b9f6e193f71dd7541", - "placeholder": "​", - "style": "IPY_MODEL_b73d0c4a1e654a91b4881b847789996e", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "0237fc1c9c674141a63a8bcefabd3c0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b46a1363729b48059321407b875ad014", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a8b1d69fac364e84a1a604e84c3231c5", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "0258ca92517d4064b1e10ed47bfd0f77": { + "008606f7081a4a4bba84ad9830807b38": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2640,7 +2591,115 @@ "width": null } }, - "02cfa49961f9497cb9ecbe65e96f8441": { + "016a7a75a2b645a4be4fc7565a3feffb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1402ee7570fd487d8e123e4c7a805288", + "IPY_MODEL_f2e5b8603ad84a5cbabba1479e79a8df", + "IPY_MODEL_a5f145f8422a44f09de3e928688a15a3" + ], + "layout": "IPY_MODEL_d778b05f38954be28b3edc6439910f1e", + "tabbable": null, + "tooltip": null + } + }, + "022a5539811d4ef4a5917a095a442b0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0311a66b3899492e96791b9ec51f70dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d43acaf76c9b4515a193fcace6ca8aaa", + "IPY_MODEL_a3934424b8274dfda77300003c4f697d", + "IPY_MODEL_382c93ecb4434611b56f56242fbd3b10" + ], + "layout": "IPY_MODEL_c315accc62e5455c845331742c69b7c5", + "tabbable": null, + "tooltip": null + } + }, + "039364ed9e5047bd877cfb2bbc6efa8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "06eebd2cb0b94c568a5db381a8530569": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e4124874f7634d89b713f8086c6b9fb2", + "IPY_MODEL_3915b5f180434284a60c1a0a29bb4a56", + "IPY_MODEL_1fccb954c2d54e1c8b699f70addf1637" + ], + "layout": "IPY_MODEL_ee1e394f14cd4ef989b5327b6e6a0df6", + "tabbable": null, + "tooltip": null + } + }, + "075a356c128b421097ba7828f20c2808": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2655,16 +2714,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ccc47a7716054ec6a518ebe66dae7afc", - "IPY_MODEL_a8e024e32d0b467f937cf2a14529e0f5", - "IPY_MODEL_50f84c9bfe22466688669d9f0f76f645" + "IPY_MODEL_0cd637f1475d47f4954ae51b1a42870f", + "IPY_MODEL_9f4d5b7eec004dbaa67e62a50d94b93e", + "IPY_MODEL_aca48f810d994af79b8d6fe6434ef1fb" ], - "layout": "IPY_MODEL_dabe39fbba934d8f8c0e6e9182b73a98", + "layout": "IPY_MODEL_4ba9ba8444894b4f9c6d7c6f9b1fb7d0", "tabbable": null, "tooltip": null } }, - "04af28333abe4e8b9f6e193f71dd7541": { + "097168a2bf2b47ba8000b727cf3be430": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2717,7 +2776,120 @@ "width": null } }, - "095317e43eff464c9a9c23d53f74a00e": { + "0c96a3f2323b4792a6a2959bdfd9966c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7745327f0901441ba796ba14e4ef8276", + "IPY_MODEL_3cca61927393474aa8f9e5c0bdd6d0fd", + "IPY_MODEL_1c5460b0a05646349eac5389777a6568" + ], + "layout": "IPY_MODEL_5f1606d28c5346ac9f07d5e95a6c9b19", + "tabbable": null, + "tooltip": null + } + }, + "0cd637f1475d47f4954ae51b1a42870f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1b16ad6a5239484e8860fcce92a9147d", + "placeholder": "​", + "style": "IPY_MODEL_63cc0b51e0ca404ab74b56439e727c1e", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "0e1d5d923db140b79ce608e49c658c8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5d1c49ff05a0411ebdd122204c2cc1c4", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cfe01eaf64174fc4bb0b7d6ccfe9bb17", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "0e6de3035fd743809c30b1e2f209bd90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_48f0f173f7164bc2a615d80214781763", + "IPY_MODEL_dc441233f50146f79f4696e33e1a2e71", + "IPY_MODEL_aaaf2f099c414c3d88cf506869f40da7" + ], + "layout": "IPY_MODEL_1853eaf67c80410893b46d41127a2c20", + "tabbable": null, + "tooltip": null + } + }, + "112338fbe8834ffa8fcdd127fc2890ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "11525a22afa84e1887346e3dd76517b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2770,7 +2942,7 @@ "width": null } }, - "0e8d1e66524c4d5e9179cec37443c2c4": { + "1166e04e6d9d499dbe8c3eb94f607cf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2823,143 +2995,228 @@ "width": null } }, - "0e9ede0b093f468f8f3fd69c4f80a03d": { + "1402ee7570fd487d8e123e4c7a805288": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c924a4e7e21c40a1864bab29593d9666", - "IPY_MODEL_df1c2cca8aa242e38c59b789fe49ddab", - "IPY_MODEL_5e88821b46bd4506a16bdefe5041179d" - ], - "layout": "IPY_MODEL_7b7f249e472446c2bf4a0e626ccba961", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_62ebde7282f7479fbd2b7537e8076921", + "placeholder": "​", + "style": "IPY_MODEL_412e766727874e77acc2adb4c4dd228f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "0f44211192aa45ff9cec2924e9b58981": { + "1831d40cb4a04cc4bbb40208e779827e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_63dc1718605c431c87916ff089c9126e", + "placeholder": "​", + "style": "IPY_MODEL_46a24985000f48cf8d03b84c7128f6e1", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 247193.43 examples/s]" } }, - "0f98d33dc3b54e0bb570418033290a10": { - "model_module": "@jupyter-widgets/controls", + "1853eaf67c80410893b46d41127a2c20": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a617844ca06a4b038b2151bb7ce298a1", - "IPY_MODEL_5580c970c3b346df9b62e86f77384320", - "IPY_MODEL_50174c2f12084f5cb183a67b23a6d7ab" - ], - "layout": "IPY_MODEL_ceabb90f3e3f4c1ab5d36061d2985ff8", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1438aefcb1954444a1ba55b60068090f": { - "model_module": "@jupyter-widgets/controls", + "1b16ad6a5239484e8860fcce92a9147d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "15055ecc923143eeae455824ea54237d": { + "1c5460b0a05646349eac5389777a6568": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c000e319e1f14a42a9d34a24ae03e60b", + "placeholder": "​", + "style": "IPY_MODEL_039364ed9e5047bd877cfb2bbc6efa8e", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 56.28it/s]" } }, - "18269600391947c78d26ddf20eb1da4b": { + "1fccb954c2d54e1c8b699f70addf1637": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc6faff9e7c34cc48db0dc3c6dba89b5", + "placeholder": "​", + "style": "IPY_MODEL_669a87ffa0804cb984109163e06bc97e", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 277478.91 examples/s]" } }, - "18bf252547db40668b5119a052fbf176": { + "20ee2947e30b4aa9b4f5109f6ddca340": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5f47d83341314e7484dd4a1c476e959a", + "placeholder": "​", + "style": "IPY_MODEL_2517c8932633445b94aa34bb91b9b7f7", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:50<00:00, 1210.60it/s]" } }, - "19bcbc426e184ed18484b42c05025736": { + "218f4f99495b4725854f005a980a0ff3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3012,7 +3269,7 @@ "width": null } }, - "1dd724e0910b4f7c80212bbb67ec3a3b": { + "2246bac18cf44debb7306213e2002733": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3065,7 +3322,7 @@ "width": null } }, - "1edca7b8679e42b8b1ddf53d0319090c": { + "23dc414451ce47e491f7cbd01d7a353c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3118,31 +3375,71 @@ "width": null } }, - "20928c42639c40d19008649453d96b2d": { + "24686fdaeeaa46a580a090c918c7f7ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_efdf9c9d5f09412d93fa022f9dda8384", - "IPY_MODEL_c3b8280a11034b0aa4273074e780b399", - "IPY_MODEL_ed74f726f9564b52ae6db0cc0bf7394b" - ], - "layout": "IPY_MODEL_47390381128442c68b6b921f07773429", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1166e04e6d9d499dbe8c3eb94f607cf3", + "placeholder": "​", + "style": "IPY_MODEL_fc64d71f06b74f21814960209fa06868", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 65.56it/s]" + } + }, + "2517c8932633445b94aa34bb91b9b7f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "254220fa901c493a9cf03d0c93b30ce7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eec15bd98bbd4bedab467256e46b7d09", + "placeholder": "​", + "style": "IPY_MODEL_fd3228089d8c403f82370ef418e46dd0", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 466.45it/s]" } }, - "252b057d91724b6b88e578ea7fc213e6": { + "2c8fb816c24f461a87e88c13ea2d5e7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3195,146 +3492,83 @@ "width": null } }, - "2acb4d6102d14737a115beeb165c6c5d": { + "2c929ad8554c41adae3f846e887126a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4048696e003640ff88770ed49ccfe215", - "IPY_MODEL_abcf516432254e4197b54c5ee9c763e5", - "IPY_MODEL_68bc0aebc6c94ea89fb0e9aa74986080" - ], - "layout": "IPY_MODEL_ecec9d1359284dc683b8a3bb22fae4ef", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_008606f7081a4a4bba84ad9830807b38", + "placeholder": "​", + "style": "IPY_MODEL_7427f18a5d12435a9009f38e543f19cb", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "2b82540d1d36435d8d3f12c70565158d": { - "model_module": "@jupyter-widgets/controls", + "2d3d915f8f5e41c5b3d8ab73dca213a5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_005ec29fdab54f8c93d16dfaedd0b765", - "IPY_MODEL_6a9d62ed3216482cb138b90be0590316", - "IPY_MODEL_2fa5a7a8b531425d96e7cfce10f759e0" - ], - "layout": "IPY_MODEL_4c20a62a6fb54af0b985ac5cd20dc908", - "tabbable": null, - "tooltip": null - } - }, - "2fa5a7a8b531425d96e7cfce10f759e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_77b8c82d0a87409ab6c14b421e5a5418", - "placeholder": "​", - "style": "IPY_MODEL_96ff32312f7742aeb716f1d90bfd8939", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:10<00:00, 7843.50 examples/s]" - } - }, - "31134bbba8f44b82a41291a10ff5c70d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7d7f9b09fd8948aeb03c1dbf2d478c10", - "IPY_MODEL_bf69103f82c74950ad6857f7df5c1a99", - "IPY_MODEL_59af4b3eafaa4064b4694de4b34d4c54" - ], - "layout": "IPY_MODEL_3f41f244724a43b79b63167044a429bc", - "tabbable": null, - "tooltip": null - } - }, - "33e73e606ca84a6cab2b23fba6e6359f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "36feb2aef1534178bb2dbcbf6b946ff7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d0f931314b6f483e8330ce7c88763d45", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c183d98069af4e1685066fcf9bf9f439", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "39dbd179be3c4805a3ddc7cad4b34039": { + "31ee7e50285e495ebccd5b2faefffc0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3387,25 +3621,7 @@ "width": null } }, - "3ec9e101e728416b96ade8af4b353a97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3f41f244724a43b79b63167044a429bc": { + "3472e3abdb354f0ab8677c636bf83988": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3458,80 +3674,7 @@ "width": null } }, - "4048696e003640ff88770ed49ccfe215": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8b7d5967010a41f4b355314d3b3413ab", - "placeholder": "​", - "style": "IPY_MODEL_c5c1a7a5ae3e4b02a9abf31eefbd9177", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "40b4bb6b0525445faa3a71aab418104a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ef8c9f43e9994ca092d389d9a4c75642", - "IPY_MODEL_4addcdec7a8b418bacda0f23fd253c6f", - "IPY_MODEL_94b8951060044a1e8f2a5b393ca3f792" - ], - "layout": "IPY_MODEL_4dd3d252d18044dcb5671c2eb403dc45", - "tabbable": null, - "tooltip": null - } - }, - "44c3a24bfa1f4435ae53d3e0b9707ba3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_edebf4dd738f4a93a10a304b0f471be1", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_15055ecc923143eeae455824ea54237d", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "47390381128442c68b6b921f07773429": { + "357e79d135684cc6893e5770511df3f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3584,7 +3727,25 @@ "width": null } }, - "47c0a2e2c08f41fa932e4d3510cf3321": { + "3728b7e4bb3647009c00ea004c324537": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "37d0d01d7d504c0cb0e26530ccffd2a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3637,7 +3798,7 @@ "width": null } }, - "4a2dc9eac02a4796bfd4529f0513d431": { + "382c93ecb4434611b56f56242fbd3b10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3652,15 +3813,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_19bcbc426e184ed18484b42c05025736", + "layout": "IPY_MODEL_31ee7e50285e495ebccd5b2faefffc0f", "placeholder": "​", - "style": "IPY_MODEL_bdeec52dde7748b18173217ce71db12d", + "style": "IPY_MODEL_89b1af0b30e24ee19ba38f122601a1e5", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 308969.59 examples/s]" + "value": " 60000/60000 [00:11<00:00, 6114.79 examples/s]" } }, - "4addcdec7a8b418bacda0f23fd253c6f": { + "3915b5f180434284a60c1a0a29bb4a56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3676,17 +3837,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9b2a462c96b44e9fa35b645021bd9248", - "max": 40.0, + "layout": "IPY_MODEL_9fc2ff8358464da4898f5021a45c6af2", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e57a0342bddc444998ca173ef87bc923", + "style": "IPY_MODEL_b10674dd471b49e1b18bffacf5f474a2", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 60000.0 } }, - "4b0ca1e4dd9640c0a26e8aa415ac822a": { + "39c16fb112464b499605cae4482559a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3739,7 +3900,49 @@ "width": null } }, - "4c20a62a6fb54af0b985ac5cd20dc908": { + "3a3f9f7d7af74789bf6fd23f77934191": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3cca61927393474aa8f9e5c0bdd6d0fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6fed4d1ac3864697a0bd6b5397b39495", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8d41da02797a44be950d6df141a2e6bb", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "40dfab2e743747dbadd6570d2e079713": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3792,12 +3995,30 @@ "width": null } }, - "4dd3d252d18044dcb5671c2eb403dc45": { - "model_module": "@jupyter-widgets/base", + "412e766727874e77acc2adb4c4dd228f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "42773b5f76c34e61868db78342b935a6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, @@ -3845,89 +4066,7 @@ "width": null } }, - "4f3f520f8f6d448cb2fc8f3f516c3cab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4f65da6bc6944968aa9610dff3c00a62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "50174c2f12084f5cb183a67b23a6d7ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9a43abc8cf5246dda1009a29cbae7e73", - "placeholder": "​", - "style": "IPY_MODEL_a888587666494decbbe7362ef51c4360", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.45it/s]" - } - }, - "50f84c9bfe22466688669d9f0f76f645": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_89db97aa9c1245e48c77b43c98bb64a3", - "placeholder": "​", - "style": "IPY_MODEL_4f3f520f8f6d448cb2fc8f3f516c3cab", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.25it/s]" - } - }, - "5230aa385bd5482f8d614bcd55368004": { + "442bedfd1ca047cf92b1aec7bd70cc4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3980,56 +4119,7 @@ "width": null } }, - "5580c970c3b346df9b62e86f77384320": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fe73c9a35c0b4dbea9ce5e56707e4e5b", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e2ee0d1d1607494090968dc7a5f79759", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "59af4b3eafaa4064b4694de4b34d4c54": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c9408e5139af465fb02ad5c2dc833cfa", - "placeholder": "​", - "style": "IPY_MODEL_ac031ef893ee4aeb87e743b8e1775247", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:48<00:00, 1311.26it/s]" - } - }, - "5c797c5131344d78924c0321bb37eb21": { + "45e594f3272c48318b356614c06b5136": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4082,53 +4172,7 @@ "width": null } }, - "5db4ef33284248a9bb6224b370238ce7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1edca7b8679e42b8b1ddf53d0319090c", - "placeholder": "​", - "style": "IPY_MODEL_4f65da6bc6944968aa9610dff3c00a62", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 253648.37 examples/s]" - } - }, - "5e88821b46bd4506a16bdefe5041179d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5c797c5131344d78924c0321bb37eb21", - "placeholder": "​", - "style": "IPY_MODEL_7d984ba882024a65b4cc7ac84a05cf1c", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 97.9MB/s]" - } - }, - "62a8fe332c374e019a0ae4b4f12662b2": { + "46a24985000f48cf8d03b84c7128f6e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4146,7 +4190,7 @@ "text_color": null } }, - "684f56c06e2e480dbed6d94583e476df": { + "482fa1922e9b4cf2a55d712feb0cd072": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4199,7 +4243,7 @@ "width": null } }, - "68bc0aebc6c94ea89fb0e9aa74986080": { + "48f0f173f7164bc2a615d80214781763": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4214,41 +4258,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d21001f7b25f4acbbc31cfbd59b2ba47", + "layout": "IPY_MODEL_097168a2bf2b47ba8000b727cf3be430", "placeholder": "​", - "style": "IPY_MODEL_7b390130804a4f7b9e66f42291223c0c", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 581.41it/s]" - } - }, - "6a9d62ed3216482cb138b90be0590316": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_752c63333fb94f38ae0bb4cacf5f1a27", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ea6439aab21f4714bd98e4c002cb6a7a", + "style": "IPY_MODEL_f72fb6920e9c496ebcbe08f7fa09ddef", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "100%" } }, - "7196bb31a21340ceab84e211abc9a8a9": { + "495edd1074194c85944da749ec7852b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4263,15 +4281,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f200022fa3d04827b6854b1dde47714a", + "layout": "IPY_MODEL_af012957d95649cf85734bafb7942eec", "placeholder": "​", - "style": "IPY_MODEL_ac1ea6f6c52747968d5385d35424f38b", + "style": "IPY_MODEL_82e5e0bb0c464d08acaae9250679d29e", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.75it/s]" + "value": "Generating test split: 100%" } }, - "71e640a6dfc34efc931e5050b2f3e078": { + "4ba9ba8444894b4f9c6d7c6f9b1fb7d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4324,7 +4342,7 @@ "width": null } }, - "752c63333fb94f38ae0bb4cacf5f1a27": { + "4e289c6545004f19baecd316e52073f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4377,7 +4395,75 @@ "width": null } }, - "77b8c82d0a87409ab6c14b421e5a5418": { + "50a99f479b834de3829ff306301d2cf1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "588dbf7542734532aee1e4f765f4fd9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b966f8f2ffa445eb941dfb2268c89631", + "IPY_MODEL_5b4e014097f142deb2ae24610dc41195", + "IPY_MODEL_254220fa901c493a9cf03d0c93b30ce7" + ], + "layout": "IPY_MODEL_442bedfd1ca047cf92b1aec7bd70cc4c", + "tabbable": null, + "tooltip": null + } + }, + "5b4e014097f142deb2ae24610dc41195": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c8c53041a1ce4588a91b83b814620238", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_af8e08537e6845d68a420828a2115fc9", + "tabbable": null, + "tooltip": null, + "value": 2.0 + } + }, + "5d1c49ff05a0411ebdd122204c2cc1c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4430,62 +4516,8 @@ "width": null } }, - "7833323298714a439ea84326d930c571": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7a9da79872b74c7fb3a7c929d226b788": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7b390130804a4f7b9e66f42291223c0c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7b7f249e472446c2bf4a0e626ccba961": { - "model_module": "@jupyter-widgets/base", + "5d37596443204be6bcd6136e323f6371": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -4537,48 +4569,7 @@ "width": null } }, - "7d7f9b09fd8948aeb03c1dbf2d478c10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_acc045dcd22340a1aa850bf92a7794bf", - "placeholder": "​", - "style": "IPY_MODEL_ff4f3fe8e99c407baa5b103a8cfc74b4", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "7d984ba882024a65b4cc7ac84a05cf1c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "89db97aa9c1245e48c77b43c98bb64a3": { + "5f1606d28c5346ac9f07d5e95a6c9b19": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4631,7 +4622,7 @@ "width": null } }, - "8b7d5967010a41f4b355314d3b3413ab": { + "5f47d83341314e7484dd4a1c476e959a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4684,109 +4675,7 @@ "width": null } }, - "8f0f4f2d9a034c0a8b0a1c1925a1b101": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "941ce9ad8c97424cb79a597244bec856": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c4441bc179c948dbaf63745fd5339db9", - "IPY_MODEL_d4ec68d6d7404de59424763f956e9279", - "IPY_MODEL_be0f843e8c904780b8f73308960e251c" - ], - "layout": "IPY_MODEL_684f56c06e2e480dbed6d94583e476df", - "tabbable": null, - "tooltip": null - } - }, - "94b8951060044a1e8f2a5b393ca3f792": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aa9fb2e619544d8490cf14f3f48a2ca2", - "placeholder": "​", - "style": "IPY_MODEL_980993549b624b93ae0db2dc0a0d0b5f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 69.34it/s]" - } - }, - "94db0caa47204974a39e0a523a5b69c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "959b817fbb114a9e890d7983af5c432d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_47c0a2e2c08f41fa932e4d3510cf3321", - "placeholder": "​", - "style": "IPY_MODEL_d5a021298a5a41abb0d50a4ae62bdd72", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.67it/s]" - } - }, - "95f32a089f50405db08df9049d211b92": { + "60e9e582b0ee420fa155e5e44172804b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4802,76 +4691,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_98aa27ce1f334a4191a9e63c69d2ae62", + "layout": "IPY_MODEL_2c8fb816c24f461a87e88c13ea2d5e7b", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a921453ed5e345c09fa15b2a1298e842", + "style": "IPY_MODEL_76eefe09f60241cda500e42429968706", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "96ff32312f7742aeb716f1d90bfd8939": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "980993549b624b93ae0db2dc0a0d0b5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9871b5f7841e40b7b5b6a2ad2f86b73b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e140bde4557a4845a4a3ac3440fefa26", - "placeholder": "​", - "style": "IPY_MODEL_3ec9e101e728416b96ade8af4b353a97", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "98aa27ce1f334a4191a9e63c69d2ae62": { + "6197ff93b4fa40808248599d93f5c984": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4924,7 +4754,7 @@ "width": null } }, - "9a43abc8cf5246dda1009a29cbae7e73": { + "62ebde7282f7479fbd2b7537e8076921": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4977,7 +4807,25 @@ "width": null } }, - "9b2a462c96b44e9fa35b645021bd9248": { + "63cc0b51e0ca404ab74b56439e727c1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "63dc1718605c431c87916ff089c9126e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5030,19 +4878,53 @@ "width": null } }, - "a14064f13d5343b7b132b5ade9c24842": { - "model_module": "@jupyter-widgets/base", + "666c35e2f507419cbec3de6eae2d10cc": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "669a87ffa0804cb984109163e06bc97e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6bcbf75853f24a10ae9d21dfa0480c1e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, @@ -5083,80 +4965,31 @@ "width": null } }, - "a142975958ff4b2cad4590acf21a0a3c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a617844ca06a4b038b2151bb7ce298a1": { + "6c4fa066416d431b934093b5c1c09e92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f821357e595f4ca38a424c9e3f5d299f", - "placeholder": "​", - "style": "IPY_MODEL_df479c2691dd477ea60c8d480aa40146", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d5676ccfeaa1447d9da7722fa341ba26", + "IPY_MODEL_6dff2c0cfdfc4db3bbefc9b52b587b8e", + "IPY_MODEL_20ee2947e30b4aa9b4f5109f6ddca340" + ], + "layout": "IPY_MODEL_11525a22afa84e1887346e3dd76517b9", "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "a888587666494decbbe7362ef51c4360": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a8b1d69fac364e84a1a604e84c3231c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "a8e024e32d0b467f937cf2a14529e0f5": { + "6dff2c0cfdfc4db3bbefc9b52b587b8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5172,33 +5005,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fd584adfa5e941a19bb84f6c01afeb43", - "max": 40.0, + "layout": "IPY_MODEL_2d3d915f8f5e41c5b3d8ab73dca213a5", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8f0f4f2d9a034c0a8b0a1c1925a1b101", + "style": "IPY_MODEL_87582e61b9cb4e9680c516078351ce7c", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 60000.0 } }, - "a921453ed5e345c09fa15b2a1298e842": { - "model_module": "@jupyter-widgets/controls", + "6fed4d1ac3864697a0bd6b5397b39495": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "aa9fb2e619544d8490cf14f3f48a2ca2": { + "71b7420f5cd14457bfa0b87efccc9c05": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5251,33 +5121,7 @@ "width": null } }, - "abcf516432254e4197b54c5ee9c763e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_252b057d91724b6b88e578ea7fc213e6", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ed38884aa0c84e858c2bef44384fefc9", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "ac031ef893ee4aeb87e743b8e1775247": { + "73696b1983324cb98faa2ce59dc94d2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5295,7 +5139,7 @@ "text_color": null } }, - "ac1ea6f6c52747968d5385d35424f38b": { + "7427f18a5d12435a9009f38e543f19cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5313,31 +5157,7 @@ "text_color": null } }, - "acbb7092c3624d1db7690371aa52add2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9871b5f7841e40b7b5b6a2ad2f86b73b", - "IPY_MODEL_0237fc1c9c674141a63a8bcefabd3c0e", - "IPY_MODEL_4a2dc9eac02a4796bfd4529f0513d431" - ], - "layout": "IPY_MODEL_b31ac7ef70e9473c82534b7318a230c9", - "tabbable": null, - "tooltip": null - } - }, - "acc045dcd22340a1aa850bf92a7794bf": { + "76de5ca2fa1249aa8cb5710551b6a562": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5390,7 +5210,23 @@ "width": null } }, - "b1a02e86cc73489bb7e568486d88a431": { + "76eefe09f60241cda500e42429968706": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7745327f0901441ba796ba14e4ef8276": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5405,145 +5241,74 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bd91eeb1954746fda5e366a67747b3dc", + "layout": "IPY_MODEL_4e289c6545004f19baecd316e52073f9", "placeholder": "​", - "style": "IPY_MODEL_b962fe7aed724007aa9a48692d14a26b", + "style": "IPY_MODEL_022a5539811d4ef4a5917a095a442b0a", "tabbable": null, "tooltip": null, "value": "100%" } }, - "b2365870067d44d6b5105d0c496b2126": { + "7aac8551062c45a8b108500e2fcc01dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b1a02e86cc73489bb7e568486d88a431", - "IPY_MODEL_36feb2aef1534178bb2dbcbf6b946ff7", - "IPY_MODEL_959b817fbb114a9e890d7983af5c432d" - ], - "layout": "IPY_MODEL_39dbd179be3c4805a3ddc7cad4b34039", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_218f4f99495b4725854f005a980a0ff3", + "placeholder": "​", + "style": "IPY_MODEL_73696b1983324cb98faa2ce59dc94d2c", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "b31ac7ef70e9473c82534b7318a230c9": { - "model_module": "@jupyter-widgets/base", + "7d37a64c15134a108cba8379798ae4d0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b46a1363729b48059321407b875ad014": { - "model_module": "@jupyter-widgets/base", + "82d0be814c0c408ab9be9805cf00040f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b73d0c4a1e654a91b4881b847789996e": { + "82e5e0bb0c464d08acaae9250679d29e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5561,7 +5326,7 @@ "text_color": null } }, - "b962fe7aed724007aa9a48692d14a26b": { + "845f490603cf43fab1470355c530b1be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5579,7 +5344,7 @@ "text_color": null } }, - "bd91eeb1954746fda5e366a67747b3dc": { + "872bfa2226a648608f94302897bc7c9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5632,74 +5397,57 @@ "width": null } }, - "bdeec52dde7748b18173217ce71db12d": { + "87582e61b9cb4e9680c516078351ce7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "be0f843e8c904780b8f73308960e251c": { + "89b1af0b30e24ee19ba38f122601a1e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e85811b9ad7c4bf9b9139c939f76b80a", - "placeholder": "​", - "style": "IPY_MODEL_1438aefcb1954444a1ba55b60068090f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 68.23it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bf69103f82c74950ad6857f7df5c1a99": { + "8d41da02797a44be950d6df141a2e6bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1dd724e0910b4f7c80212bbb67ec3a3b", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_94db0caa47204974a39e0a523a5b69c7", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c183d98069af4e1685066fcf9bf9f439": { + "8df85f76da8649cfbccfa1c0068aaf8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5715,7 +5463,7 @@ "description_width": "" } }, - "c37bcdd5c3a9410794b5bd476f75eb15": { + "917d37e2fb4a467691de41fe485451cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5768,74 +5516,7 @@ "width": null } }, - "c3b8280a11034b0aa4273074e780b399": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_71e640a6dfc34efc931e5050b2f3e078", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_edd5c206866a4af1b8383a9a3455b33d", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "c4441bc179c948dbaf63745fd5339db9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc67c0e53c514155915b00cf61da1298", - "placeholder": "​", - "style": "IPY_MODEL_62a8fe332c374e019a0ae4b4f12662b2", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "c5c1a7a5ae3e4b02a9abf31eefbd9177": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c84bd8318fd340aaad20371f1ed8809b": { + "91950c0bcb2740f8a7e3250090c59627": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5888,30 +5569,25 @@ "width": null } }, - "c924a4e7e21c40a1864bab29593d9666": { + "944ed72f9f024716a1d42af42d6315c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5230aa385bd5482f8d614bcd55368004", - "placeholder": "​", - "style": "IPY_MODEL_18bf252547db40668b5119a052fbf176", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c9408e5139af465fb02ad5c2dc833cfa": { + "96db9363484c4bd09fd40833fa416c06": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5964,48 +5640,49 @@ "width": null } }, - "ccc47a7716054ec6a518ebe66dae7afc": { + "97cd621e5da54cc4b64856540bbf7d2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_095317e43eff464c9a9c23d53f74a00e", - "placeholder": "​", - "style": "IPY_MODEL_ce7504e184994954b31519d9b5afe4f8", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ce7504e184994954b31519d9b5afe4f8": { + "9f4d5b7eec004dbaa67e62a50d94b93e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6197ff93b4fa40808248599d93f5c984", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3a3f9f7d7af74789bf6fd23f77934191", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "ceabb90f3e3f4c1ab5d36061d2985ff8": { + "9fc2ff8358464da4898f5021a45c6af2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6058,60 +5735,138 @@ "width": null } }, - "d0f931314b6f483e8330ce7c88763d45": { - "model_module": "@jupyter-widgets/base", + "a1abdc92909647fdb525f4307b139ac7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a3934424b8274dfda77300003c4f697d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_91950c0bcb2740f8a7e3250090c59627", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8df85f76da8649cfbccfa1c0068aaf8c", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "a5f145f8422a44f09de3e928688a15a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c1021aa78b5349d389bd0022742331dd", + "placeholder": "​", + "style": "IPY_MODEL_a914a9132e3d41a69a46d5e78a594560", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 111MB/s]" + } + }, + "a914a9132e3d41a69a46d5e78a594560": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aaaf2f099c414c3d88cf506869f40da7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b298dac4a8ea4679ac9a9d160d59f6fd", + "placeholder": "​", + "style": "IPY_MODEL_a1abdc92909647fdb525f4307b139ac7", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.38it/s]" + } + }, + "aca48f810d994af79b8d6fe6434ef1fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3472e3abdb354f0ab8677c636bf83988", + "placeholder": "​", + "style": "IPY_MODEL_fd63d5555e5b49eb8659ed29c6eb5088", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 57.36it/s]" } }, - "d1d25b2e9b7e4c2eb61c230d6b390772": { + "af012957d95649cf85734bafb7942eec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6164,7 +5919,39 @@ "width": null } }, - "d21001f7b25f4acbbc31cfbd59b2ba47": { + "af8e08537e6845d68a420828a2115fc9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b10674dd471b49e1b18bffacf5f474a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b298dac4a8ea4679ac9a9d160d59f6fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6217,51 +6004,69 @@ "width": null } }, - "d4ec68d6d7404de59424763f956e9279": { + "b935e1faab844c31ba256b77cbdb37aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b966f8f2ffa445eb941dfb2268c89631": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b0ca1e4dd9640c0a26e8aa415ac822a", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a142975958ff4b2cad4590acf21a0a3c", + "layout": "IPY_MODEL_bb44b9ce9fa64b929c83d3fdc942cbbc", + "placeholder": "​", + "style": "IPY_MODEL_c6c36924e7f64daf86ff799462113a38", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "Computing checksums: 100%" } }, - "d5a021298a5a41abb0d50a4ae62bdd72": { + "baaeab7bafd84bf8bf85ffdd408e6192": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_917d37e2fb4a467691de41fe485451cb", + "placeholder": "​", + "style": "IPY_MODEL_82d0be814c0c408ab9be9805cf00040f", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 90.2MB/s]" } }, - "da26fb7cb3794119885a0986cdaf8de4": { + "bb44b9ce9fa64b929c83d3fdc942cbbc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6314,7 +6119,31 @@ "width": null } }, - "dabe39fbba934d8f8c0e6e9182b73a98": { + "bce4e34808954d08a06d5d174764aee5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f6fd54d345fc407e9484e773cd8b719d", + "IPY_MODEL_d6c93b54161b4156846fc102963a0bed", + "IPY_MODEL_f824e1bb6c54415a9e3a51a43f2fe95d" + ], + "layout": "IPY_MODEL_40dfab2e743747dbadd6570d2e079713", + "tabbable": null, + "tooltip": null + } + }, + "c000e319e1f14a42a9d34a24ae03e60b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6367,58 +6196,37 @@ "width": null } }, - "df1c2cca8aa242e38c59b789fe49ddab": { + "c05f2b974c274efd9a144075da56fefe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_da26fb7cb3794119885a0986cdaf8de4", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f611499a9a644e6fabd43827631fdf90", + "layout": "IPY_MODEL_37d0d01d7d504c0cb0e26530ccffd2a1", + "placeholder": "​", + "style": "IPY_MODEL_cc4222bbe4d84d6b944f194226e6a1c5", "tabbable": null, "tooltip": null, - "value": 5175617.0 + "value": "100%" } }, - "df479c2691dd477ea60c8d480aa40146": { - "model_module": "@jupyter-widgets/controls", + "c1021aa78b5349d389bd0022742331dd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e140bde4557a4845a4a3ac3440fefa26": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -6464,39 +6272,7 @@ "width": null } }, - "e2ee0d1d1607494090968dc7a5f79759": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e57a0342bddc444998ca173ef87bc923": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e599a68ef8604f3e8468b2eb13c60f60": { + "c315accc62e5455c845331742c69b7c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6549,30 +6325,49 @@ "width": null } }, - "e6247be16e9841a5b16276cc6ca69fa4": { + "c3a7eece24944ea4981012166d0b749a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a14064f13d5343b7b132b5ade9c24842", - "placeholder": "​", - "style": "IPY_MODEL_7a9da79872b74c7fb3a7c929d226b788", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c05f2b974c274efd9a144075da56fefe", + "IPY_MODEL_60e9e582b0ee420fa155e5e44172804b", + "IPY_MODEL_24686fdaeeaa46a580a090c918c7f7ca" + ], + "layout": "IPY_MODEL_39c16fb112464b499605cae4482559a7", "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "tooltip": null + } + }, + "c6c36924e7f64daf86ff799462113a38": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e85811b9ad7c4bf9b9139c939f76b80a": { + "c8215d6f5bd14751b0b2f1cb56365ce5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6625,7 +6420,7 @@ "width": null } }, - "ea6439aab21f4714bd98e4c002cb6a7a": { + "c8ae712e5cef4b04905e71ea13873708": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6641,7 +6436,7 @@ "description_width": "" } }, - "ecec9d1359284dc683b8a3bb22fae4ef": { + "c8c53041a1ce4588a91b83b814620238": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6694,46 +6489,49 @@ "width": null } }, - "ed38884aa0c84e858c2bef44384fefc9": { + "cc4222bbe4d84d6b944f194226e6a1c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ed74f726f9564b52ae6db0cc0bf7394b": { + "ce9901284426434a9b5f9a77243c05c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0258ca92517d4064b1e10ed47bfd0f77", - "placeholder": "​", - "style": "IPY_MODEL_0f44211192aa45ff9cec2924e9b58981", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_495edd1074194c85944da749ec7852b2", + "IPY_MODEL_e6bb4f0f5a68468a874164fa61cfd1f3", + "IPY_MODEL_1831d40cb4a04cc4bbb40208e779827e" + ], + "layout": "IPY_MODEL_6bcbf75853f24a10ae9d21dfa0480c1e", "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 94.2MB/s]" + "tooltip": null } }, - "edd5c206866a4af1b8383a9a3455b33d": { + "cfe01eaf64174fc4bb0b7d6ccfe9bb17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6749,60 +6547,30 @@ "description_width": "" } }, - "edebf4dd738f4a93a10a304b0f471be1": { - "model_module": "@jupyter-widgets/base", + "d43acaf76c9b4515a193fcace6ca8aaa": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2246bac18cf44debb7306213e2002733", + "placeholder": "​", + "style": "IPY_MODEL_e95ff083c50246e88aadbd35212f7609", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" } }, - "ef8c9f43e9994ca092d389d9a4c75642": { + "d5676ccfeaa1447d9da7722fa341ba26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6817,15 +6585,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c37bcdd5c3a9410794b5bd476f75eb15", + "layout": "IPY_MODEL_42773b5f76c34e61868db78342b935a6", "placeholder": "​", - "style": "IPY_MODEL_18269600391947c78d26ddf20eb1da4b", + "style": "IPY_MODEL_7d37a64c15134a108cba8379798ae4d0", "tabbable": null, "tooltip": null, "value": "100%" } }, - "efdf9c9d5f09412d93fa022f9dda8384": { + "d5ab6588d9cc4f3295dbc28b87046ed6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6840,15 +6608,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0e8d1e66524c4d5e9179cec37443c2c4", + "layout": "IPY_MODEL_76de5ca2fa1249aa8cb5710551b6a562", "placeholder": "​", - "style": "IPY_MODEL_7833323298714a439ea84326d930c571", + "style": "IPY_MODEL_944ed72f9f024716a1d42af42d6315c4", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 40/40 [00:00<00:00, 61.84it/s]" } }, - "f200022fa3d04827b6854b1dde47714a": { + "d6c93b54161b4156846fc102963a0bed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_96db9363484c4bd09fd40833fa416c06", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c8ae712e5cef4b04905e71ea13873708", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "d778b05f38954be28b3edc6439910f1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6901,47 +6695,7 @@ "width": null } }, - "f611499a9a644e6fabd43827631fdf90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f7564a055b104dcfad12b4171b8c013a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e6247be16e9841a5b16276cc6ca69fa4", - "IPY_MODEL_44c3a24bfa1f4435ae53d3e0b9707ba3", - "IPY_MODEL_5db4ef33284248a9bb6224b370238ce7" - ], - "layout": "IPY_MODEL_e599a68ef8604f3e8468b2eb13c60f60", - "tabbable": null, - "tooltip": null - } - }, - "f821357e595f4ca38a424c9e3f5d299f": { + "da313c9e533d43eab2e4dac8d439d89c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6994,7 +6748,57 @@ "width": null } }, - "fc0db40965324730b6961d28391dc736": { + "dc441233f50146f79f4696e33e1a2e71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5d37596443204be6bcd6136e323f6371", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_97cd621e5da54cc4b64856540bbf7d2e", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "df3eb5942e94463d8ef4681e64d74811": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2c929ad8554c41adae3f846e887126a9", + "IPY_MODEL_0e1d5d923db140b79ce608e49c658c8e", + "IPY_MODEL_d5ab6588d9cc4f3295dbc28b87046ed6" + ], + "layout": "IPY_MODEL_482fa1922e9b4cf2a55d712feb0cd072", + "tabbable": null, + "tooltip": null + } + }, + "e4124874f7634d89b713f8086c6b9fb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7009,15 +6813,83 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d1d25b2e9b7e4c2eb61c230d6b390772", + "layout": "IPY_MODEL_da313c9e533d43eab2e4dac8d439d89c", "placeholder": "​", - "style": "IPY_MODEL_33e73e606ca84a6cab2b23fba6e6359f", + "style": "IPY_MODEL_3728b7e4bb3647009c00ea004c324537", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Generating train split: 100%" + } + }, + "e6bb4f0f5a68468a874164fa61cfd1f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_357e79d135684cc6893e5770511df3f2", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_112338fbe8834ffa8fcdd127fc2890ac", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "fc67c0e53c514155915b00cf61da1298": { + "e95ff083c50246e88aadbd35212f7609": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "eb73512244bd426c86fb781343718302": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7aac8551062c45a8b108500e2fcc01dd", + "IPY_MODEL_f065da6c735a448694bcec833413f303", + "IPY_MODEL_baaeab7bafd84bf8bf85ffdd408e6192" + ], + "layout": "IPY_MODEL_872bfa2226a648608f94302897bc7c9d", + "tabbable": null, + "tooltip": null + } + }, + "ee1e394f14cd4ef989b5327b6e6a0df6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7070,7 +6942,7 @@ "width": null } }, - "fd584adfa5e941a19bb84f6c01afeb43": { + "eec15bd98bbd4bedab467256e46b7d09": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7123,31 +6995,141 @@ "width": null } }, - "fd83501a7a8245c7ac9fda5f0e9df22d": { + "f065da6c735a448694bcec833413f303": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fc0db40965324730b6961d28391dc736", - "IPY_MODEL_95f32a089f50405db08df9049d211b92", - "IPY_MODEL_7196bb31a21340ceab84e211abc9a8a9" - ], - "layout": "IPY_MODEL_c84bd8318fd340aaad20371f1ed8809b", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_45e594f3272c48318b356614c06b5136", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b935e1faab844c31ba256b77cbdb37aa", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 30931277.0 } }, - "fe73c9a35c0b4dbea9ce5e56707e4e5b": { + "f2e5b8603ad84a5cbabba1479e79a8df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_71b7420f5cd14457bfa0b87efccc9c05", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_666c35e2f507419cbec3de6eae2d10cc", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "f6fd54d345fc407e9484e773cd8b719d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23dc414451ce47e491f7cbd01d7a353c", + "placeholder": "​", + "style": "IPY_MODEL_845f490603cf43fab1470355c530b1be", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f72fb6920e9c496ebcbe08f7fa09ddef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f824e1bb6c54415a9e3a51a43f2fe95d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c8215d6f5bd14751b0b2f1cb56365ce5", + "placeholder": "​", + "style": "IPY_MODEL_50a99f479b834de3829ff306301d2cf1", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.74it/s]" + } + }, + "fc64d71f06b74f21814960209fa06868": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fc6faff9e7c34cc48db0dc3c6dba89b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7200,7 +7182,25 @@ "width": null } }, - "ff4f3fe8e99c407baa5b103a8cfc74b4": { + "fd3228089d8c403f82370ef418e46dd0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fd63d5555e5b49eb8659ed29c6eb5088": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index d94a4b865..1e9fa48cd 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:54.098841Z", - "iopub.status.busy": "2024-05-24T14:14:54.098352Z", - "iopub.status.idle": "2024-05-24T14:14:55.207876Z", - "shell.execute_reply": "2024-05-24T14:14:55.207310Z" + "iopub.execute_input": "2024-05-24T14:44:52.322424Z", + "iopub.status.busy": "2024-05-24T14:44:52.322241Z", + "iopub.status.idle": "2024-05-24T14:44:53.606935Z", + "shell.execute_reply": "2024-05-24T14:44:53.606311Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:55.210580Z", - "iopub.status.busy": "2024-05-24T14:14:55.210160Z", - "iopub.status.idle": "2024-05-24T14:14:55.228856Z", - "shell.execute_reply": "2024-05-24T14:14:55.228428Z" + "iopub.execute_input": "2024-05-24T14:44:53.609669Z", + "iopub.status.busy": "2024-05-24T14:44:53.609194Z", + "iopub.status.idle": "2024-05-24T14:44:53.628346Z", + "shell.execute_reply": "2024-05-24T14:44:53.627851Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:55.231119Z", - "iopub.status.busy": "2024-05-24T14:14:55.230735Z", - "iopub.status.idle": "2024-05-24T14:14:55.254383Z", - "shell.execute_reply": "2024-05-24T14:14:55.253810Z" + "iopub.execute_input": "2024-05-24T14:44:53.630740Z", + "iopub.status.busy": "2024-05-24T14:44:53.630459Z", + "iopub.status.idle": "2024-05-24T14:44:53.654246Z", + "shell.execute_reply": "2024-05-24T14:44:53.653651Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:55.256653Z", - "iopub.status.busy": "2024-05-24T14:14:55.256294Z", - "iopub.status.idle": "2024-05-24T14:14:55.259887Z", - "shell.execute_reply": "2024-05-24T14:14:55.259428Z" + "iopub.execute_input": "2024-05-24T14:44:53.656447Z", + "iopub.status.busy": "2024-05-24T14:44:53.656255Z", + "iopub.status.idle": "2024-05-24T14:44:53.659848Z", + "shell.execute_reply": "2024-05-24T14:44:53.659404Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:55.261807Z", - "iopub.status.busy": "2024-05-24T14:14:55.261630Z", - "iopub.status.idle": "2024-05-24T14:14:55.269136Z", - "shell.execute_reply": "2024-05-24T14:14:55.268703Z" + "iopub.execute_input": "2024-05-24T14:44:53.661755Z", + "iopub.status.busy": "2024-05-24T14:44:53.661577Z", + "iopub.status.idle": "2024-05-24T14:44:53.669393Z", + "shell.execute_reply": "2024-05-24T14:44:53.668933Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:55.271101Z", - "iopub.status.busy": "2024-05-24T14:14:55.270927Z", - "iopub.status.idle": "2024-05-24T14:14:55.273579Z", - "shell.execute_reply": "2024-05-24T14:14:55.273122Z" + "iopub.execute_input": "2024-05-24T14:44:53.671545Z", + "iopub.status.busy": "2024-05-24T14:44:53.671333Z", + "iopub.status.idle": "2024-05-24T14:44:53.674178Z", + "shell.execute_reply": "2024-05-24T14:44:53.673621Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:55.275435Z", - "iopub.status.busy": "2024-05-24T14:14:55.275265Z", - "iopub.status.idle": "2024-05-24T14:14:58.280354Z", - "shell.execute_reply": "2024-05-24T14:14:58.279815Z" + "iopub.execute_input": "2024-05-24T14:44:53.676469Z", + "iopub.status.busy": "2024-05-24T14:44:53.676144Z", + "iopub.status.idle": "2024-05-24T14:44:56.693344Z", + "shell.execute_reply": "2024-05-24T14:44:56.692777Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:58.282716Z", - "iopub.status.busy": "2024-05-24T14:14:58.282530Z", - "iopub.status.idle": "2024-05-24T14:14:58.292216Z", - "shell.execute_reply": "2024-05-24T14:14:58.291659Z" + "iopub.execute_input": "2024-05-24T14:44:56.696218Z", + "iopub.status.busy": "2024-05-24T14:44:56.695783Z", + "iopub.status.idle": "2024-05-24T14:44:56.706071Z", + "shell.execute_reply": "2024-05-24T14:44:56.705482Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:58.294636Z", - "iopub.status.busy": "2024-05-24T14:14:58.294203Z", - "iopub.status.idle": "2024-05-24T14:14:59.988951Z", - "shell.execute_reply": "2024-05-24T14:14:59.988348Z" + "iopub.execute_input": "2024-05-24T14:44:56.708278Z", + "iopub.status.busy": "2024-05-24T14:44:56.707953Z", + "iopub.status.idle": "2024-05-24T14:44:58.804239Z", + "shell.execute_reply": "2024-05-24T14:44:58.803588Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:14:59.992630Z", - "iopub.status.busy": "2024-05-24T14:14:59.991299Z", - "iopub.status.idle": "2024-05-24T14:15:00.016536Z", - "shell.execute_reply": "2024-05-24T14:15:00.016018Z" + "iopub.execute_input": "2024-05-24T14:44:58.807444Z", + "iopub.status.busy": "2024-05-24T14:44:58.806724Z", + "iopub.status.idle": "2024-05-24T14:44:58.832941Z", + "shell.execute_reply": "2024-05-24T14:44:58.832373Z" }, "scrolled": true }, @@ -612,10 +612,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:00.020287Z", - "iopub.status.busy": "2024-05-24T14:15:00.019355Z", - "iopub.status.idle": "2024-05-24T14:15:00.030684Z", - "shell.execute_reply": "2024-05-24T14:15:00.030180Z" + "iopub.execute_input": "2024-05-24T14:44:58.835905Z", + "iopub.status.busy": "2024-05-24T14:44:58.835448Z", + "iopub.status.idle": "2024-05-24T14:44:58.846516Z", + "shell.execute_reply": "2024-05-24T14:44:58.845849Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:00.034213Z", - "iopub.status.busy": "2024-05-24T14:15:00.033273Z", - "iopub.status.idle": "2024-05-24T14:15:00.045968Z", - "shell.execute_reply": "2024-05-24T14:15:00.045484Z" + "iopub.execute_input": "2024-05-24T14:44:58.850825Z", + "iopub.status.busy": "2024-05-24T14:44:58.849766Z", + "iopub.status.idle": "2024-05-24T14:44:58.862770Z", + "shell.execute_reply": "2024-05-24T14:44:58.862129Z" } }, "outputs": [ @@ -851,10 +851,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:00.048338Z", - "iopub.status.busy": "2024-05-24T14:15:00.048161Z", - "iopub.status.idle": "2024-05-24T14:15:00.056107Z", - "shell.execute_reply": "2024-05-24T14:15:00.055668Z" + "iopub.execute_input": "2024-05-24T14:44:58.865319Z", + "iopub.status.busy": "2024-05-24T14:44:58.865073Z", + "iopub.status.idle": "2024-05-24T14:44:58.874937Z", + "shell.execute_reply": "2024-05-24T14:44:58.874304Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:00.058355Z", - "iopub.status.busy": "2024-05-24T14:15:00.058000Z", - "iopub.status.idle": "2024-05-24T14:15:00.066445Z", - "shell.execute_reply": "2024-05-24T14:15:00.065994Z" + "iopub.execute_input": "2024-05-24T14:44:58.877314Z", + "iopub.status.busy": "2024-05-24T14:44:58.877102Z", + "iopub.status.idle": "2024-05-24T14:44:58.887489Z", + "shell.execute_reply": "2024-05-24T14:44:58.886910Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:00.068436Z", - "iopub.status.busy": "2024-05-24T14:15:00.068115Z", - "iopub.status.idle": "2024-05-24T14:15:00.074549Z", - "shell.execute_reply": "2024-05-24T14:15:00.074120Z" + "iopub.execute_input": "2024-05-24T14:44:58.889910Z", + "iopub.status.busy": "2024-05-24T14:44:58.889415Z", + "iopub.status.idle": "2024-05-24T14:44:58.897311Z", + "shell.execute_reply": "2024-05-24T14:44:58.896787Z" } }, "outputs": [ @@ -1169,10 +1169,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:00.076621Z", - "iopub.status.busy": "2024-05-24T14:15:00.076315Z", - "iopub.status.idle": "2024-05-24T14:15:00.082670Z", - "shell.execute_reply": "2024-05-24T14:15:00.082227Z" + "iopub.execute_input": "2024-05-24T14:44:58.899745Z", + "iopub.status.busy": "2024-05-24T14:44:58.899204Z", + "iopub.status.idle": "2024-05-24T14:44:58.906944Z", + "shell.execute_reply": "2024-05-24T14:44:58.906340Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:00.084552Z", - "iopub.status.busy": "2024-05-24T14:15:00.084382Z", - "iopub.status.idle": "2024-05-24T14:15:00.090947Z", - "shell.execute_reply": "2024-05-24T14:15:00.090502Z" + "iopub.execute_input": "2024-05-24T14:44:58.909472Z", + "iopub.status.busy": "2024-05-24T14:44:58.909111Z", + "iopub.status.idle": "2024-05-24T14:44:58.916288Z", + "shell.execute_reply": "2024-05-24T14:44:58.915759Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 9845a47bc..6a1776511 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -772,7 +772,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'card_about_to_expire', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'change_pin', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone'}
    +Classes: {'supported_cards_and_currencies', 'card_about_to_expire', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'change_pin', 'lost_or_stolen_phone', 'getting_spare_card', 'cancel_transfer', 'card_payment_fee_charged'}
     

    Let’s view the i-th example in the dataset:

    diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 119953017..3b3ed73cf 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:02.537859Z", - "iopub.status.busy": "2024-05-24T14:15:02.537681Z", - "iopub.status.idle": "2024-05-24T14:15:05.194925Z", - "shell.execute_reply": "2024-05-24T14:15:05.194366Z" + "iopub.execute_input": "2024-05-24T14:45:02.150694Z", + "iopub.status.busy": "2024-05-24T14:45:02.150495Z", + "iopub.status.idle": "2024-05-24T14:45:05.178795Z", + "shell.execute_reply": "2024-05-24T14:45:05.178169Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:05.197442Z", - "iopub.status.busy": "2024-05-24T14:15:05.197040Z", - "iopub.status.idle": "2024-05-24T14:15:05.200272Z", - "shell.execute_reply": "2024-05-24T14:15:05.199820Z" + "iopub.execute_input": "2024-05-24T14:45:05.181684Z", + "iopub.status.busy": "2024-05-24T14:45:05.181189Z", + "iopub.status.idle": "2024-05-24T14:45:05.184914Z", + "shell.execute_reply": "2024-05-24T14:45:05.184370Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:05.202109Z", - "iopub.status.busy": "2024-05-24T14:15:05.201833Z", - "iopub.status.idle": "2024-05-24T14:15:05.204818Z", - "shell.execute_reply": "2024-05-24T14:15:05.204389Z" + "iopub.execute_input": "2024-05-24T14:45:05.187312Z", + "iopub.status.busy": "2024-05-24T14:45:05.186967Z", + "iopub.status.idle": "2024-05-24T14:45:05.190776Z", + "shell.execute_reply": "2024-05-24T14:45:05.190181Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:05.206788Z", - "iopub.status.busy": "2024-05-24T14:15:05.206459Z", - "iopub.status.idle": "2024-05-24T14:15:05.228334Z", - "shell.execute_reply": "2024-05-24T14:15:05.227878Z" + "iopub.execute_input": "2024-05-24T14:45:05.193180Z", + "iopub.status.busy": "2024-05-24T14:45:05.192739Z", + "iopub.status.idle": "2024-05-24T14:45:05.219200Z", + "shell.execute_reply": "2024-05-24T14:45:05.218614Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:05.230281Z", - "iopub.status.busy": "2024-05-24T14:15:05.230100Z", - "iopub.status.idle": "2024-05-24T14:15:05.233644Z", - "shell.execute_reply": "2024-05-24T14:15:05.233136Z" + "iopub.execute_input": "2024-05-24T14:45:05.221441Z", + "iopub.status.busy": "2024-05-24T14:45:05.221197Z", + "iopub.status.idle": "2024-05-24T14:45:05.225544Z", + "shell.execute_reply": "2024-05-24T14:45:05.225046Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'change_pin', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone'}\n" + "Classes: {'supported_cards_and_currencies', 'card_about_to_expire', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'change_pin', 'lost_or_stolen_phone', 'getting_spare_card', 'cancel_transfer', 'card_payment_fee_charged'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:05.235829Z", - "iopub.status.busy": "2024-05-24T14:15:05.235382Z", - "iopub.status.idle": "2024-05-24T14:15:05.238702Z", - "shell.execute_reply": "2024-05-24T14:15:05.238142Z" + "iopub.execute_input": "2024-05-24T14:45:05.227793Z", + "iopub.status.busy": "2024-05-24T14:45:05.227467Z", + "iopub.status.idle": "2024-05-24T14:45:05.230799Z", + "shell.execute_reply": "2024-05-24T14:45:05.230239Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:05.240705Z", - "iopub.status.busy": "2024-05-24T14:15:05.240437Z", - "iopub.status.idle": "2024-05-24T14:15:08.883034Z", - "shell.execute_reply": "2024-05-24T14:15:08.882468Z" + "iopub.execute_input": "2024-05-24T14:45:05.232988Z", + "iopub.status.busy": "2024-05-24T14:45:05.232655Z", + "iopub.status.idle": "2024-05-24T14:45:09.138023Z", + "shell.execute_reply": "2024-05-24T14:45:09.137388Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:08.885682Z", - "iopub.status.busy": "2024-05-24T14:15:08.885287Z", - "iopub.status.idle": "2024-05-24T14:15:09.760168Z", - "shell.execute_reply": "2024-05-24T14:15:09.759557Z" + "iopub.execute_input": "2024-05-24T14:45:09.141512Z", + "iopub.status.busy": "2024-05-24T14:45:09.141060Z", + "iopub.status.idle": "2024-05-24T14:45:10.072192Z", + "shell.execute_reply": "2024-05-24T14:45:10.071573Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:09.763180Z", - "iopub.status.busy": "2024-05-24T14:15:09.762785Z", - "iopub.status.idle": "2024-05-24T14:15:09.765729Z", - "shell.execute_reply": "2024-05-24T14:15:09.765234Z" + "iopub.execute_input": "2024-05-24T14:45:10.075252Z", + "iopub.status.busy": "2024-05-24T14:45:10.074858Z", + "iopub.status.idle": "2024-05-24T14:45:10.077888Z", + "shell.execute_reply": "2024-05-24T14:45:10.077385Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:09.768167Z", - "iopub.status.busy": "2024-05-24T14:15:09.767774Z", - "iopub.status.idle": "2024-05-24T14:15:11.328288Z", - "shell.execute_reply": "2024-05-24T14:15:11.327690Z" + "iopub.execute_input": "2024-05-24T14:45:10.081242Z", + "iopub.status.busy": "2024-05-24T14:45:10.080262Z", + "iopub.status.idle": "2024-05-24T14:45:11.865544Z", + "shell.execute_reply": "2024-05-24T14:45:11.864902Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:11.331273Z", - "iopub.status.busy": "2024-05-24T14:15:11.330654Z", - "iopub.status.idle": "2024-05-24T14:15:11.354286Z", - "shell.execute_reply": "2024-05-24T14:15:11.353755Z" + "iopub.execute_input": "2024-05-24T14:45:11.868779Z", + "iopub.status.busy": "2024-05-24T14:45:11.868082Z", + "iopub.status.idle": "2024-05-24T14:45:11.895768Z", + "shell.execute_reply": "2024-05-24T14:45:11.895204Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:11.356729Z", - "iopub.status.busy": "2024-05-24T14:15:11.356350Z", - "iopub.status.idle": "2024-05-24T14:15:11.365835Z", - "shell.execute_reply": "2024-05-24T14:15:11.365356Z" + "iopub.execute_input": "2024-05-24T14:45:11.898606Z", + "iopub.status.busy": "2024-05-24T14:45:11.898179Z", + "iopub.status.idle": "2024-05-24T14:45:11.907425Z", + "shell.execute_reply": "2024-05-24T14:45:11.906959Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:11.368224Z", - "iopub.status.busy": "2024-05-24T14:15:11.367853Z", - "iopub.status.idle": "2024-05-24T14:15:11.372217Z", - "shell.execute_reply": "2024-05-24T14:15:11.371648Z" + "iopub.execute_input": "2024-05-24T14:45:11.909748Z", + "iopub.status.busy": "2024-05-24T14:45:11.909552Z", + "iopub.status.idle": "2024-05-24T14:45:11.914142Z", + "shell.execute_reply": "2024-05-24T14:45:11.913672Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:11.374035Z", - "iopub.status.busy": "2024-05-24T14:15:11.373865Z", - "iopub.status.idle": "2024-05-24T14:15:11.380076Z", - "shell.execute_reply": "2024-05-24T14:15:11.379533Z" + "iopub.execute_input": "2024-05-24T14:45:11.916328Z", + "iopub.status.busy": "2024-05-24T14:45:11.915996Z", + "iopub.status.idle": "2024-05-24T14:45:11.922967Z", + "shell.execute_reply": "2024-05-24T14:45:11.922373Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:11.381912Z", - "iopub.status.busy": "2024-05-24T14:15:11.381737Z", - "iopub.status.idle": "2024-05-24T14:15:11.387963Z", - "shell.execute_reply": "2024-05-24T14:15:11.387516Z" + "iopub.execute_input": "2024-05-24T14:45:11.925259Z", + "iopub.status.busy": "2024-05-24T14:45:11.924925Z", + "iopub.status.idle": "2024-05-24T14:45:11.931878Z", + "shell.execute_reply": "2024-05-24T14:45:11.931307Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:11.390016Z", - "iopub.status.busy": "2024-05-24T14:15:11.389607Z", - "iopub.status.idle": "2024-05-24T14:15:11.395689Z", - "shell.execute_reply": "2024-05-24T14:15:11.395139Z" + "iopub.execute_input": "2024-05-24T14:45:11.934094Z", + "iopub.status.busy": "2024-05-24T14:45:11.933743Z", + "iopub.status.idle": "2024-05-24T14:45:11.940383Z", + "shell.execute_reply": "2024-05-24T14:45:11.939877Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:11.397792Z", - "iopub.status.busy": "2024-05-24T14:15:11.397394Z", - "iopub.status.idle": "2024-05-24T14:15:11.405737Z", - "shell.execute_reply": "2024-05-24T14:15:11.405184Z" + "iopub.execute_input": "2024-05-24T14:45:11.942819Z", + "iopub.status.busy": "2024-05-24T14:45:11.942451Z", + "iopub.status.idle": "2024-05-24T14:45:11.951803Z", + "shell.execute_reply": "2024-05-24T14:45:11.951216Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:11.407654Z", - "iopub.status.busy": "2024-05-24T14:15:11.407389Z", - "iopub.status.idle": "2024-05-24T14:15:11.412728Z", - "shell.execute_reply": "2024-05-24T14:15:11.412190Z" + "iopub.execute_input": "2024-05-24T14:45:11.954216Z", + "iopub.status.busy": "2024-05-24T14:45:11.953756Z", + "iopub.status.idle": "2024-05-24T14:45:11.960334Z", + "shell.execute_reply": "2024-05-24T14:45:11.959731Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:11.414846Z", - "iopub.status.busy": "2024-05-24T14:15:11.414441Z", - "iopub.status.idle": "2024-05-24T14:15:11.419708Z", - "shell.execute_reply": "2024-05-24T14:15:11.419162Z" + "iopub.execute_input": "2024-05-24T14:45:11.962552Z", + "iopub.status.busy": "2024-05-24T14:45:11.962215Z", + "iopub.status.idle": "2024-05-24T14:45:11.968585Z", + "shell.execute_reply": "2024-05-24T14:45:11.968064Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:11.421651Z", - "iopub.status.busy": "2024-05-24T14:15:11.421361Z", - "iopub.status.idle": "2024-05-24T14:15:11.424923Z", - "shell.execute_reply": "2024-05-24T14:15:11.424391Z" + "iopub.execute_input": "2024-05-24T14:45:11.970907Z", + "iopub.status.busy": "2024-05-24T14:45:11.970540Z", + "iopub.status.idle": "2024-05-24T14:45:11.974631Z", + "shell.execute_reply": "2024-05-24T14:45:11.974041Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:11.426952Z", - "iopub.status.busy": "2024-05-24T14:15:11.426663Z", - "iopub.status.idle": "2024-05-24T14:15:11.431827Z", - "shell.execute_reply": "2024-05-24T14:15:11.431290Z" + "iopub.execute_input": "2024-05-24T14:45:11.976819Z", + "iopub.status.busy": "2024-05-24T14:45:11.976633Z", + "iopub.status.idle": "2024-05-24T14:45:11.982658Z", + "shell.execute_reply": "2024-05-24T14:45:11.982008Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 36d924f66..0a647eebb 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:14.610940Z", - "iopub.status.busy": "2024-05-24T14:15:14.610753Z", - "iopub.status.idle": "2024-05-24T14:15:15.728888Z", - "shell.execute_reply": "2024-05-24T14:15:15.728288Z" + "iopub.execute_input": "2024-05-24T14:45:15.697439Z", + "iopub.status.busy": "2024-05-24T14:45:15.696972Z", + "iopub.status.idle": "2024-05-24T14:45:16.966680Z", + "shell.execute_reply": "2024-05-24T14:45:16.966064Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:15.731379Z", - "iopub.status.busy": "2024-05-24T14:15:15.731080Z", - "iopub.status.idle": "2024-05-24T14:15:15.733909Z", - "shell.execute_reply": "2024-05-24T14:15:15.733384Z" + "iopub.execute_input": "2024-05-24T14:45:16.969529Z", + "iopub.status.busy": "2024-05-24T14:45:16.969028Z", + "iopub.status.idle": "2024-05-24T14:45:16.972074Z", + "shell.execute_reply": "2024-05-24T14:45:16.971598Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:15.736141Z", - "iopub.status.busy": "2024-05-24T14:15:15.735843Z", - "iopub.status.idle": "2024-05-24T14:15:15.747936Z", - "shell.execute_reply": "2024-05-24T14:15:15.747398Z" + "iopub.execute_input": "2024-05-24T14:45:16.974146Z", + "iopub.status.busy": "2024-05-24T14:45:16.973963Z", + "iopub.status.idle": "2024-05-24T14:45:16.987306Z", + "shell.execute_reply": "2024-05-24T14:45:16.986785Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:15.750031Z", - "iopub.status.busy": "2024-05-24T14:15:15.749628Z", - "iopub.status.idle": "2024-05-24T14:15:19.525154Z", - "shell.execute_reply": "2024-05-24T14:15:19.524608Z" + "iopub.execute_input": "2024-05-24T14:45:16.989658Z", + "iopub.status.busy": "2024-05-24T14:45:16.989286Z", + "iopub.status.idle": "2024-05-24T14:45:21.303475Z", + "shell.execute_reply": "2024-05-24T14:45:21.302944Z" }, "id": "dhTHOg8Pyv5G" }, @@ -694,6 +694,9 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", + "\n", + "\n", + "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n" ] }, @@ -701,9 +704,6 @@ "name": "stdout", "output_type": "stream", "text": [ - "\n", - "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", - "\n", "------------------------------------------------------------\n", "| Generating a Cleanlab Dataset Health Summary |\n", "| for your dataset with 10,000 examples and 10 classes. |\n", diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 9170b51c3..bdfc5a617 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -812,13 +812,13 @@

    How can I find label issues in big datasets with limited memory?
    -
    +
    -
    +
    @@ -1763,7 +1763,7 @@

    Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

    Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

    diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 674094b79..73d86c7aa 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:21.500899Z", - "iopub.status.busy": "2024-05-24T14:15:21.500721Z", - "iopub.status.idle": "2024-05-24T14:15:22.604994Z", - "shell.execute_reply": "2024-05-24T14:15:22.604376Z" + "iopub.execute_input": "2024-05-24T14:45:23.942301Z", + "iopub.status.busy": "2024-05-24T14:45:23.941937Z", + "iopub.status.idle": "2024-05-24T14:45:25.204076Z", + "shell.execute_reply": "2024-05-24T14:45:25.203401Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:22.607764Z", - "iopub.status.busy": "2024-05-24T14:15:22.607483Z", - "iopub.status.idle": "2024-05-24T14:15:22.610976Z", - "shell.execute_reply": "2024-05-24T14:15:22.610514Z" + "iopub.execute_input": "2024-05-24T14:45:25.206952Z", + "iopub.status.busy": "2024-05-24T14:45:25.206597Z", + "iopub.status.idle": "2024-05-24T14:45:25.210512Z", + "shell.execute_reply": "2024-05-24T14:45:25.209901Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:22.613047Z", - "iopub.status.busy": "2024-05-24T14:15:22.612738Z", - "iopub.status.idle": "2024-05-24T14:15:25.566940Z", - "shell.execute_reply": "2024-05-24T14:15:25.566322Z" + "iopub.execute_input": "2024-05-24T14:45:25.213081Z", + "iopub.status.busy": "2024-05-24T14:45:25.212553Z", + "iopub.status.idle": "2024-05-24T14:45:28.515815Z", + "shell.execute_reply": "2024-05-24T14:45:28.515016Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:25.569953Z", - "iopub.status.busy": "2024-05-24T14:15:25.569272Z", - "iopub.status.idle": "2024-05-24T14:15:25.603615Z", - "shell.execute_reply": "2024-05-24T14:15:25.603034Z" + "iopub.execute_input": "2024-05-24T14:45:28.518988Z", + "iopub.status.busy": "2024-05-24T14:45:28.518284Z", + "iopub.status.idle": "2024-05-24T14:45:28.559173Z", + "shell.execute_reply": "2024-05-24T14:45:28.558547Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:25.606054Z", - "iopub.status.busy": "2024-05-24T14:15:25.605823Z", - "iopub.status.idle": "2024-05-24T14:15:25.636179Z", - "shell.execute_reply": "2024-05-24T14:15:25.635606Z" + "iopub.execute_input": "2024-05-24T14:45:28.562136Z", + "iopub.status.busy": "2024-05-24T14:45:28.561744Z", + "iopub.status.idle": "2024-05-24T14:45:28.600682Z", + "shell.execute_reply": "2024-05-24T14:45:28.599924Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:25.638766Z", - "iopub.status.busy": "2024-05-24T14:15:25.638538Z", - "iopub.status.idle": "2024-05-24T14:15:25.641621Z", - "shell.execute_reply": "2024-05-24T14:15:25.641086Z" + "iopub.execute_input": "2024-05-24T14:45:28.603843Z", + "iopub.status.busy": "2024-05-24T14:45:28.603149Z", + "iopub.status.idle": "2024-05-24T14:45:28.606730Z", + "shell.execute_reply": "2024-05-24T14:45:28.606244Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:25.643838Z", - "iopub.status.busy": "2024-05-24T14:15:25.643422Z", - "iopub.status.idle": "2024-05-24T14:15:25.646459Z", - "shell.execute_reply": "2024-05-24T14:15:25.645873Z" + "iopub.execute_input": "2024-05-24T14:45:28.608686Z", + "iopub.status.busy": "2024-05-24T14:45:28.608509Z", + "iopub.status.idle": "2024-05-24T14:45:28.611331Z", + "shell.execute_reply": "2024-05-24T14:45:28.610784Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:25.648605Z", - "iopub.status.busy": "2024-05-24T14:15:25.648313Z", - "iopub.status.idle": "2024-05-24T14:15:25.671140Z", - "shell.execute_reply": "2024-05-24T14:15:25.670588Z" + "iopub.execute_input": "2024-05-24T14:45:28.613651Z", + "iopub.status.busy": "2024-05-24T14:45:28.613169Z", + "iopub.status.idle": "2024-05-24T14:45:28.637572Z", + "shell.execute_reply": "2024-05-24T14:45:28.637012Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "95be6d8825d74eb086ac77473c4733d7", + "model_id": "c25ee9ca03ae4190a30c70dc003f572b", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "75451c5e653745b5a4c5f8a0da3c982c", + "model_id": "b37157a1177d4e14b65a669721bbce04", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:25.678485Z", - "iopub.status.busy": "2024-05-24T14:15:25.678305Z", - "iopub.status.idle": "2024-05-24T14:15:25.684711Z", - "shell.execute_reply": "2024-05-24T14:15:25.684289Z" + "iopub.execute_input": "2024-05-24T14:45:28.643467Z", + "iopub.status.busy": "2024-05-24T14:45:28.643026Z", + "iopub.status.idle": "2024-05-24T14:45:28.649817Z", + "shell.execute_reply": "2024-05-24T14:45:28.649281Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:25.686576Z", - "iopub.status.busy": "2024-05-24T14:15:25.686401Z", - "iopub.status.idle": "2024-05-24T14:15:25.689865Z", - "shell.execute_reply": "2024-05-24T14:15:25.689433Z" + "iopub.execute_input": "2024-05-24T14:45:28.652191Z", + "iopub.status.busy": "2024-05-24T14:45:28.651745Z", + "iopub.status.idle": "2024-05-24T14:45:28.655343Z", + "shell.execute_reply": "2024-05-24T14:45:28.654789Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:25.691988Z", - "iopub.status.busy": "2024-05-24T14:15:25.691734Z", - "iopub.status.idle": "2024-05-24T14:15:25.698101Z", - "shell.execute_reply": "2024-05-24T14:15:25.697624Z" + "iopub.execute_input": "2024-05-24T14:45:28.657662Z", + "iopub.status.busy": "2024-05-24T14:45:28.657267Z", + "iopub.status.idle": "2024-05-24T14:45:28.663917Z", + "shell.execute_reply": "2024-05-24T14:45:28.663352Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:25.700111Z", - "iopub.status.busy": "2024-05-24T14:15:25.699757Z", - "iopub.status.idle": "2024-05-24T14:15:25.734461Z", - "shell.execute_reply": "2024-05-24T14:15:25.733858Z" + "iopub.execute_input": "2024-05-24T14:45:28.666041Z", + "iopub.status.busy": "2024-05-24T14:45:28.665632Z", + "iopub.status.idle": "2024-05-24T14:45:28.704346Z", + "shell.execute_reply": "2024-05-24T14:45:28.703704Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:25.736986Z", - "iopub.status.busy": "2024-05-24T14:15:25.736621Z", - "iopub.status.idle": "2024-05-24T14:15:25.769327Z", - "shell.execute_reply": "2024-05-24T14:15:25.768748Z" + "iopub.execute_input": "2024-05-24T14:45:28.707066Z", + "iopub.status.busy": "2024-05-24T14:45:28.706771Z", + "iopub.status.idle": "2024-05-24T14:45:28.747826Z", + "shell.execute_reply": "2024-05-24T14:45:28.747158Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:25.772172Z", - "iopub.status.busy": "2024-05-24T14:15:25.771811Z", - "iopub.status.idle": "2024-05-24T14:15:25.893611Z", - "shell.execute_reply": "2024-05-24T14:15:25.892952Z" + "iopub.execute_input": "2024-05-24T14:45:28.750570Z", + "iopub.status.busy": "2024-05-24T14:45:28.750275Z", + "iopub.status.idle": "2024-05-24T14:45:28.875889Z", + "shell.execute_reply": "2024-05-24T14:45:28.875200Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:25.896270Z", - "iopub.status.busy": "2024-05-24T14:15:25.895732Z", - "iopub.status.idle": "2024-05-24T14:15:28.879430Z", - "shell.execute_reply": "2024-05-24T14:15:28.878794Z" + "iopub.execute_input": "2024-05-24T14:45:28.878977Z", + "iopub.status.busy": "2024-05-24T14:45:28.878163Z", + "iopub.status.idle": "2024-05-24T14:45:31.985806Z", + "shell.execute_reply": "2024-05-24T14:45:31.985131Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:28.881868Z", - "iopub.status.busy": "2024-05-24T14:15:28.881501Z", - "iopub.status.idle": "2024-05-24T14:15:28.938411Z", - "shell.execute_reply": "2024-05-24T14:15:28.937818Z" + "iopub.execute_input": "2024-05-24T14:45:31.988121Z", + "iopub.status.busy": "2024-05-24T14:45:31.987923Z", + "iopub.status.idle": "2024-05-24T14:45:32.051701Z", + "shell.execute_reply": "2024-05-24T14:45:32.051096Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:28.940739Z", - "iopub.status.busy": "2024-05-24T14:15:28.940435Z", - "iopub.status.idle": "2024-05-24T14:15:28.980230Z", - "shell.execute_reply": "2024-05-24T14:15:28.979695Z" + "iopub.execute_input": "2024-05-24T14:45:32.054153Z", + "iopub.status.busy": "2024-05-24T14:45:32.053648Z", + "iopub.status.idle": "2024-05-24T14:45:32.096076Z", + "shell.execute_reply": "2024-05-24T14:45:32.095399Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "b75573c2", + "id": "ff7e47bd", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "9fd8d8a2", + "id": "a545f6ae", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "08344775", + "id": "50a70af7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:28.982386Z", - "iopub.status.busy": "2024-05-24T14:15:28.982037Z", - "iopub.status.idle": "2024-05-24T14:15:29.079330Z", - "shell.execute_reply": "2024-05-24T14:15:29.078815Z" + "iopub.execute_input": "2024-05-24T14:45:32.098568Z", + "iopub.status.busy": "2024-05-24T14:45:32.098115Z", + "iopub.status.idle": "2024-05-24T14:45:32.196782Z", + "shell.execute_reply": "2024-05-24T14:45:32.196225Z" } }, "outputs": [ @@ -1354,7 +1354,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ...\n", + "Finding underperforming_group issues ..." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1387,7 +1394,7 @@ }, { "cell_type": "markdown", - "id": "02c6bb31", + "id": "a691acfb", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1403,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "9ec9741d", + "id": "42a1edf9", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:29.081929Z", - "iopub.status.busy": "2024-05-24T14:15:29.081580Z", - "iopub.status.idle": "2024-05-24T14:15:29.148290Z", - "shell.execute_reply": "2024-05-24T14:15:29.147695Z" + "iopub.execute_input": "2024-05-24T14:45:32.199476Z", + "iopub.status.busy": "2024-05-24T14:45:32.199146Z", + "iopub.status.idle": "2024-05-24T14:45:32.267744Z", + "shell.execute_reply": "2024-05-24T14:45:32.266765Z" } }, "outputs": [ @@ -1438,7 +1445,7 @@ }, { "cell_type": "markdown", - "id": "347508a2", + "id": "4e418536", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1449,13 +1456,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "9516494e", + "id": "fbeae666", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:29.150776Z", - "iopub.status.busy": "2024-05-24T14:15:29.150395Z", - "iopub.status.idle": "2024-05-24T14:15:29.157995Z", - "shell.execute_reply": "2024-05-24T14:15:29.157454Z" + "iopub.execute_input": "2024-05-24T14:45:32.270605Z", + "iopub.status.busy": "2024-05-24T14:45:32.270108Z", + "iopub.status.idle": "2024-05-24T14:45:32.277724Z", + "shell.execute_reply": "2024-05-24T14:45:32.277295Z" } }, "outputs": [], @@ -1557,7 +1564,7 @@ }, { "cell_type": "markdown", - "id": "ff19877a", + "id": "9c68285e", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1572,13 +1579,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "de4255d6", + "id": "dcd5866d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:29.159891Z", - "iopub.status.busy": "2024-05-24T14:15:29.159717Z", - "iopub.status.idle": "2024-05-24T14:15:29.178542Z", - "shell.execute_reply": "2024-05-24T14:15:29.177993Z" + "iopub.execute_input": "2024-05-24T14:45:32.280067Z", + "iopub.status.busy": "2024-05-24T14:45:32.279633Z", + "iopub.status.idle": "2024-05-24T14:45:32.299756Z", + "shell.execute_reply": "2024-05-24T14:45:32.299136Z" } }, "outputs": [ @@ -1595,7 +1602,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7826/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7751/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1629,13 +1636,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "5e24a20c", + "id": "1b1d5a8e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:29.180403Z", - "iopub.status.busy": "2024-05-24T14:15:29.180233Z", - "iopub.status.idle": "2024-05-24T14:15:29.183704Z", - "shell.execute_reply": "2024-05-24T14:15:29.183243Z" + "iopub.execute_input": "2024-05-24T14:45:32.302026Z", + "iopub.status.busy": "2024-05-24T14:45:32.301839Z", + "iopub.status.idle": "2024-05-24T14:45:32.305204Z", + "shell.execute_reply": "2024-05-24T14:45:32.304598Z" } }, "outputs": [ @@ -1730,49 +1737,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03afadb4c6c4471e9dc7c82ebe9425f4": { + "0a07dd6e5b154aa5b2b3e48d0d1ea5b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2055afcae0104786b552ba4cb44d0ce3": { + "0bdb86b88ecf4162923f9d8f32bfe265": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_543c1dc50c924a2faaa03f85b3e31748", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_03afadb4c6c4471e9dc7c82ebe9425f4", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "41a0b74e527d4f439023f22628f1ce21": { + "0fd0312a616141b99a22d183bb6e8ee0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1825,30 +1826,7 @@ "width": null } }, - "4d4b416cbfc24e9dab45e68aa55b1085": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d53b0190174f43f682bb78a9d8b577b4", - "placeholder": "​", - "style": "IPY_MODEL_b265e85a61944cca8548cb4346752b36", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1083827.49it/s]" - } - }, - "4f24d86154104162b95978dadeba8ac7": { + "2642705f51cf493eb63991a9d16ed090": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1864,7 +1842,7 @@ "description_width": "" } }, - "543c1dc50c924a2faaa03f85b3e31748": { + "31e17ab21477475ab536e55c0139ba51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1917,25 +1895,7 @@ "width": null } }, - "58427c00d0c846e4ab0a91f7a9dfc39e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "58c72bb480a24523b4989589fe322f96": { + "4778be0ce20343a5881130ec91fbb7c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1950,15 +1910,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dd2f93207e2640bf8c6f9ca0606694ed", + "layout": "IPY_MODEL_58135baa1059410d86742e110f5fa13d", "placeholder": "​", - "style": "IPY_MODEL_dd7c66241c494bb0a34a05aeefa55689", + "style": "IPY_MODEL_f4a3632b06a142a0a6d1844aab4471ac", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1687169.75it/s]" + "value": " 10000/? [00:00<00:00, 1582099.51it/s]" } }, - "6e9469e44de8423488982b4c1977099e": { + "58135baa1059410d86742e110f5fa13d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2011,7 +1971,7 @@ "width": null } }, - "6eeda2800efa4273aa19bfa1f246b071": { + "61238ee91acc48e6ba1119a825da35c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2064,31 +2024,7 @@ "width": null } }, - "75451c5e653745b5a4c5f8a0da3c982c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8f67aa3deea94aa0b2f087deb2385e0b", - "IPY_MODEL_a608b74bbe7b4190a5f05ffef74ad6ab", - "IPY_MODEL_58c72bb480a24523b4989589fe322f96" - ], - "layout": "IPY_MODEL_8d8dd1a9cd4a496c91d437db5e76f3d7", - "tabbable": null, - "tooltip": null - } - }, - "780b3eec30f547da8e5af3ae490d08f7": { + "9c0d928c99cb4b7fa84df898179e2e01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2106,7 +2042,7 @@ "text_color": null } }, - "8d8dd1a9cd4a496c91d437db5e76f3d7": { + "9ed9d15968d84cde8e294330b4b29c2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2159,7 +2095,7 @@ "width": null } }, - "8f67aa3deea94aa0b2f087deb2385e0b": { + "ab5b7c88580c48939fc15289253188f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2174,15 +2110,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6eeda2800efa4273aa19bfa1f246b071", + "layout": "IPY_MODEL_61238ee91acc48e6ba1119a825da35c5", "placeholder": "​", - "style": "IPY_MODEL_58427c00d0c846e4ab0a91f7a9dfc39e", + "style": "IPY_MODEL_0bdb86b88ecf4162923f9d8f32bfe265", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " + "value": "number of examples processed for estimating thresholds: " } }, - "95be6d8825d74eb086ac77473c4733d7": { + "b37157a1177d4e14b65a669721bbce04": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2197,16 +2133,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a8403cf2ed26407c8007d3e8961fe7fe", - "IPY_MODEL_2055afcae0104786b552ba4cb44d0ce3", - "IPY_MODEL_4d4b416cbfc24e9dab45e68aa55b1085" + "IPY_MODEL_dcd90034d2594ab1983d1534e6967b0b", + "IPY_MODEL_f95ed77e7b554c00ab366d8f948433f7", + "IPY_MODEL_4778be0ce20343a5881130ec91fbb7c5" ], - "layout": "IPY_MODEL_9ff0ed8ceccd45a5b11cf6cd2f4e807b", + "layout": "IPY_MODEL_31e17ab21477475ab536e55c0139ba51", "tabbable": null, "tooltip": null } }, - "9ff0ed8ceccd45a5b11cf6cd2f4e807b": { + "c25ee9ca03ae4190a30c70dc003f572b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ab5b7c88580c48939fc15289253188f8", + "IPY_MODEL_f580b30391664d279200f3f63cf06432", + "IPY_MODEL_da54ce03623a48bb813dc847618ae5ba" + ], + "layout": "IPY_MODEL_f43b4efd0f834922bfca66837220a697", + "tabbable": null, + "tooltip": null + } + }, + "d1200d857c6541829645cb789faeefbb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2259,74 +2219,7 @@ "width": null } }, - "a608b74bbe7b4190a5f05ffef74ad6ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_41a0b74e527d4f439023f22628f1ce21", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4f24d86154104162b95978dadeba8ac7", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "a8403cf2ed26407c8007d3e8961fe7fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6e9469e44de8423488982b4c1977099e", - "placeholder": "​", - "style": "IPY_MODEL_780b3eec30f547da8e5af3ae490d08f7", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "b265e85a61944cca8548cb4346752b36": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d53b0190174f43f682bb78a9d8b577b4": { + "d5960c9988414c39872318b7cc29b702": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2379,7 +2272,69 @@ "width": null } }, - "dd2f93207e2640bf8c6f9ca0606694ed": { + "da54ce03623a48bb813dc847618ae5ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1200d857c6541829645cb789faeefbb", + "placeholder": "​", + "style": "IPY_MODEL_9c0d928c99cb4b7fa84df898179e2e01", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1035017.27it/s]" + } + }, + "dcd90034d2594ab1983d1534e6967b0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0fd0312a616141b99a22d183bb6e8ee0", + "placeholder": "​", + "style": "IPY_MODEL_0a07dd6e5b154aa5b2b3e48d0d1ea5b2", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "ea010bdd329a49a580087d469b88474a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f43b4efd0f834922bfca66837220a697": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2432,7 +2387,7 @@ "width": null } }, - "dd7c66241c494bb0a34a05aeefa55689": { + "f4a3632b06a142a0a6d1844aab4471ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2449,6 +2404,58 @@ "font_size": null, "text_color": null } + }, + "f580b30391664d279200f3f63cf06432": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9ed9d15968d84cde8e294330b4b29c2b", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2642705f51cf493eb63991a9d16ed090", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "f95ed77e7b554c00ab366d8f948433f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d5960c9988414c39872318b7cc29b702", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ea010bdd329a49a580087d469b88474a", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } } }, "version_major": 2, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 65a23428b..b1771722e 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:32.588557Z", - "iopub.status.busy": "2024-05-24T14:15:32.588136Z", - "iopub.status.idle": "2024-05-24T14:15:33.743753Z", - "shell.execute_reply": "2024-05-24T14:15:33.743131Z" + "iopub.execute_input": "2024-05-24T14:45:35.902783Z", + "iopub.status.busy": "2024-05-24T14:45:35.902368Z", + "iopub.status.idle": "2024-05-24T14:45:37.237474Z", + "shell.execute_reply": "2024-05-24T14:45:37.236809Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:33.746551Z", - "iopub.status.busy": "2024-05-24T14:15:33.746128Z", - "iopub.status.idle": "2024-05-24T14:15:33.925358Z", - "shell.execute_reply": "2024-05-24T14:15:33.924834Z" + "iopub.execute_input": "2024-05-24T14:45:37.240637Z", + "iopub.status.busy": "2024-05-24T14:45:37.240091Z", + "iopub.status.idle": "2024-05-24T14:45:37.441541Z", + "shell.execute_reply": "2024-05-24T14:45:37.440936Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:33.927957Z", - "iopub.status.busy": "2024-05-24T14:15:33.927603Z", - "iopub.status.idle": "2024-05-24T14:15:33.940006Z", - "shell.execute_reply": "2024-05-24T14:15:33.939555Z" + "iopub.execute_input": "2024-05-24T14:45:37.444513Z", + "iopub.status.busy": "2024-05-24T14:45:37.444091Z", + "iopub.status.idle": "2024-05-24T14:45:37.458230Z", + "shell.execute_reply": "2024-05-24T14:45:37.457708Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:33.942061Z", - "iopub.status.busy": "2024-05-24T14:15:33.941722Z", - "iopub.status.idle": "2024-05-24T14:15:34.175429Z", - "shell.execute_reply": "2024-05-24T14:15:34.174892Z" + "iopub.execute_input": "2024-05-24T14:45:37.460856Z", + "iopub.status.busy": "2024-05-24T14:45:37.460470Z", + "iopub.status.idle": "2024-05-24T14:45:37.709353Z", + "shell.execute_reply": "2024-05-24T14:45:37.708715Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:34.177843Z", - "iopub.status.busy": "2024-05-24T14:15:34.177499Z", - "iopub.status.idle": "2024-05-24T14:15:34.203711Z", - "shell.execute_reply": "2024-05-24T14:15:34.203271Z" + "iopub.execute_input": "2024-05-24T14:45:37.711923Z", + "iopub.status.busy": "2024-05-24T14:45:37.711481Z", + "iopub.status.idle": "2024-05-24T14:45:37.739036Z", + "shell.execute_reply": "2024-05-24T14:45:37.738482Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:34.205820Z", - "iopub.status.busy": "2024-05-24T14:15:34.205489Z", - "iopub.status.idle": "2024-05-24T14:15:35.845385Z", - "shell.execute_reply": "2024-05-24T14:15:35.844697Z" + "iopub.execute_input": "2024-05-24T14:45:37.741959Z", + "iopub.status.busy": "2024-05-24T14:45:37.741456Z", + "iopub.status.idle": "2024-05-24T14:45:39.656313Z", + "shell.execute_reply": "2024-05-24T14:45:39.655526Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:35.847771Z", - "iopub.status.busy": "2024-05-24T14:15:35.847394Z", - "iopub.status.idle": "2024-05-24T14:15:35.865283Z", - "shell.execute_reply": "2024-05-24T14:15:35.864728Z" + "iopub.execute_input": "2024-05-24T14:45:39.658832Z", + "iopub.status.busy": "2024-05-24T14:45:39.658447Z", + "iopub.status.idle": "2024-05-24T14:45:39.677418Z", + "shell.execute_reply": "2024-05-24T14:45:39.676923Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:35.867487Z", - "iopub.status.busy": "2024-05-24T14:15:35.867136Z", - "iopub.status.idle": "2024-05-24T14:15:37.270536Z", - "shell.execute_reply": "2024-05-24T14:15:37.269735Z" + "iopub.execute_input": "2024-05-24T14:45:39.679629Z", + "iopub.status.busy": "2024-05-24T14:45:39.679434Z", + "iopub.status.idle": "2024-05-24T14:45:41.217735Z", + "shell.execute_reply": "2024-05-24T14:45:41.217102Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:37.273122Z", - "iopub.status.busy": "2024-05-24T14:15:37.272502Z", - "iopub.status.idle": "2024-05-24T14:15:37.286252Z", - "shell.execute_reply": "2024-05-24T14:15:37.285684Z" + "iopub.execute_input": "2024-05-24T14:45:41.220608Z", + "iopub.status.busy": "2024-05-24T14:45:41.219914Z", + "iopub.status.idle": "2024-05-24T14:45:41.234865Z", + "shell.execute_reply": "2024-05-24T14:45:41.234268Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:37.288317Z", - "iopub.status.busy": "2024-05-24T14:15:37.288019Z", - "iopub.status.idle": "2024-05-24T14:15:37.359164Z", - "shell.execute_reply": "2024-05-24T14:15:37.358617Z" + "iopub.execute_input": "2024-05-24T14:45:41.237385Z", + "iopub.status.busy": "2024-05-24T14:45:41.237029Z", + "iopub.status.idle": "2024-05-24T14:45:41.322296Z", + "shell.execute_reply": "2024-05-24T14:45:41.321660Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:37.361379Z", - "iopub.status.busy": "2024-05-24T14:15:37.361095Z", - "iopub.status.idle": "2024-05-24T14:15:37.570682Z", - "shell.execute_reply": "2024-05-24T14:15:37.570119Z" + "iopub.execute_input": "2024-05-24T14:45:41.324748Z", + "iopub.status.busy": "2024-05-24T14:45:41.324436Z", + "iopub.status.idle": "2024-05-24T14:45:41.542708Z", + "shell.execute_reply": "2024-05-24T14:45:41.542057Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:37.573097Z", - "iopub.status.busy": "2024-05-24T14:15:37.572578Z", - "iopub.status.idle": "2024-05-24T14:15:37.589292Z", - "shell.execute_reply": "2024-05-24T14:15:37.588853Z" + "iopub.execute_input": "2024-05-24T14:45:41.545535Z", + "iopub.status.busy": "2024-05-24T14:45:41.545041Z", + "iopub.status.idle": "2024-05-24T14:45:41.564088Z", + "shell.execute_reply": "2024-05-24T14:45:41.563509Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:37.591309Z", - "iopub.status.busy": "2024-05-24T14:15:37.591132Z", - "iopub.status.idle": "2024-05-24T14:15:37.600708Z", - "shell.execute_reply": "2024-05-24T14:15:37.600257Z" + "iopub.execute_input": "2024-05-24T14:45:41.566407Z", + "iopub.status.busy": "2024-05-24T14:45:41.566075Z", + "iopub.status.idle": "2024-05-24T14:45:41.577153Z", + "shell.execute_reply": "2024-05-24T14:45:41.576625Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:37.602825Z", - "iopub.status.busy": "2024-05-24T14:15:37.602401Z", - "iopub.status.idle": "2024-05-24T14:15:37.685066Z", - "shell.execute_reply": "2024-05-24T14:15:37.684453Z" + "iopub.execute_input": "2024-05-24T14:45:41.579244Z", + "iopub.status.busy": "2024-05-24T14:45:41.579057Z", + "iopub.status.idle": "2024-05-24T14:45:41.674263Z", + "shell.execute_reply": "2024-05-24T14:45:41.673605Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:37.687480Z", - "iopub.status.busy": "2024-05-24T14:15:37.687256Z", - "iopub.status.idle": "2024-05-24T14:15:37.810902Z", - "shell.execute_reply": "2024-05-24T14:15:37.810280Z" + "iopub.execute_input": "2024-05-24T14:45:41.676743Z", + "iopub.status.busy": "2024-05-24T14:45:41.676488Z", + "iopub.status.idle": "2024-05-24T14:45:41.824363Z", + "shell.execute_reply": "2024-05-24T14:45:41.823652Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:37.813085Z", - "iopub.status.busy": "2024-05-24T14:15:37.812859Z", - "iopub.status.idle": "2024-05-24T14:15:37.816644Z", - "shell.execute_reply": "2024-05-24T14:15:37.816193Z" + "iopub.execute_input": "2024-05-24T14:45:41.827312Z", + "iopub.status.busy": "2024-05-24T14:45:41.826779Z", + "iopub.status.idle": "2024-05-24T14:45:41.831665Z", + "shell.execute_reply": "2024-05-24T14:45:41.830972Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:37.818609Z", - "iopub.status.busy": "2024-05-24T14:15:37.818277Z", - "iopub.status.idle": "2024-05-24T14:15:37.821878Z", - "shell.execute_reply": "2024-05-24T14:15:37.821322Z" + "iopub.execute_input": "2024-05-24T14:45:41.834209Z", + "iopub.status.busy": "2024-05-24T14:45:41.833704Z", + "iopub.status.idle": "2024-05-24T14:45:41.838333Z", + "shell.execute_reply": "2024-05-24T14:45:41.837802Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:37.823971Z", - "iopub.status.busy": "2024-05-24T14:15:37.823650Z", - "iopub.status.idle": "2024-05-24T14:15:37.860389Z", - "shell.execute_reply": "2024-05-24T14:15:37.859899Z" + "iopub.execute_input": "2024-05-24T14:45:41.840850Z", + "iopub.status.busy": "2024-05-24T14:45:41.840480Z", + "iopub.status.idle": "2024-05-24T14:45:41.882153Z", + "shell.execute_reply": "2024-05-24T14:45:41.881494Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:37.862545Z", - "iopub.status.busy": "2024-05-24T14:15:37.862184Z", - "iopub.status.idle": "2024-05-24T14:15:37.904027Z", - "shell.execute_reply": "2024-05-24T14:15:37.903552Z" + "iopub.execute_input": "2024-05-24T14:45:41.884720Z", + "iopub.status.busy": "2024-05-24T14:45:41.884260Z", + "iopub.status.idle": "2024-05-24T14:45:41.932073Z", + "shell.execute_reply": "2024-05-24T14:45:41.931491Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:37.905989Z", - "iopub.status.busy": "2024-05-24T14:15:37.905806Z", - "iopub.status.idle": "2024-05-24T14:15:38.001606Z", - "shell.execute_reply": "2024-05-24T14:15:38.001029Z" + "iopub.execute_input": "2024-05-24T14:45:41.934601Z", + "iopub.status.busy": "2024-05-24T14:45:41.934080Z", + "iopub.status.idle": "2024-05-24T14:45:42.039810Z", + "shell.execute_reply": "2024-05-24T14:45:42.039091Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:38.004225Z", - "iopub.status.busy": "2024-05-24T14:15:38.003843Z", - "iopub.status.idle": "2024-05-24T14:15:38.095198Z", - "shell.execute_reply": "2024-05-24T14:15:38.094594Z" + "iopub.execute_input": "2024-05-24T14:45:42.042892Z", + "iopub.status.busy": "2024-05-24T14:45:42.042477Z", + "iopub.status.idle": "2024-05-24T14:45:42.155162Z", + "shell.execute_reply": "2024-05-24T14:45:42.154527Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:38.097529Z", - "iopub.status.busy": "2024-05-24T14:15:38.097295Z", - "iopub.status.idle": "2024-05-24T14:15:38.305739Z", - "shell.execute_reply": "2024-05-24T14:15:38.305163Z" + "iopub.execute_input": "2024-05-24T14:45:42.157567Z", + "iopub.status.busy": "2024-05-24T14:45:42.157196Z", + "iopub.status.idle": "2024-05-24T14:45:42.376022Z", + "shell.execute_reply": "2024-05-24T14:45:42.375460Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:38.307858Z", - "iopub.status.busy": "2024-05-24T14:15:38.307675Z", - "iopub.status.idle": "2024-05-24T14:15:38.488216Z", - "shell.execute_reply": "2024-05-24T14:15:38.487658Z" + "iopub.execute_input": "2024-05-24T14:45:42.378461Z", + "iopub.status.busy": "2024-05-24T14:45:42.378058Z", + "iopub.status.idle": "2024-05-24T14:45:42.596412Z", + "shell.execute_reply": "2024-05-24T14:45:42.595745Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:38.490384Z", - "iopub.status.busy": "2024-05-24T14:15:38.490152Z", - "iopub.status.idle": "2024-05-24T14:15:38.496486Z", - "shell.execute_reply": "2024-05-24T14:15:38.495924Z" + "iopub.execute_input": "2024-05-24T14:45:42.599281Z", + "iopub.status.busy": "2024-05-24T14:45:42.598781Z", + "iopub.status.idle": "2024-05-24T14:45:42.605708Z", + "shell.execute_reply": "2024-05-24T14:45:42.605222Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:38.498775Z", - "iopub.status.busy": "2024-05-24T14:15:38.498349Z", - "iopub.status.idle": "2024-05-24T14:15:38.712574Z", - "shell.execute_reply": "2024-05-24T14:15:38.711990Z" + "iopub.execute_input": "2024-05-24T14:45:42.607916Z", + "iopub.status.busy": "2024-05-24T14:45:42.607570Z", + "iopub.status.idle": "2024-05-24T14:45:42.830768Z", + "shell.execute_reply": "2024-05-24T14:45:42.830187Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:38.714681Z", - "iopub.status.busy": "2024-05-24T14:15:38.714499Z", - "iopub.status.idle": "2024-05-24T14:15:39.775177Z", - "shell.execute_reply": "2024-05-24T14:15:39.774623Z" + "iopub.execute_input": "2024-05-24T14:45:42.833197Z", + "iopub.status.busy": "2024-05-24T14:45:42.832842Z", + "iopub.status.idle": "2024-05-24T14:45:43.936085Z", + "shell.execute_reply": "2024-05-24T14:45:43.935497Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index ab2d9d25a..3c82ba2a8 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:42.948422Z", - "iopub.status.busy": "2024-05-24T14:15:42.948240Z", - "iopub.status.idle": "2024-05-24T14:15:44.047144Z", - "shell.execute_reply": "2024-05-24T14:15:44.046578Z" + "iopub.execute_input": "2024-05-24T14:45:47.637995Z", + "iopub.status.busy": "2024-05-24T14:45:47.637636Z", + "iopub.status.idle": "2024-05-24T14:45:48.881560Z", + "shell.execute_reply": "2024-05-24T14:45:48.880914Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:44.049662Z", - "iopub.status.busy": "2024-05-24T14:15:44.049291Z", - "iopub.status.idle": "2024-05-24T14:15:44.052288Z", - "shell.execute_reply": "2024-05-24T14:15:44.051869Z" + "iopub.execute_input": "2024-05-24T14:45:48.884508Z", + "iopub.status.busy": "2024-05-24T14:45:48.884182Z", + "iopub.status.idle": "2024-05-24T14:45:48.887469Z", + "shell.execute_reply": "2024-05-24T14:45:48.886957Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:44.054326Z", - "iopub.status.busy": "2024-05-24T14:15:44.054035Z", - "iopub.status.idle": "2024-05-24T14:15:44.061975Z", - "shell.execute_reply": "2024-05-24T14:15:44.061546Z" + "iopub.execute_input": "2024-05-24T14:45:48.889806Z", + "iopub.status.busy": "2024-05-24T14:45:48.889421Z", + "iopub.status.idle": "2024-05-24T14:45:48.897739Z", + "shell.execute_reply": "2024-05-24T14:45:48.897155Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:44.063960Z", - "iopub.status.busy": "2024-05-24T14:15:44.063573Z", - "iopub.status.idle": "2024-05-24T14:15:44.111546Z", - "shell.execute_reply": "2024-05-24T14:15:44.111028Z" + "iopub.execute_input": "2024-05-24T14:45:48.899888Z", + "iopub.status.busy": "2024-05-24T14:45:48.899666Z", + "iopub.status.idle": "2024-05-24T14:45:48.949890Z", + "shell.execute_reply": "2024-05-24T14:45:48.949240Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:44.113831Z", - "iopub.status.busy": "2024-05-24T14:15:44.113608Z", - "iopub.status.idle": "2024-05-24T14:15:44.131538Z", - "shell.execute_reply": "2024-05-24T14:15:44.131084Z" + "iopub.execute_input": "2024-05-24T14:45:48.952943Z", + "iopub.status.busy": "2024-05-24T14:45:48.952490Z", + "iopub.status.idle": "2024-05-24T14:45:48.971410Z", + "shell.execute_reply": "2024-05-24T14:45:48.970800Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:44.133764Z", - "iopub.status.busy": "2024-05-24T14:15:44.133360Z", - "iopub.status.idle": "2024-05-24T14:15:44.137171Z", - "shell.execute_reply": "2024-05-24T14:15:44.136746Z" + "iopub.execute_input": "2024-05-24T14:45:48.973982Z", + "iopub.status.busy": "2024-05-24T14:45:48.973594Z", + "iopub.status.idle": "2024-05-24T14:45:48.978134Z", + "shell.execute_reply": "2024-05-24T14:45:48.977650Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:44.139391Z", - "iopub.status.busy": "2024-05-24T14:15:44.138987Z", - "iopub.status.idle": "2024-05-24T14:15:44.152537Z", - "shell.execute_reply": "2024-05-24T14:15:44.152126Z" + "iopub.execute_input": "2024-05-24T14:45:48.980444Z", + "iopub.status.busy": "2024-05-24T14:45:48.980066Z", + "iopub.status.idle": "2024-05-24T14:45:48.995202Z", + "shell.execute_reply": "2024-05-24T14:45:48.994573Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:44.154417Z", - "iopub.status.busy": "2024-05-24T14:15:44.154241Z", - "iopub.status.idle": "2024-05-24T14:15:44.179924Z", - "shell.execute_reply": "2024-05-24T14:15:44.179460Z" + "iopub.execute_input": "2024-05-24T14:45:48.997879Z", + "iopub.status.busy": "2024-05-24T14:45:48.997502Z", + "iopub.status.idle": "2024-05-24T14:45:49.025680Z", + "shell.execute_reply": "2024-05-24T14:45:49.025176Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:44.181797Z", - "iopub.status.busy": "2024-05-24T14:15:44.181626Z", - "iopub.status.idle": "2024-05-24T14:15:45.859864Z", - "shell.execute_reply": "2024-05-24T14:15:45.859306Z" + "iopub.execute_input": "2024-05-24T14:45:49.028402Z", + "iopub.status.busy": "2024-05-24T14:45:49.027995Z", + "iopub.status.idle": "2024-05-24T14:45:50.936044Z", + "shell.execute_reply": "2024-05-24T14:45:50.935399Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:45.862345Z", - "iopub.status.busy": "2024-05-24T14:15:45.862010Z", - "iopub.status.idle": "2024-05-24T14:15:45.869001Z", - "shell.execute_reply": "2024-05-24T14:15:45.868520Z" + "iopub.execute_input": "2024-05-24T14:45:50.939063Z", + "iopub.status.busy": "2024-05-24T14:45:50.938427Z", + "iopub.status.idle": "2024-05-24T14:45:50.946316Z", + "shell.execute_reply": "2024-05-24T14:45:50.945818Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:45.870916Z", - "iopub.status.busy": "2024-05-24T14:15:45.870736Z", - "iopub.status.idle": "2024-05-24T14:15:45.883500Z", - "shell.execute_reply": "2024-05-24T14:15:45.882950Z" + "iopub.execute_input": "2024-05-24T14:45:50.948648Z", + "iopub.status.busy": "2024-05-24T14:45:50.948273Z", + "iopub.status.idle": "2024-05-24T14:45:50.962319Z", + "shell.execute_reply": "2024-05-24T14:45:50.961789Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:45.885635Z", - "iopub.status.busy": "2024-05-24T14:15:45.885334Z", - "iopub.status.idle": "2024-05-24T14:15:45.891765Z", - "shell.execute_reply": "2024-05-24T14:15:45.891314Z" + "iopub.execute_input": "2024-05-24T14:45:50.964650Z", + "iopub.status.busy": "2024-05-24T14:45:50.964272Z", + "iopub.status.idle": "2024-05-24T14:45:50.971681Z", + "shell.execute_reply": "2024-05-24T14:45:50.971152Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:45.893806Z", - "iopub.status.busy": "2024-05-24T14:15:45.893473Z", - "iopub.status.idle": "2024-05-24T14:15:45.896635Z", - "shell.execute_reply": "2024-05-24T14:15:45.896206Z" + "iopub.execute_input": "2024-05-24T14:45:50.973911Z", + "iopub.status.busy": "2024-05-24T14:45:50.973538Z", + "iopub.status.idle": "2024-05-24T14:45:50.976449Z", + "shell.execute_reply": "2024-05-24T14:45:50.975941Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:45.898530Z", - "iopub.status.busy": "2024-05-24T14:15:45.898269Z", - "iopub.status.idle": "2024-05-24T14:15:45.901697Z", - "shell.execute_reply": "2024-05-24T14:15:45.901200Z" + "iopub.execute_input": "2024-05-24T14:45:50.978617Z", + "iopub.status.busy": "2024-05-24T14:45:50.978256Z", + "iopub.status.idle": "2024-05-24T14:45:50.981995Z", + "shell.execute_reply": "2024-05-24T14:45:50.981445Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:45.903722Z", - "iopub.status.busy": "2024-05-24T14:15:45.903400Z", - "iopub.status.idle": "2024-05-24T14:15:45.906438Z", - "shell.execute_reply": "2024-05-24T14:15:45.906017Z" + "iopub.execute_input": "2024-05-24T14:45:50.984351Z", + "iopub.status.busy": "2024-05-24T14:45:50.983986Z", + "iopub.status.idle": "2024-05-24T14:45:50.986919Z", + "shell.execute_reply": "2024-05-24T14:45:50.986446Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:45.908414Z", - "iopub.status.busy": "2024-05-24T14:15:45.908088Z", - "iopub.status.idle": "2024-05-24T14:15:45.912358Z", - "shell.execute_reply": "2024-05-24T14:15:45.911912Z" + "iopub.execute_input": "2024-05-24T14:45:50.989114Z", + "iopub.status.busy": "2024-05-24T14:45:50.988780Z", + "iopub.status.idle": "2024-05-24T14:45:50.993475Z", + "shell.execute_reply": "2024-05-24T14:45:50.992965Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:45.914449Z", - "iopub.status.busy": "2024-05-24T14:15:45.914129Z", - "iopub.status.idle": "2024-05-24T14:15:45.942613Z", - "shell.execute_reply": "2024-05-24T14:15:45.942038Z" + "iopub.execute_input": "2024-05-24T14:45:50.995845Z", + "iopub.status.busy": "2024-05-24T14:45:50.995468Z", + "iopub.status.idle": "2024-05-24T14:45:51.025569Z", + "shell.execute_reply": "2024-05-24T14:45:51.025055Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:45.944630Z", - "iopub.status.busy": "2024-05-24T14:15:45.944333Z", - "iopub.status.idle": "2024-05-24T14:15:45.948968Z", - "shell.execute_reply": "2024-05-24T14:15:45.948421Z" + "iopub.execute_input": "2024-05-24T14:45:51.028002Z", + "iopub.status.busy": "2024-05-24T14:45:51.027804Z", + "iopub.status.idle": "2024-05-24T14:45:51.033097Z", + "shell.execute_reply": "2024-05-24T14:45:51.032490Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 9e04bc5c4..1335742a2 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:48.738014Z", - "iopub.status.busy": "2024-05-24T14:15:48.737837Z", - "iopub.status.idle": "2024-05-24T14:15:49.916412Z", - "shell.execute_reply": "2024-05-24T14:15:49.915848Z" + "iopub.execute_input": "2024-05-24T14:45:53.967692Z", + "iopub.status.busy": "2024-05-24T14:45:53.967509Z", + "iopub.status.idle": "2024-05-24T14:45:55.209043Z", + "shell.execute_reply": "2024-05-24T14:45:55.208396Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:49.919035Z", - "iopub.status.busy": "2024-05-24T14:15:49.918581Z", - "iopub.status.idle": "2024-05-24T14:15:50.114354Z", - "shell.execute_reply": "2024-05-24T14:15:50.113720Z" + "iopub.execute_input": "2024-05-24T14:45:55.211808Z", + "iopub.status.busy": "2024-05-24T14:45:55.211288Z", + "iopub.status.idle": "2024-05-24T14:45:55.424110Z", + "shell.execute_reply": "2024-05-24T14:45:55.423521Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:50.117044Z", - "iopub.status.busy": "2024-05-24T14:15:50.116712Z", - "iopub.status.idle": "2024-05-24T14:15:50.130485Z", - "shell.execute_reply": "2024-05-24T14:15:50.129994Z" + "iopub.execute_input": "2024-05-24T14:45:55.427220Z", + "iopub.status.busy": "2024-05-24T14:45:55.426641Z", + "iopub.status.idle": "2024-05-24T14:45:55.441786Z", + "shell.execute_reply": "2024-05-24T14:45:55.441219Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:50.132653Z", - "iopub.status.busy": "2024-05-24T14:15:50.132306Z", - "iopub.status.idle": "2024-05-24T14:15:52.832041Z", - "shell.execute_reply": "2024-05-24T14:15:52.831417Z" + "iopub.execute_input": "2024-05-24T14:45:55.444528Z", + "iopub.status.busy": "2024-05-24T14:45:55.444066Z", + "iopub.status.idle": "2024-05-24T14:45:58.188392Z", + "shell.execute_reply": "2024-05-24T14:45:58.187789Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:52.834561Z", - "iopub.status.busy": "2024-05-24T14:15:52.834210Z", - "iopub.status.idle": "2024-05-24T14:15:54.187652Z", - "shell.execute_reply": "2024-05-24T14:15:54.187090Z" + "iopub.execute_input": "2024-05-24T14:45:58.190697Z", + "iopub.status.busy": "2024-05-24T14:45:58.190350Z", + "iopub.status.idle": "2024-05-24T14:45:59.557721Z", + "shell.execute_reply": "2024-05-24T14:45:59.557126Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:54.190141Z", - "iopub.status.busy": "2024-05-24T14:15:54.189749Z", - "iopub.status.idle": "2024-05-24T14:15:54.193570Z", - "shell.execute_reply": "2024-05-24T14:15:54.193060Z" + "iopub.execute_input": "2024-05-24T14:45:59.560465Z", + "iopub.status.busy": "2024-05-24T14:45:59.560079Z", + "iopub.status.idle": "2024-05-24T14:45:59.564016Z", + "shell.execute_reply": "2024-05-24T14:45:59.563443Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:54.195503Z", - "iopub.status.busy": "2024-05-24T14:15:54.195327Z", - "iopub.status.idle": "2024-05-24T14:15:55.934562Z", - "shell.execute_reply": "2024-05-24T14:15:55.933945Z" + "iopub.execute_input": "2024-05-24T14:45:59.566139Z", + "iopub.status.busy": "2024-05-24T14:45:59.565861Z", + "iopub.status.idle": "2024-05-24T14:46:01.646644Z", + "shell.execute_reply": "2024-05-24T14:46:01.645899Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:55.937052Z", - "iopub.status.busy": "2024-05-24T14:15:55.936537Z", - "iopub.status.idle": "2024-05-24T14:15:55.945614Z", - "shell.execute_reply": "2024-05-24T14:15:55.945139Z" + "iopub.execute_input": "2024-05-24T14:46:01.649903Z", + "iopub.status.busy": "2024-05-24T14:46:01.649295Z", + "iopub.status.idle": "2024-05-24T14:46:01.659529Z", + "shell.execute_reply": "2024-05-24T14:46:01.658852Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:55.947699Z", - "iopub.status.busy": "2024-05-24T14:15:55.947359Z", - "iopub.status.idle": "2024-05-24T14:15:58.564133Z", - "shell.execute_reply": "2024-05-24T14:15:58.563509Z" + "iopub.execute_input": "2024-05-24T14:46:01.661781Z", + "iopub.status.busy": "2024-05-24T14:46:01.661584Z", + "iopub.status.idle": "2024-05-24T14:46:04.373517Z", + "shell.execute_reply": "2024-05-24T14:46:04.372906Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:58.566507Z", - "iopub.status.busy": "2024-05-24T14:15:58.566092Z", - "iopub.status.idle": "2024-05-24T14:15:58.569829Z", - "shell.execute_reply": "2024-05-24T14:15:58.569273Z" + "iopub.execute_input": "2024-05-24T14:46:04.376108Z", + "iopub.status.busy": "2024-05-24T14:46:04.375734Z", + "iopub.status.idle": "2024-05-24T14:46:04.379696Z", + "shell.execute_reply": "2024-05-24T14:46:04.379207Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:58.571967Z", - "iopub.status.busy": "2024-05-24T14:15:58.571532Z", - "iopub.status.idle": "2024-05-24T14:15:58.575279Z", - "shell.execute_reply": "2024-05-24T14:15:58.574729Z" + "iopub.execute_input": "2024-05-24T14:46:04.381809Z", + "iopub.status.busy": "2024-05-24T14:46:04.381457Z", + "iopub.status.idle": "2024-05-24T14:46:04.385124Z", + "shell.execute_reply": "2024-05-24T14:46:04.384648Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:15:58.577360Z", - "iopub.status.busy": "2024-05-24T14:15:58.577097Z", - "iopub.status.idle": "2024-05-24T14:15:58.580337Z", - "shell.execute_reply": "2024-05-24T14:15:58.579784Z" + "iopub.execute_input": "2024-05-24T14:46:04.387243Z", + "iopub.status.busy": "2024-05-24T14:46:04.386890Z", + "iopub.status.idle": "2024-05-24T14:46:04.390163Z", + "shell.execute_reply": "2024-05-24T14:46:04.389700Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index d2275a329..853843d7c 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:00.912813Z", - "iopub.status.busy": "2024-05-24T14:16:00.912327Z", - "iopub.status.idle": "2024-05-24T14:16:02.056639Z", - "shell.execute_reply": "2024-05-24T14:16:02.056025Z" + "iopub.execute_input": "2024-05-24T14:46:07.173433Z", + "iopub.status.busy": "2024-05-24T14:46:07.173246Z", + "iopub.status.idle": "2024-05-24T14:46:08.474509Z", + "shell.execute_reply": "2024-05-24T14:46:08.473904Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:02.059313Z", - "iopub.status.busy": "2024-05-24T14:16:02.058896Z", - "iopub.status.idle": "2024-05-24T14:16:03.166033Z", - "shell.execute_reply": "2024-05-24T14:16:03.165344Z" + "iopub.execute_input": "2024-05-24T14:46:08.477400Z", + "iopub.status.busy": "2024-05-24T14:46:08.476950Z", + "iopub.status.idle": "2024-05-24T14:46:09.724570Z", + "shell.execute_reply": "2024-05-24T14:46:09.723744Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:03.168667Z", - "iopub.status.busy": "2024-05-24T14:16:03.168281Z", - "iopub.status.idle": "2024-05-24T14:16:03.171587Z", - "shell.execute_reply": "2024-05-24T14:16:03.171121Z" + "iopub.execute_input": "2024-05-24T14:46:09.727568Z", + "iopub.status.busy": "2024-05-24T14:46:09.727280Z", + "iopub.status.idle": "2024-05-24T14:46:09.731029Z", + "shell.execute_reply": "2024-05-24T14:46:09.730449Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:03.173698Z", - "iopub.status.busy": "2024-05-24T14:16:03.173375Z", - "iopub.status.idle": "2024-05-24T14:16:03.180500Z", - "shell.execute_reply": "2024-05-24T14:16:03.180058Z" + "iopub.execute_input": "2024-05-24T14:46:09.733594Z", + "iopub.status.busy": "2024-05-24T14:46:09.733185Z", + "iopub.status.idle": "2024-05-24T14:46:09.741406Z", + "shell.execute_reply": "2024-05-24T14:46:09.740748Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:03.182474Z", - "iopub.status.busy": "2024-05-24T14:16:03.182218Z", - "iopub.status.idle": "2024-05-24T14:16:03.671365Z", - "shell.execute_reply": "2024-05-24T14:16:03.670824Z" + "iopub.execute_input": "2024-05-24T14:46:09.744393Z", + "iopub.status.busy": "2024-05-24T14:46:09.743983Z", + "iopub.status.idle": "2024-05-24T14:46:10.270026Z", + "shell.execute_reply": "2024-05-24T14:46:10.269428Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:03.673954Z", - "iopub.status.busy": "2024-05-24T14:16:03.673571Z", - "iopub.status.idle": "2024-05-24T14:16:03.679123Z", - "shell.execute_reply": "2024-05-24T14:16:03.678681Z" + "iopub.execute_input": "2024-05-24T14:46:10.273035Z", + "iopub.status.busy": "2024-05-24T14:46:10.272631Z", + "iopub.status.idle": "2024-05-24T14:46:10.278397Z", + "shell.execute_reply": "2024-05-24T14:46:10.277803Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:03.681161Z", - "iopub.status.busy": "2024-05-24T14:16:03.680791Z", - "iopub.status.idle": "2024-05-24T14:16:03.684731Z", - "shell.execute_reply": "2024-05-24T14:16:03.684295Z" + "iopub.execute_input": "2024-05-24T14:46:10.280970Z", + "iopub.status.busy": "2024-05-24T14:46:10.280452Z", + "iopub.status.idle": "2024-05-24T14:46:10.284937Z", + "shell.execute_reply": "2024-05-24T14:46:10.284364Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:03.686802Z", - "iopub.status.busy": "2024-05-24T14:16:03.686476Z", - "iopub.status.idle": "2024-05-24T14:16:04.586199Z", - "shell.execute_reply": "2024-05-24T14:16:04.585609Z" + "iopub.execute_input": "2024-05-24T14:46:10.287335Z", + "iopub.status.busy": "2024-05-24T14:46:10.287002Z", + "iopub.status.idle": "2024-05-24T14:46:11.190950Z", + "shell.execute_reply": "2024-05-24T14:46:11.190246Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:04.588329Z", - "iopub.status.busy": "2024-05-24T14:16:04.588140Z", - "iopub.status.idle": "2024-05-24T14:16:04.875812Z", - "shell.execute_reply": "2024-05-24T14:16:04.875240Z" + "iopub.execute_input": "2024-05-24T14:46:11.193473Z", + "iopub.status.busy": "2024-05-24T14:46:11.193247Z", + "iopub.status.idle": "2024-05-24T14:46:11.425193Z", + "shell.execute_reply": "2024-05-24T14:46:11.424691Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:04.877878Z", - "iopub.status.busy": "2024-05-24T14:16:04.877696Z", - "iopub.status.idle": "2024-05-24T14:16:04.882053Z", - "shell.execute_reply": "2024-05-24T14:16:04.881517Z" + "iopub.execute_input": "2024-05-24T14:46:11.427553Z", + "iopub.status.busy": "2024-05-24T14:46:11.427204Z", + "iopub.status.idle": "2024-05-24T14:46:11.431770Z", + "shell.execute_reply": "2024-05-24T14:46:11.431206Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:04.884207Z", - "iopub.status.busy": "2024-05-24T14:16:04.883902Z", - "iopub.status.idle": "2024-05-24T14:16:05.330815Z", - "shell.execute_reply": "2024-05-24T14:16:05.330232Z" + "iopub.execute_input": "2024-05-24T14:46:11.433931Z", + "iopub.status.busy": "2024-05-24T14:46:11.433511Z", + "iopub.status.idle": "2024-05-24T14:46:11.920009Z", + "shell.execute_reply": "2024-05-24T14:46:11.919271Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:05.333725Z", - "iopub.status.busy": "2024-05-24T14:16:05.333435Z", - "iopub.status.idle": "2024-05-24T14:16:05.663318Z", - "shell.execute_reply": "2024-05-24T14:16:05.662809Z" + "iopub.execute_input": "2024-05-24T14:46:11.922824Z", + "iopub.status.busy": "2024-05-24T14:46:11.922353Z", + "iopub.status.idle": "2024-05-24T14:46:12.261495Z", + "shell.execute_reply": "2024-05-24T14:46:12.260885Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:05.666018Z", - "iopub.status.busy": "2024-05-24T14:16:05.665635Z", - "iopub.status.idle": "2024-05-24T14:16:06.026847Z", - "shell.execute_reply": "2024-05-24T14:16:06.026259Z" + "iopub.execute_input": "2024-05-24T14:46:12.264390Z", + "iopub.status.busy": "2024-05-24T14:46:12.264070Z", + "iopub.status.idle": "2024-05-24T14:46:12.638315Z", + "shell.execute_reply": "2024-05-24T14:46:12.637673Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:06.029956Z", - "iopub.status.busy": "2024-05-24T14:16:06.029599Z", - "iopub.status.idle": "2024-05-24T14:16:06.468037Z", - "shell.execute_reply": "2024-05-24T14:16:06.467512Z" + "iopub.execute_input": "2024-05-24T14:46:12.641801Z", + "iopub.status.busy": "2024-05-24T14:46:12.641375Z", + "iopub.status.idle": "2024-05-24T14:46:13.093205Z", + "shell.execute_reply": "2024-05-24T14:46:13.092623Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:06.472386Z", - "iopub.status.busy": "2024-05-24T14:16:06.471995Z", - "iopub.status.idle": "2024-05-24T14:16:06.916734Z", - "shell.execute_reply": "2024-05-24T14:16:06.916140Z" + "iopub.execute_input": "2024-05-24T14:46:13.097729Z", + "iopub.status.busy": "2024-05-24T14:46:13.097309Z", + "iopub.status.idle": "2024-05-24T14:46:13.559987Z", + "shell.execute_reply": "2024-05-24T14:46:13.559288Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:06.919806Z", - "iopub.status.busy": "2024-05-24T14:16:06.919470Z", - "iopub.status.idle": "2024-05-24T14:16:07.133822Z", - "shell.execute_reply": "2024-05-24T14:16:07.133237Z" + "iopub.execute_input": "2024-05-24T14:46:13.563261Z", + "iopub.status.busy": "2024-05-24T14:46:13.562869Z", + "iopub.status.idle": "2024-05-24T14:46:13.762453Z", + "shell.execute_reply": "2024-05-24T14:46:13.761824Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:07.135965Z", - "iopub.status.busy": "2024-05-24T14:16:07.135622Z", - "iopub.status.idle": "2024-05-24T14:16:07.333455Z", - "shell.execute_reply": "2024-05-24T14:16:07.332868Z" + "iopub.execute_input": "2024-05-24T14:46:13.765036Z", + "iopub.status.busy": "2024-05-24T14:46:13.764810Z", + "iopub.status.idle": "2024-05-24T14:46:13.968757Z", + "shell.execute_reply": "2024-05-24T14:46:13.968144Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:07.335696Z", - "iopub.status.busy": "2024-05-24T14:16:07.335279Z", - "iopub.status.idle": "2024-05-24T14:16:07.338343Z", - "shell.execute_reply": "2024-05-24T14:16:07.337807Z" + "iopub.execute_input": "2024-05-24T14:46:13.971601Z", + "iopub.status.busy": "2024-05-24T14:46:13.971379Z", + "iopub.status.idle": "2024-05-24T14:46:13.974421Z", + "shell.execute_reply": "2024-05-24T14:46:13.973948Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:07.340901Z", - "iopub.status.busy": "2024-05-24T14:16:07.340531Z", - "iopub.status.idle": "2024-05-24T14:16:08.304885Z", - "shell.execute_reply": "2024-05-24T14:16:08.304325Z" + "iopub.execute_input": "2024-05-24T14:46:13.976652Z", + "iopub.status.busy": "2024-05-24T14:46:13.976300Z", + "iopub.status.idle": "2024-05-24T14:46:14.990895Z", + "shell.execute_reply": "2024-05-24T14:46:14.990254Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:08.307745Z", - "iopub.status.busy": "2024-05-24T14:16:08.307417Z", - "iopub.status.idle": "2024-05-24T14:16:08.464656Z", - "shell.execute_reply": "2024-05-24T14:16:08.464068Z" + "iopub.execute_input": "2024-05-24T14:46:14.993723Z", + "iopub.status.busy": "2024-05-24T14:46:14.993329Z", + "iopub.status.idle": "2024-05-24T14:46:15.138071Z", + "shell.execute_reply": "2024-05-24T14:46:15.137450Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:08.467040Z", - "iopub.status.busy": "2024-05-24T14:16:08.466699Z", - "iopub.status.idle": "2024-05-24T14:16:08.642825Z", - "shell.execute_reply": "2024-05-24T14:16:08.642374Z" + "iopub.execute_input": "2024-05-24T14:46:15.140472Z", + "iopub.status.busy": "2024-05-24T14:46:15.140112Z", + "iopub.status.idle": "2024-05-24T14:46:15.290996Z", + "shell.execute_reply": "2024-05-24T14:46:15.290440Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:08.645002Z", - "iopub.status.busy": "2024-05-24T14:16:08.644678Z", - "iopub.status.idle": "2024-05-24T14:16:09.307872Z", - "shell.execute_reply": "2024-05-24T14:16:09.307275Z" + "iopub.execute_input": "2024-05-24T14:46:15.293307Z", + "iopub.status.busy": "2024-05-24T14:46:15.292887Z", + "iopub.status.idle": "2024-05-24T14:46:16.088741Z", + "shell.execute_reply": "2024-05-24T14:46:16.088193Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:09.310087Z", - "iopub.status.busy": "2024-05-24T14:16:09.309757Z", - "iopub.status.idle": "2024-05-24T14:16:09.313450Z", - "shell.execute_reply": "2024-05-24T14:16:09.312898Z" + "iopub.execute_input": "2024-05-24T14:46:16.091390Z", + "iopub.status.busy": "2024-05-24T14:46:16.090899Z", + "iopub.status.idle": "2024-05-24T14:46:16.095068Z", + "shell.execute_reply": "2024-05-24T14:46:16.094470Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index f20efe12c..a49cca22c 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -761,7 +761,7 @@

    2. Pre-process the Cifar10 dataset
    -100%|██████████| 170498071/170498071 [00:01<00:00, 90014750.01it/s]
    +100%|██████████| 170498071/170498071 [00:02<00:00, 58138838.87it/s]
     
    -
    +
    @@ -1105,7 +1105,7 @@

    4. Use cleanlab and here.

    diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index a56824c91..e2d5eff53 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:11.688100Z", - "iopub.status.busy": "2024-05-24T14:16:11.687945Z", - "iopub.status.idle": "2024-05-24T14:16:14.407752Z", - "shell.execute_reply": "2024-05-24T14:16:14.407183Z" + "iopub.execute_input": "2024-05-24T14:46:18.616530Z", + "iopub.status.busy": "2024-05-24T14:46:18.616000Z", + "iopub.status.idle": "2024-05-24T14:46:21.670169Z", + "shell.execute_reply": "2024-05-24T14:46:21.669557Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:14.410321Z", - "iopub.status.busy": "2024-05-24T14:16:14.409839Z", - "iopub.status.idle": "2024-05-24T14:16:14.733469Z", - "shell.execute_reply": "2024-05-24T14:16:14.732853Z" + "iopub.execute_input": "2024-05-24T14:46:21.673336Z", + "iopub.status.busy": "2024-05-24T14:46:21.672748Z", + "iopub.status.idle": "2024-05-24T14:46:22.043426Z", + "shell.execute_reply": "2024-05-24T14:46:22.042787Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:14.736052Z", - "iopub.status.busy": "2024-05-24T14:16:14.735743Z", - "iopub.status.idle": "2024-05-24T14:16:14.740039Z", - "shell.execute_reply": "2024-05-24T14:16:14.739503Z" + "iopub.execute_input": "2024-05-24T14:46:22.046320Z", + "iopub.status.busy": "2024-05-24T14:46:22.045760Z", + "iopub.status.idle": "2024-05-24T14:46:22.050404Z", + "shell.execute_reply": "2024-05-24T14:46:22.049952Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:14.742331Z", - "iopub.status.busy": "2024-05-24T14:16:14.741874Z", - "iopub.status.idle": "2024-05-24T14:16:19.327125Z", - "shell.execute_reply": "2024-05-24T14:16:19.326531Z" + "iopub.execute_input": "2024-05-24T14:46:22.052792Z", + "iopub.status.busy": "2024-05-24T14:46:22.052444Z", + "iopub.status.idle": "2024-05-24T14:46:27.691858Z", + "shell.execute_reply": "2024-05-24T14:46:27.691198Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 2064384/170498071 [00:00<00:08, 20638102.69it/s]" + " 1%| | 1671168/170498071 [00:00<00:10, 16554608.13it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 12582912/170498071 [00:00<00:02, 70272073.82it/s]" + " 6%|▋ | 10780672/170498071 [00:00<00:02, 60117265.25it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 22642688/170498071 [00:00<00:01, 84106618.69it/s]" + " 11%|█▏ | 19234816/170498071 [00:00<00:02, 71155863.70it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32702464/170498071 [00:00<00:01, 90553063.45it/s]" + " 16%|█▌ | 27066368/170498071 [00:00<00:01, 73940657.98it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 42926080/170498071 [00:00<00:01, 94741973.48it/s]" + " 21%|██ | 36044800/170498071 [00:00<00:01, 79613933.70it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52428800/170498071 [00:00<00:01, 94578568.50it/s]" + " 26%|██▋ | 44957696/170498071 [00:00<00:01, 82832072.79it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 62488576/170498071 [00:00<00:01, 96511460.38it/s]" + " 31%|███ | 53248000/170498071 [00:00<00:01, 80485950.48it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 72155136/170498071 [00:00<00:01, 95383426.91it/s]" + " 36%|███▋ | 62062592/170498071 [00:00<00:01, 82862402.20it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 81723392/170498071 [00:00<00:00, 95428872.81it/s]" + " 42%|████▏ | 70778880/170498071 [00:00<00:01, 84133225.36it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 91291648/170498071 [00:01<00:00, 95171323.87it/s]" + " 46%|████▋ | 79233024/170498071 [00:01<00:01, 81687827.67it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 100859904/170498071 [00:01<00:00, 95302166.21it/s]" + " 52%|█████▏ | 88014848/170498071 [00:01<00:00, 83501780.14it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 110395392/170498071 [00:01<00:00, 93422347.07it/s]" + " 57%|█████▋ | 96403456/170498071 [00:01<00:00, 83570453.10it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 119767040/170498071 [00:01<00:00, 91723547.25it/s]" + " 61%|██████▏ | 104792064/170498071 [00:01<00:01, 65205251.33it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 128974848/170498071 [00:01<00:00, 91141533.70it/s]" + " 66%|██████▌ | 111935488/170498071 [00:01<00:01, 56992286.89it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 138117120/170498071 [00:01<00:00, 89567149.97it/s]" + " 69%|██████▉ | 118226944/170498071 [00:01<00:01, 52009634.87it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 147095552/170498071 [00:01<00:00, 89191985.60it/s]" + " 73%|███████▎ | 123863040/170498071 [00:01<00:00, 49600202.58it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 156106752/170498071 [00:01<00:00, 89444032.54it/s]" + " 76%|███████▌ | 129105920/170498071 [00:02<00:00, 46227907.46it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 165085184/170498071 [00:01<00:00, 89101356.43it/s]" + " 79%|███████▊ | 133922816/170498071 [00:02<00:00, 44474010.41it/s]" ] }, { @@ -396,7 +396,63 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 90014750.01it/s]" + " 81%|████████ | 138510336/170498071 [00:02<00:00, 44420402.74it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▍ | 143032320/170498071 [00:02<00:00, 43024270.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▋ | 147456000/170498071 [00:02<00:00, 43225889.69it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 89%|████████▉ | 151879680/170498071 [00:02<00:00, 43460090.76it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▏| 156270592/170498071 [00:02<00:00, 43158389.40it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 94%|█████████▍| 160923648/170498071 [00:02<00:00, 44106617.56it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 166166528/170498071 [00:02<00:00, 46462975.74it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:02<00:00, 58138838.87it/s]" ] }, { @@ -514,10 +570,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:19.329395Z", - "iopub.status.busy": "2024-05-24T14:16:19.329031Z", - "iopub.status.idle": "2024-05-24T14:16:19.333764Z", - "shell.execute_reply": "2024-05-24T14:16:19.333329Z" + "iopub.execute_input": "2024-05-24T14:46:27.694384Z", + "iopub.status.busy": "2024-05-24T14:46:27.694012Z", + "iopub.status.idle": "2024-05-24T14:46:27.698831Z", + "shell.execute_reply": "2024-05-24T14:46:27.698388Z" }, "nbsphinx": "hidden" }, @@ -568,10 +624,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:19.335815Z", - "iopub.status.busy": "2024-05-24T14:16:19.335494Z", - "iopub.status.idle": "2024-05-24T14:16:19.880137Z", - "shell.execute_reply": "2024-05-24T14:16:19.879615Z" + "iopub.execute_input": "2024-05-24T14:46:27.701241Z", + "iopub.status.busy": "2024-05-24T14:46:27.700839Z", + "iopub.status.idle": "2024-05-24T14:46:28.248072Z", + "shell.execute_reply": "2024-05-24T14:46:28.247462Z" } }, "outputs": [ @@ -604,10 +660,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:19.882526Z", - "iopub.status.busy": "2024-05-24T14:16:19.882114Z", - "iopub.status.idle": "2024-05-24T14:16:20.366451Z", - "shell.execute_reply": "2024-05-24T14:16:20.365796Z" + "iopub.execute_input": "2024-05-24T14:46:28.250338Z", + "iopub.status.busy": "2024-05-24T14:46:28.249980Z", + "iopub.status.idle": "2024-05-24T14:46:28.813343Z", + "shell.execute_reply": "2024-05-24T14:46:28.812763Z" } }, "outputs": [ @@ -645,10 +701,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:20.368718Z", - "iopub.status.busy": "2024-05-24T14:16:20.368365Z", - "iopub.status.idle": "2024-05-24T14:16:20.371722Z", - "shell.execute_reply": "2024-05-24T14:16:20.371299Z" + "iopub.execute_input": "2024-05-24T14:46:28.816073Z", + "iopub.status.busy": "2024-05-24T14:46:28.815474Z", + "iopub.status.idle": "2024-05-24T14:46:28.819642Z", + "shell.execute_reply": "2024-05-24T14:46:28.819002Z" } }, "outputs": [], @@ -671,17 +727,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:20.373745Z", - "iopub.status.busy": "2024-05-24T14:16:20.373421Z", - "iopub.status.idle": "2024-05-24T14:16:32.763761Z", - "shell.execute_reply": "2024-05-24T14:16:32.763164Z" + "iopub.execute_input": "2024-05-24T14:46:28.821885Z", + "iopub.status.busy": "2024-05-24T14:46:28.821587Z", + "iopub.status.idle": "2024-05-24T14:46:41.796645Z", + "shell.execute_reply": "2024-05-24T14:46:41.796033Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a13802b931c1441fbd9fa1b4f5a0e8e7", + "model_id": "c0e7b1e78e4d48debdd9b3fa2a4a6538", "version_major": 2, "version_minor": 0 }, @@ -740,10 +796,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:32.766253Z", - "iopub.status.busy": "2024-05-24T14:16:32.765814Z", - "iopub.status.idle": "2024-05-24T14:16:34.853811Z", - "shell.execute_reply": "2024-05-24T14:16:34.853249Z" + "iopub.execute_input": "2024-05-24T14:46:41.798877Z", + "iopub.status.busy": "2024-05-24T14:46:41.798694Z", + "iopub.status.idle": "2024-05-24T14:46:43.760734Z", + "shell.execute_reply": "2024-05-24T14:46:43.760138Z" } }, "outputs": [ @@ -787,10 +843,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:34.856139Z", - "iopub.status.busy": "2024-05-24T14:16:34.855947Z", - "iopub.status.idle": "2024-05-24T14:16:35.097513Z", - "shell.execute_reply": "2024-05-24T14:16:35.096932Z" + "iopub.execute_input": "2024-05-24T14:46:43.763793Z", + "iopub.status.busy": "2024-05-24T14:46:43.763217Z", + "iopub.status.idle": "2024-05-24T14:46:44.251017Z", + "shell.execute_reply": "2024-05-24T14:46:44.250425Z" } }, "outputs": [ @@ -826,10 +882,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:35.100275Z", - "iopub.status.busy": "2024-05-24T14:16:35.100071Z", - "iopub.status.idle": "2024-05-24T14:16:35.753850Z", - "shell.execute_reply": "2024-05-24T14:16:35.753305Z" + "iopub.execute_input": "2024-05-24T14:46:44.253975Z", + "iopub.status.busy": "2024-05-24T14:46:44.253394Z", + "iopub.status.idle": "2024-05-24T14:46:44.917167Z", + "shell.execute_reply": "2024-05-24T14:46:44.916556Z" } }, "outputs": [ @@ -879,10 +935,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:35.756692Z", - "iopub.status.busy": "2024-05-24T14:16:35.756491Z", - "iopub.status.idle": "2024-05-24T14:16:36.097212Z", - "shell.execute_reply": "2024-05-24T14:16:36.096602Z" + "iopub.execute_input": "2024-05-24T14:46:44.920057Z", + "iopub.status.busy": "2024-05-24T14:46:44.919583Z", + "iopub.status.idle": "2024-05-24T14:46:45.275418Z", + "shell.execute_reply": "2024-05-24T14:46:45.274649Z" } }, "outputs": [ @@ -930,10 +986,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:36.099489Z", - "iopub.status.busy": "2024-05-24T14:16:36.099296Z", - "iopub.status.idle": "2024-05-24T14:16:36.343391Z", - "shell.execute_reply": "2024-05-24T14:16:36.342756Z" + "iopub.execute_input": "2024-05-24T14:46:45.277880Z", + "iopub.status.busy": "2024-05-24T14:46:45.277530Z", + "iopub.status.idle": "2024-05-24T14:46:45.534771Z", + "shell.execute_reply": "2024-05-24T14:46:45.534105Z" } }, "outputs": [ @@ -989,10 +1045,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:36.345756Z", - "iopub.status.busy": "2024-05-24T14:16:36.345430Z", - "iopub.status.idle": "2024-05-24T14:16:36.425607Z", - "shell.execute_reply": "2024-05-24T14:16:36.425104Z" + "iopub.execute_input": "2024-05-24T14:46:45.537718Z", + "iopub.status.busy": "2024-05-24T14:46:45.537249Z", + "iopub.status.idle": "2024-05-24T14:46:45.625688Z", + "shell.execute_reply": "2024-05-24T14:46:45.625167Z" } }, "outputs": [], @@ -1013,10 +1069,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:36.428195Z", - "iopub.status.busy": "2024-05-24T14:16:36.427727Z", - "iopub.status.idle": "2024-05-24T14:16:46.677567Z", - "shell.execute_reply": "2024-05-24T14:16:46.676872Z" + "iopub.execute_input": "2024-05-24T14:46:45.628107Z", + "iopub.status.busy": "2024-05-24T14:46:45.627809Z", + "iopub.status.idle": "2024-05-24T14:46:56.731248Z", + "shell.execute_reply": "2024-05-24T14:46:56.730579Z" } }, "outputs": [ @@ -1053,10 +1109,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:46.680205Z", - "iopub.status.busy": "2024-05-24T14:16:46.679686Z", - "iopub.status.idle": "2024-05-24T14:16:48.395328Z", - "shell.execute_reply": "2024-05-24T14:16:48.394769Z" + "iopub.execute_input": "2024-05-24T14:46:56.733869Z", + "iopub.status.busy": "2024-05-24T14:46:56.733436Z", + "iopub.status.idle": "2024-05-24T14:46:58.689076Z", + "shell.execute_reply": "2024-05-24T14:46:58.688461Z" } }, "outputs": [ @@ -1087,10 +1143,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:48.397868Z", - "iopub.status.busy": "2024-05-24T14:16:48.397498Z", - "iopub.status.idle": "2024-05-24T14:16:48.598915Z", - "shell.execute_reply": "2024-05-24T14:16:48.598398Z" + "iopub.execute_input": "2024-05-24T14:46:58.692092Z", + "iopub.status.busy": "2024-05-24T14:46:58.691521Z", + "iopub.status.idle": "2024-05-24T14:46:58.902592Z", + "shell.execute_reply": "2024-05-24T14:46:58.901966Z" } }, "outputs": [], @@ -1104,10 +1160,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:48.601274Z", - "iopub.status.busy": "2024-05-24T14:16:48.601092Z", - "iopub.status.idle": "2024-05-24T14:16:48.604255Z", - "shell.execute_reply": "2024-05-24T14:16:48.603726Z" + "iopub.execute_input": "2024-05-24T14:46:58.905326Z", + "iopub.status.busy": "2024-05-24T14:46:58.904994Z", + "iopub.status.idle": "2024-05-24T14:46:58.908370Z", + "shell.execute_reply": "2024-05-24T14:46:58.907885Z" } }, "outputs": [], @@ -1129,10 +1185,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:48.606348Z", - "iopub.status.busy": "2024-05-24T14:16:48.606178Z", - "iopub.status.idle": "2024-05-24T14:16:48.614219Z", - "shell.execute_reply": "2024-05-24T14:16:48.613770Z" + "iopub.execute_input": "2024-05-24T14:46:58.910424Z", + "iopub.status.busy": "2024-05-24T14:46:58.910228Z", + "iopub.status.idle": "2024-05-24T14:46:58.919221Z", + "shell.execute_reply": "2024-05-24T14:46:58.918591Z" }, "nbsphinx": "hidden" }, @@ -1177,7 +1233,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0cad3cc891bb4174b13740e68ed0a0f4": { + "48d98ce79375425aadc930e2a5665f2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1193,53 +1249,56 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_965578bc01244e498b5181a755082108", + "layout": "IPY_MODEL_b904dcae8c994463bd8c06c160caeaa1", "max": 102469840.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9da2e99841584b3fa087d55ef4899959", + "style": "IPY_MODEL_4cbf823141a14db09a2beacaeb6041f2", "tabbable": null, "tooltip": null, "value": 102469840.0 } }, - "376b676656294388b8d316d0cf28299b": { + "4cbf823141a14db09a2beacaeb6041f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "3bad845962c04bedacf325296c890a66": { + "791c4565e7cd40a5a0ef2ca42346c156": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8b6e261215a4b1c9cd55b4354e1a433", + "placeholder": "​", + "style": "IPY_MODEL_fb17ac12b3fe4ef09ccf4a7c26f0420a", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" } }, - "777a465a4ba544778b8ae91f632a33f7": { + "8dfa4e3d87334f549612b7b3f6c95041": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1292,7 +1351,7 @@ "width": null } }, - "8827a89d195047e1a8e4b3e7faeda007": { + "b904dcae8c994463bd8c06c160caeaa1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1345,7 +1404,54 @@ "width": null } }, - "965578bc01244e498b5181a755082108": { + "bffbb116648e4d67b8839b3f509ee3ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e27c1f20e84c490ba8591d2e631fbdb0", + "placeholder": "​", + "style": "IPY_MODEL_feb7bc37d8f846678670890f63dfec6d", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 330MB/s]" + } + }, + "c0e7b1e78e4d48debdd9b3fa2a4a6538": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_791c4565e7cd40a5a0ef2ca42346c156", + "IPY_MODEL_48d98ce79375425aadc930e2a5665f2d", + "IPY_MODEL_bffbb116648e4d67b8839b3f509ee3ad" + ], + "layout": "IPY_MODEL_8dfa4e3d87334f549612b7b3f6c95041", + "tabbable": null, + "tooltip": null + } + }, + "e27c1f20e84c490ba8591d2e631fbdb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1398,23 +1504,7 @@ "width": null } }, - "9da2e99841584b3fa087d55ef4899959": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9f9192f6a8d247bb91e739d85ce207f2": { + "e8b6e261215a4b1c9cd55b4354e1a433": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1467,74 +1557,40 @@ "width": null } }, - "a13802b931c1441fbd9fa1b4f5a0e8e7": { + "fb17ac12b3fe4ef09ccf4a7c26f0420a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cb09a599f7ed4b5a8c955c03c080fd33", - "IPY_MODEL_0cad3cc891bb4174b13740e68ed0a0f4", - "IPY_MODEL_d03b5f33c33548279fc21e436325b613" - ], - "layout": "IPY_MODEL_8827a89d195047e1a8e4b3e7faeda007", - "tabbable": null, - "tooltip": null - } - }, - "cb09a599f7ed4b5a8c955c03c080fd33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9f9192f6a8d247bb91e739d85ce207f2", - "placeholder": "​", - "style": "IPY_MODEL_3bad845962c04bedacf325296c890a66", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d03b5f33c33548279fc21e436325b613": { + "feb7bc37d8f846678670890f63dfec6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_777a465a4ba544778b8ae91f632a33f7", - "placeholder": "​", - "style": "IPY_MODEL_376b676656294388b8d316d0cf28299b", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 253MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index ca32abf63..e62da478d 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:52.781728Z", - "iopub.status.busy": "2024-05-24T14:16:52.781355Z", - "iopub.status.idle": "2024-05-24T14:16:53.946904Z", - "shell.execute_reply": "2024-05-24T14:16:53.946274Z" + "iopub.execute_input": "2024-05-24T14:47:03.153952Z", + "iopub.status.busy": "2024-05-24T14:47:03.153748Z", + "iopub.status.idle": "2024-05-24T14:47:04.491788Z", + "shell.execute_reply": "2024-05-24T14:47:04.491145Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:53.949560Z", - "iopub.status.busy": "2024-05-24T14:16:53.949098Z", - "iopub.status.idle": "2024-05-24T14:16:53.967220Z", - "shell.execute_reply": "2024-05-24T14:16:53.966766Z" + "iopub.execute_input": "2024-05-24T14:47:04.494561Z", + "iopub.status.busy": "2024-05-24T14:47:04.494190Z", + "iopub.status.idle": "2024-05-24T14:47:04.515327Z", + "shell.execute_reply": "2024-05-24T14:47:04.514753Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:53.969575Z", - "iopub.status.busy": "2024-05-24T14:16:53.969152Z", - "iopub.status.idle": "2024-05-24T14:16:53.972283Z", - "shell.execute_reply": "2024-05-24T14:16:53.971836Z" + "iopub.execute_input": "2024-05-24T14:47:04.518048Z", + "iopub.status.busy": "2024-05-24T14:47:04.517704Z", + "iopub.status.idle": "2024-05-24T14:47:04.521191Z", + "shell.execute_reply": "2024-05-24T14:47:04.520693Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:53.974240Z", - "iopub.status.busy": "2024-05-24T14:16:53.973959Z", - "iopub.status.idle": "2024-05-24T14:16:54.033719Z", - "shell.execute_reply": "2024-05-24T14:16:54.033211Z" + "iopub.execute_input": "2024-05-24T14:47:04.523189Z", + "iopub.status.busy": "2024-05-24T14:47:04.522996Z", + "iopub.status.idle": "2024-05-24T14:47:04.581897Z", + "shell.execute_reply": "2024-05-24T14:47:04.581240Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:54.036016Z", - "iopub.status.busy": "2024-05-24T14:16:54.035694Z", - "iopub.status.idle": "2024-05-24T14:16:54.217027Z", - "shell.execute_reply": "2024-05-24T14:16:54.216505Z" + "iopub.execute_input": "2024-05-24T14:47:04.584548Z", + "iopub.status.busy": "2024-05-24T14:47:04.584087Z", + "iopub.status.idle": "2024-05-24T14:47:04.785981Z", + "shell.execute_reply": "2024-05-24T14:47:04.785324Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:54.219569Z", - "iopub.status.busy": "2024-05-24T14:16:54.219138Z", - "iopub.status.idle": "2024-05-24T14:16:54.463668Z", - "shell.execute_reply": "2024-05-24T14:16:54.463047Z" + "iopub.execute_input": "2024-05-24T14:47:04.789188Z", + "iopub.status.busy": "2024-05-24T14:47:04.788666Z", + "iopub.status.idle": "2024-05-24T14:47:05.052163Z", + "shell.execute_reply": "2024-05-24T14:47:05.051482Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:54.466095Z", - "iopub.status.busy": "2024-05-24T14:16:54.465710Z", - "iopub.status.idle": "2024-05-24T14:16:54.470289Z", - "shell.execute_reply": "2024-05-24T14:16:54.469813Z" + "iopub.execute_input": "2024-05-24T14:47:05.054390Z", + "iopub.status.busy": "2024-05-24T14:47:05.054184Z", + "iopub.status.idle": "2024-05-24T14:47:05.059284Z", + "shell.execute_reply": "2024-05-24T14:47:05.058776Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:54.472358Z", - "iopub.status.busy": "2024-05-24T14:16:54.472018Z", - "iopub.status.idle": "2024-05-24T14:16:54.477733Z", - "shell.execute_reply": "2024-05-24T14:16:54.477284Z" + "iopub.execute_input": "2024-05-24T14:47:05.061589Z", + "iopub.status.busy": "2024-05-24T14:47:05.061256Z", + "iopub.status.idle": "2024-05-24T14:47:05.068596Z", + "shell.execute_reply": "2024-05-24T14:47:05.067935Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:54.479873Z", - "iopub.status.busy": "2024-05-24T14:16:54.479454Z", - "iopub.status.idle": "2024-05-24T14:16:54.482243Z", - "shell.execute_reply": "2024-05-24T14:16:54.481663Z" + "iopub.execute_input": "2024-05-24T14:47:05.071303Z", + "iopub.status.busy": "2024-05-24T14:47:05.070997Z", + "iopub.status.idle": "2024-05-24T14:47:05.073937Z", + "shell.execute_reply": "2024-05-24T14:47:05.073464Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:16:54.484266Z", - "iopub.status.busy": "2024-05-24T14:16:54.483860Z", - "iopub.status.idle": "2024-05-24T14:17:02.729964Z", - "shell.execute_reply": "2024-05-24T14:17:02.729231Z" + "iopub.execute_input": "2024-05-24T14:47:05.076227Z", + "iopub.status.busy": "2024-05-24T14:47:05.075865Z", + "iopub.status.idle": "2024-05-24T14:47:13.850907Z", + "shell.execute_reply": "2024-05-24T14:47:13.850220Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.732901Z", - "iopub.status.busy": "2024-05-24T14:17:02.732413Z", - "iopub.status.idle": "2024-05-24T14:17:02.740225Z", - "shell.execute_reply": "2024-05-24T14:17:02.739759Z" + "iopub.execute_input": "2024-05-24T14:47:13.854219Z", + "iopub.status.busy": "2024-05-24T14:47:13.853511Z", + "iopub.status.idle": "2024-05-24T14:47:13.861980Z", + "shell.execute_reply": "2024-05-24T14:47:13.861443Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.742257Z", - "iopub.status.busy": "2024-05-24T14:17:02.741934Z", - "iopub.status.idle": "2024-05-24T14:17:02.745669Z", - "shell.execute_reply": "2024-05-24T14:17:02.745111Z" + "iopub.execute_input": "2024-05-24T14:47:13.864301Z", + "iopub.status.busy": "2024-05-24T14:47:13.863924Z", + "iopub.status.idle": "2024-05-24T14:47:13.867723Z", + "shell.execute_reply": "2024-05-24T14:47:13.867267Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.747680Z", - "iopub.status.busy": "2024-05-24T14:17:02.747263Z", - "iopub.status.idle": "2024-05-24T14:17:02.750591Z", - "shell.execute_reply": "2024-05-24T14:17:02.750026Z" + "iopub.execute_input": "2024-05-24T14:47:13.869842Z", + "iopub.status.busy": "2024-05-24T14:47:13.869515Z", + "iopub.status.idle": "2024-05-24T14:47:13.872780Z", + "shell.execute_reply": "2024-05-24T14:47:13.872262Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.752711Z", - "iopub.status.busy": "2024-05-24T14:17:02.752316Z", - "iopub.status.idle": "2024-05-24T14:17:02.755447Z", - "shell.execute_reply": "2024-05-24T14:17:02.754903Z" + "iopub.execute_input": "2024-05-24T14:47:13.875008Z", + "iopub.status.busy": "2024-05-24T14:47:13.874481Z", + "iopub.status.idle": "2024-05-24T14:47:13.877784Z", + "shell.execute_reply": "2024-05-24T14:47:13.877349Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.757486Z", - "iopub.status.busy": "2024-05-24T14:17:02.757069Z", - "iopub.status.idle": "2024-05-24T14:17:02.765120Z", - "shell.execute_reply": "2024-05-24T14:17:02.764572Z" + "iopub.execute_input": "2024-05-24T14:47:13.879774Z", + "iopub.status.busy": "2024-05-24T14:47:13.879442Z", + "iopub.status.idle": "2024-05-24T14:47:13.887941Z", + "shell.execute_reply": "2024-05-24T14:47:13.887375Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.767095Z", - "iopub.status.busy": "2024-05-24T14:17:02.766782Z", - "iopub.status.idle": "2024-05-24T14:17:02.769456Z", - "shell.execute_reply": "2024-05-24T14:17:02.768910Z" + "iopub.execute_input": "2024-05-24T14:47:13.890345Z", + "iopub.status.busy": "2024-05-24T14:47:13.889921Z", + "iopub.status.idle": "2024-05-24T14:47:13.892738Z", + "shell.execute_reply": "2024-05-24T14:47:13.892285Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.771610Z", - "iopub.status.busy": "2024-05-24T14:17:02.771306Z", - "iopub.status.idle": "2024-05-24T14:17:02.892264Z", - "shell.execute_reply": "2024-05-24T14:17:02.891701Z" + "iopub.execute_input": "2024-05-24T14:47:13.894992Z", + "iopub.status.busy": "2024-05-24T14:47:13.894656Z", + "iopub.status.idle": "2024-05-24T14:47:14.017529Z", + "shell.execute_reply": "2024-05-24T14:47:14.016936Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:02.894664Z", - "iopub.status.busy": "2024-05-24T14:17:02.894275Z", - "iopub.status.idle": "2024-05-24T14:17:03.002392Z", - "shell.execute_reply": "2024-05-24T14:17:03.001779Z" + "iopub.execute_input": "2024-05-24T14:47:14.019893Z", + "iopub.status.busy": "2024-05-24T14:47:14.019511Z", + "iopub.status.idle": "2024-05-24T14:47:14.137961Z", + "shell.execute_reply": "2024-05-24T14:47:14.137305Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:03.004872Z", - "iopub.status.busy": "2024-05-24T14:17:03.004510Z", - "iopub.status.idle": "2024-05-24T14:17:03.493374Z", - "shell.execute_reply": "2024-05-24T14:17:03.492823Z" + "iopub.execute_input": "2024-05-24T14:47:14.140894Z", + "iopub.status.busy": "2024-05-24T14:47:14.140463Z", + "iopub.status.idle": "2024-05-24T14:47:14.633843Z", + "shell.execute_reply": "2024-05-24T14:47:14.633289Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:03.496039Z", - "iopub.status.busy": "2024-05-24T14:17:03.495639Z", - "iopub.status.idle": "2024-05-24T14:17:03.573307Z", - "shell.execute_reply": "2024-05-24T14:17:03.572719Z" + "iopub.execute_input": "2024-05-24T14:47:14.636657Z", + "iopub.status.busy": "2024-05-24T14:47:14.636193Z", + "iopub.status.idle": "2024-05-24T14:47:14.716923Z", + "shell.execute_reply": "2024-05-24T14:47:14.716269Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:03.575691Z", - "iopub.status.busy": "2024-05-24T14:17:03.575320Z", - "iopub.status.idle": "2024-05-24T14:17:03.584382Z", - "shell.execute_reply": "2024-05-24T14:17:03.583811Z" + "iopub.execute_input": "2024-05-24T14:47:14.719317Z", + "iopub.status.busy": "2024-05-24T14:47:14.718954Z", + "iopub.status.idle": "2024-05-24T14:47:14.727562Z", + "shell.execute_reply": "2024-05-24T14:47:14.727095Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:03.586594Z", - "iopub.status.busy": "2024-05-24T14:17:03.586417Z", - "iopub.status.idle": "2024-05-24T14:17:03.589005Z", - "shell.execute_reply": "2024-05-24T14:17:03.588558Z" + "iopub.execute_input": "2024-05-24T14:47:14.729643Z", + "iopub.status.busy": "2024-05-24T14:47:14.729308Z", + "iopub.status.idle": "2024-05-24T14:47:14.732057Z", + "shell.execute_reply": "2024-05-24T14:47:14.731603Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:03.590942Z", - "iopub.status.busy": "2024-05-24T14:17:03.590652Z", - "iopub.status.idle": "2024-05-24T14:17:09.050544Z", - "shell.execute_reply": "2024-05-24T14:17:09.049862Z" + "iopub.execute_input": "2024-05-24T14:47:14.734094Z", + "iopub.status.busy": "2024-05-24T14:47:14.733774Z", + "iopub.status.idle": "2024-05-24T14:47:20.229441Z", + "shell.execute_reply": "2024-05-24T14:47:20.228821Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:09.052925Z", - "iopub.status.busy": "2024-05-24T14:17:09.052604Z", - "iopub.status.idle": "2024-05-24T14:17:09.061472Z", - "shell.execute_reply": "2024-05-24T14:17:09.060902Z" + "iopub.execute_input": "2024-05-24T14:47:20.231843Z", + "iopub.status.busy": "2024-05-24T14:47:20.231472Z", + "iopub.status.idle": "2024-05-24T14:47:20.240396Z", + "shell.execute_reply": "2024-05-24T14:47:20.239835Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:09.063841Z", - "iopub.status.busy": "2024-05-24T14:17:09.063436Z", - "iopub.status.idle": "2024-05-24T14:17:09.128851Z", - "shell.execute_reply": "2024-05-24T14:17:09.128343Z" + "iopub.execute_input": "2024-05-24T14:47:20.242411Z", + "iopub.status.busy": "2024-05-24T14:47:20.242232Z", + "iopub.status.idle": "2024-05-24T14:47:20.308134Z", + "shell.execute_reply": "2024-05-24T14:47:20.307473Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index b133fdd47..ddc8588be 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -781,13 +781,13 @@

    3. Use cleanlab to find label issues

    -
    +
    -
    +

    Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

    @@ -1177,7 +1177,7 @@

    Get label quality scores -{"state": {"d85d0e2d6085433f81e2f5ef0be57d75": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a6a2dd91076e481a996ba865bde48b12": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a3f9b0167e1745ec8e1b71800793297d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d85d0e2d6085433f81e2f5ef0be57d75", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a6a2dd91076e481a996ba865bde48b12", "tabbable": null, "tooltip": null, "value": 30.0}}, "2c7c46d3e1744a0087f1859d8b530a75": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ab05e8ff8684d18829e229ff7b44757": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "21dd46862fae4c2a84bfcf41906c39af": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2c7c46d3e1744a0087f1859d8b530a75", "placeholder": "\u200b", "style": "IPY_MODEL_7ab05e8ff8684d18829e229ff7b44757", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "276b36918c404b46a75b710ef5a033a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b39b8abd42c455baba1e06abb8a2329": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ec34083d9aba4f218c969e3f971052d9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_276b36918c404b46a75b710ef5a033a8", "placeholder": "\u200b", "style": "IPY_MODEL_0b39b8abd42c455baba1e06abb8a2329", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007758.97it/s]"}}, "36c12eb6fcb945d59d80c223b853157d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b925d1eb16a4c0da4908e6c9ae20ddc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_21dd46862fae4c2a84bfcf41906c39af", "IPY_MODEL_a3f9b0167e1745ec8e1b71800793297d", "IPY_MODEL_ec34083d9aba4f218c969e3f971052d9"], "layout": "IPY_MODEL_36c12eb6fcb945d59d80c223b853157d", "tabbable": null, "tooltip": null}}, "4e719ddfac2641bb90b122b285ec44f5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2b77744f8be44898bf35f6dd358d30d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e51224c051b84e188743df99b991a3f2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4e719ddfac2641bb90b122b285ec44f5", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e2b77744f8be44898bf35f6dd358d30d", "tabbable": null, "tooltip": null, "value": 30.0}}, "37a5005c84374d95a72e5be1fbb33822": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "97666f8dd93a4351b2d681838990fdf9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d1fdcd599b7b4eeab009a7108f0d66ca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_37a5005c84374d95a72e5be1fbb33822", "placeholder": "\u200b", "style": "IPY_MODEL_97666f8dd93a4351b2d681838990fdf9", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "21a4d54883a940869cfd7ed09127dbd4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6f9c6dc90949461bb5eb0f42ec842dcc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f913070b4a434266a567c6f67d55e871": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_21a4d54883a940869cfd7ed09127dbd4", "placeholder": "\u200b", "style": "IPY_MODEL_6f9c6dc90949461bb5eb0f42ec842dcc", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:22<00:00,\u2007\u20071.36it/s]"}}, "f291e908ca0e4adf88bcb5dbcb342db6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e91fb6e7e4e41419c598fed5e03305a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d1fdcd599b7b4eeab009a7108f0d66ca", "IPY_MODEL_e51224c051b84e188743df99b991a3f2", "IPY_MODEL_f913070b4a434266a567c6f67d55e871"], "layout": "IPY_MODEL_f291e908ca0e4adf88bcb5dbcb342db6", "tabbable": null, "tooltip": null}}, "77ee6d53ee484fd69ff863308233da46": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d011171ac97c441699d89270ff68fdc8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e5303555709f44cb8996c10b95dfdf3b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_77ee6d53ee484fd69ff863308233da46", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d011171ac97c441699d89270ff68fdc8", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "e973f6611dd84adaa5a8d78acdd4d793": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6a8a48155c6549c091f7ce9a7841f014": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "695186571d9c4469827a800135ce8fcb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e973f6611dd84adaa5a8d78acdd4d793", "placeholder": "\u200b", "style": "IPY_MODEL_6a8a48155c6549c091f7ce9a7841f014", "tabbable": null, "tooltip": null, "value": "100%"}}, "9dfec509908c47c886bfec0ed856fedf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b40c22a7efc24073986b4602a63f0182": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a4429305ba0e4c6ea968e042ad0bf8a3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9dfec509908c47c886bfec0ed856fedf", "placeholder": "\u200b", "style": "IPY_MODEL_b40c22a7efc24073986b4602a63f0182", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007153412.67it/s]"}}, "d87f9827c29f4d968c7378ec2439f165": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e49d3ef85b404defa7f4963e4e6629e0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_695186571d9c4469827a800135ce8fcb", "IPY_MODEL_e5303555709f44cb8996c10b95dfdf3b", "IPY_MODEL_a4429305ba0e4c6ea968e042ad0bf8a3"], "layout": "IPY_MODEL_d87f9827c29f4d968c7378ec2439f165", "tabbable": null, "tooltip": null}}, "75764baa73944ade9cd346841e860d52": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "30bbe46276aa41e583319feb81c21364": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a287eb6660d249179908428b066ba313": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_75764baa73944ade9cd346841e860d52", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_30bbe46276aa41e583319feb81c21364", "tabbable": null, "tooltip": null, "value": 30.0}}, "4c14a4ea32a64ed18ab20668042beef4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "024d84969eb0452e826811c05b19f723": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "16d5bf807cb04c91aaeec06ee9da5f37": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4c14a4ea32a64ed18ab20668042beef4", "placeholder": "\u200b", "style": "IPY_MODEL_024d84969eb0452e826811c05b19f723", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "f133a4b2d4a24e94a1b9570408bd0783": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bb96ccb4f6e842659006997a187148b4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0e8e060c4b254e9aa5d9aee1d4552593": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f133a4b2d4a24e94a1b9570408bd0783", "placeholder": "\u200b", "style": "IPY_MODEL_bb96ccb4f6e842659006997a187148b4", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.50it/s]"}}, "ac97e4d805274807bf15178774524dec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "72283dda082f4ec0939a16c2b153ce67": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_16d5bf807cb04c91aaeec06ee9da5f37", "IPY_MODEL_a287eb6660d249179908428b066ba313", "IPY_MODEL_0e8e060c4b254e9aa5d9aee1d4552593"], "layout": "IPY_MODEL_ac97e4d805274807bf15178774524dec", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"2026f5905bea42b3a5fec47dd1835cab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "982e6ae48ae045388e53ebbdd808ea3d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "22fcc50dcbcd428a9ee8c17689f6f3fb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2026f5905bea42b3a5fec47dd1835cab", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_982e6ae48ae045388e53ebbdd808ea3d", "tabbable": null, "tooltip": null, "value": 30.0}}, "9999442241904326b09851bffb623704": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6f0cc8e3ce944d7089bdcafa094524ae": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d8448722c142437691b52a8a7bc5a74a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9999442241904326b09851bffb623704", "placeholder": "\u200b", "style": "IPY_MODEL_6f0cc8e3ce944d7089bdcafa094524ae", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "6d9cf6a85fb44814bdfc2207f05d3845": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6bd5333df54c43c49df93504c67e4e92": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2696508d12274c61a6ffbf6664e979c2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6d9cf6a85fb44814bdfc2207f05d3845", "placeholder": "\u200b", "style": "IPY_MODEL_6bd5333df54c43c49df93504c67e4e92", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007746.86it/s]"}}, "8fc02ffed2784773bc87ba8f52e0f4a5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3672ba1a4e5b46fc9b75c6e4927b369a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d8448722c142437691b52a8a7bc5a74a", "IPY_MODEL_22fcc50dcbcd428a9ee8c17689f6f3fb", "IPY_MODEL_2696508d12274c61a6ffbf6664e979c2"], "layout": "IPY_MODEL_8fc02ffed2784773bc87ba8f52e0f4a5", "tabbable": null, "tooltip": null}}, "5cb7fb4d4c4c4a02b48240d5ab278e63": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e327259429014721ab3f5d50f63fbff7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ba103601b82f4c59857df2f5ded6b85f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5cb7fb4d4c4c4a02b48240d5ab278e63", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e327259429014721ab3f5d50f63fbff7", "tabbable": null, "tooltip": null, "value": 30.0}}, "30d14252227a4696bdd8eb0fe60a5b55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6caf9c6ff0384b90a1d5e30b26893ad6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "04fcab59994944f9aebbb74313208b51": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_30d14252227a4696bdd8eb0fe60a5b55", "placeholder": "\u200b", "style": "IPY_MODEL_6caf9c6ff0384b90a1d5e30b26893ad6", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "5daacaf3f6d048c5890aa6fad52a13bc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4596213caf374557af5521d5be515e08": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dc2557ffefe04c5a93e2cafc602a0a17": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5daacaf3f6d048c5890aa6fad52a13bc", "placeholder": "\u200b", "style": "IPY_MODEL_4596213caf374557af5521d5be515e08", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:22<00:00,\u2007\u20071.32it/s]"}}, "18cba06919f048ff8a7212c76706dac6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "382983ea361a4f5a866d4601f539f91f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_04fcab59994944f9aebbb74313208b51", "IPY_MODEL_ba103601b82f4c59857df2f5ded6b85f", "IPY_MODEL_dc2557ffefe04c5a93e2cafc602a0a17"], "layout": "IPY_MODEL_18cba06919f048ff8a7212c76706dac6", "tabbable": null, "tooltip": null}}, "aa7da5d3c11b4bb38c9fd44d6af8c807": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c06580f426ea4f3389d11614ec28c060": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "51d37079c20647b7bb8009f477f7f382": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aa7da5d3c11b4bb38c9fd44d6af8c807", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c06580f426ea4f3389d11614ec28c060", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "9ec6bb72f66f488cb39f95374493f5bd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8542671a46ee4d28b68e6c3fe4bd5c9b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6516b051ad0a4020a44326f73b533699": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9ec6bb72f66f488cb39f95374493f5bd", "placeholder": "\u200b", "style": "IPY_MODEL_8542671a46ee4d28b68e6c3fe4bd5c9b", "tabbable": null, "tooltip": null, "value": "100%"}}, "93d780eea2d44a42a5024bc8b529f752": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "55ca0cc989f74c2a82175ceb95ea4d56": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "62d3c28193d346f0a5af52cfca9ee4ed": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_93d780eea2d44a42a5024bc8b529f752", "placeholder": "\u200b", "style": "IPY_MODEL_55ca0cc989f74c2a82175ceb95ea4d56", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007151596.94it/s]"}}, "240484a70d20448284d5a3841943b3ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e16af912ee194d9193fa6f36331fb731": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6516b051ad0a4020a44326f73b533699", "IPY_MODEL_51d37079c20647b7bb8009f477f7f382", "IPY_MODEL_62d3c28193d346f0a5af52cfca9ee4ed"], "layout": "IPY_MODEL_240484a70d20448284d5a3841943b3ce", "tabbable": null, "tooltip": null}}, "0440cad43c2a498fbd42bce297cdc34f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d1ecadc3f434e53a239f1876fbec43f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2fdfbb9e9b6d40af915a9b427e9ba1ce": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0440cad43c2a498fbd42bce297cdc34f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6d1ecadc3f434e53a239f1876fbec43f", "tabbable": null, "tooltip": null, "value": 30.0}}, "4d5787d693ca4fd89be1afb5540ea753": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "04cd61cf624d403b860482e547b93418": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "763410d50a8e47a0a66c8d256feff144": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4d5787d693ca4fd89be1afb5540ea753", "placeholder": "\u200b", "style": "IPY_MODEL_04cd61cf624d403b860482e547b93418", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "5ab1eea0e6d44210a1850dfbf154b4d7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a887846e044f44e6b2356c6d82ff5820": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "05f052e21b754028a3fc7b4cf7efcb2c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5ab1eea0e6d44210a1850dfbf154b4d7", "placeholder": "\u200b", "style": "IPY_MODEL_a887846e044f44e6b2356c6d82ff5820", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200718.54it/s]"}}, "f0325b816faa4f9cb226a3bf092f6bbb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "545e865005cc44008d0627654a77a00f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_763410d50a8e47a0a66c8d256feff144", "IPY_MODEL_2fdfbb9e9b6d40af915a9b427e9ba1ce", "IPY_MODEL_05f052e21b754028a3fc7b4cf7efcb2c"], "layout": "IPY_MODEL_f0325b816faa4f9cb226a3bf092f6bbb", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index ec43b5fec..7c054d311 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:12.098975Z", - "iopub.status.busy": "2024-05-24T14:17:12.098794Z", - "iopub.status.idle": "2024-05-24T14:17:13.187472Z", - "shell.execute_reply": "2024-05-24T14:17:13.186859Z" + "iopub.execute_input": "2024-05-24T14:47:23.751320Z", + "iopub.status.busy": "2024-05-24T14:47:23.751138Z", + "iopub.status.idle": "2024-05-24T14:47:25.225197Z", + "shell.execute_reply": "2024-05-24T14:47:25.224396Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:13.190034Z", - "iopub.status.busy": "2024-05-24T14:17:13.189840Z", - "iopub.status.idle": "2024-05-24T14:17:56.244531Z", - "shell.execute_reply": "2024-05-24T14:17:56.243884Z" + "iopub.execute_input": "2024-05-24T14:47:25.228167Z", + "iopub.status.busy": "2024-05-24T14:47:25.227876Z", + "iopub.status.idle": "2024-05-24T14:48:06.900638Z", + "shell.execute_reply": "2024-05-24T14:48:06.899939Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:56.246941Z", - "iopub.status.busy": "2024-05-24T14:17:56.246597Z", - "iopub.status.idle": "2024-05-24T14:17:57.361537Z", - "shell.execute_reply": "2024-05-24T14:17:57.360976Z" + "iopub.execute_input": "2024-05-24T14:48:06.903639Z", + "iopub.status.busy": "2024-05-24T14:48:06.903118Z", + "iopub.status.idle": "2024-05-24T14:48:08.159074Z", + "shell.execute_reply": "2024-05-24T14:48:08.158455Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:57.363963Z", - "iopub.status.busy": "2024-05-24T14:17:57.363656Z", - "iopub.status.idle": "2024-05-24T14:17:57.366860Z", - "shell.execute_reply": "2024-05-24T14:17:57.366396Z" + "iopub.execute_input": "2024-05-24T14:48:08.161720Z", + "iopub.status.busy": "2024-05-24T14:48:08.161355Z", + "iopub.status.idle": "2024-05-24T14:48:08.164937Z", + "shell.execute_reply": "2024-05-24T14:48:08.164437Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:57.368955Z", - "iopub.status.busy": "2024-05-24T14:17:57.368625Z", - "iopub.status.idle": "2024-05-24T14:17:57.372418Z", - "shell.execute_reply": "2024-05-24T14:17:57.371945Z" + "iopub.execute_input": "2024-05-24T14:48:08.167013Z", + "iopub.status.busy": "2024-05-24T14:48:08.166830Z", + "iopub.status.idle": "2024-05-24T14:48:08.171171Z", + "shell.execute_reply": "2024-05-24T14:48:08.170623Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:57.374586Z", - "iopub.status.busy": "2024-05-24T14:17:57.374186Z", - "iopub.status.idle": "2024-05-24T14:17:57.377890Z", - "shell.execute_reply": "2024-05-24T14:17:57.377442Z" + "iopub.execute_input": "2024-05-24T14:48:08.173563Z", + "iopub.status.busy": "2024-05-24T14:48:08.173189Z", + "iopub.status.idle": "2024-05-24T14:48:08.177196Z", + "shell.execute_reply": "2024-05-24T14:48:08.176714Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:57.379908Z", - "iopub.status.busy": "2024-05-24T14:17:57.379577Z", - "iopub.status.idle": "2024-05-24T14:17:57.382337Z", - "shell.execute_reply": "2024-05-24T14:17:57.381872Z" + "iopub.execute_input": "2024-05-24T14:48:08.179576Z", + "iopub.status.busy": "2024-05-24T14:48:08.179106Z", + "iopub.status.idle": "2024-05-24T14:48:08.182081Z", + "shell.execute_reply": "2024-05-24T14:48:08.181644Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:17:57.384391Z", - "iopub.status.busy": "2024-05-24T14:17:57.384059Z", - "iopub.status.idle": "2024-05-24T14:18:32.166810Z", - "shell.execute_reply": "2024-05-24T14:18:32.166191Z" + "iopub.execute_input": "2024-05-24T14:48:08.184202Z", + "iopub.status.busy": "2024-05-24T14:48:08.184001Z", + "iopub.status.idle": "2024-05-24T14:48:43.717252Z", + "shell.execute_reply": "2024-05-24T14:48:43.716631Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6b925d1eb16a4c0da4908e6c9ae20ddc", + "model_id": "3672ba1a4e5b46fc9b75c6e4927b369a", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7e91fb6e7e4e41419c598fed5e03305a", + "model_id": "382983ea361a4f5a866d4601f539f91f", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:18:32.169305Z", - "iopub.status.busy": "2024-05-24T14:18:32.169043Z", - "iopub.status.idle": "2024-05-24T14:18:32.842974Z", - "shell.execute_reply": "2024-05-24T14:18:32.842486Z" + "iopub.execute_input": "2024-05-24T14:48:43.719940Z", + "iopub.status.busy": "2024-05-24T14:48:43.719611Z", + "iopub.status.idle": "2024-05-24T14:48:44.423578Z", + "shell.execute_reply": "2024-05-24T14:48:44.422996Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:18:32.845116Z", - "iopub.status.busy": "2024-05-24T14:18:32.844829Z", - "iopub.status.idle": "2024-05-24T14:18:35.564158Z", - "shell.execute_reply": "2024-05-24T14:18:35.563568Z" + "iopub.execute_input": "2024-05-24T14:48:44.426212Z", + "iopub.status.busy": "2024-05-24T14:48:44.425592Z", + "iopub.status.idle": "2024-05-24T14:48:47.282615Z", + "shell.execute_reply": "2024-05-24T14:48:47.281970Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:18:35.566509Z", - "iopub.status.busy": "2024-05-24T14:18:35.566169Z", - "iopub.status.idle": "2024-05-24T14:19:08.319151Z", - "shell.execute_reply": "2024-05-24T14:19:08.318671Z" + "iopub.execute_input": "2024-05-24T14:48:47.285179Z", + "iopub.status.busy": "2024-05-24T14:48:47.284689Z", + "iopub.status.idle": "2024-05-24T14:49:20.452475Z", + "shell.execute_reply": "2024-05-24T14:49:20.451973Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e49d3ef85b404defa7f4963e4e6629e0", + "model_id": "e16af912ee194d9193fa6f36331fb731", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:08.321371Z", - "iopub.status.busy": "2024-05-24T14:19:08.321035Z", - "iopub.status.idle": "2024-05-24T14:19:22.644386Z", - "shell.execute_reply": "2024-05-24T14:19:22.643806Z" + "iopub.execute_input": "2024-05-24T14:49:20.454694Z", + "iopub.status.busy": "2024-05-24T14:49:20.454407Z", + "iopub.status.idle": "2024-05-24T14:49:35.504423Z", + "shell.execute_reply": "2024-05-24T14:49:35.503798Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:22.647038Z", - "iopub.status.busy": "2024-05-24T14:19:22.646609Z", - "iopub.status.idle": "2024-05-24T14:19:26.330344Z", - "shell.execute_reply": "2024-05-24T14:19:26.329816Z" + "iopub.execute_input": "2024-05-24T14:49:35.507033Z", + "iopub.status.busy": "2024-05-24T14:49:35.506803Z", + "iopub.status.idle": "2024-05-24T14:49:39.497973Z", + "shell.execute_reply": "2024-05-24T14:49:39.497351Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:26.332507Z", - "iopub.status.busy": "2024-05-24T14:19:26.332175Z", - "iopub.status.idle": "2024-05-24T14:19:27.746150Z", - "shell.execute_reply": "2024-05-24T14:19:27.745559Z" + "iopub.execute_input": "2024-05-24T14:49:39.500229Z", + "iopub.status.busy": "2024-05-24T14:49:39.499893Z", + "iopub.status.idle": "2024-05-24T14:49:41.103191Z", + "shell.execute_reply": "2024-05-24T14:49:41.102597Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "72283dda082f4ec0939a16c2b153ce67", + "model_id": "545e865005cc44008d0627654a77a00f", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:27.748653Z", - "iopub.status.busy": "2024-05-24T14:19:27.748259Z", - "iopub.status.idle": "2024-05-24T14:19:27.778181Z", - "shell.execute_reply": "2024-05-24T14:19:27.777661Z" + "iopub.execute_input": "2024-05-24T14:49:41.105631Z", + "iopub.status.busy": "2024-05-24T14:49:41.105265Z", + "iopub.status.idle": "2024-05-24T14:49:41.143677Z", + "shell.execute_reply": "2024-05-24T14:49:41.143107Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:27.780781Z", - "iopub.status.busy": "2024-05-24T14:19:27.780417Z", - "iopub.status.idle": "2024-05-24T14:19:33.885804Z", - "shell.execute_reply": "2024-05-24T14:19:33.885211Z" + "iopub.execute_input": "2024-05-24T14:49:41.146408Z", + "iopub.status.busy": "2024-05-24T14:49:41.145977Z", + "iopub.status.idle": "2024-05-24T14:49:47.552406Z", + "shell.execute_reply": "2024-05-24T14:49:47.551769Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:33.888133Z", - "iopub.status.busy": "2024-05-24T14:19:33.887792Z", - "iopub.status.idle": "2024-05-24T14:19:33.943798Z", - "shell.execute_reply": "2024-05-24T14:19:33.943306Z" + "iopub.execute_input": "2024-05-24T14:49:47.554765Z", + "iopub.status.busy": "2024-05-24T14:49:47.554389Z", + "iopub.status.idle": "2024-05-24T14:49:47.611617Z", + "shell.execute_reply": "2024-05-24T14:49:47.611045Z" }, "nbsphinx": "hidden" }, @@ -1038,25 +1038,60 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "024d84969eb0452e826811c05b19f723": { - "model_module": "@jupyter-widgets/controls", + "0440cad43c2a498fbd42bce297cdc34f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0b39b8abd42c455baba1e06abb8a2329": { + "04cd61cf624d403b860482e547b93418": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1074,7 +1109,7 @@ "text_color": null } }, - "0e8e060c4b254e9aa5d9aee1d4552593": { + "04fcab59994944f9aebbb74313208b51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1089,15 +1124,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f133a4b2d4a24e94a1b9570408bd0783", + "layout": "IPY_MODEL_30d14252227a4696bdd8eb0fe60a5b55", "placeholder": "​", - "style": "IPY_MODEL_bb96ccb4f6e842659006997a187148b4", + "style": "IPY_MODEL_6caf9c6ff0384b90a1d5e30b26893ad6", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.50it/s]" + "value": "number of examples processed for checking labels: 100%" } }, - "16d5bf807cb04c91aaeec06ee9da5f37": { + "05f052e21b754028a3fc7b4cf7efcb2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1112,15 +1147,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c14a4ea32a64ed18ab20668042beef4", + "layout": "IPY_MODEL_5ab1eea0e6d44210a1850dfbf154b4d7", "placeholder": "​", - "style": "IPY_MODEL_024d84969eb0452e826811c05b19f723", + "style": "IPY_MODEL_a887846e044f44e6b2356c6d82ff5820", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 30/30 [00:01<00:00, 18.54it/s]" } }, - "21a4d54883a940869cfd7ed09127dbd4": { + "18cba06919f048ff8a7212c76706dac6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1173,30 +1208,7 @@ "width": null } }, - "21dd46862fae4c2a84bfcf41906c39af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2c7c46d3e1744a0087f1859d8b530a75", - "placeholder": "​", - "style": "IPY_MODEL_7ab05e8ff8684d18829e229ff7b44757", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "276b36918c404b46a75b710ef5a033a8": { + "2026f5905bea42b3a5fec47dd1835cab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1249,7 +1261,33 @@ "width": null } }, - "2c7c46d3e1744a0087f1859d8b530a75": { + "22fcc50dcbcd428a9ee8c17689f6f3fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2026f5905bea42b3a5fec47dd1835cab", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_982e6ae48ae045388e53ebbdd808ea3d", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "240484a70d20448284d5a3841943b3ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1302,23 +1340,56 @@ "width": null } }, - "30bbe46276aa41e583319feb81c21364": { + "2696508d12274c61a6ffbf6664e979c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6d9cf6a85fb44814bdfc2207f05d3845", + "placeholder": "​", + "style": "IPY_MODEL_6bd5333df54c43c49df93504c67e4e92", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 746.86it/s]" + } + }, + "2fdfbb9e9b6d40af915a9b427e9ba1ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0440cad43c2a498fbd42bce297cdc34f", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6d1ecadc3f434e53a239f1876fbec43f", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "36c12eb6fcb945d59d80c223b853157d": { + "30d14252227a4696bdd8eb0fe60a5b55": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1371,7 +1442,73 @@ "width": null } }, - "37a5005c84374d95a72e5be1fbb33822": { + "3672ba1a4e5b46fc9b75c6e4927b369a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d8448722c142437691b52a8a7bc5a74a", + "IPY_MODEL_22fcc50dcbcd428a9ee8c17689f6f3fb", + "IPY_MODEL_2696508d12274c61a6ffbf6664e979c2" + ], + "layout": "IPY_MODEL_8fc02ffed2784773bc87ba8f52e0f4a5", + "tabbable": null, + "tooltip": null + } + }, + "382983ea361a4f5a866d4601f539f91f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_04fcab59994944f9aebbb74313208b51", + "IPY_MODEL_ba103601b82f4c59857df2f5ded6b85f", + "IPY_MODEL_dc2557ffefe04c5a93e2cafc602a0a17" + ], + "layout": "IPY_MODEL_18cba06919f048ff8a7212c76706dac6", + "tabbable": null, + "tooltip": null + } + }, + "4596213caf374557af5521d5be515e08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4d5787d693ca4fd89be1afb5540ea753": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1424,7 +1561,75 @@ "width": null } }, - "4c14a4ea32a64ed18ab20668042beef4": { + "51d37079c20647b7bb8009f477f7f382": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aa7da5d3c11b4bb38c9fd44d6af8c807", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c06580f426ea4f3389d11614ec28c060", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "545e865005cc44008d0627654a77a00f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_763410d50a8e47a0a66c8d256feff144", + "IPY_MODEL_2fdfbb9e9b6d40af915a9b427e9ba1ce", + "IPY_MODEL_05f052e21b754028a3fc7b4cf7efcb2c" + ], + "layout": "IPY_MODEL_f0325b816faa4f9cb226a3bf092f6bbb", + "tabbable": null, + "tooltip": null + } + }, + "55ca0cc989f74c2a82175ceb95ea4d56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5ab1eea0e6d44210a1850dfbf154b4d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1477,7 +1682,7 @@ "width": null } }, - "4e719ddfac2641bb90b122b285ec44f5": { + "5cb7fb4d4c4c4a02b48240d5ab278e63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1530,117 +1735,10 @@ "width": null } }, - "695186571d9c4469827a800135ce8fcb": { - "model_module": "@jupyter-widgets/controls", + "5daacaf3f6d048c5890aa6fad52a13bc": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e973f6611dd84adaa5a8d78acdd4d793", - "placeholder": "​", - "style": "IPY_MODEL_6a8a48155c6549c091f7ce9a7841f014", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "6a8a48155c6549c091f7ce9a7841f014": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6b925d1eb16a4c0da4908e6c9ae20ddc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_21dd46862fae4c2a84bfcf41906c39af", - "IPY_MODEL_a3f9b0167e1745ec8e1b71800793297d", - "IPY_MODEL_ec34083d9aba4f218c969e3f971052d9" - ], - "layout": "IPY_MODEL_36c12eb6fcb945d59d80c223b853157d", - "tabbable": null, - "tooltip": null - } - }, - "6f9c6dc90949461bb5eb0f42ec842dcc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "72283dda082f4ec0939a16c2b153ce67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16d5bf807cb04c91aaeec06ee9da5f37", - "IPY_MODEL_a287eb6660d249179908428b066ba313", - "IPY_MODEL_0e8e060c4b254e9aa5d9aee1d4552593" - ], - "layout": "IPY_MODEL_ac97e4d805274807bf15178774524dec", - "tabbable": null, - "tooltip": null - } - }, - "75764baa73944ade9cd346841e860d52": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -1690,102 +1788,53 @@ "width": null } }, - "77ee6d53ee484fd69ff863308233da46": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7ab05e8ff8684d18829e229ff7b44757": { + "62d3c28193d346f0a5af52cfca9ee4ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_93d780eea2d44a42a5024bc8b529f752", + "placeholder": "​", + "style": "IPY_MODEL_55ca0cc989f74c2a82175ceb95ea4d56", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 151596.94it/s]" } }, - "7e91fb6e7e4e41419c598fed5e03305a": { + "6516b051ad0a4020a44326f73b533699": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d1fdcd599b7b4eeab009a7108f0d66ca", - "IPY_MODEL_e51224c051b84e188743df99b991a3f2", - "IPY_MODEL_f913070b4a434266a567c6f67d55e871" - ], - "layout": "IPY_MODEL_f291e908ca0e4adf88bcb5dbcb342db6", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9ec6bb72f66f488cb39f95374493f5bd", + "placeholder": "​", + "style": "IPY_MODEL_8542671a46ee4d28b68e6c3fe4bd5c9b", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "97666f8dd93a4351b2d681838990fdf9": { + "6bd5333df54c43c49df93504c67e4e92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1803,135 +1852,25 @@ "text_color": null } }, - "9dfec509908c47c886bfec0ed856fedf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a287eb6660d249179908428b066ba313": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_75764baa73944ade9cd346841e860d52", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_30bbe46276aa41e583319feb81c21364", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "a3f9b0167e1745ec8e1b71800793297d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d85d0e2d6085433f81e2f5ef0be57d75", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a6a2dd91076e481a996ba865bde48b12", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "a4429305ba0e4c6ea968e042ad0bf8a3": { + "6caf9c6ff0384b90a1d5e30b26893ad6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9dfec509908c47c886bfec0ed856fedf", - "placeholder": "​", - "style": "IPY_MODEL_b40c22a7efc24073986b4602a63f0182", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 153412.67it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a6a2dd91076e481a996ba865bde48b12": { + "6d1ecadc3f434e53a239f1876fbec43f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1947,7 +1886,7 @@ "description_width": "" } }, - "ac97e4d805274807bf15178774524dec": { + "6d9cf6a85fb44814bdfc2207f05d3845": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2000,7 +1939,7 @@ "width": null } }, - "b40c22a7efc24073986b4602a63f0182": { + "6f0cc8e3ce944d7089bdcafa094524ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2018,41 +1957,7 @@ "text_color": null } }, - "bb96ccb4f6e842659006997a187148b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d011171ac97c441699d89270ff68fdc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d1fdcd599b7b4eeab009a7108f0d66ca": { + "763410d50a8e47a0a66c8d256feff144": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2067,15 +1972,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_37a5005c84374d95a72e5be1fbb33822", + "layout": "IPY_MODEL_4d5787d693ca4fd89be1afb5540ea753", "placeholder": "​", - "style": "IPY_MODEL_97666f8dd93a4351b2d681838990fdf9", + "style": "IPY_MODEL_04cd61cf624d403b860482e547b93418", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": "images processed using softmin: 100%" + } + }, + "8542671a46ee4d28b68e6c3fe4bd5c9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d85d0e2d6085433f81e2f5ef0be57d75": { + "8fc02ffed2784773bc87ba8f52e0f4a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2128,7 +2051,7 @@ "width": null } }, - "d87f9827c29f4d968c7378ec2439f165": { + "93d780eea2d44a42a5024bc8b529f752": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2181,7 +2104,7 @@ "width": null } }, - "e2b77744f8be44898bf35f6dd358d30d": { + "982e6ae48ae045388e53ebbdd808ea3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2197,83 +2120,7 @@ "description_width": "" } }, - "e49d3ef85b404defa7f4963e4e6629e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_695186571d9c4469827a800135ce8fcb", - "IPY_MODEL_e5303555709f44cb8996c10b95dfdf3b", - "IPY_MODEL_a4429305ba0e4c6ea968e042ad0bf8a3" - ], - "layout": "IPY_MODEL_d87f9827c29f4d968c7378ec2439f165", - "tabbable": null, - "tooltip": null - } - }, - "e51224c051b84e188743df99b991a3f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4e719ddfac2641bb90b122b285ec44f5", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e2b77744f8be44898bf35f6dd358d30d", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "e5303555709f44cb8996c10b95dfdf3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_77ee6d53ee484fd69ff863308233da46", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d011171ac97c441699d89270ff68fdc8", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 - } - }, - "e973f6611dd84adaa5a8d78acdd4d793": { + "9999442241904326b09851bffb623704": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2326,30 +2173,7 @@ "width": null } }, - "ec34083d9aba4f218c969e3f971052d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_276b36918c404b46a75b710ef5a033a8", - "placeholder": "​", - "style": "IPY_MODEL_0b39b8abd42c455baba1e06abb8a2329", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 758.97it/s]" - } - }, - "f133a4b2d4a24e94a1b9570408bd0783": { + "9ec6bb72f66f488cb39f95374493f5bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2402,7 +2226,25 @@ "width": null } }, - "f291e908ca0e4adf88bcb5dbcb342db6": { + "a887846e044f44e6b2356c6d82ff5820": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aa7da5d3c11b4bb38c9fd44d6af8c807": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2455,7 +2297,72 @@ "width": null } }, - "f913070b4a434266a567c6f67d55e871": { + "ba103601b82f4c59857df2f5ded6b85f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5cb7fb4d4c4c4a02b48240d5ab278e63", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e327259429014721ab3f5d50f63fbff7", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "c06580f426ea4f3389d11614ec28c060": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d8448722c142437691b52a8a7bc5a74a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9999442241904326b09851bffb623704", + "placeholder": "​", + "style": "IPY_MODEL_6f0cc8e3ce944d7089bdcafa094524ae", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "dc2557ffefe04c5a93e2cafc602a0a17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2470,12 +2377,105 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_21a4d54883a940869cfd7ed09127dbd4", + "layout": "IPY_MODEL_5daacaf3f6d048c5890aa6fad52a13bc", "placeholder": "​", - "style": "IPY_MODEL_6f9c6dc90949461bb5eb0f42ec842dcc", + "style": "IPY_MODEL_4596213caf374557af5521d5be515e08", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.36it/s]" + "value": " 30/30 [00:22<00:00,  1.32it/s]" + } + }, + "e16af912ee194d9193fa6f36331fb731": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6516b051ad0a4020a44326f73b533699", + "IPY_MODEL_51d37079c20647b7bb8009f477f7f382", + "IPY_MODEL_62d3c28193d346f0a5af52cfca9ee4ed" + ], + "layout": "IPY_MODEL_240484a70d20448284d5a3841943b3ce", + "tabbable": null, + "tooltip": null + } + }, + "e327259429014721ab3f5d50f63fbff7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f0325b816faa4f9cb226a3bf092f6bbb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 33a1c9f3f..4caa6ec54 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -691,16 +691,16 @@

    1. Install required dependencies and download data

    diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 022342012..73542985c 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:36.205155Z", - "iopub.status.busy": "2024-05-24T14:19:36.204981Z", - "iopub.status.idle": "2024-05-24T14:19:37.430982Z", - "shell.execute_reply": "2024-05-24T14:19:37.430385Z" + "iopub.execute_input": "2024-05-24T14:49:50.346505Z", + "iopub.status.busy": "2024-05-24T14:49:50.345913Z", + "iopub.status.idle": "2024-05-24T14:49:51.544534Z", + "shell.execute_reply": "2024-05-24T14:49:51.543857Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-24 14:19:36-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-05-24 14:49:50-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,21 +94,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.247, 2400:52e0:1a00::845:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" + "185.93.1.246, 2400:52e0:1a00::1068:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.246|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -129,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.90MB/s in 0.2s \r\n", "\r\n", - "2024-05-24 14:19:36 (7.26 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-05-24 14:49:50 (5.90 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -151,9 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-24 14:19:37-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.219.169, 3.5.11.148, 3.5.27.172, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.219.169|:443... connected.\r\n", + "--2024-05-24 14:49:51-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.96.179, 52.217.49.108, 52.217.233.1, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.96.179|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,9 +168,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", + "pred_probs.npz 96%[==================> ] 15.71M 70.4MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 71.8MB/s in 0.2s \r\n", "\r\n", - "2024-05-24 14:19:37 (160 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-05-24 14:49:51 (71.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -193,10 +188,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:37.433469Z", - "iopub.status.busy": "2024-05-24T14:19:37.433289Z", - "iopub.status.idle": "2024-05-24T14:19:38.693567Z", - "shell.execute_reply": "2024-05-24T14:19:38.693013Z" + "iopub.execute_input": "2024-05-24T14:49:51.547444Z", + "iopub.status.busy": "2024-05-24T14:49:51.547170Z", + "iopub.status.idle": "2024-05-24T14:49:53.068431Z", + "shell.execute_reply": "2024-05-24T14:49:53.067845Z" }, "nbsphinx": "hidden" }, @@ -207,7 +202,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@438899286262e4635f83b7d60da7bfdd1035aa5e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -233,10 +228,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:38.696151Z", - "iopub.status.busy": "2024-05-24T14:19:38.695736Z", - "iopub.status.idle": "2024-05-24T14:19:38.698953Z", - "shell.execute_reply": "2024-05-24T14:19:38.698536Z" + "iopub.execute_input": "2024-05-24T14:49:53.071590Z", + "iopub.status.busy": "2024-05-24T14:49:53.070873Z", + "iopub.status.idle": "2024-05-24T14:49:53.074970Z", + "shell.execute_reply": "2024-05-24T14:49:53.074360Z" } }, "outputs": [], @@ -286,10 +281,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:38.700791Z", - "iopub.status.busy": "2024-05-24T14:19:38.700617Z", - "iopub.status.idle": "2024-05-24T14:19:38.703466Z", - "shell.execute_reply": "2024-05-24T14:19:38.703042Z" + "iopub.execute_input": "2024-05-24T14:49:53.077640Z", + "iopub.status.busy": "2024-05-24T14:49:53.077268Z", + "iopub.status.idle": "2024-05-24T14:49:53.080839Z", + "shell.execute_reply": "2024-05-24T14:49:53.080227Z" }, "nbsphinx": "hidden" }, @@ -307,10 +302,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:38.705221Z", - "iopub.status.busy": "2024-05-24T14:19:38.705050Z", - "iopub.status.idle": "2024-05-24T14:19:47.741655Z", - "shell.execute_reply": "2024-05-24T14:19:47.741082Z" + "iopub.execute_input": "2024-05-24T14:49:53.083196Z", + "iopub.status.busy": "2024-05-24T14:49:53.082885Z", + "iopub.status.idle": "2024-05-24T14:50:02.197841Z", + "shell.execute_reply": "2024-05-24T14:50:02.197236Z" } }, "outputs": [], @@ -384,10 +379,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:47.744245Z", - "iopub.status.busy": "2024-05-24T14:19:47.743798Z", - "iopub.status.idle": "2024-05-24T14:19:47.749434Z", - "shell.execute_reply": "2024-05-24T14:19:47.748970Z" + "iopub.execute_input": "2024-05-24T14:50:02.200838Z", + "iopub.status.busy": "2024-05-24T14:50:02.200415Z", + "iopub.status.idle": "2024-05-24T14:50:02.206637Z", + "shell.execute_reply": "2024-05-24T14:50:02.206064Z" }, "nbsphinx": "hidden" }, @@ -427,10 +422,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:47.751530Z", - "iopub.status.busy": "2024-05-24T14:19:47.751102Z", - "iopub.status.idle": "2024-05-24T14:19:48.096364Z", - "shell.execute_reply": "2024-05-24T14:19:48.095809Z" + "iopub.execute_input": "2024-05-24T14:50:02.209145Z", + "iopub.status.busy": "2024-05-24T14:50:02.208748Z", + "iopub.status.idle": "2024-05-24T14:50:02.638158Z", + "shell.execute_reply": "2024-05-24T14:50:02.637534Z" } }, "outputs": [], @@ -467,10 +462,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:48.098890Z", - "iopub.status.busy": "2024-05-24T14:19:48.098535Z", - "iopub.status.idle": "2024-05-24T14:19:48.103037Z", - "shell.execute_reply": "2024-05-24T14:19:48.102561Z" + "iopub.execute_input": "2024-05-24T14:50:02.641122Z", + "iopub.status.busy": "2024-05-24T14:50:02.640673Z", + "iopub.status.idle": "2024-05-24T14:50:02.645692Z", + "shell.execute_reply": "2024-05-24T14:50:02.644970Z" } }, "outputs": [ @@ -542,10 +537,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:48.105040Z", - "iopub.status.busy": "2024-05-24T14:19:48.104729Z", - "iopub.status.idle": "2024-05-24T14:19:50.453604Z", - "shell.execute_reply": "2024-05-24T14:19:50.452960Z" + "iopub.execute_input": "2024-05-24T14:50:02.648427Z", + "iopub.status.busy": "2024-05-24T14:50:02.647997Z", + "iopub.status.idle": "2024-05-24T14:50:05.427039Z", + "shell.execute_reply": "2024-05-24T14:50:05.426330Z" } }, "outputs": [], @@ -567,10 +562,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:50.456521Z", - "iopub.status.busy": "2024-05-24T14:19:50.455956Z", - "iopub.status.idle": "2024-05-24T14:19:50.460042Z", - "shell.execute_reply": "2024-05-24T14:19:50.459521Z" + "iopub.execute_input": "2024-05-24T14:50:05.430476Z", + "iopub.status.busy": "2024-05-24T14:50:05.429663Z", + "iopub.status.idle": "2024-05-24T14:50:05.434064Z", + "shell.execute_reply": "2024-05-24T14:50:05.433453Z" } }, "outputs": [ @@ -606,10 +601,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:50.462133Z", - "iopub.status.busy": "2024-05-24T14:19:50.461793Z", - "iopub.status.idle": "2024-05-24T14:19:50.466784Z", - "shell.execute_reply": "2024-05-24T14:19:50.466230Z" + "iopub.execute_input": "2024-05-24T14:50:05.436615Z", + "iopub.status.busy": "2024-05-24T14:50:05.436042Z", + "iopub.status.idle": "2024-05-24T14:50:05.442446Z", + "shell.execute_reply": "2024-05-24T14:50:05.441825Z" } }, "outputs": [ @@ -787,10 +782,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:50.468850Z", - "iopub.status.busy": "2024-05-24T14:19:50.468522Z", - "iopub.status.idle": "2024-05-24T14:19:50.494333Z", - "shell.execute_reply": "2024-05-24T14:19:50.493853Z" + "iopub.execute_input": "2024-05-24T14:50:05.444740Z", + "iopub.status.busy": "2024-05-24T14:50:05.444488Z", + "iopub.status.idle": "2024-05-24T14:50:05.475833Z", + "shell.execute_reply": "2024-05-24T14:50:05.475164Z" } }, "outputs": [ @@ -892,10 +887,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:50.496514Z", - "iopub.status.busy": "2024-05-24T14:19:50.496124Z", - "iopub.status.idle": "2024-05-24T14:19:50.500485Z", - "shell.execute_reply": "2024-05-24T14:19:50.499944Z" + "iopub.execute_input": "2024-05-24T14:50:05.478414Z", + "iopub.status.busy": "2024-05-24T14:50:05.477949Z", + "iopub.status.idle": "2024-05-24T14:50:05.484291Z", + "shell.execute_reply": "2024-05-24T14:50:05.483674Z" } }, "outputs": [ @@ -969,10 +964,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:50.502462Z", - "iopub.status.busy": "2024-05-24T14:19:50.502137Z", - "iopub.status.idle": "2024-05-24T14:19:51.874676Z", - "shell.execute_reply": "2024-05-24T14:19:51.874134Z" + "iopub.execute_input": "2024-05-24T14:50:05.486636Z", + "iopub.status.busy": "2024-05-24T14:50:05.486295Z", + "iopub.status.idle": "2024-05-24T14:50:07.075328Z", + "shell.execute_reply": "2024-05-24T14:50:07.074681Z" } }, "outputs": [ @@ -1144,10 +1139,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-05-24T14:19:51.876917Z", - "iopub.status.busy": "2024-05-24T14:19:51.876550Z", - "iopub.status.idle": "2024-05-24T14:19:51.880651Z", - "shell.execute_reply": "2024-05-24T14:19:51.880202Z" + "iopub.execute_input": "2024-05-24T14:50:07.078297Z", + "iopub.status.busy": "2024-05-24T14:50:07.077744Z", + "iopub.status.idle": "2024-05-24T14:50:07.082976Z", + "shell.execute_reply": "2024-05-24T14:50:07.082309Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 62b57a255..c7b9f8d1e 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.4", - commit_hash: "25b7aaba7e53fe99c871c9c33e0c6d8c3c5f2970", + commit_hash: "438899286262e4635f83b7d60da7bfdd1035aa5e", }; \ No newline at end of file