diff --git a/master/.buildinfo b/master/.buildinfo index 27de41706..6231a23cf 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 1c1dcb741825cb2c57a77fc5211166cb +config: 3ad80fbb8ee164815b3a9f7204198f6b tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 439823608..1a5320d16 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index d0be6ecdb..747c2fd7a 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index b1f28a3a2..d1cbd0784 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index cb723fab1..5e094d5bb 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index e026dffbb..59fc8bbe1 100644 Binary files a/master/.doctrees/cleanlab/data_valuation.doctree and b/master/.doctrees/cleanlab/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index ae3d6a545..eead05ac3 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 1893b1e18..fcc5f9f70 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree and b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index b1a4f8537..ea23bfd6d 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index e98669b84..cc50acee2 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 77a239731..f9552155a 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index d4fdd7a78..ad3aa14d0 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 23368ebeb..5f32eb1f3 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 0805f43d5..d39317abf 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 320b40d28..c2ff608bc 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 96340a552..844c95929 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index a18bded95..43ea11698 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 0f272e727..f7c4e423f 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 6feb4347c..5260c116a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index ba37c2984..16c45c4a0 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index dc8642838..d232699a9 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 0ca529a5b..39c2439a2 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index c11df578b..e0fd3225c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index e0107abdf..d7cf83e89 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 4e8e56702..499e62fed 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index b4cbaef8c..98e2b6bd9 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 61d4a8a9c..725ea62aa 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 794ee7ee2..3d3ab00be 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 63a3b6e13..bb7eb1bc9 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index aa62aebfc..703d18763 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 7287f4c6e..a17f62a68 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index cf8d998f0..14d4ad14a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 6073bc6d6..9f27c7e93 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 0fd837be1..a568c9bf8 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree and b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 734f70a56..a7d5053a4 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index fec593267..f4383a0c0 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/task.doctree and b/master/.doctrees/cleanlab/datalab/internal/task.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index fec9007c1..303b3ff47 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 857ba57a4..72ac4e2f3 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 14559053d..c4ec68ec2 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 348522111..3a9e969cb 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index b4a3022b4..c12f8a014 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 6706644d5..ae3772ab3 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 106506f64..15e0a1af2 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 5e2f01e0b..717bfd5e2 100644 Binary files a/master/.doctrees/cleanlab/experimental/span_classification.doctree and b/master/.doctrees/cleanlab/experimental/span_classification.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index bc9c7b075..3ba35454b 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index f1c41be9c..74dea715a 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 344276e6b..03f4c2d57 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 9482d233c..995b9b1d0 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index e98653191..9e4b6d262 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index 007ba5ee0..c9a00641e 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index a931ae840..ffe1a406b 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 4b43af4e2..9c30c84ef 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 639590fe5..5da603d34 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 895c632fc..6d5349c61 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index e77848933..a2dcee6dc 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index 21e05aeab..2c279a84c 100644 Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 6f63d4552..d843efd42 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index d51479ff6..a7415b358 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 415e9820c..9fb4605eb 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index feaf27584..2d1068dee 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 40d275169..359840cc8 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 849011462..b70755b25 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 470028c13..53c75653d 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 28f13d22f..58f231577 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index fb8d134b9..61c168c67 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 324c5174c..a707ebb29 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index d00e099a6..fa878a4a1 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index b52943529..e98ccf2f7 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 03a2fb403..89f5b1054 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 613056c7e..a892a47f1 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 5eb1fb218..902f4c7da 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index d000bde45..391cb4676 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 019446607..9d4b66dd0 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index a6607d7ab..d1c1efaa8 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 9e5e3f8c1..495534c3b 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index c820b13e7..53885bbc5 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index b2149f0f8..4ae9a6301 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index d9dec669c..8c14692f9 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index c001169fb..10161baab 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 71dbd6257..a225e6932 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index 9ea4f1f55..bc2f0eac1 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index 9bfc33865..0a7f0dccd 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 6eace2d6d..258f87aad 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 0b55b5e74..c84eb4e52 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:50.769823Z", - "iopub.status.busy": "2024-04-06T04:26:50.769660Z", - "iopub.status.idle": "2024-04-06T04:26:51.904390Z", - "shell.execute_reply": "2024-04-06T04:26:51.903868Z" + "iopub.execute_input": "2024-04-08T19:04:20.808965Z", + "iopub.status.busy": "2024-04-08T19:04:20.808791Z", + "iopub.status.idle": "2024-04-08T19:04:21.997144Z", + "shell.execute_reply": "2024-04-08T19:04:21.996577Z" }, "nbsphinx": "hidden" }, @@ -127,7 +127,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -152,10 +152,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:51.906925Z", - "iopub.status.busy": "2024-04-06T04:26:51.906505Z", - "iopub.status.idle": "2024-04-06T04:26:51.925092Z", - "shell.execute_reply": "2024-04-06T04:26:51.924644Z" + "iopub.execute_input": "2024-04-08T19:04:21.999784Z", + "iopub.status.busy": "2024-04-08T19:04:21.999468Z", + "iopub.status.idle": "2024-04-08T19:04:22.020020Z", + "shell.execute_reply": "2024-04-08T19:04:22.019546Z" } }, "outputs": [], @@ -196,10 +196,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:51.927250Z", - "iopub.status.busy": "2024-04-06T04:26:51.926936Z", - "iopub.status.idle": "2024-04-06T04:26:52.095031Z", - "shell.execute_reply": "2024-04-06T04:26:52.094456Z" + "iopub.execute_input": "2024-04-08T19:04:22.022733Z", + "iopub.status.busy": "2024-04-08T19:04:22.022190Z", + "iopub.status.idle": "2024-04-08T19:04:22.250382Z", + "shell.execute_reply": "2024-04-08T19:04:22.249811Z" } }, "outputs": [ @@ -306,10 +306,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:52.125272Z", - "iopub.status.busy": "2024-04-06T04:26:52.125095Z", - "iopub.status.idle": "2024-04-06T04:26:52.128526Z", - "shell.execute_reply": "2024-04-06T04:26:52.128074Z" + "iopub.execute_input": "2024-04-08T19:04:22.288376Z", + "iopub.status.busy": "2024-04-08T19:04:22.287864Z", + "iopub.status.idle": "2024-04-08T19:04:22.292293Z", + "shell.execute_reply": "2024-04-08T19:04:22.291761Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:52.130584Z", - "iopub.status.busy": "2024-04-06T04:26:52.130251Z", - "iopub.status.idle": "2024-04-06T04:26:52.138357Z", - "shell.execute_reply": "2024-04-06T04:26:52.137794Z" + "iopub.execute_input": "2024-04-08T19:04:22.294486Z", + "iopub.status.busy": "2024-04-08T19:04:22.294124Z", + "iopub.status.idle": "2024-04-08T19:04:22.302832Z", + "shell.execute_reply": "2024-04-08T19:04:22.302384Z" } }, "outputs": [], @@ -385,10 +385,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:52.140399Z", - "iopub.status.busy": "2024-04-06T04:26:52.140214Z", - "iopub.status.idle": "2024-04-06T04:26:52.142650Z", - "shell.execute_reply": "2024-04-06T04:26:52.142235Z" + "iopub.execute_input": "2024-04-08T19:04:22.305016Z", + "iopub.status.busy": "2024-04-08T19:04:22.304694Z", + "iopub.status.idle": "2024-04-08T19:04:22.307358Z", + "shell.execute_reply": "2024-04-08T19:04:22.306925Z" } }, "outputs": [], @@ -410,10 +410,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:52.144478Z", - "iopub.status.busy": "2024-04-06T04:26:52.144308Z", - "iopub.status.idle": "2024-04-06T04:26:52.655201Z", - "shell.execute_reply": "2024-04-06T04:26:52.654687Z" + "iopub.execute_input": "2024-04-08T19:04:22.309357Z", + "iopub.status.busy": "2024-04-08T19:04:22.308992Z", + "iopub.status.idle": "2024-04-08T19:04:22.826772Z", + "shell.execute_reply": "2024-04-08T19:04:22.826102Z" } }, "outputs": [], @@ -447,10 +447,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:52.657171Z", - "iopub.status.busy": "2024-04-06T04:26:52.656995Z", - "iopub.status.idle": "2024-04-06T04:26:54.226322Z", - "shell.execute_reply": "2024-04-06T04:26:54.225696Z" + "iopub.execute_input": "2024-04-08T19:04:22.829195Z", + "iopub.status.busy": "2024-04-08T19:04:22.829001Z", + "iopub.status.idle": "2024-04-08T19:04:24.584334Z", + "shell.execute_reply": "2024-04-08T19:04:24.583696Z" } }, "outputs": [ @@ -482,10 +482,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:54.229079Z", - "iopub.status.busy": "2024-04-06T04:26:54.228374Z", - "iopub.status.idle": "2024-04-06T04:26:54.238321Z", - "shell.execute_reply": "2024-04-06T04:26:54.237839Z" + "iopub.execute_input": "2024-04-08T19:04:24.587018Z", + "iopub.status.busy": "2024-04-08T19:04:24.586424Z", + "iopub.status.idle": "2024-04-08T19:04:24.596789Z", + "shell.execute_reply": "2024-04-08T19:04:24.596333Z" } }, "outputs": [ @@ -606,10 +606,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:54.240174Z", - "iopub.status.busy": "2024-04-06T04:26:54.239999Z", - "iopub.status.idle": "2024-04-06T04:26:54.244001Z", - "shell.execute_reply": "2024-04-06T04:26:54.243600Z" + "iopub.execute_input": "2024-04-08T19:04:24.598784Z", + "iopub.status.busy": "2024-04-08T19:04:24.598605Z", + "iopub.status.idle": "2024-04-08T19:04:24.603028Z", + "shell.execute_reply": "2024-04-08T19:04:24.602574Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:54.245815Z", - "iopub.status.busy": "2024-04-06T04:26:54.245645Z", - "iopub.status.idle": "2024-04-06T04:26:54.252428Z", - "shell.execute_reply": "2024-04-06T04:26:54.252032Z" + "iopub.execute_input": "2024-04-08T19:04:24.604932Z", + "iopub.status.busy": "2024-04-08T19:04:24.604757Z", + "iopub.status.idle": "2024-04-08T19:04:24.612374Z", + "shell.execute_reply": "2024-04-08T19:04:24.611848Z" } }, "outputs": [], @@ -659,10 +659,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:54.254565Z", - "iopub.status.busy": "2024-04-06T04:26:54.254191Z", - "iopub.status.idle": "2024-04-06T04:26:54.363811Z", - "shell.execute_reply": "2024-04-06T04:26:54.363293Z" + "iopub.execute_input": "2024-04-08T19:04:24.614464Z", + "iopub.status.busy": "2024-04-08T19:04:24.614057Z", + "iopub.status.idle": "2024-04-08T19:04:24.725724Z", + "shell.execute_reply": "2024-04-08T19:04:24.725123Z" } }, "outputs": [ @@ -692,10 +692,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:54.365703Z", - "iopub.status.busy": "2024-04-06T04:26:54.365531Z", - "iopub.status.idle": "2024-04-06T04:26:54.368039Z", - "shell.execute_reply": "2024-04-06T04:26:54.367639Z" + "iopub.execute_input": "2024-04-08T19:04:24.728264Z", + "iopub.status.busy": "2024-04-08T19:04:24.727792Z", + "iopub.status.idle": "2024-04-08T19:04:24.730921Z", + "shell.execute_reply": "2024-04-08T19:04:24.730473Z" } }, "outputs": [], @@ -716,10 +716,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:54.369822Z", - "iopub.status.busy": "2024-04-06T04:26:54.369654Z", - "iopub.status.idle": "2024-04-06T04:26:56.249703Z", - "shell.execute_reply": "2024-04-06T04:26:56.248990Z" + "iopub.execute_input": "2024-04-08T19:04:24.732880Z", + "iopub.status.busy": "2024-04-08T19:04:24.732594Z", + "iopub.status.idle": "2024-04-08T19:04:26.886972Z", + "shell.execute_reply": "2024-04-08T19:04:26.886312Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:56.252825Z", - "iopub.status.busy": "2024-04-06T04:26:56.252085Z", - "iopub.status.idle": "2024-04-06T04:26:56.262987Z", - "shell.execute_reply": "2024-04-06T04:26:56.262497Z" + "iopub.execute_input": "2024-04-08T19:04:26.889971Z", + "iopub.status.busy": "2024-04-08T19:04:26.889228Z", + "iopub.status.idle": "2024-04-08T19:04:26.900494Z", + "shell.execute_reply": "2024-04-08T19:04:26.899943Z" } }, "outputs": [ @@ -772,10 +772,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:56.265020Z", - "iopub.status.busy": "2024-04-06T04:26:56.264831Z", - "iopub.status.idle": "2024-04-06T04:26:56.313621Z", - "shell.execute_reply": "2024-04-06T04:26:56.313208Z" + "iopub.execute_input": "2024-04-08T19:04:26.902458Z", + "iopub.status.busy": "2024-04-08T19:04:26.902143Z", + "iopub.status.idle": "2024-04-08T19:04:27.012965Z", + "shell.execute_reply": "2024-04-08T19:04:27.012399Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index c1d11beeb..cf6ae4311 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:58.967747Z", - "iopub.status.busy": "2024-04-06T04:26:58.967347Z", - "iopub.status.idle": "2024-04-06T04:27:01.569874Z", - "shell.execute_reply": "2024-04-06T04:27:01.569267Z" + "iopub.execute_input": "2024-04-08T19:04:29.937745Z", + "iopub.status.busy": "2024-04-08T19:04:29.937583Z", + "iopub.status.idle": "2024-04-08T19:04:33.047637Z", + "shell.execute_reply": "2024-04-08T19:04:33.046998Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.572409Z", - "iopub.status.busy": "2024-04-06T04:27:01.572137Z", - "iopub.status.idle": "2024-04-06T04:27:01.575389Z", - "shell.execute_reply": "2024-04-06T04:27:01.574976Z" + "iopub.execute_input": "2024-04-08T19:04:33.050116Z", + "iopub.status.busy": "2024-04-08T19:04:33.049809Z", + "iopub.status.idle": "2024-04-08T19:04:33.053073Z", + "shell.execute_reply": "2024-04-08T19:04:33.052649Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.577325Z", - "iopub.status.busy": "2024-04-06T04:27:01.576995Z", - "iopub.status.idle": "2024-04-06T04:27:01.580088Z", - "shell.execute_reply": "2024-04-06T04:27:01.579648Z" + "iopub.execute_input": "2024-04-08T19:04:33.054962Z", + "iopub.status.busy": "2024-04-08T19:04:33.054682Z", + "iopub.status.idle": "2024-04-08T19:04:33.057634Z", + "shell.execute_reply": "2024-04-08T19:04:33.057206Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.581930Z", - "iopub.status.busy": "2024-04-06T04:27:01.581670Z", - "iopub.status.idle": "2024-04-06T04:27:01.658694Z", - "shell.execute_reply": "2024-04-06T04:27:01.658172Z" + "iopub.execute_input": "2024-04-08T19:04:33.059556Z", + "iopub.status.busy": "2024-04-08T19:04:33.059236Z", + "iopub.status.idle": "2024-04-08T19:04:33.304635Z", + "shell.execute_reply": "2024-04-08T19:04:33.304093Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.660795Z", - "iopub.status.busy": "2024-04-06T04:27:01.660465Z", - "iopub.status.idle": "2024-04-06T04:27:01.663899Z", - "shell.execute_reply": "2024-04-06T04:27:01.663501Z" + "iopub.execute_input": "2024-04-08T19:04:33.306822Z", + "iopub.status.busy": "2024-04-08T19:04:33.306485Z", + "iopub.status.idle": "2024-04-08T19:04:33.309981Z", + "shell.execute_reply": "2024-04-08T19:04:33.309578Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.665856Z", - "iopub.status.busy": "2024-04-06T04:27:01.665521Z", - "iopub.status.idle": "2024-04-06T04:27:01.668705Z", - "shell.execute_reply": "2024-04-06T04:27:01.668216Z" + "iopub.execute_input": "2024-04-08T19:04:33.311977Z", + "iopub.status.busy": "2024-04-08T19:04:33.311602Z", + "iopub.status.idle": "2024-04-08T19:04:33.314907Z", + "shell.execute_reply": "2024-04-08T19:04:33.314372Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'card_about_to_expire'}\n" + "Classes: {'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'change_pin', 'apple_pay_or_google_pay'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.670676Z", - "iopub.status.busy": "2024-04-06T04:27:01.670295Z", - "iopub.status.idle": "2024-04-06T04:27:01.673371Z", - "shell.execute_reply": "2024-04-06T04:27:01.672860Z" + "iopub.execute_input": "2024-04-08T19:04:33.316831Z", + "iopub.status.busy": "2024-04-08T19:04:33.316579Z", + "iopub.status.idle": "2024-04-08T19:04:33.319694Z", + "shell.execute_reply": "2024-04-08T19:04:33.319261Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.675367Z", - "iopub.status.busy": "2024-04-06T04:27:01.675041Z", - "iopub.status.idle": "2024-04-06T04:27:01.678078Z", - "shell.execute_reply": "2024-04-06T04:27:01.677656Z" + "iopub.execute_input": "2024-04-08T19:04:33.321534Z", + "iopub.status.busy": "2024-04-08T19:04:33.321217Z", + "iopub.status.idle": "2024-04-08T19:04:33.324298Z", + "shell.execute_reply": "2024-04-08T19:04:33.323874Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.679941Z", - "iopub.status.busy": "2024-04-06T04:27:01.679685Z", - "iopub.status.idle": "2024-04-06T04:27:06.350529Z", - "shell.execute_reply": "2024-04-06T04:27:06.349987Z" + "iopub.execute_input": "2024-04-08T19:04:33.326161Z", + "iopub.status.busy": "2024-04-08T19:04:33.325901Z", + "iopub.status.idle": "2024-04-08T19:04:39.132517Z", + "shell.execute_reply": "2024-04-08T19:04:39.131899Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0b23f615f5b84f338a77080fed288888", + "model_id": "414486671bbc4579b154f2d4dd8df463", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "328b046d1b9d4dcfa0edb3132c01a4f2", + "model_id": "596554d1fd004a229dc0e9d5610bace9", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f26e295a2fa0406c8e3fff0e0818202d", + "model_id": "4a26fef448554f36a9cb66bea78f484a", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d20256762cdf4c06816c5653fdfef6a8", + "model_id": "c18cde9a3b464ad1a69d4fbf65c4287b", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d2370f99c49d43b39ac2ea8e64340375", + "model_id": "e8839cb132d74eb9a916dda9fdafe1c4", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fb7ad54f03394e35a23b11c642b2c405", + "model_id": "5e9e17de388746f4ba1fb4f05e426c4e", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2ccab9f1f4f0466db60167c0d669672d", + "model_id": "3af073a39e45402187f042a3cf90b160", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:06.353364Z", - "iopub.status.busy": "2024-04-06T04:27:06.352933Z", - "iopub.status.idle": "2024-04-06T04:27:06.356122Z", - "shell.execute_reply": "2024-04-06T04:27:06.355669Z" + "iopub.execute_input": "2024-04-08T19:04:39.135354Z", + "iopub.status.busy": "2024-04-08T19:04:39.134961Z", + "iopub.status.idle": "2024-04-08T19:04:39.137900Z", + "shell.execute_reply": "2024-04-08T19:04:39.137434Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:06.358024Z", - "iopub.status.busy": "2024-04-06T04:27:06.357833Z", - "iopub.status.idle": "2024-04-06T04:27:06.360554Z", - "shell.execute_reply": "2024-04-06T04:27:06.360115Z" + "iopub.execute_input": "2024-04-08T19:04:39.139840Z", + "iopub.status.busy": "2024-04-08T19:04:39.139530Z", + "iopub.status.idle": "2024-04-08T19:04:39.141949Z", + "shell.execute_reply": "2024-04-08T19:04:39.141547Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:06.362646Z", - "iopub.status.busy": "2024-04-06T04:27:06.362219Z", - "iopub.status.idle": "2024-04-06T04:27:08.620143Z", - "shell.execute_reply": "2024-04-06T04:27:08.619410Z" + "iopub.execute_input": "2024-04-08T19:04:39.143931Z", + "iopub.status.busy": "2024-04-08T19:04:39.143626Z", + "iopub.status.idle": "2024-04-08T19:04:41.418071Z", + "shell.execute_reply": "2024-04-08T19:04:41.417473Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:08.623393Z", - "iopub.status.busy": "2024-04-06T04:27:08.622654Z", - "iopub.status.idle": "2024-04-06T04:27:08.630521Z", - "shell.execute_reply": "2024-04-06T04:27:08.629847Z" + "iopub.execute_input": "2024-04-08T19:04:41.421050Z", + "iopub.status.busy": "2024-04-08T19:04:41.420335Z", + "iopub.status.idle": "2024-04-08T19:04:41.427937Z", + "shell.execute_reply": "2024-04-08T19:04:41.427499Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:08.632688Z", - "iopub.status.busy": "2024-04-06T04:27:08.632254Z", - "iopub.status.idle": "2024-04-06T04:27:08.636058Z", - "shell.execute_reply": "2024-04-06T04:27:08.635598Z" + "iopub.execute_input": "2024-04-08T19:04:41.429872Z", + "iopub.status.busy": "2024-04-08T19:04:41.429566Z", + "iopub.status.idle": "2024-04-08T19:04:41.433444Z", + "shell.execute_reply": "2024-04-08T19:04:41.433009Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:08.638183Z", - "iopub.status.busy": "2024-04-06T04:27:08.637783Z", - "iopub.status.idle": "2024-04-06T04:27:08.641176Z", - "shell.execute_reply": "2024-04-06T04:27:08.640663Z" + "iopub.execute_input": "2024-04-08T19:04:41.435332Z", + "iopub.status.busy": "2024-04-08T19:04:41.435016Z", + "iopub.status.idle": "2024-04-08T19:04:41.437872Z", + "shell.execute_reply": "2024-04-08T19:04:41.437382Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:08.643224Z", - "iopub.status.busy": "2024-04-06T04:27:08.642931Z", - "iopub.status.idle": "2024-04-06T04:27:08.645892Z", - "shell.execute_reply": "2024-04-06T04:27:08.645427Z" + "iopub.execute_input": "2024-04-08T19:04:41.439975Z", + "iopub.status.busy": "2024-04-08T19:04:41.439662Z", + "iopub.status.idle": "2024-04-08T19:04:41.442421Z", + "shell.execute_reply": "2024-04-08T19:04:41.442004Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:08.647921Z", - "iopub.status.busy": "2024-04-06T04:27:08.647631Z", - "iopub.status.idle": "2024-04-06T04:27:08.654408Z", - "shell.execute_reply": "2024-04-06T04:27:08.653855Z" + "iopub.execute_input": "2024-04-08T19:04:41.444405Z", + "iopub.status.busy": "2024-04-08T19:04:41.444102Z", + "iopub.status.idle": "2024-04-08T19:04:41.450660Z", + "shell.execute_reply": "2024-04-08T19:04:41.450205Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:08.656381Z", - "iopub.status.busy": "2024-04-06T04:27:08.656204Z", - "iopub.status.idle": "2024-04-06T04:27:08.882696Z", - "shell.execute_reply": "2024-04-06T04:27:08.882060Z" + "iopub.execute_input": "2024-04-08T19:04:41.452688Z", + "iopub.status.busy": "2024-04-08T19:04:41.452371Z", + "iopub.status.idle": "2024-04-08T19:04:41.707871Z", + "shell.execute_reply": "2024-04-08T19:04:41.707294Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:08.886463Z", - "iopub.status.busy": "2024-04-06T04:27:08.885511Z", - "iopub.status.idle": "2024-04-06T04:27:09.066323Z", - "shell.execute_reply": "2024-04-06T04:27:09.065793Z" + "iopub.execute_input": "2024-04-08T19:04:41.710541Z", + "iopub.status.busy": "2024-04-08T19:04:41.710134Z", + "iopub.status.idle": "2024-04-08T19:04:41.886669Z", + "shell.execute_reply": "2024-04-08T19:04:41.886149Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:09.070042Z", - "iopub.status.busy": "2024-04-06T04:27:09.069102Z", - "iopub.status.idle": "2024-04-06T04:27:09.074062Z", - "shell.execute_reply": "2024-04-06T04:27:09.073560Z" + "iopub.execute_input": "2024-04-08T19:04:41.889178Z", + "iopub.status.busy": "2024-04-08T19:04:41.888817Z", + "iopub.status.idle": "2024-04-08T19:04:41.892522Z", + "shell.execute_reply": "2024-04-08T19:04:41.892069Z" }, "nbsphinx": "hidden" }, @@ -1113,7 +1113,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "032871bbc89742aba639ffaee1200e37": { + "00882e39d8294fa7bf11a9929411c91d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1131,72 +1131,59 @@ "text_color": null } }, - "04b7c5dc6e7948f7b6da88bf9de4c09b": { + "0435bd2a67ae4580b11f72300c8c1b9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "0b23f615f5b84f338a77080fed288888": { + "068617b1c6e7410ea8a61aaa3bf35a59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4d3503dbfed14de4b1ffb6918b31358f", - "IPY_MODEL_9b703acaaefe43f2a747995e6baf26ca", - "IPY_MODEL_795e0495ac274840b84a9b2585fcb45b" - ], - "layout": "IPY_MODEL_57a3d879c99546208499a10cab8e04c7", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "10e4288569c34c62a5b336b51d001893": { + "107f3b6a64fb41898b51c78312996d47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4a44c65dbe25405084910ffb25948f0b", - "placeholder": "​", - "style": "IPY_MODEL_95ba2b873c0b456186466656bd4a4b05", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 125kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "18d5e009472c494c99ff042d5f4315c1": { + "161f5f17377e4e528cc2e973474950ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1211,15 +1198,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_27f1cfa796cd4d64880fb8ad1470589b", + "layout": "IPY_MODEL_63fe7f89c61d469689356c8afe8f7d0a", "placeholder": "​", - "style": "IPY_MODEL_fe7ce2b57aca4dc1b98fc34a52588b14", + "style": "IPY_MODEL_068617b1c6e7410ea8a61aaa3bf35a59", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 167MB/s]" + "value": "README.md: 100%" } }, - "1978592a53c7411fbb7d77958baefc3c": { + "16dad8a9c9074f5ab4ed24858cf4f896": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1237,7 +1224,7 @@ "text_color": null } }, - "202e77f783604892ba40274a0d289276": { + "2b0e68483cbf470db65245930283cce4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1255,56 +1242,25 @@ "text_color": null } }, - "250cfa9619754602808099a37a2351cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_385b07eec10c4e1780987426b0fb1ffa", - "placeholder": "​", - "style": "IPY_MODEL_6942d17c55104716b38548fde85fe97d", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "263444dd6e2144b3b9f73741003fea9f": { + "2dcd6e4805fb403ba8b6c1ce8e5ff117": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9123a1575ca34375b0b43f4289e4f1ef", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_431300eb075a4588806ea9c78d8531a3", - "tabbable": null, - "tooltip": null, - "value": 231508.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "27f1cfa796cd4d64880fb8ad1470589b": { + "3041fa94176846a99ea4c32b7fa1cade": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1357,30 +1313,7 @@ "width": null } }, - "29d77952655945c5975ed010d32ac352": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d330efe583834f6e9a4aef2d210f2448", - "placeholder": "​", - "style": "IPY_MODEL_5108e22e56ca44b8a5f0abeba3da954d", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.54kB/s]" - } - }, - "2b3304b6189e458ba99e1273f6dc3065": { + "30e21853c71148d39d7be87c7c68889a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1433,31 +1366,33 @@ "width": null } }, - "2ccab9f1f4f0466db60167c0d669672d": { + "33cce396c4bf413ebe5341fe28d03486": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_964aed80ab284dd48a31d9d5ad28fd30", - "IPY_MODEL_263444dd6e2144b3b9f73741003fea9f", - "IPY_MODEL_b6313e82b4f34189bbf42e2bf514a82d" - ], - "layout": "IPY_MODEL_4a315905dbb7402f9b17e6768c6aa8eb", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7167dd43cb39496d8971354c7dcf8fb3", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a13aee655acd48a2bc16f80efcd736a4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 466062.0 } }, - "2ea5a0c2da3a4d83b5610c2c9d2d542c": { + "34051f0f4e6242febbd69d5ad6e263e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1510,31 +1445,33 @@ "width": null } }, - "328b046d1b9d4dcfa0edb3132c01a4f2": { + "34f290f5d2fb480c8484034ab6752fca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d3d9e1e700e14803bfdd9de847eb8a1b", - "IPY_MODEL_7de6723f9beb43dbbad71ef72bf3d394", - "IPY_MODEL_58219d6711ac4cbe976717b4a76aa16b" - ], - "layout": "IPY_MODEL_83718921424246c8b3bb82278f13e7dd", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_55ca57fbdbeb4dd09672a18d9e527e1e", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e715922dec9a4f518bd83655ec5ece8c", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 391.0 } }, - "33e4cc93e6f44376a34c0ceb628ca488": { + "3912e2b011df41679c1659d40bc9fefb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1550,7 +1487,49 @@ "description_width": "" } }, - "385b07eec10c4e1780987426b0fb1ffa": { + "3a50e9ac92bb47ef8a4dd27183e221e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3af073a39e45402187f042a3cf90b160": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b3a0081d105e4d6193af250cc9cef948", + "IPY_MODEL_3eea5b07c46a4588903f301a31822500", + "IPY_MODEL_5194d575ab3e4498bcd728fe5c7d9a3d" + ], + "layout": "IPY_MODEL_c3f5dd847178422f94661624f9ecf612", + "tabbable": null, + "tooltip": null + } + }, + "3c2b01854c664a3a834ebb6315a06d7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1603,23 +1582,57 @@ "width": null } }, - "431300eb075a4588806ea9c78d8531a3": { + "3eea5b07c46a4588903f301a31822500": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_82f22504089445d980458c94bb3f0b22", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b2f57f17657e430c89e1a52e7f245309", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "414486671bbc4579b154f2d4dd8df463": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b3270c93e7874c21a39571fdb1d43780", + "IPY_MODEL_34f290f5d2fb480c8484034ab6752fca", + "IPY_MODEL_9a1995f42694404abb75d6338d1bddc7" + ], + "layout": "IPY_MODEL_acdced823e2a4d6f950e27bd4802b639", + "tabbable": null, + "tooltip": null } }, - "4a315905dbb7402f9b17e6768c6aa8eb": { + "41e5eb399b424312bb565497b2f550a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1672,7 +1685,7 @@ "width": null } }, - "4a44c65dbe25405084910ffb25948f0b": { + "427f262b918e461c9202e7a81d04c8dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1725,7 +1738,7 @@ "width": null } }, - "4d3503dbfed14de4b1ffb6918b31358f": { + "42a8d833492a48fe958eb757ee25c31c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1740,50 +1753,120 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fb7871277ea44cc992dd5130b07e281f", + "layout": "IPY_MODEL_30e21853c71148d39d7be87c7c68889a", "placeholder": "​", - "style": "IPY_MODEL_83a784ca18dd40209d7df691456fa335", + "style": "IPY_MODEL_fdf1adc0e36d4541972658ad13062aac", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": " 466k/466k [00:00<00:00, 6.02MB/s]" } }, - "5108e22e56ca44b8a5f0abeba3da954d": { + "4a26fef448554f36a9cb66bea78f484a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c4431e7dcf5a41e1934fd352a0e18cc6", + "IPY_MODEL_a200cf245005465880fbcc7a852362d4", + "IPY_MODEL_5de73fab2f284817999b4f68149d32b9" + ], + "layout": "IPY_MODEL_3041fa94176846a99ea4c32b7fa1cade", + "tabbable": null, + "tooltip": null } }, - "533ead7294bf4d068190ca8e90d78e80": { - "model_module": "@jupyter-widgets/base", + "4ba657e74f59423f9bed6c70b030fcfa": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_427f262b918e461c9202e7a81d04c8dc", + "placeholder": "​", + "style": "IPY_MODEL_fad61d9bcd544d64a2896b7a4fafeca3", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 355kB/s]" + } + }, + "4c9a189517774bbe90d04de5fdd9e48f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5194d575ab3e4498bcd728fe5c7d9a3d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab4a32cb43804d52b25207713bc5f0f4", + "placeholder": "​", + "style": "IPY_MODEL_4c9a189517774bbe90d04de5fdd9e48f", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 1.77MB/s]" + } + }, + "5385ad8ba67c426daa3e219dd49f7c1b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, "border_top": null, "bottom": null, "display": null, @@ -1819,7 +1902,7 @@ "width": null } }, - "57a3d879c99546208499a10cab8e04c7": { + "55ca57fbdbeb4dd09672a18d9e527e1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1872,7 +1955,47 @@ "width": null } }, - "58219d6711ac4cbe976717b4a76aa16b": { + "596554d1fd004a229dc0e9d5610bace9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_161f5f17377e4e528cc2e973474950ee", + "IPY_MODEL_a85b90552a3e4665b51fc3b6e7d921f7", + "IPY_MODEL_4ba657e74f59423f9bed6c70b030fcfa" + ], + "layout": "IPY_MODEL_eb1b16cb3c634b0496ccce16fde573eb", + "tabbable": null, + "tooltip": null + } + }, + "5a8a165febd74ab8a0e847c8a208e73f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5de73fab2f284817999b4f68149d32b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1887,38 +2010,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bd7e59232eee46a9941063b605e66d9b", + "layout": "IPY_MODEL_cbfa8e31e7cb4fd5b0f2827be2777ef3", "placeholder": "​", - "style": "IPY_MODEL_202e77f783604892ba40274a0d289276", + "style": "IPY_MODEL_16dad8a9c9074f5ab4ed24858cf4f896", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 457kB/s]" + "value": " 665/665 [00:00<00:00, 127kB/s]" } }, - "5c1ec47f563245d7989ffc7eff2b3393": { + "5e9e17de388746f4ba1fb4f05e426c4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a8e917adc0db482da10f7259260a52fc", + "IPY_MODEL_6062369e250e403897e6f33990c23d57", + "IPY_MODEL_7b208fafba0244c7a857e15c10805106" + ], + "layout": "IPY_MODEL_b93f1aea04264f86afd5ca6e5f3deb9a", + "tabbable": null, + "tooltip": null + } + }, + "6062369e250e403897e6f33990c23d57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b805e697dc3841fe87f86c354f112531", - "placeholder": "​", - "style": "IPY_MODEL_64fdd33a9fa24c04b2d980484a3dffca", + "layout": "IPY_MODEL_859e480b7e01405fb1af9226d6a94736", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0435bd2a67ae4580b11f72300c8c1b9f", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": 48.0 } }, - "623c296ec27847a08d197e0f9349902d": { + "60cb8f29c0a04f8a9b8775d425f7c1d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1934,17 +2084,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6475f269b762452097c0dd8a50483fa7", - "max": 48.0, + "layout": "IPY_MODEL_8cfe5b4829a843b499e9d9b1aad10794", + "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_829408c009e84267b620439ac80aa762", + "style": "IPY_MODEL_8c3149008147411a9172b8a0627cbbdf", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": 54245363.0 } }, - "6475f269b762452097c0dd8a50483fa7": { + "63fe7f89c61d469689356c8afe8f7d0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1997,43 +2147,30 @@ "width": null } }, - "64fdd33a9fa24c04b2d980484a3dffca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6942d17c55104716b38548fde85fe97d": { + "6b70c1af64654cf0bfc8e515cbe2644e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_99f0d4542e8e423b9018be6c83282910", + "placeholder": "​", + "style": "IPY_MODEL_107f3b6a64fb41898b51c78312996d47", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 230MB/s]" } }, - "73369ea4b442452ba79dde0f11ccccf7": { + "7167dd43cb39496d8971354c7dcf8fb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2086,7 +2223,53 @@ "width": null } }, - "751b322f8b584ba699d87d767abcfd88": { + "792627ad3d4a4356926466777e5e286b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc16653aacb543948c8bcdbebbe18041", + "placeholder": "​", + "style": "IPY_MODEL_fdc67e28664e4583ace57f50340b3649", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "7b208fafba0244c7a857e15c10805106": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_41e5eb399b424312bb565497b2f550a6", + "placeholder": "​", + "style": "IPY_MODEL_f8c8778791df4709aa10067dd9083588", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.81kB/s]" + } + }, + "7ba8b4d37b90455ea0856a76fd53349f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2139,95 +2322,7 @@ "width": null } }, - "795e0495ac274840b84a9b2585fcb45b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ef836ca5c2e0473c8f44942bbfbde97c", - "placeholder": "​", - "style": "IPY_MODEL_c3b7fa05cbd34b3e8440577d3268b3a2", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 69.3kB/s]" - } - }, - "7de6723f9beb43dbbad71ef72bf3d394": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f83c84fa51244911ad30fbc24f0dae14", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ae1d1e4addb14d72ad47d043144ef5b2", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "806be8102c2840c683f53e27268a1a1d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d1036ff8e3b44432a630841123cd665e", - "placeholder": "​", - "style": "IPY_MODEL_fcdc6f83ca124a68b2ab9d6ace3e2308", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 7.08MB/s]" - } - }, - "829408c009e84267b620439ac80aa762": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "83718921424246c8b3bb82278f13e7dd": { + "82f22504089445d980458c94bb3f0b22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2280,25 +2375,7 @@ "width": null } }, - "83a784ca18dd40209d7df691456fa335": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9123a1575ca34375b0b43f4289e4f1ef": { + "859e480b7e01405fb1af9226d6a94736": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2351,7 +2428,23 @@ "width": null } }, - "947502200a574c5bb753e3a810fa8f74": { + "8c3149008147411a9172b8a0627cbbdf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8cfe5b4829a843b499e9d9b1aad10794": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2404,7 +2497,7 @@ "width": null } }, - "95ba2b873c0b456186466656bd4a4b05": { + "938fb2a8d3a54d448069f0b85d12697d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2422,30 +2515,7 @@ "text_color": null } }, - "964aed80ab284dd48a31d9d5ad28fd30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2ea5a0c2da3a4d83b5610c2c9d2d542c", - "placeholder": "​", - "style": "IPY_MODEL_a0bbd2409f4d4acfb2e91ffc5b12b95e", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "974e2a874ecf49ff8142c67afb939afd": { + "99f0d4542e8e423b9018be6c83282910": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2498,51 +2568,53 @@ "width": null } }, - "9b703acaaefe43f2a747995e6baf26ca": { + "9a1995f42694404abb75d6338d1bddc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_947502200a574c5bb753e3a810fa8f74", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b9a4822bbbc543158d3165bdc309367e", + "layout": "IPY_MODEL_f9d2786f039f4739a73d2d301bf8b745", + "placeholder": "​", + "style": "IPY_MODEL_ae0fb7a982a2436ea7ad32f01526eea2", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": " 391/391 [00:00<00:00, 69.6kB/s]" } }, - "a0bbd2409f4d4acfb2e91ffc5b12b95e": { + "9f72c96cd44c40618e8826a9fc735324": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e93f36ea176647cd9b1069f0297aadef", + "placeholder": "​", + "style": "IPY_MODEL_2dcd6e4805fb403ba8b6c1ce8e5ff117", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" } }, - "a0c9bb1d94eb48e1945c490bd1d43922": { + "a13aee655acd48a2bc16f80efcd736a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2558,7 +2630,59 @@ "description_width": "" } }, - "a4758f91aee04d48822bb6b9c3453db8": { + "a200cf245005465880fbcc7a852362d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7ba8b4d37b90455ea0856a76fd53349f", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a8a165febd74ab8a0e847c8a208e73f", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "a85b90552a3e4665b51fc3b6e7d921f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dcfe560d74704020ba7189f6b35342ae", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3912e2b011df41679c1659d40bc9fefb", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "a8e917adc0db482da10f7259260a52fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2573,15 +2697,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f756af4beca342ed8bed100e0bfffe79", + "layout": "IPY_MODEL_f41c778f7656469892daa08fc3f86248", "placeholder": "​", - "style": "IPY_MODEL_032871bbc89742aba639ffaee1200e37", + "style": "IPY_MODEL_2b0e68483cbf470db65245930283cce4", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": "tokenizer_config.json: 100%" } }, - "aa772cc8b00945c1aa7b22081cb39031": { + "ab4a32cb43804d52b25207713bc5f0f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2622,81 +2746,19 @@ "max_height": null, "max_width": null, "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ae1d1e4addb14d72ad47d043144ef5b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b015ab05281b4ee48af1da0ccdc94161": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b3304b6189e458ba99e1273f6dc3065", - "placeholder": "​", - "style": "IPY_MODEL_1978592a53c7411fbb7d77958baefc3c", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "b6313e82b4f34189bbf42e2bf514a82d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_533ead7294bf4d068190ca8e90d78e80", - "placeholder": "​", - "style": "IPY_MODEL_fade1033c9ad433a857f6d209599eaad", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 36.7MB/s]" + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b805e697dc3841fe87f86c354f112531": { + "acdced823e2a4d6f950e27bd4802b639": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2749,23 +2811,25 @@ "width": null } }, - "b8d38e973ddb4490be0781dbb8717675": { + "ae0fb7a982a2436ea7ad32f01526eea2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b9a4822bbbc543158d3165bdc309367e": { + "b2f57f17657e430c89e1a52e7f245309": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2781,7 +2845,53 @@ "description_width": "" } }, - "bd7e59232eee46a9941063b605e66d9b": { + "b3270c93e7874c21a39571fdb1d43780": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_34051f0f4e6242febbd69d5ad6e263e0", + "placeholder": "​", + "style": "IPY_MODEL_938fb2a8d3a54d448069f0b85d12697d", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" + } + }, + "b3a0081d105e4d6193af250cc9cef948": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_be33e673f6fe4622ab6bfd3a727d2c04", + "placeholder": "​", + "style": "IPY_MODEL_00882e39d8294fa7bf11a9929411c91d", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "b93f1aea04264f86afd5ca6e5f3deb9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2834,51 +2944,7 @@ "width": null } }, - "c3b7fa05cbd34b3e8440577d3268b3a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ce5ef1ebbb6d4b7589aa40b6d38dd8f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e4e868950b0e4748a7bb54abf124ca39", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_33e4cc93e6f44376a34c0ceb628ca488", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "d1036ff8e3b44432a630841123cd665e": { + "be33e673f6fe4622ab6bfd3a727d2c04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2931,31 +2997,7 @@ "width": null } }, - "d20256762cdf4c06816c5653fdfef6a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5c1ec47f563245d7989ffc7eff2b3393", - "IPY_MODEL_ce5ef1ebbb6d4b7589aa40b6d38dd8f2", - "IPY_MODEL_18d5e009472c494c99ff042d5f4315c1" - ], - "layout": "IPY_MODEL_aa772cc8b00945c1aa7b22081cb39031", - "tabbable": null, - "tooltip": null - } - }, - "d2370f99c49d43b39ac2ea8e64340375": { + "c18cde9a3b464ad1a69d4fbf65c4287b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2970,16 +3012,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a4758f91aee04d48822bb6b9c3453db8", - "IPY_MODEL_dd34df9493e74cc89434500b5b18d5ac", - "IPY_MODEL_806be8102c2840c683f53e27268a1a1d" + "IPY_MODEL_9f72c96cd44c40618e8826a9fc735324", + "IPY_MODEL_60cb8f29c0a04f8a9b8775d425f7c1d4", + "IPY_MODEL_6b70c1af64654cf0bfc8e515cbe2644e" ], - "layout": "IPY_MODEL_73369ea4b442452ba79dde0f11ccccf7", + "layout": "IPY_MODEL_3c2b01854c664a3a834ebb6315a06d7a", "tabbable": null, "tooltip": null } }, - "d330efe583834f6e9a4aef2d210f2448": { + "c3f5dd847178422f94661624f9ecf612": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3032,7 +3074,7 @@ "width": null } }, - "d3d9e1e700e14803bfdd9de847eb8a1b": { + "c4431e7dcf5a41e1934fd352a0e18cc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3047,67 +3089,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ef220577d59248bdbc40d7374238082a", + "layout": "IPY_MODEL_5385ad8ba67c426daa3e219dd49f7c1b", "placeholder": "​", - "style": "IPY_MODEL_04b7c5dc6e7948f7b6da88bf9de4c09b", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "d9f750fd331d4370b4ead712d6fe626d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f76bdeeb99374127a9a34c37ef45c330", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a0c9bb1d94eb48e1945c490bd1d43922", - "tabbable": null, - "tooltip": null, - "value": 665.0 - } - }, - "dd34df9493e74cc89434500b5b18d5ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e5b68aee810b4fc48e7950601e662dad", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b8d38e973ddb4490be0781dbb8717675", + "style": "IPY_MODEL_3a50e9ac92bb47ef8a4dd27183e221e7", "tabbable": null, "tooltip": null, - "value": 466062.0 + "value": "config.json: 100%" } }, - "e4e868950b0e4748a7bb54abf124ca39": { + "cbfa8e31e7cb4fd5b0f2827be2777ef3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3160,7 +3150,7 @@ "width": null } }, - "e5b68aee810b4fc48e7950601e662dad": { + "d27490d630934411bc6291d305749d0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3213,7 +3203,7 @@ "width": null } }, - "ef220577d59248bdbc40d7374238082a": { + "dcfe560d74704020ba7189f6b35342ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3266,7 +3256,47 @@ "width": null } }, - "ef836ca5c2e0473c8f44942bbfbde97c": { + "e715922dec9a4f518bd83655ec5ece8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e8839cb132d74eb9a916dda9fdafe1c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_792627ad3d4a4356926466777e5e286b", + "IPY_MODEL_33cce396c4bf413ebe5341fe28d03486", + "IPY_MODEL_42a8d833492a48fe958eb757ee25c31c" + ], + "layout": "IPY_MODEL_d27490d630934411bc6291d305749d0a", + "tabbable": null, + "tooltip": null + } + }, + "e93f36ea176647cd9b1069f0297aadef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3319,31 +3349,7 @@ "width": null } }, - "f26e295a2fa0406c8e3fff0e0818202d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_250cfa9619754602808099a37a2351cd", - "IPY_MODEL_d9f750fd331d4370b4ead712d6fe626d", - "IPY_MODEL_10e4288569c34c62a5b336b51d001893" - ], - "layout": "IPY_MODEL_751b322f8b584ba699d87d767abcfd88", - "tabbable": null, - "tooltip": null - } - }, - "f756af4beca342ed8bed100e0bfffe79": { + "eb1b16cb3c634b0496ccce16fde573eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3396,7 +3402,7 @@ "width": null } }, - "f76bdeeb99374127a9a34c37ef45c330": { + "f41c778f7656469892daa08fc3f86248": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3449,7 +3455,25 @@ "width": null } }, - "f83c84fa51244911ad30fbc24f0dae14": { + "f8c8778791df4709aa10067dd9083588": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f9d2786f039f4739a73d2d301bf8b745": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3502,7 +3526,7 @@ "width": null } }, - "fade1033c9ad433a857f6d209599eaad": { + "fad61d9bcd544d64a2896b7a4fafeca3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3520,7 +3544,7 @@ "text_color": null } }, - "fb7871277ea44cc992dd5130b07e281f": { + "fc16653aacb543948c8bcdbebbe18041": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3573,31 +3597,7 @@ "width": null } }, - "fb7ad54f03394e35a23b11c642b2c405": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b015ab05281b4ee48af1da0ccdc94161", - "IPY_MODEL_623c296ec27847a08d197e0f9349902d", - "IPY_MODEL_29d77952655945c5975ed010d32ac352" - ], - "layout": "IPY_MODEL_974e2a874ecf49ff8142c67afb939afd", - "tabbable": null, - "tooltip": null - } - }, - "fcdc6f83ca124a68b2ab9d6ace3e2308": { + "fdc67e28664e4583ace57f50340b3649": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3615,7 +3615,7 @@ "text_color": null } }, - "fe7ce2b57aca4dc1b98fc34a52588b14": { + "fdf1adc0e36d4541972658ad13062aac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index 661651aab..28ea897d0 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:12.140596Z", - "iopub.status.busy": "2024-04-06T04:27:12.140418Z", - "iopub.status.idle": "2024-04-06T04:27:16.566489Z", - "shell.execute_reply": "2024-04-06T04:27:16.565924Z" + "iopub.execute_input": "2024-04-08T19:04:46.105517Z", + "iopub.status.busy": "2024-04-08T19:04:46.104987Z", + "iopub.status.idle": "2024-04-08T19:04:51.038814Z", + "shell.execute_reply": "2024-04-08T19:04:51.038258Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:16.569088Z", - "iopub.status.busy": "2024-04-06T04:27:16.568539Z", - "iopub.status.idle": "2024-04-06T04:27:16.571617Z", - "shell.execute_reply": "2024-04-06T04:27:16.571189Z" + "iopub.execute_input": "2024-04-08T19:04:51.041604Z", + "iopub.status.busy": "2024-04-08T19:04:51.041029Z", + "iopub.status.idle": "2024-04-08T19:04:51.044345Z", + "shell.execute_reply": "2024-04-08T19:04:51.043904Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:16.573587Z", - "iopub.status.busy": "2024-04-06T04:27:16.573414Z", - "iopub.status.idle": "2024-04-06T04:27:16.578000Z", - "shell.execute_reply": "2024-04-06T04:27:16.577578Z" + "iopub.execute_input": "2024-04-08T19:04:51.046287Z", + "iopub.status.busy": "2024-04-08T19:04:51.045963Z", + "iopub.status.idle": "2024-04-08T19:04:51.050303Z", + "shell.execute_reply": "2024-04-08T19:04:51.049883Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:16.580077Z", - "iopub.status.busy": "2024-04-06T04:27:16.579751Z", - "iopub.status.idle": "2024-04-06T04:27:18.276513Z", - "shell.execute_reply": "2024-04-06T04:27:18.275051Z" + "iopub.execute_input": "2024-04-08T19:04:51.052312Z", + "iopub.status.busy": "2024-04-08T19:04:51.051991Z", + "iopub.status.idle": "2024-04-08T19:04:52.964225Z", + "shell.execute_reply": "2024-04-08T19:04:52.963597Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:18.282470Z", - "iopub.status.busy": "2024-04-06T04:27:18.281603Z", - "iopub.status.idle": "2024-04-06T04:27:18.299325Z", - "shell.execute_reply": "2024-04-06T04:27:18.298235Z" + "iopub.execute_input": "2024-04-08T19:04:52.967053Z", + "iopub.status.busy": "2024-04-08T19:04:52.966626Z", + "iopub.status.idle": "2024-04-08T19:04:52.977284Z", + "shell.execute_reply": "2024-04-08T19:04:52.976855Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:18.302849Z", - "iopub.status.busy": "2024-04-06T04:27:18.302356Z", - "iopub.status.idle": "2024-04-06T04:27:18.311115Z", - "shell.execute_reply": "2024-04-06T04:27:18.310622Z" + "iopub.execute_input": "2024-04-08T19:04:52.979356Z", + "iopub.status.busy": "2024-04-08T19:04:52.979056Z", + "iopub.status.idle": "2024-04-08T19:04:52.984474Z", + "shell.execute_reply": "2024-04-08T19:04:52.984027Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:18.313433Z", - "iopub.status.busy": "2024-04-06T04:27:18.313090Z", - "iopub.status.idle": "2024-04-06T04:27:18.744781Z", - "shell.execute_reply": "2024-04-06T04:27:18.744269Z" + "iopub.execute_input": "2024-04-08T19:04:52.986467Z", + "iopub.status.busy": "2024-04-08T19:04:52.986184Z", + "iopub.status.idle": "2024-04-08T19:04:53.470988Z", + "shell.execute_reply": "2024-04-08T19:04:53.470375Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:18.747037Z", - "iopub.status.busy": "2024-04-06T04:27:18.746633Z", - "iopub.status.idle": "2024-04-06T04:27:20.503082Z", - "shell.execute_reply": "2024-04-06T04:27:20.502599Z" + "iopub.execute_input": "2024-04-08T19:04:53.473214Z", + "iopub.status.busy": "2024-04-08T19:04:53.472775Z", + "iopub.status.idle": "2024-04-08T19:04:55.493272Z", + "shell.execute_reply": "2024-04-08T19:04:55.492735Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:20.505556Z", - "iopub.status.busy": "2024-04-06T04:27:20.505108Z", - "iopub.status.idle": "2024-04-06T04:27:20.523191Z", - "shell.execute_reply": "2024-04-06T04:27:20.522660Z" + "iopub.execute_input": "2024-04-08T19:04:55.495706Z", + "iopub.status.busy": "2024-04-08T19:04:55.495509Z", + "iopub.status.idle": "2024-04-08T19:04:55.513796Z", + "shell.execute_reply": "2024-04-08T19:04:55.513240Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:20.525153Z", - "iopub.status.busy": "2024-04-06T04:27:20.524840Z", - "iopub.status.idle": "2024-04-06T04:27:20.527990Z", - "shell.execute_reply": "2024-04-06T04:27:20.527457Z" + "iopub.execute_input": "2024-04-08T19:04:55.515946Z", + "iopub.status.busy": "2024-04-08T19:04:55.515624Z", + "iopub.status.idle": "2024-04-08T19:04:55.519151Z", + "shell.execute_reply": "2024-04-08T19:04:55.518745Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:20.530026Z", - "iopub.status.busy": "2024-04-06T04:27:20.529694Z", - "iopub.status.idle": "2024-04-06T04:27:34.456164Z", - "shell.execute_reply": "2024-04-06T04:27:34.455636Z" + "iopub.execute_input": "2024-04-08T19:04:55.521090Z", + "iopub.status.busy": "2024-04-08T19:04:55.520779Z", + "iopub.status.idle": "2024-04-08T19:05:10.361560Z", + "shell.execute_reply": "2024-04-08T19:05:10.361009Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:34.458814Z", - "iopub.status.busy": "2024-04-06T04:27:34.458439Z", - "iopub.status.idle": "2024-04-06T04:27:34.462230Z", - "shell.execute_reply": "2024-04-06T04:27:34.461692Z" + "iopub.execute_input": "2024-04-08T19:05:10.364429Z", + "iopub.status.busy": "2024-04-08T19:05:10.364034Z", + "iopub.status.idle": "2024-04-08T19:05:10.367863Z", + "shell.execute_reply": "2024-04-08T19:05:10.367337Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:34.464292Z", - "iopub.status.busy": "2024-04-06T04:27:34.463976Z", - "iopub.status.idle": "2024-04-06T04:27:35.183273Z", - "shell.execute_reply": "2024-04-06T04:27:35.182717Z" + "iopub.execute_input": "2024-04-08T19:05:10.370078Z", + "iopub.status.busy": "2024-04-08T19:05:10.369656Z", + "iopub.status.idle": "2024-04-08T19:05:11.087473Z", + "shell.execute_reply": "2024-04-08T19:05:11.086872Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.186021Z", - "iopub.status.busy": "2024-04-06T04:27:35.185608Z", - "iopub.status.idle": "2024-04-06T04:27:35.190731Z", - "shell.execute_reply": "2024-04-06T04:27:35.190237Z" + "iopub.execute_input": "2024-04-08T19:05:11.090530Z", + "iopub.status.busy": "2024-04-08T19:05:11.089968Z", + "iopub.status.idle": "2024-04-08T19:05:11.095044Z", + "shell.execute_reply": "2024-04-08T19:05:11.094507Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.193080Z", - "iopub.status.busy": "2024-04-06T04:27:35.192698Z", - "iopub.status.idle": "2024-04-06T04:27:35.302175Z", - "shell.execute_reply": "2024-04-06T04:27:35.301475Z" + "iopub.execute_input": "2024-04-08T19:05:11.098295Z", + "iopub.status.busy": "2024-04-08T19:05:11.097250Z", + "iopub.status.idle": "2024-04-08T19:05:11.200881Z", + "shell.execute_reply": "2024-04-08T19:05:11.200284Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.304615Z", - "iopub.status.busy": "2024-04-06T04:27:35.304237Z", - "iopub.status.idle": "2024-04-06T04:27:35.316277Z", - "shell.execute_reply": "2024-04-06T04:27:35.315829Z" + "iopub.execute_input": "2024-04-08T19:05:11.203369Z", + "iopub.status.busy": "2024-04-08T19:05:11.202937Z", + "iopub.status.idle": "2024-04-08T19:05:11.215358Z", + "shell.execute_reply": "2024-04-08T19:05:11.214779Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.318303Z", - "iopub.status.busy": "2024-04-06T04:27:35.317968Z", - "iopub.status.idle": "2024-04-06T04:27:35.325434Z", - "shell.execute_reply": "2024-04-06T04:27:35.324937Z" + "iopub.execute_input": "2024-04-08T19:05:11.217681Z", + "iopub.status.busy": "2024-04-08T19:05:11.217301Z", + "iopub.status.idle": "2024-04-08T19:05:11.225343Z", + "shell.execute_reply": "2024-04-08T19:05:11.224791Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.327556Z", - "iopub.status.busy": "2024-04-06T04:27:35.327202Z", - "iopub.status.idle": "2024-04-06T04:27:35.331288Z", - "shell.execute_reply": "2024-04-06T04:27:35.330846Z" + "iopub.execute_input": "2024-04-08T19:05:11.227551Z", + "iopub.status.busy": "2024-04-08T19:05:11.227260Z", + "iopub.status.idle": "2024-04-08T19:05:11.231569Z", + "shell.execute_reply": "2024-04-08T19:05:11.231018Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.333294Z", - "iopub.status.busy": "2024-04-06T04:27:35.332989Z", - "iopub.status.idle": "2024-04-06T04:27:35.338557Z", - "shell.execute_reply": "2024-04-06T04:27:35.337997Z" + "iopub.execute_input": "2024-04-08T19:05:11.233584Z", + "iopub.status.busy": "2024-04-08T19:05:11.233223Z", + "iopub.status.idle": "2024-04-08T19:05:11.238833Z", + "shell.execute_reply": "2024-04-08T19:05:11.238283Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.340521Z", - "iopub.status.busy": "2024-04-06T04:27:35.340225Z", - "iopub.status.idle": "2024-04-06T04:27:35.658582Z", - "shell.execute_reply": "2024-04-06T04:27:35.657998Z" + "iopub.execute_input": "2024-04-08T19:05:11.240707Z", + "iopub.status.busy": "2024-04-08T19:05:11.240530Z", + "iopub.status.idle": "2024-04-08T19:05:11.595733Z", + "shell.execute_reply": "2024-04-08T19:05:11.595243Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.660829Z", - "iopub.status.busy": "2024-04-06T04:27:35.660413Z", - "iopub.status.idle": "2024-04-06T04:27:35.769702Z", - "shell.execute_reply": "2024-04-06T04:27:35.769175Z" + "iopub.execute_input": "2024-04-08T19:05:11.597887Z", + "iopub.status.busy": "2024-04-08T19:05:11.597533Z", + "iopub.status.idle": "2024-04-08T19:05:11.705498Z", + "shell.execute_reply": "2024-04-08T19:05:11.704961Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.771757Z", - "iopub.status.busy": "2024-04-06T04:27:35.771495Z", - "iopub.status.idle": "2024-04-06T04:27:35.872918Z", - "shell.execute_reply": "2024-04-06T04:27:35.872364Z" + "iopub.execute_input": "2024-04-08T19:05:11.707806Z", + "iopub.status.busy": "2024-04-08T19:05:11.707520Z", + "iopub.status.idle": "2024-04-08T19:05:11.814276Z", + "shell.execute_reply": "2024-04-08T19:05:11.813792Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.875082Z", - "iopub.status.busy": "2024-04-06T04:27:35.874745Z", - "iopub.status.idle": "2024-04-06T04:27:35.975770Z", - "shell.execute_reply": "2024-04-06T04:27:35.975289Z" + "iopub.execute_input": "2024-04-08T19:05:11.816405Z", + "iopub.status.busy": "2024-04-08T19:05:11.816094Z", + "iopub.status.idle": "2024-04-08T19:05:11.920916Z", + "shell.execute_reply": "2024-04-08T19:05:11.920366Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.977985Z", - "iopub.status.busy": "2024-04-06T04:27:35.977624Z", - "iopub.status.idle": "2024-04-06T04:27:35.980777Z", - "shell.execute_reply": "2024-04-06T04:27:35.980344Z" + "iopub.execute_input": "2024-04-08T19:05:11.923123Z", + "iopub.status.busy": "2024-04-08T19:05:11.922809Z", + "iopub.status.idle": "2024-04-08T19:05:11.926110Z", + "shell.execute_reply": "2024-04-08T19:05:11.925596Z" }, "nbsphinx": "hidden" }, @@ -1397,7 +1397,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0148687423ae4404946f694c128d1db8": { + "01548e5746cc4788b0d61577e4b012b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "03e98d7846af44088b8a646b91364594": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1412,15 +1428,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae7e6d3ea8df4eb8badebf0329826518", + "layout": "IPY_MODEL_6add2113ed1541dfbdb3c42fbbce25fc", "placeholder": "​", - "style": "IPY_MODEL_2a522c81494744879ad988349f56ed6d", + "style": "IPY_MODEL_fc4736ca693444da8e5b28edfdc65bc5", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 39.4MB/s]" + "value": "hyperparams.yaml: 100%" } }, - "0958ba1748ee4beca7da01e8e46a9749": { + "099362e1ce5c4a6b8d8d4c331a960d34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1473,49 +1489,74 @@ "width": null } }, - "13d241d8b1a14cd99f8717170fdc36e9": { + "10f5629a4670476891a02ba1e61d2b9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ca834c7b06bd4f90ba096fa6f8d7103c", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_01548e5746cc4788b0d61577e4b012b3", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "16bedf557e1f48c3b23c71d15d5ff3ae": { + "124ddd3253c4476b83146639e17d57b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_451ef1098e4b4a0cbc94307f8c54a69a", - "IPY_MODEL_ba716f0978944bb8b14f373794cf086b", - "IPY_MODEL_ffab753038714d3ca6e89b271ede7406" - ], - "layout": "IPY_MODEL_9e087829122b4cf38c2f2193a3ae9b93", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_37c6159b215f46748ce591cd48fe49f0", + "placeholder": "​", + "style": "IPY_MODEL_af4e6010ee0847468fae428d5bceb881", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "153a557fc0794ff2b1d801bc73e89764": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "202cf82f0f8a4e6ab6c44edcc4f643d4": { + "15e61f73e248421da683941c01a6ba8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1568,7 +1609,7 @@ "width": null } }, - "245795f1b8c14f0580deec4394842154": { + "170825b92f484861b53a305933672d63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1584,70 +1625,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_61797416aadf4af5bcea4adfab15ea37", - "max": 2041.0, + "layout": "IPY_MODEL_7a1b19cb87394307a53c97aa5de7ef54", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_648981cda80e4fe686afd77c841b011b", + "style": "IPY_MODEL_7c70a56bdf6c4f4e9f2f310fe97caf21", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": 3201.0 } }, - "25b2f2a091664e82b0b254933237ecda": { - "model_module": "@jupyter-widgets/base", + "1845bd7583734a468217bf0a33a4a04e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "283a7fca65ce4358af3da78be675147f": { + "1d8d1f51752d4b69aa1135e17d8449e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1662,15 +1666,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9b265031b424474386c724023fbceea8", + "layout": "IPY_MODEL_358c21f56ec2458089c2e7d7e5e7611d", "placeholder": "​", - "style": "IPY_MODEL_13d241d8b1a14cd99f8717170fdc36e9", + "style": "IPY_MODEL_b38f5dc0540f47bcb4f22237b8bc10b5", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "1e261881c01a4c82af0950354ddbbf67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7187ee77d34d4ee58aea3e5ef7ea0d6f", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a84cb458429f4ac9ba17b78d73eb1b9c", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 2.64MB/s]" + "value": 128619.0 } }, - "2a522c81494744879ad988349f56ed6d": { + "2398940ef11744cd931d78b60fe1bf96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1688,33 +1718,31 @@ "text_color": null } }, - "38cedb80c4884a7aa9c8360e66697385": { + "344f8176bb9c4df2b5f5c5842359b28c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_87a12f7b60404561827c31d53af0eaa8", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_51ff76b0c91049ceab3634eafef03d03", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d7cff1a5c1c84b53a0f820ae0ae64f22", + "IPY_MODEL_10f5629a4670476891a02ba1e61d2b9f", + "IPY_MODEL_8227ef3e4a1d4b60bb8d49436af87b02" + ], + "layout": "IPY_MODEL_6b1d25f5e1274b7087e5be1edb44f263", "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "tooltip": null } }, - "399a48d2dd4a4aeba66c8583c6cb3267": { + "358c21f56ec2458089c2e7d7e5e7611d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1767,7 +1795,7 @@ "width": null } }, - "4055580cee714e89b235223a231f6c86": { + "3656dfd1293341618ec097a837ccf824": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1820,53 +1848,7 @@ "width": null } }, - "451ef1098e4b4a0cbc94307f8c54a69a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d64c977788594151a2a69bd522b4b4e2", - "placeholder": "​", - "style": "IPY_MODEL_b387baf48cbf40a79960c2e5e37c6dc5", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "45c7d5509d354e7db551d2ee42562f4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_25b2f2a091664e82b0b254933237ecda", - "placeholder": "​", - "style": "IPY_MODEL_bbb63db0bf1246e09f27e3fbcd6067f2", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "4c0901a7fd664a0386f5506a5f1265c6": { + "37c6159b215f46748ce591cd48fe49f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1919,7 +1901,25 @@ "width": null } }, - "4cb73865490e4acab5b8bd74d5733f8e": { + "3b7f0046c33247249156bee86a8ab344": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3f10333ce59449f8893619a6a1200e72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1934,100 +1934,102 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_841d6e99393d4eacb2171cd893b4a9ae", + "layout": "IPY_MODEL_15e61f73e248421da683941c01a6ba8a", "placeholder": "​", - "style": "IPY_MODEL_ad0c26113b5641988b98da2e1367adc3", + "style": "IPY_MODEL_770aeb28530d4716aeceac624b99192d", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": " 129k/129k [00:00<00:00, 1.94MB/s]" } }, - "4edb5018fb694daab45e95ca9a2d5a86": { + "47f17e40d80540e8b9cd62de82c60b92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6b84bee63e5341e68a70a1df0644c356", + "placeholder": "​", + "style": "IPY_MODEL_702d80d4b5874038a51e0c3fe4e29c9c", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 50.6MB/s]" } }, - "51ff76b0c91049ceab3634eafef03d03": { + "4911164b858e49c1b45c2acea166106f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "61797416aadf4af5bcea4adfab15ea37": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c0a147631094428498d5242f0dae3a28", + "placeholder": "​", + "style": "IPY_MODEL_3b7f0046c33247249156bee86a8ab344", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 736kB/s]" + } + }, + "49d50cf65e2243fe85ea4efa439383a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4a17f13f9daa4bd3a9e0f9a6bdcd54ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bca20dd54024424b908c519dc7c65413", + "placeholder": "​", + "style": "IPY_MODEL_6e856fb0c33a4b509b13af9f0bfa347d", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 458kB/s]" } }, - "648981cda80e4fe686afd77c841b011b": { + "4c8c8519a91e4cf59efc5ee43887ceef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2043,7 +2045,7 @@ "description_width": "" } }, - "65cd560eff044447950b5de1dfe924a9": { + "593320329ae4474ea377016a9d84c521": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2058,91 +2060,119 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4cb73865490e4acab5b8bd74d5733f8e", - "IPY_MODEL_38cedb80c4884a7aa9c8360e66697385", - "IPY_MODEL_ba43a6d3c0eb4eae9b16f9526c18eff9" + "IPY_MODEL_03e98d7846af44088b8a646b91364594", + "IPY_MODEL_9dcd19b1766a4f0f9e62b19feae944e0", + "IPY_MODEL_4a17f13f9daa4bd3a9e0f9a6bdcd54ce" ], - "layout": "IPY_MODEL_d16f6084ce1149cd889d6a2cb15f31c5", + "layout": "IPY_MODEL_6f1084b3c29943cbae5ae582af5573d2", "tabbable": null, "tooltip": null } }, - "68b320632eea4620bbd3b735bdc34dd9": { + "605873f7b6924ba3a2b8d496de6a3f37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0958ba1748ee4beca7da01e8e46a9749", - "placeholder": "​", - "style": "IPY_MODEL_6b5d1d793a204f1ab4608428b5ba64b9", + "layout": "IPY_MODEL_099362e1ce5c4a6b8d8d4c331a960d34", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4c8c8519a91e4cf59efc5ee43887ceef", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "68b5eff6aadd4afb9e1940334ccb3d9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 16887676.0 } }, - "6b5d1d793a204f1ab4608428b5ba64b9": { - "model_module": "@jupyter-widgets/controls", + "6232f100dcfc4faea627bbfd5cf8d09e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6c5e187c01984c899378ec18b1b6f259": { + "69f610d6cd3c4ac58e8089ac7c27c111": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1d8d1f51752d4b69aa1135e17d8449e2", + "IPY_MODEL_605873f7b6924ba3a2b8d496de6a3f37", + "IPY_MODEL_47f17e40d80540e8b9cd62de82c60b92" + ], + "layout": "IPY_MODEL_789cb19d03704e0b95b9af8afa82d248", + "tabbable": null, + "tooltip": null } }, - "753341b93da447daa4758e7e5a5610e7": { + "6add2113ed1541dfbdb3c42fbbce25fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2195,7 +2225,7 @@ "width": null } }, - "77a067827f5d4c28b687f203c008e031": { + "6b1d25f5e1274b7087e5be1edb44f263": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2248,7 +2278,7 @@ "width": null } }, - "841d6e99393d4eacb2171cd893b4a9ae": { + "6b84bee63e5341e68a70a1df0644c356": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2301,7 +2331,7 @@ "width": null } }, - "87a12f7b60404561827c31d53af0eaa8": { + "6d97e6b4b14a4b088f0a5c2c2e610564": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2354,30 +2384,7 @@ "width": null } }, - "8848bb7bffb545109abca26a5ae067d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9f88f31de9d74eb0928335732d663561", - "placeholder": "​", - "style": "IPY_MODEL_b74e55a2c5174b88b66ecaa2389897db", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 514kB/s]" - } - }, - "8d05285dc1f6426fba9ead2f8bc7365b": { + "6e856fb0c33a4b509b13af9f0bfa347d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2395,31 +2402,7 @@ "text_color": null } }, - "9527fc8121814f01a443e62ff927d47b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fa3cbfeda5cd4b7fbc3c0c9e921e5864", - "IPY_MODEL_9d58780c4a6d406b98d0415c7c2a4ee5", - "IPY_MODEL_0148687423ae4404946f694c128d1db8" - ], - "layout": "IPY_MODEL_c639e0d31a954ec89eb3549596545904", - "tabbable": null, - "tooltip": null - } - }, - "9b265031b424474386c724023fbceea8": { + "6f1084b3c29943cbae5ae582af5573d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2472,33 +2455,25 @@ "width": null } }, - "9d58780c4a6d406b98d0415c7c2a4ee5": { + "702d80d4b5874038a51e0c3fe4e29c9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4c0901a7fd664a0386f5506a5f1265c6", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6c5e187c01984c899378ec18b1b6f259", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9e087829122b4cf38c2f2193a3ae9b93": { + "7187ee77d34d4ee58aea3e5ef7ea0d6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2551,7 +2526,25 @@ "width": null } }, - "9f88f31de9d74eb0928335732d663561": { + "770aeb28530d4716aeceac624b99192d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "789cb19d03704e0b95b9af8afa82d248": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2604,7 +2597,7 @@ "width": null } }, - "a0795bde2b3a4af08cc09a2b34f5e2aa": { + "7a1b19cb87394307a53c97aa5de7ef54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2657,25 +2650,72 @@ "width": null } }, - "ad0c26113b5641988b98da2e1367adc3": { + "7c70a56bdf6c4f4e9f2f310fe97caf21": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "8227ef3e4a1d4b60bb8d49436af87b02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa4f7d539024400ead56c0975b429f2c", + "placeholder": "​", + "style": "IPY_MODEL_49d50cf65e2243fe85ea4efa439383a4", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 47.3MB/s]" + } + }, + "9dcd19b1766a4f0f9e62b19feae944e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a2ac773a77354c65a9b27aead854f501", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1845bd7583734a468217bf0a33a4a04e", + "tabbable": null, + "tooltip": null, + "value": 2041.0 } }, - "ae7e6d3ea8df4eb8badebf0329826518": { + "a2ac773a77354c65a9b27aead854f501": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2728,85 +2768,47 @@ "width": null } }, - "ae98285a153e46948474fc4abeceddfd": { + "a84cb458429f4ac9ba17b78d73eb1b9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "aece8b0eb585430bbc9c4df8054ab74b": { + "a992a72ca18a4979975cfb11417f3b00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_77a067827f5d4c28b687f203c008e031", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4edb5018fb694daab45e95ca9a2d5a86", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_124ddd3253c4476b83146639e17d57b4", + "IPY_MODEL_170825b92f484861b53a305933672d63", + "IPY_MODEL_4911164b858e49c1b45c2acea166106f" + ], + "layout": "IPY_MODEL_6232f100dcfc4faea627bbfd5cf8d09e", "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "b387baf48cbf40a79960c2e5e37c6dc5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b5504d0328b84005b17ed0cf71889d5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "b74e55a2c5174b88b66ecaa2389897db": { + "af4e6010ee0847468fae428d5bceb881": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2824,56 +2826,7 @@ "text_color": null } }, - "ba43a6d3c0eb4eae9b16f9526c18eff9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_753341b93da447daa4758e7e5a5610e7", - "placeholder": "​", - "style": "IPY_MODEL_ae98285a153e46948474fc4abeceddfd", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 39.9MB/s]" - } - }, - "ba716f0978944bb8b14f373794cf086b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a0795bde2b3a4af08cc09a2b34f5e2aa", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b5504d0328b84005b17ed0cf71889d5b", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "bbb63db0bf1246e09f27e3fbcd6067f2": { + "b38f5dc0540f47bcb4f22237b8bc10b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2891,31 +2844,7 @@ "text_color": null } }, - "bd5cd533ee9f44c9a03ecc0071f84776": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_68b320632eea4620bbd3b735bdc34dd9", - "IPY_MODEL_245795f1b8c14f0580deec4394842154", - "IPY_MODEL_8848bb7bffb545109abca26a5ae067d7" - ], - "layout": "IPY_MODEL_f6e17f0c62ca4e53a8d555529912ee89", - "tabbable": null, - "tooltip": null - } - }, - "c639e0d31a954ec89eb3549596545904": { + "bca20dd54024424b908c519dc7c65413": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2968,7 +2897,7 @@ "width": null } }, - "d16f6084ce1149cd889d6a2cb15f31c5": { + "c05dd7bca0b442bbb6c59095a6fdc7da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3021,7 +2950,7 @@ "width": null } }, - "d64c977788594151a2a69bd522b4b4e2": { + "c0a147631094428498d5242f0dae3a28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3074,31 +3003,7 @@ "width": null } }, - "f6af1b2285f641a2b47091704e8edf17": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_45c7d5509d354e7db551d2ee42562f4a", - "IPY_MODEL_aece8b0eb585430bbc9c4df8054ab74b", - "IPY_MODEL_283a7fca65ce4358af3da78be675147f" - ], - "layout": "IPY_MODEL_4055580cee714e89b235223a231f6c86", - "tabbable": null, - "tooltip": null - } - }, - "f6e17f0c62ca4e53a8d555529912ee89": { + "ca834c7b06bd4f90ba096fa6f8d7103c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3151,7 +3056,7 @@ "width": null } }, - "fa3cbfeda5cd4b7fbc3c0c9e921e5864": { + "d7cff1a5c1c84b53a0f820ae0ae64f22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3166,15 +3071,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_202cf82f0f8a4e6ab6c44edcc4f643d4", + "layout": "IPY_MODEL_c05dd7bca0b442bbb6c59095a6fdc7da", "placeholder": "​", - "style": "IPY_MODEL_68b5eff6aadd4afb9e1940334ccb3d9b", + "style": "IPY_MODEL_2398940ef11744cd931d78b60fe1bf96", "tabbable": null, "tooltip": null, "value": "classifier.ckpt: 100%" } }, - "ffab753038714d3ca6e89b271ede7406": { + "f91d49b1c62d4d839fff74899d0af511": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f98ecf4b23e04508a03cf3042be644e5", + "IPY_MODEL_1e261881c01a4c82af0950354ddbbf67", + "IPY_MODEL_3f10333ce59449f8893619a6a1200e72" + ], + "layout": "IPY_MODEL_6d97e6b4b14a4b088f0a5c2c2e610564", + "tabbable": null, + "tooltip": null + } + }, + "f98ecf4b23e04508a03cf3042be644e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3189,12 +3118,83 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_399a48d2dd4a4aeba66c8583c6cb3267", + "layout": "IPY_MODEL_3656dfd1293341618ec097a837ccf824", "placeholder": "​", - "style": "IPY_MODEL_8d05285dc1f6426fba9ead2f8bc7365b", + "style": "IPY_MODEL_153a557fc0794ff2b1d801bc73e89764", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 894kB/s]" + "value": "label_encoder.txt: 100%" + } + }, + "fa4f7d539024400ead56c0975b429f2c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fc4736ca693444da8e5b28edfdc65bc5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb index 49d632c47..f4ed52c9a 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb @@ -66,10 +66,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:39.124807Z", - "iopub.status.busy": "2024-04-06T04:27:39.124638Z", - "iopub.status.idle": "2024-04-06T04:27:40.230534Z", - "shell.execute_reply": "2024-04-06T04:27:40.229912Z" + "iopub.execute_input": "2024-04-08T19:05:16.056480Z", + "iopub.status.busy": "2024-04-08T19:05:16.056305Z", + "iopub.status.idle": "2024-04-08T19:05:17.226995Z", + "shell.execute_reply": "2024-04-08T19:05:17.226456Z" } }, "outputs": [], @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -103,10 +103,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.232938Z", - "iopub.status.busy": "2024-04-06T04:27:40.232697Z", - "iopub.status.idle": "2024-04-06T04:27:40.239199Z", - "shell.execute_reply": "2024-04-06T04:27:40.238786Z" + "iopub.execute_input": "2024-04-08T19:05:17.229650Z", + "iopub.status.busy": "2024-04-08T19:05:17.229169Z", + "iopub.status.idle": "2024-04-08T19:05:17.235852Z", + "shell.execute_reply": "2024-04-08T19:05:17.235318Z" } }, "outputs": [], @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.241352Z", - "iopub.status.busy": "2024-04-06T04:27:40.240938Z", - "iopub.status.idle": "2024-04-06T04:27:40.249415Z", - "shell.execute_reply": "2024-04-06T04:27:40.248876Z" + "iopub.execute_input": "2024-04-08T19:05:17.238153Z", + "iopub.status.busy": "2024-04-08T19:05:17.237822Z", + "iopub.status.idle": "2024-04-08T19:05:17.246365Z", + "shell.execute_reply": "2024-04-08T19:05:17.245924Z" } }, "outputs": [], @@ -334,10 +334,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.251546Z", - "iopub.status.busy": "2024-04-06T04:27:40.251172Z", - "iopub.status.idle": "2024-04-06T04:27:40.256527Z", - "shell.execute_reply": "2024-04-06T04:27:40.256119Z" + "iopub.execute_input": "2024-04-08T19:05:17.248259Z", + "iopub.status.busy": "2024-04-08T19:05:17.247938Z", + "iopub.status.idle": "2024-04-08T19:05:17.252838Z", + "shell.execute_reply": "2024-04-08T19:05:17.252440Z" } }, "outputs": [], @@ -350,10 +350,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.258644Z", - "iopub.status.busy": "2024-04-06T04:27:40.258268Z", - "iopub.status.idle": "2024-04-06T04:27:40.262114Z", - "shell.execute_reply": "2024-04-06T04:27:40.261656Z" + "iopub.execute_input": "2024-04-08T19:05:17.254810Z", + "iopub.status.busy": "2024-04-08T19:05:17.254482Z", + "iopub.status.idle": "2024-04-08T19:05:17.258040Z", + "shell.execute_reply": "2024-04-08T19:05:17.257638Z" } }, "outputs": [], @@ -431,10 +431,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.264175Z", - "iopub.status.busy": "2024-04-06T04:27:40.263808Z", - "iopub.status.idle": "2024-04-06T04:27:40.445579Z", - "shell.execute_reply": "2024-04-06T04:27:40.445093Z" + "iopub.execute_input": "2024-04-08T19:05:17.260050Z", + "iopub.status.busy": "2024-04-08T19:05:17.259858Z", + "iopub.status.idle": "2024-04-08T19:05:17.444599Z", + "shell.execute_reply": "2024-04-08T19:05:17.444055Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.447977Z", - "iopub.status.busy": "2024-04-06T04:27:40.447537Z", - "iopub.status.idle": "2024-04-06T04:27:40.744638Z", - "shell.execute_reply": "2024-04-06T04:27:40.744091Z" + "iopub.execute_input": "2024-04-08T19:05:17.447058Z", + "iopub.status.busy": "2024-04-08T19:05:17.446673Z", + "iopub.status.idle": "2024-04-08T19:05:17.799282Z", + "shell.execute_reply": "2024-04-08T19:05:17.798689Z" } }, "outputs": [ @@ -534,10 +534,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.746848Z", - "iopub.status.busy": "2024-04-06T04:27:40.746525Z", - "iopub.status.idle": "2024-04-06T04:27:40.771572Z", - "shell.execute_reply": "2024-04-06T04:27:40.771006Z" + "iopub.execute_input": "2024-04-08T19:05:17.801743Z", + "iopub.status.busy": "2024-04-08T19:05:17.801312Z", + "iopub.status.idle": "2024-04-08T19:05:17.826322Z", + "shell.execute_reply": "2024-04-08T19:05:17.825758Z" } }, "outputs": [], @@ -562,10 +562,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.774039Z", - "iopub.status.busy": "2024-04-06T04:27:40.773664Z", - "iopub.status.idle": "2024-04-06T04:27:42.370106Z", - "shell.execute_reply": "2024-04-06T04:27:42.369478Z" + "iopub.execute_input": "2024-04-08T19:05:17.828759Z", + "iopub.status.busy": "2024-04-08T19:05:17.828309Z", + "iopub.status.idle": "2024-04-08T19:05:19.538623Z", + "shell.execute_reply": "2024-04-08T19:05:19.537994Z" } }, "outputs": [ @@ -648,10 +648,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:42.372440Z", - "iopub.status.busy": "2024-04-06T04:27:42.372129Z", - "iopub.status.idle": "2024-04-06T04:27:42.375563Z", - "shell.execute_reply": "2024-04-06T04:27:42.375038Z" + "iopub.execute_input": "2024-04-08T19:05:19.541116Z", + "iopub.status.busy": "2024-04-08T19:05:19.540792Z", + "iopub.status.idle": "2024-04-08T19:05:19.544925Z", + "shell.execute_reply": "2024-04-08T19:05:19.544368Z" } }, "outputs": [], @@ -677,10 +677,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:42.377711Z", - "iopub.status.busy": "2024-04-06T04:27:42.377396Z", - "iopub.status.idle": "2024-04-06T04:27:42.386960Z", - "shell.execute_reply": "2024-04-06T04:27:42.386393Z" + "iopub.execute_input": "2024-04-08T19:05:19.546793Z", + "iopub.status.busy": "2024-04-08T19:05:19.546613Z", + "iopub.status.idle": "2024-04-08T19:05:19.556501Z", + "shell.execute_reply": "2024-04-08T19:05:19.555938Z" } }, "outputs": [], @@ -717,17 +717,17 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:42.389082Z", - "iopub.status.busy": "2024-04-06T04:27:42.388643Z", - "iopub.status.idle": "2024-04-06T04:27:47.460848Z", - "shell.execute_reply": "2024-04-06T04:27:47.460241Z" + "iopub.execute_input": "2024-04-08T19:05:19.558684Z", + "iopub.status.busy": "2024-04-08T19:05:19.558297Z", + "iopub.status.idle": "2024-04-08T19:05:24.640462Z", + "shell.execute_reply": "2024-04-08T19:05:24.639883Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88a3f04de8e44875bbbccd2e92af964b", + "model_id": "2f47e1ed2b654c57ae612b85caf87e33", "version_major": 2, "version_minor": 0 }, @@ -787,17 +787,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:47.463019Z", - "iopub.status.busy": "2024-04-06T04:27:47.462687Z", - "iopub.status.idle": "2024-04-06T04:27:52.754644Z", - "shell.execute_reply": "2024-04-06T04:27:52.754068Z" + "iopub.execute_input": "2024-04-08T19:05:24.642651Z", + "iopub.status.busy": "2024-04-08T19:05:24.642467Z", + "iopub.status.idle": "2024-04-08T19:05:29.933144Z", + "shell.execute_reply": "2024-04-08T19:05:29.932579Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "98349aa633c94f6f8de2ad9b4a7ddcc0", + "model_id": "4f0377a4700449e9a6fbad55e512beac", "version_major": 2, "version_minor": 0 }, @@ -925,10 +925,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:52.756904Z", - "iopub.status.busy": "2024-04-06T04:27:52.756572Z", - "iopub.status.idle": "2024-04-06T04:27:52.767494Z", - "shell.execute_reply": "2024-04-06T04:27:52.766969Z" + "iopub.execute_input": "2024-04-08T19:05:29.936196Z", + "iopub.status.busy": "2024-04-08T19:05:29.935831Z", + "iopub.status.idle": "2024-04-08T19:05:29.947084Z", + "shell.execute_reply": "2024-04-08T19:05:29.946554Z" } }, "outputs": [ @@ -1161,10 +1161,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:52.769625Z", - "iopub.status.busy": "2024-04-06T04:27:52.769240Z", - "iopub.status.idle": "2024-04-06T04:27:52.774775Z", - "shell.execute_reply": "2024-04-06T04:27:52.774299Z" + "iopub.execute_input": "2024-04-08T19:05:29.948874Z", + "iopub.status.busy": "2024-04-08T19:05:29.948698Z", + "iopub.status.idle": "2024-04-08T19:05:29.953956Z", + "shell.execute_reply": "2024-04-08T19:05:29.953551Z" } }, "outputs": [ @@ -1244,51 +1244,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "061ccf039e13444da59852bf8e450df8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "07e9941853a644c2a8e7beb026aa8096": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_83e26b89eb7147a9a08689975eaae0aa", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a50c1ed63c444f5ea7ec0b51e28adfa9", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "1f1380d992af4fc9ac5092887976d69d": { + "07acb035ab04489f9387d9718ae0300d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1341,7 +1297,7 @@ "width": null } }, - "3501255b1f0e4d23b395426656d1061d": { + "128d9f5df2814c66a3994457d9355ec0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1356,15 +1312,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1f1380d992af4fc9ac5092887976d69d", + "layout": "IPY_MODEL_1da7bf46e2e44e11bba14d6dae15180c", "placeholder": "​", - "style": "IPY_MODEL_d71ac3c63a39491d9ed58f8bbc64e388", + "style": "IPY_MODEL_b5256e93be0b4752bbb5eb28c7e6b6f3", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "41752ff7750c4b20be0a41d83676cda7": { + "12aaf4ab3e33466480a03090a29d35e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "16a9cd2938bc424383031abcba4a9aef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1379,33 +1353,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c96caaaddeb44fa8d834cd11d2bec53", + "layout": "IPY_MODEL_e08a5d72b2194307864f4fe35d00d7fd", "placeholder": "​", - "style": "IPY_MODEL_061ccf039e13444da59852bf8e450df8", + "style": "IPY_MODEL_12aaf4ab3e33466480a03090a29d35e8", "tabbable": null, "tooltip": null, "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "4c2a75ebabb6459aa6defc80f93384b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4c96caaaddeb44fa8d834cd11d2bec53": { + "1da7bf46e2e44e11bba14d6dae15180c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1458,23 +1414,73 @@ "width": null } }, - "79ee40937e344d409eebbafc1d34af9b": { + "2f47e1ed2b654c57ae612b85caf87e33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_128d9f5df2814c66a3994457d9355ec0", + "IPY_MODEL_9f28e0c0d18f40d1ac7a57021a0ec5c4", + "IPY_MODEL_ddda3b38d5674c32b89992a35a8fe972" + ], + "layout": "IPY_MODEL_b8ebaa74de964a48a3838444eb1fd68e", + "tabbable": null, + "tooltip": null + } + }, + "4ecbe2397e5f4e2fad1fea3a2a4dab1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "80904aac151d4808b96b94cab7affb24": { + "4f0377a4700449e9a6fbad55e512beac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_16a9cd2938bc424383031abcba4a9aef", + "IPY_MODEL_f5759780d23e477cb1d346cb79ba1321", + "IPY_MODEL_cf3a3cedd097445ba4955da8f0688ad1" + ], + "layout": "IPY_MODEL_b9b22bcc90da434db4010e9e0673f277", + "tabbable": null, + "tooltip": null + } + }, + "6895df27e56b437fb02601057f040882": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1527,60 +1533,25 @@ "width": null } }, - "830d282b791f42c9a26b8731e4e4dd10": { - "model_module": "@jupyter-widgets/base", + "719c4562a8ea4c4fa3a5ad72ded78285": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "83e26b89eb7147a9a08689975eaae0aa": { + "9a88ec1f13854a04a2b9086e55a17666": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1633,54 +1604,51 @@ "width": null } }, - "88a3f04de8e44875bbbccd2e92af964b": { + "9f28e0c0d18f40d1ac7a57021a0ec5c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_91d86c05cce145ae9379b1550341fef6", - "IPY_MODEL_d26d3eb4fe95497db089feb11c392945", - "IPY_MODEL_c4a783fb9d8b484cbe929e6db7234964" - ], - "layout": "IPY_MODEL_91edbbc589e34aee8ae904e8b0a3009d", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6895df27e56b437fb02601057f040882", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fdd6323d006e4b4aa97d49eb699a8f62", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 50.0 } }, - "91d86c05cce145ae9379b1550341fef6": { + "b5256e93be0b4752bbb5eb28c7e6b6f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d80e7ac068684ff2922a11e8e6d52e25", - "placeholder": "​", - "style": "IPY_MODEL_99572cb4f6f14e83856554309f7cc07c", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "91edbbc589e34aee8ae904e8b0a3009d": { + "b8ebaa74de964a48a3838444eb1fd68e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1733,49 +1701,7 @@ "width": null } }, - "98349aa633c94f6f8de2ad9b4a7ddcc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_41752ff7750c4b20be0a41d83676cda7", - "IPY_MODEL_07e9941853a644c2a8e7beb026aa8096", - "IPY_MODEL_3501255b1f0e4d23b395426656d1061d" - ], - "layout": "IPY_MODEL_80904aac151d4808b96b94cab7affb24", - "tabbable": null, - "tooltip": null - } - }, - "99572cb4f6f14e83856554309f7cc07c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a272a4b17efd42cfbf635e41a3cf87bc": { + "b9b22bcc90da434db4010e9e0673f277": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1828,7 +1754,7 @@ "width": null } }, - "a50c1ed63c444f5ea7ec0b51e28adfa9": { + "c64971c872874384ad842ab855a0b637": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1844,7 +1770,7 @@ "description_width": "" } }, - "c4a783fb9d8b484cbe929e6db7234964": { + "cf3a3cedd097445ba4955da8f0688ad1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1859,59 +1785,91 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_830d282b791f42c9a26b8731e4e4dd10", + "layout": "IPY_MODEL_9a88ec1f13854a04a2b9086e55a17666", "placeholder": "​", - "style": "IPY_MODEL_4c2a75ebabb6459aa6defc80f93384b4", + "style": "IPY_MODEL_719c4562a8ea4c4fa3a5ad72ded78285", "tabbable": null, "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.89it/s]" + "value": " 7/7 [00:05<00:00,  1.33it/s]" } }, - "d26d3eb4fe95497db089feb11c392945": { + "ddda3b38d5674c32b89992a35a8fe972": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a272a4b17efd42cfbf635e41a3cf87bc", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_79ee40937e344d409eebbafc1d34af9b", + "layout": "IPY_MODEL_07acb035ab04489f9387d9718ae0300d", + "placeholder": "​", + "style": "IPY_MODEL_4ecbe2397e5f4e2fad1fea3a2a4dab1e", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 50/50 [00:05<00:00,  9.89it/s]" } }, - "d71ac3c63a39491d9ed58f8bbc64e388": { - "model_module": "@jupyter-widgets/controls", + "e08a5d72b2194307864f4fe35d00d7fd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d80e7ac068684ff2922a11e8e6d52e25": { + "e1d064cb9adb4b7fbfd292215390a0d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1963,6 +1921,48 @@ "visibility": null, "width": null } + }, + "f5759780d23e477cb1d346cb79ba1321": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e1d064cb9adb4b7fbfd292215390a0d8", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c64971c872874384ad842ab855a0b637", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "fdd6323d006e4b4aa97d49eb699a8f62": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 6f252d481..e435a28b7 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:55.167484Z", - "iopub.status.busy": "2024-04-06T04:27:55.167142Z", - "iopub.status.idle": "2024-04-06T04:27:56.268393Z", - "shell.execute_reply": "2024-04-06T04:27:56.267802Z" + "iopub.execute_input": "2024-04-08T19:05:32.399757Z", + "iopub.status.busy": "2024-04-08T19:05:32.399402Z", + "iopub.status.idle": "2024-04-08T19:05:33.528700Z", + "shell.execute_reply": "2024-04-08T19:05:33.528208Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.270921Z", - "iopub.status.busy": "2024-04-06T04:27:56.270628Z", - "iopub.status.idle": "2024-04-06T04:27:56.273710Z", - "shell.execute_reply": "2024-04-06T04:27:56.273181Z" + "iopub.execute_input": "2024-04-08T19:05:33.531324Z", + "iopub.status.busy": "2024-04-08T19:05:33.530883Z", + "iopub.status.idle": "2024-04-08T19:05:33.533905Z", + "shell.execute_reply": "2024-04-08T19:05:33.533461Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.276040Z", - "iopub.status.busy": "2024-04-06T04:27:56.275731Z", - "iopub.status.idle": "2024-04-06T04:27:56.284763Z", - "shell.execute_reply": "2024-04-06T04:27:56.284342Z" + "iopub.execute_input": "2024-04-08T19:05:33.536089Z", + "iopub.status.busy": "2024-04-08T19:05:33.535766Z", + "iopub.status.idle": "2024-04-08T19:05:33.544759Z", + "shell.execute_reply": "2024-04-08T19:05:33.544339Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.286793Z", - "iopub.status.busy": "2024-04-06T04:27:56.286479Z", - "iopub.status.idle": "2024-04-06T04:27:56.290759Z", - "shell.execute_reply": "2024-04-06T04:27:56.290351Z" + "iopub.execute_input": "2024-04-08T19:05:33.546655Z", + "iopub.status.busy": "2024-04-08T19:05:33.546328Z", + "iopub.status.idle": "2024-04-08T19:05:33.551312Z", + "shell.execute_reply": "2024-04-08T19:05:33.550798Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.292900Z", - "iopub.status.busy": "2024-04-06T04:27:56.292571Z", - "iopub.status.idle": "2024-04-06T04:27:56.470930Z", - "shell.execute_reply": "2024-04-06T04:27:56.470381Z" + "iopub.execute_input": "2024-04-08T19:05:33.553494Z", + "iopub.status.busy": "2024-04-08T19:05:33.553202Z", + "iopub.status.idle": "2024-04-08T19:05:33.734474Z", + "shell.execute_reply": "2024-04-08T19:05:33.733871Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.473159Z", - "iopub.status.busy": "2024-04-06T04:27:56.472901Z", - "iopub.status.idle": "2024-04-06T04:27:56.842173Z", - "shell.execute_reply": "2024-04-06T04:27:56.841568Z" + "iopub.execute_input": "2024-04-08T19:05:33.736929Z", + "iopub.status.busy": "2024-04-08T19:05:33.736685Z", + "iopub.status.idle": "2024-04-08T19:05:34.103381Z", + "shell.execute_reply": "2024-04-08T19:05:34.102792Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.844403Z", - "iopub.status.busy": "2024-04-06T04:27:56.844070Z", - "iopub.status.idle": "2024-04-06T04:27:56.867433Z", - "shell.execute_reply": "2024-04-06T04:27:56.867005Z" + "iopub.execute_input": "2024-04-08T19:05:34.105764Z", + "iopub.status.busy": "2024-04-08T19:05:34.105419Z", + "iopub.status.idle": "2024-04-08T19:05:34.129090Z", + "shell.execute_reply": "2024-04-08T19:05:34.128647Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.869442Z", - "iopub.status.busy": "2024-04-06T04:27:56.869133Z", - "iopub.status.idle": "2024-04-06T04:27:56.879921Z", - "shell.execute_reply": "2024-04-06T04:27:56.879386Z" + "iopub.execute_input": "2024-04-08T19:05:34.131072Z", + "iopub.status.busy": "2024-04-08T19:05:34.130769Z", + "iopub.status.idle": "2024-04-08T19:05:34.141791Z", + "shell.execute_reply": "2024-04-08T19:05:34.141283Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.882178Z", - "iopub.status.busy": "2024-04-06T04:27:56.881838Z", - "iopub.status.idle": "2024-04-06T04:27:58.449402Z", - "shell.execute_reply": "2024-04-06T04:27:58.448837Z" + "iopub.execute_input": "2024-04-08T19:05:34.144081Z", + "iopub.status.busy": "2024-04-08T19:05:34.143717Z", + "iopub.status.idle": "2024-04-08T19:05:35.791854Z", + "shell.execute_reply": "2024-04-08T19:05:35.791186Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:58.451881Z", - "iopub.status.busy": "2024-04-06T04:27:58.451481Z", - "iopub.status.idle": "2024-04-06T04:27:58.472786Z", - "shell.execute_reply": "2024-04-06T04:27:58.472247Z" + "iopub.execute_input": "2024-04-08T19:05:35.794545Z", + "iopub.status.busy": "2024-04-08T19:05:35.793952Z", + "iopub.status.idle": "2024-04-08T19:05:35.815345Z", + "shell.execute_reply": "2024-04-08T19:05:35.814802Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:58.474943Z", - "iopub.status.busy": "2024-04-06T04:27:58.474628Z", - "iopub.status.idle": "2024-04-06T04:27:58.493726Z", - "shell.execute_reply": "2024-04-06T04:27:58.493177Z" + "iopub.execute_input": "2024-04-08T19:05:35.817441Z", + "iopub.status.busy": "2024-04-08T19:05:35.817058Z", + "iopub.status.idle": "2024-04-08T19:05:35.836184Z", + "shell.execute_reply": "2024-04-08T19:05:35.835672Z" } }, "outputs": [ @@ -910,7 +910,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:58.495766Z", - "iopub.status.busy": "2024-04-06T04:27:58.495439Z", - "iopub.status.idle": "2024-04-06T04:27:58.509263Z", - "shell.execute_reply": "2024-04-06T04:27:58.508829Z" + "iopub.execute_input": "2024-04-08T19:05:35.838193Z", + "iopub.status.busy": "2024-04-08T19:05:35.838020Z", + "iopub.status.idle": "2024-04-08T19:05:35.852488Z", + "shell.execute_reply": "2024-04-08T19:05:35.852042Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:58.511294Z", - "iopub.status.busy": "2024-04-06T04:27:58.510970Z", - "iopub.status.idle": "2024-04-06T04:27:58.529602Z", - "shell.execute_reply": "2024-04-06T04:27:58.529063Z" + "iopub.execute_input": "2024-04-08T19:05:35.854417Z", + "iopub.status.busy": "2024-04-08T19:05:35.854247Z", + "iopub.status.idle": "2024-04-08T19:05:35.873232Z", + "shell.execute_reply": "2024-04-08T19:05:35.872705Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d02d6b616f48472186e69f83078244aa", + "model_id": "97cce15af35f4ce7a71bfd4e784c1928", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:58.531477Z", - "iopub.status.busy": "2024-04-06T04:27:58.531304Z", - "iopub.status.idle": "2024-04-06T04:27:58.546063Z", - "shell.execute_reply": "2024-04-06T04:27:58.545580Z" + "iopub.execute_input": "2024-04-08T19:05:35.875329Z", + "iopub.status.busy": "2024-04-08T19:05:35.874965Z", + "iopub.status.idle": "2024-04-08T19:05:35.889385Z", + "shell.execute_reply": "2024-04-08T19:05:35.888962Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:58.548107Z", - "iopub.status.busy": "2024-04-06T04:27:58.547734Z", - "iopub.status.idle": "2024-04-06T04:27:58.553403Z", - "shell.execute_reply": "2024-04-06T04:27:58.552986Z" + "iopub.execute_input": "2024-04-08T19:05:35.891511Z", + "iopub.status.busy": "2024-04-08T19:05:35.891109Z", + "iopub.status.idle": "2024-04-08T19:05:35.896831Z", + "shell.execute_reply": "2024-04-08T19:05:35.896325Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:58.555509Z", - "iopub.status.busy": "2024-04-06T04:27:58.555093Z", - "iopub.status.idle": "2024-04-06T04:27:58.572894Z", - "shell.execute_reply": "2024-04-06T04:27:58.572431Z" + "iopub.execute_input": "2024-04-08T19:05:35.898838Z", + "iopub.status.busy": "2024-04-08T19:05:35.898541Z", + "iopub.status.idle": "2024-04-08T19:05:35.915657Z", + "shell.execute_reply": "2024-04-08T19:05:35.915214Z" } }, "outputs": [ @@ -1431,7 +1431,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02bbc5143d3a4993a0d1f8da9de11d01": { + "0c239304d29045c1b64914dcd438f404": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1484,7 +1484,67 @@ "width": null } }, - "0df42a660b99494ba1a08fc9a8cdd1b4": { + "128b3b1a069d412baa8c95c1d60454a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1ae88ebb9093404db35f11a77eebf512": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_46bd17b1514d4e52ae0383c64d6489cd", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_228185c613e04c9eac97098f61b94e68", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "228185c613e04c9eac97098f61b94e68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "46bd17b1514d4e52ae0383c64d6489cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1537,33 +1597,54 @@ "width": null } }, - "17c3deaafb3d4e8ba7ed2d539ab37994": { + "914ce1df641b45febd754b94855f6758": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8e9944f01dc04773b1a6f250b877bdac", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_92a77433e43f4ff8a546985e6e38611a", + "layout": "IPY_MODEL_0c239304d29045c1b64914dcd438f404", + "placeholder": "​", + "style": "IPY_MODEL_d88ce31af6724956a7b3b62d32858b5b", "tabbable": null, "tooltip": null, - "value": 132.0 + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "97cce15af35f4ce7a71bfd4e784c1928": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_914ce1df641b45febd754b94855f6758", + "IPY_MODEL_1ae88ebb9093404db35f11a77eebf512", + "IPY_MODEL_b964e793dbdf439ab0a15c97a2a25707" + ], + "layout": "IPY_MODEL_a6fe3071a0de43bf8ba390921942df7b", + "tabbable": null, + "tooltip": null } }, - "375a2c62332d41db9fb6fda4e1c413b1": { + "a6fe3071a0de43bf8ba390921942df7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1616,7 +1697,7 @@ "width": null } }, - "7bd4b0305523463bbf5bf70b1f791cc7": { + "b964e793dbdf439ab0a15c97a2a25707": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1631,15 +1712,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0df42a660b99494ba1a08fc9a8cdd1b4", + "layout": "IPY_MODEL_ece75fa4a34244dc9e9c365738e7868a", "placeholder": "​", - "style": "IPY_MODEL_996d62a724d14e7f9758fa309375faff", + "style": "IPY_MODEL_128b3b1a069d412baa8c95c1d60454a4", "tabbable": null, "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "value": " 132/132 [00:00<00:00, 12706.22 examples/s]" + } + }, + "d88ce31af6724956a7b3b62d32858b5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8e9944f01dc04773b1a6f250b877bdac": { + "ece75fa4a34244dc9e9c365738e7868a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1691,105 +1790,6 @@ "visibility": null, "width": null } - }, - "92a77433e43f4ff8a546985e6e38611a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "996d62a724d14e7f9758fa309375faff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bd9f710c62d542cf9e7b79052a8e5d74": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d02d6b616f48472186e69f83078244aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7bd4b0305523463bbf5bf70b1f791cc7", - "IPY_MODEL_17c3deaafb3d4e8ba7ed2d539ab37994", - "IPY_MODEL_d482671c5f304dc1af9900d828daaf12" - ], - "layout": "IPY_MODEL_02bbc5143d3a4993a0d1f8da9de11d01", - "tabbable": null, - "tooltip": null - } - }, - "d482671c5f304dc1af9900d828daaf12": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_375a2c62332d41db9fb6fda4e1c413b1", - "placeholder": "​", - "style": "IPY_MODEL_bd9f710c62d542cf9e7b79052a8e5d74", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 13627.93 examples/s]" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 8fd460cb9..f898d2d07 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:01.140999Z", - "iopub.status.busy": "2024-04-06T04:28:01.140833Z", - "iopub.status.idle": "2024-04-06T04:28:02.262000Z", - "shell.execute_reply": "2024-04-06T04:28:02.261355Z" + "iopub.execute_input": "2024-04-08T19:05:38.472111Z", + "iopub.status.busy": "2024-04-08T19:05:38.471945Z", + "iopub.status.idle": "2024-04-08T19:05:39.585652Z", + "shell.execute_reply": "2024-04-08T19:05:39.585065Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.264649Z", - "iopub.status.busy": "2024-04-06T04:28:02.264228Z", - "iopub.status.idle": "2024-04-06T04:28:02.267145Z", - "shell.execute_reply": "2024-04-06T04:28:02.266735Z" + "iopub.execute_input": "2024-04-08T19:05:39.588303Z", + "iopub.status.busy": "2024-04-08T19:05:39.588056Z", + "iopub.status.idle": "2024-04-08T19:05:39.591474Z", + "shell.execute_reply": "2024-04-08T19:05:39.590968Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.269196Z", - "iopub.status.busy": "2024-04-06T04:28:02.268920Z", - "iopub.status.idle": "2024-04-06T04:28:02.278242Z", - "shell.execute_reply": "2024-04-06T04:28:02.277783Z" + "iopub.execute_input": "2024-04-08T19:05:39.593440Z", + "iopub.status.busy": "2024-04-08T19:05:39.593184Z", + "iopub.status.idle": "2024-04-08T19:05:39.602136Z", + "shell.execute_reply": "2024-04-08T19:05:39.601699Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.280171Z", - "iopub.status.busy": "2024-04-06T04:28:02.279844Z", - "iopub.status.idle": "2024-04-06T04:28:02.284049Z", - "shell.execute_reply": "2024-04-06T04:28:02.283641Z" + "iopub.execute_input": "2024-04-08T19:05:39.604078Z", + "iopub.status.busy": "2024-04-08T19:05:39.603759Z", + "iopub.status.idle": "2024-04-08T19:05:39.608027Z", + "shell.execute_reply": "2024-04-08T19:05:39.607640Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.286098Z", - "iopub.status.busy": "2024-04-06T04:28:02.285775Z", - "iopub.status.idle": "2024-04-06T04:28:02.470065Z", - "shell.execute_reply": "2024-04-06T04:28:02.469547Z" + "iopub.execute_input": "2024-04-08T19:05:39.609991Z", + "iopub.status.busy": "2024-04-08T19:05:39.609678Z", + "iopub.status.idle": "2024-04-08T19:05:39.789021Z", + "shell.execute_reply": "2024-04-08T19:05:39.788487Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.472692Z", - "iopub.status.busy": "2024-04-06T04:28:02.472227Z", - "iopub.status.idle": "2024-04-06T04:28:02.862171Z", - "shell.execute_reply": "2024-04-06T04:28:02.861570Z" + "iopub.execute_input": "2024-04-08T19:05:39.791556Z", + "iopub.status.busy": "2024-04-08T19:05:39.791137Z", + "iopub.status.idle": "2024-04-08T19:05:40.161861Z", + "shell.execute_reply": "2024-04-08T19:05:40.161278Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.864346Z", - "iopub.status.busy": "2024-04-06T04:28:02.864021Z", - "iopub.status.idle": "2024-04-06T04:28:02.868011Z", - "shell.execute_reply": "2024-04-06T04:28:02.867360Z" + "iopub.execute_input": "2024-04-08T19:05:40.164104Z", + "iopub.status.busy": "2024-04-08T19:05:40.163680Z", + "iopub.status.idle": "2024-04-08T19:05:40.166534Z", + "shell.execute_reply": "2024-04-08T19:05:40.165994Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.870143Z", - "iopub.status.busy": "2024-04-06T04:28:02.869708Z", - "iopub.status.idle": "2024-04-06T04:28:02.905119Z", - "shell.execute_reply": "2024-04-06T04:28:02.904575Z" + "iopub.execute_input": "2024-04-08T19:05:40.168465Z", + "iopub.status.busy": "2024-04-08T19:05:40.168160Z", + "iopub.status.idle": "2024-04-08T19:05:40.204106Z", + "shell.execute_reply": "2024-04-08T19:05:40.203573Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.907153Z", - "iopub.status.busy": "2024-04-06T04:28:02.906777Z", - "iopub.status.idle": "2024-04-06T04:28:04.522763Z", - "shell.execute_reply": "2024-04-06T04:28:04.522160Z" + "iopub.execute_input": "2024-04-08T19:05:40.206126Z", + "iopub.status.busy": "2024-04-08T19:05:40.205831Z", + "iopub.status.idle": "2024-04-08T19:05:41.861121Z", + "shell.execute_reply": "2024-04-08T19:05:41.860499Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:04.525220Z", - "iopub.status.busy": "2024-04-06T04:28:04.524729Z", - "iopub.status.idle": "2024-04-06T04:28:04.543944Z", - "shell.execute_reply": "2024-04-06T04:28:04.543486Z" + "iopub.execute_input": "2024-04-08T19:05:41.863740Z", + "iopub.status.busy": "2024-04-08T19:05:41.863237Z", + "iopub.status.idle": "2024-04-08T19:05:41.882767Z", + "shell.execute_reply": "2024-04-08T19:05:41.882319Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:04.545971Z", - "iopub.status.busy": "2024-04-06T04:28:04.545633Z", - "iopub.status.idle": "2024-04-06T04:28:04.551859Z", - "shell.execute_reply": "2024-04-06T04:28:04.551428Z" + "iopub.execute_input": "2024-04-08T19:05:41.884850Z", + "iopub.status.busy": "2024-04-08T19:05:41.884544Z", + "iopub.status.idle": "2024-04-08T19:05:41.890743Z", + "shell.execute_reply": "2024-04-08T19:05:41.890221Z" } }, "outputs": [ @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:04.553727Z", - "iopub.status.busy": "2024-04-06T04:28:04.553467Z", - "iopub.status.idle": "2024-04-06T04:28:04.559055Z", - "shell.execute_reply": "2024-04-06T04:28:04.558635Z" + "iopub.execute_input": "2024-04-08T19:05:41.892670Z", + "iopub.status.busy": "2024-04-08T19:05:41.892376Z", + "iopub.status.idle": "2024-04-08T19:05:41.897724Z", + "shell.execute_reply": "2024-04-08T19:05:41.897233Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:04.561010Z", - "iopub.status.busy": "2024-04-06T04:28:04.560761Z", - "iopub.status.idle": "2024-04-06T04:28:04.571254Z", - "shell.execute_reply": "2024-04-06T04:28:04.570824Z" + "iopub.execute_input": "2024-04-08T19:05:41.899726Z", + "iopub.status.busy": "2024-04-08T19:05:41.899419Z", + "iopub.status.idle": "2024-04-08T19:05:41.909317Z", + "shell.execute_reply": "2024-04-08T19:05:41.908907Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:04.573178Z", - "iopub.status.busy": "2024-04-06T04:28:04.572871Z", - "iopub.status.idle": "2024-04-06T04:28:04.581776Z", - "shell.execute_reply": "2024-04-06T04:28:04.581258Z" + "iopub.execute_input": "2024-04-08T19:05:41.911355Z", + "iopub.status.busy": "2024-04-08T19:05:41.911042Z", + "iopub.status.idle": "2024-04-08T19:05:41.919704Z", + "shell.execute_reply": "2024-04-08T19:05:41.919301Z" } }, "outputs": [ @@ -1340,10 +1340,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:04.583843Z", - "iopub.status.busy": "2024-04-06T04:28:04.583519Z", - "iopub.status.idle": "2024-04-06T04:28:04.590173Z", - "shell.execute_reply": "2024-04-06T04:28:04.589690Z" + "iopub.execute_input": "2024-04-08T19:05:41.921572Z", + "iopub.status.busy": "2024-04-08T19:05:41.921400Z", + "iopub.status.idle": "2024-04-08T19:05:41.928223Z", + "shell.execute_reply": "2024-04-08T19:05:41.927710Z" }, "scrolled": true }, @@ -1468,10 +1468,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:04.592157Z", - "iopub.status.busy": "2024-04-06T04:28:04.591831Z", - "iopub.status.idle": "2024-04-06T04:28:04.600966Z", - "shell.execute_reply": "2024-04-06T04:28:04.600530Z" + "iopub.execute_input": "2024-04-08T19:05:41.930139Z", + "iopub.status.busy": "2024-04-08T19:05:41.929966Z", + "iopub.status.idle": "2024-04-08T19:05:41.939155Z", + "shell.execute_reply": "2024-04-08T19:05:41.938682Z" } }, "outputs": [ diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index 5dbc9174f..e5222c4f6 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:06.972790Z", - "iopub.status.busy": "2024-04-06T04:28:06.972606Z", - "iopub.status.idle": "2024-04-06T04:28:09.752985Z", - "shell.execute_reply": "2024-04-06T04:28:09.752449Z" + "iopub.execute_input": "2024-04-08T19:05:44.455598Z", + "iopub.status.busy": "2024-04-08T19:05:44.455183Z", + "iopub.status.idle": "2024-04-08T19:05:47.311029Z", + "shell.execute_reply": "2024-04-08T19:05:47.310392Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:09.755512Z", - "iopub.status.busy": "2024-04-06T04:28:09.755090Z", - "iopub.status.idle": "2024-04-06T04:28:09.758597Z", - "shell.execute_reply": "2024-04-06T04:28:09.758078Z" + "iopub.execute_input": "2024-04-08T19:05:47.313575Z", + "iopub.status.busy": "2024-04-08T19:05:47.313285Z", + "iopub.status.idle": "2024-04-08T19:05:47.317021Z", + "shell.execute_reply": "2024-04-08T19:05:47.316573Z" } }, "outputs": [], @@ -152,10 +152,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:09.760622Z", - "iopub.status.busy": "2024-04-06T04:28:09.760210Z", - "iopub.status.idle": "2024-04-06T04:28:16.295173Z", - "shell.execute_reply": "2024-04-06T04:28:16.294666Z" + "iopub.execute_input": "2024-04-08T19:05:47.319045Z", + "iopub.status.busy": "2024-04-08T19:05:47.318749Z", + "iopub.status.idle": "2024-04-08T19:06:52.995269Z", + "shell.execute_reply": "2024-04-08T19:06:52.994727Z" } }, "outputs": [ @@ -172,7 +172,7 @@ "output_type": "stream", "text": [ "\r", - "Downloading data: 34%|███▍ | 10.5M/30.9M [00:00<00:00, 27.2MB/s]" + "Downloading data: 34%|███▍ | 10.5M/30.9M [00:00<00:00, 25.5MB/s]" ] }, { @@ -180,7 +180,7 @@ "output_type": "stream", "text": [ "\r", - "Downloading data: 68%|██████▊ | 21.0M/30.9M [00:00<00:00, 45.5MB/s]" + "Downloading data: 68%|██████▊ | 21.0M/30.9M [00:00<00:00, 40.1MB/s]" ] }, { @@ -188,7 +188,15 @@ "output_type": "stream", "text": [ "\r", - "Downloading data: 100%|██████████| 30.9M/30.9M [00:00<00:00, 50.7MB/s]" + "Downloading data: 100%|██████████| 30.9M/30.9M [00:00<00:00, 52.4MB/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "Downloading data: 100%|██████████| 30.9M/30.9M [00:00<00:00, 44.8MB/s]" ] }, { @@ -211,7 +219,15 @@ "output_type": "stream", "text": [ "\r", - "Downloading data: 100%|██████████| 5.18M/5.18M [00:00<00:00, 57.7MB/s]" + "Downloading data: 100%|██████████| 5.18M/5.18M [00:00<00:00, 25.1MB/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "Downloading data: 100%|██████████| 5.18M/5.18M [00:00<00:00, 24.7MB/s]" ] }, { @@ -224,7 +240,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "63f80561a9aa4de6b4236289ee6db555", + "model_id": "0eb8f33ec6a4418f82faef40016d8087", "version_major": 2, "version_minor": 0 }, @@ -238,7 +254,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "230d8fb552244430b2da0fe2e463b928", + "model_id": "ae20b62666184b608438ba88eb80b458", "version_major": 2, "version_minor": 0 }, @@ -280,10 +296,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:16.297360Z", - "iopub.status.busy": "2024-04-06T04:28:16.297063Z", - "iopub.status.idle": "2024-04-06T04:28:16.301215Z", - "shell.execute_reply": "2024-04-06T04:28:16.300641Z" + "iopub.execute_input": "2024-04-08T19:06:52.997585Z", + "iopub.status.busy": "2024-04-08T19:06:52.997287Z", + "iopub.status.idle": "2024-04-08T19:06:53.001006Z", + "shell.execute_reply": "2024-04-08T19:06:53.000502Z" } }, "outputs": [ @@ -308,17 +324,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:16.303464Z", - "iopub.status.busy": "2024-04-06T04:28:16.303065Z", - "iopub.status.idle": "2024-04-06T04:28:27.419249Z", - "shell.execute_reply": "2024-04-06T04:28:27.418699Z" + "iopub.execute_input": "2024-04-08T19:06:53.003093Z", + "iopub.status.busy": "2024-04-08T19:06:53.002719Z", + "iopub.status.idle": "2024-04-08T19:07:04.104000Z", + "shell.execute_reply": "2024-04-08T19:07:04.103381Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cb88b48c32274a769a3b6b2f97e0d5f7", + "model_id": "a30eaea1846c404db6f70144bebe00f7", "version_major": 2, "version_minor": 0 }, @@ -356,10 +372,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:27.421638Z", - "iopub.status.busy": "2024-04-06T04:28:27.421406Z", - "iopub.status.idle": "2024-04-06T04:28:46.417249Z", - "shell.execute_reply": "2024-04-06T04:28:46.416725Z" + "iopub.execute_input": "2024-04-08T19:07:04.106690Z", + "iopub.status.busy": "2024-04-08T19:07:04.106430Z", + "iopub.status.idle": "2024-04-08T19:07:23.674623Z", + "shell.execute_reply": "2024-04-08T19:07:23.674042Z" } }, "outputs": [], @@ -392,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:46.419936Z", - "iopub.status.busy": "2024-04-06T04:28:46.419547Z", - "iopub.status.idle": "2024-04-06T04:28:46.425574Z", - "shell.execute_reply": "2024-04-06T04:28:46.424934Z" + "iopub.execute_input": "2024-04-08T19:07:23.677241Z", + "iopub.status.busy": "2024-04-08T19:07:23.676879Z", + "iopub.status.idle": "2024-04-08T19:07:23.682812Z", + "shell.execute_reply": "2024-04-08T19:07:23.682328Z" } }, "outputs": [], @@ -433,10 +449,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:46.427717Z", - "iopub.status.busy": "2024-04-06T04:28:46.427319Z", - "iopub.status.idle": "2024-04-06T04:28:46.431436Z", - "shell.execute_reply": "2024-04-06T04:28:46.430914Z" + "iopub.execute_input": "2024-04-08T19:07:23.684649Z", + "iopub.status.busy": "2024-04-08T19:07:23.684464Z", + "iopub.status.idle": "2024-04-08T19:07:23.688678Z", + "shell.execute_reply": "2024-04-08T19:07:23.688276Z" }, "nbsphinx": "hidden" }, @@ -573,10 +589,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:46.433507Z", - "iopub.status.busy": "2024-04-06T04:28:46.433326Z", - "iopub.status.idle": "2024-04-06T04:28:46.442750Z", - "shell.execute_reply": "2024-04-06T04:28:46.442165Z" + "iopub.execute_input": "2024-04-08T19:07:23.690513Z", + "iopub.status.busy": "2024-04-08T19:07:23.690330Z", + "iopub.status.idle": "2024-04-08T19:07:23.699065Z", + "shell.execute_reply": "2024-04-08T19:07:23.698630Z" }, "nbsphinx": "hidden" }, @@ -701,10 +717,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:46.445207Z", - "iopub.status.busy": "2024-04-06T04:28:46.444709Z", - "iopub.status.idle": "2024-04-06T04:28:46.471457Z", - "shell.execute_reply": "2024-04-06T04:28:46.470848Z" + "iopub.execute_input": "2024-04-08T19:07:23.701049Z", + "iopub.status.busy": "2024-04-08T19:07:23.700760Z", + "iopub.status.idle": "2024-04-08T19:07:23.727875Z", + "shell.execute_reply": "2024-04-08T19:07:23.727411Z" } }, "outputs": [], @@ -741,10 +757,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:46.474138Z", - "iopub.status.busy": "2024-04-06T04:28:46.473706Z", - "iopub.status.idle": "2024-04-06T04:29:19.284754Z", - "shell.execute_reply": "2024-04-06T04:29:19.284157Z" + "iopub.execute_input": "2024-04-08T19:07:23.730030Z", + "iopub.status.busy": "2024-04-08T19:07:23.729684Z", + "iopub.status.idle": "2024-04-08T19:07:55.733757Z", + "shell.execute_reply": "2024-04-08T19:07:55.733140Z" } }, "outputs": [ @@ -760,21 +776,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.940\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.943\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.775\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.606\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eb284719132643f39c4d672792c9676b", + "model_id": "655fc2039c2f44018f7440a3d2e07a6e", "version_major": 2, "version_minor": 0 }, @@ -795,7 +811,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "37a89191786645eba770cde499fad762", + "model_id": "eb19d31ef8f4468b9f0d6aabf630dc05", "version_major": 2, "version_minor": 0 }, @@ -818,21 +834,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.963\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.715\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.588\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.438\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "494d4dec9fa34cdba034f2e400df4b4a", + "model_id": "e9e0602cde8548a3b201f1e9d8487610", "version_major": 2, "version_minor": 0 }, @@ -853,7 +869,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "062e939e5df64531b55a3a30c9808fb8", + "model_id": "d17335f81c08473e83f57bcb91f327b6", "version_major": 2, "version_minor": 0 }, @@ -876,21 +892,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.770\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.569\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.552\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.479\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ab2472f1e90442db812aa71752ac3895", + "model_id": "e3f2da6ea95d4ffea5b61ce1470cc963", "version_major": 2, "version_minor": 0 }, @@ -911,7 +927,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "92a29e7b86344f558ffc62c421168612", + "model_id": "2dcb1da8fc8746cb8d2bcbb0b5fbca34", "version_major": 2, "version_minor": 0 }, @@ -990,10 +1006,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:29:19.287441Z", - "iopub.status.busy": "2024-04-06T04:29:19.287051Z", - "iopub.status.idle": "2024-04-06T04:29:19.302983Z", - "shell.execute_reply": "2024-04-06T04:29:19.302570Z" + "iopub.execute_input": "2024-04-08T19:07:55.736291Z", + "iopub.status.busy": "2024-04-08T19:07:55.736050Z", + "iopub.status.idle": "2024-04-08T19:07:55.752483Z", + "shell.execute_reply": "2024-04-08T19:07:55.752090Z" } }, "outputs": [], @@ -1018,10 +1034,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:29:19.304958Z", - "iopub.status.busy": "2024-04-06T04:29:19.304585Z", - "iopub.status.idle": "2024-04-06T04:29:19.752664Z", - "shell.execute_reply": "2024-04-06T04:29:19.752054Z" + "iopub.execute_input": "2024-04-08T19:07:55.754639Z", + "iopub.status.busy": "2024-04-08T19:07:55.754247Z", + "iopub.status.idle": "2024-04-08T19:07:56.225872Z", + "shell.execute_reply": "2024-04-08T19:07:56.225395Z" } }, "outputs": [], @@ -1041,10 +1057,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:29:19.755148Z", - "iopub.status.busy": "2024-04-06T04:29:19.754955Z", - "iopub.status.idle": "2024-04-06T04:32:56.986962Z", - "shell.execute_reply": "2024-04-06T04:32:56.986440Z" + "iopub.execute_input": "2024-04-08T19:07:56.228202Z", + "iopub.status.busy": "2024-04-08T19:07:56.227984Z", + "iopub.status.idle": "2024-04-08T19:11:33.257164Z", + "shell.execute_reply": "2024-04-08T19:11:33.256565Z" } }, "outputs": [ @@ -1092,7 +1108,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "abb6597d1f0d493ebdf894332caa8c19", + "model_id": "4776167486a64076a84a01784b59af15", "version_major": 2, "version_minor": 0 }, @@ -1131,10 +1147,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:56.989470Z", - "iopub.status.busy": "2024-04-06T04:32:56.988908Z", - "iopub.status.idle": "2024-04-06T04:32:57.444100Z", - "shell.execute_reply": "2024-04-06T04:32:57.443568Z" + "iopub.execute_input": "2024-04-08T19:11:33.260388Z", + "iopub.status.busy": "2024-04-08T19:11:33.259500Z", + "iopub.status.idle": "2024-04-08T19:11:33.713025Z", + "shell.execute_reply": "2024-04-08T19:11:33.712497Z" } }, "outputs": [ @@ -1275,10 +1291,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:57.446845Z", - "iopub.status.busy": "2024-04-06T04:32:57.446433Z", - "iopub.status.idle": "2024-04-06T04:32:57.509789Z", - "shell.execute_reply": "2024-04-06T04:32:57.509348Z" + "iopub.execute_input": "2024-04-08T19:11:33.715813Z", + "iopub.status.busy": "2024-04-08T19:11:33.715344Z", + "iopub.status.idle": "2024-04-08T19:11:33.777262Z", + "shell.execute_reply": "2024-04-08T19:11:33.776681Z" } }, "outputs": [ @@ -1382,10 +1398,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:57.511949Z", - "iopub.status.busy": "2024-04-06T04:32:57.511620Z", - "iopub.status.idle": "2024-04-06T04:32:57.520211Z", - "shell.execute_reply": "2024-04-06T04:32:57.519795Z" + "iopub.execute_input": "2024-04-08T19:11:33.779830Z", + "iopub.status.busy": "2024-04-08T19:11:33.779438Z", + "iopub.status.idle": "2024-04-08T19:11:33.787969Z", + "shell.execute_reply": "2024-04-08T19:11:33.787446Z" } }, "outputs": [ @@ -1515,10 +1531,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:57.522295Z", - "iopub.status.busy": "2024-04-06T04:32:57.521974Z", - "iopub.status.idle": "2024-04-06T04:32:57.526386Z", - "shell.execute_reply": "2024-04-06T04:32:57.525967Z" + "iopub.execute_input": "2024-04-08T19:11:33.789917Z", + "iopub.status.busy": "2024-04-08T19:11:33.789625Z", + "iopub.status.idle": "2024-04-08T19:11:33.794135Z", + "shell.execute_reply": "2024-04-08T19:11:33.793681Z" }, "nbsphinx": "hidden" }, @@ -1564,10 +1580,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:57.528397Z", - "iopub.status.busy": "2024-04-06T04:32:57.528074Z", - "iopub.status.idle": "2024-04-06T04:32:58.038770Z", - "shell.execute_reply": "2024-04-06T04:32:58.038215Z" + "iopub.execute_input": "2024-04-08T19:11:33.796263Z", + "iopub.status.busy": "2024-04-08T19:11:33.795812Z", + "iopub.status.idle": "2024-04-08T19:11:34.299373Z", + "shell.execute_reply": "2024-04-08T19:11:34.298797Z" } }, "outputs": [ @@ -1602,10 +1618,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:58.041027Z", - "iopub.status.busy": "2024-04-06T04:32:58.040695Z", - "iopub.status.idle": "2024-04-06T04:32:58.049092Z", - "shell.execute_reply": "2024-04-06T04:32:58.048655Z" + "iopub.execute_input": "2024-04-08T19:11:34.301515Z", + "iopub.status.busy": "2024-04-08T19:11:34.301218Z", + "iopub.status.idle": "2024-04-08T19:11:34.309668Z", + "shell.execute_reply": "2024-04-08T19:11:34.309228Z" } }, "outputs": [ @@ -1772,10 +1788,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:58.051269Z", - "iopub.status.busy": "2024-04-06T04:32:58.050928Z", - "iopub.status.idle": "2024-04-06T04:32:58.057851Z", - "shell.execute_reply": "2024-04-06T04:32:58.057431Z" + "iopub.execute_input": "2024-04-08T19:11:34.311963Z", + "iopub.status.busy": "2024-04-08T19:11:34.311521Z", + "iopub.status.idle": "2024-04-08T19:11:34.319034Z", + "shell.execute_reply": "2024-04-08T19:11:34.318393Z" }, "nbsphinx": "hidden" }, @@ -1851,10 +1867,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:58.059904Z", - "iopub.status.busy": "2024-04-06T04:32:58.059580Z", - "iopub.status.idle": "2024-04-06T04:32:58.506533Z", - "shell.execute_reply": "2024-04-06T04:32:58.505933Z" + "iopub.execute_input": "2024-04-08T19:11:34.321092Z", + "iopub.status.busy": "2024-04-08T19:11:34.320907Z", + "iopub.status.idle": "2024-04-08T19:11:34.790785Z", + "shell.execute_reply": "2024-04-08T19:11:34.790182Z" } }, "outputs": [ @@ -1891,10 +1907,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:58.509305Z", - "iopub.status.busy": "2024-04-06T04:32:58.508958Z", - "iopub.status.idle": "2024-04-06T04:32:58.524162Z", - "shell.execute_reply": "2024-04-06T04:32:58.523724Z" + "iopub.execute_input": "2024-04-08T19:11:34.793183Z", + "iopub.status.busy": "2024-04-08T19:11:34.792809Z", + "iopub.status.idle": "2024-04-08T19:11:34.808943Z", + "shell.execute_reply": "2024-04-08T19:11:34.808399Z" } }, "outputs": [ @@ -2051,10 +2067,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:58.526434Z", - "iopub.status.busy": "2024-04-06T04:32:58.526030Z", - "iopub.status.idle": "2024-04-06T04:32:58.531557Z", - "shell.execute_reply": "2024-04-06T04:32:58.531133Z" + "iopub.execute_input": "2024-04-08T19:11:34.811183Z", + "iopub.status.busy": "2024-04-08T19:11:34.810852Z", + "iopub.status.idle": "2024-04-08T19:11:34.816363Z", + "shell.execute_reply": "2024-04-08T19:11:34.815916Z" }, "nbsphinx": "hidden" }, @@ -2099,10 +2115,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:58.533452Z", - "iopub.status.busy": "2024-04-06T04:32:58.533191Z", - "iopub.status.idle": "2024-04-06T04:32:59.000364Z", - "shell.execute_reply": "2024-04-06T04:32:58.999817Z" + "iopub.execute_input": "2024-04-08T19:11:34.818213Z", + "iopub.status.busy": "2024-04-08T19:11:34.817896Z", + "iopub.status.idle": "2024-04-08T19:11:35.279403Z", + "shell.execute_reply": "2024-04-08T19:11:35.278877Z" } }, "outputs": [ @@ -2184,10 +2200,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:59.002842Z", - "iopub.status.busy": "2024-04-06T04:32:59.002637Z", - "iopub.status.idle": "2024-04-06T04:32:59.012216Z", - "shell.execute_reply": "2024-04-06T04:32:59.011529Z" + "iopub.execute_input": "2024-04-08T19:11:35.281879Z", + "iopub.status.busy": "2024-04-08T19:11:35.281665Z", + "iopub.status.idle": "2024-04-08T19:11:35.291700Z", + "shell.execute_reply": "2024-04-08T19:11:35.291178Z" } }, "outputs": [ @@ -2315,10 +2331,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:59.014637Z", - "iopub.status.busy": "2024-04-06T04:32:59.014438Z", - "iopub.status.idle": "2024-04-06T04:32:59.020221Z", - "shell.execute_reply": "2024-04-06T04:32:59.019653Z" + "iopub.execute_input": "2024-04-08T19:11:35.293927Z", + "iopub.status.busy": "2024-04-08T19:11:35.293728Z", + "iopub.status.idle": "2024-04-08T19:11:35.299690Z", + "shell.execute_reply": "2024-04-08T19:11:35.299147Z" }, "nbsphinx": "hidden" }, @@ -2355,10 +2371,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:59.022440Z", - "iopub.status.busy": "2024-04-06T04:32:59.022245Z", - "iopub.status.idle": "2024-04-06T04:32:59.229238Z", - "shell.execute_reply": "2024-04-06T04:32:59.228716Z" + "iopub.execute_input": "2024-04-08T19:11:35.301832Z", + "iopub.status.busy": "2024-04-08T19:11:35.301636Z", + "iopub.status.idle": "2024-04-08T19:11:35.505219Z", + "shell.execute_reply": "2024-04-08T19:11:35.504754Z" } }, "outputs": [ @@ -2400,10 +2416,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:59.231415Z", - "iopub.status.busy": "2024-04-06T04:32:59.231132Z", - "iopub.status.idle": "2024-04-06T04:32:59.239395Z", - "shell.execute_reply": "2024-04-06T04:32:59.238963Z" + "iopub.execute_input": "2024-04-08T19:11:35.507136Z", + "iopub.status.busy": "2024-04-08T19:11:35.506967Z", + "iopub.status.idle": "2024-04-08T19:11:35.514273Z", + "shell.execute_reply": "2024-04-08T19:11:35.513838Z" } }, "outputs": [ @@ -2428,47 +2444,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2489,10 +2505,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:59.241500Z", - "iopub.status.busy": "2024-04-06T04:32:59.241175Z", - "iopub.status.idle": "2024-04-06T04:32:59.438012Z", - "shell.execute_reply": "2024-04-06T04:32:59.437410Z" + "iopub.execute_input": "2024-04-08T19:11:35.515941Z", + "iopub.status.busy": "2024-04-08T19:11:35.515782Z", + "iopub.status.idle": "2024-04-08T19:11:35.714780Z", + "shell.execute_reply": "2024-04-08T19:11:35.714213Z" } }, "outputs": [ @@ -2532,10 +2548,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:59.440559Z", - "iopub.status.busy": "2024-04-06T04:32:59.440204Z", - "iopub.status.idle": "2024-04-06T04:32:59.444637Z", - "shell.execute_reply": "2024-04-06T04:32:59.444201Z" + "iopub.execute_input": "2024-04-08T19:11:35.716901Z", + "iopub.status.busy": "2024-04-08T19:11:35.716713Z", + "iopub.status.idle": "2024-04-08T19:11:35.721189Z", + "shell.execute_reply": "2024-04-08T19:11:35.720773Z" }, "nbsphinx": "hidden" }, @@ -2572,60 +2588,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01a761c23187462489caed4c9ca92b4a": { - "model_module": "@jupyter-widgets/base", + "0211903c89794ee8b6917c76a058c50e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "01d6c6d5c4544426af39a2a43bf4efd5": { + "051beaa23ca4413db29dc6c87c6eb69c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2678,60 +2659,49 @@ "width": null } }, - "052ba7dd44914624bc95867853cefd91": { - "model_module": "@jupyter-widgets/base", + "08fafba5db2c49c199f47a5f187bd97d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d19bf757fc54a04bea20bd6a7bfe3bd", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0ba9b8ac89734f8aa6f7b25158ce1c26", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "0ba9b8ac89734f8aa6f7b25158ce1c26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "062e939e5df64531b55a3a30c9808fb8": { + "0eb8f33ec6a4418f82faef40016d8087": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2746,16 +2716,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_69040f6c457a458dad3f64ae864e2abc", - "IPY_MODEL_856c1d7d86824b298f7b89334a62b627", - "IPY_MODEL_e36a0c3800fd4b46a397695a9464376d" + "IPY_MODEL_5ce79bcbda6944e0a843326c3542493d", + "IPY_MODEL_e19c6ab20a44441b82013b108be2dfe5", + "IPY_MODEL_f070a30dde5346f9a173c14652288a61" ], - "layout": "IPY_MODEL_18c03d0fbf7e486fa980759c0f1d203c", + "layout": "IPY_MODEL_f229cd5bb5604bc2bbb59bbf7c81d777", "tabbable": null, "tooltip": null } }, - "07e1a5656606425a8fa445a2a98b32db": { + "1489dff3fa9f4025b92de6f3b08f875e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2f250b135ef04e06b65dc22fa2cbe7ea", + "placeholder": "​", + "style": "IPY_MODEL_608e038942dc41a99c6a0a85532e4742", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "1518031392e944988beab26f0ec70ea0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2771,56 +2764,84 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_01a761c23187462489caed4c9ca92b4a", + "layout": "IPY_MODEL_34b68eb2ae824e30b199e73d4a24f9d7", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_44469fd7a84845fabbb26081bc4f71e6", + "style": "IPY_MODEL_934292ec1d1f47d7bfc3a64e97e22164", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "0898a61434e8435fb6d38cda818ecf42": { + "1595a1d05b1744eeb8405298fae08359": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fb2af0144f1742c1a26396a9b5fe4c73", + "placeholder": "​", + "style": "IPY_MODEL_b809fa6c8639462db220a761b405d58d", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "0c49ec751aa74bdeb0da999541e70abf": { + "1a475bdd7b6b4cffa0aa39c22e228634": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_716dbef584c74a10be95d49134e35c36", - "placeholder": "​", - "style": "IPY_MODEL_d53fb7bf594d407c9e842abf6174a266", + "layout": "IPY_MODEL_72ef0108d5814322b3ca06bd5220584b", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ee8869c02a164612932f45b84d319cd2", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": 40.0 + } + }, + "1bf8c6f4bc3e4633b0c368f433ba214d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0ffda52749f54b41b5d0955c9e1f987d": { + "1bf974982e4e4b2481c1302de4d0bb3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2873,7 +2894,7 @@ "width": null } }, - "10d5b8ef6dd44439b5792f3b9229a7b3": { + "1d72b73af5474a01bc6184c102001f9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2926,83 +2947,69 @@ "width": null } }, - "154d43bd379742748defa9f93f6dec4c": { + "1feb2d3d69ac43679423195bacfa218a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_59b99f3d2363470f95240494b60426e7", - "placeholder": "​", - "style": "IPY_MODEL_e630ccc4aafc46e1994dc57c453efa4c", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 250653.12 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "18c03d0fbf7e486fa980759c0f1d203c": { - "model_module": "@jupyter-widgets/base", + "2021e36f762d452aa27e529207b4d1fa": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "228bd7d078cf45699f3b012c267f6eb0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eafbc6640e3840d6acb39b13445654da", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7c1f0a8a503e4e499f398654a3f934e5", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "18f4e2fb304e4207a8582f3b68e46f1b": { + "248aafd9fcd240928857d2c42d281abd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3055,57 +3062,7 @@ "width": null } }, - "19d828f4e1d84ef2ac773bc529b40946": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "19dc464653b042e1b8ba1ff4aa4f3231": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "19ea4bc4cf5345209bfc0f43ac43a390": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1aaabe82fd3748eeb69937660d87bde7": { + "27d17868cbd6451ebcf8d7c7951e2a77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3120,15 +3077,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bcf53273c9a94359bf468708176a7fb9", + "layout": "IPY_MODEL_61971c6d7922459a9b1ed0c9c414cdca", "placeholder": "​", - "style": "IPY_MODEL_eda57d1ce07e4fb08048f276454d81c4", + "style": "IPY_MODEL_49cb378542644b368738ecd332b0a762", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.82it/s]" + "value": " 40/40 [00:00<00:00, 69.64it/s]" } }, - "1bc46611a5134fa6bf3a2e1d7329d9e1": { + "28e8e7e456ea491db9b2409a1bb6ee44": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3143,38 +3100,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0ffda52749f54b41b5d0955c9e1f987d", + "layout": "IPY_MODEL_dd462dfa7f9949738f0551ce01718b0d", "placeholder": "​", - "style": "IPY_MODEL_19ea4bc4cf5345209bfc0f43ac43a390", + "style": "IPY_MODEL_512b4394b0e84a1d9765ebc108a8dbdf", "tabbable": null, "tooltip": null, "value": "100%" } }, - "1d0f443e388d4ac3aa919649a0bd9f6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d6430b8f25744f0fbc6b7c7b994b06d4", - "placeholder": "​", - "style": "IPY_MODEL_868c933ad87744c3aa05cb4cd929090f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.96it/s]" - } - }, - "1f1036a8b18842dfa18443fdf59a95dd": { + "2c4e61dacdec449ab2e9fa6b6459f6bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3227,7 +3161,7 @@ "width": null } }, - "21a93b6159174e5c99baaca057c26509": { + "2d19bf757fc54a04bea20bd6a7bfe3bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3280,25 +3214,7 @@ "width": null } }, - "224bb80ea8ed446ebd6daabd22c3e867": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "230d8fb552244430b2da0fe2e463b928": { + "2dcb1da8fc8746cb8d2bcbb0b5fbca34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3313,57 +3229,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0c49ec751aa74bdeb0da999541e70abf", - "IPY_MODEL_a8de67324e69481aa6f71eebd240332f", - "IPY_MODEL_154d43bd379742748defa9f93f6dec4c" + "IPY_MODEL_3b1df04f38894cdbb06719a2c258a28e", + "IPY_MODEL_bbab2e26c4fd423dacd41b5823f1e144", + "IPY_MODEL_ed9f2e8995144260afc1a776c3c728c6" ], - "layout": "IPY_MODEL_052ba7dd44914624bc95867853cefd91", + "layout": "IPY_MODEL_1bf974982e4e4b2481c1302de4d0bb3b", "tabbable": null, "tooltip": null } }, - "23a4c60ebe91433cabd5be6f58108e1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_677944caba4f4f68bedc7737bb773d16", - "placeholder": "​", - "style": "IPY_MODEL_baa12a5e11064c04934b7f2251564311", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.99it/s]" - } - }, - "2a60a0c90b1b4f46a02f1662dd4c96e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2b93072870f04a1daa0f16d389336ebc": { + "2e43d2f9905b4786bd2429abe71f9c11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3416,7 +3291,7 @@ "width": null } }, - "318a2a3cc2dd449d87d92d835336d9d3": { + "2f250b135ef04e06b65dc22fa2cbe7ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3469,43 +3344,30 @@ "width": null } }, - "36f95cffa25d460ba500ec7de91933d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "374d6a83e7564f3a99a8e43b41595fa9": { + "2f426faf084c41288d432aad9a0cc67b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_56fb1e127c0d4778aa58bf70adf9e292", + "placeholder": "​", + "style": "IPY_MODEL_6e2675fc6ccc4cd59366cae5f0c9e353", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" } }, - "37a89191786645eba770cde499fad762": { + "340e7303a6ad4cd192d14fd90e0362a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3520,16 +3382,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1bc46611a5134fa6bf3a2e1d7329d9e1", - "IPY_MODEL_c0d6bc39047b4081aa9475148f266798", - "IPY_MODEL_1d0f443e388d4ac3aa919649a0bd9f6d" + "IPY_MODEL_c09a89ed151f484cbc846804d8c80a5e", + "IPY_MODEL_f44238836eba40dd8365f2683b775574", + "IPY_MODEL_45ba61488f3e42d9b1983a76067096be" ], - "layout": "IPY_MODEL_dcee1ad305e747b396286c15af30cc5f", + "layout": "IPY_MODEL_c4823f24e46c4225a1be6685c385e2de", "tabbable": null, "tooltip": null } }, - "391330f212e94180b7c1d3f8b79364a2": { + "34b68eb2ae824e30b199e73d4a24f9d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3582,25 +3444,30 @@ "width": null } }, - "3cb626be1259490498bdc43c229957d5": { + "3b1df04f38894cdbb06719a2c258a28e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3ffe5eadabde4ba7bc1bf7d6584058f9", + "placeholder": "​", + "style": "IPY_MODEL_2021e36f762d452aa27e529207b4d1fa", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "432d3960ddab4b78b5489f18eb6be184": { + "3d509074899549a5988580659a594acd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3618,41 +3485,101 @@ "text_color": null } }, - "44469fd7a84845fabbb26081bc4f71e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "45f3fe0616ef4b6d9187942fe63d092e": { - "model_module": "@jupyter-widgets/controls", + "3ffe5eadabde4ba7bc1bf7d6584058f9": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4488e3c1bbcf4f18b659b04ab234f3ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, - "494d4dec9fa34cdba034f2e400df4b4a": { + "45ba61488f3e42d9b1983a76067096be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_051beaa23ca4413db29dc6c87c6eb69c", + "placeholder": "​", + "style": "IPY_MODEL_0211903c89794ee8b6917c76a058c50e", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 584.25it/s]" + } + }, + "4776167486a64076a84a01784b59af15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3667,16 +3594,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4ec9881e872043c7af778c7f3fe8b2b3", - "IPY_MODEL_79d4ea75e0b24546ab4c3e15dcd17fe0", - "IPY_MODEL_b37c27a865bd41238ca6e848152182c4" + "IPY_MODEL_1595a1d05b1744eeb8405298fae08359", + "IPY_MODEL_bf0f538039594aa7aba3502ccbb1866a", + "IPY_MODEL_b413bfe75faf4e83809cfbd3e9c0f441" ], - "layout": "IPY_MODEL_2b93072870f04a1daa0f16d389336ebc", + "layout": "IPY_MODEL_5b71bc4833f84223a9bfc19a48c54d73", "tabbable": null, "tooltip": null } }, - "4df2995557604f368c17b7801a8aa7a3": { + "49cb378542644b368738ecd332b0a762": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3694,76 +3621,43 @@ "text_color": null } }, - "4ec9881e872043c7af778c7f3fe8b2b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_61c55f2451eb4c4e864fb94997319e79", - "placeholder": "​", - "style": "IPY_MODEL_c2f27d13f7af40c4938b2ff919248bc7", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "567dbef175174a0bb698e0c117bdefd8": { + "4ce7b5e8a49e4daf8752a8cfb2c049a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bb928bde160d418985c159d23435d896", - "placeholder": "​", - "style": "IPY_MODEL_224bb80ea8ed446ebd6daabd22c3e867", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "58016631c51a4c2bab081a3fcb222ce6": { + "512b4394b0e84a1d9765ebc108a8dbdf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8665b261d85149c79feba0ad3dc5a0fe", - "placeholder": "​", - "style": "IPY_MODEL_374d6a83e7564f3a99a8e43b41595fa9", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "58b8b6bed5f84d05ade00f2d3773b9e5": { + "5299f330a8b6448cbae432e24bc2bbd2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3816,7 +3710,7 @@ "width": null } }, - "59b99f3d2363470f95240494b60426e7": { + "56fb1e127c0d4778aa58bf70adf9e292": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3869,33 +3763,7 @@ "width": null } }, - "5cc1b33d526e4c2ea671e6aa4a807101": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7dcc2439e854d37a27bed7fba490b03", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8cb9becccf604e7d912917ceb837d524", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "61c55f2451eb4c4e864fb94997319e79": { + "57413d25cf8b43a59d135e9b7f386c8b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3948,57 +3816,56 @@ "width": null } }, - "61e1bb7f02a4489dbe279ece48634ba8": { + "57501a6ea66843e69eb94c16fd71dd26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b87839e9f74c433ab8102575e86bcd7b", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fd142fc752ad437dac5e121ea0a962e7", + "layout": "IPY_MODEL_f430353dd08d430fba9b508f111e2cba", + "placeholder": "​", + "style": "IPY_MODEL_3d509074899549a5988580659a594acd", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 60000/60000 [00:11<00:00, 7101.30 examples/s]" } }, - "63f80561a9aa4de6b4236289ee6db555": { + "5b300800d44b4998a13101625e6be790": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_58016631c51a4c2bab081a3fcb222ce6", - "IPY_MODEL_8dd48fae4b9146fc9977d90131836405", - "IPY_MODEL_a92e3ef11d2c4d27a1956ce5946d7509" - ], - "layout": "IPY_MODEL_b5d8fdd0cad64e94955d5536ac4dad32", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8458fd5694574fd397fa3ed659cf9d21", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_822bcec6c7dc47839c1fd0d48be8aafa", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "677944caba4f4f68bedc7737bb773d16": { + "5b71bc4833f84223a9bfc19a48c54d73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4051,7 +3918,7 @@ "width": null } }, - "69040f6c457a458dad3f64ae864e2abc": { + "5ce79bcbda6944e0a843326c3542493d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4066,15 +3933,67 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cf59e27052914f59bf2cb3f866f7faf0", + "layout": "IPY_MODEL_713a34eee7ad43ca9e8faa69d5fedcd6", "placeholder": "​", - "style": "IPY_MODEL_b8708f41587841e587390f8e235ba687", + "style": "IPY_MODEL_4ce7b5e8a49e4daf8752a8cfb2c049a6", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Generating train split: 100%" + } + }, + "5df8c0f13e114da5a54feb67563465d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "608e038942dc41a99c6a0a85532e4742": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "60b1f65ee807482daeb5f7b6893651bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "698bb2e60fd546c7a86f3c097d682c43": { + "61971c6d7922459a9b1ed0c9c414cdca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4127,7 +4046,7 @@ "width": null } }, - "6aa2909e4e954f21a2e9b886e37872f9": { + "61ffaf9c2a1245668b4f2c0c3cec4cf7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4180,60 +4099,47 @@ "width": null } }, - "716dbef584c74a10be95d49134e35c36": { - "model_module": "@jupyter-widgets/base", + "655fc2039c2f44018f7440a3d2e07a6e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_28e8e7e456ea491db9b2409a1bb6ee44", + "IPY_MODEL_1518031392e944988beab26f0ec70ea0", + "IPY_MODEL_cb4e85dad70c4bb69fa58d8fa9da1fd9" + ], + "layout": "IPY_MODEL_5299f330a8b6448cbae432e24bc2bbd2", + "tabbable": null, + "tooltip": null + } + }, + "6718ecc2d5994895aff73d3a70d4daa4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "758003aac78a4e89a0dd59c12bfd4499": { + "68df804c48394616884c2cfd1f17c6d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4248,15 +4154,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_75938d156efb49d681d43a2189e81adf", + "layout": "IPY_MODEL_1d72b73af5474a01bc6184c102001f9f", "placeholder": "​", - "style": "IPY_MODEL_45f3fe0616ef4b6d9187942fe63d092e", + "style": "IPY_MODEL_bb9b4b065b90414cab93989f1cf870db", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 63.71it/s]" + } + }, + "6e2675fc6ccc4cd59366cae5f0c9e353": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "75938d156efb49d681d43a2189e81adf": { + "6efaaef2d3fa4de3b05d6ab4ce2b1b80": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4309,49 +4233,7 @@ "width": null } }, - "75c5b3367f7243e08df5201fed89d767": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "79d4ea75e0b24546ab4c3e15dcd17fe0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bc9ac33beb964c04b7e19f6a1e1a6eec", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_841bd0118c39439da9678bf5209d9393", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "7b9c395b1818449285ae7e333c19aed1": { + "7134548633584aebb32846399e998599": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4404,25 +4286,7 @@ "width": null } }, - "7edd891321db4e908b5ed0d68bdddab0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "801329626f1a493bb35bed548fee56d1": { + "713a34eee7ad43ca9e8faa69d5fedcd6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4475,23 +4339,30 @@ "width": null } }, - "841bd0118c39439da9678bf5209d9393": { + "72e848187eb646c9ae2eb5c3c13a1b5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6efaaef2d3fa4de3b05d6ab4ce2b1b80", + "placeholder": "​", + "style": "IPY_MODEL_9376be5b85774e909a6da2348e1e3ac7", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "84941543352247e1ba0307848d584119": { + "72ef0108d5814322b3ca06bd5220584b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4544,33 +4415,7 @@ "width": null } }, - "856c1d7d86824b298f7b89334a62b627": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1f1036a8b18842dfa18443fdf59a95dd", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ea07905d53eb44ab85413ddd0eb1103b", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "8665b261d85149c79feba0ad3dc5a0fe": { + "753491adc5dc4a15b482f01444260ff6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4623,25 +4468,7 @@ "width": null } }, - "868c933ad87744c3aa05cb4cd929090f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "89b15967dfb6452597bba424994c0aed": { + "7692ec62386c4b5ea0e3da9a9d6aaab3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4694,7 +4521,7 @@ "width": null } }, - "8a36d05bb1a644cf890db7ec5c1979a1": { + "76fe935e94da4fe49c9fff42053d9f08": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4747,76 +4574,41 @@ "width": null } }, - "8cb9becccf604e7d912917ceb837d524": { + "7859aae2967f4d8982962ef94210548f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8cf1e91b3283461d9e7f008fa37fff9f": { - "model_module": "@jupyter-widgets/base", + "7c1f0a8a503e4e499f398654a3f934e5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8dd48fae4b9146fc9977d90131836405": { + "7cb2476470d344aebe942210b6aee3ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4832,40 +4624,53 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a3362f365ba145b7a2e7a9bab08c112e", - "max": 60000.0, + "layout": "IPY_MODEL_cab2229300b043cf885deb986c9d5f5d", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_75c5b3367f7243e08df5201fed89d767", + "style": "IPY_MODEL_a79b0ad4d31c46fab5f329886f96aab7", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 40.0 } }, - "8fc744a4ac8745b8846e23dbc6bcb863": { + "7df899c21e114a00beea9fabc687baff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21a93b6159174e5c99baaca057c26509", - "placeholder": "​", - "style": "IPY_MODEL_4df2995557604f368c17b7801a8aa7a3", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7fca1639267a4153bd7fb80d23c652ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "903744741edd4db481eac7c207012baf": { + "8040c639d3ba48d7baa187303a949a5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4880,104 +4685,206 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_318a2a3cc2dd449d87d92d835336d9d3", + "layout": "IPY_MODEL_9ca9e07ed9664701a1f4fc752659aba7", "placeholder": "​", - "style": "IPY_MODEL_36f95cffa25d460ba500ec7de91933d4", + "style": "IPY_MODEL_d5de18c08b9a4f0fb3bae9ffcb6e2608", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 68.31it/s]" } }, - "915b6ef632714224897e7967dd8fed40": { + "822bcec6c7dc47839c1fd0d48be8aafa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "92a29e7b86344f558ffc62c421168612": { - "model_module": "@jupyter-widgets/controls", + "8458fd5694574fd397fa3ed659cf9d21": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_567dbef175174a0bb698e0c117bdefd8", - "IPY_MODEL_61e1bb7f02a4489dbe279ece48634ba8", - "IPY_MODEL_b52404a02e14446b9eb8d9c9687553ab" - ], - "layout": "IPY_MODEL_58b8b6bed5f84d05ade00f2d3773b9e5", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "99b1fdbd6a654220895926ef07fb0a65": { - "model_module": "@jupyter-widgets/controls", + "853c7b5eeb0944a5903419f543447327": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9ec788f231ad4c5da7b9ca1152c1d44b", - "IPY_MODEL_5cc1b33d526e4c2ea671e6aa4a807101", - "IPY_MODEL_ec8926923d6642cc965b8aea46f7cdb2" - ], - "layout": "IPY_MODEL_10d5b8ef6dd44439b5792f3b9229a7b3", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "87d3d0fca9104cfab810183eee2ef94c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9c6eb45703d9488c8455e7918665d719": { + "934292ec1d1f47d7bfc3a64e97e22164": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c977511679bc4e89a67b20d915a938ff", - "placeholder": "​", - "style": "IPY_MODEL_915b6ef632714224897e7967dd8fed40", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:48<00:00, 1364.59it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9e2f25346ff041f0a43792feaf401889": { + "9376be5b85774e909a6da2348e1e3ac7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4995,46 +4902,104 @@ "text_color": null } }, - "9ec788f231ad4c5da7b9ca1152c1d44b": { + "9ad282371d5e4b848fe0fbcf04f86eb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6aa2909e4e954f21a2e9b886e37872f9", - "placeholder": "​", - "style": "IPY_MODEL_c76ed92d69d6444fb0a07c53c18b4c0d", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9ca9e07ed9664701a1f4fc752659aba7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a0876f2d03024b3bb5761a0df2937cfb": { + "9cb7ee51c974488f82e9774c7de42d77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cca4bec16de941d8a1f0eeab09f1309a", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6718ecc2d5994895aff73d3a70d4daa4", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "a3362f365ba145b7a2e7a9bab08c112e": { + "9d34e8136fdb41cba0282f20fe3254b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5087,49 +5052,49 @@ "width": null } }, - "a45cdcaa39ac4e7783e3300484169c30": { + "a30eaea1846c404db6f70144bebe00f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a7573684d96b4a809e222e1e9c978b20", + "IPY_MODEL_9cb7ee51c974488f82e9774c7de42d77", + "IPY_MODEL_57501a6ea66843e69eb94c16fd71dd26" + ], + "layout": "IPY_MODEL_87d3d0fca9104cfab810183eee2ef94c", + "tabbable": null, + "tooltip": null } }, - "a8de67324e69481aa6f71eebd240332f": { + "a5fbf7ed0a8945eba908a5b839852cc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_698bb2e60fd546c7a86f3c097d682c43", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0898a61434e8435fb6d38cda818ecf42", - "tabbable": null, - "tooltip": null, - "value": 10000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a92e3ef11d2c4d27a1956ce5946d7509": { + "a7573684d96b4a809e222e1e9c978b20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5144,39 +5109,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_801329626f1a493bb35bed548fee56d1", + "layout": "IPY_MODEL_753491adc5dc4a15b482f01444260ff6", "placeholder": "​", - "style": "IPY_MODEL_432d3960ddab4b78b5489f18eb6be184", + "style": "IPY_MODEL_7df899c21e114a00beea9fabc687baff", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 287662.14 examples/s]" + "value": "Map (num_proc=4): 100%" } }, - "ab2472f1e90442db812aa71752ac3895": { + "a79b0ad4d31c46fab5f329886f96aab7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8fc744a4ac8745b8846e23dbc6bcb863", - "IPY_MODEL_fcd3307eda42417c8c3f83f6bd1ece28", - "IPY_MODEL_1aaabe82fd3748eeb69937660d87bde7" - ], - "layout": "IPY_MODEL_cf898ee7a0764e2b9f7a0b8a17fee462", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "abb6597d1f0d493ebdf894332caa8c19": { + "ae20b62666184b608438ba88eb80b458": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5191,16 +5148,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_903744741edd4db481eac7c207012baf", - "IPY_MODEL_fa5a714c695a458288a525b0b07ff15d", - "IPY_MODEL_9c6eb45703d9488c8455e7918665d719" + "IPY_MODEL_2f426faf084c41288d432aad9a0cc67b", + "IPY_MODEL_08fafba5db2c49c199f47a5f187bd97d", + "IPY_MODEL_cbf43ef383f248dbaf25bd28be2369f3" ], - "layout": "IPY_MODEL_7b9c395b1818449285ae7e333c19aed1", + "layout": "IPY_MODEL_2c4e61dacdec449ab2e9fa6b6459f6bb", "tabbable": null, "tooltip": null } }, - "b37c27a865bd41238ca6e848152182c4": { + "b413bfe75faf4e83809cfbd3e9c0f441": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5215,15 +5172,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ba458d4944864736a9229851605bc597", + "layout": "IPY_MODEL_dd125613a65d44acb8f52566b6d32b7b", "placeholder": "​", - "style": "IPY_MODEL_f3aa86d829fc4ca5bb1496d9254e9cac", + "style": "IPY_MODEL_1feb2d3d69ac43679423195bacfa218a", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.56it/s]" + "value": " 60000/60000 [00:47<00:00, 1395.51it/s]" } }, - "b52404a02e14446b9eb8d9c9687553ab": { + "b809fa6c8639462db220a761b405d58d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b907020aafd94e9eb016e8a6f09cd29d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bb1d38afd1504d6fa78a843fce81e967": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5238,68 +5229,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_391330f212e94180b7c1d3f8b79364a2", + "layout": "IPY_MODEL_c0e1beb3ae784339ae2d251c3b206de1", "placeholder": "​", - "style": "IPY_MODEL_2a60a0c90b1b4f46a02f1662dd4c96e4", + "style": "IPY_MODEL_7859aae2967f4d8982962ef94210548f", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 69.41it/s]" + "value": "100%" } }, - "b5d8fdd0cad64e94955d5536ac4dad32": { - "model_module": "@jupyter-widgets/base", + "bb9b4b065b90414cab93989f1cf870db": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bbab2e26c4fd423dacd41b5823f1e144": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_853c7b5eeb0944a5903419f543447327", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d25bc5458cd94e56a86b43c849fcf730", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "b84a380de582459fa124b9a70e1b5359": { + "be3b3d55d750477a8208878dd73e24dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5352,25 +5334,56 @@ "width": null } }, - "b8708f41587841e587390f8e235ba687": { + "bf0f538039594aa7aba3502ccbb1866a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e24f52db1e9d4d00904f83f3b85ef467", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_60b1f65ee807482daeb5f7b6893651bb", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "c09a89ed151f484cbc846804d8c80a5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f26ae4423ac24cafa84c3645e576b7d8", + "placeholder": "​", + "style": "IPY_MODEL_5df8c0f13e114da5a54feb67563465d2", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "b87839e9f74c433ab8102575e86bcd7b": { + "c0cef619c3e34a9aa9fe3fbde95dd0f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5423,7 +5436,7 @@ "width": null } }, - "ba458d4944864736a9229851605bc597": { + "c0e1beb3ae784339ae2d251c3b206de1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5476,25 +5489,7 @@ "width": null } }, - "baa12a5e11064c04934b7f2251564311": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bb928bde160d418985c159d23435d896": { + "c14d4f58688049a48600554f3cec71e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5547,7 +5542,7 @@ "width": null } }, - "bc9ac33beb964c04b7e19f6a1e1a6eec": { + "c4823f24e46c4225a1be6685c385e2de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5600,7 +5595,7 @@ "width": null } }, - "bcf53273c9a94359bf468708176a7fb9": { + "cab2229300b043cf885deb986c9d5f5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5653,69 +5648,53 @@ "width": null } }, - "c0d6bc39047b4081aa9475148f266798": { + "cb4e85dad70c4bb69fa58d8fa9da1fd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_89b15967dfb6452597bba424994c0aed", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_19dc464653b042e1b8ba1ff4aa4f3231", + "layout": "IPY_MODEL_2e43d2f9905b4786bd2429abe71f9c11", + "placeholder": "​", + "style": "IPY_MODEL_7fca1639267a4153bd7fb80d23c652ea", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "c2f27d13f7af40c4938b2ff919248bc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 63.09it/s]" } }, - "c76ed92d69d6444fb0a07c53c18b4c0d": { + "cbf43ef383f248dbaf25bd28be2369f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d34e8136fdb41cba0282f20fe3254b5", + "placeholder": "​", + "style": "IPY_MODEL_d962cb9310644741b92e8a219b2e7104", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 246927.12 examples/s]" } }, - "c977511679bc4e89a67b20d915a938ff": { + "cca4bec16de941d8a1f0eeab09f1309a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5768,54 +5747,106 @@ "width": null } }, - "cb078ccfa5bd45de92c15a832146aa12": { + "d17335f81c08473e83f57bcb91f327b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a36d05bb1a644cf890db7ec5c1979a1", - "placeholder": "​", - "style": "IPY_MODEL_7edd891321db4e908b5ed0d68bdddab0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1489dff3fa9f4025b92de6f3b08f875e", + "IPY_MODEL_1a475bdd7b6b4cffa0aa39c22e228634", + "IPY_MODEL_68df804c48394616884c2cfd1f17c6d3" + ], + "layout": "IPY_MODEL_76fe935e94da4fe49c9fff42053d9f08", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6806.11 examples/s]" + "tooltip": null } }, - "cb88b48c32274a769a3b6b2f97e0d5f7": { + "d25bc5458cd94e56a86b43c849fcf730": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d5de18c08b9a4f0fb3bae9ffcb6e2608": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d962cb9310644741b92e8a219b2e7104": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dcc296059a18404489cb96f85970a3f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f15c402cc4324dd7b2cf7f6985c8d4ed", - "IPY_MODEL_dfeea2e3d11f410baa4ffc746955acbf", - "IPY_MODEL_cb078ccfa5bd45de92c15a832146aa12" - ], - "layout": "IPY_MODEL_ee99b4bb138247288c3fc9cb7044cdb8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f3adb5d571d446d89e42b148a0e2e0dc", + "placeholder": "​", + "style": "IPY_MODEL_a5fbf7ed0a8945eba908a5b839852cc3", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "cf59e27052914f59bf2cb3f866f7faf0": { + "dd125613a65d44acb8f52566b6d32b7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5868,7 +5899,7 @@ "width": null } }, - "cf898ee7a0764e2b9f7a0b8a17fee462": { + "dd462dfa7f9949738f0551ce01718b0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5921,25 +5952,33 @@ "width": null } }, - "d53fb7bf594d407c9e842abf6174a266": { + "e19c6ab20a44441b82013b108be2dfe5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_be3b3d55d750477a8208878dd73e24dc", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f4ad6c92501549ec9b25fa93f87e6348", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "d6430b8f25744f0fbc6b7c7b994b06d4": { + "e24f52db1e9d4d00904f83f3b85ef467": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5992,60 +6031,78 @@ "width": null } }, - "d8b68b042b5241cf86f858b91a7ab195": { - "model_module": "@jupyter-widgets/base", + "e284f57ce3ea4f358e133be317a427f8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c0cef619c3e34a9aa9fe3fbde95dd0f4", + "placeholder": "​", + "style": "IPY_MODEL_4488e3c1bbcf4f18b659b04ab234f3ec", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.22it/s]" + } + }, + "e3f2da6ea95d4ffea5b61ce1470cc963": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bb1d38afd1504d6fa78a843fce81e967", + "IPY_MODEL_228bd7d078cf45699f3b012c267f6eb0", + "IPY_MODEL_27d17868cbd6451ebcf8d7c7951e2a77" + ], + "layout": "IPY_MODEL_61ffaf9c2a1245668b4f2c0c3cec4cf7", + "tabbable": null, + "tooltip": null + } + }, + "e9e0602cde8548a3b201f1e9d8487610": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_72e848187eb646c9ae2eb5c3c13a1b5b", + "IPY_MODEL_5b300800d44b4998a13101625e6be790", + "IPY_MODEL_8040c639d3ba48d7baa187303a949a5f" + ], + "layout": "IPY_MODEL_248aafd9fcd240928857d2c42d281abd", + "tabbable": null, + "tooltip": null } }, - "dcee1ad305e747b396286c15af30cc5f": { + "eafbc6640e3840d6acb39b13445654da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6098,51 +6155,31 @@ "width": null } }, - "dd33a2c7592548889d520f9105c23bb8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dfeea2e3d11f410baa4ffc746955acbf": { + "eb19d31ef8f4468b9f0d6aabf630dc05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_18f4e2fb304e4207a8582f3b68e46f1b", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a0876f2d03024b3bb5761a0df2937cfb", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dcc296059a18404489cb96f85970a3f1", + "IPY_MODEL_7cb2476470d344aebe942210b6aee3ab", + "IPY_MODEL_e284f57ce3ea4f358e133be317a427f8" + ], + "layout": "IPY_MODEL_c14d4f58688049a48600554f3cec71e9", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null } }, - "e36a0c3800fd4b46a397695a9464376d": { + "ed9f2e8995144260afc1a776c3c728c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6157,33 +6194,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f989133be39d4b8585b24a17aa6b8612", + "layout": "IPY_MODEL_7692ec62386c4b5ea0e3da9a9d6aaab3", "placeholder": "​", - "style": "IPY_MODEL_dd33a2c7592548889d520f9105c23bb8", + "style": "IPY_MODEL_1bf8c6f4bc3e4633b0c368f433ba214d", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 71.69it/s]" - } - }, - "e630ccc4aafc46e1994dc57c453efa4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 67.07it/s]" } }, - "ea07905d53eb44ab85413ddd0eb1103b": { + "ee8869c02a164612932f45b84d319cd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6199,31 +6218,7 @@ "description_width": "" } }, - "eb284719132643f39c4d672792c9676b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_758003aac78a4e89a0dd59c12bfd4499", - "IPY_MODEL_07e1a5656606425a8fa445a2a98b32db", - "IPY_MODEL_23a4c60ebe91433cabd5be6f58108e1f" - ], - "layout": "IPY_MODEL_84941543352247e1ba0307848d584119", - "tabbable": null, - "tooltip": null - } - }, - "ec8926923d6642cc965b8aea46f7cdb2": { + "f070a30dde5346f9a173c14652288a61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6238,33 +6233,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b84a380de582459fa124b9a70e1b5359", + "layout": "IPY_MODEL_57413d25cf8b43a59d135e9b7f386c8b", "placeholder": "​", - "style": "IPY_MODEL_3cb626be1259490498bdc43c229957d5", + "style": "IPY_MODEL_9ad282371d5e4b848fe0fbcf04f86eb4", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 514.95it/s]" - } - }, - "eda57d1ce07e4fb08048f276454d81c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 60000/60000 [00:00<00:00, 300464.24 examples/s]" } }, - "ee99b4bb138247288c3fc9cb7044cdb8": { + "f229cd5bb5604bc2bbb59bbf7c81d777": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6317,48 +6294,60 @@ "width": null } }, - "f15c402cc4324dd7b2cf7f6985c8d4ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_01d6c6d5c4544426af39a2a43bf4efd5", - "placeholder": "​", - "style": "IPY_MODEL_9e2f25346ff041f0a43792feaf401889", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "f3aa86d829fc4ca5bb1496d9254e9cac": { - "model_module": "@jupyter-widgets/controls", + "f26ae4423ac24cafa84c3645e576b7d8": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f7dcc2439e854d37a27bed7fba490b03": { + "f3adb5d571d446d89e42b148a0e2e0dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6411,7 +6400,7 @@ "width": null } }, - "f989133be39d4b8585b24a17aa6b8612": { + "f430353dd08d430fba9b508f111e2cba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6464,7 +6453,7 @@ "width": null } }, - "fa5a714c695a458288a525b0b07ff15d": { + "f44238836eba40dd8365f2683b775574": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6480,56 +6469,83 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8cf1e91b3283461d9e7f008fa37fff9f", - "max": 60000.0, + "layout": "IPY_MODEL_7134548633584aebb32846399e998599", + "max": 2.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a45cdcaa39ac4e7783e3300484169c30", + "style": "IPY_MODEL_b907020aafd94e9eb016e8a6f09cd29d", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 2.0 } }, - "fcd3307eda42417c8c3f83f6bd1ece28": { + "f4ad6c92501549ec9b25fa93f87e6348": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d8b68b042b5241cf86f858b91a7ab195", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_19d828f4e1d84ef2ac773bc529b40946", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "fd142fc752ad437dac5e121ea0a962e7": { - "model_module": "@jupyter-widgets/controls", + "fb2af0144f1742c1a26396a9b5fe4c73": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 43decdf02..763870823 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:02.881954Z", - "iopub.status.busy": "2024-04-06T04:33:02.881761Z", - "iopub.status.idle": "2024-04-06T04:33:03.953480Z", - "shell.execute_reply": "2024-04-06T04:33:03.952937Z" + "iopub.execute_input": "2024-04-08T19:11:39.427663Z", + "iopub.status.busy": "2024-04-08T19:11:39.427246Z", + "iopub.status.idle": "2024-04-08T19:11:40.493201Z", + "shell.execute_reply": "2024-04-08T19:11:40.492649Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:03.956075Z", - "iopub.status.busy": "2024-04-06T04:33:03.955587Z", - "iopub.status.idle": "2024-04-06T04:33:03.973883Z", - "shell.execute_reply": "2024-04-06T04:33:03.973490Z" + "iopub.execute_input": "2024-04-08T19:11:40.495661Z", + "iopub.status.busy": "2024-04-08T19:11:40.495382Z", + "iopub.status.idle": "2024-04-08T19:11:40.513938Z", + "shell.execute_reply": "2024-04-08T19:11:40.513525Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:03.975942Z", - "iopub.status.busy": "2024-04-06T04:33:03.975699Z", - "iopub.status.idle": "2024-04-06T04:33:04.012978Z", - "shell.execute_reply": "2024-04-06T04:33:04.012510Z" + "iopub.execute_input": "2024-04-08T19:11:40.515940Z", + "iopub.status.busy": "2024-04-08T19:11:40.515700Z", + "iopub.status.idle": "2024-04-08T19:11:40.560958Z", + "shell.execute_reply": "2024-04-08T19:11:40.560524Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:04.014896Z", - "iopub.status.busy": "2024-04-06T04:33:04.014722Z", - "iopub.status.idle": "2024-04-06T04:33:04.018157Z", - "shell.execute_reply": "2024-04-06T04:33:04.017691Z" + "iopub.execute_input": "2024-04-08T19:11:40.562932Z", + "iopub.status.busy": "2024-04-08T19:11:40.562610Z", + "iopub.status.idle": "2024-04-08T19:11:40.566002Z", + "shell.execute_reply": "2024-04-08T19:11:40.565577Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:04.020151Z", - "iopub.status.busy": "2024-04-06T04:33:04.019837Z", - "iopub.status.idle": "2024-04-06T04:33:04.027381Z", - "shell.execute_reply": "2024-04-06T04:33:04.026969Z" + "iopub.execute_input": "2024-04-08T19:11:40.567900Z", + "iopub.status.busy": "2024-04-08T19:11:40.567583Z", + "iopub.status.idle": "2024-04-08T19:11:40.574730Z", + "shell.execute_reply": "2024-04-08T19:11:40.574279Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:04.029320Z", - "iopub.status.busy": "2024-04-06T04:33:04.029148Z", - "iopub.status.idle": "2024-04-06T04:33:04.031565Z", - "shell.execute_reply": "2024-04-06T04:33:04.031152Z" + "iopub.execute_input": "2024-04-08T19:11:40.576667Z", + "iopub.status.busy": "2024-04-08T19:11:40.576404Z", + "iopub.status.idle": "2024-04-08T19:11:40.578794Z", + "shell.execute_reply": "2024-04-08T19:11:40.578358Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:04.033457Z", - "iopub.status.busy": "2024-04-06T04:33:04.033286Z", - "iopub.status.idle": "2024-04-06T04:33:07.020218Z", - "shell.execute_reply": "2024-04-06T04:33:07.019691Z" + "iopub.execute_input": "2024-04-08T19:11:40.580843Z", + "iopub.status.busy": "2024-04-08T19:11:40.580536Z", + "iopub.status.idle": "2024-04-08T19:11:43.565419Z", + "shell.execute_reply": "2024-04-08T19:11:43.564907Z" } }, "outputs": [], @@ -402,10 +402,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:07.022814Z", - "iopub.status.busy": "2024-04-06T04:33:07.022610Z", - "iopub.status.idle": "2024-04-06T04:33:07.032179Z", - "shell.execute_reply": "2024-04-06T04:33:07.031775Z" + "iopub.execute_input": "2024-04-08T19:11:43.568043Z", + "iopub.status.busy": "2024-04-08T19:11:43.567842Z", + "iopub.status.idle": "2024-04-08T19:11:43.577436Z", + "shell.execute_reply": "2024-04-08T19:11:43.577042Z" } }, "outputs": [], @@ -437,10 +437,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:07.034095Z", - "iopub.status.busy": "2024-04-06T04:33:07.033903Z", - "iopub.status.idle": "2024-04-06T04:33:08.789065Z", - "shell.execute_reply": "2024-04-06T04:33:08.788481Z" + "iopub.execute_input": "2024-04-08T19:11:43.579441Z", + "iopub.status.busy": "2024-04-08T19:11:43.579134Z", + "iopub.status.idle": "2024-04-08T19:11:45.292514Z", + "shell.execute_reply": "2024-04-08T19:11:45.291914Z" } }, "outputs": [ @@ -485,10 +485,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.792211Z", - "iopub.status.busy": "2024-04-06T04:33:08.791532Z", - "iopub.status.idle": "2024-04-06T04:33:08.814502Z", - "shell.execute_reply": "2024-04-06T04:33:08.814015Z" + "iopub.execute_input": "2024-04-08T19:11:45.296728Z", + "iopub.status.busy": "2024-04-08T19:11:45.295425Z", + "iopub.status.idle": "2024-04-08T19:11:45.320295Z", + "shell.execute_reply": "2024-04-08T19:11:45.319812Z" }, "scrolled": true }, @@ -613,10 +613,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.817077Z", - "iopub.status.busy": "2024-04-06T04:33:08.816765Z", - "iopub.status.idle": "2024-04-06T04:33:08.825617Z", - "shell.execute_reply": "2024-04-06T04:33:08.825158Z" + "iopub.execute_input": "2024-04-08T19:11:45.323669Z", + "iopub.status.busy": "2024-04-08T19:11:45.322766Z", + "iopub.status.idle": "2024-04-08T19:11:45.333647Z", + "shell.execute_reply": "2024-04-08T19:11:45.333187Z" } }, "outputs": [ @@ -720,10 +720,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.828222Z", - "iopub.status.busy": "2024-04-06T04:33:08.827849Z", - "iopub.status.idle": "2024-04-06T04:33:08.838568Z", - "shell.execute_reply": "2024-04-06T04:33:08.838097Z" + "iopub.execute_input": "2024-04-08T19:11:45.336997Z", + "iopub.status.busy": "2024-04-08T19:11:45.336094Z", + "iopub.status.idle": "2024-04-08T19:11:45.348729Z", + "shell.execute_reply": "2024-04-08T19:11:45.348256Z" } }, "outputs": [ @@ -852,10 +852,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.841680Z", - "iopub.status.busy": "2024-04-06T04:33:08.840763Z", - "iopub.status.idle": "2024-04-06T04:33:08.851889Z", - "shell.execute_reply": "2024-04-06T04:33:08.851420Z" + "iopub.execute_input": "2024-04-08T19:11:45.352087Z", + "iopub.status.busy": "2024-04-08T19:11:45.351199Z", + "iopub.status.idle": "2024-04-08T19:11:45.362031Z", + "shell.execute_reply": "2024-04-08T19:11:45.361569Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.855383Z", - "iopub.status.busy": "2024-04-06T04:33:08.854470Z", - "iopub.status.idle": "2024-04-06T04:33:08.866911Z", - "shell.execute_reply": "2024-04-06T04:33:08.866438Z" + "iopub.execute_input": "2024-04-08T19:11:45.365401Z", + "iopub.status.busy": "2024-04-08T19:11:45.364508Z", + "iopub.status.idle": "2024-04-08T19:11:45.376129Z", + "shell.execute_reply": "2024-04-08T19:11:45.375592Z" } }, "outputs": [ @@ -1083,10 +1083,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.869543Z", - "iopub.status.busy": "2024-04-06T04:33:08.869360Z", - "iopub.status.idle": "2024-04-06T04:33:08.876491Z", - "shell.execute_reply": "2024-04-06T04:33:08.875865Z" + "iopub.execute_input": "2024-04-08T19:11:45.378395Z", + "iopub.status.busy": "2024-04-08T19:11:45.378081Z", + "iopub.status.idle": "2024-04-08T19:11:45.384257Z", + "shell.execute_reply": "2024-04-08T19:11:45.383732Z" } }, "outputs": [ @@ -1170,10 +1170,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.878704Z", - "iopub.status.busy": "2024-04-06T04:33:08.878368Z", - "iopub.status.idle": "2024-04-06T04:33:08.884874Z", - "shell.execute_reply": "2024-04-06T04:33:08.884343Z" + "iopub.execute_input": "2024-04-08T19:11:45.386145Z", + "iopub.status.busy": "2024-04-08T19:11:45.385969Z", + "iopub.status.idle": "2024-04-08T19:11:45.392100Z", + "shell.execute_reply": "2024-04-08T19:11:45.391633Z" } }, "outputs": [ @@ -1266,10 +1266,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.887114Z", - "iopub.status.busy": "2024-04-06T04:33:08.886669Z", - "iopub.status.idle": "2024-04-06T04:33:08.893228Z", - "shell.execute_reply": "2024-04-06T04:33:08.892752Z" + "iopub.execute_input": "2024-04-08T19:11:45.394135Z", + "iopub.status.busy": "2024-04-08T19:11:45.393818Z", + "iopub.status.idle": "2024-04-08T19:11:45.399861Z", + "shell.execute_reply": "2024-04-08T19:11:45.399452Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index a6257a523..cdfc50478 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:11.681681Z", - "iopub.status.busy": "2024-04-06T04:33:11.681132Z", - "iopub.status.idle": "2024-04-06T04:33:14.408684Z", - "shell.execute_reply": "2024-04-06T04:33:14.408170Z" + "iopub.execute_input": "2024-04-08T19:11:47.873795Z", + "iopub.status.busy": "2024-04-08T19:11:47.873616Z", + "iopub.status.idle": "2024-04-08T19:11:50.509546Z", + "shell.execute_reply": "2024-04-08T19:11:50.508929Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:14.411372Z", - "iopub.status.busy": "2024-04-06T04:33:14.410870Z", - "iopub.status.idle": "2024-04-06T04:33:14.414126Z", - "shell.execute_reply": "2024-04-06T04:33:14.413639Z" + "iopub.execute_input": "2024-04-08T19:11:50.512202Z", + "iopub.status.busy": "2024-04-08T19:11:50.511881Z", + "iopub.status.idle": "2024-04-08T19:11:50.515413Z", + "shell.execute_reply": "2024-04-08T19:11:50.514847Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:14.416093Z", - "iopub.status.busy": "2024-04-06T04:33:14.415817Z", - "iopub.status.idle": "2024-04-06T04:33:14.419148Z", - "shell.execute_reply": "2024-04-06T04:33:14.418621Z" + "iopub.execute_input": "2024-04-08T19:11:50.517389Z", + "iopub.status.busy": "2024-04-08T19:11:50.517121Z", + "iopub.status.idle": "2024-04-08T19:11:50.520136Z", + "shell.execute_reply": "2024-04-08T19:11:50.519721Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:14.421094Z", - "iopub.status.busy": "2024-04-06T04:33:14.420828Z", - "iopub.status.idle": "2024-04-06T04:33:14.445821Z", - "shell.execute_reply": "2024-04-06T04:33:14.445234Z" + "iopub.execute_input": "2024-04-08T19:11:50.522130Z", + "iopub.status.busy": "2024-04-08T19:11:50.521805Z", + "iopub.status.idle": "2024-04-08T19:11:50.573099Z", + "shell.execute_reply": "2024-04-08T19:11:50.572633Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:14.448095Z", - "iopub.status.busy": "2024-04-06T04:33:14.447753Z", - "iopub.status.idle": "2024-04-06T04:33:14.451521Z", - "shell.execute_reply": "2024-04-06T04:33:14.451033Z" + "iopub.execute_input": "2024-04-08T19:11:50.575235Z", + "iopub.status.busy": "2024-04-08T19:11:50.574826Z", + "iopub.status.idle": "2024-04-08T19:11:50.578661Z", + "shell.execute_reply": "2024-04-08T19:11:50.578198Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'change_pin', 'beneficiary_not_allowed', 'cancel_transfer', 'lost_or_stolen_phone', 'supported_cards_and_currencies'}\n" + "Classes: {'visa_or_mastercard', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_about_to_expire'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:14.453654Z", - "iopub.status.busy": "2024-04-06T04:33:14.453334Z", - "iopub.status.idle": "2024-04-06T04:33:14.456651Z", - "shell.execute_reply": "2024-04-06T04:33:14.456195Z" + "iopub.execute_input": "2024-04-08T19:11:50.580716Z", + "iopub.status.busy": "2024-04-08T19:11:50.580386Z", + "iopub.status.idle": "2024-04-08T19:11:50.583329Z", + "shell.execute_reply": "2024-04-08T19:11:50.582809Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:14.458570Z", - "iopub.status.busy": "2024-04-06T04:33:14.458385Z", - "iopub.status.idle": "2024-04-06T04:33:18.310859Z", - "shell.execute_reply": "2024-04-06T04:33:18.310235Z" + "iopub.execute_input": "2024-04-08T19:11:50.585157Z", + "iopub.status.busy": "2024-04-08T19:11:50.584978Z", + "iopub.status.idle": "2024-04-08T19:11:54.999343Z", + "shell.execute_reply": "2024-04-08T19:11:54.998804Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:18.313664Z", - "iopub.status.busy": "2024-04-06T04:33:18.313302Z", - "iopub.status.idle": "2024-04-06T04:33:19.193930Z", - "shell.execute_reply": "2024-04-06T04:33:19.193370Z" + "iopub.execute_input": "2024-04-08T19:11:55.002005Z", + "iopub.status.busy": "2024-04-08T19:11:55.001591Z", + "iopub.status.idle": "2024-04-08T19:11:55.890538Z", + "shell.execute_reply": "2024-04-08T19:11:55.889962Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:19.196805Z", - "iopub.status.busy": "2024-04-06T04:33:19.196442Z", - "iopub.status.idle": "2024-04-06T04:33:19.199261Z", - "shell.execute_reply": "2024-04-06T04:33:19.198798Z" + "iopub.execute_input": "2024-04-08T19:11:55.893249Z", + "iopub.status.busy": "2024-04-08T19:11:55.892862Z", + "iopub.status.idle": "2024-04-08T19:11:55.895882Z", + "shell.execute_reply": "2024-04-08T19:11:55.895415Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:19.201572Z", - "iopub.status.busy": "2024-04-06T04:33:19.201213Z", - "iopub.status.idle": "2024-04-06T04:33:20.771182Z", - "shell.execute_reply": "2024-04-06T04:33:20.770550Z" + "iopub.execute_input": "2024-04-08T19:11:55.898149Z", + "iopub.status.busy": "2024-04-08T19:11:55.897768Z", + "iopub.status.idle": "2024-04-08T19:11:57.484712Z", + "shell.execute_reply": "2024-04-08T19:11:57.482845Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.774433Z", - "iopub.status.busy": "2024-04-06T04:33:20.773600Z", - "iopub.status.idle": "2024-04-06T04:33:20.799139Z", - "shell.execute_reply": "2024-04-06T04:33:20.798597Z" + "iopub.execute_input": "2024-04-08T19:11:57.489057Z", + "iopub.status.busy": "2024-04-08T19:11:57.487744Z", + "iopub.status.idle": "2024-04-08T19:11:57.513599Z", + "shell.execute_reply": "2024-04-08T19:11:57.513105Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.801783Z", - "iopub.status.busy": "2024-04-06T04:33:20.801390Z", - "iopub.status.idle": "2024-04-06T04:33:20.811382Z", - "shell.execute_reply": "2024-04-06T04:33:20.810884Z" + "iopub.execute_input": "2024-04-08T19:11:57.517153Z", + "iopub.status.busy": "2024-04-08T19:11:57.516242Z", + "iopub.status.idle": "2024-04-08T19:11:57.527834Z", + "shell.execute_reply": "2024-04-08T19:11:57.527359Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.813909Z", - "iopub.status.busy": "2024-04-06T04:33:20.813527Z", - "iopub.status.idle": "2024-04-06T04:33:20.818371Z", - "shell.execute_reply": "2024-04-06T04:33:20.817869Z" + "iopub.execute_input": "2024-04-08T19:11:57.531248Z", + "iopub.status.busy": "2024-04-08T19:11:57.530335Z", + "iopub.status.idle": "2024-04-08T19:11:57.536787Z", + "shell.execute_reply": "2024-04-08T19:11:57.536230Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.820606Z", - "iopub.status.busy": "2024-04-06T04:33:20.820299Z", - "iopub.status.idle": "2024-04-06T04:33:20.826482Z", - "shell.execute_reply": "2024-04-06T04:33:20.826090Z" + "iopub.execute_input": "2024-04-08T19:11:57.538876Z", + "iopub.status.busy": "2024-04-08T19:11:57.538699Z", + "iopub.status.idle": "2024-04-08T19:11:57.546063Z", + "shell.execute_reply": "2024-04-08T19:11:57.545305Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.828437Z", - "iopub.status.busy": "2024-04-06T04:33:20.828137Z", - "iopub.status.idle": "2024-04-06T04:33:20.834167Z", - "shell.execute_reply": "2024-04-06T04:33:20.833652Z" + "iopub.execute_input": "2024-04-08T19:11:57.548261Z", + "iopub.status.busy": "2024-04-08T19:11:57.547854Z", + "iopub.status.idle": "2024-04-08T19:11:57.554234Z", + "shell.execute_reply": "2024-04-08T19:11:57.553695Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.836059Z", - "iopub.status.busy": "2024-04-06T04:33:20.835877Z", - "iopub.status.idle": "2024-04-06T04:33:20.841929Z", - "shell.execute_reply": "2024-04-06T04:33:20.841349Z" + "iopub.execute_input": "2024-04-08T19:11:57.556102Z", + "iopub.status.busy": "2024-04-08T19:11:57.555808Z", + "iopub.status.idle": "2024-04-08T19:11:57.561366Z", + "shell.execute_reply": "2024-04-08T19:11:57.560849Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.843988Z", - "iopub.status.busy": "2024-04-06T04:33:20.843684Z", - "iopub.status.idle": "2024-04-06T04:33:20.852453Z", - "shell.execute_reply": "2024-04-06T04:33:20.851982Z" + "iopub.execute_input": "2024-04-08T19:11:57.563375Z", + "iopub.status.busy": "2024-04-08T19:11:57.563066Z", + "iopub.status.idle": "2024-04-08T19:11:57.571545Z", + "shell.execute_reply": "2024-04-08T19:11:57.571096Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.854597Z", - "iopub.status.busy": "2024-04-06T04:33:20.854199Z", - "iopub.status.idle": "2024-04-06T04:33:20.859815Z", - "shell.execute_reply": "2024-04-06T04:33:20.859258Z" + "iopub.execute_input": "2024-04-08T19:11:57.573469Z", + "iopub.status.busy": "2024-04-08T19:11:57.573151Z", + "iopub.status.idle": "2024-04-08T19:11:57.578415Z", + "shell.execute_reply": "2024-04-08T19:11:57.577995Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.861773Z", - "iopub.status.busy": "2024-04-06T04:33:20.861471Z", - "iopub.status.idle": "2024-04-06T04:33:20.866885Z", - "shell.execute_reply": "2024-04-06T04:33:20.866352Z" + "iopub.execute_input": "2024-04-08T19:11:57.580309Z", + "iopub.status.busy": "2024-04-08T19:11:57.579985Z", + "iopub.status.idle": "2024-04-08T19:11:57.585107Z", + "shell.execute_reply": "2024-04-08T19:11:57.584704Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.869013Z", - "iopub.status.busy": "2024-04-06T04:33:20.868609Z", - "iopub.status.idle": "2024-04-06T04:33:20.872412Z", - "shell.execute_reply": "2024-04-06T04:33:20.871871Z" + "iopub.execute_input": "2024-04-08T19:11:57.587089Z", + "iopub.status.busy": "2024-04-08T19:11:57.586774Z", + "iopub.status.idle": "2024-04-08T19:11:57.590241Z", + "shell.execute_reply": "2024-04-08T19:11:57.589704Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.874578Z", - "iopub.status.busy": "2024-04-06T04:33:20.874128Z", - "iopub.status.idle": "2024-04-06T04:33:20.879644Z", - "shell.execute_reply": "2024-04-06T04:33:20.879101Z" + "iopub.execute_input": "2024-04-08T19:11:57.592302Z", + "iopub.status.busy": "2024-04-08T19:11:57.591981Z", + "iopub.status.idle": "2024-04-08T19:11:57.597076Z", + "shell.execute_reply": "2024-04-08T19:11:57.596530Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 31a8923c7..8386c499c 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:24.564833Z", - "iopub.status.busy": "2024-04-06T04:33:24.564645Z", - "iopub.status.idle": "2024-04-06T04:33:25.678241Z", - "shell.execute_reply": "2024-04-06T04:33:25.677637Z" + "iopub.execute_input": "2024-04-08T19:12:00.906624Z", + "iopub.status.busy": "2024-04-08T19:12:00.906269Z", + "iopub.status.idle": "2024-04-08T19:12:02.013278Z", + "shell.execute_reply": "2024-04-08T19:12:02.012738Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:25.681005Z", - "iopub.status.busy": "2024-04-06T04:33:25.680432Z", - "iopub.status.idle": "2024-04-06T04:33:25.683479Z", - "shell.execute_reply": "2024-04-06T04:33:25.683004Z" + "iopub.execute_input": "2024-04-08T19:12:02.015823Z", + "iopub.status.busy": "2024-04-08T19:12:02.015525Z", + "iopub.status.idle": "2024-04-08T19:12:02.018326Z", + "shell.execute_reply": "2024-04-08T19:12:02.017864Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:25.685643Z", - "iopub.status.busy": "2024-04-06T04:33:25.685458Z", - "iopub.status.idle": "2024-04-06T04:33:25.698037Z", - "shell.execute_reply": "2024-04-06T04:33:25.697552Z" + "iopub.execute_input": "2024-04-08T19:12:02.020260Z", + "iopub.status.busy": "2024-04-08T19:12:02.020087Z", + "iopub.status.idle": "2024-04-08T19:12:02.032329Z", + "shell.execute_reply": "2024-04-08T19:12:02.031881Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:25.700120Z", - "iopub.status.busy": "2024-04-06T04:33:25.699931Z", - "iopub.status.idle": "2024-04-06T04:33:30.316432Z", - "shell.execute_reply": "2024-04-06T04:33:30.315931Z" + "iopub.execute_input": "2024-04-08T19:12:02.034317Z", + "iopub.status.busy": "2024-04-08T19:12:02.034142Z", + "iopub.status.idle": "2024-04-08T19:12:10.633860Z", + "shell.execute_reply": "2024-04-08T19:12:10.633305Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 71792b57a..35b51f794 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:32.453926Z", - "iopub.status.busy": "2024-04-06T04:33:32.453487Z", - "iopub.status.idle": "2024-04-06T04:33:33.577711Z", - "shell.execute_reply": "2024-04-06T04:33:33.577162Z" + "iopub.execute_input": "2024-04-08T19:12:12.681561Z", + "iopub.status.busy": "2024-04-08T19:12:12.681389Z", + "iopub.status.idle": "2024-04-08T19:12:13.734405Z", + "shell.execute_reply": "2024-04-08T19:12:13.733868Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:33.580468Z", - "iopub.status.busy": "2024-04-06T04:33:33.579978Z", - "iopub.status.idle": "2024-04-06T04:33:33.583331Z", - "shell.execute_reply": "2024-04-06T04:33:33.582894Z" + "iopub.execute_input": "2024-04-08T19:12:13.737231Z", + "iopub.status.busy": "2024-04-08T19:12:13.736791Z", + "iopub.status.idle": "2024-04-08T19:12:13.740148Z", + "shell.execute_reply": "2024-04-08T19:12:13.739710Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:33.585545Z", - "iopub.status.busy": "2024-04-06T04:33:33.585109Z", - "iopub.status.idle": "2024-04-06T04:33:36.718652Z", - "shell.execute_reply": "2024-04-06T04:33:36.718005Z" + "iopub.execute_input": "2024-04-08T19:12:13.742187Z", + "iopub.status.busy": "2024-04-08T19:12:13.741855Z", + "iopub.status.idle": "2024-04-08T19:12:16.687217Z", + "shell.execute_reply": "2024-04-08T19:12:16.686507Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.721727Z", - "iopub.status.busy": "2024-04-06T04:33:36.721060Z", - "iopub.status.idle": "2024-04-06T04:33:36.760399Z", - "shell.execute_reply": "2024-04-06T04:33:36.759784Z" + "iopub.execute_input": "2024-04-08T19:12:16.690229Z", + "iopub.status.busy": "2024-04-08T19:12:16.689558Z", + "iopub.status.idle": "2024-04-08T19:12:16.723065Z", + "shell.execute_reply": "2024-04-08T19:12:16.722493Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.763173Z", - "iopub.status.busy": "2024-04-06T04:33:36.762842Z", - "iopub.status.idle": "2024-04-06T04:33:36.801368Z", - "shell.execute_reply": "2024-04-06T04:33:36.800735Z" + "iopub.execute_input": "2024-04-08T19:12:16.725574Z", + "iopub.status.busy": "2024-04-08T19:12:16.725213Z", + "iopub.status.idle": "2024-04-08T19:12:16.748633Z", + "shell.execute_reply": "2024-04-08T19:12:16.748076Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.804245Z", - "iopub.status.busy": "2024-04-06T04:33:36.803821Z", - "iopub.status.idle": "2024-04-06T04:33:36.807084Z", - "shell.execute_reply": "2024-04-06T04:33:36.806596Z" + "iopub.execute_input": "2024-04-08T19:12:16.751185Z", + "iopub.status.busy": "2024-04-08T19:12:16.750822Z", + "iopub.status.idle": "2024-04-08T19:12:16.753746Z", + "shell.execute_reply": "2024-04-08T19:12:16.753306Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.809090Z", - "iopub.status.busy": "2024-04-06T04:33:36.808779Z", - "iopub.status.idle": "2024-04-06T04:33:36.811544Z", - "shell.execute_reply": "2024-04-06T04:33:36.811006Z" + "iopub.execute_input": "2024-04-08T19:12:16.755833Z", + "iopub.status.busy": "2024-04-08T19:12:16.755526Z", + "iopub.status.idle": "2024-04-08T19:12:16.758525Z", + "shell.execute_reply": "2024-04-08T19:12:16.758102Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.813573Z", - "iopub.status.busy": "2024-04-06T04:33:36.813305Z", - "iopub.status.idle": "2024-04-06T04:33:36.837656Z", - "shell.execute_reply": "2024-04-06T04:33:36.837105Z" + "iopub.execute_input": "2024-04-08T19:12:16.760530Z", + "iopub.status.busy": "2024-04-08T19:12:16.760254Z", + "iopub.status.idle": "2024-04-08T19:12:16.783193Z", + "shell.execute_reply": "2024-04-08T19:12:16.782688Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ad7ffe9f7e104f438570b96387ce328e", + "model_id": "6a6240bb0ab443d38a48eadee74f3ae2", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6a93f0182ebb47fc96441f7413ee50a4", + "model_id": "f9a5120ba56d4977aa0d368fb7c66d40", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.843747Z", - "iopub.status.busy": "2024-04-06T04:33:36.843506Z", - "iopub.status.idle": "2024-04-06T04:33:36.850771Z", - "shell.execute_reply": "2024-04-06T04:33:36.850304Z" + "iopub.execute_input": "2024-04-08T19:12:16.789722Z", + "iopub.status.busy": "2024-04-08T19:12:16.789232Z", + "iopub.status.idle": "2024-04-08T19:12:16.795676Z", + "shell.execute_reply": "2024-04-08T19:12:16.795154Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.853060Z", - "iopub.status.busy": "2024-04-06T04:33:36.852662Z", - "iopub.status.idle": "2024-04-06T04:33:36.856158Z", - "shell.execute_reply": "2024-04-06T04:33:36.855726Z" + "iopub.execute_input": "2024-04-08T19:12:16.797734Z", + "iopub.status.busy": "2024-04-08T19:12:16.797436Z", + "iopub.status.idle": "2024-04-08T19:12:16.800819Z", + "shell.execute_reply": "2024-04-08T19:12:16.800306Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.858276Z", - "iopub.status.busy": "2024-04-06T04:33:36.858000Z", - "iopub.status.idle": "2024-04-06T04:33:36.864594Z", - "shell.execute_reply": "2024-04-06T04:33:36.864108Z" + "iopub.execute_input": "2024-04-08T19:12:16.802799Z", + "iopub.status.busy": "2024-04-08T19:12:16.802383Z", + "iopub.status.idle": "2024-04-08T19:12:16.808583Z", + "shell.execute_reply": "2024-04-08T19:12:16.808080Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.866698Z", - "iopub.status.busy": "2024-04-06T04:33:36.866352Z", - "iopub.status.idle": "2024-04-06T04:33:36.905959Z", - "shell.execute_reply": "2024-04-06T04:33:36.905317Z" + "iopub.execute_input": "2024-04-08T19:12:16.810430Z", + "iopub.status.busy": "2024-04-08T19:12:16.810131Z", + "iopub.status.idle": "2024-04-08T19:12:16.843764Z", + "shell.execute_reply": "2024-04-08T19:12:16.843069Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.908640Z", - "iopub.status.busy": "2024-04-06T04:33:36.908384Z", - "iopub.status.idle": "2024-04-06T04:33:36.948839Z", - "shell.execute_reply": "2024-04-06T04:33:36.948221Z" + "iopub.execute_input": "2024-04-08T19:12:16.846251Z", + "iopub.status.busy": "2024-04-08T19:12:16.846029Z", + "iopub.status.idle": "2024-04-08T19:12:16.876055Z", + "shell.execute_reply": "2024-04-08T19:12:16.875395Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.951895Z", - "iopub.status.busy": "2024-04-06T04:33:36.951511Z", - "iopub.status.idle": "2024-04-06T04:33:37.080581Z", - "shell.execute_reply": "2024-04-06T04:33:37.079922Z" + "iopub.execute_input": "2024-04-08T19:12:16.878797Z", + "iopub.status.busy": "2024-04-08T19:12:16.878362Z", + "iopub.status.idle": "2024-04-08T19:12:16.997690Z", + "shell.execute_reply": "2024-04-08T19:12:16.997074Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:37.083569Z", - "iopub.status.busy": "2024-04-06T04:33:37.082731Z", - "iopub.status.idle": "2024-04-06T04:33:40.126106Z", - "shell.execute_reply": "2024-04-06T04:33:40.125422Z" + "iopub.execute_input": "2024-04-08T19:12:17.000317Z", + "iopub.status.busy": "2024-04-08T19:12:16.999797Z", + "iopub.status.idle": "2024-04-08T19:12:20.051499Z", + "shell.execute_reply": "2024-04-08T19:12:20.050857Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:40.128582Z", - "iopub.status.busy": "2024-04-06T04:33:40.128353Z", - "iopub.status.idle": "2024-04-06T04:33:40.189416Z", - "shell.execute_reply": "2024-04-06T04:33:40.188788Z" + "iopub.execute_input": "2024-04-08T19:12:20.054045Z", + "iopub.status.busy": "2024-04-08T19:12:20.053678Z", + "iopub.status.idle": "2024-04-08T19:12:20.108066Z", + "shell.execute_reply": "2024-04-08T19:12:20.107454Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:40.191652Z", - "iopub.status.busy": "2024-04-06T04:33:40.191314Z", - "iopub.status.idle": "2024-04-06T04:33:40.231110Z", - "shell.execute_reply": "2024-04-06T04:33:40.230569Z" + "iopub.execute_input": "2024-04-08T19:12:20.110315Z", + "iopub.status.busy": "2024-04-08T19:12:20.109981Z", + "iopub.status.idle": "2024-04-08T19:12:20.147390Z", + "shell.execute_reply": "2024-04-08T19:12:20.146954Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "7997ced4", + "id": "9da437a7", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "57a8d119", + "id": "fce848ae", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "9fb93000", + "id": "0fe990fa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:40.233390Z", - "iopub.status.busy": "2024-04-06T04:33:40.233191Z", - "iopub.status.idle": "2024-04-06T04:33:40.327660Z", - "shell.execute_reply": "2024-04-06T04:33:40.327127Z" + "iopub.execute_input": "2024-04-08T19:12:20.149376Z", + "iopub.status.busy": "2024-04-08T19:12:20.149051Z", + "iopub.status.idle": "2024-04-08T19:12:20.266660Z", + "shell.execute_reply": "2024-04-08T19:12:20.266055Z" } }, "outputs": [ @@ -1354,7 +1354,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ...\n", + "Finding underperforming_group issues ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1387,7 +1393,7 @@ }, { "cell_type": "markdown", - "id": "27082dba", + "id": "e1f798da", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1402,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "5a3f0b1c", + "id": "35842b9a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:40.330424Z", - "iopub.status.busy": "2024-04-06T04:33:40.330165Z", - "iopub.status.idle": "2024-04-06T04:33:40.412901Z", - "shell.execute_reply": "2024-04-06T04:33:40.412405Z" + "iopub.execute_input": "2024-04-08T19:12:20.269272Z", + "iopub.status.busy": "2024-04-08T19:12:20.269030Z", + "iopub.status.idle": "2024-04-08T19:12:20.330497Z", + "shell.execute_reply": "2024-04-08T19:12:20.329977Z" } }, "outputs": [ @@ -1410,14 +1416,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ..." - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", + "Finding underperforming_group issues ...\n", "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1445,7 +1444,7 @@ }, { "cell_type": "markdown", - "id": "bb4c5299", + "id": "798d7822", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1456,13 +1455,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "0a847975", + "id": "fdfd0a78", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:40.415545Z", - "iopub.status.busy": "2024-04-06T04:33:40.415364Z", - "iopub.status.idle": "2024-04-06T04:33:40.424747Z", - "shell.execute_reply": "2024-04-06T04:33:40.424323Z" + "iopub.execute_input": "2024-04-08T19:12:20.332905Z", + "iopub.status.busy": "2024-04-08T19:12:20.332706Z", + "iopub.status.idle": "2024-04-08T19:12:20.340139Z", + "shell.execute_reply": "2024-04-08T19:12:20.339592Z" } }, "outputs": [], @@ -1564,7 +1563,7 @@ }, { "cell_type": "markdown", - "id": "f6c74243", + "id": "623406db", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1579,13 +1578,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "665cd26e", + "id": "78a115a5", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:40.427036Z", - "iopub.status.busy": "2024-04-06T04:33:40.426714Z", - "iopub.status.idle": "2024-04-06T04:33:40.447448Z", - "shell.execute_reply": "2024-04-06T04:33:40.446876Z" + "iopub.execute_input": "2024-04-08T19:12:20.342036Z", + "iopub.status.busy": "2024-04-08T19:12:20.341739Z", + "iopub.status.idle": "2024-04-08T19:12:20.360239Z", + "shell.execute_reply": "2024-04-08T19:12:20.359697Z" } }, "outputs": [ @@ -1602,7 +1601,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7516/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7838/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1636,13 +1635,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "1a0ba0a1", + "id": "40dae4e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:40.449833Z", - "iopub.status.busy": "2024-04-06T04:33:40.449476Z", - "iopub.status.idle": "2024-04-06T04:33:40.452685Z", - "shell.execute_reply": "2024-04-06T04:33:40.452130Z" + "iopub.execute_input": "2024-04-08T19:12:20.362253Z", + "iopub.status.busy": "2024-04-08T19:12:20.361948Z", + "iopub.status.idle": "2024-04-08T19:12:20.365026Z", + "shell.execute_reply": "2024-04-08T19:12:20.364516Z" } }, "outputs": [ @@ -1737,7 +1736,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "14b2e46a058f49b7877f1e0a8fc3b5b6": { + "12810a0d31ae4f278489cceb3717deb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,7 +1789,7 @@ "width": null } }, - "23c0ea245fbd417183656f1b6c07712f": { + "21b83733b12e4ab9a8e1fc932a77b365": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1843,30 +1842,65 @@ "width": null } }, - "245c87c4c2aa416db47130538b929d58": { + "6566ff0f4c9545e0a8d4ac6514750721": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "68c12f7c9aa14eb596e0d4b9f346ded1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6a6240bb0ab443d38a48eadee74f3ae2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7480a084643d44109ad2e89da0ca1645", - "placeholder": "​", - "style": "IPY_MODEL_d3c14fbb47a44544abaeec177f87256f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b66e8c48cfaa46939a45c8b4440cd4a6", + "IPY_MODEL_bf86d89ad3204f18be960f57e96ccf59", + "IPY_MODEL_b765b2a3ff1d4b41a66c68404700508b" + ], + "layout": "IPY_MODEL_cfc2c60ce9954a939a633840b1c6d1f7", "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1599963.38it/s]" + "tooltip": null } }, - "26607dc2026d44d18409e2097833bbb6": { + "995b23ebdb8b4621ae697068c80e4d01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1919,7 +1953,60 @@ "width": null } }, - "538f177063ec4fd38db9281cbb4e4736": { + "9a847008c2cc4912b7568541c8506397": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9cca6ed55b464af5a62dfafe2ab723a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1934,15 +2021,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_23c0ea245fbd417183656f1b6c07712f", + "layout": "IPY_MODEL_9a847008c2cc4912b7568541c8506397", "placeholder": "​", - "style": "IPY_MODEL_f7f940143f124c22a39fad1b33b95e97", + "style": "IPY_MODEL_b0998f9686d34540aef7e956282bc228", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " + "value": " 10000/? [00:00<00:00, 1657172.66it/s]" + } + }, + "b0998f9686d34540aef7e956282bc228": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b37c8cc149634a1fa49852024830088d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5d3a89a90e3b4986a627cb78ab15f855": { + "b66e8c48cfaa46939a45c8b4440cd4a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1957,39 +2080,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c9e7c9ca5279402f833cd03f267b90b0", + "layout": "IPY_MODEL_12810a0d31ae4f278489cceb3717deb2", "placeholder": "​", - "style": "IPY_MODEL_7a5ac41ff90446bda080db1a245f6076", + "style": "IPY_MODEL_c9626b33f28a41cbb8e7ab7eaa6d20db", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: " } }, - "6a93f0182ebb47fc96441f7413ee50a4": { + "b765b2a3ff1d4b41a66c68404700508b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_538f177063ec4fd38db9281cbb4e4736", - "IPY_MODEL_8147d6885df5404da13067a4b04feaff", - "IPY_MODEL_245c87c4c2aa416db47130538b929d58" - ], - "layout": "IPY_MODEL_26607dc2026d44d18409e2097833bbb6", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21b83733b12e4ab9a8e1fc932a77b365", + "placeholder": "​", + "style": "IPY_MODEL_b37c8cc149634a1fa49852024830088d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1108870.85it/s]" } }, - "7480a084643d44109ad2e89da0ca1645": { + "ba6196a4a8f546aabd03b97f4e409a2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2042,25 +2164,7 @@ "width": null } }, - "7a5ac41ff90446bda080db1a245f6076": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8147d6885df5404da13067a4b04feaff": { + "bf86d89ad3204f18be960f57e96ccf59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2076,17 +2180,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b88c297a26be479180743ea12a8782ee", + "layout": "IPY_MODEL_c1cb2e0cc26b4999826ac84dc19ced5c", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8a8358bc01474398ae2c3b719fe94d03", + "style": "IPY_MODEL_6566ff0f4c9545e0a8d4ac6514750721", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "83a387e924c445e394cde04898e3e09e": { + "c1cb2e0cc26b4999826ac84dc19ced5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2139,47 +2243,30 @@ "width": null } }, - "8a8358bc01474398ae2c3b719fe94d03": { + "c5076875c8174d66894ad735da25ceb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ad7ffe9f7e104f438570b96387ce328e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d3a89a90e3b4986a627cb78ab15f855", - "IPY_MODEL_f6ab57c77c6546aeb601051c57a99435", - "IPY_MODEL_cda88cf88c8042acb6232ea9423f355f" - ], - "layout": "IPY_MODEL_14b2e46a058f49b7877f1e0a8fc3b5b6", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d0bb2759b4794473a6c806fa37369c3f", + "placeholder": "​", + "style": "IPY_MODEL_68c12f7c9aa14eb596e0d4b9f346ded1", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "number of examples processed for checking labels: " } }, - "b884a7bf75b9420f8028a27180dff7b2": { + "c9626b33f28a41cbb8e7ab7eaa6d20db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2197,60 +2284,49 @@ "text_color": null } }, - "b88c297a26be479180743ea12a8782ee": { - "model_module": "@jupyter-widgets/base", + "cabf93bc271f433bbdf492408e032d42": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cc473ba1779244319b406315a2ad79b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_995b23ebdb8b4621ae697068c80e4d01", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cabf93bc271f433bbdf492408e032d42", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "be6b5fe0f64b4e89bba0bc6b2e5c249c": { + "cfc2c60ce9954a939a633840b1c6d1f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2303,7 +2379,7 @@ "width": null } }, - "c9e7c9ca5279402f833cd03f267b90b0": { + "d0bb2759b4794473a6c806fa37369c3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2356,105 +2432,28 @@ "width": null } }, - "cc099a9799bc402bbc12d51076fd879a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cda88cf88c8042acb6232ea9423f355f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_83a387e924c445e394cde04898e3e09e", - "placeholder": "​", - "style": "IPY_MODEL_b884a7bf75b9420f8028a27180dff7b2", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1022876.23it/s]" - } - }, - "d3c14fbb47a44544abaeec177f87256f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f6ab57c77c6546aeb601051c57a99435": { + "f9a5120ba56d4977aa0d368fb7c66d40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be6b5fe0f64b4e89bba0bc6b2e5c249c", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cc099a9799bc402bbc12d51076fd879a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c5076875c8174d66894ad735da25ceb0", + "IPY_MODEL_cc473ba1779244319b406315a2ad79b3", + "IPY_MODEL_9cca6ed55b464af5a62dfafe2ab723a7" + ], + "layout": "IPY_MODEL_ba6196a4a8f546aabd03b97f4e409a2f", "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "f7f940143f124c22a39fad1b33b95e97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 09d453fd1..319d2d3ff 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:43.785678Z", - "iopub.status.busy": "2024-04-06T04:33:43.785475Z", - "iopub.status.idle": "2024-04-06T04:33:44.953788Z", - "shell.execute_reply": "2024-04-06T04:33:44.953182Z" + "iopub.execute_input": "2024-04-08T19:12:23.385502Z", + "iopub.status.busy": "2024-04-08T19:12:23.385324Z", + "iopub.status.idle": "2024-04-08T19:12:24.500994Z", + "shell.execute_reply": "2024-04-08T19:12:24.500451Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:44.956257Z", - "iopub.status.busy": "2024-04-06T04:33:44.955968Z", - "iopub.status.idle": "2024-04-06T04:33:45.136559Z", - "shell.execute_reply": "2024-04-06T04:33:45.135941Z" + "iopub.execute_input": "2024-04-08T19:12:24.503635Z", + "iopub.status.busy": "2024-04-08T19:12:24.503134Z", + "iopub.status.idle": "2024-04-08T19:12:24.674963Z", + "shell.execute_reply": "2024-04-08T19:12:24.674378Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:45.139194Z", - "iopub.status.busy": "2024-04-06T04:33:45.138996Z", - "iopub.status.idle": "2024-04-06T04:33:45.151534Z", - "shell.execute_reply": "2024-04-06T04:33:45.150954Z" + "iopub.execute_input": "2024-04-08T19:12:24.677405Z", + "iopub.status.busy": "2024-04-08T19:12:24.677010Z", + "iopub.status.idle": "2024-04-08T19:12:24.688933Z", + "shell.execute_reply": "2024-04-08T19:12:24.688406Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:45.153835Z", - "iopub.status.busy": "2024-04-06T04:33:45.153455Z", - "iopub.status.idle": "2024-04-06T04:33:45.364208Z", - "shell.execute_reply": "2024-04-06T04:33:45.363567Z" + "iopub.execute_input": "2024-04-08T19:12:24.690846Z", + "iopub.status.busy": "2024-04-08T19:12:24.690671Z", + "iopub.status.idle": "2024-04-08T19:12:24.894029Z", + "shell.execute_reply": "2024-04-08T19:12:24.893464Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:45.366694Z", - "iopub.status.busy": "2024-04-06T04:33:45.366209Z", - "iopub.status.idle": "2024-04-06T04:33:45.393157Z", - "shell.execute_reply": "2024-04-06T04:33:45.392663Z" + "iopub.execute_input": "2024-04-08T19:12:24.896362Z", + "iopub.status.busy": "2024-04-08T19:12:24.896017Z", + "iopub.status.idle": "2024-04-08T19:12:24.922340Z", + "shell.execute_reply": "2024-04-08T19:12:24.921893Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:45.395608Z", - "iopub.status.busy": "2024-04-06T04:33:45.395250Z", - "iopub.status.idle": "2024-04-06T04:33:47.125309Z", - "shell.execute_reply": "2024-04-06T04:33:47.124671Z" + "iopub.execute_input": "2024-04-08T19:12:24.924554Z", + "iopub.status.busy": "2024-04-08T19:12:24.924219Z", + "iopub.status.idle": "2024-04-08T19:12:26.591119Z", + "shell.execute_reply": "2024-04-08T19:12:26.590421Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:47.127865Z", - "iopub.status.busy": "2024-04-06T04:33:47.127360Z", - "iopub.status.idle": "2024-04-06T04:33:47.146064Z", - "shell.execute_reply": "2024-04-06T04:33:47.145478Z" + "iopub.execute_input": "2024-04-08T19:12:26.593843Z", + "iopub.status.busy": "2024-04-08T19:12:26.593202Z", + "iopub.status.idle": "2024-04-08T19:12:26.611348Z", + "shell.execute_reply": "2024-04-08T19:12:26.610866Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:47.148206Z", - "iopub.status.busy": "2024-04-06T04:33:47.148010Z", - "iopub.status.idle": "2024-04-06T04:33:48.575713Z", - "shell.execute_reply": "2024-04-06T04:33:48.575123Z" + "iopub.execute_input": "2024-04-08T19:12:26.613273Z", + "iopub.status.busy": "2024-04-08T19:12:26.613008Z", + "iopub.status.idle": "2024-04-08T19:12:27.994069Z", + "shell.execute_reply": "2024-04-08T19:12:27.993485Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:48.578373Z", - "iopub.status.busy": "2024-04-06T04:33:48.577728Z", - "iopub.status.idle": "2024-04-06T04:33:48.591925Z", - "shell.execute_reply": "2024-04-06T04:33:48.591473Z" + "iopub.execute_input": "2024-04-08T19:12:27.996963Z", + "iopub.status.busy": "2024-04-08T19:12:27.996205Z", + "iopub.status.idle": "2024-04-08T19:12:28.010313Z", + "shell.execute_reply": "2024-04-08T19:12:28.009892Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:48.594180Z", - "iopub.status.busy": "2024-04-06T04:33:48.593840Z", - "iopub.status.idle": "2024-04-06T04:33:48.670108Z", - "shell.execute_reply": "2024-04-06T04:33:48.669540Z" + "iopub.execute_input": "2024-04-08T19:12:28.012483Z", + "iopub.status.busy": "2024-04-08T19:12:28.012148Z", + "iopub.status.idle": "2024-04-08T19:12:28.092332Z", + "shell.execute_reply": "2024-04-08T19:12:28.091737Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:48.672461Z", - "iopub.status.busy": "2024-04-06T04:33:48.672082Z", - "iopub.status.idle": "2024-04-06T04:33:48.894054Z", - "shell.execute_reply": "2024-04-06T04:33:48.893460Z" + "iopub.execute_input": "2024-04-08T19:12:28.094848Z", + "iopub.status.busy": "2024-04-08T19:12:28.094388Z", + "iopub.status.idle": "2024-04-08T19:12:28.305015Z", + "shell.execute_reply": "2024-04-08T19:12:28.304459Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:48.896310Z", - "iopub.status.busy": "2024-04-06T04:33:48.895957Z", - "iopub.status.idle": "2024-04-06T04:33:48.912992Z", - "shell.execute_reply": "2024-04-06T04:33:48.912438Z" + "iopub.execute_input": "2024-04-08T19:12:28.307155Z", + "iopub.status.busy": "2024-04-08T19:12:28.306977Z", + "iopub.status.idle": "2024-04-08T19:12:28.324108Z", + "shell.execute_reply": "2024-04-08T19:12:28.323676Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:48.915370Z", - "iopub.status.busy": "2024-04-06T04:33:48.914978Z", - "iopub.status.idle": "2024-04-06T04:33:48.925166Z", - "shell.execute_reply": "2024-04-06T04:33:48.924650Z" + "iopub.execute_input": "2024-04-08T19:12:28.326002Z", + "iopub.status.busy": "2024-04-08T19:12:28.325829Z", + "iopub.status.idle": "2024-04-08T19:12:28.335620Z", + "shell.execute_reply": "2024-04-08T19:12:28.335205Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:48.927196Z", - "iopub.status.busy": "2024-04-06T04:33:48.927015Z", - "iopub.status.idle": "2024-04-06T04:33:49.014441Z", - "shell.execute_reply": "2024-04-06T04:33:49.013806Z" + "iopub.execute_input": "2024-04-08T19:12:28.337624Z", + "iopub.status.busy": "2024-04-08T19:12:28.337213Z", + "iopub.status.idle": "2024-04-08T19:12:28.422599Z", + "shell.execute_reply": "2024-04-08T19:12:28.421980Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.016777Z", - "iopub.status.busy": "2024-04-06T04:33:49.016537Z", - "iopub.status.idle": "2024-04-06T04:33:49.145893Z", - "shell.execute_reply": "2024-04-06T04:33:49.145286Z" + "iopub.execute_input": "2024-04-08T19:12:28.424970Z", + "iopub.status.busy": "2024-04-08T19:12:28.424722Z", + "iopub.status.idle": "2024-04-08T19:12:28.549007Z", + "shell.execute_reply": "2024-04-08T19:12:28.548406Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.148236Z", - "iopub.status.busy": "2024-04-06T04:33:49.148006Z", - "iopub.status.idle": "2024-04-06T04:33:49.151659Z", - "shell.execute_reply": "2024-04-06T04:33:49.151136Z" + "iopub.execute_input": "2024-04-08T19:12:28.551383Z", + "iopub.status.busy": "2024-04-08T19:12:28.551092Z", + "iopub.status.idle": "2024-04-08T19:12:28.554976Z", + "shell.execute_reply": "2024-04-08T19:12:28.554255Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.153711Z", - "iopub.status.busy": "2024-04-06T04:33:49.153349Z", - "iopub.status.idle": "2024-04-06T04:33:49.157155Z", - "shell.execute_reply": "2024-04-06T04:33:49.156622Z" + "iopub.execute_input": "2024-04-08T19:12:28.557035Z", + "iopub.status.busy": "2024-04-08T19:12:28.556717Z", + "iopub.status.idle": "2024-04-08T19:12:28.560298Z", + "shell.execute_reply": "2024-04-08T19:12:28.559774Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.159176Z", - "iopub.status.busy": "2024-04-06T04:33:49.158878Z", - "iopub.status.idle": "2024-04-06T04:33:49.196839Z", - "shell.execute_reply": "2024-04-06T04:33:49.196263Z" + "iopub.execute_input": "2024-04-08T19:12:28.562193Z", + "iopub.status.busy": "2024-04-08T19:12:28.561944Z", + "iopub.status.idle": "2024-04-08T19:12:28.599077Z", + "shell.execute_reply": "2024-04-08T19:12:28.598539Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.198950Z", - "iopub.status.busy": "2024-04-06T04:33:49.198645Z", - "iopub.status.idle": "2024-04-06T04:33:49.242193Z", - "shell.execute_reply": "2024-04-06T04:33:49.241610Z" + "iopub.execute_input": "2024-04-08T19:12:28.601134Z", + "iopub.status.busy": "2024-04-08T19:12:28.600813Z", + "iopub.status.idle": "2024-04-08T19:12:28.642167Z", + "shell.execute_reply": "2024-04-08T19:12:28.641727Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.244487Z", - "iopub.status.busy": "2024-04-06T04:33:49.244090Z", - "iopub.status.idle": "2024-04-06T04:33:49.337248Z", - "shell.execute_reply": "2024-04-06T04:33:49.336579Z" + "iopub.execute_input": "2024-04-08T19:12:28.644151Z", + "iopub.status.busy": "2024-04-08T19:12:28.643835Z", + "iopub.status.idle": "2024-04-08T19:12:28.738961Z", + "shell.execute_reply": "2024-04-08T19:12:28.738341Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.339846Z", - "iopub.status.busy": "2024-04-06T04:33:49.339620Z", - "iopub.status.idle": "2024-04-06T04:33:49.430742Z", - "shell.execute_reply": "2024-04-06T04:33:49.430143Z" + "iopub.execute_input": "2024-04-08T19:12:28.741750Z", + "iopub.status.busy": "2024-04-08T19:12:28.741263Z", + "iopub.status.idle": "2024-04-08T19:12:28.827551Z", + "shell.execute_reply": "2024-04-08T19:12:28.826947Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.432983Z", - "iopub.status.busy": "2024-04-06T04:33:49.432697Z", - "iopub.status.idle": "2024-04-06T04:33:49.645127Z", - "shell.execute_reply": "2024-04-06T04:33:49.644551Z" + "iopub.execute_input": "2024-04-08T19:12:28.829915Z", + "iopub.status.busy": "2024-04-08T19:12:28.829683Z", + "iopub.status.idle": "2024-04-08T19:12:29.038522Z", + "shell.execute_reply": "2024-04-08T19:12:29.037949Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.647536Z", - "iopub.status.busy": "2024-04-06T04:33:49.647110Z", - "iopub.status.idle": "2024-04-06T04:33:49.836451Z", - "shell.execute_reply": "2024-04-06T04:33:49.835806Z" + "iopub.execute_input": "2024-04-08T19:12:29.040910Z", + "iopub.status.busy": "2024-04-08T19:12:29.040732Z", + "iopub.status.idle": "2024-04-08T19:12:29.214576Z", + "shell.execute_reply": "2024-04-08T19:12:29.213963Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.838935Z", - "iopub.status.busy": "2024-04-06T04:33:49.838446Z", - "iopub.status.idle": "2024-04-06T04:33:49.845067Z", - "shell.execute_reply": "2024-04-06T04:33:49.844540Z" + "iopub.execute_input": "2024-04-08T19:12:29.217044Z", + "iopub.status.busy": "2024-04-08T19:12:29.216667Z", + "iopub.status.idle": "2024-04-08T19:12:29.222938Z", + "shell.execute_reply": "2024-04-08T19:12:29.222502Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.847230Z", - "iopub.status.busy": "2024-04-06T04:33:49.846825Z", - "iopub.status.idle": "2024-04-06T04:33:50.065771Z", - "shell.execute_reply": "2024-04-06T04:33:50.065168Z" + "iopub.execute_input": "2024-04-08T19:12:29.224909Z", + "iopub.status.busy": "2024-04-08T19:12:29.224587Z", + "iopub.status.idle": "2024-04-08T19:12:29.437683Z", + "shell.execute_reply": "2024-04-08T19:12:29.437115Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:50.068226Z", - "iopub.status.busy": "2024-04-06T04:33:50.067840Z", - "iopub.status.idle": "2024-04-06T04:33:51.143014Z", - "shell.execute_reply": "2024-04-06T04:33:51.142387Z" + "iopub.execute_input": "2024-04-08T19:12:29.439974Z", + "iopub.status.busy": "2024-04-08T19:12:29.439567Z", + "iopub.status.idle": "2024-04-08T19:12:30.486127Z", + "shell.execute_reply": "2024-04-08T19:12:30.485508Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index f2ec4a55c..a709c4ddc 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:54.655001Z", - "iopub.status.busy": "2024-04-06T04:33:54.654839Z", - "iopub.status.idle": "2024-04-06T04:33:55.737154Z", - "shell.execute_reply": "2024-04-06T04:33:55.736607Z" + "iopub.execute_input": "2024-04-08T19:12:33.752421Z", + "iopub.status.busy": "2024-04-08T19:12:33.752248Z", + "iopub.status.idle": "2024-04-08T19:12:34.830539Z", + "shell.execute_reply": "2024-04-08T19:12:34.829972Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.739856Z", - "iopub.status.busy": "2024-04-06T04:33:55.739430Z", - "iopub.status.idle": "2024-04-06T04:33:55.742481Z", - "shell.execute_reply": "2024-04-06T04:33:55.741958Z" + "iopub.execute_input": "2024-04-08T19:12:34.833064Z", + "iopub.status.busy": "2024-04-08T19:12:34.832801Z", + "iopub.status.idle": "2024-04-08T19:12:34.835936Z", + "shell.execute_reply": "2024-04-08T19:12:34.835405Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.744755Z", - "iopub.status.busy": "2024-04-06T04:33:55.744422Z", - "iopub.status.idle": "2024-04-06T04:33:55.752051Z", - "shell.execute_reply": "2024-04-06T04:33:55.751620Z" + "iopub.execute_input": "2024-04-08T19:12:34.837888Z", + "iopub.status.busy": "2024-04-08T19:12:34.837708Z", + "iopub.status.idle": "2024-04-08T19:12:34.845722Z", + "shell.execute_reply": "2024-04-08T19:12:34.845317Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.754050Z", - "iopub.status.busy": "2024-04-06T04:33:55.753666Z", - "iopub.status.idle": "2024-04-06T04:33:55.808130Z", - "shell.execute_reply": "2024-04-06T04:33:55.807549Z" + "iopub.execute_input": "2024-04-08T19:12:34.847573Z", + "iopub.status.busy": "2024-04-08T19:12:34.847397Z", + "iopub.status.idle": "2024-04-08T19:12:34.894104Z", + "shell.execute_reply": "2024-04-08T19:12:34.893588Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.810525Z", - "iopub.status.busy": "2024-04-06T04:33:55.810206Z", - "iopub.status.idle": "2024-04-06T04:33:55.827426Z", - "shell.execute_reply": "2024-04-06T04:33:55.826967Z" + "iopub.execute_input": "2024-04-08T19:12:34.896019Z", + "iopub.status.busy": "2024-04-08T19:12:34.895834Z", + "iopub.status.idle": "2024-04-08T19:12:34.912597Z", + "shell.execute_reply": "2024-04-08T19:12:34.912094Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.829293Z", - "iopub.status.busy": "2024-04-06T04:33:55.829117Z", - "iopub.status.idle": "2024-04-06T04:33:55.833052Z", - "shell.execute_reply": "2024-04-06T04:33:55.832518Z" + "iopub.execute_input": "2024-04-08T19:12:34.914647Z", + "iopub.status.busy": "2024-04-08T19:12:34.914307Z", + "iopub.status.idle": "2024-04-08T19:12:34.917956Z", + "shell.execute_reply": "2024-04-08T19:12:34.917438Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.835165Z", - "iopub.status.busy": "2024-04-06T04:33:55.834833Z", - "iopub.status.idle": "2024-04-06T04:33:55.865218Z", - "shell.execute_reply": "2024-04-06T04:33:55.864706Z" + "iopub.execute_input": "2024-04-08T19:12:34.919974Z", + "iopub.status.busy": "2024-04-08T19:12:34.919671Z", + "iopub.status.idle": "2024-04-08T19:12:34.946169Z", + "shell.execute_reply": "2024-04-08T19:12:34.945655Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.867653Z", - "iopub.status.busy": "2024-04-06T04:33:55.867231Z", - "iopub.status.idle": "2024-04-06T04:33:55.894195Z", - "shell.execute_reply": "2024-04-06T04:33:55.893624Z" + "iopub.execute_input": "2024-04-08T19:12:34.948155Z", + "iopub.status.busy": "2024-04-08T19:12:34.947833Z", + "iopub.status.idle": "2024-04-08T19:12:34.973985Z", + "shell.execute_reply": "2024-04-08T19:12:34.973459Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.896247Z", - "iopub.status.busy": "2024-04-06T04:33:55.896066Z", - "iopub.status.idle": "2024-04-06T04:33:57.627098Z", - "shell.execute_reply": "2024-04-06T04:33:57.626566Z" + "iopub.execute_input": "2024-04-08T19:12:34.976074Z", + "iopub.status.busy": "2024-04-08T19:12:34.975781Z", + "iopub.status.idle": "2024-04-08T19:12:36.687655Z", + "shell.execute_reply": "2024-04-08T19:12:36.687110Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.629758Z", - "iopub.status.busy": "2024-04-06T04:33:57.629236Z", - "iopub.status.idle": "2024-04-06T04:33:57.636079Z", - "shell.execute_reply": "2024-04-06T04:33:57.635555Z" + "iopub.execute_input": "2024-04-08T19:12:36.690165Z", + "iopub.status.busy": "2024-04-08T19:12:36.689693Z", + "iopub.status.idle": "2024-04-08T19:12:36.696336Z", + "shell.execute_reply": "2024-04-08T19:12:36.695815Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.638210Z", - "iopub.status.busy": "2024-04-06T04:33:57.637876Z", - "iopub.status.idle": "2024-04-06T04:33:57.650276Z", - "shell.execute_reply": "2024-04-06T04:33:57.649820Z" + "iopub.execute_input": "2024-04-08T19:12:36.698324Z", + "iopub.status.busy": "2024-04-08T19:12:36.698034Z", + "iopub.status.idle": "2024-04-08T19:12:36.710339Z", + "shell.execute_reply": "2024-04-08T19:12:36.709902Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.652252Z", - "iopub.status.busy": "2024-04-06T04:33:57.651928Z", - "iopub.status.idle": "2024-04-06T04:33:57.658292Z", - "shell.execute_reply": "2024-04-06T04:33:57.657737Z" + "iopub.execute_input": "2024-04-08T19:12:36.712346Z", + "iopub.status.busy": "2024-04-08T19:12:36.711929Z", + "iopub.status.idle": "2024-04-08T19:12:36.718208Z", + "shell.execute_reply": "2024-04-08T19:12:36.717694Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.660348Z", - "iopub.status.busy": "2024-04-06T04:33:57.660033Z", - "iopub.status.idle": "2024-04-06T04:33:57.662546Z", - "shell.execute_reply": "2024-04-06T04:33:57.662096Z" + "iopub.execute_input": "2024-04-08T19:12:36.720257Z", + "iopub.status.busy": "2024-04-08T19:12:36.719972Z", + "iopub.status.idle": "2024-04-08T19:12:36.722551Z", + "shell.execute_reply": "2024-04-08T19:12:36.722114Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.664568Z", - "iopub.status.busy": "2024-04-06T04:33:57.664236Z", - "iopub.status.idle": "2024-04-06T04:33:57.667775Z", - "shell.execute_reply": "2024-04-06T04:33:57.667336Z" + "iopub.execute_input": "2024-04-08T19:12:36.724389Z", + "iopub.status.busy": "2024-04-08T19:12:36.724098Z", + "iopub.status.idle": "2024-04-08T19:12:36.727537Z", + "shell.execute_reply": "2024-04-08T19:12:36.727025Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.669724Z", - "iopub.status.busy": "2024-04-06T04:33:57.669426Z", - "iopub.status.idle": "2024-04-06T04:33:57.672060Z", - "shell.execute_reply": "2024-04-06T04:33:57.671546Z" + "iopub.execute_input": "2024-04-08T19:12:36.729415Z", + "iopub.status.busy": "2024-04-08T19:12:36.729242Z", + "iopub.status.idle": "2024-04-08T19:12:36.731642Z", + "shell.execute_reply": "2024-04-08T19:12:36.731237Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.673964Z", - "iopub.status.busy": "2024-04-06T04:33:57.673653Z", - "iopub.status.idle": "2024-04-06T04:33:57.677802Z", - "shell.execute_reply": "2024-04-06T04:33:57.677364Z" + "iopub.execute_input": "2024-04-08T19:12:36.733573Z", + "iopub.status.busy": "2024-04-08T19:12:36.733257Z", + "iopub.status.idle": "2024-04-08T19:12:36.737118Z", + "shell.execute_reply": "2024-04-08T19:12:36.736613Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.679746Z", - "iopub.status.busy": "2024-04-06T04:33:57.679562Z", - "iopub.status.idle": "2024-04-06T04:33:57.708692Z", - "shell.execute_reply": "2024-04-06T04:33:57.708184Z" + "iopub.execute_input": "2024-04-08T19:12:36.739150Z", + "iopub.status.busy": "2024-04-08T19:12:36.738829Z", + "iopub.status.idle": "2024-04-08T19:12:36.767384Z", + "shell.execute_reply": "2024-04-08T19:12:36.766867Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.711548Z", - "iopub.status.busy": "2024-04-06T04:33:57.711062Z", - "iopub.status.idle": "2024-04-06T04:33:57.716161Z", - "shell.execute_reply": "2024-04-06T04:33:57.715701Z" + "iopub.execute_input": "2024-04-08T19:12:36.769379Z", + "iopub.status.busy": "2024-04-08T19:12:36.769213Z", + "iopub.status.idle": "2024-04-08T19:12:36.773887Z", + "shell.execute_reply": "2024-04-08T19:12:36.773364Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index e4f3da5a6..93017979b 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:00.530023Z", - "iopub.status.busy": "2024-04-06T04:34:00.529838Z", - "iopub.status.idle": "2024-04-06T04:34:01.665208Z", - "shell.execute_reply": "2024-04-06T04:34:01.664664Z" + "iopub.execute_input": "2024-04-08T19:12:39.372434Z", + "iopub.status.busy": "2024-04-08T19:12:39.372031Z", + "iopub.status.idle": "2024-04-08T19:12:40.491618Z", + "shell.execute_reply": "2024-04-08T19:12:40.491005Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:01.667949Z", - "iopub.status.busy": "2024-04-06T04:34:01.667372Z", - "iopub.status.idle": "2024-04-06T04:34:01.860713Z", - "shell.execute_reply": "2024-04-06T04:34:01.860104Z" + "iopub.execute_input": "2024-04-08T19:12:40.494221Z", + "iopub.status.busy": "2024-04-08T19:12:40.493824Z", + "iopub.status.idle": "2024-04-08T19:12:40.685279Z", + "shell.execute_reply": "2024-04-08T19:12:40.684689Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:01.863387Z", - "iopub.status.busy": "2024-04-06T04:34:01.863099Z", - "iopub.status.idle": "2024-04-06T04:34:01.876408Z", - "shell.execute_reply": "2024-04-06T04:34:01.875857Z" + "iopub.execute_input": "2024-04-08T19:12:40.688253Z", + "iopub.status.busy": "2024-04-08T19:12:40.687653Z", + "iopub.status.idle": "2024-04-08T19:12:40.701124Z", + "shell.execute_reply": "2024-04-08T19:12:40.700676Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:01.878382Z", - "iopub.status.busy": "2024-04-06T04:34:01.878075Z", - "iopub.status.idle": "2024-04-06T04:34:04.553375Z", - "shell.execute_reply": "2024-04-06T04:34:04.552763Z" + "iopub.execute_input": "2024-04-08T19:12:40.703173Z", + "iopub.status.busy": "2024-04-08T19:12:40.702854Z", + "iopub.status.idle": "2024-04-08T19:12:43.329249Z", + "shell.execute_reply": "2024-04-08T19:12:43.328755Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:04.555866Z", - "iopub.status.busy": "2024-04-06T04:34:04.555447Z", - "iopub.status.idle": "2024-04-06T04:34:05.899176Z", - "shell.execute_reply": "2024-04-06T04:34:05.898628Z" + "iopub.execute_input": "2024-04-08T19:12:43.331514Z", + "iopub.status.busy": "2024-04-08T19:12:43.331169Z", + "iopub.status.idle": "2024-04-08T19:12:44.670891Z", + "shell.execute_reply": "2024-04-08T19:12:44.670276Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:05.901446Z", - "iopub.status.busy": "2024-04-06T04:34:05.901252Z", - "iopub.status.idle": "2024-04-06T04:34:05.905303Z", - "shell.execute_reply": "2024-04-06T04:34:05.904832Z" + "iopub.execute_input": "2024-04-08T19:12:44.673413Z", + "iopub.status.busy": "2024-04-08T19:12:44.673216Z", + "iopub.status.idle": "2024-04-08T19:12:44.677262Z", + "shell.execute_reply": "2024-04-08T19:12:44.676816Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:05.907229Z", - "iopub.status.busy": "2024-04-06T04:34:05.906935Z", - "iopub.status.idle": "2024-04-06T04:34:07.727455Z", - "shell.execute_reply": "2024-04-06T04:34:07.726870Z" + "iopub.execute_input": "2024-04-08T19:12:44.679281Z", + "iopub.status.busy": "2024-04-08T19:12:44.678982Z", + "iopub.status.idle": "2024-04-08T19:12:46.437869Z", + "shell.execute_reply": "2024-04-08T19:12:46.437260Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:07.730219Z", - "iopub.status.busy": "2024-04-06T04:34:07.729486Z", - "iopub.status.idle": "2024-04-06T04:34:07.737826Z", - "shell.execute_reply": "2024-04-06T04:34:07.737345Z" + "iopub.execute_input": "2024-04-08T19:12:46.440643Z", + "iopub.status.busy": "2024-04-08T19:12:46.440072Z", + "iopub.status.idle": "2024-04-08T19:12:46.448250Z", + "shell.execute_reply": "2024-04-08T19:12:46.447724Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:07.739895Z", - "iopub.status.busy": "2024-04-06T04:34:07.739580Z", - "iopub.status.idle": "2024-04-06T04:34:10.345477Z", - "shell.execute_reply": "2024-04-06T04:34:10.344972Z" + "iopub.execute_input": "2024-04-08T19:12:46.450615Z", + "iopub.status.busy": "2024-04-08T19:12:46.450220Z", + "iopub.status.idle": "2024-04-08T19:12:49.029942Z", + "shell.execute_reply": "2024-04-08T19:12:49.029325Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:10.347724Z", - "iopub.status.busy": "2024-04-06T04:34:10.347360Z", - "iopub.status.idle": "2024-04-06T04:34:10.351001Z", - "shell.execute_reply": "2024-04-06T04:34:10.350556Z" + "iopub.execute_input": "2024-04-08T19:12:49.032160Z", + "iopub.status.busy": "2024-04-08T19:12:49.031822Z", + "iopub.status.idle": "2024-04-08T19:12:49.035518Z", + "shell.execute_reply": "2024-04-08T19:12:49.035071Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:10.352909Z", - "iopub.status.busy": "2024-04-06T04:34:10.352732Z", - "iopub.status.idle": "2024-04-06T04:34:10.357176Z", - "shell.execute_reply": "2024-04-06T04:34:10.356760Z" + "iopub.execute_input": "2024-04-08T19:12:49.037498Z", + "iopub.status.busy": "2024-04-08T19:12:49.037171Z", + "iopub.status.idle": "2024-04-08T19:12:49.041048Z", + "shell.execute_reply": "2024-04-08T19:12:49.040619Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:10.359140Z", - "iopub.status.busy": "2024-04-06T04:34:10.358816Z", - "iopub.status.idle": "2024-04-06T04:34:10.361865Z", - "shell.execute_reply": "2024-04-06T04:34:10.361423Z" + "iopub.execute_input": "2024-04-08T19:12:49.042924Z", + "iopub.status.busy": "2024-04-08T19:12:49.042604Z", + "iopub.status.idle": "2024-04-08T19:12:49.045672Z", + "shell.execute_reply": "2024-04-08T19:12:49.045228Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index a41b44c5c..b290d6163 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:12.844775Z", - "iopub.status.busy": "2024-04-06T04:34:12.844311Z", - "iopub.status.idle": "2024-04-06T04:34:13.980776Z", - "shell.execute_reply": "2024-04-06T04:34:13.980176Z" + "iopub.execute_input": "2024-04-08T19:12:51.506697Z", + "iopub.status.busy": "2024-04-08T19:12:51.506534Z", + "iopub.status.idle": "2024-04-08T19:12:52.637000Z", + "shell.execute_reply": "2024-04-08T19:12:52.636397Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:13.983263Z", - "iopub.status.busy": "2024-04-06T04:34:13.983016Z", - "iopub.status.idle": "2024-04-06T04:34:15.579622Z", - "shell.execute_reply": "2024-04-06T04:34:15.579010Z" + "iopub.execute_input": "2024-04-08T19:12:52.639569Z", + "iopub.status.busy": "2024-04-08T19:12:52.639309Z", + "iopub.status.idle": "2024-04-08T19:12:55.104415Z", + "shell.execute_reply": "2024-04-08T19:12:55.103670Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:15.582324Z", - "iopub.status.busy": "2024-04-06T04:34:15.581949Z", - "iopub.status.idle": "2024-04-06T04:34:15.585226Z", - "shell.execute_reply": "2024-04-06T04:34:15.584699Z" + "iopub.execute_input": "2024-04-08T19:12:55.107140Z", + "iopub.status.busy": "2024-04-08T19:12:55.106931Z", + "iopub.status.idle": "2024-04-08T19:12:55.110341Z", + "shell.execute_reply": "2024-04-08T19:12:55.109801Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:15.587256Z", - "iopub.status.busy": "2024-04-06T04:34:15.586885Z", - "iopub.status.idle": "2024-04-06T04:34:15.593670Z", - "shell.execute_reply": "2024-04-06T04:34:15.593228Z" + "iopub.execute_input": "2024-04-08T19:12:55.112430Z", + "iopub.status.busy": "2024-04-08T19:12:55.112060Z", + "iopub.status.idle": "2024-04-08T19:12:55.118161Z", + "shell.execute_reply": "2024-04-08T19:12:55.117642Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:15.595551Z", - "iopub.status.busy": "2024-04-06T04:34:15.595372Z", - "iopub.status.idle": "2024-04-06T04:34:16.077823Z", - "shell.execute_reply": "2024-04-06T04:34:16.077255Z" + "iopub.execute_input": "2024-04-08T19:12:55.120250Z", + "iopub.status.busy": "2024-04-08T19:12:55.119951Z", + "iopub.status.idle": "2024-04-08T19:12:55.604414Z", + "shell.execute_reply": "2024-04-08T19:12:55.603862Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:16.079945Z", - "iopub.status.busy": "2024-04-06T04:34:16.079765Z", - "iopub.status.idle": "2024-04-06T04:34:16.085000Z", - "shell.execute_reply": "2024-04-06T04:34:16.084559Z" + "iopub.execute_input": "2024-04-08T19:12:55.607305Z", + "iopub.status.busy": "2024-04-08T19:12:55.606952Z", + "iopub.status.idle": "2024-04-08T19:12:55.612116Z", + "shell.execute_reply": "2024-04-08T19:12:55.611686Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:16.086986Z", - "iopub.status.busy": "2024-04-06T04:34:16.086699Z", - "iopub.status.idle": "2024-04-06T04:34:16.090564Z", - "shell.execute_reply": "2024-04-06T04:34:16.090132Z" + "iopub.execute_input": "2024-04-08T19:12:55.614134Z", + "iopub.status.busy": "2024-04-08T19:12:55.613824Z", + "iopub.status.idle": "2024-04-08T19:12:55.617419Z", + "shell.execute_reply": "2024-04-08T19:12:55.617014Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:16.092402Z", - "iopub.status.busy": "2024-04-06T04:34:16.092226Z", - "iopub.status.idle": "2024-04-06T04:34:16.742313Z", - "shell.execute_reply": "2024-04-06T04:34:16.741698Z" + "iopub.execute_input": "2024-04-08T19:12:55.619403Z", + "iopub.status.busy": "2024-04-08T19:12:55.619145Z", + "iopub.status.idle": "2024-04-08T19:12:56.292272Z", + "shell.execute_reply": "2024-04-08T19:12:56.291640Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:16.744425Z", - "iopub.status.busy": "2024-04-06T04:34:16.744233Z", - "iopub.status.idle": "2024-04-06T04:34:16.915555Z", - "shell.execute_reply": "2024-04-06T04:34:16.915036Z" + "iopub.execute_input": "2024-04-08T19:12:56.294743Z", + "iopub.status.busy": "2024-04-08T19:12:56.294368Z", + "iopub.status.idle": "2024-04-08T19:12:56.451834Z", + "shell.execute_reply": "2024-04-08T19:12:56.451237Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:16.917406Z", - "iopub.status.busy": "2024-04-06T04:34:16.917231Z", - "iopub.status.idle": "2024-04-06T04:34:16.921449Z", - "shell.execute_reply": "2024-04-06T04:34:16.921026Z" + "iopub.execute_input": "2024-04-08T19:12:56.454163Z", + "iopub.status.busy": "2024-04-08T19:12:56.453784Z", + "iopub.status.idle": "2024-04-08T19:12:56.458257Z", + "shell.execute_reply": "2024-04-08T19:12:56.457717Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:16.923486Z", - "iopub.status.busy": "2024-04-06T04:34:16.923119Z", - "iopub.status.idle": "2024-04-06T04:34:17.368354Z", - "shell.execute_reply": "2024-04-06T04:34:17.367768Z" + "iopub.execute_input": "2024-04-08T19:12:56.460284Z", + "iopub.status.busy": "2024-04-08T19:12:56.459945Z", + "iopub.status.idle": "2024-04-08T19:12:56.918547Z", + "shell.execute_reply": "2024-04-08T19:12:56.917913Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:17.371163Z", - "iopub.status.busy": "2024-04-06T04:34:17.370822Z", - "iopub.status.idle": "2024-04-06T04:34:17.674268Z", - "shell.execute_reply": "2024-04-06T04:34:17.673692Z" + "iopub.execute_input": "2024-04-08T19:12:56.921651Z", + "iopub.status.busy": "2024-04-08T19:12:56.921292Z", + "iopub.status.idle": "2024-04-08T19:12:57.253473Z", + "shell.execute_reply": "2024-04-08T19:12:57.252856Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:17.676624Z", - "iopub.status.busy": "2024-04-06T04:34:17.676303Z", - "iopub.status.idle": "2024-04-06T04:34:18.037637Z", - "shell.execute_reply": "2024-04-06T04:34:18.037134Z" + "iopub.execute_input": "2024-04-08T19:12:57.255657Z", + "iopub.status.busy": "2024-04-08T19:12:57.255478Z", + "iopub.status.idle": "2024-04-08T19:12:57.619053Z", + "shell.execute_reply": "2024-04-08T19:12:57.618466Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:18.040616Z", - "iopub.status.busy": "2024-04-06T04:34:18.040298Z", - "iopub.status.idle": "2024-04-06T04:34:18.480221Z", - "shell.execute_reply": "2024-04-06T04:34:18.479710Z" + "iopub.execute_input": "2024-04-08T19:12:57.621976Z", + "iopub.status.busy": "2024-04-08T19:12:57.621623Z", + "iopub.status.idle": "2024-04-08T19:12:58.060261Z", + "shell.execute_reply": "2024-04-08T19:12:58.059741Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:18.484224Z", - "iopub.status.busy": "2024-04-06T04:34:18.483951Z", - "iopub.status.idle": "2024-04-06T04:34:18.910308Z", - "shell.execute_reply": "2024-04-06T04:34:18.909828Z" + "iopub.execute_input": "2024-04-08T19:12:58.064403Z", + "iopub.status.busy": "2024-04-08T19:12:58.064187Z", + "iopub.status.idle": "2024-04-08T19:12:58.481716Z", + "shell.execute_reply": "2024-04-08T19:12:58.481166Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:18.912281Z", - "iopub.status.busy": "2024-04-06T04:34:18.912098Z", - "iopub.status.idle": "2024-04-06T04:34:19.127034Z", - "shell.execute_reply": "2024-04-06T04:34:19.126447Z" + "iopub.execute_input": "2024-04-08T19:12:58.484504Z", + "iopub.status.busy": "2024-04-08T19:12:58.484329Z", + "iopub.status.idle": "2024-04-08T19:12:58.698454Z", + "shell.execute_reply": "2024-04-08T19:12:58.697889Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:19.129044Z", - "iopub.status.busy": "2024-04-06T04:34:19.128856Z", - "iopub.status.idle": "2024-04-06T04:34:19.327498Z", - "shell.execute_reply": "2024-04-06T04:34:19.327017Z" + "iopub.execute_input": "2024-04-08T19:12:58.700764Z", + "iopub.status.busy": "2024-04-08T19:12:58.700331Z", + "iopub.status.idle": "2024-04-08T19:12:58.897447Z", + "shell.execute_reply": "2024-04-08T19:12:58.896906Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:19.329747Z", - "iopub.status.busy": "2024-04-06T04:34:19.329569Z", - "iopub.status.idle": "2024-04-06T04:34:19.332430Z", - "shell.execute_reply": "2024-04-06T04:34:19.332000Z" + "iopub.execute_input": "2024-04-08T19:12:58.899675Z", + "iopub.status.busy": "2024-04-08T19:12:58.899273Z", + "iopub.status.idle": "2024-04-08T19:12:58.902127Z", + "shell.execute_reply": "2024-04-08T19:12:58.901613Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:19.334383Z", - "iopub.status.busy": "2024-04-06T04:34:19.334059Z", - "iopub.status.idle": "2024-04-06T04:34:20.209133Z", - "shell.execute_reply": "2024-04-06T04:34:20.208555Z" + "iopub.execute_input": "2024-04-08T19:12:58.904091Z", + "iopub.status.busy": "2024-04-08T19:12:58.903780Z", + "iopub.status.idle": "2024-04-08T19:12:59.779761Z", + "shell.execute_reply": "2024-04-08T19:12:59.779165Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:20.211448Z", - "iopub.status.busy": "2024-04-06T04:34:20.211008Z", - "iopub.status.idle": "2024-04-06T04:34:20.342519Z", - "shell.execute_reply": "2024-04-06T04:34:20.342095Z" + "iopub.execute_input": "2024-04-08T19:12:59.782264Z", + "iopub.status.busy": "2024-04-08T19:12:59.781937Z", + "iopub.status.idle": "2024-04-08T19:12:59.964112Z", + "shell.execute_reply": "2024-04-08T19:12:59.963525Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:20.344524Z", - "iopub.status.busy": "2024-04-06T04:34:20.344193Z", - "iopub.status.idle": "2024-04-06T04:34:20.458465Z", - "shell.execute_reply": "2024-04-06T04:34:20.457952Z" + "iopub.execute_input": "2024-04-08T19:12:59.966448Z", + "iopub.status.busy": "2024-04-08T19:12:59.965968Z", + "iopub.status.idle": "2024-04-08T19:13:00.154653Z", + "shell.execute_reply": "2024-04-08T19:13:00.154036Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:20.460533Z", - "iopub.status.busy": "2024-04-06T04:34:20.460222Z", - "iopub.status.idle": "2024-04-06T04:34:21.196312Z", - "shell.execute_reply": "2024-04-06T04:34:21.195737Z" + "iopub.execute_input": "2024-04-08T19:13:00.156712Z", + "iopub.status.busy": "2024-04-08T19:13:00.156532Z", + "iopub.status.idle": "2024-04-08T19:13:00.829599Z", + "shell.execute_reply": "2024-04-08T19:13:00.829059Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:21.198485Z", - "iopub.status.busy": "2024-04-06T04:34:21.198170Z", - "iopub.status.idle": "2024-04-06T04:34:21.201764Z", - "shell.execute_reply": "2024-04-06T04:34:21.201234Z" + "iopub.execute_input": "2024-04-08T19:13:00.832154Z", + "iopub.status.busy": "2024-04-08T19:13:00.831662Z", + "iopub.status.idle": "2024-04-08T19:13:00.835999Z", + "shell.execute_reply": "2024-04-08T19:13:00.835484Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index dff88146d..c8a250110 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:23.301443Z", - "iopub.status.busy": "2024-04-06T04:34:23.301280Z", - "iopub.status.idle": "2024-04-06T04:34:25.945799Z", - "shell.execute_reply": "2024-04-06T04:34:25.945183Z" + "iopub.execute_input": "2024-04-08T19:13:03.168340Z", + "iopub.status.busy": "2024-04-08T19:13:03.168171Z", + "iopub.status.idle": "2024-04-08T19:13:05.872246Z", + "shell.execute_reply": "2024-04-08T19:13:05.871721Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:25.948528Z", - "iopub.status.busy": "2024-04-06T04:34:25.948218Z", - "iopub.status.idle": "2024-04-06T04:34:26.266936Z", - "shell.execute_reply": "2024-04-06T04:34:26.266392Z" + "iopub.execute_input": "2024-04-08T19:13:05.874860Z", + "iopub.status.busy": "2024-04-08T19:13:05.874355Z", + "iopub.status.idle": "2024-04-08T19:13:06.204418Z", + "shell.execute_reply": "2024-04-08T19:13:06.203821Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:26.269348Z", - "iopub.status.busy": "2024-04-06T04:34:26.269036Z", - "iopub.status.idle": "2024-04-06T04:34:26.272997Z", - "shell.execute_reply": "2024-04-06T04:34:26.272583Z" + "iopub.execute_input": "2024-04-08T19:13:06.206962Z", + "iopub.status.busy": "2024-04-08T19:13:06.206657Z", + "iopub.status.idle": "2024-04-08T19:13:06.210651Z", + "shell.execute_reply": "2024-04-08T19:13:06.210217Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:26.275074Z", - "iopub.status.busy": "2024-04-06T04:34:26.274739Z", - "iopub.status.idle": "2024-04-06T04:34:31.314624Z", - "shell.execute_reply": "2024-04-06T04:34:31.314110Z" + "iopub.execute_input": "2024-04-08T19:13:06.212643Z", + "iopub.status.busy": "2024-04-08T19:13:06.212236Z", + "iopub.status.idle": "2024-04-08T19:13:14.211316Z", + "shell.execute_reply": "2024-04-08T19:13:14.210735Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1769472/170498071 [00:00<00:09, 17538639.93it/s]" + " 0%| | 32768/170498071 [00:00<11:46, 241421.69it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 8192000/170498071 [00:00<00:03, 44831466.83it/s]" + " 0%| | 229376/170498071 [00:00<03:01, 939950.18it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 13041664/170498071 [00:00<00:03, 46433907.51it/s]" + " 1%| | 884736/170498071 [00:00<01:03, 2688209.96it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 19791872/170498071 [00:00<00:02, 54704480.34it/s]" + " 2%|▏ | 3538944/170498071 [00:00<00:18, 9239543.74it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 25788416/170498071 [00:00<00:02, 56333002.76it/s]" + " 6%|▌ | 9633792/170498071 [00:00<00:07, 21711409.29it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 31424512/170498071 [00:00<00:02, 55036228.43it/s]" + " 9%|▉ | 15695872/170498071 [00:00<00:04, 32236184.47it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37978112/170498071 [00:00<00:02, 58347764.86it/s]" + " 11%|█▏ | 19202048/170498071 [00:00<00:04, 31213118.98it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 43843584/170498071 [00:00<00:02, 56723331.51it/s]" + " 15%|█▍ | 25165824/170498071 [00:01<00:03, 36748958.36it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 49676288/170498071 [00:00<00:02, 57186066.18it/s]" + " 17%|█▋ | 29196288/170498071 [00:01<00:03, 37692490.20it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 56197120/170498071 [00:01<00:01, 59520956.47it/s]" + " 20%|██ | 34471936/170498071 [00:01<00:03, 41145514.19it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 62193664/170498071 [00:01<00:01, 55914267.41it/s]" + " 23%|██▎ | 38699008/170498071 [00:01<00:03, 40166399.16it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 68943872/170498071 [00:01<00:01, 59219350.19it/s]" + " 26%|██▌ | 43909120/170498071 [00:01<00:02, 43337775.10it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 77758464/170498071 [00:01<00:01, 67611548.92it/s]" + " 28%|██▊ | 48332800/170498071 [00:01<00:02, 41475797.12it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 87556096/170498071 [00:01<00:01, 76485308.02it/s]" + " 31%|███ | 52822016/170498071 [00:01<00:02, 42394898.27it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 98697216/170498071 [00:01<00:00, 86783379.22it/s]" + " 33%|███▎ | 57114624/170498071 [00:01<00:02, 40475978.10it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 107642880/170498071 [00:01<00:00, 87414535.88it/s]" + " 36%|███▌ | 61571072/170498071 [00:01<00:02, 41609620.80it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 117768192/170498071 [00:01<00:00, 91407747.36it/s]" + " 39%|███▊ | 65863680/170498071 [00:02<00:02, 39729349.49it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 127565824/170498071 [00:01<00:00, 93045985.07it/s]" + " 41%|████▏ | 70418432/170498071 [00:02<00:02, 41333024.63it/s]" ] }, { @@ -396,7 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 136904704/170498071 [00:01<00:00, 88471190.33it/s]" + " 44%|████▍ | 74809344/170498071 [00:02<00:02, 42035778.22it/s]" ] }, { @@ -404,7 +404,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 146505728/170498071 [00:02<00:00, 90636821.57it/s]" + " 46%|████▋ | 79069184/170498071 [00:02<00:02, 40305702.80it/s]" ] }, { @@ -412,7 +412,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 155648000/170498071 [00:02<00:00, 86904824.23it/s]" + " 49%|████▉ | 83427328/170498071 [00:02<00:02, 41196757.42it/s]" ] }, { @@ -420,7 +420,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 165478400/170498071 [00:02<00:00, 90092503.62it/s]" + " 51%|█████▏ | 87588864/170498071 [00:02<00:02, 39637138.62it/s]" ] }, { @@ -428,7 +428,151 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 72776359.59it/s]" + " 54%|█████▍ | 91881472/170498071 [00:02<00:01, 40536471.23it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▋ | 95977472/170498071 [00:02<00:01, 39252273.66it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 59%|█████▉ | 100466688/170498071 [00:02<00:01, 40454041.31it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▏ | 104955904/170498071 [00:02<00:01, 39445045.53it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 64%|██████▍ | 109510656/170498071 [00:03<00:01, 41083281.40it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 67%|██████▋ | 113803264/170498071 [00:03<00:01, 41583370.05it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 69%|██████▉ | 117997568/170498071 [00:03<00:01, 40073702.55it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 72%|███████▏ | 122290176/170498071 [00:03<00:01, 40828624.13it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 74%|███████▍ | 126418944/170498071 [00:03<00:01, 39461562.96it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 77%|███████▋ | 130744320/170498071 [00:03<00:00, 40509967.30it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 79%|███████▉ | 135266304/170498071 [00:03<00:00, 41845498.05it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 82%|████████▏ | 139493376/170498071 [00:03<00:00, 40939532.66it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 85%|████████▍ | 144211968/170498071 [00:03<00:00, 42696106.22it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 148504576/170498071 [00:04<00:00, 41635041.16it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|████████▉ | 152961024/170498071 [00:04<00:00, 42468713.05it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▏| 157253632/170498071 [00:04<00:00, 42241843.01it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▍| 161939456/170498071 [00:04<00:00, 43462412.29it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 166297600/170498071 [00:04<00:00, 43386976.71it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:04<00:00, 37601665.95it/s]" ] }, { @@ -546,10 +690,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:31.316844Z", - "iopub.status.busy": "2024-04-06T04:34:31.316485Z", - "iopub.status.idle": "2024-04-06T04:34:31.321190Z", - "shell.execute_reply": "2024-04-06T04:34:31.320736Z" + "iopub.execute_input": "2024-04-08T19:13:14.213408Z", + "iopub.status.busy": "2024-04-08T19:13:14.213222Z", + "iopub.status.idle": "2024-04-08T19:13:14.217828Z", + "shell.execute_reply": "2024-04-08T19:13:14.217410Z" }, "nbsphinx": "hidden" }, @@ -600,10 +744,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:31.323414Z", - "iopub.status.busy": "2024-04-06T04:34:31.323024Z", - "iopub.status.idle": "2024-04-06T04:34:31.843073Z", - "shell.execute_reply": "2024-04-06T04:34:31.842461Z" + "iopub.execute_input": "2024-04-08T19:13:14.219646Z", + "iopub.status.busy": "2024-04-08T19:13:14.219474Z", + "iopub.status.idle": "2024-04-08T19:13:14.735288Z", + "shell.execute_reply": "2024-04-08T19:13:14.734716Z" } }, "outputs": [ @@ -636,10 +780,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:31.845476Z", - "iopub.status.busy": "2024-04-06T04:34:31.845122Z", - "iopub.status.idle": "2024-04-06T04:34:32.343468Z", - "shell.execute_reply": "2024-04-06T04:34:32.342863Z" + "iopub.execute_input": "2024-04-08T19:13:14.737482Z", + "iopub.status.busy": "2024-04-08T19:13:14.737170Z", + "iopub.status.idle": "2024-04-08T19:13:15.227922Z", + "shell.execute_reply": "2024-04-08T19:13:15.227323Z" } }, "outputs": [ @@ -677,10 +821,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:32.345737Z", - "iopub.status.busy": "2024-04-06T04:34:32.345520Z", - "iopub.status.idle": "2024-04-06T04:34:32.349079Z", - "shell.execute_reply": "2024-04-06T04:34:32.348636Z" + "iopub.execute_input": "2024-04-08T19:13:15.229967Z", + "iopub.status.busy": "2024-04-08T19:13:15.229777Z", + "iopub.status.idle": "2024-04-08T19:13:15.233685Z", + "shell.execute_reply": "2024-04-08T19:13:15.233276Z" } }, "outputs": [], @@ -703,17 +847,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:32.351161Z", - "iopub.status.busy": "2024-04-06T04:34:32.350840Z", - "iopub.status.idle": "2024-04-06T04:34:45.259522Z", - "shell.execute_reply": "2024-04-06T04:34:45.258934Z" + "iopub.execute_input": "2024-04-08T19:13:15.235578Z", + "iopub.status.busy": "2024-04-08T19:13:15.235253Z", + "iopub.status.idle": "2024-04-08T19:13:27.791114Z", + "shell.execute_reply": "2024-04-08T19:13:27.790500Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "991b461cb5f14fa38412734f4f788575", + "model_id": "2bb5503dd8b443508a98689b99426ed1", "version_major": 2, "version_minor": 0 }, @@ -772,10 +916,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:45.261911Z", - "iopub.status.busy": "2024-04-06T04:34:45.261529Z", - "iopub.status.idle": "2024-04-06T04:34:46.966878Z", - "shell.execute_reply": "2024-04-06T04:34:46.966282Z" + "iopub.execute_input": "2024-04-08T19:13:27.793604Z", + "iopub.status.busy": "2024-04-08T19:13:27.793211Z", + "iopub.status.idle": "2024-04-08T19:13:29.587802Z", + "shell.execute_reply": "2024-04-08T19:13:29.587253Z" } }, "outputs": [ @@ -819,10 +963,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:46.969590Z", - "iopub.status.busy": "2024-04-06T04:34:46.969163Z", - "iopub.status.idle": "2024-04-06T04:34:47.194956Z", - "shell.execute_reply": "2024-04-06T04:34:47.194388Z" + "iopub.execute_input": "2024-04-08T19:13:29.590598Z", + "iopub.status.busy": "2024-04-08T19:13:29.590127Z", + "iopub.status.idle": "2024-04-08T19:13:29.858111Z", + "shell.execute_reply": "2024-04-08T19:13:29.857584Z" } }, "outputs": [ @@ -858,10 +1002,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:47.197286Z", - "iopub.status.busy": "2024-04-06T04:34:47.197100Z", - "iopub.status.idle": "2024-04-06T04:34:47.844542Z", - "shell.execute_reply": "2024-04-06T04:34:47.843965Z" + "iopub.execute_input": "2024-04-08T19:13:29.861034Z", + "iopub.status.busy": "2024-04-08T19:13:29.860632Z", + "iopub.status.idle": "2024-04-08T19:13:30.577484Z", + "shell.execute_reply": "2024-04-08T19:13:30.576958Z" } }, "outputs": [ @@ -911,10 +1055,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:47.847025Z", - "iopub.status.busy": "2024-04-06T04:34:47.846663Z", - "iopub.status.idle": "2024-04-06T04:34:48.133586Z", - "shell.execute_reply": "2024-04-06T04:34:48.133164Z" + "iopub.execute_input": "2024-04-08T19:13:30.580265Z", + "iopub.status.busy": "2024-04-08T19:13:30.579691Z", + "iopub.status.idle": "2024-04-08T19:13:30.924605Z", + "shell.execute_reply": "2024-04-08T19:13:30.924026Z" } }, "outputs": [ @@ -962,10 +1106,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:48.135743Z", - "iopub.status.busy": "2024-04-06T04:34:48.135451Z", - "iopub.status.idle": "2024-04-06T04:34:48.362823Z", - "shell.execute_reply": "2024-04-06T04:34:48.362258Z" + "iopub.execute_input": "2024-04-08T19:13:30.926999Z", + "iopub.status.busy": "2024-04-08T19:13:30.926574Z", + "iopub.status.idle": "2024-04-08T19:13:31.175317Z", + "shell.execute_reply": "2024-04-08T19:13:31.174782Z" } }, "outputs": [ @@ -1021,10 +1165,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:48.365290Z", - "iopub.status.busy": "2024-04-06T04:34:48.364817Z", - "iopub.status.idle": "2024-04-06T04:34:48.441430Z", - "shell.execute_reply": "2024-04-06T04:34:48.440837Z" + "iopub.execute_input": "2024-04-08T19:13:31.177937Z", + "iopub.status.busy": "2024-04-08T19:13:31.177576Z", + "iopub.status.idle": "2024-04-08T19:13:31.272978Z", + "shell.execute_reply": "2024-04-08T19:13:31.272473Z" } }, "outputs": [], @@ -1045,10 +1189,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:48.444056Z", - "iopub.status.busy": "2024-04-06T04:34:48.443776Z", - "iopub.status.idle": "2024-04-06T04:34:58.624130Z", - "shell.execute_reply": "2024-04-06T04:34:58.623554Z" + "iopub.execute_input": "2024-04-08T19:13:31.275519Z", + "iopub.status.busy": "2024-04-08T19:13:31.275167Z", + "iopub.status.idle": "2024-04-08T19:13:41.679014Z", + "shell.execute_reply": "2024-04-08T19:13:41.678397Z" } }, "outputs": [ @@ -1085,10 +1229,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:58.626457Z", - "iopub.status.busy": "2024-04-06T04:34:58.626142Z", - "iopub.status.idle": "2024-04-06T04:35:00.411515Z", - "shell.execute_reply": "2024-04-06T04:35:00.411019Z" + "iopub.execute_input": "2024-04-08T19:13:41.681464Z", + "iopub.status.busy": "2024-04-08T19:13:41.681014Z", + "iopub.status.idle": "2024-04-08T19:13:43.393278Z", + "shell.execute_reply": "2024-04-08T19:13:43.392676Z" } }, "outputs": [ @@ -1119,10 +1263,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:00.414250Z", - "iopub.status.busy": "2024-04-06T04:35:00.413656Z", - "iopub.status.idle": "2024-04-06T04:35:00.626834Z", - "shell.execute_reply": "2024-04-06T04:35:00.626355Z" + "iopub.execute_input": "2024-04-08T19:13:43.395878Z", + "iopub.status.busy": "2024-04-08T19:13:43.395510Z", + "iopub.status.idle": "2024-04-08T19:13:43.601564Z", + "shell.execute_reply": "2024-04-08T19:13:43.600964Z" } }, "outputs": [], @@ -1136,10 +1280,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:00.629326Z", - "iopub.status.busy": "2024-04-06T04:35:00.628902Z", - "iopub.status.idle": "2024-04-06T04:35:00.632039Z", - "shell.execute_reply": "2024-04-06T04:35:00.631618Z" + "iopub.execute_input": "2024-04-08T19:13:43.604043Z", + "iopub.status.busy": "2024-04-08T19:13:43.603730Z", + "iopub.status.idle": "2024-04-08T19:13:43.606880Z", + "shell.execute_reply": "2024-04-08T19:13:43.606367Z" } }, "outputs": [], @@ -1161,10 +1305,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:00.634061Z", - "iopub.status.busy": "2024-04-06T04:35:00.633729Z", - "iopub.status.idle": "2024-04-06T04:35:00.641703Z", - "shell.execute_reply": "2024-04-06T04:35:00.641295Z" + "iopub.execute_input": "2024-04-08T19:13:43.609039Z", + "iopub.status.busy": "2024-04-08T19:13:43.608752Z", + "iopub.status.idle": "2024-04-08T19:13:43.617066Z", + "shell.execute_reply": "2024-04-08T19:13:43.616668Z" }, "nbsphinx": "hidden" }, @@ -1209,7 +1353,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "15c8db426b2d442dafc5fec0ada46d26": { + "007c6ddc44eb433e853f88ed09044f49": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1262,7 +1406,7 @@ "width": null } }, - "18e0c03543334359bae24bc35d678719": { + "086fdb340ddc44499e840c6359ce1479": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1280,7 +1424,30 @@ "text_color": null } }, - "5888f59c5c7747d284d2a1179b08220a": { + "0c6902059f6d43049f050a70f2c4d5ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_007c6ddc44eb433e853f88ed09044f49", + "placeholder": "​", + "style": "IPY_MODEL_8e6e75da45e94500ac3664d6571c19a5", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 261MB/s]" + } + }, + "0c87bf09ff7545318077176d0bc67dc5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1333,53 +1500,31 @@ "width": null } }, - "62503695057042fe9e46cf6d976cf0ec": { + "2bb5503dd8b443508a98689b99426ed1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dc69440eba354ce18f5a8f226872b05a", - "placeholder": "​", - "style": "IPY_MODEL_18e0c03543334359bae24bc35d678719", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 180MB/s]" - } - }, - "66a60ffdadfe43c49835a3149977dd23": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5888f59c5c7747d284d2a1179b08220a", - "placeholder": "​", - "style": "IPY_MODEL_a901c8deef634fefa5bf50b380005288", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b99b680885934cdfa31bc3a843e20724", + "IPY_MODEL_f15ac1823a7f4e549da71d08245aa9b2", + "IPY_MODEL_0c6902059f6d43049f050a70f2c4d5ed" + ], + "layout": "IPY_MODEL_0c87bf09ff7545318077176d0bc67dc5", "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" + "tooltip": null } }, - "710b50fb237d4bfa800dd8ccca2aa500": { + "3897024bcca245b1bc58655ded2b9bc5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1432,57 +1577,7 @@ "width": null } }, - "721bf251193348b0a2bc03a41fa88621": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_710b50fb237d4bfa800dd8ccca2aa500", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ad6af0ebf6a84194902f8859297785ed", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "991b461cb5f14fa38412734f4f788575": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_66a60ffdadfe43c49835a3149977dd23", - "IPY_MODEL_721bf251193348b0a2bc03a41fa88621", - "IPY_MODEL_62503695057042fe9e46cf6d976cf0ec" - ], - "layout": "IPY_MODEL_15c8db426b2d442dafc5fec0ada46d26", - "tabbable": null, - "tooltip": null - } - }, - "a901c8deef634fefa5bf50b380005288": { + "8e6e75da45e94500ac3664d6571c19a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1500,23 +1595,30 @@ "text_color": null } }, - "ad6af0ebf6a84194902f8859297785ed": { + "b99b680885934cdfa31bc3a843e20724": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3897024bcca245b1bc58655ded2b9bc5", + "placeholder": "​", + "style": "IPY_MODEL_086fdb340ddc44499e840c6359ce1479", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" } }, - "dc69440eba354ce18f5a8f226872b05a": { + "c8047222b06d47abb1cddbdcb8b6aaff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1568,6 +1670,48 @@ "visibility": null, "width": null } + }, + "f15ac1823a7f4e549da71d08245aa9b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c8047222b06d47abb1cddbdcb8b6aaff", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fb1f241a35b74a80a9334872055927bc", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "fb1f241a35b74a80a9334872055927bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index bac3e263c..673215d3c 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:04.945916Z", - "iopub.status.busy": "2024-04-06T04:35:04.945744Z", - "iopub.status.idle": "2024-04-06T04:35:06.052331Z", - "shell.execute_reply": "2024-04-06T04:35:06.051744Z" + "iopub.execute_input": "2024-04-08T19:13:47.803397Z", + "iopub.status.busy": "2024-04-08T19:13:47.802938Z", + "iopub.status.idle": "2024-04-08T19:13:48.925278Z", + "shell.execute_reply": "2024-04-08T19:13:48.924752Z" }, "nbsphinx": "hidden" }, @@ -117,7 +117,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.054800Z", - "iopub.status.busy": "2024-04-06T04:35:06.054557Z", - "iopub.status.idle": "2024-04-06T04:35:06.072120Z", - "shell.execute_reply": "2024-04-06T04:35:06.071716Z" + "iopub.execute_input": "2024-04-08T19:13:48.927915Z", + "iopub.status.busy": "2024-04-08T19:13:48.927470Z", + "iopub.status.idle": "2024-04-08T19:13:48.945021Z", + "shell.execute_reply": "2024-04-08T19:13:48.944602Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.074202Z", - "iopub.status.busy": "2024-04-06T04:35:06.073811Z", - "iopub.status.idle": "2024-04-06T04:35:06.076794Z", - "shell.execute_reply": "2024-04-06T04:35:06.076351Z" + "iopub.execute_input": "2024-04-08T19:13:48.947242Z", + "iopub.status.busy": "2024-04-08T19:13:48.946736Z", + "iopub.status.idle": "2024-04-08T19:13:48.949732Z", + "shell.execute_reply": "2024-04-08T19:13:48.949294Z" }, "nbsphinx": "hidden" }, @@ -199,10 +199,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.078868Z", - "iopub.status.busy": "2024-04-06T04:35:06.078492Z", - "iopub.status.idle": "2024-04-06T04:35:06.208916Z", - "shell.execute_reply": "2024-04-06T04:35:06.208494Z" + "iopub.execute_input": "2024-04-08T19:13:48.951557Z", + "iopub.status.busy": "2024-04-08T19:13:48.951388Z", + "iopub.status.idle": "2024-04-08T19:13:49.150115Z", + "shell.execute_reply": "2024-04-08T19:13:49.149617Z" } }, "outputs": [ @@ -375,10 +375,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.211100Z", - "iopub.status.busy": "2024-04-06T04:35:06.210666Z", - "iopub.status.idle": "2024-04-06T04:35:06.392965Z", - "shell.execute_reply": "2024-04-06T04:35:06.392412Z" + "iopub.execute_input": "2024-04-08T19:13:49.152258Z", + "iopub.status.busy": "2024-04-08T19:13:49.151925Z", + "iopub.status.idle": "2024-04-08T19:13:49.328521Z", + "shell.execute_reply": "2024-04-08T19:13:49.328018Z" }, "nbsphinx": "hidden" }, @@ -418,10 +418,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.395403Z", - "iopub.status.busy": "2024-04-06T04:35:06.395013Z", - "iopub.status.idle": "2024-04-06T04:35:06.638949Z", - "shell.execute_reply": "2024-04-06T04:35:06.638348Z" + "iopub.execute_input": "2024-04-08T19:13:49.330913Z", + "iopub.status.busy": "2024-04-08T19:13:49.330551Z", + "iopub.status.idle": "2024-04-08T19:13:49.538644Z", + "shell.execute_reply": "2024-04-08T19:13:49.538041Z" } }, "outputs": [ @@ -457,10 +457,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.641297Z", - "iopub.status.busy": "2024-04-06T04:35:06.640953Z", - "iopub.status.idle": "2024-04-06T04:35:06.645580Z", - "shell.execute_reply": "2024-04-06T04:35:06.645032Z" + "iopub.execute_input": "2024-04-08T19:13:49.540725Z", + "iopub.status.busy": "2024-04-08T19:13:49.540437Z", + "iopub.status.idle": "2024-04-08T19:13:49.544691Z", + "shell.execute_reply": "2024-04-08T19:13:49.544278Z" } }, "outputs": [], @@ -478,10 +478,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.647781Z", - "iopub.status.busy": "2024-04-06T04:35:06.647427Z", - "iopub.status.idle": "2024-04-06T04:35:06.654351Z", - "shell.execute_reply": "2024-04-06T04:35:06.653847Z" + "iopub.execute_input": "2024-04-08T19:13:49.546581Z", + "iopub.status.busy": "2024-04-08T19:13:49.546300Z", + "iopub.status.idle": "2024-04-08T19:13:49.552461Z", + "shell.execute_reply": "2024-04-08T19:13:49.552021Z" } }, "outputs": [], @@ -528,10 +528,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.656526Z", - "iopub.status.busy": "2024-04-06T04:35:06.656127Z", - "iopub.status.idle": "2024-04-06T04:35:06.658766Z", - "shell.execute_reply": "2024-04-06T04:35:06.658318Z" + "iopub.execute_input": "2024-04-08T19:13:49.554456Z", + "iopub.status.busy": "2024-04-08T19:13:49.554124Z", + "iopub.status.idle": "2024-04-08T19:13:49.556701Z", + "shell.execute_reply": "2024-04-08T19:13:49.556278Z" } }, "outputs": [], @@ -546,10 +546,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.660791Z", - "iopub.status.busy": "2024-04-06T04:35:06.660469Z", - "iopub.status.idle": "2024-04-06T04:35:14.877273Z", - "shell.execute_reply": "2024-04-06T04:35:14.876740Z" + "iopub.execute_input": "2024-04-08T19:13:49.558519Z", + "iopub.status.busy": "2024-04-08T19:13:49.558220Z", + "iopub.status.idle": "2024-04-08T19:13:57.783852Z", + "shell.execute_reply": "2024-04-08T19:13:57.783248Z" } }, "outputs": [], @@ -573,10 +573,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:14.880136Z", - "iopub.status.busy": "2024-04-06T04:35:14.879546Z", - "iopub.status.idle": "2024-04-06T04:35:14.886452Z", - "shell.execute_reply": "2024-04-06T04:35:14.885981Z" + "iopub.execute_input": "2024-04-08T19:13:57.787203Z", + "iopub.status.busy": "2024-04-08T19:13:57.786649Z", + "iopub.status.idle": "2024-04-08T19:13:57.794488Z", + "shell.execute_reply": "2024-04-08T19:13:57.794042Z" } }, "outputs": [ @@ -679,10 +679,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:14.888384Z", - "iopub.status.busy": "2024-04-06T04:35:14.888208Z", - "iopub.status.idle": "2024-04-06T04:35:14.891854Z", - "shell.execute_reply": "2024-04-06T04:35:14.891406Z" + "iopub.execute_input": "2024-04-08T19:13:57.796488Z", + "iopub.status.busy": "2024-04-08T19:13:57.796215Z", + "iopub.status.idle": "2024-04-08T19:13:57.799641Z", + "shell.execute_reply": "2024-04-08T19:13:57.799235Z" } }, "outputs": [], @@ -697,10 +697,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:14.893970Z", - "iopub.status.busy": "2024-04-06T04:35:14.893580Z", - "iopub.status.idle": "2024-04-06T04:35:14.896696Z", - "shell.execute_reply": "2024-04-06T04:35:14.896194Z" + "iopub.execute_input": "2024-04-08T19:13:57.801520Z", + "iopub.status.busy": "2024-04-08T19:13:57.801263Z", + "iopub.status.idle": "2024-04-08T19:13:57.804571Z", + "shell.execute_reply": "2024-04-08T19:13:57.804133Z" } }, "outputs": [ @@ -735,10 +735,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:14.898553Z", - "iopub.status.busy": "2024-04-06T04:35:14.898382Z", - "iopub.status.idle": "2024-04-06T04:35:14.901388Z", - "shell.execute_reply": "2024-04-06T04:35:14.900951Z" + "iopub.execute_input": "2024-04-08T19:13:57.806527Z", + "iopub.status.busy": "2024-04-08T19:13:57.806223Z", + "iopub.status.idle": "2024-04-08T19:13:57.809258Z", + "shell.execute_reply": "2024-04-08T19:13:57.808725Z" } }, "outputs": [], @@ -757,10 +757,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:14.903150Z", - "iopub.status.busy": "2024-04-06T04:35:14.902982Z", - "iopub.status.idle": "2024-04-06T04:35:14.910845Z", - "shell.execute_reply": "2024-04-06T04:35:14.910300Z" + "iopub.execute_input": "2024-04-08T19:13:57.811263Z", + "iopub.status.busy": "2024-04-08T19:13:57.810959Z", + "iopub.status.idle": "2024-04-08T19:13:57.818786Z", + "shell.execute_reply": "2024-04-08T19:13:57.818238Z" } }, "outputs": [ @@ -884,10 +884,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:14.912783Z", - "iopub.status.busy": "2024-04-06T04:35:14.912607Z", - "iopub.status.idle": "2024-04-06T04:35:14.915272Z", - "shell.execute_reply": "2024-04-06T04:35:14.914817Z" + "iopub.execute_input": "2024-04-08T19:13:57.820889Z", + "iopub.status.busy": "2024-04-08T19:13:57.820509Z", + "iopub.status.idle": "2024-04-08T19:13:57.823238Z", + "shell.execute_reply": "2024-04-08T19:13:57.822711Z" }, "nbsphinx": "hidden" }, @@ -922,10 +922,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:14.917066Z", - "iopub.status.busy": "2024-04-06T04:35:14.916896Z", - "iopub.status.idle": "2024-04-06T04:35:15.039512Z", - "shell.execute_reply": "2024-04-06T04:35:15.038973Z" + "iopub.execute_input": "2024-04-08T19:13:57.825125Z", + "iopub.status.busy": "2024-04-08T19:13:57.824848Z", + "iopub.status.idle": "2024-04-08T19:13:57.944411Z", + "shell.execute_reply": "2024-04-08T19:13:57.943830Z" } }, "outputs": [ @@ -964,10 +964,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:15.041688Z", - "iopub.status.busy": "2024-04-06T04:35:15.041372Z", - "iopub.status.idle": "2024-04-06T04:35:15.143758Z", - "shell.execute_reply": "2024-04-06T04:35:15.143187Z" + "iopub.execute_input": "2024-04-08T19:13:57.946652Z", + "iopub.status.busy": "2024-04-08T19:13:57.946416Z", + "iopub.status.idle": "2024-04-08T19:13:58.050381Z", + "shell.execute_reply": "2024-04-08T19:13:58.049796Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:15.146009Z", - "iopub.status.busy": "2024-04-06T04:35:15.145689Z", - "iopub.status.idle": "2024-04-06T04:35:15.632674Z", - "shell.execute_reply": "2024-04-06T04:35:15.632055Z" + "iopub.execute_input": "2024-04-08T19:13:58.052902Z", + "iopub.status.busy": "2024-04-08T19:13:58.052525Z", + "iopub.status.idle": "2024-04-08T19:13:58.541282Z", + "shell.execute_reply": "2024-04-08T19:13:58.540644Z" } }, "outputs": [], @@ -1042,10 +1042,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:15.635337Z", - "iopub.status.busy": "2024-04-06T04:35:15.634992Z", - "iopub.status.idle": "2024-04-06T04:35:15.743506Z", - "shell.execute_reply": "2024-04-06T04:35:15.742910Z" + "iopub.execute_input": "2024-04-08T19:13:58.544024Z", + "iopub.status.busy": "2024-04-08T19:13:58.543626Z", + "iopub.status.idle": "2024-04-08T19:13:58.648994Z", + "shell.execute_reply": "2024-04-08T19:13:58.648352Z" } }, "outputs": [ @@ -1080,10 +1080,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:15.745851Z", - "iopub.status.busy": "2024-04-06T04:35:15.745490Z", - "iopub.status.idle": "2024-04-06T04:35:15.753696Z", - "shell.execute_reply": "2024-04-06T04:35:15.753263Z" + "iopub.execute_input": "2024-04-08T19:13:58.651502Z", + "iopub.status.busy": "2024-04-08T19:13:58.651135Z", + "iopub.status.idle": "2024-04-08T19:13:58.659988Z", + "shell.execute_reply": "2024-04-08T19:13:58.659533Z" } }, "outputs": [ @@ -1190,10 +1190,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:15.755695Z", - "iopub.status.busy": "2024-04-06T04:35:15.755367Z", - "iopub.status.idle": "2024-04-06T04:35:15.758042Z", - "shell.execute_reply": "2024-04-06T04:35:15.757595Z" + "iopub.execute_input": "2024-04-08T19:13:58.661959Z", + "iopub.status.busy": "2024-04-08T19:13:58.661702Z", + "iopub.status.idle": "2024-04-08T19:13:58.664433Z", + "shell.execute_reply": "2024-04-08T19:13:58.663997Z" }, "nbsphinx": "hidden" }, @@ -1218,10 +1218,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:15.760007Z", - "iopub.status.busy": "2024-04-06T04:35:15.759679Z", - "iopub.status.idle": "2024-04-06T04:35:21.169503Z", - "shell.execute_reply": "2024-04-06T04:35:21.168860Z" + "iopub.execute_input": "2024-04-08T19:13:58.666308Z", + "iopub.status.busy": "2024-04-08T19:13:58.666060Z", + "iopub.status.idle": "2024-04-08T19:14:04.108369Z", + "shell.execute_reply": "2024-04-08T19:14:04.107772Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:21.172001Z", - "iopub.status.busy": "2024-04-06T04:35:21.171800Z", - "iopub.status.idle": "2024-04-06T04:35:21.180339Z", - "shell.execute_reply": "2024-04-06T04:35:21.179868Z" + "iopub.execute_input": "2024-04-08T19:14:04.110851Z", + "iopub.status.busy": "2024-04-08T19:14:04.110406Z", + "iopub.status.idle": "2024-04-08T19:14:04.119270Z", + "shell.execute_reply": "2024-04-08T19:14:04.118848Z" } }, "outputs": [ @@ -1377,10 +1377,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:21.182362Z", - "iopub.status.busy": "2024-04-06T04:35:21.182047Z", - "iopub.status.idle": "2024-04-06T04:35:21.256060Z", - "shell.execute_reply": "2024-04-06T04:35:21.255579Z" + "iopub.execute_input": "2024-04-08T19:14:04.121410Z", + "iopub.status.busy": "2024-04-08T19:14:04.120984Z", + "iopub.status.idle": "2024-04-08T19:14:04.185861Z", + "shell.execute_reply": "2024-04-08T19:14:04.185384Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 89e2cb219..7512e088c 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:24.243928Z", - "iopub.status.busy": "2024-04-06T04:35:24.243468Z", - "iopub.status.idle": "2024-04-06T04:35:26.047952Z", - "shell.execute_reply": "2024-04-06T04:35:26.047292Z" + "iopub.execute_input": "2024-04-08T19:14:07.395028Z", + "iopub.status.busy": "2024-04-08T19:14:07.394566Z", + "iopub.status.idle": "2024-04-08T19:14:11.485319Z", + "shell.execute_reply": "2024-04-08T19:14:11.484630Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:26.050495Z", - "iopub.status.busy": "2024-04-06T04:35:26.050118Z", - "iopub.status.idle": "2024-04-06T04:36:08.935704Z", - "shell.execute_reply": "2024-04-06T04:36:08.935125Z" + "iopub.execute_input": "2024-04-08T19:14:11.488001Z", + "iopub.status.busy": "2024-04-08T19:14:11.487586Z", + "iopub.status.idle": "2024-04-08T19:15:03.035425Z", + "shell.execute_reply": "2024-04-08T19:15:03.034793Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:36:08.938332Z", - "iopub.status.busy": "2024-04-06T04:36:08.937887Z", - "iopub.status.idle": "2024-04-06T04:36:09.999880Z", - "shell.execute_reply": "2024-04-06T04:36:09.999323Z" + "iopub.execute_input": "2024-04-08T19:15:03.037988Z", + "iopub.status.busy": "2024-04-08T19:15:03.037617Z", + "iopub.status.idle": "2024-04-08T19:15:04.144423Z", + "shell.execute_reply": "2024-04-08T19:15:04.143898Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:36:10.002451Z", - "iopub.status.busy": "2024-04-06T04:36:10.002049Z", - "iopub.status.idle": "2024-04-06T04:36:10.005300Z", - "shell.execute_reply": "2024-04-06T04:36:10.004764Z" + "iopub.execute_input": "2024-04-08T19:15:04.146910Z", + "iopub.status.busy": "2024-04-08T19:15:04.146510Z", + "iopub.status.idle": "2024-04-08T19:15:04.149732Z", + "shell.execute_reply": "2024-04-08T19:15:04.149284Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:36:10.007484Z", - "iopub.status.busy": "2024-04-06T04:36:10.007053Z", - "iopub.status.idle": "2024-04-06T04:36:10.010737Z", - "shell.execute_reply": "2024-04-06T04:36:10.010232Z" + "iopub.execute_input": "2024-04-08T19:15:04.151905Z", + "iopub.status.busy": "2024-04-08T19:15:04.151503Z", + "iopub.status.idle": "2024-04-08T19:15:04.155404Z", + "shell.execute_reply": "2024-04-08T19:15:04.154966Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:36:10.012726Z", - "iopub.status.busy": "2024-04-06T04:36:10.012460Z", - "iopub.status.idle": "2024-04-06T04:36:10.016097Z", - "shell.execute_reply": "2024-04-06T04:36:10.015646Z" + "iopub.execute_input": "2024-04-08T19:15:04.157319Z", + "iopub.status.busy": "2024-04-08T19:15:04.157012Z", + "iopub.status.idle": "2024-04-08T19:15:04.160392Z", + "shell.execute_reply": "2024-04-08T19:15:04.159984Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:36:10.018111Z", - "iopub.status.busy": "2024-04-06T04:36:10.017712Z", - "iopub.status.idle": "2024-04-06T04:36:10.020470Z", - "shell.execute_reply": "2024-04-06T04:36:10.020044Z" + "iopub.execute_input": "2024-04-08T19:15:04.162271Z", + "iopub.status.busy": "2024-04-08T19:15:04.161951Z", + "iopub.status.idle": "2024-04-08T19:15:04.164604Z", + "shell.execute_reply": "2024-04-08T19:15:04.164202Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:36:10.022477Z", - "iopub.status.busy": "2024-04-06T04:36:10.022151Z", - "iopub.status.idle": "2024-04-06T04:37:25.589281Z", - "shell.execute_reply": "2024-04-06T04:37:25.588682Z" + "iopub.execute_input": "2024-04-08T19:15:04.166521Z", + "iopub.status.busy": "2024-04-08T19:15:04.166174Z", + "iopub.status.idle": "2024-04-08T19:16:20.073084Z", + "shell.execute_reply": "2024-04-08T19:16:20.072471Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "430f85b602e34595b215cff777f2e22c", + "model_id": "f80951daaff1439bae07b22f26431578", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "72840f69ea214918a754b98c138bcd01", + "model_id": "4414546b77b44486a511d3a262f3937f", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:37:25.591755Z", - "iopub.status.busy": "2024-04-06T04:37:25.591547Z", - "iopub.status.idle": "2024-04-06T04:37:26.256442Z", - "shell.execute_reply": "2024-04-06T04:37:26.255866Z" + "iopub.execute_input": "2024-04-08T19:16:20.075744Z", + "iopub.status.busy": "2024-04-08T19:16:20.075337Z", + "iopub.status.idle": "2024-04-08T19:16:20.750666Z", + "shell.execute_reply": "2024-04-08T19:16:20.750121Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:37:26.258907Z", - "iopub.status.busy": "2024-04-06T04:37:26.258403Z", - "iopub.status.idle": "2024-04-06T04:37:28.986847Z", - "shell.execute_reply": "2024-04-06T04:37:28.986249Z" + "iopub.execute_input": "2024-04-08T19:16:20.753014Z", + "iopub.status.busy": "2024-04-08T19:16:20.752584Z", + "iopub.status.idle": "2024-04-08T19:16:23.452100Z", + "shell.execute_reply": "2024-04-08T19:16:23.451576Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:37:28.989011Z", - "iopub.status.busy": "2024-04-06T04:37:28.988663Z", - "iopub.status.idle": "2024-04-06T04:38:01.556933Z", - "shell.execute_reply": "2024-04-06T04:38:01.556488Z" + "iopub.execute_input": "2024-04-08T19:16:23.454306Z", + "iopub.status.busy": "2024-04-08T19:16:23.454030Z", + "iopub.status.idle": "2024-04-08T19:16:56.036315Z", + "shell.execute_reply": "2024-04-08T19:16:56.035779Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d3ec0bdaf05d45038d515229edd1fce4", + "model_id": "71098e13b4334a47bbac4b75032ea150", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:01.559018Z", - "iopub.status.busy": "2024-04-06T04:38:01.558830Z", - "iopub.status.idle": "2024-04-06T04:38:15.949783Z", - "shell.execute_reply": "2024-04-06T04:38:15.949244Z" + "iopub.execute_input": "2024-04-08T19:16:56.038307Z", + "iopub.status.busy": "2024-04-08T19:16:56.038128Z", + "iopub.status.idle": "2024-04-08T19:17:10.772843Z", + "shell.execute_reply": "2024-04-08T19:17:10.772275Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:15.952245Z", - "iopub.status.busy": "2024-04-06T04:38:15.951882Z", - "iopub.status.idle": "2024-04-06T04:38:19.737339Z", - "shell.execute_reply": "2024-04-06T04:38:19.736758Z" + "iopub.execute_input": "2024-04-08T19:17:10.775162Z", + "iopub.status.busy": "2024-04-08T19:17:10.774934Z", + "iopub.status.idle": "2024-04-08T19:17:14.602622Z", + "shell.execute_reply": "2024-04-08T19:17:14.602118Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:19.739665Z", - "iopub.status.busy": "2024-04-06T04:38:19.739350Z", - "iopub.status.idle": "2024-04-06T04:38:21.124441Z", - "shell.execute_reply": "2024-04-06T04:38:21.123826Z" + "iopub.execute_input": "2024-04-08T19:17:14.604704Z", + "iopub.status.busy": "2024-04-08T19:17:14.604405Z", + "iopub.status.idle": "2024-04-08T19:17:16.041428Z", + "shell.execute_reply": "2024-04-08T19:17:16.040893Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a41dd8fa1c914418a704a6e5e8be1e2e", + "model_id": "abbf1d8d4dc4498dbba438256d734fad", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:21.126758Z", - "iopub.status.busy": "2024-04-06T04:38:21.126415Z", - "iopub.status.idle": "2024-04-06T04:38:21.155079Z", - "shell.execute_reply": "2024-04-06T04:38:21.154584Z" + "iopub.execute_input": "2024-04-08T19:17:16.043794Z", + "iopub.status.busy": "2024-04-08T19:17:16.043524Z", + "iopub.status.idle": "2024-04-08T19:17:16.075824Z", + "shell.execute_reply": "2024-04-08T19:17:16.075325Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:21.157615Z", - "iopub.status.busy": "2024-04-06T04:38:21.157258Z", - "iopub.status.idle": "2024-04-06T04:38:27.224964Z", - "shell.execute_reply": "2024-04-06T04:38:27.224445Z" + "iopub.execute_input": "2024-04-08T19:17:16.078301Z", + "iopub.status.busy": "2024-04-08T19:17:16.077923Z", + "iopub.status.idle": "2024-04-08T19:17:22.245581Z", + "shell.execute_reply": "2024-04-08T19:17:22.245090Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:27.227144Z", - "iopub.status.busy": "2024-04-06T04:38:27.226803Z", - "iopub.status.idle": "2024-04-06T04:38:27.282607Z", - "shell.execute_reply": "2024-04-06T04:38:27.282076Z" + "iopub.execute_input": "2024-04-08T19:17:22.247739Z", + "iopub.status.busy": "2024-04-08T19:17:22.247405Z", + "iopub.status.idle": "2024-04-08T19:17:22.303831Z", + "shell.execute_reply": "2024-04-08T19:17:22.303283Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02c8e49579ab4c2cb5010e5d696f7f75": { + "001fb5816a074024996ee285412c72e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1091,7 +1091,7 @@ "width": null } }, - "06ef42058bc7433ca11271d89630261f": { + "010891f081ec41c1aabdc9984ea3e880": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1144,56 +1144,7 @@ "width": null } }, - "07b675adb016454a9854b4ea300e4cfe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_70deac36097f491e8666a288db33cf71", - "placeholder": "​", - "style": "IPY_MODEL_f73f43e9ac32458989fecfd81a100778", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "0e3edfaa67be4256bf241604d1fdfd54": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_686826beb1be457bab28c73bcd2ffefb", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8db16dbcca284d40921261550c3c9241", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "0ffcaa24253e452f8a885fef873bdcfb": { + "1983a07fcf9348578a07d2aee3240441": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1211,7 +1162,7 @@ "text_color": null } }, - "182b3bcc537c404793b98eb84a4a9fef": { + "26332d6a8cc44c2e97dbf9c486f38f25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1226,15 +1177,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ea8cdf6af87544368e97f412bed093e3", + "layout": "IPY_MODEL_7388d890f96b440d9df5bb2bcf630681", "placeholder": "​", - "style": "IPY_MODEL_ff45dd3e934e4e0c9f7fa5da7043dbd7", + "style": "IPY_MODEL_99f6441d531f4710baa405c0d7109b5f", "tabbable": null, "tooltip": null, - "value": " 4997817/4997817 [00:32<00:00, 154776.29it/s]" + "value": " 4997817/4997817 [00:32<00:00, 154803.51it/s]" } }, - "20149c21eb1a4d47b708a9f402b4f051": { + "2644b4fc5fda48acb706485e94aabc6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1249,67 +1200,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_42508acbff6b4c069678d14fb3bb650d", + "layout": "IPY_MODEL_2c287de703a14c5cb0941da5922a6c41", "placeholder": "​", - "style": "IPY_MODEL_d2dd7b61c9974c56af1e4ae1413f64cf", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "232cb3f4436c4a29aa37462ded23ed0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a73fcdba5f1491486544ab0e5fd82f6", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_83ed95add600447dbcd4112a82b755ac", + "style": "IPY_MODEL_1983a07fcf9348578a07d2aee3240441", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "images processed using softmin: 100%" } }, - "28dfa37fd60e430591dba8d65770190b": { - "model_module": "@jupyter-widgets/controls", + "2c287de703a14c5cb0941da5922a6c41": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a6b9abd68857477cbdc3898a45b7c10f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_40eb33493e30499e97354717869f83be", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2a73fcdba5f1491486544ab0e5fd82f6": { + "301a3fcd99094c40a1fb9f975619c430": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1362,7 +1314,7 @@ "width": null } }, - "2bc90b79c1364f709f2cc5d8d3ac1a01": { + "328b4d1e22fb41b9be4bc667200a34d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1377,54 +1329,57 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9efde9d20e674f91930d36a8fffde7e0", + "layout": "IPY_MODEL_001fb5816a074024996ee285412c72e2", "placeholder": "​", - "style": "IPY_MODEL_0ffcaa24253e452f8a885fef873bdcfb", + "style": "IPY_MODEL_dcb3aba2d5ee498da09596d6b1189652", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.88it/s]" + "value": " 30/30 [00:01<00:00, 21.04it/s]" } }, - "2d5ba316556d415b8f9eceaac5bda45b": { + "332840cfdb9a451ebd2a374dae54e637": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_957a7ec883f34696b2479a90a87bdbcb", - "placeholder": "​", - "style": "IPY_MODEL_562e407d8d8745fc83b37ab7c94d1b60", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.41it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "40eb33493e30499e97354717869f83be": { + "365979231dd54217a8aac4a279204067": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b85f1eb5f0e64530870f6fbf949cda91", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d7bd991e20f14b0c98dd8d679d84939c", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "42508acbff6b4c069678d14fb3bb650d": { + "380290952081433398d72252f55f3512": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1477,31 +1432,7 @@ "width": null } }, - "430f85b602e34595b215cff777f2e22c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_621c7249a2054bf59226e64a4b8f7081", - "IPY_MODEL_28dfa37fd60e430591dba8d65770190b", - "IPY_MODEL_7e7920af14e54024b17aa6179ca38f35" - ], - "layout": "IPY_MODEL_4ad7bb286eca4c09948bb75a92a76c29", - "tabbable": null, - "tooltip": null - } - }, - "4ad7bb286eca4c09948bb75a92a76c29": { + "40897686e955404f91514151f240c0d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1554,25 +1485,31 @@ "width": null } }, - "562e407d8d8745fc83b37ab7c94d1b60": { + "4414546b77b44486a511d3a262f3937f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d2ea6fbb7475458087e30a3aee7c2421", + "IPY_MODEL_83945befc2ec4271af67b93797cadd10", + "IPY_MODEL_93bd352e7edc4aac8660f540a733e80f" + ], + "layout": "IPY_MODEL_e5304a7b2a15495792b3302840dc6164", + "tabbable": null, + "tooltip": null } }, - "5b27262a9cd94dcca7fa54df4cceb26a": { + "5abd50f2ff82441194222375826e37c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1625,23 +1562,30 @@ "width": null } }, - "5bb6200f11d74e33b58d64accf19085f": { + "5ac2298939434623ab7427ecd71bb845": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f618acb94c794f1ba33254b732f3da99", + "placeholder": "​", + "style": "IPY_MODEL_bdd0d707ff2c40a783c34c22c644bff2", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "60b778a0ef8e44b39608af38b47ca860": { + "6249a51dbc1145c985fed7ad172f3f6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1659,7 +1603,7 @@ "text_color": null } }, - "60ce120b6f0d4b35939edd06a49b48fa": { + "68c0ed1d2b074054bc0c083b8ccd8a71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1712,7 +1656,7 @@ "width": null } }, - "621c7249a2054bf59226e64a4b8f7081": { + "6b76fce815c1461d9f75cd9b932f9d87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1727,33 +1671,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7f6b7ffd00bb4a2caab3b50683296936", + "layout": "IPY_MODEL_68c0ed1d2b074054bc0c083b8ccd8a71", "placeholder": "​", - "style": "IPY_MODEL_cbbaae80c54e40cabbdb2edd591551d4", + "style": "IPY_MODEL_6249a51dbc1145c985fed7ad172f3f6f", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: 100%" } }, - "646252281ae14f8886cc21d9e56afec5": { + "71098e13b4334a47bbac4b75032ea150": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ac2298939434623ab7427ecd71bb845", + "IPY_MODEL_e05c95cfe29749928b6771d970a5fc81", + "IPY_MODEL_26332d6a8cc44c2e97dbf9c486f38f25" + ], + "layout": "IPY_MODEL_40897686e955404f91514151f240c0d0", + "tabbable": null, + "tooltip": null } }, - "686826beb1be457bab28c73bcd2ffefb": { + "7388d890f96b440d9df5bb2bcf630681": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1806,28 +1756,95 @@ "width": null } }, - "70deac36097f491e8666a288db33cf71": { - "model_module": "@jupyter-widgets/base", + "773d8ea77b7443f2ade5b4c99a303fcb": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "83945befc2ec4271af67b93797cadd10": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_010891f081ec41c1aabdc9984ea3e880", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_beb83a56568c469189a5939e700e69a4", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "93bd352e7edc4aac8660f540a733e80f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ffe9b9351b8a4b129d0904a8757b9a46", + "placeholder": "​", + "style": "IPY_MODEL_fc53622cc52741d8bde9b20fe8c9a3c0", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.44it/s]" + } + }, + "99e35d66f5634eb28a74eb5bfa102bde": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, @@ -1859,7 +1876,25 @@ "width": null } }, - "72840f69ea214918a754b98c138bcd01": { + "99f6441d531f4710baa405c0d7109b5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "abbf1d8d4dc4498dbba438256d734fad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1874,16 +1909,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8b3e196faee64d279374daae7049f9a7", - "IPY_MODEL_0e3edfaa67be4256bf241604d1fdfd54", - "IPY_MODEL_2d5ba316556d415b8f9eceaac5bda45b" + "IPY_MODEL_2644b4fc5fda48acb706485e94aabc6a", + "IPY_MODEL_c68ef40a35e04fc39427a9f284523b28", + "IPY_MODEL_328b4d1e22fb41b9be4bc667200a34d2" ], - "layout": "IPY_MODEL_7c0fbc0da1b843e89059929faa931860", + "layout": "IPY_MODEL_ef987a4e9c5445f2a1965215131e2de0", "tabbable": null, "tooltip": null } }, - "7c0fbc0da1b843e89059929faa931860": { + "b2e6852040e34be68af10fb4a3c2b9a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1936,30 +1971,7 @@ "width": null } }, - "7e7920af14e54024b17aa6179ca38f35": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_06ef42058bc7433ca11271d89630261f", - "placeholder": "​", - "style": "IPY_MODEL_60b778a0ef8e44b39608af38b47ca860", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 407.39it/s]" - } - }, - "7f6b7ffd00bb4a2caab3b50683296936": { + "b85f1eb5f0e64530870f6fbf949cda91": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2012,7 +2024,41 @@ "width": null } }, - "83ed95add600447dbcd4112a82b755ac": { + "bdd0d707ff2c40a783c34c22c644bff2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "beb83a56568c469189a5939e700e69a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c158f6f873284cbaa7be7bbaebbd7763": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2028,7 +2074,51 @@ "description_width": "" } }, - "8b3e196faee64d279374daae7049f9a7": { + "c4adc9fb2d8c49ab9d863ff53317708d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c68ef40a35e04fc39427a9f284523b28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_301a3fcd99094c40a1fb9f975619c430", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_332840cfdb9a451ebd2a374dae54e637", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "ce77d0d3de7c4b089021754738d5ceb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2043,15 +2133,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_02c8e49579ab4c2cb5010e5d696f7f75", + "layout": "IPY_MODEL_99e35d66f5634eb28a74eb5bfa102bde", "placeholder": "​", - "style": "IPY_MODEL_646252281ae14f8886cc21d9e56afec5", + "style": "IPY_MODEL_773d8ea77b7443f2ade5b4c99a303fcb", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 405.54it/s]" + } + }, + "d2ea6fbb7475458087e30a3aee7c2421": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b2e6852040e34be68af10fb4a3c2b9a7", + "placeholder": "​", + "style": "IPY_MODEL_c4adc9fb2d8c49ab9d863ff53317708d", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: 100%" } }, - "8db16dbcca284d40921261550c3c9241": { + "d7bd991e20f14b0c98dd8d679d84939c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2067,60 +2180,51 @@ "description_width": "" } }, - "957a7ec883f34696b2479a90a87bdbcb": { - "model_module": "@jupyter-widgets/base", + "dcb3aba2d5ee498da09596d6b1189652": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9efde9d20e674f91930d36a8fffde7e0": { + "e05c95cfe29749928b6771d970a5fc81": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_380290952081433398d72252f55f3512", + "max": 4997817.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c158f6f873284cbaa7be7bbaebbd7763", + "tabbable": null, + "tooltip": null, + "value": 4997817.0 + } + }, + "e5304a7b2a15495792b3302840dc6164": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2173,31 +2277,7 @@ "width": null } }, - "a41dd8fa1c914418a704a6e5e8be1e2e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_07b675adb016454a9854b4ea300e4cfe", - "IPY_MODEL_232cb3f4436c4a29aa37462ded23ed0a", - "IPY_MODEL_2bc90b79c1364f709f2cc5d8d3ac1a01" - ], - "layout": "IPY_MODEL_5b27262a9cd94dcca7fa54df4cceb26a", - "tabbable": null, - "tooltip": null - } - }, - "a6b9abd68857477cbdc3898a45b7c10f": { + "ef987a4e9c5445f2a1965215131e2de0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2250,25 +2330,7 @@ "width": null } }, - "cbbaae80c54e40cabbdb2edd591551d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d2ba7ead109f40f88a0f2fdcd7f79091": { + "f618acb94c794f1ba33254b732f3da99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2321,25 +2383,7 @@ "width": null } }, - "d2dd7b61c9974c56af1e4ae1413f64cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d3ec0bdaf05d45038d515229edd1fce4": { + "f80951daaff1439bae07b22f26431578": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2354,16 +2398,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_20149c21eb1a4d47b708a9f402b4f051", - "IPY_MODEL_f5b6a3b6f2474f7c8d2b531dbc37f186", - "IPY_MODEL_182b3bcc537c404793b98eb84a4a9fef" + "IPY_MODEL_6b76fce815c1461d9f75cd9b932f9d87", + "IPY_MODEL_365979231dd54217a8aac4a279204067", + "IPY_MODEL_ce77d0d3de7c4b089021754738d5ceb4" ], - "layout": "IPY_MODEL_d2ba7ead109f40f88a0f2fdcd7f79091", + "layout": "IPY_MODEL_5abd50f2ff82441194222375826e37c9", "tabbable": null, "tooltip": null } }, - "ea8cdf6af87544368e97f412bed093e3": { + "fc53622cc52741d8bde9b20fe8c9a3c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ffe9b9351b8a4b129d0904a8757b9a46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2415,68 +2477,6 @@ "visibility": null, "width": null } - }, - "f5b6a3b6f2474f7c8d2b531dbc37f186": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_60ce120b6f0d4b35939edd06a49b48fa", - "max": 4997817.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5bb6200f11d74e33b58d64accf19085f", - "tabbable": null, - "tooltip": null, - "value": 4997817.0 - } - }, - "f73f43e9ac32458989fecfd81a100778": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ff45dd3e934e4e0c9f7fa5da7043dbd7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index e868c19b5..1733ede8c 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:29.398070Z", - "iopub.status.busy": "2024-04-06T04:38:29.397578Z", - "iopub.status.idle": "2024-04-06T04:38:30.762030Z", - "shell.execute_reply": "2024-04-06T04:38:30.761463Z" + "iopub.execute_input": "2024-04-08T19:17:24.524829Z", + "iopub.status.busy": "2024-04-08T19:17:24.524651Z", + "iopub.status.idle": "2024-04-08T19:17:26.451617Z", + "shell.execute_reply": "2024-04-08T19:17:26.450937Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-06 04:38:29-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-04-08 19:17:24-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,9 +94,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.98, 2400:52e0:1a00::718:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.98|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "143.244.49.177, 2400:52e0:1a01::994:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|143.244.49.177|:443... connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -109,9 +116,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.04s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.49MB/s in 0.2s \r\n", "\r\n", - "2024-04-06 04:38:29 (22.5 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-04-08 19:17:24 (5.49 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -131,9 +138,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-06 04:38:30-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.84.148, 52.216.129.163, 52.217.231.17, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.84.148|:443... " + "--2024-04-08 19:17:25-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.130.187, 54.231.165.233, 52.216.62.161, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.130.187|:443... " ] }, { @@ -167,7 +174,15 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 14%[=> ] 2.33M 11.7MB/s " + "pred_probs.npz 1%[ ] 211.53K 926KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 22%[===> ] 3.71M 8.12MB/s " ] }, { @@ -175,9 +190,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 46.9MB/s in 0.3s \r\n", + "pred_probs.npz 94%[=================> ] 15.37M 22.6MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 23.5MB/s in 0.7s \r\n", "\r\n", - "2024-04-06 04:38:30 (46.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-04-08 19:17:26 (23.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -194,10 +210,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:30.764412Z", - "iopub.status.busy": "2024-04-06T04:38:30.764032Z", - "iopub.status.idle": "2024-04-06T04:38:31.972111Z", - "shell.execute_reply": "2024-04-06T04:38:31.971535Z" + "iopub.execute_input": "2024-04-08T19:17:26.454458Z", + "iopub.status.busy": "2024-04-08T19:17:26.454223Z", + "iopub.status.idle": "2024-04-08T19:17:27.676181Z", + "shell.execute_reply": "2024-04-08T19:17:27.675698Z" }, "nbsphinx": "hidden" }, @@ -208,7 +224,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -234,10 +250,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:31.974580Z", - "iopub.status.busy": "2024-04-06T04:38:31.974308Z", - "iopub.status.idle": "2024-04-06T04:38:31.977556Z", - "shell.execute_reply": "2024-04-06T04:38:31.977128Z" + "iopub.execute_input": "2024-04-08T19:17:27.678806Z", + "iopub.status.busy": "2024-04-08T19:17:27.678375Z", + "iopub.status.idle": "2024-04-08T19:17:27.681955Z", + "shell.execute_reply": "2024-04-08T19:17:27.681515Z" } }, "outputs": [], @@ -287,10 +303,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:31.979700Z", - "iopub.status.busy": "2024-04-06T04:38:31.979317Z", - "iopub.status.idle": "2024-04-06T04:38:31.982377Z", - "shell.execute_reply": "2024-04-06T04:38:31.981830Z" + "iopub.execute_input": "2024-04-08T19:17:27.683962Z", + "iopub.status.busy": "2024-04-08T19:17:27.683699Z", + "iopub.status.idle": "2024-04-08T19:17:27.686524Z", + "shell.execute_reply": "2024-04-08T19:17:27.686095Z" }, "nbsphinx": "hidden" }, @@ -308,10 +324,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:31.984377Z", - "iopub.status.busy": "2024-04-06T04:38:31.984017Z", - "iopub.status.idle": "2024-04-06T04:38:41.053110Z", - "shell.execute_reply": "2024-04-06T04:38:41.052521Z" + "iopub.execute_input": "2024-04-08T19:17:27.688377Z", + "iopub.status.busy": "2024-04-08T19:17:27.688200Z", + "iopub.status.idle": "2024-04-08T19:17:36.852616Z", + "shell.execute_reply": "2024-04-08T19:17:36.852071Z" } }, "outputs": [], @@ -385,10 +401,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:41.055687Z", - "iopub.status.busy": "2024-04-06T04:38:41.055498Z", - "iopub.status.idle": "2024-04-06T04:38:41.061081Z", - "shell.execute_reply": "2024-04-06T04:38:41.060531Z" + "iopub.execute_input": "2024-04-08T19:17:36.855120Z", + "iopub.status.busy": "2024-04-08T19:17:36.854821Z", + "iopub.status.idle": "2024-04-08T19:17:36.860286Z", + "shell.execute_reply": "2024-04-08T19:17:36.859865Z" }, "nbsphinx": "hidden" }, @@ -428,10 +444,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:41.063230Z", - "iopub.status.busy": "2024-04-06T04:38:41.062809Z", - "iopub.status.idle": "2024-04-06T04:38:41.426124Z", - "shell.execute_reply": "2024-04-06T04:38:41.425590Z" + "iopub.execute_input": "2024-04-08T19:17:36.862236Z", + "iopub.status.busy": "2024-04-08T19:17:36.861904Z", + "iopub.status.idle": "2024-04-08T19:17:37.207147Z", + "shell.execute_reply": "2024-04-08T19:17:37.206565Z" } }, "outputs": [], @@ -468,10 +484,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:41.428511Z", - "iopub.status.busy": "2024-04-06T04:38:41.428316Z", - "iopub.status.idle": "2024-04-06T04:38:41.432566Z", - "shell.execute_reply": "2024-04-06T04:38:41.432029Z" + "iopub.execute_input": "2024-04-08T19:17:37.209618Z", + "iopub.status.busy": "2024-04-08T19:17:37.209283Z", + "iopub.status.idle": "2024-04-08T19:17:37.213376Z", + "shell.execute_reply": "2024-04-08T19:17:37.212864Z" } }, "outputs": [ @@ -543,10 +559,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:41.434828Z", - "iopub.status.busy": "2024-04-06T04:38:41.434438Z", - "iopub.status.idle": "2024-04-06T04:38:43.797032Z", - "shell.execute_reply": "2024-04-06T04:38:43.796336Z" + "iopub.execute_input": "2024-04-08T19:17:37.215394Z", + "iopub.status.busy": "2024-04-08T19:17:37.215083Z", + "iopub.status.idle": "2024-04-08T19:17:39.552115Z", + "shell.execute_reply": "2024-04-08T19:17:39.551400Z" } }, "outputs": [], @@ -568,10 +584,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:43.800002Z", - "iopub.status.busy": "2024-04-06T04:38:43.799357Z", - "iopub.status.idle": "2024-04-06T04:38:43.803395Z", - "shell.execute_reply": "2024-04-06T04:38:43.802849Z" + "iopub.execute_input": "2024-04-08T19:17:39.555424Z", + "iopub.status.busy": "2024-04-08T19:17:39.554614Z", + "iopub.status.idle": "2024-04-08T19:17:39.558938Z", + "shell.execute_reply": "2024-04-08T19:17:39.558474Z" } }, "outputs": [ @@ -607,10 +623,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:43.805438Z", - "iopub.status.busy": "2024-04-06T04:38:43.805041Z", - "iopub.status.idle": "2024-04-06T04:38:43.810204Z", - "shell.execute_reply": "2024-04-06T04:38:43.809632Z" + "iopub.execute_input": "2024-04-08T19:17:39.560894Z", + "iopub.status.busy": "2024-04-08T19:17:39.560573Z", + "iopub.status.idle": "2024-04-08T19:17:39.565814Z", + "shell.execute_reply": "2024-04-08T19:17:39.565368Z" } }, "outputs": [ @@ -788,10 +804,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:43.812097Z", - "iopub.status.busy": "2024-04-06T04:38:43.811923Z", - "iopub.status.idle": "2024-04-06T04:38:43.837570Z", - "shell.execute_reply": "2024-04-06T04:38:43.837054Z" + "iopub.execute_input": "2024-04-08T19:17:39.567759Z", + "iopub.status.busy": "2024-04-08T19:17:39.567433Z", + "iopub.status.idle": "2024-04-08T19:17:39.593200Z", + "shell.execute_reply": "2024-04-08T19:17:39.592668Z" } }, "outputs": [ @@ -893,10 +909,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:43.839685Z", - "iopub.status.busy": "2024-04-06T04:38:43.839262Z", - "iopub.status.idle": "2024-04-06T04:38:43.843573Z", - "shell.execute_reply": "2024-04-06T04:38:43.843046Z" + "iopub.execute_input": "2024-04-08T19:17:39.595168Z", + "iopub.status.busy": "2024-04-08T19:17:39.594990Z", + "iopub.status.idle": "2024-04-08T19:17:39.599302Z", + "shell.execute_reply": "2024-04-08T19:17:39.598861Z" } }, "outputs": [ @@ -970,10 +986,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:43.845456Z", - "iopub.status.busy": "2024-04-06T04:38:43.845286Z", - "iopub.status.idle": "2024-04-06T04:38:45.262927Z", - "shell.execute_reply": "2024-04-06T04:38:45.262416Z" + "iopub.execute_input": "2024-04-08T19:17:39.601340Z", + "iopub.status.busy": "2024-04-08T19:17:39.600975Z", + "iopub.status.idle": "2024-04-08T19:17:41.028748Z", + "shell.execute_reply": "2024-04-08T19:17:41.028272Z" } }, "outputs": [ @@ -1145,10 +1161,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:45.265138Z", - "iopub.status.busy": "2024-04-06T04:38:45.264818Z", - "iopub.status.idle": "2024-04-06T04:38:45.268799Z", - "shell.execute_reply": "2024-04-06T04:38:45.268374Z" + "iopub.execute_input": "2024-04-08T19:17:41.030867Z", + "iopub.status.busy": "2024-04-08T19:17:41.030672Z", + "iopub.status.idle": "2024-04-08T19:17:41.034715Z", + "shell.execute_reply": "2024-04-08T19:17:41.034283Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 1aa754477..30047ba4c 100644 Binary files a/master/.doctrees/tutorials/clean_learning/index.doctree and b/master/.doctrees/tutorials/clean_learning/index.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index 302ccf789..c9831851a 100644 Binary files a/master/.doctrees/tutorials/clean_learning/tabular.doctree and b/master/.doctrees/tutorials/clean_learning/tabular.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index ae535b9f8..cb66a4dd4 100644 Binary files a/master/.doctrees/tutorials/clean_learning/text.doctree and b/master/.doctrees/tutorials/clean_learning/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index d7171e102..276e276ce 100644 Binary files a/master/.doctrees/tutorials/datalab/audio.doctree and b/master/.doctrees/tutorials/datalab/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/data_monitor.doctree b/master/.doctrees/tutorials/datalab/data_monitor.doctree index 01be91344..def02f773 100644 Binary files a/master/.doctrees/tutorials/datalab/data_monitor.doctree and b/master/.doctrees/tutorials/datalab/data_monitor.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index d6d7edfe6..bab2bfd57 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index dd3806a42..78ad7e090 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index 5f65a631f..04a0a2f2b 100644 Binary files a/master/.doctrees/tutorials/datalab/image.doctree and b/master/.doctrees/tutorials/datalab/image.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index bdc0e0f28..76ba669de 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 7582d8fc2..8a8827416 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 3c1f5948e..697bbba89 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index b1ea06ab9..f16305597 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index d8852f6c9..f87d47c0b 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 5769a4136..bafd75587 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 7a05e808f..1bb757a78 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index fd4348e96..fe9a30b0f 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 34d15a129..9e2cf801a 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index 1fc093036..2ce0f70f9 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 8cb44d839..c80002f01 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 4caf02d36..6485d4ffc 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 91bb58abe..a307056b4 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 419e760b6..99a3ef485 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index e71b299c1..fff5d7903 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_modules/cleanlab/object_detection/summary.html b/master/_modules/cleanlab/object_detection/summary.html index ffeead414..985e9f0f3 100644 --- a/master/_modules/cleanlab/object_detection/summary.html +++ b/master/_modules/cleanlab/object_detection/summary.html @@ -821,7 +821,7 @@

Source code for cleanlab.object_detection.summary

[docs]def plot_class_size_distributions( - labels, predictions, class_names=None, class_to_show=MAX_CLASS_TO_SHOW + labels, predictions, class_names=None, class_to_show=MAX_CLASS_TO_SHOW, **kwargs ): """ Plots the size distributions for bounding boxes for each class. @@ -845,6 +845,9 @@

Source code for cleanlab.object_detection.summary

class_to_show: optional The number of classes to show in the plots. Classes over `class_to_show` are hidden. If this argument is provided, then the classes are sorted by the number of instances in the dataset. Defaults to `MAX_CLASS_TO_SHOW` which is set to 10. + + kwargs: + Additional keyword arguments to pass to `plt.show()`. """ try: import matplotlib.pyplot as plt @@ -871,10 +874,10 @@

Source code for cleanlab.object_detection.summary

axs[i].set_ylabel("count") axs[i].set_title("annotated" if i == 0 else "predicted") - plt.show()
+ plt.show(**kwargs)
-
[docs]def plot_class_distribution(labels, predictions, class_names=None): +
[docs]def plot_class_distribution(labels, predictions, class_names=None, **kwargs): """ Plots the distribution of class labels associated with all annotated bounding boxes and predicted bounding boxes in the dataset. @@ -892,6 +895,9 @@

Source code for cleanlab.object_detection.summary

class_names: optional Optional dictionary mapping one-hot-encoded class labels back to their original class names in the format ``{"integer-label": "original-class-name"}``. + + kwargs: + Additional keyword arguments to pass to `plt.show()` (matplotlib.pyplot.show). """ try: import matplotlib.pyplot as plt @@ -907,7 +913,7 @@

Source code for cleanlab.object_detection.summary

axs[i].pie(d.values(), labels=d.keys(), autopct="%1.1f%%") axs[i].set_title("Annotated" if i == 0 else "Predicted") - plt.show()
+ plt.show(**kwargs)
[docs]def visualize( @@ -920,6 +926,7 @@

Source code for cleanlab.object_detection.summary

class_names: Optional[Dict[Any, Any]] = None, figsize: Optional[Tuple[int, int]] = None, save_path: Optional[str] = None, + **kwargs, ) -> None: """Display the annotated bounding boxes (given labels) and predicted bounding boxes (model predictions) for a particular image. Given labels are shown in red, model predictions in blue. @@ -960,6 +967,9 @@

Source code for cleanlab.object_detection.summary

figsize: Optional figure size for plotting the image. Corresponds to ``matplotlib.figure.figsize``. + + kwargs: + Additional keyword arguments to pass to `plt.show()` (matplotlib.pyplot.show). """ try: import matplotlib.pyplot as plt @@ -1031,7 +1041,7 @@

Source code for cleanlab.object_detection.summary

transparent=True, pad_inches=0.5, ) - plt.show()
+ plt.show(**kwargs)
def _get_per_class_confusion_matrix_dict_( diff --git a/master/_modules/cleanlab/segmentation/summary.html b/master/_modules/cleanlab/segmentation/summary.html index 8c82757a4..0ea8e10e1 100644 --- a/master/_modules/cleanlab/segmentation/summary.html +++ b/master/_modules/cleanlab/segmentation/summary.html @@ -615,6 +615,7 @@

Source code for cleanlab.segmentation.summary

class_names: Optional[List[str]] = None, exclude: Optional[List[int]] = None, top: Optional[int] = None, + **kwargs, # Accepting additional kwargs for plt.show() ) -> None: """ Display semantic segmentation label issues, showing images with problematic pixels highlighted. @@ -667,6 +668,8 @@

Source code for cleanlab.segmentation.summary

exclude: Optional list of label classes that can be ignored in the errors, each element must be 0, 1, ..., K-1 + kwargs + Additional keyword arguments to pass to `plt.show()` (matplotlib.pyplot.show). """ class_names, exclude, top = _get_summary_optional_params(class_names, exclude, top) if labels is None and len(exclude) > 0: @@ -680,7 +683,7 @@

Source code for cleanlab.segmentation.summary

import matplotlib.pyplot as plt import matplotlib.patches as mpatches from matplotlib.colors import ListedColormap - except: + except ImportError: raise ImportError('try "pip install matplotlib"') output_plots = (pred_probs is not None) + (labels is not None) + 1 @@ -708,7 +711,7 @@

Source code for cleanlab.segmentation.summary

handles=patches, loc="center", ncol=len(class_names), facecolor="white", fontsize=20 ) # adjust fontsize for larger text plt.axis("off") - plt.show() + plt.show(**kwargs) for i in correct_ordering: # Show images @@ -738,7 +741,7 @@

Source code for cleanlab.segmentation.summary

mask = ~np.isin(labels[i], exclude) ax.imshow(issues[i] & mask, cmap=error_cmap, vmin=0, vmax=1) ax.set_title(f"Image {i}: Suggested Errors (in Red)") - plt.show() + plt.show(**kwargs) return None
diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index 8ff05f0bd..c255f7133 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -121,7 +121,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index 70fb68efa..1d858207b 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index ccfe3cd2c..013c3246b 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/data_monitor.ipynb b/master/_sources/tutorials/datalab/data_monitor.ipynb index ba69d4f43..34eeb7fc9 100644 --- a/master/_sources/tutorials/datalab/data_monitor.ipynb +++ b/master/_sources/tutorials/datalab/data_monitor.ipynb @@ -71,7 +71,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 926d8c660..c495a5c38 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 810e242fb..805ad6294 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index e06e46265..c42d393d2 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 90c91f3c1..32a6d6409 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 7a9484bfb..fadf9b2d9 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index f4f769e7f..e155f282b 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index fa1c91842..42cb17a4c 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 285c7eeb2..3aea75fd6 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 786c68a2b..f84474830 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 5f552451b..230e275e7 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index ebea59ea4..b7f58c0c3 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 6392c5c2c..757e388f8 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 9bc09c00e..564a5b06e 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/cleanlab/object_detection/summary.html b/master/cleanlab/object_detection/summary.html index 50a2b5b89..96359b8f8 100644 --- a/master/cleanlab/object_detection/summary.html +++ b/master/cleanlab/object_detection/summary.html @@ -744,7 +744,7 @@

summary
-cleanlab.object_detection.summary.plot_class_size_distributions(labels, predictions, class_names=None, class_to_show=10)[source]#
+cleanlab.object_detection.summary.plot_class_size_distributions(labels, predictions, class_names=None, class_to_show=10, **kwargs)[source]#

Plots the size distributions for bounding boxes for each class.

This plot can help you find annotated/predicted boxes for a particular class that are abnormally big/small.

@@ -758,6 +758,7 @@

summary
-cleanlab.object_detection.summary.plot_class_distribution(labels, predictions, class_names=None)[source]#
+cleanlab.object_detection.summary.plot_class_distribution(labels, predictions, class_names=None, **kwargs)[source]#

Plots the distribution of class labels associated with all annotated bounding boxes and predicted bounding boxes in the dataset.

This plot can help you understand which classes are rare or over/under-predicted by the model overall.

@@ -776,6 +777,7 @@

summaryobject_counts_per_image for further details.

  • class_names (optional) – Optional dictionary mapping one-hot-encoded class labels back to their original class names in the format {"integer-label": "original-class-name"}.

  • +
  • kwargs – Additional keyword arguments to pass to plt.show() (matplotlib.pyplot.show).

  • @@ -783,7 +785,7 @@

    summary
    -cleanlab.object_detection.summary.visualize(image, *, label=None, prediction=None, prediction_threshold=None, overlay=True, class_names=None, figsize=None, save_path=None)[source]#
    +cleanlab.object_detection.summary.visualize(image, *, label=None, prediction=None, prediction_threshold=None, overlay=True, class_names=None, figsize=None, save_path=None, **kwargs)[source]#

    Display the annotated bounding boxes (given labels) and predicted bounding boxes (model predictions) for a particular image. Given labels are shown in red, model predictions in blue.

    @@ -807,6 +809,7 @@

    summaryOptional[str]) – Path to save figure at. If a path is provided, the figure is saved. To save in a specific image format, add desired file extension to the end of save_path. Allowed file extensions are: ‘png’, ‘pdf’, ‘ps’, ‘eps’, and ‘svg’.

  • figsize (Optional[Tuple[int, int]]) – Optional figure size for plotting the image. Corresponds to matplotlib.figure.figsize.

  • +
  • kwargs – Additional keyword arguments to pass to plt.show() (matplotlib.pyplot.show).

  • Return type:
    diff --git a/master/cleanlab/segmentation/summary.html b/master/cleanlab/segmentation/summary.html index d55e44d1c..3957f85d1 100644 --- a/master/cleanlab/segmentation/summary.html +++ b/master/cleanlab/segmentation/summary.html @@ -608,7 +608,7 @@

    -cleanlab.segmentation.summary.display_issues(issues, *, labels=None, pred_probs=None, class_names=None, exclude=None, top=None)[source]#
    +cleanlab.segmentation.summary.display_issues(issues, *, labels=None, pred_probs=None, class_names=None, exclude=None, top=None, **kwargs)[source]#

    Display semantic segmentation label issues, showing images with problematic pixels highlighted.

    Can also show given and predicted masks for each image identified to have label issue.

    @@ -646,6 +646,7 @@

  • top (Optional[int]) – Optional maximum number of issues to be printed. If not provided, a good default is used.

  • exclude (Optional[List[int]]) – Optional list of label classes that can be ignored in the errors, each element must be 0, 1, …, K-1

  • +
  • kwargs – Additional keyword arguments to pass to plt.show() (matplotlib.pyplot.show).

  • Return type:
    diff --git a/master/searchindex.js b/master/searchindex.js index e969baeb5..d67072555 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Audio Classification with SpeechBrain and Cleanlab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Image Classification with PyTorch and Cleanlab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 80, 85, 86, 87, 94, 96, 97], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 85, 86, 87, 94, 96, 97], "generate_noise_matrix_from_trac": [0, 1, 85, 86, 87, 94, 96, 97], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 51, 52, 64, 88, 92, 103], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 79, 80, 86, 92, 100], "benchmark": [1, 37, 79, 80, 85, 86, 87, 94, 96, 97], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 50, 52, 57, 58, 62, 64, 65, 66, 67, 69, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "core": [1, 40, 43, 71, 73], "algorithm": [1, 2, 8, 10, 31, 38, 42, 50, 52, 57, 66, 75, 77, 79, 93, 94, 96, 103], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 55, 57, 58, 61, 65, 66, 70, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "introduc": [1, 84, 93, 94], "synthet": [1, 96, 97, 102], "nois": [1, 2, 3, 36, 43, 46, 52, 58, 85, 86, 87, 92, 96, 101], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 85, 86, 92, 95, 99, 100], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 52, 57, 58, 59, 60, 61, 66, 67, 75, 76, 77, 78, 79, 80, 81, 85, 86, 87, 95, 96, 99, 100, 101, 102], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 84, 86, 90, 95, 96, 100], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 55, 59, 62, 65, 74, 78, 88, 90, 91, 94, 98, 103], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 52, 55, 57, 62, 65, 66, 67, 79, 88, 93, 97], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 52, 56, 57, 58, 59, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 52, 53, 66, 67, 69, 74, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 100, 102, 103], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 50, 52, 57, 59, 62, 65, 67, 69, 70, 78, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "matric": [1, 3, 46, 93], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "learn": [1, 2, 3, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 55, 57, 59, 66, 68, 70, 73, 77, 79, 83, 84, 86, 88, 90, 91, 92, 96, 97, 101], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 59, 60, 61, 62, 64, 65, 66, 67, 69, 75, 77, 78, 85, 87, 93, 94, 96, 97, 98, 101, 102, 103], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 52, 58, 59, 61, 67, 69, 70, 71, 73, 74, 80, 85, 86, 87, 90, 91, 93, 95, 96], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 52, 53, 59, 62, 64, 65, 66, 67, 90, 98, 99], "trace": [1, 85, 86, 87, 94, 96, 97], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "more": [1, 2, 3, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 67, 69, 70, 73, 74, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 102, 103], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 102, 103], "noise_matrix": [1, 2, 3, 10, 46, 52, 85, 86, 87, 94, 96, 97], "py": [1, 3, 33, 37, 38, 43, 46, 48, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 86, 94, 96], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99, 101, 102], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 85], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 50, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 50, 52, 57, 65, 66, 67, 71, 90, 91, 94, 96, 103], "true_label": [1, 2, 3, 36, 46, 52, 94, 96], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 93, 94, 96, 97, 98, 99, 102, 103], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 53, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 93, 94, 96, 97, 101], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 50, 64, 69, 83, 87, 91, 93, 94, 96, 97, 98, 99, 101], "achiev": [1, 2, 37, 38, 41, 69, 93, 96, 103], "better": [1, 5, 43, 57, 59, 67, 69, 70, 79, 83, 84, 87, 90, 91, 93, 94, 97, 98, 99, 103], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 57, 62, 64, 66, 67, 69, 73, 77, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 57, 67, 69, 82, 84, 85, 86, 87, 88, 90, 93, 94, 96, 97, 99], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 65, 69, 79, 82, 83, 86, 93, 94, 96, 97, 100, 101], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 50, 57, 58, 65, 66, 67, 93, 96, 99], "amount": [1, 3, 88], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 87, 88, 91], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 103], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 50, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 84, 92, 93, 94, 97, 98, 99, 102, 103], "condit": [1, 2, 3, 46, 51, 52, 67, 88, 94, 103], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 92, 93, 94, 95, 97, 98, 99, 102, 103], "k_": [1, 2, 3, 46, 52], "k_y": [1, 2, 3, 46, 52], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102], "fraction": [1, 2, 3, 10, 20, 38, 46, 52, 57, 69, 90, 93], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 96, 97, 98, 100, 101, 102, 103], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 51, 52, 59, 67, 69, 70, 82, 84, 85, 86, 87, 88, 90, 91, 93, 96, 98, 100, 102, 103], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 52, 53, 55, 57, 58, 61, 65, 66, 67, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 102, 103], "assum": [1, 2, 3, 12, 43, 46, 51, 52, 67, 71, 74, 93, 97, 99, 101, 102, 103], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 51, 52, 57, 58, 59, 61, 62, 65, 66, 67, 69, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 52, 58, 59, 61, 64, 69, 85, 86, 87, 88, 93, 94, 96, 97, 102, 103], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 92, 93, 100], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 51, 52, 53, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "return": [1, 2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 97, 98, 101, 102, 103], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 51, 52, 57, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 52, 57, 58, 59, 61, 62, 78, 83, 84, 87, 88, 90, 91, 92, 93, 94, 101, 103], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 57, 59, 61, 64, 65, 66, 67, 69, 70, 75, 77, 78, 79, 84, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103], "perfect": [1, 2, 36, 69, 94, 98], "exactli": [1, 3, 10, 36, 37, 41, 43, 60, 66, 86, 87, 88, 90, 91, 94], "yield": [1, 37, 41, 85], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 50, 55, 57, 58, 61, 64, 66, 67, 69, 70, 73, 77, 78, 80, 83, 84, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 50, 57, 58, 59, 64, 65, 73, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 52, 53, 56, 57, 64, 65, 67, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "loop": [1, 3, 46, 52, 88, 98], "implement": [1, 2, 3, 9, 14, 22, 37, 38, 40, 41, 46, 52, 69, 79, 82, 84, 86, 90, 99, 100], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 57, 58, 62, 64, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 50, 53, 64, 65, 69, 71, 73, 77, 83, 84, 86, 87, 88, 90, 91, 97, 101, 102], "do": [1, 2, 5, 9, 10, 36, 40, 41, 52, 53, 66, 67, 71, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 56, 69, 83, 84, 86, 87, 88, 90, 91, 92, 94, 99], "pseudocod": [1, 100], "happen": [1, 10, 43, 59, 85, 91, 96, 102], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 82, 83, 84, 85, 88, 91, 92, 93, 96, 97, 98, 101, 102, 103], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 61, 69, 79, 83, 84, 85, 91, 93, 94, 98, 99], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 50, 51, 52, 56, 57, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102], "distinct": [1, 18, 52, 103], "natur": [1, 10, 96, 99], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 80, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 102, 103], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 51, 52, 53, 66, 67, 69, 82, 83, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 52, 53, 56, 65, 69, 70, 83, 84, 85, 86, 87, 90, 93, 94, 96, 97, 99, 101], "round": [1, 40, 43, 52, 69, 93, 101], "astyp": [1, 96], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 50, 51, 52, 53, 58, 59, 61, 65, 66, 67, 69, 71, 73, 74, 75, 78, 84, 86, 88, 98, 99], "rang": [1, 3, 5, 7, 12, 46, 48, 50, 52, 65, 69, 70, 85, 88, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "pragma": 1, "cover": [1, 3, 80, 92, 93], "choic": [1, 8, 43, 50, 88, 93, 97, 99], "replac": [1, 51, 56, 67, 82, 83, 85, 86, 87, 88, 91, 92, 93, 96, 99], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 67, 84, 85, 86, 87], "05": [1, 10, 26, 30, 51, 65, 69, 75, 77, 90, 92, 93, 94, 98], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 85, 86, 87, 94, 96, 97], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 85, 86, 87, 88, 93, 94, 96, 97, 102], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 69, 82, 84, 85, 86, 87, 90, 92, 94, 96, 97], "max_it": [1, 83, 84, 91, 99], "10000": [1, 40, 92, 93], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 51, 52, 53, 56, 57, 59, 65, 66, 67, 69, 71, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 99, 101], "diagon": [1, 3, 5, 43, 46, 52], "equal": [1, 3, 10, 12, 59, 64, 74, 100], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 52, 69, 79, 83, 84, 88, 90, 91, 93, 102, 103], "impli": [1, 10, 36, 58, 65], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 50, 51, 52, 57, 58, 59, 61, 64, 65, 69, 73, 77, 84, 85, 86, 87, 94, 96, 97], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 50, 52, 57, 58, 59, 62, 82, 83, 90, 91, 94, 97, 98, 101], "maximum": [1, 10, 66, 74, 78, 102], "minimum": [1, 8, 10, 20, 43, 45, 59, 64, 77], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 64, 69, 86, 93, 94, 96, 98, 99], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 86, 88, 93, 101, 102], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "necessari": [1, 2, 3, 4, 7, 10, 12, 51, 85, 86], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 56, 57, 58, 60, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 52, 57, 61, 65, 69, 74, 78, 79, 82, 83, 84, 85, 87, 91, 93, 96, 97, 99, 101], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 52, 55, 56, 59, 66, 67, 69, 71, 79, 80, 84, 92, 93, 94, 100], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 53, 56, 57, 58, 59, 61, 64, 65, 66, 67, 69, 73, 74, 75, 77, 83, 85, 87, 88, 91, 92, 93, 97, 98, 101, 103], "when": [1, 2, 3, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 50, 52, 56, 59, 61, 62, 64, 66, 67, 69, 70, 82, 83, 85, 86, 87, 88, 90, 91, 96, 100, 101, 102, 103], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103], "rate": [1, 2, 3, 10, 38, 52, 84, 103], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 56, 57, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 82, 83, 85, 86, 87, 90, 91, 93, 96, 97, 99, 100, 101, 102, 103], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 52, 56, 57, 62, 64, 65, 66, 67, 69, 70, 74, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 55, 56, 57, 59, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "high": [1, 2, 16, 40, 43, 52, 64, 67, 69, 82, 83, 85, 86, 87, 88, 92, 94, 98, 101, 102, 103], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 52, 57, 58, 62, 64, 65, 66, 67, 69, 71, 74, 78, 80, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "imposs": [1, 10, 94], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 51, 56, 57, 66, 69, 74, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "low": [1, 10, 52, 57, 79, 85, 86, 87, 91, 94, 98, 102], "zero": [1, 3, 5, 37, 41, 45, 52, 53, 86, 88, 97, 98, 99], "forc": [1, 2, 3, 5, 41, 86, 103], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 52, 56, 57, 59, 61, 65, 66, 67, 69, 70, 73, 75, 77, 80, 82, 83, 84, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 50, 51, 52, 53, 56, 57, 66, 67, 69, 71, 73, 77, 78, 79, 83, 84, 86, 87, 88, 91, 96, 97, 98, 99, 100, 101, 102, 103], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 55, 80], "produc": [1, 2, 5, 9, 10, 16, 48, 57, 67, 69, 71, 73, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 102, 103], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 50, 56, 57, 58, 69, 87, 91, 93, 98], "opposit": [1, 103], "occur": [1, 3, 10, 36, 51, 64, 86, 87, 88, 93, 99], "small": [1, 3, 10, 36, 40, 48, 50, 52, 58, 65, 83, 88, 91, 92, 97, 99], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 50, 51, 53, 56, 61, 64, 69, 70, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "max": [1, 43, 66, 67, 87, 88, 99], "tri": [1, 37, 41, 100], "befor": [1, 2, 3, 37, 41, 50, 52, 66, 69, 74, 82, 83, 85, 91, 93, 94, 96, 99, 101], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 26, 30, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 84, 86, 87, 88, 90, 93, 94, 97, 101, 102], "left": [1, 2, 43, 45, 50, 52, 59, 62, 65, 85, 86, 87, 97, 98, 99, 102], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 57, 62, 64, 65, 66, 85, 86, 87, 92, 96, 97, 98, 103], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 56, 93, 94, 102], "length": [1, 5, 12, 26, 27, 36, 38, 43, 52, 59, 62, 66, 67, 69, 71, 74, 78, 82, 84, 97, 99, 102, 103], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 50, 52, 55, 56, 57, 58, 59, 66, 67, 69, 71, 73, 74, 75, 77, 78, 84, 96, 100, 102, 103], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 52, 53, 57, 59, 65, 71, 73, 74, 75, 77, 78, 82, 83, 84, 93, 96, 97, 98, 102, 103], "ball": [1, 92], "bin": [1, 3, 59, 85, 86, 87, 99], "ensur": [1, 2, 10, 37, 41, 50, 52, 53, 56, 64, 67, 69, 82, 83, 84, 86, 87, 88, 91, 93, 94, 99, 100, 101], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 56, 57, 58, 59, 62, 64, 65, 66, 67, 70, 73, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102], "least": [1, 4, 10, 18, 31, 36, 40, 57, 58, 64, 67, 77, 87, 88, 93, 96, 99, 102], "int_arrai": [1, 52], "can": [2, 3, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 97, 98, 99, 100, 101, 102, 103], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 51, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100, 102, 103], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 75, 77, 78, 79, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103], "regular": [2, 3, 40, 56], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 52, 53, 58, 59, 60, 61, 66, 67, 79, 93, 94, 95], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 50, 52, 57, 59, 67, 69, 79, 83, 84, 85, 91, 92, 93, 94, 97, 99, 101, 102, 103], "cleanlearn": [2, 3, 10, 23, 30, 37, 52, 56, 68, 69, 70, 79, 80, 82, 83, 101], "wrap": [2, 37, 41, 56, 66, 69, 79, 82, 83, 85, 86, 87, 90, 91, 94, 101], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56, 65, 66, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 56, 66, 69, 70, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101], "classifi": [2, 3, 41, 48, 52, 57, 60, 66, 67, 79, 80, 82, 83, 84, 90, 91, 93, 96, 97, 99, 100, 102, 103], "adher": [2, 41, 69], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 52, 57, 58, 59, 64, 66, 69, 71, 73, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 93, 95, 98, 99, 100, 101, 102, 103], "api": [2, 3, 14, 56, 62, 65, 66, 69, 80, 93, 101], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 67, 69, 71, 84, 86, 87, 90, 93, 96, 99, 103], "four": [2, 10, 92, 94, 103], "clf": [2, 3, 5, 48, 69, 79, 82, 90, 93, 94, 97], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 55, 56, 66, 68, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101, 103], "sample_weight": [2, 41, 69, 94], "predict_proba": [2, 5, 36, 39, 41, 48, 55, 56, 82, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 99], "predict": [2, 3, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 83, 92, 93, 94, 95, 99, 101, 102, 103], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 50, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 99, 101], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 52, 55, 56, 57, 58, 59, 60, 64, 66, 67, 68, 69, 74, 75, 76, 77, 78, 80, 83, 88, 89, 95, 100], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 52, 53, 57, 58, 59, 60, 62, 65, 66, 67, 69, 71, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 52, 66, 69, 79, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 101], "element": [2, 3, 5, 36, 42, 43, 45, 52, 57, 59, 67, 74, 75, 77, 83, 84, 91, 93, 103], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 52, 57, 58, 62, 65, 67, 69, 82, 83, 84, 86, 88, 90, 93, 96, 97, 98, 99, 101, 102, 103], "index": [2, 10, 26, 36, 43, 51, 52, 53, 58, 67, 69, 74, 77, 78, 83, 84, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 50, 51, 52, 56, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 100, 101, 102, 103], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 50, 52, 53, 55, 57, 62, 64, 66, 69, 82, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 99, 100, 101], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 59, 62, 65, 67, 69, 70, 79, 80, 83, 92, 93, 94, 95, 97, 98, 101, 102, 103], "size": [2, 10, 31, 37, 40, 41, 43, 48, 59, 64, 65, 69, 71, 73, 83, 85, 88, 90, 93, 94, 96, 97, 98, 100, 102], "here": [2, 5, 7, 10, 14, 40, 43, 46, 56, 57, 58, 59, 61, 62, 65, 66, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "re": [2, 5, 37, 41, 51, 57, 69, 79, 82, 83, 84, 85, 86, 90, 91, 93, 101, 102, 103], "weight": [2, 10, 37, 38, 41, 48, 57, 64, 67, 69, 83, 84, 85, 86, 87, 91], "loss": [2, 38, 56, 67, 69, 88], "while": [2, 3, 10, 37, 40, 41, 47, 48, 52, 69, 79, 88, 93, 94, 96, 97, 101], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 52, 56, 57, 62, 65, 66, 69, 70, 80, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 52, 53, 56, 66, 67, 77, 79, 80, 84, 85, 86, 87, 88, 93], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 52, 55, 56, 57, 58, 59, 61, 66, 67, 69, 70, 71, 73, 74, 80, 82, 83, 84, 85, 88, 90, 92, 96, 97, 98, 99, 100, 101, 102, 103], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 57, 86, 87, 88, 93, 100, 101], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 53, 58, 59, 64, 65, 69, 71, 83, 91, 93, 97, 98, 101, 102], "clonabl": [2, 69], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 57, 62, 65, 66, 67, 69, 70, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 97, 98, 99, 100, 101, 102, 103], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 64, 66, 67, 69, 70, 73, 75, 77, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "clone": [2, 69, 97], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 61, 65, 69, 75, 80, 84, 86, 93, 94, 96, 97, 98, 99, 101, 103], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 50, 51, 57, 58, 59, 61, 64, 65, 69, 79, 86, 87, 88, 93, 95, 97, 98, 101], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 52, 59, 60, 62, 65, 66, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "manual": [2, 69, 82, 83, 84, 93, 99, 100, 101, 103], "pytorch": [2, 37, 38, 41, 69, 79, 84, 93, 95, 97, 102], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 52, 56, 66, 69, 83, 84, 85, 86, 87, 91, 93, 94, 97, 99, 100, 101, 102, 103], "__init__": [2, 38, 69, 88], "independ": [2, 3, 10, 58, 69, 91, 100, 101, 103], "compat": [2, 37, 40, 41, 56, 69, 70, 73, 77, 79, 82, 83, 93, 100, 101], "neural": [2, 38, 56, 66, 69, 84, 88, 93, 97, 99, 101], "network": [2, 37, 38, 41, 56, 66, 69, 83, 84, 88, 91, 93, 97, 99, 101], "typic": [2, 37, 41, 66, 69, 82, 83, 84, 87, 88, 90, 91, 99, 100], "initi": [2, 3, 13, 18, 37, 41, 57, 69, 82, 91, 93], "insid": [2, 41, 69, 93, 94], "There": [2, 3, 7, 79, 94, 96], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 62, 64, 65, 80, 83, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101, 102, 103], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 52, 57, 69, 83, 84, 86, 91, 92, 93, 99, 100, 103], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 73, 77, 79, 82, 88, 90, 91, 94, 96, 97, 98, 100, 102, 103], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 52, 55, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "prune": [2, 3, 43, 59, 69, 80, 98], "everyth": [2, 65, 94], "els": [2, 65, 85, 86, 88, 92, 93, 96, 97, 98], "mathemat": [2, 3, 10, 46, 97], "keep": [2, 13, 14, 52, 79, 85, 86, 92, 93, 102], "belong": [2, 3, 10, 36, 43, 45, 46, 58, 59, 60, 61, 66, 67, 71, 75, 77, 78, 87, 88, 94, 97, 99, 102, 103], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 70, 74, 75, 77, 78, 92, 93, 100], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 52, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 91, 92, 95], "erron": [2, 3, 36, 43, 46, 52, 58, 59, 67, 69, 70, 71, 99, 101], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 50, 51, 57, 61, 64, 69, 70, 75, 77, 78, 79, 82, 83, 90, 91, 93, 97, 98, 99, 101, 102, 103], "linear_model": [2, 5, 36, 52, 69, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logisticregress": [2, 3, 5, 36, 52, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logreg": 2, "cl": [2, 14, 30, 69, 79, 82, 83, 93, 94, 101], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 52, 56, 57, 59, 66, 67, 69, 75, 79, 83, 84, 85, 86, 87, 91, 92, 93, 94, 96, 98, 99, 101], "x_train": [2, 82, 85, 86, 87, 94, 96, 97, 101], "labels_maybe_with_error": 2, "had": [2, 3, 69, 98], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 55, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 89, 95, 96, 100, 101], "pred": [2, 43, 52, 82, 83, 100, 101], "x_test": [2, 82, 85, 86, 87, 94, 97, 101], "might": [2, 5, 57, 69, 74, 82, 83, 86, 87, 88, 93, 98], "case": [2, 3, 10, 13, 36, 48, 57, 69, 82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 99, 101, 103], "standard": [2, 3, 5, 30, 36, 43, 56, 58, 59, 61, 67, 69, 79, 82, 86, 87, 90, 92, 94, 98], "adapt": [2, 37, 39, 52, 55, 69, 99], "skorch": [2, 69, 79, 93], "kera": [2, 55, 62, 65, 69, 79, 93, 98], "scikera": [2, 56, 69, 93], "open": [2, 40, 92, 98, 103], "doesn": [2, 69, 79], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 50, 51, 61, 66, 67, 69, 75, 77, 78, 79, 86, 87, 88, 90, 91, 92, 94, 97, 98, 101, 103], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 56, 57, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 51, 56, 62, 64, 66, 69, 79, 80, 82, 83, 86, 87, 91, 96, 103], "made": [2, 5, 16, 37, 41, 69, 82, 83, 88, 91, 93, 96, 98, 100, 101], "easi": [2, 11, 46, 69, 86, 87, 92, 93, 94, 97], "inherit": [2, 7, 38, 69], "baseestim": [2, 41, 69], "yourmodel": [2, 69], "def": [2, 7, 14, 37, 41, 56, 69, 83, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 66, 67, 69, 82, 83, 86, 88, 91, 92, 97, 102, 103], "refer": [2, 10, 16, 37, 41, 42, 58, 59, 61, 62, 64, 65, 69, 73, 74, 86, 87, 88, 90, 91, 93, 94, 97, 100, 101], "origin": [2, 5, 10, 41, 42, 43, 51, 52, 56, 58, 59, 62, 65, 66, 69, 70, 73, 75, 77, 82, 83, 86, 88, 90, 91, 93, 94, 98, 99, 101, 103], "total": [2, 3, 4, 36, 40, 52, 58, 78, 85, 88, 93, 102], "state": [2, 3, 5, 37, 38, 41, 47, 69, 94, 97, 98, 103], "art": [2, 38, 94, 97], "northcutt": [2, 3, 36, 66, 67], "et": [2, 3, 36, 38, 66, 67], "al": [2, 3, 36, 38, 66, 67], "2021": [2, 3, 36, 66, 67], "weak": [2, 65], "supervis": [2, 10, 86, 87, 93, 96], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 51, 52, 55, 62, 65, 66, 67, 69, 71, 75, 77, 80, 86, 95, 100], "uncertainti": [2, 10, 45, 66, 69, 93, 99, 101], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 50, 57, 64, 65, 69, 79, 83, 86, 87, 88, 91, 93, 94, 97, 100], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 51, 52, 53, 56, 57, 67, 69, 79, 80, 83, 85, 86, 87, 92, 99, 101], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 51, 52, 55, 57, 58, 61, 62, 66, 67, 69, 73, 74, 75, 77, 79, 80, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 103], "deep": [2, 39, 41, 55, 56, 69, 91], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "subfield": 2, "theori": [2, 94], "machin": [2, 5, 9, 10, 14, 16, 33, 39, 50, 55, 69, 82, 83, 86, 87, 92, 96], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 58, 65, 66, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 100, 101], "varieti": [2, 82, 83, 93], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 52, 56, 57, 58, 61, 62, 64, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "pu": [2, 52], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 53, 56, 65, 69, 79, 80, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "discret": [2, 34, 43, 46, 52, 66, 67, 71, 73, 74], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 52, 66, 67, 79, 83, 84, 86, 87, 88, 90, 91, 94, 97, 98, 99, 102, 103], "would": [2, 3, 5, 37, 40, 41, 43, 52, 59, 69, 79, 83, 85, 86, 88, 93, 94, 99, 101, 103], "obtain": [2, 5, 8, 10, 16, 43, 57, 59, 62, 65, 67, 70, 84, 87, 91, 93, 96, 98, 100, 102, 103], "been": [2, 4, 36, 43, 46, 51, 52, 57, 58, 62, 64, 66, 67, 69, 84, 86, 90, 93, 94, 96, 97, 98, 99, 102, 103], "dure": [2, 10, 16, 66, 69, 82, 83, 84, 85, 90, 91, 93, 94, 97, 100, 101, 103], "denot": [2, 3, 46, 48, 52, 59, 66, 67, 77], "tild": 2, "paper": [2, 4, 10, 57, 66, 75, 77, 92, 94, 96, 99, 101, 103], "cv_n_fold": [2, 3, 69, 83], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 52, 57, 58, 61, 62, 65, 69, 70, 77, 83, 86, 91, 92, 93, 97, 98, 99, 100, 102, 103], "converge_latent_estim": [2, 3], "pulearn": [2, 52], "find_label_issues_kwarg": [2, 10, 69, 80, 93, 94], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 59, 75, 93], "clean": [2, 64, 67, 69, 70, 79, 82, 83, 85, 86, 87, 92, 101], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 52, 69, 84, 93, 94, 96, 97, 98], "messi": [2, 69, 94], "ridden": [2, 69], "autom": [2, 9, 10, 69, 79, 87, 92, 93], "robust": [2, 46, 69, 87, 93], "prone": [2, 69], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 56, 59, 60, 62, 65, 66, 67, 69, 70, 78, 79, 80, 83, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 57, 64, 69, 85, 86, 87, 93, 96, 98], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 57, 73, 77, 84, 86, 87, 91, 94], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 57, 58, 61, 64, 65, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 94, 96, 98, 100, 103], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 57, 58, 62, 64, 65, 66, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "experiment": [2, 37, 38, 40, 41, 42, 59, 80, 85, 93], "wrapper": [2, 56, 82, 83, 84, 101], "around": [2, 64, 85, 86, 87, 98, 99, 103], "fasttext": [2, 55], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 66, 69, 82, 83, 85, 90, 91, 92, 93, 102, 103], "along": [2, 48, 59, 77, 85, 86, 87, 88, 93, 99], "dimens": [2, 52, 71, 74, 88, 93, 99, 102], "select": [2, 9, 10, 26, 57, 67, 88, 93, 96, 99], "split": [2, 3, 5, 10, 12, 40, 48, 51, 52, 69, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 97, 100, 103], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 59, 62, 65, 67, 69, 70, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "fold": [2, 3, 36, 43, 46, 69, 82, 84, 90, 92, 93, 98, 102], "By": [2, 36, 58, 59, 69, 86, 93, 102], "need": [2, 3, 10, 36, 37, 40, 41, 43, 58, 59, 61, 66, 69, 79, 83, 84, 86, 87, 91, 93, 94, 96, 97, 98, 102], "holdout": [2, 3, 69], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 52, 57, 58, 59, 61, 64, 65, 66, 67, 69, 70, 71, 73, 79, 80, 83, 86, 87, 92, 94, 95, 98, 99, 101, 102], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 55, 57, 66, 69, 80, 82, 83, 85, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 102, 103], "numer": [2, 3, 5, 10, 13, 22, 30, 34, 48, 64, 66, 69, 74, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 94, 96, 97, 99, 101], "consist": [2, 3, 37, 41, 52, 57, 102, 103], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 50, 52, 56, 59, 64, 67, 69, 70, 73, 77, 79, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 103], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 52, 58, 69, 87, 91], "close": [2, 3, 10, 40, 46, 66, 84, 86, 87, 88, 90, 91, 93, 94, 98], "form": [2, 3, 10, 37, 38, 41, 46, 51, 52, 67, 69, 93], "equival": [2, 3, 37, 41, 46, 66, 99, 101], "iter": [2, 3, 36, 37, 41, 43, 52, 58, 59, 69, 85, 93, 96, 102], "enforc": [2, 37, 41, 52], "perfectli": [2, 36, 58, 94], "certain": [2, 3, 5, 37, 41, 56, 65, 69, 85, 86, 87, 92, 98, 99], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 77, 85, 86, 87, 88, 93, 103], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 56, 57, 59, 66, 67, 69, 75, 77, 86], "filter": [2, 3, 10, 40, 42, 51, 58, 60, 61, 63, 65, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 87, 88, 91, 92, 93, 97, 98, 101, 102, 103], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 93, 97, 98, 101, 102, 103], "particularli": [2, 79, 96, 99], "filter_bi": [2, 3, 40, 43, 59, 80, 93], "frac_nois": [2, 43, 59, 75, 93], "min_examples_per_class": [2, 43, 59, 87, 93, 94], "impact": [2, 4, 10, 86, 87, 88], "ml": [2, 4, 5, 9, 10, 15, 69, 79, 82, 83, 86, 87, 88, 90, 91, 96, 97, 101], "accuraci": [2, 38, 67, 82, 83, 84, 88, 93, 94, 96, 99, 101, 102], "n_job": [2, 40, 43, 59, 71, 73, 75, 93, 99, 102], "disabl": [2, 37, 41, 43, 99], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 51, 57, 59, 65, 71, 73, 75, 83, 84, 85, 86, 93, 96, 100], "caus": [2, 43, 48, 86, 87, 93], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 58, 59, 60, 62, 63, 65, 66, 68, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 87, 92, 93, 97, 98, 99, 102, 103], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 57, 59, 60, 61, 62, 63, 64, 67, 68, 70, 72, 73, 75, 76, 77, 80, 93, 94, 97, 98, 102, 103], "adjust_pred_prob": [2, 10, 61, 66, 67, 94], "control": [2, 5, 9, 10, 16, 40, 43, 57, 65, 66, 69, 75, 77, 86, 87, 92, 93], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 52, 57, 58, 61, 62, 64, 66, 67, 69, 73, 77, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 98, 99, 100, 101, 102], "much": [2, 10, 36, 40, 43, 69, 85, 93, 94, 96, 99], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 52, 56, 57, 58, 62, 64, 65, 66, 69, 73, 74, 77, 78, 79, 80, 83, 84, 86, 88, 91, 92, 93, 98, 99, 100, 101], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 52, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 85, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "suppress": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74, 102, 103], "statement": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74], "big": [2, 40, 59, 65, 69, 94], "limit": [2, 5, 16, 40, 59, 85, 98, 102, 103], "memori": [2, 37, 40, 41, 59, 65, 71, 73, 85, 86, 102], "label_issues_batch": [2, 39, 59, 93], "find_label_issues_batch": [2, 39, 40, 59, 93], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 52, 53, 57, 58, 59, 61, 62, 65, 66, 67, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 50, 64, 65, 66, 67, 73, 77, 86, 98, 99, 102, 103], "inverse_noise_matrix": [2, 3, 10, 46, 52, 80, 94], "label_issu": [2, 40, 43, 59, 62, 69, 71, 80, 82, 83, 84, 88, 91, 93, 94, 97, 101], "clf_kwarg": [2, 3, 10, 69], "clf_final_kwarg": [2, 69], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 73, 77, 79, 84, 88, 90, 91, 94, 96, 98, 100, 101], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 50, 52, 59, 61, 62, 65, 67, 69, 70, 71, 73, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 101, 102, 103], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 59, 62, 65, 67, 69, 70, 71, 74, 75, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 97, 99, 101, 102, 103], "final": [2, 10, 69, 82, 90, 98, 100, 101], "remain": [2, 69, 80, 82, 83, 88, 97, 101, 103], "datasetlik": [2, 52, 69], "beyond": [2, 5, 7, 9, 10, 11, 35, 79, 82, 83, 101, 102], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 56, 57, 58, 69, 77, 82, 83, 84, 86, 87, 90, 91, 93, 94, 96, 101, 103], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 52, 53, 56, 57, 58, 69, 74, 78, 80, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101, 102, 103], "scipi": [2, 5, 13, 52], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 52, 53, 87, 88, 90, 91, 94], "csr_matrix": [2, 4, 5, 13, 16, 18, 31], "torch": [2, 37, 38, 41, 83, 84, 88, 91, 92, 99], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 56, 57, 62, 65, 69, 79, 80, 84, 86, 87, 88, 93, 94, 99], "tensorflow": [2, 52, 56, 79, 84, 93], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 52, 53, 56, 59, 62, 63, 64, 65, 66, 69, 77, 79, 83, 84, 87, 88, 90, 93, 94, 95, 97, 101], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 73, 74, 75, 77, 78, 80, 83, 84, 85, 86, 87, 88, 92, 93, 94, 97, 98, 101, 103], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 52, 67, 74, 78, 82, 83, 84, 88, 90, 91, 93, 97, 98, 99, 100, 101, 103], "wa": [2, 3, 12, 14, 40, 50, 52, 57, 58, 64, 66, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 100, 102, 103], "abl": [2, 3, 10, 69, 84, 93, 94, 96, 97], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 82, 84, 86, 87, 88, 90, 92, 96, 101, 102, 103], "make": [2, 3, 5, 18, 37, 40, 41, 48, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "sure": [2, 5, 40, 43, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101], "shuffl": [2, 10, 52, 84, 88, 91, 97, 99], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 52, 57, 62, 64, 69, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 90, 91, 94, 96, 97, 98, 99, 100, 101, 103], "batch": [2, 40, 52, 56, 57, 71, 73, 85, 88, 93, 99], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 50, 52, 57, 58, 59, 62, 65, 66, 67, 71, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 101, 102, 103], "destroi": [2, 52], "oper": [2, 37, 40, 41, 52, 56, 67, 79, 82, 83, 91, 93, 99], "eg": [2, 5, 10, 52, 62, 65, 86, 87, 93], "repeat": [2, 52, 57, 96, 99], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 51, 52, 61, 66, 75, 82, 83, 84, 85, 86, 87, 88, 90, 93, 96, 97, 99, 100, 101, 102], "array_lik": [2, 3, 36, 43, 52, 59, 66, 70], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 51, 52, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "seri": [2, 3, 40, 52, 53, 69, 77, 93], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 52, 57, 58, 59, 61, 66, 67, 69, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 99, 103], "rather": [2, 3, 5, 26, 36, 52, 56, 57, 64, 73, 77, 83, 96, 100, 101, 102, 103], "leav": [2, 43], "per": [2, 3, 5, 7, 13, 36, 40, 43, 48, 51, 57, 58, 59, 61, 64, 65, 67, 70, 71, 73, 77, 87, 93, 98, 103], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 52, 57, 59, 62, 64, 67, 73, 77, 86, 93, 96, 98, 99, 101], "cutoff": [2, 3, 99], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 52, 57, 64, 66, 67, 70, 73, 77, 82, 83, 84, 88, 90, 91, 93, 94, 98, 99, 100, 101, 102], "section": [2, 3, 7, 10, 80, 88, 90, 93, 98], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 59, 66, 67, 69, 70, 75, 77, 92, 93, 100], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 64, 66, 77, 80, 87, 89, 93, 94], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 56, 64, 66, 67, 69, 73, 77, 85, 94], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 56, 57, 58, 59, 62, 64, 66, 67, 69, 70, 78, 80, 83, 84, 87, 88, 91, 96, 98, 101], "automat": [2, 3, 5, 26, 36, 79, 82, 83, 88, 90, 91, 92, 93, 96, 97, 98, 101, 102, 103], "greater": [2, 3, 5, 7, 9, 10, 28, 40, 52, 64, 87, 92, 93, 103], "count": [2, 22, 26, 36, 40, 43, 46, 52, 58, 59, 65, 80, 88, 93, 98], "observ": [2, 3, 46, 84, 85, 86, 87, 96, 99, 101], "mislabel": [2, 10, 36, 40, 42, 43, 46, 57, 58, 59, 62, 64, 67, 73, 75, 77, 79, 82, 83, 84, 88, 90, 91, 93, 94, 98, 101], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 99, 100, 101, 103], "get_label_issu": [2, 39, 40, 68, 69, 82, 83, 94, 101], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 57, 59, 64, 66, 67, 71, 73, 85, 87, 93, 97, 98], "boolean": [2, 7, 10, 22, 40, 43, 51, 57, 59, 62, 67, 69, 71, 73, 74, 79, 83, 84, 87, 88, 91, 93, 98, 101, 102], "label_issues_mask": [2, 43, 67, 69, 80], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 75, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 50, 51, 59, 62, 65, 66, 67, 69, 71, 75, 77, 79, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103], "return_indices_ranked_bi": [2, 40, 43, 59, 75, 80, 82, 83, 93, 94], "significantli": [2, 88, 94, 96, 100], "reduc": [2, 40, 43, 52, 84, 93], "time": [2, 10, 37, 40, 41, 52, 57, 80, 82, 83, 85, 86, 88, 92, 93, 94, 98, 99, 101, 102, 103], "take": [2, 5, 10, 36, 37, 41, 47, 48, 52, 56, 67, 82, 85, 88, 90, 96, 97, 98, 103], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 103], "skip": [2, 10, 37, 41, 69, 84, 93, 97, 103], "slow": [2, 3], "step": [2, 7, 26, 48, 65, 85, 88, 94, 96, 100], "caution": [2, 5, 93], "previous": [2, 5, 13, 52, 66, 69, 80, 82, 84, 86, 90, 91, 96, 100], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 52, 69, 82, 86, 88, 90, 93, 101, 102, 103], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 57, 61, 64, 67, 69, 75, 77, 80, 82, 87, 90, 93, 96, 97, 98, 103], "still": [2, 40, 41, 52, 66, 82, 84, 88, 93, 99], "extra": [2, 37, 41, 52, 56, 57, 58, 69, 88, 91, 93, 96, 99], "receiv": [2, 10, 37, 41, 42, 58, 61, 62, 69, 71, 75, 87, 98], "overwritten": [2, 69], "callabl": [2, 3, 37, 41, 48, 51, 56, 61, 93], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 51, 52, 65, 67, 69, 74, 84, 85, 86, 87, 88, 93, 94, 97, 103], "appropri": [2, 10, 16, 34, 59, 67, 86, 90, 97, 98], "earli": [2, 88], "stop": [2, 88], "x_valid": 2, "y_valid": 2, "could": [2, 4, 7, 10, 22, 36, 52, 66, 82, 86, 88, 90, 97, 101, 103], "f": [2, 7, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "ignor": [2, 37, 41, 51, 56, 69, 74, 78, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "allow": [2, 4, 36, 37, 40, 41, 45, 52, 57, 65, 66, 69, 71, 73, 83, 84, 85, 88, 93, 100, 102], "access": [2, 10, 13, 37, 41, 69, 83, 87, 88, 91, 97], "hyperparamet": [2, 61, 66, 88], "purpos": [2, 86, 87, 93, 97, 101], "want": [2, 5, 10, 36, 40, 53, 57, 59, 69, 83, 85, 86, 88, 91, 92, 96, 98, 99, 100, 102, 103], "explicitli": [2, 8, 10, 41, 69, 93], "yourself": [2, 5, 40, 87], "altern": [2, 7, 10, 48, 52, 56, 57, 67, 80, 83, 84, 88, 90, 91, 93, 94, 96, 97, 99, 101], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 52, 56, 57, 59, 66, 67, 69, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 97, 98, 99, 100, 101, 102], "effect": [2, 10, 27, 37, 41, 57, 66, 69, 88, 90, 91, 93, 99], "offer": [2, 5, 9, 10, 83, 84, 86, 87, 91, 93, 94, 97], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 57, 69, 83, 86, 88, 91, 93, 94, 96, 98, 99, 100, 101, 102], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 66, 69, 82, 86], "label_issues_df": [2, 69, 88], "similar": [2, 10, 36, 37, 41, 52, 57, 61, 62, 64, 66, 69, 73, 77, 85, 86, 87, 88, 90, 91, 93, 94, 98, 99, 102], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 51, 56, 58, 59, 61, 64, 65, 66, 69, 73, 74, 75, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 52, 62, 69, 86, 87], "were": [2, 3, 5, 36, 41, 58, 64, 77, 82, 84, 90, 93, 94, 96, 98, 100, 102], "present": [2, 3, 5, 10, 12, 13, 20, 36, 52, 66, 74, 79, 88, 90, 93, 99], "actual": [2, 3, 5, 36, 57, 58, 67, 87, 93, 94, 103], "num_class": [2, 36, 40, 52, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99], "uniqu": [2, 31, 52, 74, 86, 93, 97, 99], "given_label": [2, 5, 25, 30, 36, 46, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102, 103], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 50, 51, 52, 67, 93, 94, 99], "trick": [2, 93], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 50, 57, 65, 66, 67, 79, 85, 86, 87, 88, 90, 91, 98, 99], "account": [2, 36, 57, 61, 66, 67, 83, 91, 93, 94, 96, 97, 99, 101], "word": [2, 3, 51, 77, 78, 93], "remov": [2, 10, 31, 36, 37, 41, 43, 69, 79, 82, 83, 87, 88, 90, 91, 92, 93, 94, 97, 99, 101], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 52, 57, 58, 64, 67, 69, 73, 77, 84, 86, 87, 88, 91, 94, 97, 99, 102], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 52, 56, 67, 69, 71, 79, 80, 82, 83, 84, 87, 88, 90, 91, 93, 94, 97, 98, 99, 100, 101, 102], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 50, 51, 52, 57, 59, 61, 66, 67, 69, 70, 71, 79, 82, 83, 84, 88, 91, 92, 93, 94, 99, 100, 101], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 50, 60, 62, 63, 64, 65, 66, 67, 68, 69, 72, 76, 79, 82, 83, 85, 86, 88, 89, 95, 97, 101, 102, 103], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 52, 67, 69], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 56, 69, 71, 73, 75, 93], "test": [2, 5, 10, 26, 41, 48, 56, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 100, 101, 103], "expect": [2, 3, 37, 41, 43, 48, 57, 66, 67, 69, 82, 83, 93, 94, 96, 97, 98, 101, 103], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 65, 69, 82, 83, 84, 86, 87, 88, 93, 94, 96, 100, 101, 102], "simpli": [2, 10, 36, 67, 83, 86, 87, 90, 91, 93, 94, 97, 101, 102, 103], "quantifi": [2, 5, 7, 10, 13, 43, 61, 66, 69, 79, 87, 88, 90, 91, 94, 98], "save_spac": [2, 10, 68, 69], "potenti": [2, 10, 36, 43, 51, 59, 62, 65, 67, 69, 71, 73, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "cach": [2, 83, 91], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 52, 53, 56, 57, 58, 80, 82, 83, 84, 86, 87, 90, 91, 92, 93, 94, 96, 101, 102], "unlik": [2, 10, 43, 45, 48, 56, 58, 59, 61, 77, 86, 96, 97, 99, 101], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 52, 57, 59, 67, 71, 73, 78, 79, 86, 88, 93, 94, 96, 103], "mask": [2, 40, 43, 51, 52, 59, 62, 67, 69, 71, 73, 74, 79, 85, 92, 93, 96, 98, 102, 103], "prefer": [2, 67, 75, 97], "plan": 2, "subsequ": [2, 3, 37, 41, 83, 91, 93, 94, 98], "invok": [2, 37, 41, 94, 100], "scratch": [2, 69], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 56, 57, 59, 61, 65, 66, 67, 69, 70, 71, 73, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "share": [2, 67, 69], "mostli": [2, 52, 64, 69, 97, 101], "longer": [2, 34, 47, 48, 51, 69, 80, 83, 91, 93, 98], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 69, 77, 86, 87, 92, 103], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 57, 58, 61, 65, 69, 74, 77, 84, 86, 88, 90, 91, 92, 93, 94, 96, 99], "docstr": [2, 36, 37, 41, 52, 69, 92, 94], "unless": [2, 37, 41, 69, 93], "our": [2, 3, 10, 56, 57, 67, 69, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "is_label_issu": [2, 30, 69, 83, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "entir": [2, 10, 26, 40, 43, 46, 58, 59, 64, 67, 69, 71, 73, 74, 79, 85, 86, 87, 93, 98, 99, 100, 102, 103], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 57, 58, 59, 62, 65, 67, 69, 70, 71, 73, 74, 80, 87, 88, 90, 91, 93, 96, 101], "label_qu": [2, 57, 69, 83, 94, 96, 101], "measur": [2, 5, 36, 57, 58, 69, 79, 82, 92, 93, 94, 96, 97, 101, 102, 103], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 57, 58, 59, 61, 62, 64, 67, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 101], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 50, 57, 58, 61, 64, 65, 67, 69, 70, 73, 77, 83, 84, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "eas": 2, "comparison": [2, 37, 41, 65, 94, 96], "against": [2, 37, 41, 86, 90, 93, 96, 97], "predicted_label": [2, 5, 25, 30, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102], "ad": [2, 37, 41, 85, 87, 96, 101], "precis": [2, 50, 59, 62, 65, 93, 94, 102, 103], "definit": [2, 7, 34, 48, 69, 82, 90], "accessor": [2, 69], "describ": [2, 10, 18, 57, 66, 67, 69, 75, 77, 94, 96, 97, 98, 100, 103], "precomput": [2, 4, 5, 46, 69, 87, 88, 90, 91, 92, 94], "clear": [2, 37, 41, 69, 83, 91, 101], "save": [2, 5, 16, 37, 40, 41, 65, 69, 93, 98, 102, 103], "space": [2, 5, 10, 66, 69, 88, 90, 92], "place": [2, 37, 41, 52, 69, 82, 96], "larg": [2, 9, 10, 40, 69, 88, 90, 91, 93, 98, 99, 102, 103], "deploi": [2, 9, 10, 69, 88, 90, 91, 93], "care": [2, 10, 37, 41, 69, 91, 93, 94], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 69, 93, 94, 96, 98, 101], "cannot": [2, 5, 12, 14, 52, 100, 103], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 69], "__init_subclass__": [2, 39, 41, 68, 69], "set_": [2, 41, 69], "_request": [2, 41, 69], "pep": [2, 41, 69], "487": [2, 41, 69], "look": [2, 5, 7, 16, 37, 41, 52, 69, 74, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 103], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 52, 57, 58, 62, 65, 69, 74, 77, 78, 79, 84, 85, 86, 90, 91, 94, 96, 99, 102, 103], "__metadata_request__": [2, 41, 69], "infer": [2, 41, 52, 69, 74, 78, 82, 83, 88, 96, 97], "signatur": [2, 37, 41, 69], "accept": [2, 37, 41, 50, 67, 69, 86, 87, 93], "metadata": [2, 41, 69, 88, 90, 91, 103], "through": [2, 5, 7, 41, 69, 83, 84, 85, 87, 91, 92, 93, 96, 98, 99], "develop": [2, 9, 41, 69, 93, 94, 103], "request": [2, 41, 69, 82, 83, 87, 91, 92, 97, 103], "those": [2, 3, 4, 10, 40, 41, 43, 56, 57, 59, 65, 69, 73, 77, 78, 79, 84, 88, 93, 98, 102], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 52, 62, 65, 66, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "www": [2, 41, 69, 99], "org": [2, 4, 18, 37, 38, 41, 52, 66, 69, 93, 94, 103], "dev": [2, 41, 69], "0487": [2, 41, 69], "get_metadata_rout": [2, 39, 41, 68, 69], "rout": [2, 41, 69], "pleas": [2, 37, 41, 56, 69, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 101, 103], "guid": [2, 7, 10, 41, 69, 80, 88, 89], "mechan": [2, 37, 41, 69], "metadatarequest": [2, 41, 69], "encapsul": [2, 16, 41, 64, 69], "get_param": [2, 39, 41, 55, 56, 68, 69], "subobject": [2, 41, 69], "param": [2, 10, 37, 41, 56, 66, 69, 93], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 57, 58, 65, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101, 102, 103], "set_fit_request": [2, 39, 41, 68, 69], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 56, 57, 58, 62, 64, 65, 67, 69, 74, 78, 84, 85, 86, 93, 96, 97, 98, 103], "unchang": [2, 37, 41, 69, 103], "relev": [2, 16, 26, 41, 69, 88], "enable_metadata_rout": [2, 41, 69], "set_config": [2, 41, 69], "meta": [2, 41, 69], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 50, 69, 84, 93], "alia": [2, 37, 41, 69], "metadata_rout": [2, 41, 69], "retain": [2, 41, 52, 69], "chang": [2, 32, 34, 37, 40, 41, 45, 69, 77, 82, 83, 84, 86, 91, 93, 98, 99, 103], "version": [2, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 52, 55, 56, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "sub": [2, 41, 64, 69], "pipelin": [2, 41, 69, 101], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 50, 51, 52, 59, 66, 69, 71, 73, 74, 78, 83, 91, 93], "updat": [2, 13, 37, 40, 41, 56, 69, 80, 85, 86, 88], "set_param": [2, 39, 41, 55, 56, 68, 69], "simpl": [2, 37, 41, 43, 57, 67, 69, 82, 83, 85, 86, 87, 88, 90, 91, 96, 99, 101], "well": [2, 3, 9, 10, 37, 41, 45, 46, 57, 59, 65, 67, 69, 74, 77, 78, 80, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99], "nest": [2, 37, 41, 42, 53, 69, 75, 77, 78, 103], "latter": [2, 37, 41, 69, 99], "compon": [2, 41, 69], "__": [2, 41, 69], "set_score_request": [2, 68, 69], "structur": [3, 66, 82, 85, 90, 93], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 57, 66, 67, 71, 73, 77, 87, 88, 90, 92, 93, 94, 98, 103], "channel": [3, 84, 94], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 52, 58, 83, 87, 92], "inv": 3, "confident_joint": [3, 22, 36, 43, 52, 58, 59, 80, 93, 94], "un": 3, "under": [3, 10, 37, 41, 58, 65, 66, 87, 99], "joint": [3, 36, 43, 46, 52, 58, 59, 92], "num_label_issu": [3, 40, 43, 59, 74, 78, 80], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 52, 53, 59, 97], "don": [3, 79, 87, 88, 90, 91, 94, 98, 101], "statis": 3, "compute_confident_joint": [3, 36, 43, 52, 59, 94], "off": [3, 43, 52, 64, 88, 94, 98, 99], "j": [3, 5, 36, 37, 41, 42, 43, 59, 62, 65, 66, 75, 77, 78, 85, 86, 87, 94, 102, 103], "confident_learn": [3, 43, 59, 94], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 52, 57, 96], "cj": [3, 46, 52], "axi": [3, 31, 46, 48, 50, 71, 74, 84, 85, 86, 87, 88, 93, 94, 96, 97, 99, 101, 102], "bincount": [3, 85, 86, 87, 94, 96, 97], "alwai": [3, 10, 37, 41, 52, 82, 83, 84, 94, 101], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 64, 65, 71, 73, 82, 87, 88, 90, 92, 93, 94, 99, 101], "As": [3, 7, 79, 86, 87, 91, 94, 101, 103], "add": [3, 5, 7, 12, 13, 37, 41, 56, 65, 83, 84, 85, 86, 87, 88, 91, 93, 94, 97], "approach": [3, 4, 36, 40, 43, 56, 82, 85, 90, 94, 97, 99, 101], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 51, 67, 83, 87, 91, 94, 101], "know": [3, 10, 86, 87, 88, 90, 91, 93, 94, 96, 101], "cut": [3, 64, 79, 94], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 98, 99, 103], "underestim": 3, "few": [3, 9, 10, 65, 79, 87, 93, 96, 97, 98, 99, 103], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 51, 61, 62, 64, 65, 67, 70, 77, 92, 93, 97, 102, 103], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 73, 74, 75, 79, 80, 84, 93, 97, 99, 103], "num_issu": [3, 7, 40, 84, 85, 86, 87, 88, 90, 91, 94], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 56, 57, 83, 85, 92, 93, 98, 101, 103], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 94], "v": [3, 10, 40, 58, 59, 61, 67, 85, 86, 87, 97, 98, 99, 100], "rest": [3, 5, 7, 9, 10, 11, 35, 58, 59, 61, 69, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101], "fashion": [3, 5, 71, 82], "2x2": 3, "incorrectli": [3, 36, 58, 59, 62, 90, 103], "calibrated_cj": 3, "c": [3, 10, 50, 51, 59, 67, 79, 82, 84, 86, 87, 90, 91, 93, 94, 97, 98, 99, 100, 101], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 51, 57, 61, 64, 70, 73, 77, 78, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 102, 103], "truli": [3, 99, 102], "estimate_joint": [3, 36, 94], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 59, 65, 94, 98, 100, 102, 103], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 57, 58, 65, 74, 98, 99], "done": [3, 10, 56, 69, 86, 93, 94, 97, 99, 100], "overfit": [3, 10, 62, 65, 82, 84, 85, 86, 87, 88, 90, 91, 100], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 52, 57, 58, 64, 65, 66, 67, 77, 82, 84, 85, 86, 93, 94, 97, 98], "baselin": [3, 37, 43, 83, 99, 101], "proxi": 3, "union": [3, 5, 12, 48, 52, 53, 59, 65, 69, 77, 93], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 52, 57, 59, 65, 73, 75, 77, 78, 84, 103], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 5, 10, 40, 46, 57, 71, 73, 79, 83, 85, 88, 93, 102], "practic": [3, 82, 83, 87, 88, 94, 99, 101], "complet": [3, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "gist": 3, "cj_ish": 3, "guess": [3, 46, 94, 96], "8": [3, 5, 7, 8, 47, 48, 49, 51, 61, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "parallel": [3, 43, 65, 75, 92], "again": [3, 56, 82, 93, 99], "simplifi": [3, 14, 93], "understand": [3, 9, 36, 58, 65, 87, 94, 101, 102, 103], "100": [3, 37, 41, 50, 67, 82, 83, 86, 87, 88, 90, 92, 93, 94, 97, 98, 99, 103], "optim": [3, 37, 38, 41, 56, 88, 96], "speed": [3, 43, 83, 92, 93, 101], "dtype": [3, 23, 25, 26, 31, 37, 41, 51, 52, 61, 77, 84, 98], "enumer": [3, 37, 41, 84, 85, 86, 87, 88, 103], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 52, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "num_confident_bin": 3, "argmax": [3, 43, 67, 71, 74, 84, 93, 94, 98, 99, 102], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 52, 53, 61, 70, 82, 84], "eqn": [3, 46], "margin": [3, 43, 46, 48, 67], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 58, 94, 100], "poorli": [3, 46, 82], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 94], "variabl": [3, 7, 14, 27, 52, 69, 70, 84, 86, 90, 94, 97, 101], "exact": [3, 46, 82, 85, 86, 87, 88, 90], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 59, 64, 73, 75, 77, 86, 87, 88, 93, 98, 102], "percent": 3, "often": [3, 36, 46, 58, 93, 94, 100, 102], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 52, 53, 65, 82, 83, 84, 85, 86, 88, 90, 91, 93, 97, 98, 99, 101], "wai": [3, 5, 56, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 100], "pro": 3, "con": 3, "pred_proba": [3, 100], "combin": [3, 36, 86, 88, 92, 93, 94, 100, 101], "becaus": [3, 46, 52, 64, 91, 93, 94, 96, 98], "littl": [3, 40, 92, 98, 103], "uniform": [3, 67, 92, 93, 94], "20": [3, 7, 42, 78, 84, 88, 91, 92, 93, 94, 98, 101, 102, 103], "Such": [3, 88, 99], "bound": [3, 23, 25, 37, 41, 51, 61, 62, 64, 65, 98], "reason": [3, 22, 37, 41], "comment": [3, 51, 103], "end": [3, 5, 37, 41, 65], "file": [3, 5, 12, 39, 40, 55, 65, 82, 84, 86, 90, 91, 92, 93, 98, 99, 102, 103], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 94], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 80, 82, 85, 86, 87, 88, 90, 91, 94, 102, 103], "five": [3, 62, 65, 94, 98], "estimate_cv_predicted_prob": [3, 94], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 98], "confident_threshold": [3, 10, 22, 23, 40, 66], "valuat": [4, 9, 18], "assess": [4, 98], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 85, 86, 87, 88, 90, 91, 93, 94, 96], "contribut": [4, 10, 18, 98], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 90], "metric": [4, 5, 10, 18, 19, 26, 31, 50, 52, 56, 65, 66, 82, 83, 84, 88, 90, 91, 94, 101], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 65, 66, 67, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 66, 87, 91, 99], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 50, 66, 86, 87, 88, 90, 91, 93, 94, 99], "knn": [4, 10, 13, 18, 26, 31, 50, 66, 90, 99], "graph": [4, 5, 10, 13, 16, 18, 26, 31], "calcul": [4, 10, 18, 26, 40, 48, 50, 57, 61, 62, 64, 65, 66, 69, 73, 88, 92], "directli": [4, 5, 14, 16, 33, 34, 40, 56, 57, 83, 87, 91, 93, 97, 98, 101], "lowest": [4, 10, 57, 65, 87, 88, 93, 96, 97, 98, 102], "fall": [4, 10, 64, 73, 77, 94, 99], "flag": [4, 10, 22, 26, 43, 48, 58, 59, 62, 69, 79, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 99, 101, 102], "approxim": [4, 10, 18, 40, 66, 96], "top": [4, 5, 10, 36, 40, 42, 43, 52, 59, 62, 65, 67, 74, 78, 79, 83, 84, 86, 87, 90, 91, 92, 93, 94, 98, 99, 101, 103], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 97, 99, 101, 103], "arxiv": [4, 18, 94], "ab": [4, 18, 94, 98], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 66, 79, 83, 84, 86, 87, 90, 91, 94, 97, 101], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 59, 79, 83, 84, 86, 87, 88, 91, 93, 94, 99], "suppli": [4, 97, 98, 101], "2d": [4, 5, 16, 32, 40, 48, 49, 51, 52, 57, 82, 84, 97], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 58, 84, 85, 86, 87, 88, 90, 91, 94], "num_featur": [4, 5, 16, 37, 41, 56], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 64, 66, 90, 99], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56], "nearestneighbor": [4, 5, 10, 18, 66, 90, 99], "cosin": [4, 10, 50, 66, 99], "dim": [4, 66, 88, 102], "euclidean": [4, 5, 10, 50, 64, 66, 90], "dimension": [4, 26, 52, 84, 94, 99], "exce": [4, 85, 88], "transform": [4, 10, 32, 48, 50, 52, 66, 67, 82, 83, 87, 88, 91, 99, 103], "rel": [4, 10, 36, 57, 58, 66, 86, 87, 88, 90, 91, 94, 99], "adjust": [4, 38, 43, 61, 66, 67, 79, 94], "closer": [4, 10, 64, 98], "highli": [4, 87, 88], "influenti": 4, "posit": [4, 5, 37, 41, 50, 52, 65, 92, 99], "convers": 4, "neg": [4, 10, 64, 65, 86, 87, 92], "valueerror": [4, 5, 12, 13, 34, 45, 48, 50, 93], "neither": [4, 5, 10, 14, 98], "nor": [4, 5, 10, 14], "larger": [4, 18, 69, 71, 73, 85, 88, 91, 92, 93], "55": [4, 51, 92, 98, 101], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 84, 88, 89, 90, 91, 93, 94, 97, 98, 101], "kind": [5, 6, 7, 10, 84, 85, 86, 88, 90, 91, 92, 94], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 53, 57, 65, 75, 82, 83, 84, 86, 90, 91, 94, 96, 99, 100], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 52, 55, 59, 66, 69, 70, 79], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 55, 56, 71, 73], "pip": [5, 7, 9, 11, 35, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "github": [5, 7, 9, 11, 35, 37, 38, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 52, 66, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "egg": [5, 7, 9, 11, 35, 79, 92], "label_nam": [5, 7, 8, 10, 12, 18, 31, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "image_kei": [5, 10, 88], "interfac": [5, 9, 10, 79, 93, 94], "librari": [5, 10, 41, 62, 65, 66, 79, 83, 86, 91, 92, 93], "goal": [5, 101], "track": [5, 7, 13, 14, 79, 85, 86, 92, 93, 94], "intermedi": [5, 9, 87], "statist": [5, 10, 13, 22, 26, 36, 57, 58, 65, 87, 90, 91, 94], "convert": [5, 10, 12, 34, 37, 41, 49, 50, 53, 57, 64, 73, 77, 80, 83, 84, 88, 91, 92, 93, 96, 97, 98], "hug": [5, 10, 12, 88], "face": [5, 10, 12, 16, 88, 92, 97], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 57, 58, 64, 66, 85, 86, 87, 88, 91, 93, 94, 96, 98], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 57, 58, 70, 74, 77, 78, 83, 90, 91, 93, 96, 97, 103], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 52, 57, 58, 61, 62, 64, 65, 86, 87, 90, 91, 94, 96, 97, 98], "path": [5, 12, 37, 40, 41, 65, 84, 86, 93, 98], "local": [5, 7, 10, 12, 37, 38, 41, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 66, 75, 77, 78, 79, 81, 86, 87, 89, 92, 93, 94, 95, 96, 99], "txt": [5, 12, 103], "csv": [5, 12, 82, 83, 90, 91, 101], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 52, 57, 97], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 83, 85, 86, 87, 91, 95, 96, 99], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 97], "imag": [5, 9, 36, 41, 62, 64, 65, 66, 71, 73, 74, 79, 86, 87, 89, 92, 93, 95, 96, 97, 98, 100, 102], "field": [5, 10, 37, 41], "themselv": [5, 82, 83, 101], "pil": [5, 88], "cleanvis": [5, 10], "level": [5, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 51, 75, 77, 87, 88, 93, 95, 97, 102], "load_dataset": [5, 12, 88], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 85], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 58, 65, 74, 78, 79, 92, 94, 98, 102, 103], "empti": [5, 12, 46, 57, 87, 93, 97], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "sort": [5, 16, 40, 43, 48, 57, 59, 62, 64, 65, 67, 73, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "common": [5, 13, 16, 87, 89, 92, 93, 94, 97, 98, 102], "real": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "world": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "interact": [5, 16, 91, 93], "thereof": [5, 16], "insight": [5, 16, 65, 96], "best": [5, 9, 10, 16, 47, 57, 67, 82, 83, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 103], "properli": [5, 10, 40, 47, 52, 53, 71, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 101, 102], "respect": [5, 37, 41, 62, 65, 84, 85, 86, 87, 88, 90, 91, 94, 97, 98], "lexicograph": [5, 47, 52, 84, 85, 86, 87, 88, 90, 91, 94, 97], "squar": [5, 52, 69, 92, 101], "csr": 5, "evenli": 5, "omit": [5, 64, 65, 88, 98], "itself": [5, 32, 37, 41, 98], "three": [5, 10, 36, 57, 58, 69, 74, 82, 84, 85, 86, 87, 90, 92, 94, 96, 100, 101, 102, 103], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 79, 90, 97, 103], "th": [5, 42, 47, 51, 52, 57, 59, 62, 64, 65, 66, 75, 77, 78, 91, 97, 98, 103], "ascend": [5, 36, 58, 88, 94], "segment": [5, 71, 73, 74, 95], "reflect": [5, 82, 83, 90, 91, 96, 98, 99, 101], "maintain": [5, 56], "kneighbors_graph": [5, 18, 90], "illustr": 5, "todens": 5, "second": [5, 48, 52, 65, 67, 86, 93, 94, 103], "duplic": [5, 9, 21, 22, 37, 41, 79, 85, 86, 94, 101], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 57, 93, 96, 103], "unspecifi": [5, 16, 43, 59], "interest": [5, 16, 22, 74, 78, 82, 83, 91, 94, 101, 102, 103], "constructor": [5, 10, 16, 23, 30], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 69, 70, 92, 101, 103], "random_st": [5, 82, 84, 85, 86, 87, 88, 94, 97, 99], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 79, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101], "comprehens": [5, 79, 88, 97, 101], "nbr": 5, "n_neighbor": [5, 10, 18, 66], "mode": [5, 11, 18, 37, 40, 41, 99], "4x4": 5, "float64": [5, 26, 37, 41, 77], "compress": [5, 10, 52, 71, 73], "toarrai": 5, "NOT": [5, 40, 91], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 87], "suppos": [5, 10, 62, 82, 83, 99, 101], "who": [5, 64, 82, 90, 94, 103], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 56, 86, 93], "clean_learning_kwarg": [5, 10, 23, 30, 93, 101], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 80], "prune_by_noise_r": [5, 43, 59, 94], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 78, 79, 84, 85, 86, 87, 90, 91, 93, 94, 97, 101, 103], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 55, 56, 58, 63, 72, 73, 75, 76, 77, 80, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 101, 102, 103], "show": [5, 7, 26, 37, 41, 47, 52, 65, 74, 78, 82, 85, 87, 88, 90, 91, 92, 93, 94, 96, 99, 101, 102, 103], "suffer": [5, 10, 13, 22, 59, 67, 78, 103], "onc": [5, 22, 36, 37, 41, 82, 85, 86, 93, 94, 97, 98], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 57, 58, 61, 64, 65, 69, 73, 74, 75, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 98, 103], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 61, 64, 66, 67, 73, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 98, 99, 103], "compar": [5, 57, 66, 77, 86, 87, 90, 94, 98], "issue_summari": [5, 7, 10, 13, 85, 86], "With": [5, 9, 10, 40, 83, 91, 93, 94, 96, 101, 102, 103], "usag": [5, 40, 56], "usual": [5, 12, 32, 33, 88, 96, 101], "ti": [5, 57], "exhibit": [5, 7, 10, 13, 74, 87, 88, 90, 91, 94, 98], "ie": [5, 69], "likelihood": [5, 10, 40, 42, 43, 59, 64, 66, 67, 71, 75], "wherea": [5, 52, 59, 100], "outlier": [5, 9, 14, 21, 22, 31, 44, 67, 79, 85, 86, 87, 94, 95, 101], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 94, 101], "global": [5, 7, 22, 37, 41], "non_iid": [5, 10, 14, 26, 87, 88, 90, 91, 94], "hypothesi": 5, "iid": [5, 7, 9, 26, 90, 94], "never": [5, 84, 94, 97, 99, 100], "someth": [5, 7, 37, 41, 67, 98], "123": [5, 85, 86, 87], "456": [5, 82, 83, 84], "nearest_neighbor": 5, "7": [5, 48, 49, 56, 75, 77, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 61, 75, 77, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "distance_to_nearest_neighbor": [5, 86, 87, 88, 90, 91, 94], "789": 5, "get_issu": [5, 10, 13, 84, 85, 87, 88, 90, 91, 93, 97, 101], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86, 87], "focu": [5, 13, 91, 102, 103], "full": [5, 10, 13, 40, 56, 65, 85, 88, 103], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 58, 74, 78, 79, 102], "specific_issu": [5, 13], "lie": [5, 10, 66, 67, 83, 84, 86, 87, 88, 90, 91, 94], "get_issue_summari": [5, 13, 85, 87], "get_info": [5, 13, 87, 91], "yet": [5, 17, 27, 56, 92, 96], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 86], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 84, 86, 88], "load": [5, 12, 40, 65, 88, 92, 93, 94, 98, 99, 102, 103], "futur": [5, 10, 22, 37, 41, 57, 79, 83, 84, 86, 91, 93], "overwrit": [5, 86], "separ": [5, 36, 48, 61, 86, 87, 88, 93, 98, 100], "static": 5, "rememb": [5, 91, 93, 94], "part": [5, 10, 37, 41, 43, 62, 64, 65, 84, 86, 92, 102, 103], "ident": [5, 10, 22, 52, 85, 91], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 79, 82, 83, 84, 88, 93, 96, 101], "walk": 7, "alongsid": [7, 37, 41, 86, 93], "pre": [7, 8, 10, 37, 41, 86, 87, 101], "runtim": [7, 37, 40, 41, 69, 71, 73, 84, 88, 93], "issue_manager_factori": [7, 14, 86], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "thing": [7, 41, 83, 94, 101], "next": [7, 57, 79, 82, 83, 84, 85, 90, 91, 93, 96, 98, 101, 103], "dummi": 7, "randint": [7, 31, 48, 85, 86, 87, 93], "mark": [7, 10, 80, 98, 99, 101], "regard": [7, 87, 94], "rand": [7, 48, 85, 86, 87], "is_": [7, 10, 86], "_issu": [7, 10, 86], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "whole": [7, 26, 37, 41, 87], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "popul": [7, 87, 91], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 98], "raw_scor": 7, "bit": 7, "involv": [7, 40, 74, 78, 85, 93, 97], "intermediate_arg": 7, "min": [7, 48, 64, 77, 86, 93, 99], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 71, 77, 91, 93], "easili": [7, 46, 80, 82, 83, 84, 85, 87, 90, 91, 94, 96, 97, 99, 100, 101, 102], "hard": [7, 41, 92, 99], "sai": [7, 10, 37, 41, 97, 102], "anoth": [7, 22, 36, 40, 51, 64, 67, 83, 90, 91, 93, 94, 96, 99], "try": [7, 9, 10, 40, 43, 56, 57, 71, 73, 79, 85, 87, 88, 90, 91, 93, 94, 102], "won": [7, 37, 41, 86, 87, 93, 97], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 86], "instanti": [7, 16, 40, 56, 66, 83, 84, 87, 90], "477762": 7, "286455": 7, "term": [7, 10, 46, 52, 65, 84, 85, 86, 87, 88, 90, 91, 94], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 98, 99, 101, 102, 103], "003042": 7, "058117": 7, "11": [7, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "121908": 7, "15": [7, 50, 56, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "169312": 7, "17": [7, 83, 84, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 86, 87, 92, 94], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 92, 98, 103], "dbscan": [8, 10, 31, 93], "hdbscan": [8, 93], "etc": [8, 10, 22, 32, 37, 41, 46, 56, 57, 75, 79, 86, 87, 90, 91, 93, 94, 97, 101], "sensit": [8, 10, 50], "ep": [8, 31, 65], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 93], "your_data": 8, "get_pred_prob": [8, 85], "n_cluster": [8, 31, 93], "cluster_id": [8, 10, 31, 93], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 87, 88, 90, 91, 93, 94], "search": [9, 10, 20, 26, 27, 51, 69, 93, 100], "nondefault": 9, "Near": [9, 93], "imbal": [9, 21, 61, 66, 67, 87], "null": [9, 14, 21, 87, 88, 91, 94], "togeth": [9, 10, 46, 83, 86, 87, 88, 90, 91, 94, 101, 103], "built": [9, 48], "own": [9, 37, 39, 41, 55, 61, 62, 65, 71, 75, 82, 83, 84, 87, 88, 90, 91, 93, 96, 97, 101, 102, 103], "prerequisit": 9, "basic": [9, 41, 56, 90, 91, 99], "fulli": [9, 10, 37, 41, 56, 93], "platform": [9, 10, 79, 88, 90, 91, 93], "write": [9, 10], "code": [9, 10, 37, 41, 46, 52, 56, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "being": [9, 10, 13, 36, 37, 41, 43, 48, 51, 52, 67, 82, 90, 93, 94, 101, 102], "100x": [9, 10], "faster": [9, 10, 40, 66, 69, 71, 73, 93, 94], "intellig": [9, 10], "quickli": [9, 10, 38, 82, 84, 88, 90, 91, 93, 97, 99, 102, 103], "fix": [9, 10, 57, 83, 85, 91, 94, 101], "scientist": [9, 10], "million": [9, 10, 103], "thank": [9, 10], "ai": [9, 10, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103], "suggest": [9, 10, 36, 57, 58, 64, 83, 88, 91, 93, 101], "power": [9, 10, 88, 90, 91, 92, 94, 103], "automl": [9, 10, 79, 93], "system": [9, 10, 84, 85, 88, 90, 91, 102], "foundat": [9, 10, 79], "improv": [9, 10, 57, 82, 83, 87, 88, 92, 93, 94, 101, 102], "click": [9, 10, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "tune": [9, 10, 83, 84, 91, 92, 99], "serv": [9, 10, 13, 16, 96], "auto": [9, 10, 82, 83, 85, 87, 92, 93, 101], "free": [9, 10, 79, 84, 87, 88, 90, 91, 93, 94], "page": [10, 87, 93, 94], "variou": [10, 13, 30, 39, 53, 55, 79, 82, 86, 87, 90, 91, 92, 93, 94, 96, 98], "why": [10, 85, 91], "matter": [10, 36, 58, 83, 91], "didn": 10, "plu": [10, 101], "_score": 10, "badli": [10, 64, 82, 83, 103], "issue_scor": 10, "outlier_scor": [10, 28, 86, 87, 88, 90, 91, 94, 99], "atyp": [10, 66, 86, 87, 88, 90, 91, 94, 99], "datapoint": [10, 31, 43, 48, 52, 67, 70, 79, 82, 83, 84, 86, 87, 90, 91, 93, 100, 101], "is_issu": [10, 22], "is_outlier_issu": [10, 86, 87, 88, 90, 91, 94], "annot": [10, 36, 47, 57, 58, 59, 61, 62, 64, 65, 74, 77, 78, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 98, 102], "dissimilar": [10, 90, 91], "preced": 10, "incorrect": [10, 64, 67, 70, 82, 84, 85, 86, 87, 88, 90, 91, 94, 98, 101], "due": [10, 40, 43, 67, 71, 73, 84, 85, 86, 87, 88, 90, 91, 94, 101], "appear": [10, 36, 47, 58, 59, 62, 70, 87, 88, 90, 91, 101, 102], "now": [10, 40, 80, 82, 83, 84, 85, 87, 96, 98, 99, 101, 103], "token": [10, 42, 51, 73, 74, 75, 76, 77, 78, 93, 94, 95], "hamper": [10, 88, 92], "analyt": [10, 79, 93, 96], "lead": [10, 64, 67, 88, 98], "draw": [10, 85, 86, 87], "conclus": [10, 91], "veri": [10, 36, 58, 62, 64, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101], "rare": [10, 43, 65, 86, 87, 88, 90, 91, 93, 94], "anomal": [10, 67, 86, 87, 88, 90, 91, 94], "articl": [10, 40, 93], "blog": 10, "unexpect": [10, 37, 41, 91], "consequ": 10, "inspect": [10, 83, 84, 85, 87, 88, 94, 98, 101], "extrem": [10, 86, 87, 88, 90, 91, 93, 94], "record": [10, 37, 41, 84, 90, 101], "abbrevi": 10, "misspel": 10, "typo": [10, 78], "resolut": 10, "video": [10, 92], "audio": [10, 86, 87, 89, 93], "minor": [10, 51], "variat": 10, "translat": 10, "d": [10, 50, 82, 90, 91, 93, 94, 97, 101, 103], "constant": [10, 31, 69], "median": [10, 30, 50], "question": [10, 22, 79, 94], "nearli": [10, 22, 87, 88, 90, 91], "awar": [10, 80, 94], "presenc": [10, 94], "near_dupl": [10, 14, 19, 85, 86, 87, 88, 90, 91, 93, 94], "signific": [10, 90, 91, 94], "violat": [10, 90, 91, 94], "assumpt": [10, 90, 91, 94], "changepoint": [10, 90, 91, 94], "shift": [10, 90, 91, 94], "drift": [10, 87, 90, 94], "autocorrel": [10, 90, 91, 94], "almost": [10, 90, 91, 94], "adjac": [10, 90, 91, 94], "tend": [10, 36, 46, 90, 91, 94, 102, 103], "sequenti": [10, 37, 41, 56, 88], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 51, 52, 77, 82, 90, 91, 92, 93, 94, 100, 103], "x1": [10, 62, 65, 98], "x2": [10, 62, 65, 98], "10th": 10, "100th": 10, "90": [10, 77, 82, 90, 94, 100, 101], "similarli": [10, 37, 41, 86, 88, 90, 93, 98], "math": [10, 88], "behind": [10, 66, 94], "proper": [10, 52, 57, 62, 65, 82, 88, 91, 93, 96, 98], "scenario": [10, 67, 85, 86, 87], "underli": [10, 42, 66, 75, 77, 103], "stem": [10, 66, 99], "evolv": 10, "influenc": 10, "act": [10, 64, 86], "accordingli": [10, 32], "emploi": [10, 97, 99], "partit": [10, 100], "ahead": 10, "good": [10, 37, 41, 50, 56, 58, 64, 67, 71, 73, 74, 79, 85, 88, 90, 91], "problem": [10, 32, 40, 48, 74, 79, 86, 87, 88, 91, 93], "deploy": [10, 82, 83, 94, 101], "overlook": [10, 64, 98], "fact": 10, "thu": [10, 36, 41, 58, 82, 84, 90, 91, 94, 100, 103], "diagnos": [10, 87, 93], "rarest": [10, 87], "q": [10, 98], "subpar": 10, "special": [10, 51], "techniqu": [10, 98], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 87, 88, 90, 91, 94], "excess": [10, 88], "dark": [10, 102], "bright": [10, 103], "blurri": [10, 88], "lack": [10, 56], "unusu": [10, 98, 99], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 79, 87, 88, 90, 91, 95], "get_self_confidence_for_each_label": [10, 48, 67], "r": [10, 40, 69, 85, 86, 87, 101, 102], "tabular": [10, 79, 81, 86, 87, 89, 93, 96], "categor": [10, 66, 81, 82, 86, 87, 89, 93, 101], "encod": [10, 49, 65, 71, 74, 82, 83, 90, 91, 93, 101, 102], "miss": [10, 27, 37, 41, 52, 62, 64, 85, 90, 93, 98, 101], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 52, 66, 93], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 87], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 79, 92], "health_summary_kwarg": 10, "tandem": [10, 92], "view": [10, 37, 41, 42, 43, 73, 75, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 103], "ood_kwarg": 10, "outofdistribut": [10, 28, 66, 99], "outsid": [10, 93, 97], "outlierissuemanag": [10, 14, 21, 28, 86], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 86, 87, 88, 91, 93, 94, 96, 97, 98, 101, 102], "howev": [10, 37, 41, 52, 82, 83, 84, 88, 90, 91, 96, 100, 102], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 84, 86, 92, 96, 98], "fewer": [10, 43, 52, 98], "vice": [10, 58], "versa": [10, 58], "light": [10, 88, 92, 98, 102], "29": [10, 85, 88, 92, 96, 97, 98, 102, 103], "low_inform": [10, 88], "odd_aspect_ratio": [10, 88], "35": [10, 86, 92, 96, 97, 98], "odd_siz": [10, 88], "doc": [10, 37, 41, 79, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "studio": [11, 79, 87, 88, 90, 91, 93], "data_issu": [11, 15, 16, 33, 86], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 56, 67, 85, 86, 87, 88, 96], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 65, 96], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 88], "dataissu": [13, 15, 16, 33], "central": [13, 103], "repositori": 13, "strategi": [13, 48, 93], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 52, 59, 62, 65, 69, 71, 73, 85, 86, 87, 93], "recomput": [13, 83], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 58, 79], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 66, 86], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 71, 73], "stabl": [15, 21, 24, 29, 39, 44, 52, 55, 66, 80], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 94, 98, 102, 103], "creation": [16, 41], "execut": [16, 37, 41, 86, 93, 98], "coordin": [16, 62, 64, 65, 98, 103], "behavior": [16, 36, 37, 41, 65, 85, 93], "At": [16, 65, 93], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 56], "valuabl": 18, "vstack": [18, 52, 88, 92, 93, 94, 96, 97], "25": [18, 26, 37, 48, 50, 85, 87, 88, 92, 94, 96, 97, 98, 103], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 51, 52], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 85, 86, 87, 88, 93, 94, 96, 97], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 83, 91, 99], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 51, 52, 82, 84, 86, 88, 92, 94, 97], "near_duplicate_set": [19, 21, 86, 87, 88, 90, 91, 93, 94], "occurr": [19, 20, 22, 26, 27, 28, 31, 51], "median_nn_dist": 19, "near_duplicate_scor": [19, 86, 87, 88, 90, 91, 93, 94], "class_imbalance_scor": [20, 87], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 64, 79, 94, 103], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 66, 67, 86, 87, 88, 91, 94, 99], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 102], "priori": [22, 94], "abstract": [22, 32], "applic": [23, 57, 93, 94, 96, 103], "typevar": [23, 25, 37, 41, 51, 61, 64, 65], "scalartyp": [23, 25], "covari": [23, 25, 69, 101], "summary_dict": 23, "label_scor": [23, 25, 30, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 67, 71, 73, 98, 102], "empir": [26, 47, 57], "cumul": 26, "ecdf": 26, "histogram": [26, 90, 101], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 87, 90, 91, 94], "null_track": 27, "extend": [27, 49, 56, 88, 98, 99, 103], "superclass": 27, "arbitrari": [27, 36, 73, 77, 86, 99, 101], "prompt": 27, "address": [27, 83, 86, 87, 91, 93], "enabl": [27, 41], "null_scor": [27, 87], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "multipli": [30, 50], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 52, 65, 83, 103], "50": [31, 41, 85, 88, 93, 94, 96, 98, 99, 101], "keepdim": [31, 93], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 84, 96], "npt": 31, "int_": 31, "id": [31, 57, 86, 88, 93, 96], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 87], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": 32, "mainli": [32, 99, 103], "content": [32, 66, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "fetch": [32, 40, 84, 87, 93], "datset": 33, "exclud": [33, 42, 74, 78, 86, 93, 103], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 85, 86, 87], "continu": [34, 56, 82, 83, 88, 91, 93, 96, 98, 101, 103], "binari": [34, 48, 52, 59, 61, 94, 103], "simultan": [34, 101], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 86, 87], "typeerror": [34, 48], "12": [34, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 57, 58, 67, 85, 86, 87, 88, 92, 98, 100, 102], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 82, 83, 84, 87, 88, 90, 91, 96, 98, 99, 101, 103], "modifi": [36, 37, 40, 41, 52, 93, 94], "help": [36, 37, 41, 65, 79, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 96, 97, 101, 102, 103], "rank_classes_by_label_qu": [36, 87], "merg": [36, 51, 79, 92, 93, 103], "find_overlapping_class": [36, 93, 94], "problemat": [36, 58, 74, 78, 84, 98, 103], "unnorm": [36, 58, 94], "abov": [36, 37, 40, 41, 52, 57, 64, 65, 67, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "model_select": [36, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101], "cross_val_predict": [36, 41, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 100, 101], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 94], "cv": [36, 48, 82, 84, 85, 86, 87, 90, 94, 96], "df": [36, 52, 78, 84, 93], "overall_label_qu": [36, 58], "col": 36, "prob": [36, 51, 94, 100], "divid": [36, 58, 67], "label_nois": [36, 58], "human": [36, 92, 102, 103], "clearli": [36, 67, 88, 98, 102], "num": [36, 58, 92, 94], "overlap": [36, 79, 92, 93, 94], "ontolog": 36, "publish": [36, 103], "therefor": [36, 67], "vehicl": [36, 92], "truck": [36, 92, 99, 102], "intuit": [36, 58, 85], "car": [36, 92, 98, 102], "frequent": [36, 57, 90, 93, 101], "characterist": 36, "l": [36, 37, 41, 62, 64, 65], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 52, 58, 60, 74, 92, 93, 99, 100, 103], "cat": [36, 52, 58, 60, 92, 93, 99, 100], "captur": [36, 84, 98, 99, 102], "co": [36, 37, 38], "noisy_label": [36, 85, 86, 87, 97], "overlapping_class": 36, "descend": [36, 37, 41, 48, 58, 65], "overall_label_health_scor": [36, 58, 94], "half": [36, 37, 39, 41, 58, 92, 103], "health_scor": [36, 58], "classes_by_label_qu": [36, 87], "cnn": [37, 39, 41, 88], "cifar": [37, 38, 92, 99], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 65, 85, 86, 93, 96, 99, 100, 102, 103], "forward": [37, 38, 39, 41, 88, 96], "overridden": [37, 41], "although": [37, 41, 66, 82, 90], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 53, 58, 65, 73, 77, 93, 96, 97, 98, 100, 103], "former": [37, 41], "hook": [37, 41, 92], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 65], "recurs": [37, 41, 48], "submodul": [37, 41], "children": [37, 39, 41, 103], "nn": [37, 38, 41, 88], "init": [37, 41, 94], "no_grad": [37, 41, 88, 99], "init_weight": [37, 41], "linear": [37, 41, 83, 88, 91], "fill_": [37, 41], "net": [37, 41, 84, 88, 92], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 88], "tensor": [37, 38, 41, 83, 84, 88, 91, 99], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 84], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 99], "compil": [37, 39, 41, 56], "cpu": [37, 39, 41, 43, 84, 88], "move": [37, 41, 48, 80, 92], "cuda": [37, 39, 41, 84, 88], "devic": [37, 41, 84, 88], "gpu": [37, 41, 83, 84, 91], "live": [37, 41], "copi": [37, 41, 69, 82, 84, 85, 86, 87, 90, 93, 97, 100, 101], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 88, 97, 99], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 79, 86, 92, 96, 99, 103], "get_buff": [37, 39, 41], "target": [37, 38, 41, 69, 70, 99, 101], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 91], "resolv": [37, 41, 85, 103], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 88, 102], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 88], "break": [37, 41, 88, 98], "pickl": [37, 41, 98], "get_paramet": [37, 39, 41], "let": [37, 41, 66, 67, 82, 83, 84, 85, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 88], "16": [37, 41, 48, 56, 73, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 102, 103], "33": [37, 41, 92, 98], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 67, 85, 92, 98, 103], "diagram": [37, 41, 100], "degre": [37, 41], "queri": [37, 41, 87, 88, 93, 97], "named_modul": [37, 39, 41], "o": [37, 41, 50, 51, 84, 85, 86, 87, 92, 93, 94, 97, 98, 103], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 96], "preserv": [37, 41, 52], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 52, 53, 65, 86, 88, 93, 94, 96, 98, 99], "named_buff": [37, 39, 41], "prefix": [37, 41, 84, 103], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 83, 84, 91, 93], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 82, 90], "fire": [37, 41, 92], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 86, 87], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 88, 90, 101], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 83, 84, 91], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 56, 80, 84, 93], "design": [37, 41, 85], "ordereddict": [37, 41], "detach": [37, 41, 88], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 58, 64], "complex": [37, 41, 84], "integr": [37, 41, 79, 93], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 83, 91, 92], "desir": [37, 41, 51, 65], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 84], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 83, 91], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 88], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 98], "noisili": [38, 94], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 56, 88], "decim": [38, 52], "forget": [38, 48, 103], "rate_schedul": 38, "epoch": [38, 39, 41, 88, 93], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 67, 93], "250": [38, 86, 87, 94, 98], "epoch_decay_start": 38, "80": [38, 82, 90, 97, 101], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 83, 88, 91, 94], "train_load": [38, 41], "model1": [38, 94], "optimizer1": 38, "model2": [38, 94], "optimizer2": 38, "dataload": [38, 88, 99], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 55, 103], "wish": [39, 55, 99, 102, 103], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 93], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 72, 73, 74, 75, 76, 77, 78, 102, 103], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 71, 73, 85, 88, 93, 99, 102], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 88], "loader": [39, 41, 88], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 80], "mini": [40, 71, 73, 93], "low_self_confid": [40, 43, 59], "self_confid": [40, 43, 44, 48, 59, 61, 67, 75, 77, 82, 83, 93, 94], "conveni": [40, 83, 84, 91], "script": 40, "labels_fil": [40, 93], "pred_probs_fil": [40, 93], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 57, 102], "read": [40, 45, 87, 93, 94, 99, 103], "zarr": [40, 93], "memmap": [40, 102], "pythonspe": 40, "mmap": [40, 93], "hdf5": 40, "further": [40, 42, 58, 59, 61, 64, 65, 73, 74, 84, 93], "yourfil": 40, "npy": [40, 92, 93, 102], "mmap_mod": [40, 102], "tip": [40, 43, 56, 93], "save_arrai": 40, "your_arrai": 40, "disk": [40, 92, 93], "npz": [40, 103], "maxim": [40, 57, 71, 73, 102], "multiprocess": [40, 43, 59, 71, 73, 88, 93], "linux": [40, 71, 73], "physic": [40, 43, 71, 73, 98], "psutil": [40, 43, 71, 73], "labels_arrai": [40, 53], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 65, 86, 93, 98, 99], "store_result": 40, "becom": [40, 99], "verifi": [40, 93, 96, 99], "long": [40, 57, 66, 96], "enough": [40, 52, 93], "chunk": [40, 100], "ram": [40, 92], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 93], "shortcut": 40, "encount": [40, 43, 71], "1000": [40, 84, 91, 93, 99], "aggreg": [40, 44, 48, 57, 61, 64, 67, 77, 93, 94, 96], "seen": [40, 85, 93, 99, 103], "far": [40, 57], "label_quality_scor": [40, 61, 64, 67, 70, 94, 98], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 59, 61, 67, 75, 77], "low_normalized_margin": [40, 43, 59], "issue_indic": [40, 64, 88], "update_num_issu": 40, "arr": [40, 93], "chunksiz": 40, "convnet": 41, "bespok": [41, 56], "download": [41, 84, 88, 93, 99], "mnist": [41, 79, 84, 92], "handwritten": 41, "digit": [41, 84, 92], "last": [41, 48, 62, 65, 85, 86, 87, 93, 96, 98, 103], "sklearn_digits_test_s": 41, "64": [41, 82, 88, 90, 94, 98], "01": [41, 67, 69, 84, 94, 97, 98], "templat": 41, "flexibli": 41, "among": [41, 57, 94], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 52, 99], "train_label": [41, 83, 99], "scikit": [41, 52, 66, 79, 83, 84, 85, 86, 87, 90, 91, 93, 101], "span": 42, "sentenc": [42, 51, 75, 77, 78, 83, 91], "token_classif": [42, 51, 75, 77, 78, 93], "encourag": [43, 59, 67, 70], "multilabel_classif": [43, 58, 59, 61, 67, 93, 97], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 59, 67, 94], "num_to_remove_per_class": [43, 59], "bad": [43, 59, 64, 67, 91, 93], "seem": [43, 94, 97], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 59, 61, 67, 75, 77], "label_issues_idx": [43, 67], "entropi": [43, 45, 47, 48, 66, 67], "prune_by_class": [43, 59, 94], "predicted_neq_given": [43, 59, 94], "prune_counts_matrix": 43, "smallest": [43, 67], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 79, 83, 93], "too": [43, 48, 66, 87, 88, 93, 98], "thread": [43, 59], "window": [43, 84, 92], "shorter": [43, 62], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 52], "clip_noise_r": [44, 52], "clip_valu": [44, 52], "value_count": [44, 52, 93], "value_counts_fill_missing_class": [44, 52], "get_missing_class": [44, 52], "round_preserving_sum": [44, 52], "round_preserving_row_tot": [44, 52], "estimate_pu_f1": [44, 52], "confusion_matrix": [44, 52], "print_square_matrix": [44, 52], "print_noise_matrix": [44, 52, 94], "print_inverse_noise_matrix": [44, 52], "print_joint_matrix": [44, 52, 94], "compress_int_arrai": [44, 52], "train_val_split": [44, 52], "subset_x_i": [44, 52], "subset_label": [44, 52], "subset_data": [44, 52], "extract_indices_tf": [44, 52], "unshuffle_tensorflow_dataset": [44, 52], "is_torch_dataset": [44, 52], "is_tensorflow_dataset": [44, 52], "csr_vstack": [44, 52], "append_extra_datapoint": [44, 52], "get_num_class": [44, 52], "num_unique_class": [44, 52], "get_unique_class": [44, 52], "format_label": [44, 52], "smart_display_datafram": [44, 52], "force_two_dimens": [44, 52], "latent_algebra": [44, 80], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 97], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 97], "onehot2int": [44, 49, 97], "multilabel_scor": [44, 61], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 61], "softmin": [44, 48, 61, 64, 73, 77], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "transform_distances_to_scor": [44, 50], "correct_precision_error": [44, 50], "token_classification_util": [44, 103], "get_sent": [44, 51, 103], "filter_sent": [44, 51, 103], "process_token": [44, 51], "merge_prob": [44, 51], "color_sent": [44, 51], "assert_valid_input": [44, 53], "assert_valid_class_label": [44, 53], "assert_nonempty_input": [44, 53], "assert_indexing_work": [44, 53], "labels_to_arrai": [44, 53], "labels_to_list_multilabel": [44, 53], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 56, 57, 79, 96], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 52, 84], "behav": 45, "unnecessari": [45, 93], "slightli": [45, 82, 83, 85], "interv": [45, 48, 99], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 52, 69, 84, 96, 102, 103], "increas": [46, 50, 64, 66, 67, 84, 86, 93, 96, 97, 103], "dot": [46, 77, 93], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 57], "ensembl": [47, 48, 57, 67, 82, 90, 93, 97, 99, 101], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 57], "format_multiannotator_label": [47, 57, 96], "formatted_label": [47, 52], "old": [47, 52, 80, 84, 92], "check_consensus_label_class": 47, "consensus_label": [47, 57, 96], "consensus_method": [47, 57], "consensu": [47, 57, 79, 95, 103], "establish": [47, 56, 83, 101], "compute_soft_cross_entropi": 47, "soft": [47, 92], "find_best_temp_scal": 47, "coarse_search_rang": [47, 69, 93], "fine_search_s": [47, 69, 93], "temperatur": [47, 48, 64, 73, 77], "scale": [47, 50, 82, 92, 93, 99, 102], "factor": [47, 48, 50, 71, 73], "minim": [47, 64, 99], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 92], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 67], "get_confidence_weighted_entropy_for_each_label": [48, 67], "75": [48, 85, 86, 87, 92, 96, 97, 98, 101, 103], "scorer": 48, "alpha": [48, 61, 64, 85, 86, 87, 94, 97, 101], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 59, 90, 91, 94, 103], "formula": [48, 50], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 67, 94, 96, 102], "recent": [48, 103], "success": 48, "previou": [48, 88, 93, 98], "discount": 48, "s_ema": 48, "175": [48, 88, 94, 98], "underflow": 48, "nan": [48, 57, 82, 90, 96, 101], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 61], "n_sampl": 48, "n_label": 48, "worst": [48, 96], "class_label_quality_scor": 48, "42": [48, 91, 92, 98, 103], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 60, 61], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 84], "wider": 48, "splitter": 48, "kfold": [48, 88], "onevsrestclassifi": [48, 97], "randomforestclassifi": [48, 94, 97], "n_split": [48, 87, 88, 97], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 59, 65, 71, 74, 82, 90, 92, 93, 101, 102], "onehot_matrix": 49, "avg_dist": 50, "scaling_factor": 50, "exp": [50, 66, 67, 86], "dt": 50, "right": [50, 62, 65, 83, 91, 97, 98, 99], "strength": [50, 65], "pronounc": 50, "differenti": 50, "ly": 50, "rule": [50, 51, 92], "thumb": 50, "ood_features_scor": [50, 66, 99], "88988177": 50, "80519832": 50, "toler": 50, "minkowski": 50, "noth": 50, "epsilon": 50, "sensibl": 50, "fixed_scor": 50, "readabl": 51, "lambda": [51, 84, 86, 93, 96], "long_sent": 51, "headlin": 51, "charact": [51, 52], "s1": 51, "s2": 51, "processed_token": 51, "alecnlcb": 51, "entiti": [51, 79, 93, 103], "mapped_ent": 51, "unique_ident": 51, "loc": [51, 85, 86, 87, 88, 103], "nbitbas": [51, 61], "probs_merg": 51, "0125": [51, 77], "0375": 51, "075": 51, "025": 51, "color": [51, 74, 85, 86, 87, 90, 94, 97, 99, 101, 102], "red": [51, 65, 85, 86, 87, 92, 94, 97, 98, 99, 102], "colored_sent": 51, "termcolor": 51, "31msentenc": 51, "0m": 51, "ancillari": 52, "class_without_nois": 52, "any_other_class": 52, "choos": [52, 67, 82, 90, 93, 94, 101], "tradition": 52, "new_sum": 52, "fill": 52, "come": [52, 85, 86, 87, 93, 102], "major": [52, 57, 80, 85, 88, 99], "versu": [52, 94], "obviou": 52, "cgdeboer": 52, "iteround": 52, "reach": 52, "prob_s_eq_1": 52, "claesen": 52, "f1": [52, 65, 91, 94], "BE": 52, "left_nam": 52, "top_nam": 52, "titl": [52, 85, 86, 87, 94, 97, 99], "short_titl": 52, "round_plac": 52, "pretti": [52, 85, 94], "joint_matrix": 52, "num_possible_valu": 52, "holdout_idx": 52, "extract": [52, 66, 83, 84, 91, 96, 99, 102], "allow_shuffl": 52, "turn": [52, 79, 98], "shuffledataset": 52, "histori": 52, "pre_x": 52, "buffer_s": 52, "csr_matric": 52, "append": [52, 84, 85, 88, 92, 93, 94, 96, 97, 98, 99, 103], "bottom": [52, 62, 65, 98], "to_data": 52, "from_data": 52, "taken": 52, "label_matrix": 52, "canon": 52, "displai": [52, 65, 74, 78, 83, 84, 85, 91, 94, 103], "jupyt": [52, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "notebook": [52, 57, 84, 85, 87, 92, 93, 94, 96, 97, 98, 102, 103], "consol": 52, "html": [52, 62, 65, 66, 90, 93, 94], "allow_missing_class": 53, "allow_one_class": 53, "length_x": 53, "labellik": 53, "labels_list": [53, 59], "keraswrappermodel": [55, 56, 79], "keraswrappersequenti": [55, 56], "tf": [56, 84], "legaci": 56, "newer": 56, "interim": 56, "advis": [56, 97], "stabil": 56, "until": 56, "accommod": 56, "keraswrapp": 56, "huggingface_keras_imdb": 56, "unit": [56, 103], "model_kwarg": [56, 69], "compile_kwarg": 56, "sparsecategoricalcrossentropi": 56, "layer": [56, 83, 84, 91, 99], "dens": 56, "my_keras_model": 56, "from_logit": 56, "declar": 56, "apply_softmax": 56, "analysi": 57, "analyz": [57, 79, 94, 96, 97], "get_label_quality_multiannot": [57, 96], "vote": 57, "crowdsourc": [57, 79, 96], "dawid": [57, 96], "skene": [57, 96], "analog": [57, 85, 92, 96], "chosen": [57, 67, 93, 96], "crowdlab": [57, 96], "unlabel": [57, 88, 90, 91, 96, 99, 102], "decid": [57, 83, 91, 92, 96, 101, 103], "get_active_learning_scor": [57, 96], "activelab": [57, 96], "priorit": [57, 64, 98, 102, 103], "showcas": 57, "main": [57, 85], "best_qual": 57, "quality_method": 57, "calibrate_prob": 57, "return_detailed_qu": 57, "return_annotator_stat": 57, "return_weight": 57, "label_quality_score_kwarg": 57, "necessarili": [57, 65, 91, 94], "did": [57, 58, 82, 83, 84, 90, 94, 96, 101], "majority_vot": 57, "broken": [57, 65, 92, 101], "highest": [57, 65, 86, 88, 100], "0th": 57, "consensus_quality_scor": [57, 96], "annotator_agr": [57, 96], "reman": 57, "1st": 57, "2nd": [57, 71], "3rd": 57, "consensus_label_suffix": 57, "consensus_quality_score_suffix": 57, "suffix": 57, "emsembl": 57, "weigh": [57, 92], "agreement": [57, 96], "agre": 57, "prevent": [57, 93], "overconfid": [57, 100], "wrong": [57, 62, 64, 80, 83, 85, 86, 87, 91, 93, 94, 98], "detailed_label_qu": [57, 96], "annotator_stat": [57, 96], "model_weight": 57, "annotator_weight": 57, "warn": [57, 86, 87, 88, 90, 91, 93, 94], "labels_info": 57, "num_annot": [57, 96], "deriv": [57, 96], "quality_annotator_1": 57, "quality_annotator_2": 57, "quality_annotator_m": 57, "annotator_qu": [57, 96], "num_examples_label": [57, 96], "agreement_with_consensu": [57, 96], "worst_class": [57, 96], "trustworthi": [57, 96, 101], "get_label_quality_multiannotator_ensembl": 57, "weigtht": 57, "budget": 57, "retrain": [57, 83, 101], "active_learning_scor": 57, "active_learning_scores_unlabel": 57, "get_active_learning_scores_ensembl": 57, "henc": [57, 84, 86, 96], "get_majority_vote_label": [57, 96], "event": 57, "lastli": [57, 90], "convert_long_to_wide_dataset": 57, "labels_multiannotator_long": 57, "wide": [57, 82, 83, 84], "suitabl": [57, 82, 90], "labels_multiannotator_wid": 57, "common_multilabel_issu": [58, 60], "mutual": [58, 97], "exclus": [58, 97], "rank_classes_by_multilabel_qu": [58, 60], "overall_multilabel_health_scor": [58, 60], "multilabel_health_summari": [58, 60], "classes_by_multilabel_qu": 58, "inner": [59, 73], "find_multilabel_issues_per_class": [59, 60], "per_class_label_issu": 59, "label_issues_list": 59, "pred_probs_list": [59, 67, 88, 94], "anim": [60, 99], "rat": 60, "predat": 60, "pet": 60, "reptil": 60, "manner": [61, 82, 83, 96, 101], "box": [62, 64, 65, 92, 98], "object_detect": [62, 64, 65, 98], "return_indices_ranked_by_scor": [62, 98], "overlapping_label_check": [62, 64], "suboptim": [62, 64], "locat": [62, 64, 98, 102, 103], "bbox": [62, 65, 98], "image_nam": [62, 65], "y1": [62, 65, 98], "y2": [62, 65, 98], "later": [62, 65, 66, 83, 103], "corner": [62, 65, 98], "xyxi": [62, 65, 98], "io": [62, 65, 84, 92], "keras_cv": [62, 65], "bounding_box": [62, 65, 98], "detectron": [62, 65, 98], "detectron2": [62, 65, 98], "readthedoc": [62, 65], "en": [62, 65], "latest": [62, 65], "visual": [62, 63, 65, 82, 85, 86, 87, 88, 101, 103], "draw_box": [62, 65], "mmdetect": [62, 65, 98], "swap": [62, 64, 74, 78], "penal": [62, 64], "concern": [62, 64, 79, 87], "issues_from_scor": [63, 64, 72, 73, 74, 76, 77, 78, 98, 102, 103], "compute_overlooked_box_scor": [63, 64], "compute_badloc_box_scor": [63, 64], "compute_swap_box_scor": [63, 64], "pool_box_scores_per_imag": [63, 64], "object_counts_per_imag": [63, 65, 98], "bounding_box_size_distribut": [63, 65, 98], "class_label_distribut": [63, 65, 98], "get_sorted_bbox_count_idx": [63, 65], "plot_class_size_distribut": [63, 65], "plot_class_distribut": [63, 65], "get_average_per_class_confusion_matrix": [63, 65], "calculate_per_class_metr": [63, 65], "aggregation_weight": 64, "imperfect": [64, 93], "chose": [64, 96, 98], "imperfectli": [64, 98], "dirti": [64, 67, 70, 101], "subtyp": 64, "badloc": 64, "nonneg": 64, "high_probability_threshold": 64, "auxiliary_input": [64, 65], "vari": [64, 87], "iou": [64, 65], "heavili": 64, "auxiliarytypesdict": 64, "pred_label": [64, 83], "pred_label_prob": 64, "pred_bbox": 64, "lab_label": 64, "lab_bbox": 64, "similarity_matrix": 64, "min_possible_similar": 64, "scores_overlook": 64, "low_probability_threshold": 64, "scores_badloc": 64, "accident": [64, 83, 90, 91, 93], "scores_swap": 64, "box_scor": 64, "image_scor": [64, 73, 102], "discov": [65, 87, 103], "abnorm": [65, 88, 98], "auxiliari": [65, 99, 102], "_get_valid_inputs_for_compute_scor": 65, "object_count": 65, "down": 65, "bbox_siz": 65, "class_distribut": 65, "plot": [65, 85, 86, 87, 94, 97, 99, 101, 102], "sorted_idx": [65, 99], "class_to_show": 65, "hidden": [65, 85, 99], "max_class_to_show": 65, "prediction_threshold": 65, "overlai": [65, 98], "figsiz": [65, 85, 86, 87, 88, 94, 97, 99], "save_path": [65, 98], "blue": [65, 92, 94, 98], "overlaid": 65, "side": [65, 92, 98], "figur": [65, 94, 97, 99, 101], "extens": [65, 94, 96], "png": [65, 98], "pdf": [65, 66], "svg": 65, "matplotlib": [65, 85, 86, 87, 88, 94, 97, 98, 99, 101], "num_proc": [65, 88], "intersect": [65, 93], "tp": 65, "fp": 65, "ground": [65, 92, 94, 96, 101], "truth": [65, 94, 96, 101], "bias": 65, "avg_metr": 65, "distionari": 65, "95": [65, 75, 77, 90, 92, 94, 101], "per_class_metr": 65, "Of": 66, "li": 66, "smaller": [66, 85, 97, 98], "find_top_issu": [66, 67, 99], "reli": [66, 83, 84, 85, 86, 87, 91, 98, 99, 101], "dist_metr": 66, "subtract": [66, 67], "renorm": [66, 67, 93], "least_confid": 66, "sum_": 66, "log": [66, 67, 80], "softmax": [66, 73, 77, 88], "literatur": 66, "gen": 66, "liu": 66, "lochman": 66, "zach": 66, "openaccess": 66, "thecvf": 66, "cvpr2023": 66, "liu_gen_pushing_the_limits_of_softmax": 66, "based_out": 66, "distribution_detection_cvpr_2023_pap": 66, "fit_scor": [66, 99], "ood_predictions_scor": 66, "pretrain": [66, 83, 84, 91, 99], "adjust_confident_threshold": 66, "probabilist": [66, 82, 84, 86, 87, 90, 91, 99, 100], "order_label_issu": [67, 80], "whichev": [67, 100], "argsort": [67, 83, 88, 91, 94, 98, 99, 101], "max_": 67, "get_label_quality_ensemble_scor": [67, 93, 94], "weight_ensemble_members_bi": 67, "custom_weight": 67, "log_loss_search_t_valu": 67, "0001": [67, 92], "scheme": 67, "log_loss_search": 67, "log_loss": [67, 91], "1e0": 67, "1e1": 67, "1e2": 67, "2e2": 67, "quality_scor": [67, 99], "forth": 67, "top_issue_indic": 67, "rank_bi": [67, 80], "weird": [67, 78], "minu": 67, "prob_label": 67, "max_prob_not_label": 67, "idea": [67, 85, 98], "AND": [67, 91], "get_epistemic_uncertainti": [68, 69], "get_aleatoric_uncertainti": [68, 69], "corrupt": [69, 101], "linearregress": [69, 93, 101], "y_with_nois": 69, "n_boot": [69, 93], "include_aleatoric_uncertainti": [69, 93], "sole": [69, 82, 86, 96, 99], "bootstrap": [69, 93, 101], "resampl": [69, 84, 93], "epistem": [69, 93, 99, 101], "aleator": [69, 93, 101], "model_final_kwarg": 69, "coars": 69, "thorough": [69, 93], "fine": [69, 83, 84, 91, 99], "grain": 69, "grid": 69, "varianc": [69, 94], "epistemic_uncertainti": 69, "residu": [69, 70, 93], "deviat": [69, 98, 101], "aleatoric_uncertainti": 69, "outr": 70, "contin": 70, "raw": [70, 79, 80, 87, 88, 92, 93, 96, 98, 99, 101], "aka": [70, 84, 94, 98, 101, 103], "00323821": 70, "33692597": 70, "00191686": 70, "semant": [71, 73, 74, 95], "pixel": [71, 73, 74, 99, 102], "h": [71, 73, 74, 102], "height": [71, 73, 74, 102], "w": [71, 73, 74, 102], "width": [71, 73, 74, 102], "labels_one_hot": [71, 74, 102], "stream": [71, 85, 99, 103], "downsampl": [71, 73, 102], "shrink": [71, 73], "divis": [71, 73, 86], "common_label_issu": [72, 74, 76, 78, 102, 103], "filter_by_class": [72, 74, 102], "segmant": [73, 74], "num_pixel_issu": [73, 102], "product": [73, 88, 93], "pixel_scor": [73, 102], "highlight": [74, 78, 85, 86, 87, 90, 102], "enter": 74, "legend": [74, 85, 86, 87, 97, 98, 101, 102], "colormap": 74, "background": 74, "person": [74, 93, 98, 102, 103], "ambigu": [74, 78, 83, 84, 91, 92, 94, 103], "systemat": [74, 78, 96], "misunderstood": [74, 78], "issues_df": [74, 88], "class_index": 74, "issues_subset": [74, 78], "filter_by_token": [76, 78, 103], "token_score_method": 77, "sentence_score_method": 77, "sentence_score_kwarg": 77, "compris": [77, 78], "token_scor": [77, 103], "converg": 77, "toward": 77, "_softmin_sentence_scor": 77, "sentence_scor": [77, 103], "token_info": 77, "70": [77, 90], "02": [77, 86, 87, 94, 98, 99], "03": [77, 90, 92, 94, 98, 103], "04": [77, 90, 98, 103], "08": [77, 94, 98, 101, 103], "commonli": [78, 80, 86, 87, 97, 103], "But": [78, 91, 94, 101, 103], "restrict": [78, 93], "reliabl": [79, 82, 84, 93, 96, 102], "thousand": 79, "imagenet": [79, 92], "popular": [79, 96, 98], "centric": [79, 88, 90, 91, 95], "capabl": 79, "minut": [79, 82, 83, 84, 90, 91, 92, 96, 97, 98, 101, 102, 103], "conda": 79, "feature_embed": [79, 99], "Then": [79, 82, 83, 88, 93], "your_dataset": [79, 84, 86, 87, 88, 90, 91, 93], "column_name_of_label": [79, 84, 86, 87, 88, 90, 91], "plagu": [79, 87], "untrain": 79, "\u30c4": 79, "label_issues_info": [79, 87], "sklearn_compatible_model": 79, "framework": [79, 97, 98], "complianc": 79, "tag": [79, 97, 103], "sequenc": 79, "recognit": [79, 84, 93, 103], "train_data": [79, 82, 83, 99, 101], "gotten": 79, "test_data": [79, 82, 83, 85, 94, 97, 99, 101], "deal": [79, 87], "tutori": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "feel": [79, 84, 87, 93], "ask": [79, 93], "slack": [79, 93], "project": [79, 101], "welcom": 79, "commun": [79, 93], "guidelin": [79, 98], "piec": 79, "smart": [79, 88, 90, 91, 93], "edit": [79, 93], "easier": [79, 94], "unreli": [79, 82, 84, 90, 91], "link": [79, 84, 92, 98], "older": 80, "outlin": 80, "substitut": 80, "v2": [80, 82, 90], "get_noise_indic": 80, "psx": 80, "sorted_index_method": 80, "order_label_error": 80, "label_errors_bool": 80, "latent_estim": 80, "num_label_error": 80, "learningwithnoisylabel": 80, "neatli": 80, "organ": [80, 82, 90, 92, 103], "reorgan": 80, "baseline_method": 80, "incorpor": [80, 94], "research": [80, 94], "polyplex": 80, "terminologi": 80, "label_error": 80, "quickstart": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "sql": [82, 90], "databas": [82, 90], "excel": [82, 90], "parquet": [82, 90], "student": [82, 90, 101, 103], "grade": [82, 90, 101], "900": [82, 90, 101], "exam": [82, 90, 101], "letter": [82, 90, 103], "hundr": [82, 90], "mistak": [82, 83, 88, 90, 91], "No": [82, 83, 91, 93], "extratreesclassifi": 82, "extratre": 82, "ranked_label_issu": [82, 83], "branch": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "preprocess": [82, 83, 87, 90, 99, 101], "standardscal": [82, 90, 99], "labelencod": [82, 83], "train_test_split": [82, 83, 85, 86, 87, 99], "accuracy_scor": [82, 83, 84, 91, 94], "grades_data": [82, 90], "read_csv": [82, 83, 90, 91, 101], "demo": [82, 87, 90, 97], "head": [82, 83, 84, 87, 88, 90, 91, 92, 94, 96, 101], "stud_id": [82, 90], "exam_1": [82, 90, 101], "exam_2": [82, 90, 101], "exam_3": [82, 90, 101], "letter_grad": [82, 90], "f48f73": [82, 90], "53": [82, 85, 86, 87, 90, 92, 97, 98], "00": [82, 86, 87, 88, 90, 92, 99], "77": [82, 86, 87, 90, 98], "0bd4e7": [82, 90], "81": [82, 90, 91, 98, 101, 103], "great": [82, 85, 90, 92], "particip": [82, 90], "cb9d7a": [82, 90], "61": [82, 90, 94, 98, 101], "94": [82, 90, 92, 94, 98, 101], "78": [82, 90, 92, 94, 98, 101], "9acca4": [82, 90], "48": [82, 90, 92, 94, 98], "x_raw": [82, 90], "labels_raw": 82, "interg": [82, 83], "categorical_featur": [82, 101], "x_encod": [82, 90], "get_dummi": [82, 90, 101], "drop_first": [82, 90], "numeric_featur": [82, 90], "scaler": [82, 90, 99], "x_process": [82, 90], "fit_transform": [82, 90], "bring": [82, 83, 88, 90, 91, 96, 101], "byod": [82, 83, 88, 90, 91, 96, 101], "decis": [82, 85, 86, 87], "tress": 82, "held": [82, 84, 90, 91, 92, 98, 99, 100], "straightforward": [82, 84, 90], "benefit": [82, 84, 100, 102], "num_crossval_fold": [82, 84, 90, 96], "u": [82, 83, 84, 86, 88, 90, 93, 94, 96, 97, 100, 101, 102, 103], "tabl": [82, 90, 92, 96], "212": [82, 94], "review": [82, 83, 87, 90, 91, 92, 93, 94, 98, 101, 102, 103], "iloc": [82, 83, 84, 90, 91, 101], "58": [82, 87, 90, 92, 94, 98], "92": [82, 86, 94, 98], "93": [82, 92, 98, 101], "827": 82, "99": [82, 92, 94], "86": [82, 87, 88, 90, 94, 98, 101], "74": [82, 98, 101], "637": [82, 90], "79": [82, 92, 98], "65": [82, 86, 98], "cheat": 82, "0pt": 82, "120": [82, 86, 87], "97": [82, 92, 93, 94, 98, 101, 103], "233": 82, "68": [82, 92, 94, 98], "83": [82, 94, 98, 101, 103], "76": [82, 85, 94, 97, 98, 101], "suspici": [82, 90], "carefulli": [82, 88, 90, 91], "examin": [82, 85, 86, 87, 90, 98], "labels_train": 82, "labels_test": 82, "test_siz": [82, 83, 85, 86, 87], "acc_og": [82, 83], "783068783068783": 82, "robustli": [82, 83, 101], "14": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "acc_cl": [82, 83], "8095238095238095": 82, "especi": [82, 83, 85, 88, 93, 101], "blindli": [82, 83, 84, 93, 101], "trust": [82, 83, 84, 93, 94, 96, 100, 101], "effort": [82, 83, 101], "intent": [83, 91], "servic": [83, 91, 93], "onlin": [83, 91], "bank": [83, 91, 92], "banking77": [83, 91], "oo": [83, 91], "000": [83, 88, 91, 92, 103], "categori": [83, 88, 91], "shortlist": [83, 91, 101], "scope": [83, 91], "logist": [83, 85, 86, 87, 91, 96, 99], "probabilit": [83, 84], "drop": [83, 93, 96, 101], "earlier": [83, 103], "sentence_transform": [83, 91], "sentencetransform": [83, 91], "payment": [83, 91], "cancel_transf": [83, 91], "transfer": [83, 91], "fund": [83, 91], "cancel": [83, 91], "transact": [83, 91], "my": [83, 91], "revert": [83, 91], "morn": [83, 91], "realis": [83, 91], "yesterdai": [83, 91], "rent": [83, 91], "realli": [83, 91, 96, 102], "tomorrow": [83, 91], "raw_text": [83, 91], "raw_label": 83, "raw_train_text": 83, "raw_test_text": 83, "raw_train_label": 83, "raw_test_label": 83, "39": [83, 84, 86, 88, 91, 92, 93, 98, 101, 102, 103], "visa_or_mastercard": [83, 91], "apple_pay_or_google_pai": [83, 91], "card_payment_fee_charg": [83, 91], "lost_or_stolen_phon": [83, 91], "beneficiary_not_allow": [83, 91], "supported_cards_and_curr": [83, 91], "getting_spare_card": [83, 91], "change_pin": [83, 91], "card_about_to_expir": [83, 91], "card": [83, 91, 92], "utter": [83, 91], "encond": 83, "test_label": [83, 94, 97, 99], "suit": [83, 91, 92, 93], "electra": [83, 91], "discrimin": [83, 91], "googl": [83, 85, 91], "train_text": 83, "test_text": 83, "home": [83, 86, 87, 91, 92], "runner": [83, 86, 87, 91], "google_electra": [83, 91], "pool": [83, 91, 93, 99], "opt": [83, 84, 87, 88, 90, 91, 94], "hostedtoolcach": [83, 84, 87, 88, 90, 91, 94], "x64": [83, 84, 87, 88, 90, 91, 94], "lib": [83, 84, 87, 88, 90, 91, 94], "python3": [83, 84, 87, 88, 90, 91, 94], "site": [83, 84, 87, 88, 90, 91, 94], "_util": [83, 91], "831": [83, 91], "userwarn": [83, 84, 86, 87, 91], "typedstorag": [83, 91], "untypedstorag": [83, 91], "untyped_storag": [83, 91], "fget": [83, 91], "__get__": [83, 91], "owner": [83, 91], "leverag": [83, 84, 91, 93, 94, 96], "computation": [83, 84, 91], "intens": [83, 84, 91], "400": [83, 85, 91], "858371": 83, "547274": 83, "826228": 83, "966008": 83, "792449": 83, "identified_issu": [83, 101], "lowest_quality_label": [83, 84, 91, 94, 101], "to_numpi": [83, 91, 93, 101], "44": [83, 92, 97, 98], "646": 83, "390": 83, "628": 83, "121": [83, 85, 94], "702": 83, "863": [83, 84], "135": 83, "337": [83, 98], "735": 83, "print_as_df": 83, "inverse_transform": 83, "charg": [83, 91], "cash": [83, 91], "holidai": [83, 91], "sent": [83, 91, 103], "mine": [83, 91], "expir": [83, 91], "fight": 83, "hors": [83, 92, 99], "duck": [83, 92], "me": [83, 91], "whoever": [83, 91], "consum": [83, 101], "18": [83, 84, 91, 92, 93, 94, 98, 99, 101, 102], "baseline_model": [83, 101], "87": [83, 87, 88, 98, 101], "acceler": [83, 101], "19": [83, 84, 88, 91, 92, 93, 94, 98, 99, 101, 102], "89": [83, 85, 86, 90, 98, 101], "spoken": 84, "500": [84, 99, 103], "english": [84, 92], "pronunci": 84, "wav": 84, "huggingfac": [84, 86, 87, 88, 93], "voxceleb": 84, "speech": [84, 103], "your_pred_prob": [84, 85, 86, 87, 90, 91], "tensorflow_io": 84, "huggingface_hub": 84, "reproduc": [84, 90, 94, 96], "command": 84, "wget": [84, 98, 102, 103], "navig": 84, "browser": 84, "jakobovski": 84, "archiv": [84, 103], "v1": 84, "tar": [84, 99], "gz": [84, 99], "mkdir": [84, 103], "spoken_digit": 84, "xf": 84, "6_nicolas_32": 84, "data_path": 84, "listdir": 84, "nondeterminist": 84, "file_nam": 84, "endswith": 84, "file_path": 84, "join": [84, 85, 88, 93], "7_george_26": 84, "0_nicolas_24": 84, "0_nicolas_6": 84, "listen": 84, "display_exampl": 84, "expand": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "pulldown": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "colab": [84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "tfio": 84, "pathlib": 84, "ipython": 84, "load_wav_16k_mono": 84, "filenam": 84, "khz": 84, "file_cont": 84, "read_fil": 84, "sample_r": 84, "decode_wav": 84, "desired_channel": 84, "squeez": 84, "rate_in": 84, "rate_out": 84, "16000": 84, "wav_file_nam": 84, "audio_r": 84, "wav_file_exampl": 84, "plai": [84, 92, 93], "button": 84, "wav_file_name_exampl": 84, "7_jackson_43": 84, "hear": 84, "extractor": 84, "encoderclassifi": 84, "spkrec": 84, "xvect": 84, "feature_extractor": 84, "from_hparam": 84, "run_opt": 84, "uncom": 84, "ffmpeg": 84, "backend": 84, "wav_audio_file_path": 84, "torchaudio": 84, "extract_audio_embed": 84, "emb": [84, 88], "signal": 84, "encode_batch": 84, "embeddings_list": [84, 88], "embeddings_arrai": 84, "650": 84, "stft": 84, "return_complex": 84, "view_as_r": 84, "recov": 84, "trigger": 84, "aten": 84, "src": 84, "nativ": 84, "spectralop": 84, "cpp": 84, "_vf": 84, "n_fft": 84, "hop_length": 84, "win_length": 84, "attr": 84, "512": [84, 88], "196311": 84, "319459": 84, "478975": 84, "2890875": 84, "8170238": 84, "89265": 84, "24": [84, 92, 94, 96, 98, 101], "898056": 84, "256195": 84, "559641": 84, "559721": 84, "62067": 84, "285245": 84, "21": [84, 86, 92, 93, 94, 98, 101, 103], "709627": 84, "5033693": 84, "913803": 84, "819831": 84, "1831515": 84, "208763": 84, "084257": 84, "3210397": 84, "005453": 84, "216152": 84, "478235": 84, "6821785": 84, "053807": 84, "242471": 84, "091424": 84, "78334856": 84, "03954": 84, "23": [84, 88, 92, 94, 98, 101], "569176": 84, "761097": 84, "1258295": 84, "753237": 84, "3508866": 84, "598274": 84, "23712": 84, "2500": 84, "tol": 84, "decreas": [84, 93], "cv_accuraci": 84, "9708": 84, "9976": 84, "986": 84, "002161": 84, "176": [84, 92, 94, 97], "002483": 84, "2318": 84, "004411": 84, "1005": 84, "004857": 84, "1871": 84, "007494": 84, "investig": [84, 85], "040587": 84, "999207": 84, "999377": 84, "975220": 84, "999367": 84, "identified_label_issu": [84, 91], "sort_valu": [84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 101], "516": 84, "1946": 84, "469": 84, "2132": 84, "worth": [84, 94], "6_yweweler_25": 84, "7_nicolas_43": 84, "6_theo_27": 84, "6_yweweler_36": 84, "6_yweweler_14": 84, "6_yweweler_35": 84, "6_nicolas_8": 84, "sound": 84, "quit": [84, 99], "22": [84, 86, 88, 92, 93, 94, 97, 98, 103], "ve": [85, 92, 93, 94, 96, 98], "prove": 85, "monitor": [85, 92], "ran": 85, "data_monitor": 85, "your_datalab": 85, "new_data_batch": 85, "your_label": 85, "get_your_label": 85, "websit": [85, 92], "todo": 85, "get_ipython": 85, "e0b7615c1169c6d8fcae15be6477bd7327e82e00": 85, "cmd": 85, "dep": 85, "dependencies_test": 85, "missing_depend": 85, "__import__": 85, "importerror": 85, "sep": [85, 103], "npleas": 85, "toi": [85, 86, 87, 88, 92, 94, 96], "mid": [85, 86, 87], "workflow": [85, 95, 101], "unseen": 85, "inf": [85, 86, 87], "bins_map": [85, 86, 87], "create_data": [85, 86, 87], "800": 85, "y_bin": [85, 86, 87], "y_i": [85, 86, 87], "y_bin_idx": [85, 86, 87], "y_train": [85, 86, 87, 94, 101], "y_test": [85, 86, 87, 94, 101], "y_train_idx": [85, 86, 87], "y_test_idx": [85, 86, 87], "slide": [85, 86, 87, 92], "frame": [85, 86, 87], "x_out": [85, 86, 87], "tini": [85, 86, 87], "concaten": [85, 86, 87, 93, 100], "y_out": [85, 86, 87], "y_out_bin": [85, 86, 87], "y_out_bin_idx": [85, 86, 87], "exact_duplicate_idx": [85, 86, 87], "x_duplic": [85, 86, 87], "y_duplic": [85, 86, 87], "y_duplicate_idx": [85, 86, 87], "noisy_labels_idx": [85, 86, 87, 97], "train_x": 85, "test_x": 85, "train_y_tru": 85, "test_y_tru": 85, "train_i": 85, "test_i": 85, "train_y_idx": 85, "test_y_idx": 85, "scatter": [85, 86, 87, 94, 97, 101], "black": [85, 86, 87, 92, 101], "cyan": [85, 86, 87], "pyplot": [85, 86, 87, 88, 94, 97, 99, 101], "plt": [85, 86, 87, 88, 94, 97, 99, 101], "plot_data": [85, 86, 87, 94, 97, 101], "fig": [85, 86, 87, 88, 92, 99, 101], "ax": [85, 86, 87, 88, 99, 101], "subplot": [85, 86, 87, 88, 99], "set_titl": [85, 86, 87, 88, 99], "set_xlabel": [85, 86, 87], "x_1": [85, 86, 87], "fontsiz": [85, 86, 87, 88, 94, 97], "set_ylabel": [85, 86, 87], "x_2": [85, 86, 87], "set_xlim": [85, 86, 87], "set_ylim": [85, 86, 87], "linestyl": [85, 86, 87], "circl": [85, 86, 87, 94, 97], "misclassifi": [85, 86, 87], "zip": [85, 86, 87, 88, 98, 103], "label_err": [85, 86, 87], "180": [85, 86, 87, 98], "marker": [85, 86, 87], "facecolor": [85, 86, 87], "edgecolor": [85, 86, 87], "linewidth": [85, 86, 87, 99], "title_fontproperti": [85, 86, 87], "semibold": [85, 86, 87], "first_legend": [85, 86, 87], "align": [85, 86, 87], "markerscal": 85, "second_legend": [85, 86, 87], "46": [85, 90, 92, 94, 98, 103], "gca": [85, 86, 87], "add_artist": [85, 86, 87], "tight_layout": [85, 86, 87], "ideal": [85, 86, 87], "simplic": [85, 97], "327": [85, 98], "9297": 85, "000124": 85, "259": 85, "000725": 85, "269": 85, "000794": 85, "002061": 85, "125": [85, 86], "002908": 85, "fly": [85, 92], "feed": [85, 93], "simul": 85, "tqdm": [85, 88], "sleep": [85, 92], "generate_stream": 85, "sleep_tim": 85, "desc": 85, "singleton_stream": 85, "seamless": [85, 93], "singleton": 85, "batched_stream": 85, "processed_singleton": 85, "suggested_label": [85, 91], "250997": 85, "285757": 85, "43": [85, 86, 92, 94, 98], "120906": 85, "principl": 85, "processed_batch": 85, "51": [85, 86, 87, 90, 92, 94, 98], "002748": 85, "189996": 85, "093505": 85, "037250": 85, "149": [85, 98], "076397": 85, "154": 85, "294010": 85, "160": [85, 91, 101], "073622": 85, "166": [85, 88], "140832": 85, "167": [85, 92, 94, 98], "041743": 85, "181": 85, "169429": 85, "127304": 85, "235": [85, 98], "090310": 85, "254": [85, 92, 98], "183343": 85, "256": [85, 92, 93, 98], "048720": 85, "263": [85, 97, 98], "138820": 85, "292": 85, "239609": 85, "295": [85, 98], "022075": 85, "306": 85, "103040": 85, "343": 85, "234755": 85, "354": 85, "001612": 85, "359": 85, "068359": 85, "367": [85, 101], "015793": 85, "368": 85, "029022": 85, "391": 85, "106761": 85, "troublesom": 85, "623844": 85, "812647": 85, "816854": 85, "661968": 85, "632244": 85, "395": 85, "474599": 85, "396": 85, "653901": 85, "397": 85, "584554": 85, "398": 85, "817287": 85, "399": 85, "881545": 85, "183": 85, "937927": 85, "309": 85, "939505": 85, "133": 85, "947290": 85, "177": 85, "952187": 85, "314": [85, 98], "997293": 85, "27": [85, 90, 92, 94, 98, 103], "655501": 85, "underneath": 86, "hood": [86, 93], "alert": 86, "introduct": 86, "mayb": [86, 87, 91], "your_feature_matrix": [86, 87], "dup": [86, 87], "45": [86, 87, 92, 94, 98], "remaind": 86, "modal": [86, 87, 93, 96], "132": [86, 87, 94, 98], "9318": 86, "006940": 86, "007830": 86, "40": [86, 87, 91, 92], "014828": 86, "107": [86, 87, 94, 97], "021241": 86, "026407": 86, "notic": [86, 94, 96, 98], "3558": [86, 87], "126": [86, 87, 94, 98], "006636": [86, 87], "130": [86, 87], "012571": [86, 87], "129": [86, 87, 103], "127": [86, 87], "014909": [86, 87], "128": [86, 87, 88], "017443": [86, 87], "6160": [86, 87], "is_near_duplicate_issu": [86, 87, 88, 90, 91, 93, 94], "131": [86, 87, 102], "000000e": [86, 87], "000002": [86, 87], "463180e": [86, 87], "07": [86, 87, 88, 90, 94, 98, 101], "161148": [86, 87], "859087e": [86, 87], "30": [86, 87, 88, 92, 93, 97, 102, 103], "3453": 86, "029542": 86, "031182": 86, "057961": 86, "058244": 86, "348": 86, "378": 86, "357": 86, "34": [86, 92, 94, 96, 98, 103], "54": [86, 92, 94, 98], "039122": 86, "044598": 86, "105": [86, 98], "105196": 86, "133654": 86, "168033": 86, "101107": 86, "37": [86, 92], "183382": 86, "109": [86, 92, 98], "209259": 86, "211042": 86, "221316": 86, "average_ood_scor": 86, "34530442089193386": 86, "52": [86, 92, 98, 103], "169820": 86, "087324e": 86, "259024": 86, "583757e": 86, "91": [86, 98], "346458": 86, "341292e": 86, "specfi": 86, "new_lab": 86, "scoring_funct": 86, "div": 86, "rem": 86, "inv_scal": 86, "49": [86, 92, 94, 98], "superstitionissuemanag": 86, "unlucki": 86, "superstit": 86, "to_seri": 86, "issues_mask": 86, "summary_scor": 86, "9242": 86, "is_superstition_issu": 86, "superstition_scor": 86, "26": [86, 88, 92, 94, 96, 98], "047581": 86, "090635": 86, "129591": 86, "164840": 86, "lurk": [87, 88, 94], "_split": 87, "737": 87, "thoroughli": 87, "904": 87, "_base": [87, 88, 90, 91, 94], "246": [87, 88, 90, 91, 94, 98], "efficiencywarn": [87, 88, 90, 91, 94], "sort_graph_by_row_valu": [87, 88, 90, 91, 94], "warn_when_not_sort": [87, 88, 90, 91, 94], "8561": 87, "001908": 87, "003564": 87, "007331": 87, "008963": 87, "009664": 87, "0227": 87, "is_class_imbalance_issu": 87, "022727": 87, "conceptu": 87, "856061": 87, "355772": 87, "616034": 87, "821750": 87, "901562": 87, "betweeen": 87, "is_null_issu": 87, "is_non_iid_issu": [87, 90, 91, 94], "is_underperforming_group_issu": 87, "859131": 87, "417707": 87, "664083": 87, "970324": 87, "816953": 87, "375317": 87, "641516": 87, "890575": 87, "531021": 87, "460593": 87, "601188": 87, "826147": 87, "752808": 87, "321635": 87, "562539": 87, "948362": 87, "090243": 87, "472909": 87, "746763": 87, "878267": 87, "examples_w_issu": [87, 93], "013445": 87, "025184": 87, "026376": 87, "inde": [87, 91], "miscellan": [87, 103], "428571": 87, "111111": 87, "571429": 87, "407407": 87, "592593": 87, "337838": 87, "092593": 87, "662162": 87, "333333": [87, 92], "952381": 87, "666667": 87, "portion": 87, "huge": [87, 94], "worri": [87, 91], "critic": 87, "60": [88, 94, 101], "torchvis": [88, 99], "tensordataset": 88, "stratifiedkfold": [88, 97], "autonotebook": 88, "fashion_mnist": 88, "9m": 88, "lt": [88, 90, 91, 92, 96, 99], "7mb": 88, "18m": 88, "57": [88, 92, 94], "num_row": 88, "60000": 88, "transformed_dataset": 88, "with_format": 88, "255": [88, 92], "unsqueez": 88, "cpu_count": 88, "torch_dataset": 88, "quick": [88, 97], "super": [88, 90, 91], "relu": 88, "batchnorm2d": 88, "maxpool2d": 88, "lazylinear": 88, "flatten": 88, "get_test_accuraci": 88, "testload": [88, 99], "energi": 88, "trainload": [88, 99], "n_epoch": 88, "patienc": 88, "criterion": 88, "crossentropyloss": 88, "adamw": 88, "best_test_accuraci": 88, "start_epoch": 88, "running_loss": 88, "best_epoch": 88, "end_epoch": 88, "3f": [88, 101], "acc": [88, 94], "time_taken": 88, "compute_embed": 88, "compute_pred_prob": 88, "train_batch_s": 88, "num_work": 88, "worker": [88, 103], "train_id_list": 88, "test_id_list": 88, "train_id": 88, "test_id": 88, "embeddings_model": 88, "ntrain": 88, "trainset": 88, "testset": 88, "pin_memori": 88, "fold_embed": 88, "fold_pred_prob": 88, "finish": 88, "482": 88, "720": 88, "940": 88, "329": [88, 98], "88": [88, 92, 93, 94, 97, 98, 101], "195": 88, "775": 88, "493": 88, "060": 88, "963": 88, "330": [88, 98], "505": 88, "588": 88, "476": 88, "340": 88, "770": 88, "328": [88, 98], "310": 88, "552": 88, "reorder": 88, "hstack": [88, 93, 94, 96], "vision": 88, "grayscal": 88, "max_preval": 88, "7714": 88, "3772": 88, "3585": 88, "3651": 88, "27080": 88, "873833e": 88, "40378": 88, "915575e": 88, "25316": 88, "390277e": 88, "06": [88, 94, 98, 103], "2090": 88, "751164e": 88, "14999": 88, "881301e": 88, "9569": 88, "11262": 88, "000003": 88, "coat": [88, 92], "shirt": [88, 92], "19228": 88, "000010": 88, "dress": 88, "32657": 88, "000013": 88, "bag": [88, 92, 99, 100], "21282": 88, "000016": 88, "53564": 88, "000018": 88, "pullov": 88, "6321": 88, "30968": 88, "001267": 88, "30659": 88, "000022": [88, 103], "47824": 88, "001454": 88, "3370": 88, "000026": 88, "54565": 88, "001854": 88, "9762": 88, "258": 88, "47139": 88, "000033": 88, "166980": 88, "986195": 88, "997205": 88, "sandal": [88, 92], "948781": 88, "999358": 88, "54078": 88, "17371": 88, "000025": 88, "plot_label_issue_exampl": 88, "ncol": [88, 99], "nrow": [88, 99], "ceil": 88, "axes_list": 88, "label_issue_indic": 88, "gl": 88, "sl": 88, "fontdict": 88, "imshow": [88, 99], "cmap": [88, 101], "grai": 88, "subplots_adjust": 88, "hspace": 88, "outsiz": 88, "outlier_issu": [88, 91], "outlier_issues_df": 88, "depict": [88, 97, 98, 99, 100, 102], "plot_outlier_issues_exampl": 88, "n_comparison_imag": 88, "sample_from_class": 88, "number_of_sampl": 88, "non_outlier_indic": 88, "isnul": 88, "non_outlier_indices_excluding_curr": 88, "sampled_indic": 88, "label_scores_of_sampl": 88, "top_score_indic": 88, "top_label_indic": 88, "sampled_imag": 88, "get_image_given_label_and_sampl": 88, "image_from_dataset": 88, "corresponding_label": 88, "comparison_imag": 88, "images_to_plot": 88, "idlist": 88, "iterrow": 88, "near_duplicate_issu": [88, 93], "closest": 88, "counterpart": 88, "near_duplicate_issues_df": 88, "plot_near_duplicate_issue_exampl": 88, "seen_id_pair": 88, "get_image_and_given_label_and_predicted_label": 88, "duplicate_imag": 88, "nd_set": 88, "challeng": 88, "dark_issu": 88, "reveal": [88, 98, 102], "dark_scor": 88, "dark_issues_df": 88, "is_dark_issu": 88, "34848": 88, "203922": 88, "50270": 88, "204588": 88, "3936": 88, "213098": 88, "733": 88, "217686": 88, "8094": 88, "230118": 88, "plot_image_issue_exampl": 88, "28": [88, 91, 92, 94, 96, 103], "difficult": 88, "disproportion": 88, "lowinfo_issu": 88, "low_information_scor": 88, "lowinfo_issues_df": 88, "is_low_information_issu": 88, "53050": 88, "067975": 88, "40875": 88, "089929": 88, "9594": 88, "092601": 88, "34825": 88, "107744": 88, "37530": 88, "108516": 88, "lot": 88, "histgradientboostingclassifi": 90, "cat_featur": 90, "boost": [90, 93, 96, 101], "xgboost": [90, 93, 101], "think": [90, 91, 93, 97, 102, 103], "nonzero": 90, "358": 90, "294": [90, 98], "941": 90, "7109": 90, "000005": [90, 91], "886": 90, "000059": 90, "709": 90, "000104": 90, "723": 90, "000169": 90, "689": 90, "000181": 90, "3590": 90, "051882e": 90, "683133e": 90, "536582e": 90, "406589e": 90, "324246e": 90, "6165": 90, "582": 90, "185": [90, 92, 98], "187": [90, 92], "898": 90, "0014": [90, 92], "595": 90, "702427": 90, "147": [90, 94, 98], "711186": 90, "157": [90, 94], "721394": 90, "771": 90, "731979": 90, "740335": 90, "0014153602099278074": 90, "issue_result": 90, "000842": 90, "555944": 90, "004374": 90, "sorted_issu": 90, "73": [90, 92, 97, 98, 101], "deserv": 90, "outlier_result": 90, "sorted_outli": 90, "56": [90, 92, 101], "96": [90, 92, 94, 97, 98, 101], "style": [90, 102], "font": 90, "18px": 90, "ff00ff": 90, "bac": 90, "unintend": [90, 91], "duplicate_result": 90, "690": 90, "perhap": [90, 94, 96], "twice": 90, "67": [90, 92, 98, 101], "wari": [90, 91, 93], "dive": 91, "your_featur": 91, "text_embed": 91, "data_dict": [91, 94, 96], "85": [91, 98], "38": [91, 92, 98, 103], "9710": 91, "981": 91, "974": 91, "000146": 91, "982": [91, 92], "000224": 91, "971": 91, "000507": 91, "980": [91, 92], "000960": 91, "3584": 91, "994": 91, "009642": 91, "999": 91, "013067": 91, "013841": 91, "433": 91, "014722": 91, "989": 91, "018224": 91, "6070": 91, "095724": 91, "148": [91, 103], "006237": 91, "546": 91, "099341": 91, "514": 91, "006485": 91, "481": 91, "123418": 91, "008165": 91, "0000": [91, 92, 94], "313": [91, 98], "564102": 91, "572258": 91, "574915": 91, "31": [91, 92, 94, 96, 98], "575507": 91, "575874": 91, "792090": 91, "257611": 91, "698710": 91, "182121": 91, "771619": 91, "data_with_suggested_label": 91, "withdraw": 91, "monei": 91, "lowest_quality_outli": 91, "OR": 91, "636c65616e6c616220697320617765736f6d6521": 91, "phone": [91, 92], "gone": 91, "gt": [91, 96, 103], "samp": 91, "br": 91, "press": [91, 103], "nonsens": 91, "sens": 91, "detriment": 91, "duplicate_issu": 91, "fee": 91, "pai": 91, "go": [91, 92, 94], "strongli": 91, "p_valu": 91, "benign": 91, "curat": [91, 95], "mnist_test_set": 92, "imagenet_val_set": 92, "tench": 92, "goldfish": 92, "white": [92, 103], "shark": 92, "tiger": 92, "hammerhead": 92, "electr": 92, "rai": 92, "stingrai": 92, "cock": 92, "hen": 92, "ostrich": 92, "brambl": 92, "goldfinch": 92, "hous": 92, "finch": 92, "junco": 92, "indigo": 92, "bunt": 92, "american": [92, 103], "robin": 92, "bulbul": 92, "jai": 92, "magpi": 92, "chickade": 92, "dipper": 92, "kite": 92, "bald": 92, "eagl": 92, "vultur": 92, "grei": 92, "owl": 92, "salamand": 92, "smooth": 92, "newt": 92, "spot": [92, 93, 98], "axolotl": 92, "bullfrog": 92, "tree": 92, "frog": [92, 99], "tail": 92, "loggerhead": 92, "sea": 92, "turtl": 92, "leatherback": 92, "mud": 92, "terrapin": 92, "band": 92, "gecko": 92, "green": [92, 103], "iguana": 92, "carolina": 92, "anol": 92, "desert": 92, "grassland": 92, "whiptail": 92, "lizard": 92, "agama": 92, "frill": 92, "neck": 92, "allig": 92, "gila": 92, "monster": 92, "european": 92, "chameleon": 92, "komodo": 92, "dragon": 92, "nile": 92, "crocodil": 92, "triceratop": 92, "worm": 92, "snake": 92, "ring": 92, "eastern": 92, "hog": 92, "nose": 92, "kingsnak": 92, "garter": 92, "water": 92, "vine": 92, "night": 92, "boa": 92, "constrictor": 92, "african": 92, "rock": 92, "indian": 92, "cobra": 92, "mamba": 92, "saharan": 92, "horn": 92, "viper": 92, "diamondback": 92, "rattlesnak": 92, "sidewind": 92, "trilobit": 92, "harvestman": 92, "scorpion": 92, "yellow": 92, "garden": 92, "spider": 92, "barn": 92, "southern": 92, "widow": 92, "tarantula": 92, "wolf": 92, "tick": 92, "centiped": 92, "grous": 92, "ptarmigan": 92, "ruf": 92, "prairi": 92, "peacock": 92, "quail": 92, "partridg": 92, "parrot": 92, "macaw": 92, "sulphur": 92, "crest": 92, "cockatoo": 92, "lorikeet": 92, "coucal": 92, "bee": 92, "eater": 92, "hornbil": 92, "hummingbird": 92, "jacamar": 92, "toucan": 92, "breast": 92, "mergans": 92, "goos": 92, "swan": 92, "tusker": 92, "echidna": 92, "platypu": 92, "wallabi": 92, "koala": 92, "wombat": 92, "jellyfish": 92, "anemon": 92, "brain": 92, "coral": 92, "flatworm": 92, "nematod": 92, "conch": 92, "snail": 92, "slug": 92, "chiton": 92, "chamber": 92, "nautilu": 92, "dung": 92, "crab": 92, "fiddler": 92, "king": 92, "lobster": 92, "spini": 92, "crayfish": 92, "hermit": 92, "isopod": 92, "stork": 92, "spoonbil": 92, "flamingo": 92, "heron": 92, "egret": 92, "bittern": 92, "crane": 92, "bird": [92, 99], "limpkin": 92, "gallinul": 92, "coot": 92, "bustard": 92, "ruddi": 92, "turnston": 92, "dunlin": 92, "redshank": 92, "dowitch": 92, "oystercatch": 92, "pelican": 92, "penguin": 92, "albatross": 92, "whale": 92, "killer": 92, "dugong": 92, "lion": 92, "chihuahua": 92, "japanes": 92, "chin": 92, "maltes": 92, "pekinges": 92, "shih": 92, "tzu": 92, "charl": 92, "spaniel": 92, "papillon": 92, "terrier": 92, "rhodesian": 92, "ridgeback": 92, "afghan": [92, 103], "hound": 92, "basset": 92, "beagl": 92, "bloodhound": 92, "bluetick": 92, "coonhound": 92, "tan": 92, "walker": 92, "foxhound": 92, "redbon": 92, "borzoi": 92, "irish": 92, "wolfhound": 92, "italian": 92, "greyhound": 92, "whippet": 92, "ibizan": 92, "norwegian": 92, "elkhound": 92, "otterhound": 92, "saluki": 92, "scottish": 92, "deerhound": 92, "weimaran": 92, "staffordshir": 92, "bull": 92, "bedlington": 92, "border": 92, "kerri": 92, "norfolk": 92, "norwich": 92, "yorkshir": 92, "wire": 92, "fox": 92, "lakeland": 92, "sealyham": 92, "airedal": 92, "cairn": 92, "australian": 92, "dandi": 92, "dinmont": 92, "boston": 92, "miniatur": 92, "schnauzer": 92, "giant": 92, "tibetan": 92, "silki": 92, "wheaten": 92, "west": 92, "highland": 92, "lhasa": 92, "apso": 92, "flat": 92, "retriev": 92, "curli": 92, "golden": 92, "labrador": 92, "chesapeak": 92, "bai": 92, "german": [92, 103], "shorthair": 92, "pointer": 92, "vizsla": 92, "setter": 92, "gordon": 92, "brittani": 92, "clumber": 92, "springer": 92, "welsh": 92, "cocker": 92, "sussex": 92, "kuvasz": 92, "schipperk": 92, "groenendael": 92, "malinoi": 92, "briard": 92, "kelpi": 92, "komondor": 92, "sheepdog": 92, "shetland": 92, "colli": 92, "bouvier": 92, "de": 92, "flandr": 92, "rottweil": 92, "shepherd": 92, "dobermann": 92, "pinscher": 92, "swiss": [92, 103], "mountain": 92, "bernes": 92, "appenzel": 92, "sennenhund": 92, "entlebuch": 92, "boxer": 92, "bullmastiff": 92, "mastiff": 92, "french": 92, "bulldog": 92, "dane": 92, "st": 92, "bernard": 92, "huski": 92, "alaskan": 92, "malamut": 92, "siberian": 92, "dalmatian": 92, "affenpinsch": 92, "basenji": 92, "pug": 92, "leonberg": 92, "newfoundland": 92, "pyrenean": 92, "samoi": 92, "pomeranian": 92, "chow": 92, "keeshond": 92, "griffon": 92, "bruxelloi": 92, "pembrok": 92, "corgi": 92, "cardigan": 92, "poodl": 92, "mexican": 92, "hairless": 92, "tundra": 92, "coyot": 92, "dingo": 92, "dhole": 92, "wild": 92, "hyena": 92, "kit": 92, "arctic": 92, "tabbi": 92, "persian": 92, "siames": 92, "egyptian": 92, "mau": 92, "cougar": 92, "lynx": 92, "leopard": 92, "snow": 92, "jaguar": 92, "cheetah": 92, "brown": [92, 102], "bear": 92, "polar": 92, "sloth": 92, "mongoos": 92, "meerkat": 92, "beetl": 92, "ladybug": 92, "longhorn": 92, "leaf": 92, "rhinocero": 92, "weevil": 92, "ant": 92, "grasshopp": 92, "cricket": 92, "stick": 92, "insect": 92, "cockroach": 92, "manti": 92, "cicada": 92, "leafhopp": 92, "lacew": 92, "dragonfli": 92, "damselfli": 92, "admir": 92, "ringlet": 92, "monarch": 92, "butterfli": 92, "gossam": 92, "wing": 92, "starfish": 92, "urchin": 92, "cucumb": 92, "cottontail": 92, "rabbit": 92, "hare": 92, "angora": 92, "hamster": 92, "porcupin": 92, "squirrel": 92, "marmot": 92, "beaver": 92, "guinea": 92, "pig": 92, "sorrel": 92, "zebra": 92, "boar": 92, "warthog": 92, "hippopotamu": 92, "ox": 92, "buffalo": 92, "bison": 92, "bighorn": 92, "sheep": 92, "alpin": 92, "ibex": 92, "hartebeest": 92, "impala": 92, "gazel": 92, "dromedari": 92, "llama": 92, "weasel": 92, "mink": 92, "polecat": 92, "foot": 92, "ferret": 92, "otter": 92, "skunk": 92, "badger": 92, "armadillo": 92, "toed": 92, "orangutan": 92, "gorilla": 92, "chimpanze": 92, "gibbon": 92, "siamang": 92, "guenon": 92, "pata": 92, "monkei": 92, "baboon": 92, "macaqu": 92, "langur": 92, "colobu": 92, "probosci": 92, "marmoset": 92, "capuchin": 92, "howler": 92, "titi": 92, "geoffroi": 92, "lemur": 92, "indri": 92, "asian": 92, "eleph": 92, "bush": 92, "snoek": 92, "eel": 92, "coho": 92, "salmon": 92, "beauti": 92, "clownfish": 92, "sturgeon": 92, "garfish": 92, "lionfish": 92, "pufferfish": 92, "abacu": 92, "abaya": 92, "academ": 92, "gown": 92, "accordion": 92, "acoust": 92, "guitar": 92, "aircraft": 92, "carrier": 92, "airlin": 92, "airship": 92, "altar": 92, "ambul": 92, "amphibi": 92, "clock": [92, 103], "apiari": 92, "apron": 92, "wast": 92, "assault": 92, "rifl": 92, "backpack": 92, "bakeri": 92, "balanc": 92, "beam": 92, "balloon": 92, "ballpoint": 92, "pen": 92, "aid": 92, "banjo": 92, "balust": 92, "barbel": 92, "barber": 92, "chair": [92, 98], "barbershop": 92, "baromet": 92, "barrel": 92, "wheelbarrow": 92, "basebal": 92, "basketbal": 92, "bassinet": 92, "bassoon": 92, "swim": 92, "cap": 92, "bath": 92, "towel": 92, "bathtub": 92, "station": 92, "wagon": 92, "lighthous": 92, "beaker": 92, "militari": 92, "beer": 92, "bottl": 92, "glass": 92, "bell": 92, "cot": 92, "bib": 92, "bicycl": [92, 102], "bikini": 92, "binder": 92, "binocular": 92, "birdhous": 92, "boathous": 92, "bobsleigh": 92, "bolo": 92, "tie": 92, "poke": 92, "bonnet": 92, "bookcas": 92, "bookstor": 92, "bow": 92, "brass": 92, "bra": 92, "breakwat": 92, "breastplat": 92, "broom": 92, "bucket": 92, "buckl": 92, "bulletproof": 92, "vest": 92, "butcher": 92, "shop": 92, "taxicab": 92, "cauldron": 92, "candl": 92, "cannon": 92, "cano": 92, "mirror": [92, 98], "carousel": 92, "tool": [92, 94, 96], "carton": 92, "wheel": 92, "teller": 92, "cassett": 92, "player": 92, "castl": 92, "catamaran": 92, "cd": 92, "cello": 92, "mobil": [92, 103], "chain": 92, "fenc": [92, 102], "mail": 92, "chainsaw": 92, "chest": 92, "chiffoni": 92, "chime": 92, "china": 92, "cabinet": 92, "christma": 92, "stock": 92, "church": 92, "movi": 92, "theater": 92, "cleaver": 92, "cliff": 92, "dwell": 92, "cloak": 92, "clog": 92, "cocktail": 92, "shaker": 92, "coffe": 92, "mug": 92, "coffeemak": 92, "coil": 92, "lock": 92, "keyboard": 92, "confectioneri": 92, "ship": [92, 99], "corkscrew": 92, "cornet": 92, "cowboi": 92, "boot": 92, "hat": 92, "cradl": 92, "crash": 92, "helmet": 92, "crate": 92, "infant": 92, "bed": 92, "crock": 92, "pot": 92, "croquet": 92, "crutch": 92, "cuirass": 92, "dam": 92, "desk": 92, "desktop": 92, "rotari": 92, "dial": 92, "telephon": 92, "diaper": 92, "watch": 92, "dine": 92, "dishcloth": 92, "dishwash": 92, "disc": 92, "brake": 92, "dock": 92, "sled": 92, "dome": 92, "doormat": 92, "drill": 92, "rig": 92, "drum": 92, "drumstick": 92, "dumbbel": 92, "dutch": 92, "oven": 92, "fan": 92, "locomot": 92, "entertain": 92, "center": 92, "envelop": 92, "espresso": 92, "powder": 92, "feather": 92, "fireboat": 92, "engin": [92, 102], "screen": 92, "sheet": 92, "flagpol": 92, "flute": 92, "footbal": 92, "forklift": 92, "fountain": 92, "poster": 92, "freight": 92, "fry": 92, "pan": 92, "fur": 92, "garbag": 92, "ga": 92, "pump": 92, "goblet": 92, "kart": 92, "golf": 92, "cart": 92, "gondola": 92, "gong": 92, "grand": 92, "piano": 92, "greenhous": 92, "grill": 92, "groceri": 92, "guillotin": 92, "barrett": 92, "hair": 92, "sprai": 92, "hammer": 92, "dryer": 92, "hand": [92, 94], "handkerchief": 92, "drive": 92, "harmonica": 92, "harp": 92, "harvest": 92, "hatchet": 92, "holster": 92, "honeycomb": 92, "hoop": 92, "skirt": 92, "horizont": 92, "bar": 92, "drawn": 92, "hourglass": 92, "ipod": 92, "cloth": 92, "iron": 92, "jack": 92, "lantern": 92, "jean": 92, "jeep": 92, "jigsaw": 92, "puzzl": 92, "pull": 92, "rickshaw": 92, "joystick": 92, "kimono": 92, "knee": 92, "pad": 92, "knot": 92, "ladl": 92, "lampshad": 92, "laptop": 92, "lawn": 92, "mower": 92, "knife": 92, "lifeboat": 92, "lighter": 92, "limousin": 92, "ocean": 92, "liner": 92, "lipstick": 92, "slip": 92, "shoe": 92, "lotion": 92, "speaker": 92, "loup": 92, "sawmil": 92, "magnet": 92, "compass": 92, "mailbox": 92, "tight": 92, "tank": 92, "manhol": 92, "maraca": 92, "marimba": 92, "maypol": 92, "maze": 92, "cup": [92, 98], "medicin": 92, "megalith": 92, "microphon": 92, "microwav": 92, "milk": 92, "minibu": 92, "miniskirt": 92, "minivan": 92, "missil": 92, "mitten": [92, 93], "mix": 92, "bowl": 92, "modem": 92, "monasteri": 92, "mope": 92, "mortar": 92, "mosqu": 92, "mosquito": 92, "scooter": 92, "bike": 92, "tent": 92, "mous": [92, 93], "mousetrap": 92, "van": 92, "muzzl": 92, "nail": 92, "brace": 92, "necklac": 92, "nippl": 92, "obelisk": 92, "obo": 92, "ocarina": 92, "odomet": 92, "oil": 92, "oscilloscop": 92, "overskirt": 92, "bullock": 92, "oxygen": 92, "packet": 92, "paddl": 92, "padlock": 92, "paintbrush": 92, "pajama": 92, "palac": [92, 103], "parachut": 92, "park": 92, "bench": 92, "meter": 92, "passeng": 92, "patio": 92, "payphon": 92, "pedest": 92, "pencil": 92, "perfum": 92, "petri": 92, "dish": 92, "photocopi": 92, "plectrum": 92, "pickelhaub": 92, "picket": 92, "pickup": 92, "pier": 92, "piggi": 92, "pill": 92, "pillow": 92, "ping": 92, "pong": 92, "pinwheel": 92, "pirat": 92, "pitcher": 92, "plane": 92, "planetarium": 92, "plastic": 92, "plate": 92, "rack": 92, "plow": 92, "plunger": 92, "polaroid": 92, "camera": 92, "pole": [92, 102], "polic": 92, "poncho": 92, "billiard": 92, "soda": 92, "potter": 92, "prayer": 92, "rug": 92, "printer": 92, "prison": 92, "projectil": 92, "projector": 92, "hockei": 92, "puck": 92, "punch": 92, "purs": 92, "quill": 92, "quilt": 92, "race": 92, "racket": 92, "radiat": 92, "radio": 92, "telescop": 92, "rain": 92, "recreat": 92, "reel": 92, "reflex": 92, "refriger": 92, "remot": 92, "restaur": 92, "revolv": 92, "rotisseri": 92, "eras": 92, "rugbi": 92, "ruler": 92, "safe": 92, "safeti": 92, "salt": 92, "sarong": 92, "saxophon": 92, "scabbard": 92, "school": 92, "bu": [92, 102], "schooner": 92, "scoreboard": 92, "crt": 92, "screw": 92, "screwdriv": 92, "seat": 92, "belt": 92, "sew": 92, "shield": 92, "shoji": 92, "basket": 92, "shovel": 92, "shower": 92, "curtain": 92, "ski": 92, "door": 92, "slot": 92, "snorkel": 92, "snowmobil": 92, "snowplow": 92, "soap": 92, "dispens": 92, "soccer": [92, 103], "sock": [92, 93], "solar": 92, "thermal": 92, "collector": 92, "sombrero": 92, "soup": 92, "heater": 92, "shuttl": 92, "spatula": 92, "motorboat": 92, "web": 92, "spindl": 92, "sport": [92, 103], "spotlight": 92, "stage": 92, "steam": 92, "arch": 92, "bridg": 92, "steel": 92, "stethoscop": 92, "scarf": 92, "stone": 92, "wall": [92, 102], "stopwatch": 92, "stove": 92, "strainer": 92, "tram": 92, "stretcher": 92, "couch": 92, "stupa": 92, "submarin": 92, "sundial": 92, "sunglass": 92, "sunscreen": 92, "suspens": 92, "mop": 92, "sweatshirt": 92, "swimsuit": 92, "swing": 92, "switch": 92, "syring": 92, "lamp": 92, "tape": 92, "teapot": 92, "teddi": 92, "televis": [92, 103], "tenni": 92, "thatch": 92, "roof": 92, "front": 92, "thimbl": 92, "thresh": 92, "throne": 92, "tile": 92, "toaster": 92, "tobacco": 92, "toilet": 92, "totem": 92, "tow": 92, "tractor": 92, "semi": 92, "trailer": 92, "trai": 92, "trench": 92, "tricycl": 92, "trimaran": 92, "tripod": 92, "triumphal": 92, "trolleybu": 92, "trombon": 92, "tub": 92, "turnstil": 92, "typewrit": 92, "umbrella": 92, "unicycl": 92, "upright": 92, "vacuum": 92, "cleaner": 92, "vase": 92, "vault": 92, "velvet": 92, "vend": 92, "vestment": 92, "viaduct": 92, "violin": 92, "volleybal": 92, "waffl": 92, "wallet": 92, "wardrob": 92, "sink": 92, "wash": 92, "jug": 92, "tower": 92, "whiskei": 92, "whistl": 92, "wig": 92, "shade": [92, 102], "windsor": 92, "wine": 92, "wok": 92, "wooden": 92, "spoon": 92, "wool": 92, "rail": 92, "shipwreck": 92, "yawl": 92, "yurt": 92, "comic": 92, "book": 92, "crossword": 92, "traffic": [92, 98, 102], "sign": [92, 102, 103], "dust": 92, "jacket": [92, 98], "menu": 92, "guacamol": 92, "consomm": 92, "trifl": 92, "ic": 92, "cream": 92, "pop": 92, "baguett": 92, "bagel": 92, "pretzel": 92, "cheeseburg": 92, "mash": 92, "potato": 92, "cabbag": 92, "broccoli": 92, "cauliflow": 92, "zucchini": 92, "spaghetti": 92, "squash": 92, "acorn": 92, "butternut": 92, "artichok": 92, "pepper": [92, 93], "cardoon": 92, "mushroom": 92, "granni": 92, "smith": 92, "strawberri": 92, "orang": 92, "lemon": 92, "pineappl": 92, "banana": 92, "jackfruit": 92, "custard": 92, "appl": 92, "pomegran": 92, "hai": 92, "carbonara": 92, "chocol": 92, "syrup": 92, "dough": 92, "meatloaf": 92, "pizza": 92, "pie": 92, "burrito": 92, "eggnog": 92, "alp": 92, "bubbl": 92, "reef": 92, "geyser": 92, "lakeshor": 92, "promontori": 92, "shoal": 92, "seashor": 92, "vallei": 92, "volcano": 92, "bridegroom": 92, "scuba": 92, "diver": 92, "rapese": 92, "daisi": 92, "ladi": 92, "slipper": 92, "corn": 92, "rose": 92, "hip": 92, "chestnut": 92, "fungu": 92, "agar": 92, "gyromitra": 92, "stinkhorn": 92, "earth": 92, "star": 92, "wood": 92, "bolet": 92, "ear": 92, "cifar10_test_set": 92, "airplan": [92, 99], "automobil": [92, 99], "deer": [92, 99], "cifar100_test_set": 92, "aquarium_fish": 92, "babi": 92, "boi": 92, "camel": 92, "caterpillar": 92, "cattl": [92, 103], "cloud": 92, "dinosaur": 92, "dolphin": 92, "flatfish": 92, "forest": 92, "girl": 92, "kangaroo": 92, "lawn_mow": 92, "man": 92, "maple_tre": 92, "motorcycl": [92, 102], "oak_tre": 92, "orchid": 92, "palm_tre": 92, "pear": 92, "pickup_truck": 92, "pine_tre": 92, "plain": 92, "poppi": 92, "possum": 92, "raccoon": 92, "road": [92, 102], "rocket": 92, "seal": 92, "shrew": 92, "skyscrap": 92, "streetcar": 92, "sunflow": 92, "sweet_pepp": 92, "trout": 92, "tulip": 92, "willow_tre": 92, "woman": [92, 98], "caltech256": 92, "ak47": 92, "bat": 92, "glove": 92, "birdbath": 92, "blimp": 92, "bonsai": 92, "boom": 92, "breadmak": 92, "buddha": 92, "bulldoz": 92, "cactu": 92, "cake": 92, "tire": 92, "cartman": 92, "cereal": 92, "chandeli": 92, "chess": 92, "board": 92, "chimp": 92, "chopstick": 92, "coffin": 92, "coin": 92, "comet": 92, "cormor": 92, "globe": 92, "diamond": 92, "dice": 92, "doorknob": 92, "drink": 92, "straw": 92, "dumb": 92, "eiffel": 92, "elk": 92, "ewer": 92, "eyeglass": 92, "fern": 92, "fighter": 92, "jet": [92, 101], "extinguish": 92, "hydrant": 92, "firework": 92, "flashlight": 92, "floppi": 92, "fri": 92, "frisbe": 92, "galaxi": 92, "giraff": 92, "goat": 92, "gate": 92, "grape": 92, "pick": [92, 93], "hamburg": 92, "hammock": 92, "harpsichord": 92, "hawksbil": 92, "helicopt": 92, "hibiscu": 92, "homer": 92, "simpson": 92, "horsesho": 92, "air": 92, "skeleton": 92, "ibi": 92, "cone": 92, "iri": 92, "jesu": 92, "christ": 92, "joi": 92, "kayak": 92, "ketch": 92, "ladder": 92, "lath": 92, "licens": 92, "lightbulb": 92, "lightn": 92, "mandolin": 92, "mar": 92, "mattress": 92, "megaphon": 92, "menorah": 92, "microscop": 92, "minaret": 92, "minotaur": 92, "motorbik": 92, "mussel": 92, "neckti": 92, "octopu": 92, "palm": 92, "pilot": 92, "paperclip": 92, "shredder": 92, "pci": 92, "peopl": [92, 98], "pez": 92, "picnic": 92, "pram": 92, "prai": 92, "pyramid": 92, "rainbow": 92, "roulett": 92, "saddl": 92, "saturn": 92, "segwai": 92, "propel": 92, "sextant": 92, "music": 92, "skateboard": 92, "smokestack": 92, "sneaker": 92, "boat": 92, "stain": 92, "steer": 92, "stirrup": 92, "superman": 92, "sushi": 92, "armi": [92, 103], "sword": 92, "tambourin": 92, "teepe": 92, "court": 92, "theodolit": 92, "tomato": 92, "tombston": 92, "tour": 92, "pisa": 92, "treadmil": 92, "fork": 92, "tweezer": 92, "unicorn": 92, "vcr": 92, "waterfal": 92, "watermelon": 92, "weld": 92, "windmil": 92, "xylophon": 92, "yarmulk": 92, "yo": 92, "toad": 92, "twenty_news_test_set": 92, "alt": 92, "atheism": 92, "comp": 92, "graphic": [92, 102], "misc": [92, 103], "sy": 92, "ibm": 92, "pc": 92, "hardwar": 92, "mac": 92, "forsal": 92, "rec": 92, "sci": 92, "crypt": 92, "electron": 92, "med": 92, "soc": 92, "religion": 92, "christian": [92, 103], "talk": [92, 103], "polit": 92, "gun": 92, "mideast": 92, "amazon": 92, "neutral": 92, "imdb_test_set": 92, "all_class": 92, "20news_test_set": 92, "_load_classes_predprobs_label": 92, "dataset_nam": 92, "labelerror": 92, "url_bas": 92, "5392f6c71473055060be3044becdde1cbc18284d": 92, "url_label": 92, "original_test_label": 92, "_original_label": 92, "url_prob": 92, "cross_validated_predicted_prob": 92, "_pyx": 92, "num_part": 92, "datatset": 92, "bytesio": 92, "allow_pickl": 92, "pred_probs_part": 92, "url": 92, "_of_": 92, "nload": 92, "imdb": 92, "interpret": [92, 93, 94, 97, 101], "capit": 92, "29780": 92, "780": 92, "medic": [92, 103], "doctor": 92, "359223": 92, "640777": 92, "184": [92, 94], "258427": 92, "341176": 92, "263158": 92, "658824": 92, "337349": 92, "246575": 92, "662651": 92, "248": 92, "330000": 92, "355769": 92, "670000": 92, "251": [92, 98], "252": 92, "112": 92, "253": [92, 98], "022989": 92, "049505": 92, "190": [92, 94, 98], "66": 92, "002216": 92, "000974": 92, "59": [92, 98], "000873": 92, "000739": 92, "32635": 92, "32636": 92, "47": [92, 98], "32637": 92, "32638": 92, "32639": 92, "32640": 92, "051": 92, "002242": 92, "997758": 92, "002088": 92, "001045": 92, "997912": 92, "002053": 92, "997947": 92, "001980": 92, "000991": 92, "998020": 92, "001946": 92, "002915": 92, "998054": 92, "001938": 92, "002904": 92, "998062": 92, "001020": 92, "998980": 92, "001018": 92, "002035": 92, "998982": 92, "999009": 92, "0003": 92, "0002": 92, "36": [92, 103], "41": [92, 98, 101], "71": [92, 94, 98, 101], "071": 92, "067269": 92, "929": 92, "046": 92, "058243": 92, "954": 92, "035": 92, "032096": 92, "965": 92, "031": 92, "012232": 92, "969": 92, "022": 92, "025896": 92, "978": 92, "020": [92, 94], "013092": 92, "018": 92, "013065": 92, "016": 92, "030542": 92, "984": 92, "013": 92, "020833": 92, "987": 92, "012": 92, "010020": 92, "988": 92, "0073": 92, "0020": 92, "0016": 92, "0015": 92, "0013": 92, "0012": 92, "0010": 92, "0008": 92, "0007": 92, "0006": 92, "0005": 92, "0004": 92, "244": [92, 98], "98": [92, 93, 101, 103], "452381": 92, "459770": 92, "72": [92, 94, 97, 101], "523364": 92, "460784": 92, "446602": 92, "103774": 92, "030612": 92, "110092": 92, "049020": 92, "0034": 92, "0032": 92, "0026": 92, "0025": 92, "4945": 92, "4946": 92, "4947": 92, "4948": 92, "4949": 92, "4950": 92, "846": 92, "82": [92, 94, 98, 101], "7532": 92, "532": 92, "034483": 92, "009646": 92, "965517": 92, "030457": 92, "020513": 92, "969543": 92, "028061": 92, "035443": 92, "971939": 92, "025316": 92, "005168": 92, "974684": 92, "049751": 92, "979487": 92, "019920": 92, "042802": 92, "980080": 92, "017677": 92, "005115": 92, "982323": 92, "012987": 92, "005236": 92, "987013": 92, "012723": 92, "025126": 92, "987277": 92, "010989": 92, "008264": 92, "989011": 92, "010283": 92, "027778": 92, "989717": 92, "009677": 92, "990323": 92, "007614": 92, "010127": 92, "992386": 92, "005051": 92, "994949": 92, "005025": 92, "994975": 92, "005013": 92, "994987": 92, "001859": 92, "001328": 92, "000929": 92, "000664": 92, "186": [92, 94], "188": [92, 94, 97], "189": [92, 94], "snippet": 93, "nlp": [93, 103], "mind": [93, 94], "alphanumer": 93, "facilit": 93, "classlabel": 93, "guidanc": 93, "labels_str": 93, "datalab_str": 93, "labels_int": 93, "remap": 93, "datalab_int": 93, "my_dict": 93, "pet_nam": 93, "rover": 93, "rocki": 93, "speci": 93, "from_dict": 93, "datalab_dataset": 93, "number_of_class": 93, "total_number_of_data_point": 93, "alphabet": 93, "labels_proper_format": 93, "your_classifi": 93, "issues_datafram": 93, "class_predicted_for_flagged_exampl": 93, "class_predicted_for_all_exampl": 93, "grant": 93, "On": [93, 94, 98], "merged_dataset": 93, "label_column_nam": 93, "datataset": 93, "fair": [93, 94], "game": 93, "speedup": [93, 99], "flexibl": 93, "tempfil": 93, "mkdtemp": 93, "sped": 93, "anywai": 93, "pred_probs_merg": 93, "merge_rare_class": 93, "count_threshold": 93, "class_mapping_orig2new": 93, "heath_summari": 93, "num_examples_per_class": 93, "rare_class": 93, "num_classes_merg": 93, "other_class": 93, "labels_merg": 93, "new_c": 93, "merged_prob": 93, "new_class": 93, "original_class": 93, "num_check": 93, "ones_array_ref": 93, "isclos": 93, "though": [93, 94, 103], "successfulli": 93, "meaning": [93, 99], "virtuou": [93, 96], "cycl": [93, 96], "jointli": 93, "junk": 93, "clutter": 93, "unknown": 93, "caltech": 93, "combined_boolean_mask": 93, "mask1": 93, "mask2": 93, "gradientboostingclassifi": [93, 94], "true_error": [93, 94, 97], "101": [93, 98], "102": [93, 97, 98], "104": [93, 94, 98], "model_to_find_error": 93, "model_to_return": 93, "cl0": 93, "randomizedsearchcv": 93, "expens": 93, "param_distribut": 93, "learning_r": [93, 94], "max_depth": [93, 94], "magnitud": 93, "coeffici": [93, 101], "optin": 93, "environ": [93, 94], "rerun": [93, 94], "cell": [93, 94], "unabl": [93, 94], "render": [93, 94], "nbviewer": [93, 94], "nbsp": [93, 94], "cleanlearninginot": [93, 94], "fittedcleanlearn": [93, 94], "linearregressionlinearregress": 93, "n_init": 93, "fit_predict": 93, "continuous_column": 93, "categorical_column": 93, "data_df": 93, "feature_a": 93, "feature_b": 93, "unexpectedli": 93, "emphas": 93, "crucial": 93, "merge_duplicate_set": 93, "merge_kei": 93, "construct_group_kei": 93, "merged_set": 93, "consolidate_set": 93, "tolist": [93, 97], "issubset": 93, "frozenset": 93, "sets_list": 93, "mutabl": 93, "new_set": 93, "current_set": 93, "intersecting_set": 93, "lowest_score_strategi": 93, "sub_df": 93, "idxmin": 93, "filter_near_dupl": 93, "strategy_fn": 93, "strategy_kwarg": 93, "duplicate_row": 93, "group_kei": 93, "to_keep_indic": 93, "groupbi": 93, "explod": 93, "to_remov": 93, "isin": [93, 99], "kept": 93, "ids_to_remove_seri": 93, "tmp": 93, "ipykernel_7516": 93, "1995098996": 93, "deprecationwarn": 93, "dataframegroupbi": 93, "include_group": 93, "silenc": 93, "assist": 93, "streamlin": 93, "ux": 93, "agpl": 93, "compani": 93, "commerci": 93, "alter": 93, "email": 93, "team": 93, "discuss": 93, "anywher": 93, "profession": 93, "expert": 93, "depth": 94, "survei": [94, 103], "focus": [94, 96, 97, 101], "scienc": 94, "multivariate_norm": [94, 96, 97], "make_data": [94, 96], "cov": [94, 96, 97], "avg_trac": [94, 97], "py_tru": 94, "noise_matrix_tru": 94, "noise_marix": 94, "s_test": 94, "noisy_test_label": 94, "purpl": 94, "val": 94, "namespac": 94, "exec": 94, "markerfacecolor": [94, 97], "markeredgecolor": [94, 97, 101], "markers": [94, 97, 101], "markeredgewidth": [94, 97, 101], "realist": 94, "7560": 94, "637318e": 94, "896262e": 94, "548391e": 94, "923417e": 94, "375075e": 94, "3454": 94, "014051": 94, "020451": 94, "249": [94, 98], "042594": 94, "043859": 94, "045954": 94, "6120": 94, "023714": 94, "007136": 94, "119": [94, 98], "107266": 94, "103": [94, 98], "033738": 94, "238": [94, 98], "119505": 94, "236": [94, 98, 103], "037843": 94, "222": 94, "614915": 94, "122": [94, 98], "624422": 94, "625965": 94, "626079": 94, "118": 94, "627675": 94, "695223": 94, "323529": 94, "523015": 94, "013720": 94, "675727": 94, "646521": 94, "anyth": 94, "enhanc": [94, 96, 98], "magic": 94, "liter": 94, "identif": 94, "x27": 94, "logisticregressionlogisticregress": 94, "ever": 94, "092": 94, "040": 94, "024": 94, "004": 94, "surpris": 94, "1705": 94, "01936": 94, "ton": 94, "yourfavoritemodel1": 94, "merged_label": 94, "merged_test_label": 94, "newli": [94, 96], "yourfavoritemodel2": 94, "yourfavoritemodel3": 94, "cl3": 94, "takeawai": 94, "That": [94, 97], "randomli": 94, "my_test_pred_prob": 94, "my_test_pr": 94, "issues_test": 94, "corrected_test_label": 94, "pretend": 94, "cl_test_pr": 94, "69": [94, 101], "fairli": 94, "label_acc": 94, "percentag": 94, "offset": 94, "nquestion": 94, "overestim": 94, "answer": 94, "experienc": 94, "knowledg": 94, "prioiri": 94, "known": 94, "versatil": 94, "label_issues_indic": 94, "213": [94, 98], "218": [94, 98], "152": 94, "197": [94, 98], "196": [94, 98], "170": 94, "214": 94, "164": [94, 97], "198": [94, 98], "191": [94, 98], "63": [94, 98, 101], "117": [94, 101], "62": [94, 98, 101], "206": [94, 98], "115": [94, 98], "193": 94, "194": 94, "201": [94, 98], "174": 94, "163": [94, 103], "150": [94, 96, 98, 103], "169": [94, 103], "151": [94, 98], "168": 94, "precision_scor": 94, "recall_scor": 94, "f1_score": 94, "true_label_issu": 94, "filter_by_list": 94, "718750": [94, 96], "807018": 94, "912": 94, "733333": 94, "800000": 94, "721311": 94, "792793": 94, "908": 94, "676923": 94, "765217": 94, "892": 94, "567901": 94, "702290": 94, "844": 94, "gaug": 94, "label_issues_count": 94, "155": [94, 98], "156": 94, "172": [94, 97], "easiest": 94, "modular": 94, "penalti": 94, "l2": 94, "model3": 94, "n_estim": 94, "cv_pred_probs_1": 94, "cv_pred_probs_2": 94, "cv_pred_probs_3": 94, "label_quality_scores_best": 94, "cv_pred_probs_ensembl": 94, "label_quality_scores_bett": 94, "superior": [94, 100], "timm": 95, "glad": 96, "multiannotator_label": 96, "300": [96, 103], "noisier": 96, "111": [96, 101], "local_data": [96, 97], "true_labels_train": [96, 97], "noise_matrix_bett": 96, "noise_matrix_wors": 96, "transpos": [96, 99], "dropna": 96, "zfill": 96, "row_na_check": 96, "notna": 96, "reset_index": 96, "a0001": 96, "a0002": 96, "a0003": 96, "a0004": 96, "a0005": 96, "a0006": 96, "a0007": 96, "a0008": 96, "a0009": 96, "a0010": 96, "a0041": 96, "a0042": 96, "a0043": 96, "a0044": 96, "a0045": 96, "a0046": 96, "a0047": 96, "a0048": 96, "a0049": 96, "a0050": 96, "na": 96, "60856743": 96, "41693214": 96, "40908785": 96, "87147629": 96, "64941785": 96, "10774851": 96, "0524466": 96, "71853246": 96, "37169848": 96, "66031048": 96, "multiannotator_util": 96, "crude": 96, "straight": 96, "majority_vote_label": 96, "736118": 96, "757751": 96, "782232": 96, "715565": 96, "824256": 96, "quality_annotator_a0001": 96, "quality_annotator_a0002": 96, "quality_annotator_a0003": 96, "quality_annotator_a0004": 96, "quality_annotator_a0005": 96, "quality_annotator_a0006": 96, "quality_annotator_a0007": 96, "quality_annotator_a0008": 96, "quality_annotator_a0009": 96, "quality_annotator_a0010": 96, "quality_annotator_a0041": 96, "quality_annotator_a0042": 96, "quality_annotator_a0043": 96, "quality_annotator_a0044": 96, "quality_annotator_a0045": 96, "quality_annotator_a0046": 96, "quality_annotator_a0047": 96, "quality_annotator_a0048": 96, "quality_annotator_a0049": 96, "quality_annotator_a0050": 96, "070564": 96, "216078": 96, "119188": 96, "alongisd": 96, "244981": 96, "208333": 96, "295979": 96, "294118": 96, "324197": 96, "310345": 96, "355316": 96, "346154": 96, "439732": 96, "480000": 96, "a0031": 96, "523205": 96, "580645": 96, "a0034": 96, "535313": 96, "607143": 96, "a0021": 96, "606999": 96, "a0015": 96, "609526": 96, "678571": 96, "a0011": 96, "621103": 96, "692308": 96, "wors": 96, "improved_consensus_label": 96, "majority_vote_accuraci": 96, "cleanlab_label_accuraci": 96, "8581081081081081": 96, "9797297297297297": 96, "besid": 96, "sorted_consensus_quality_scor": 96, "worst_qual": 96, "better_qu": 96, "worst_quality_accuraci": 96, "better_quality_accuraci": 96, "9893238434163701": 96, "improved_pred_prob": 96, "treat": [96, 97, 101, 103], "analzi": 96, "copyright": 97, "advertis": 97, "violenc": 97, "nsfw": 97, "celeba": 97, "make_multilabel_data": 97, "boxes_coordin": 97, "box_multilabel": 97, "make_multi": 97, "bx1": 97, "by1": 97, "bx2": 97, "by2": 97, "label_list": 97, "ur": 97, "upper": 97, "inidx": 97, "logical_and": 97, "inv_d": 97, "labels_idx": 97, "true_labels_test": 97, "dict_unique_label": 97, "get_color_arrai": 97, "dcolor": 97, "aa4400": 97, "55227f": 97, "55a100": 97, "00ff00": 97, "007f7f": 97, "386b55": 97, "0000ff": 97, "y_onehot": 97, "single_class_label": 97, "stratifi": [97, 100], "kf": 97, "train_index": 97, "test_index": 97, "clf_cv": 97, "x_train_cv": 97, "x_test_cv": 97, "y_train_cv": 97, "y_test_cv": 97, "y_pred_cv": 97, "saw": 97, "num_to_displai": 97, "09": [97, 98, 101], "275": 97, "267": 97, "225": 97, "171": 97, "234": 97, "165": 97, "227": [97, 98], "262": [97, 98], "266": [97, 98], "139": 97, "143": [97, 98], "216": [97, 98, 103], "265": 97, "159": [97, 98], "despit": [97, 103], "suspect": 97, "888": 97, "8224": 97, "9632": 97, "968": 97, "6512": 97, "0444": 97, "774": 97, "labels_binary_format": 97, "labels_list_format": 97, "surround": 98, "scene": 98, "coco": 98, "everydai": 98, "has_label_issu": 98, "insal": 98, "nc": [98, 102, 103], "s3": [98, 102, 103], "amazonaw": [98, 102, 103], "objectdetectionbenchmark": 98, "tutorial_obj": 98, "pkl": 98, "example_imag": 98, "unzip": [98, 103], "_separate_label": 98, "_separate_predict": 98, "begin": 98, "image_path": 98, "rb": 98, "image_to_visu": 98, "seg_map": 98, "334": 98, "float32": 98, "bboxes_ignor": 98, "290": 98, "286": 98, "285": 98, "224": 98, "231": [98, 103], "293": 98, "289": 98, "282": 98, "281": 98, "271": 98, "280": 98, "277": 98, "279": 98, "287": 98, "299": 98, "276": 98, "307": 98, "321": 98, "326": 98, "333": 98, "261": 98, "319": 98, "257": 98, "283": 98, "243": 98, "303": 98, "316": 98, "247": 98, "323": 98, "226": 98, "228": 98, "232": 98, "219": 98, "239": 98, "240": 98, "209": 98, "242": 98, "202": 98, "230": 98, "215": 98, "220": 98, "229": 98, "217": [98, 103], "237": 98, "207": 98, "204": 98, "84": [98, 101, 103], "205": 98, "223": 98, "153": 98, "140": 98, "124": 98, "268": 98, "273": 98, "108": 98, "284": 98, "110": 98, "136": 98, "145": 98, "173": 98, "297": 98, "317": 98, "192": 98, "332": 98, "324": 98, "203": 98, "320": 98, "199": 98, "291": 98, "000000481413": 98, "jpg": 98, "42398": 98, "44503": 98, "29968": 98, "336": 98, "21005": 98, "9978472": 98, "forgot": 98, "drew": 98, "label_issue_idx": 98, "num_examples_to_show": 98, "138": 98, "candid": 98, "97489622": 98, "70610878": 98, "98764951": 98, "88899237": 98, "99085805": 98, "issue_idx": 98, "95569726e": 98, "03354841e": 98, "57510169e": 98, "58447666e": 98, "39755858e": 98, "issue_to_visu": 98, "000000009483": 98, "95569726168054e": 98, "addition": [98, 102], "visibl": 98, "missmatch": 98, "likelei": 98, "agnost": 98, "vaidat": 98, "inconsist": 98, "000000395701": 98, "033548411774308e": 98, "armchair": 98, "tv": 98, "000000154004": 98, "38300759625496356": 98, "foreground": 98, "000000448410": 98, "0008575101690203273": 98, "crowd": 98, "alon": 98, "explor": [98, 99], "resembl": [98, 99], "000000499768": 98, "9748962231208227": 98, "000000521141": 98, "8889923658893665": 98, "000000143931": 98, "9876495074395956": 98, "bonu": 98, "uncov": 98, "irregular": 98, "anomali": 98, "object_detection_util": 98, "calculate_bounding_box_area": 98, "num_imgs_to_show": 98, "lab_object_count": 98, "pred_object_count": 98, "000000430073": 98, "000000183709": 98, "000000189475": 98, "studi": 98, "label_norm": 98, "pred_norm": 98, "area": [98, 102], "lab_area": 98, "pred_area": 98, "lab_area_mean": 98, "lab_area_std": 98, "max_deviation_valu": 98, "max_deviation_class": 98, "deviation_valu": 98, "deviation_class": 98, "mean_area": 98, "std_area": 98, "class_area": 98, "deviations_awai": 98, "max_deviation_index": 98, "num_imgs_to_show_per_class": 98, "class_num": 98, "sorted_indic": 98, "000000422886": 98, "000000341828": 98, "000000461009": 98, "train_feature_embed": 99, "ood_train_feature_scor": 99, "test_feature_embed": 99, "ood_test_feature_scor": 99, "ood_train_predictions_scor": 99, "train_pred_prob": 99, "ood_test_predictions_scor": 99, "test_pred_prob": 99, "pylab": 99, "rcparam": 99, "baggingclassifi": 99, "therebi": 99, "rescal": 99, "transform_norm": 99, "totensor": 99, "root": 99, "animal_class": 99, "non_animal_class": 99, "animal_idx": 99, "test_idx": 99, "toronto": 99, "edu": 99, "kriz": 99, "170498071": 99, "72776359": 99, "59it": 99, "5000": 99, "plot_imag": 99, "visualize_outli": 99, "txt_class": 99, "img": [99, 101], "npimg": 99, "show_label": 99, "data_subset": 99, "resnet50": 99, "corpu": 99, "2048": 99, "embed_imag": 99, "create_model": 99, "strang": 99, "odd": 99, "train_ood_features_scor": 99, "top_train_ood_features_idx": 99, "fun": 99, "negat": 99, "homogen": 99, "bottom_train_ood_features_idx": 99, "test_ood_features_scor": 99, "top_ood_features_idx": 99, "inevit": 99, "trade": 99, "5th": 99, "percentil": 99, "fifth_percentil": 99, "plt_rang": 99, "hist": 99, "train_outlier_scor": 99, "ylabel": 99, "axvlin": 99, "test_outlier_scor": 99, "ood_features_indic": 99, "revisit": 99, "return_invers": 99, "train_feature_embeddings_sc": 99, "test_feature_embeddings_sc": 99, "train_pred_label": 99, "9702": 99, "train_ood_predictions_scor": 99, "test_ood_predictions_scor": 99, "lost": 99, "unsuit": 100, "ok": [100, 103], "convention": 100, "aforement": 100, "hypothet": 100, "contrast": 100, "tradit": 100, "disjoint": 100, "out_of_sample_pred_probs_for_a": 100, "out_of_sample_pred_probs_for_b": 100, "out_of_sample_pred_probs_for_c": 100, "out_of_sample_pred_prob": 100, "price": 101, "incom": 101, "ag": 101, "sensor": 101, "histgradientboostingregressor": 101, "r2_score": 101, "student_grades_r": 101, "final_scor": 101, "true_final_scor": 101, "homework": 101, "3d": 101, "hue": 101, "mpl_toolkit": 101, "mplot3d": 101, "axes3d": 101, "errors_idx": 101, "add_subplot": 101, "z": 101, "colorbar": 101, "errors_mask": 101, "feature_column": 101, "predicted_column": 101, "x_train_raw": 101, "x_test_raw": 101, "randomforestregressor": 101, "385101": 101, "499503": 101, "698255": 101, "776647": 101, "109373": 101, "170547": 101, "481096": 101, "984759": 101, "645270": 101, "795928": 101, "141": 101, "659": 101, "318": 101, "305": 101, "560": 101, "657": 101, "688": 101, "view_datapoint": 101, "concat": 101, "preds_og": 101, "r2_og": 101, "838": 101, "found_label_issu": 101, "preds_cl": 101, "r2_cl": 101, "926": 101, "favorit": 101, "968627e": 101, "228799": 101, "646674e": 101, "402962": 101, "323818e": 101, "952758": 101, "422144e": 101, "456908": 101, "465815e": 101, "753968": 101, "791186e": 101, "110719": 101, "485156e": 101, "670640": 101, "225300e": 101, "749976": 101, "499679e": 101, "947007": 101, "067882e": 101, "648396": 101, "synthia": 102, "imagesegment": 102, "given_mask": 102, "predicted_mask": 102, "set_printopt": [102, 103], "sky": 102, "sidewalk": 102, "veget": 102, "terrain": 102, "rider": 102, "pred_probs_filepath": 102, "1088": 102, "1920": 102, "label_filepath": 102, "synthia_class": 102, "maunal": 102, "100000": 102, "244800": 102, "leftmost": 102, "middl": [102, 103], "infact": 102, "rightmost": 102, "discrep": 102, "3263230": 102, "783379": 102, "275110": 102, "255792": 102, "78225": 102, "55990": 102, "54427": 102, "33591": 102, "24645": 102, "21308": 102, "15045": 102, "14171": 102, "13832": 102, "13498": 102, "11490": 102, "9164": 102, "8769": 102, "6999": 102, "6031": 102, "5011": 102, "mistakenli": 102, "class_issu": 102, "aim": [102, 103], "domin": 102, "bunch": 103, "conll": 103, "2003": 103, "love": 103, "n_i": 103, "optional_list_of_ordered_class_nam": 103, "deepai": 103, "conll2003": 103, "rm": 103, "tokenclassif": 103, "2024": 103, "2400": 103, "52e0": 103, "1a00": 103, "718": 103, "connect": 103, "443": 103, "await": 103, "982975": 103, "960k": 103, "959": 103, "94k": 103, "kb": 103, "mb": 103, "directori": 103, "inflat": 103, "17045998": 103, "16m": 103, "octet": 103, "26m": 103, "9mb": 103, "bert": 103, "read_npz": 103, "filepath": 103, "corrsespond": 103, "iob2": 103, "given_ent": 103, "entity_map": 103, "readfil": 103, "startswith": 103, "docstart": 103, "isalpha": 103, "isupp": 103, "indices_to_preview": 103, "nsentenc": 103, "eu": 103, "reject": 103, "boycott": 103, "british": 103, "lamb": 103, "00030412": 103, "00023826": 103, "99936208": 103, "00007009": 103, "00002545": 103, "99998795": 103, "00000401": 103, "00000218": 103, "00000455": 103, "00000131": 103, "00000749": 103, "99996115": 103, "00001371": 103, "0000087": 103, "00000895": 103, "99998936": 103, "00000382": 103, "00000178": 103, "00000366": 103, "00000137": 103, "99999101": 103, "00000266": 103, "00000174": 103, "0000035": 103, "00000109": 103, "99998768": 103, "00000482": 103, "00000202": 103, "00000438": 103, "0000011": 103, "00000465": 103, "99996392": 103, "00001105": 103, "0000116": 103, "00000878": 103, "99998671": 103, "00000364": 103, "00000213": 103, "00000472": 103, "00000281": 103, "99999073": 103, "00000211": 103, "00000159": 103, "00000442": 103, "00000115": 103, "peter": 103, "blackburn": 103, "00000358": 103, "00000529": 103, "99995623": 103, "0000129": 103, "0000024": 103, "00001812": 103, "99994141": 103, "00001645": 103, "00002162": 103, "brussel": 103, "1996": 103, "00001172": 103, "00000821": 103, "00004661": 103, "0000618": 103, "99987167": 103, "99999061": 103, "00000201": 103, "00000195": 103, "00000408": 103, "00000135": 103, "2254": 103, "2907": 103, "19392": 103, "9962": 103, "8904": 103, "19303": 103, "12918": 103, "9256": 103, "11855": 103, "18392": 103, "20426": 103, "19402": 103, "14744": 103, "19371": 103, "4645": 103, "10331": 103, "9430": 103, "6143": 103, "18367": 103, "12914": 103, "todai": 103, "weather": 103, "march": 103, "scalfaro": 103, "northern": 103, "himself": 103, "said": 103, "germani": 103, "nastja": 103, "rysich": 103, "north": 103, "spla": 103, "fought": 103, "khartoum": 103, "govern": 103, "south": 103, "1983": 103, "autonomi": 103, "animist": 103, "region": 103, "moslem": 103, "arabis": 103, "mayor": 103, "antonio": 103, "gonzalez": 103, "garcia": 103, "revolutionari": 103, "parti": 103, "wednesdai": 103, "troop": 103, "raid": 103, "farm": 103, "stole": 103, "rape": 103, "women": 103, "spring": 103, "chg": 103, "hrw": 103, "12pct": 103, "princ": 103, "photo": 103, "moment": 103, "spokeswoman": 103, "rainier": 103, "told": 103, "reuter": 103, "danila": 103, "carib": 103, "w224": 103, "equip": 103, "radiomet": 103, "earn": 103, "19996": 103, "london": 103, "denom": 103, "sale": 103, "uk": 103, "jp": 103, "fr": 103, "maccabi": 103, "hapoel": 103, "haifa": 103, "tel": 103, "aviv": 103, "hospit": 103, "rever": 103, "roman": 103, "cathol": 103, "nun": 103, "admit": 103, "calcutta": 103, "week": 103, "ago": 103, "fever": 103, "vomit": 103, "allianc": 103, "embattl": 103, "kabul": 103, "salang": 103, "highwai": 103, "mondai": 103, "tuesdai": 103, "suprem": 103, "council": 103, "led": 103, "jumbish": 103, "milli": 103, "movement": 103, "warlord": 103, "abdul": 103, "rashid": 103, "dostum": 103, "dollar": 103, "exchang": 103, "3570": 103, "12049": 103, "born": 103, "1937": 103, "provinc": 103, "anhui": 103, "dai": 103, "came": 103, "shanghai": 103, "citi": 103, "prolif": 103, "author": 103, "teacher": 103, "chines": 103, "16764": 103, "1990": 103, "historian": 103, "alan": 103, "john": 103, "percival": 103, "taylor": 103, "di": 103, "20446": 103, "pace": 103, "bowler": 103, "ian": 103, "harvei": 103, "claim": 103, "victoria": 103, "15514": 103, "cotti": 103, "osc": 103, "foreign": 103, "minist": 103, "7525": 103, "sultan": 103, "specter": 103, "met": 103, "crown": 103, "abdullah": 103, "defenc": 103, "aviat": 103, "jeddah": 103, "saudi": 103, "agenc": 103, "2288": 103, "hi": 103, "customari": 103, "outfit": 103, "champion": 103, "damp": 103, "scalp": 103, "canada": 103, "reign": 103, "olymp": 103, "donovan": 103, "bailei": 103, "1992": 103, "linford": 103, "christi": 103, "britain": 103, "1984": 103, "1988": 103, "carl": 103, "lewi": 103, "ambigi": 103, "punctuat": 103, "chicago": 103, "digest": 103, "philadelphia": 103, "usda": 103, "york": 103, "token_issu": 103, "471": 103, "kean": 103, "year": 103, "contract": 103, "manchest": 103, "19072": 103, "societi": 103, "bite": 103, "deliv": 103, "19910": 103, "father": 103, "clarenc": 103, "woolmer": 103, "renam": 103, "uttar": 103, "pradesh": 103, "india": 103, "ranji": 103, "trophi": 103, "nation": 103, "championship": 103, "captain": 103, "1949": 103, "15658": 103, "19879": 103, "iii": 103, "brian": 103, "shimer": 103, "randi": 103, "jone": 103, "19104": 103}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [55, 0, 0, "-", "models"], [57, 0, 0, "-", "multiannotator"], [60, 0, 0, "-", "multilabel_classification"], [63, 0, 0, "-", "object_detection"], [66, 0, 0, "-", "outlier"], [67, 0, 0, "-", "rank"], [68, 0, 0, "-", "regression"], [72, 0, 0, "-", "segmentation"], [76, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "outlier"], [51, 0, 0, "-", "token_classification_utils"], [52, 0, 0, "-", "util"], [53, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[50, 1, 1, "", "correct_precision_errors"], [50, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, 1, 1, "", "color_sentence"], [51, 1, 1, "", "filter_sentence"], [51, 1, 1, "", "get_sentence"], [51, 1, 1, "", "mapping"], [51, 1, 1, "", "merge_probs"], [51, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[52, 1, 1, "", "append_extra_datapoint"], [52, 1, 1, "", "clip_noise_rates"], [52, 1, 1, "", "clip_values"], [52, 1, 1, "", "compress_int_array"], [52, 1, 1, "", "confusion_matrix"], [52, 1, 1, "", "csr_vstack"], [52, 1, 1, "", "estimate_pu_f1"], [52, 1, 1, "", "extract_indices_tf"], [52, 1, 1, "", "force_two_dimensions"], [52, 1, 1, "", "format_labels"], [52, 1, 1, "", "get_missing_classes"], [52, 1, 1, "", "get_num_classes"], [52, 1, 1, "", "get_unique_classes"], [52, 1, 1, "", "is_tensorflow_dataset"], [52, 1, 1, "", "is_torch_dataset"], [52, 1, 1, "", "num_unique_classes"], [52, 1, 1, "", "print_inverse_noise_matrix"], [52, 1, 1, "", "print_joint_matrix"], [52, 1, 1, "", "print_noise_matrix"], [52, 1, 1, "", "print_square_matrix"], [52, 1, 1, "", "remove_noise_from_class"], [52, 1, 1, "", "round_preserving_row_totals"], [52, 1, 1, "", "round_preserving_sum"], [52, 1, 1, "", "smart_display_dataframe"], [52, 1, 1, "", "subset_X_y"], [52, 1, 1, "", "subset_data"], [52, 1, 1, "", "subset_labels"], [52, 1, 1, "", "train_val_split"], [52, 1, 1, "", "unshuffle_tensorflow_dataset"], [52, 1, 1, "", "value_counts"], [52, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[53, 1, 1, "", "assert_indexing_works"], [53, 1, 1, "", "assert_nonempty_input"], [53, 1, 1, "", "assert_valid_class_labels"], [53, 1, 1, "", "assert_valid_inputs"], [53, 1, 1, "", "labels_to_array"], [53, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[56, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[56, 2, 1, "", "KerasWrapperModel"], [56, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[57, 1, 1, "", "convert_long_to_wide_dataset"], [57, 1, 1, "", "get_active_learning_scores"], [57, 1, 1, "", "get_active_learning_scores_ensemble"], [57, 1, 1, "", "get_label_quality_multiannotator"], [57, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [57, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[58, 0, 0, "-", "dataset"], [59, 0, 0, "-", "filter"], [61, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[58, 1, 1, "", "common_multilabel_issues"], [58, 1, 1, "", "multilabel_health_summary"], [58, 1, 1, "", "overall_multilabel_health_score"], [58, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, 1, 1, "", "find_label_issues"], [59, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[62, 0, 0, "-", "filter"], [64, 0, 0, "-", "rank"], [65, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[62, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[64, 1, 1, "", "compute_badloc_box_scores"], [64, 1, 1, "", "compute_overlooked_box_scores"], [64, 1, 1, "", "compute_swap_box_scores"], [64, 1, 1, "", "get_label_quality_scores"], [64, 1, 1, "", "issues_from_scores"], [64, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[65, 1, 1, "", "bounding_box_size_distribution"], [65, 1, 1, "", "calculate_per_class_metrics"], [65, 1, 1, "", "class_label_distribution"], [65, 1, 1, "", "get_average_per_class_confusion_matrix"], [65, 1, 1, "", "get_sorted_bbox_count_idxs"], [65, 1, 1, "", "object_counts_per_image"], [65, 1, 1, "", "plot_class_distribution"], [65, 1, 1, "", "plot_class_size_distributions"], [65, 1, 1, "", "visualize"]], "cleanlab.outlier": [[66, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[66, 3, 1, "", "fit"], [66, 3, 1, "", "fit_score"], [66, 3, 1, "", "score"]], "cleanlab.rank": [[67, 1, 1, "", "find_top_issues"], [67, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [67, 1, 1, "", "get_label_quality_ensemble_scores"], [67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_normalized_margin_for_each_label"], [67, 1, 1, "", "get_self_confidence_for_each_label"], [67, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[69, 0, 0, "-", "learn"], [70, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[69, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[69, 3, 1, "", "__init_subclass__"], [69, 3, 1, "", "find_label_issues"], [69, 3, 1, "", "fit"], [69, 3, 1, "", "get_aleatoric_uncertainty"], [69, 3, 1, "", "get_epistemic_uncertainty"], [69, 3, 1, "", "get_label_issues"], [69, 3, 1, "", "get_metadata_routing"], [69, 3, 1, "", "get_params"], [69, 3, 1, "", "predict"], [69, 3, 1, "", "save_space"], [69, 3, 1, "", "score"], [69, 3, 1, "", "set_fit_request"], [69, 3, 1, "", "set_params"], [69, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[70, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[71, 0, 0, "-", "filter"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[71, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[74, 1, 1, "", "common_label_issues"], [74, 1, 1, "", "display_issues"], [74, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 82, 83, 84, 88, 90, 91, 93, 94, 97, 103], "count": [3, 94], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 85, 86, 87, 89, 90, 91, 94, 97], "creat": [7, 85, 86, 87, 94, 96], "your": [7, 79, 86, 87, 91, 93, 94], "own": 7, "issu": [7, 9, 10, 21, 30, 79, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 86], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 86], "us": [7, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "gener": 8, "cluster": [8, 93], "id": 8, "guid": [9, 11], "type": [9, 10, 94], "custom": [9, 86], "cleanlab": [9, 10, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "studio": [9, 10], "easi": [9, 10, 79, 88, 90, 91], "mode": [9, 10, 79, 88, 90, 91], "can": [10, 85, 87, 92, 93, 94, 96], "detect": [10, 87, 90, 91, 93, 94, 98, 99], "estim": [10, 94, 96, 97], "each": 10, "label": [10, 23, 25, 30, 79, 82, 83, 84, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "outlier": [10, 28, 50, 66, 88, 90, 91, 97, 99], "Near": [10, 87, 88, 90, 91], "duplic": [10, 19, 87, 88, 90, 91, 93, 97], "non": [10, 91], "iid": [10, 91], "class": [10, 80, 94, 102], "imbal": [10, 20], "imag": [10, 88, 99], "specif": [10, 21, 102], "underperform": [10, 93], "group": [10, 93], "null": [10, 27], "data": [10, 12, 79, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "valuat": 10, "option": 10, "paramet": [10, 94], "get": [11, 85, 86, 87, 96, 97, 98, 102, 103], "start": [11, 92], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 93, 94], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 68, 69, 70, 93, 101], "prioriti": 30, "order": 30, "find": [30, 79, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "underperforming_group": 31, "model_output": 32, "report": [33, 88], "dataset": [36, 58, 79, 83, 85, 87, 88, 91, 92, 93, 94, 97, 98, 99, 101, 102, 103], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 59, 62, 71, 75, 94], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "token_classification_util": 51, "util": 52, "valid": [53, 88, 100], "fasttext": 54, "model": [55, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101], "kera": 56, "multiannot": [57, 96], "multilabel_classif": 60, "rank": [61, 64, 67, 70, 73, 77, 94], "object_detect": 63, "summari": [65, 74, 78], "learn": [69, 82, 85, 87, 93, 94], "segment": [72, 102], "token_classif": [76, 103], "open": [79, 93], "sourc": [79, 93], "document": 79, "quickstart": 79, "1": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "instal": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "2": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "common": [79, 80, 103], "3": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "handl": [79, 93], "error": [79, 83, 88, 93, 94, 96, 97, 98, 101, 102, 103], "train": [79, 82, 83, 84, 93, 99, 101], "robust": [79, 82, 83, 94, 101], "noisi": [79, 82, 83, 94, 101], "4": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 98, 99, 101], "curat": [79, 92], "fix": [79, 93], "level": [79, 92, 94, 103], "5": [79, 82, 84, 85, 87, 88, 90, 94, 96, 101], "improv": [79, 96], "via": [79, 94, 96], "mani": [79, 94], "other": [79, 96, 98, 101], "techniqu": 79, "contribut": 79, "how": [80, 93, 94, 96, 97, 103], "migrat": 80, "version": 80, "0": 80, "from": [80, 82, 83, 85, 86, 87, 94, 101], "pre": [80, 84, 93, 99], "function": [80, 86], "name": 80, "chang": 80, "modul": [80, 94], "new": [80, 85], "remov": 80, "argument": [80, 86], "variabl": 80, "cleanlearn": [81, 93, 94], "tutori": [81, 89, 92, 95], "tabular": [82, 90], "scikit": 82, "requir": [82, 83, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "depend": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "load": [82, 83, 84, 85, 86, 87, 90, 91, 101], "process": [82, 90, 99, 101], "select": [82, 90], "comput": [82, 84, 88, 90, 91, 93, 96, 100], "out": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "sampl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "predict": [82, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 100], "probabl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "more": [82, 83, 85, 87, 94, 101], "text": [83, 91, 103], "format": [83, 91, 93, 97, 98], "defin": [83, 88, 91, 101], "potenti": [83, 96, 101], "audio": 84, "speechbrain": 84, "import": [84, 85, 86, 87, 88, 92, 94, 96], "them": [84, 92, 94], "featur": [84, 88, 99], "fit": 84, "linear": 84, "datamonitor": 85, "leverag": 85, "statist": [85, 96], "audit": [85, 86, 87], "skip": [85, 87, 92, 94, 96], "detail": [85, 87, 92, 94, 96], "classifi": [85, 86, 87], "6": [85, 94], "about": [85, 87], "addit": [85, 87], "workflow": [86, 94], "instanti": 86, "object": [86, 98], "increment": 86, "search": 86, "specifi": [86, 93], "nondefault": 86, "save": 86, "ad": 86, "A": 87, "unifi": 87, "all": [87, 94], "kind": [87, 98], "inform": [87, 88], "pytorch": [88, 99], "fetch": [88, 92], "normal": 88, "fashion": 88, "mnist": 88, "prepar": 88, "k": [88, 90, 100], "fold": [88, 100], "cross": [88, 100], "embed": [88, 99], "7": [88, 94], "view": 88, "most": [88, 103], "like": 88, "exampl": [88, 93, 94, 99], "sever": 88, "set": [88, 94], "dark": 88, "top": [88, 102], "low": 88, "numer": 90, "categor": 90, "column": 90, "construct": 90, "nearest": 90, "neighbour": 90, "graph": 90, "drift": [91, 97], "evalu": 92, "health": [92, 94], "8": [92, 94], "popular": 92, "faq": 93, "what": [93, 94, 100], "do": [93, 94], "i": [93, 94, 100], "infer": 93, "correct": 93, "ha": 93, "flag": 93, "should": 93, "v": 93, "test": [93, 94, 99], "big": 93, "limit": 93, "memori": 93, "why": 93, "isn": 93, "t": 93, "work": [93, 94, 96, 103], "me": 93, "differ": [93, 98], "clean": [93, 94], "final": 93, "hyperparamet": 93, "tune": 93, "onli": 93, "one": [93, 94, 97, 102], "doe": [93, 96, 103], "take": 93, "so": 93, "long": 93, "slice": 93, "when": [93, 94], "identifi": [93, 98], "run": 93, "licens": 93, "under": 93, "an": 93, "answer": 93, "question": 93, "The": 94, "centric": 94, "ai": 94, "machin": 94, "find_label_issu": 94, "line": 94, "code": 94, "visual": [94, 98, 99, 102], "twenti": 94, "lowest": 94, "qualiti": [94, 96, 97, 98, 102, 103], "see": 94, "now": 94, "let": 94, "": 94, "happen": 94, "we": 94, "merg": 94, "seafoam": 94, "green": 94, "yellow": 94, "too": 94, "you": 94, "re": 94, "One": 94, "score": [94, 96, 97, 98, 102, 103], "rule": 94, "overal": [94, 102], "accur": 94, "thi": 94, "directli": 94, "fulli": 94, "character": 94, "nois": 94, "matrix": [94, 97], "joint": 94, "prior": 94, "true": 94, "distribut": 94, "flip": 94, "rate": 94, "ani": 94, "again": 94, "support": 94, "lot": 94, "method": 94, "filter_bi": 94, "automat": 94, "everi": 94, "uniqu": 94, "num_label_issu": 94, "threshold": 94, "found": 94, "Not": 94, "sure": 94, "ensembl": 94, "multipl": [94, 96], "predictor": 94, "consensu": 96, "annot": 96, "initi": 96, "major": 96, "vote": 96, "better": 96, "compar": 96, "inspect": 96, "retrain": 96, "further": 96, "multi": 97, "beyond": 97, "mislabel": [97, 102, 103], "given": 97, "hot": 97, "binari": 97, "without": 97, "applic": 97, "real": 97, "download": [98, 102, 103], "objectlab": 98, "exploratori": 98, "analysi": 98, "timm": 99, "cifar10": 99, "some": 99, "pred_prob": [99, 102, 103], "wai": 101, "semant": 102, "which": 102, "ar": 102, "commonli": 102, "focus": 102, "token": 103, "word": 103, "sentenc": 103, "contain": 103, "particular": 103}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [50, "module-cleanlab.internal.outlier"], [66, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [68, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [58, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [59, "module-cleanlab.multilabel_classification.filter"], [62, "filter"], [71, "filter"], [75, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "util": [[52, "module-cleanlab.internal.util"]], "validation": [[53, "module-cleanlab.internal.validation"]], "fasttext": [[54, "fasttext"]], "models": [[55, "models"]], "keras": [[56, "module-cleanlab.models.keras"]], "multiannotator": [[57, "module-cleanlab.multiannotator"]], "multilabel_classification": [[60, "multilabel-classification"]], "rank": [[61, "module-cleanlab.multilabel_classification.rank"], [64, "module-cleanlab.object_detection.rank"], [67, "module-cleanlab.rank"], [73, "module-cleanlab.segmentation.rank"], [77, "module-cleanlab.token_classification.rank"]], "object_detection": [[63, "object-detection"]], "summary": [[65, "summary"], [74, "module-cleanlab.segmentation.summary"], [78, "module-cleanlab.token_classification.summary"]], "regression.learn": [[69, "module-cleanlab.regression.learn"]], "regression.rank": [[70, "module-cleanlab.regression.rank"]], "segmentation": [[72, "segmentation"]], "token_classification": [[76, "token-classification"]], "cleanlab open-source documentation": [[79, "cleanlab-open-source-documentation"]], "Quickstart": [[79, "quickstart"]], "1. Install cleanlab": [[79, "install-cleanlab"]], "2. Find common issues in your data": [[79, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[79, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[79, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[79, "improve-your-data-via-many-other-techniques"]], "Contributing": [[79, "contributing"]], "Easy Mode": [[79, "easy-mode"], [88, "Easy-Mode"], [90, "Easy-Mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[80, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[80, "function-and-class-name-changes"]], "Module name changes": [[80, "module-name-changes"]], "New modules": [[80, "new-modules"]], "Removed modules": [[80, "removed-modules"]], "Common argument and variable name changes": [[80, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[81, "cleanlearning-tutorials"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[82, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "1. Install required dependencies": [[82, "1.-Install-required-dependencies"], [83, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [91, "1.-Install-required-dependencies"], [101, "1.-Install-required-dependencies"]], "2. Load and process the data": [[82, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [101, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[82, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [90, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[82, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[82, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[83, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[83, "2.-Load-and-format-the-text-dataset"], [91, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[83, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[83, "4.-Train-a-more-robust-model-from-noisy-labels"], [101, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Audio Classification with SpeechBrain and Cleanlab": [[84, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[84, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[84, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[84, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[84, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[84, "5.-Use-cleanlab-to-find-label-issues"], [90, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[85, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[85, "1.-Install-and-import-required-dependencies"], [87, "1.-Install-and-import-required-dependencies"], [88, "1.-Install-and-import-required-dependencies"], [96, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[85, "2.-Create-and-load-the-data-(can-skip-these-details)"], [87, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[85, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [87, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[85, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [87, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[85, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[85, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "Datalab: Advanced workflows to audit your data": [[86, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[86, "Install-and-import-required-dependencies"]], "Create and load the data": [[86, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[86, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[86, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[86, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[86, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[86, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[86, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[87, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[87, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[87, "Get-additional-information"]], "Near duplicate issues": [[87, "Near-duplicate-issues"], [88, "Near-duplicate-issues"]], "Image Classification with PyTorch and Cleanlab": [[88, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[88, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[88, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[88, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[88, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[88, "7.-Use-cleanlab-to-find-issues"]], "View report": [[88, "View-report"]], "Label issues": [[88, "Label-issues"], [90, "Label-issues"], [91, "Label-issues"]], "View most likely examples with label errors": [[88, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[88, "Outlier-issues"], [90, "Outlier-issues"], [91, "Outlier-issues"]], "View most severe outliers": [[88, "View-most-severe-outliers"]], "View sets of near duplicate images": [[88, "View-sets-of-near-duplicate-images"]], "Dark images": [[88, "Dark-images"]], "View top examples of dark images": [[88, "View-top-examples-of-dark-images"]], "Low information images": [[88, "Low-information-images"]], "Datalab Tutorials": [[89, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[90, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[90, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[91, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[91, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[91, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[91, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[92, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[92, "Install-dependencies-and-import-them"], [94, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[92, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[92, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[93, "FAQ"]], "What data can cleanlab detect issues in?": [[93, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[93, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[93, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[93, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[93, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[93, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[93, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[93, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[93, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[93, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[93, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[93, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[93, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[93, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[94, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[94, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[94, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[94, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[94, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[94, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[94, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[94, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[94, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[94, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[94, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[94, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[94, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[94, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[94, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[94, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[94, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[94, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[94, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[95, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[96, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[96, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[96, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[96, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[96, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[96, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[96, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[96, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[96, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[97, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[97, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[97, "2.-Format-data,-labels,-and-model-predictions"], [98, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[97, "3.-Use-cleanlab-to-find-label-issues"], [98, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[97, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[97, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[97, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[97, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[97, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[98, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[98, "1.-Install-required-dependencies-and-download-data"], [102, "1.-Install-required-dependencies-and-download-data"], [103, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[98, "Get-label-quality-scores"], [102, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[98, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[98, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[98, "Other-uses-of-visualize"]], "Exploratory data analysis": [[98, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[99, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[99, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[99, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[99, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[99, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[99, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[100, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[100, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[100, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[101, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[101, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[101, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[102, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[102, "2.-Get-data,-labels,-and-pred_probs"], [103, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[102, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[102, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[102, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[103, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[103, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[103, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[103, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[103, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.outlier"], [51, "module-cleanlab.internal.token_classification_utils"], [52, "module-cleanlab.internal.util"], [53, "module-cleanlab.internal.validation"], [55, "module-cleanlab.models"], [56, "module-cleanlab.models.keras"], [57, "module-cleanlab.multiannotator"], [58, "module-cleanlab.multilabel_classification.dataset"], [59, "module-cleanlab.multilabel_classification.filter"], [60, "module-cleanlab.multilabel_classification"], [61, "module-cleanlab.multilabel_classification.rank"], [62, "module-cleanlab.object_detection.filter"], [63, "module-cleanlab.object_detection"], [64, "module-cleanlab.object_detection.rank"], [65, "module-cleanlab.object_detection.summary"], [66, "module-cleanlab.outlier"], [67, "module-cleanlab.rank"], [68, "module-cleanlab.regression"], [69, "module-cleanlab.regression.learn"], [70, "module-cleanlab.regression.rank"], [71, "module-cleanlab.segmentation.filter"], [72, "module-cleanlab.segmentation"], [73, "module-cleanlab.segmentation.rank"], [74, "module-cleanlab.segmentation.summary"], [75, "module-cleanlab.token_classification.filter"], [76, "module-cleanlab.token_classification"], [77, "module-cleanlab.token_classification.rank"], [78, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[50, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[52, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[53, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[55, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[56, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[57, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[58, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[60, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[61, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[62, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[62, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[63, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[64, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[65, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[66, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[66, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[67, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[68, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[69, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[69, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[69, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[70, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[70, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[71, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[71, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[72, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[73, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[74, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[75, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[75, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[76, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[77, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[78, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Audio Classification with SpeechBrain and Cleanlab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Image Classification with PyTorch and Cleanlab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 80, 85, 86, 87, 94, 96, 97], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 85, 86, 87, 94, 96, 97], "generate_noise_matrix_from_trac": [0, 1, 85, 86, 87, 94, 96, 97], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 51, 52, 64, 88, 92, 103], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 79, 80, 86, 92, 100], "benchmark": [1, 37, 79, 80, 85, 86, 87, 94, 96, 97], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 50, 52, 57, 58, 62, 64, 65, 66, 67, 69, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "core": [1, 40, 43, 71, 73], "algorithm": [1, 2, 8, 10, 31, 38, 42, 50, 52, 57, 66, 75, 77, 79, 93, 94, 96, 103], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 55, 57, 58, 61, 65, 66, 70, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "introduc": [1, 84, 93, 94], "synthet": [1, 96, 97, 102], "nois": [1, 2, 3, 36, 43, 46, 52, 58, 85, 86, 87, 92, 96, 101], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 85, 86, 92, 95, 99, 100], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 52, 57, 58, 59, 60, 61, 66, 67, 75, 76, 77, 78, 79, 80, 81, 85, 86, 87, 95, 96, 99, 100, 101, 102], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 84, 86, 90, 95, 96, 100], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 55, 59, 62, 65, 74, 78, 88, 90, 91, 94, 98, 103], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 52, 55, 57, 62, 65, 66, 67, 79, 88, 93, 97], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 52, 56, 57, 58, 59, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 52, 53, 66, 67, 69, 74, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 100, 102, 103], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 50, 52, 57, 59, 62, 65, 67, 69, 70, 78, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "matric": [1, 3, 46, 93], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "learn": [1, 2, 3, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 55, 57, 59, 66, 68, 70, 73, 77, 79, 83, 84, 86, 88, 90, 91, 92, 96, 97, 101], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 59, 60, 61, 62, 64, 65, 66, 67, 69, 75, 77, 78, 85, 87, 93, 94, 96, 97, 98, 101, 102, 103], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 52, 58, 59, 61, 67, 69, 70, 71, 73, 74, 80, 85, 86, 87, 90, 91, 93, 95, 96], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 52, 53, 59, 62, 64, 65, 66, 67, 90, 98, 99], "trace": [1, 85, 86, 87, 94, 96, 97], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "more": [1, 2, 3, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 67, 69, 70, 73, 74, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 102, 103], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 102, 103], "noise_matrix": [1, 2, 3, 10, 46, 52, 85, 86, 87, 94, 96, 97], "py": [1, 3, 33, 37, 38, 43, 46, 48, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 86, 94, 96], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99, 101, 102], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 85], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 50, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 50, 52, 57, 65, 66, 67, 71, 90, 91, 94, 96, 103], "true_label": [1, 2, 3, 36, 46, 52, 94, 96], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 93, 94, 96, 97, 98, 99, 102, 103], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 53, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 93, 94, 96, 97, 101], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 50, 64, 69, 83, 87, 91, 93, 94, 96, 97, 98, 99, 101], "achiev": [1, 2, 37, 38, 41, 69, 93, 96, 103], "better": [1, 5, 43, 57, 59, 67, 69, 70, 79, 83, 84, 87, 90, 91, 93, 94, 97, 98, 99, 103], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 57, 62, 64, 66, 67, 69, 73, 77, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 57, 67, 69, 82, 84, 85, 86, 87, 88, 90, 93, 94, 96, 97, 99], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 65, 69, 79, 82, 83, 86, 93, 94, 96, 97, 100, 101], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 50, 57, 58, 65, 66, 67, 93, 96, 99], "amount": [1, 3, 88], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 87, 88, 91], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 103], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 50, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 84, 92, 93, 94, 97, 98, 99, 102, 103], "condit": [1, 2, 3, 46, 51, 52, 67, 88, 94, 103], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 92, 93, 94, 95, 97, 98, 99, 102, 103], "k_": [1, 2, 3, 46, 52], "k_y": [1, 2, 3, 46, 52], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102], "fraction": [1, 2, 3, 10, 20, 38, 46, 52, 57, 69, 90, 93], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 96, 97, 98, 100, 101, 102, 103], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 51, 52, 59, 67, 69, 70, 82, 84, 85, 86, 87, 88, 90, 91, 93, 96, 98, 100, 102, 103], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 52, 53, 55, 57, 58, 61, 65, 66, 67, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 102, 103], "assum": [1, 2, 3, 12, 43, 46, 51, 52, 67, 71, 74, 93, 97, 99, 101, 102, 103], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 51, 52, 57, 58, 59, 61, 62, 65, 66, 67, 69, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 52, 58, 59, 61, 64, 69, 85, 86, 87, 88, 93, 94, 96, 97, 102, 103], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 92, 93, 100], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 51, 52, 53, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "return": [1, 2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 97, 98, 101, 102, 103], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 51, 52, 57, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 52, 57, 58, 59, 61, 62, 78, 83, 84, 87, 88, 90, 91, 92, 93, 94, 101, 103], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 57, 59, 61, 64, 65, 66, 67, 69, 70, 75, 77, 78, 79, 84, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103], "perfect": [1, 2, 36, 69, 94, 98], "exactli": [1, 3, 10, 36, 37, 41, 43, 60, 66, 86, 87, 88, 90, 91, 94], "yield": [1, 37, 41, 85], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 50, 55, 57, 58, 61, 64, 66, 67, 69, 70, 73, 77, 78, 80, 83, 84, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 50, 57, 58, 59, 64, 65, 73, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 52, 53, 56, 57, 64, 65, 67, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "loop": [1, 3, 46, 52, 88, 98], "implement": [1, 2, 3, 9, 14, 22, 37, 38, 40, 41, 46, 52, 69, 79, 82, 84, 86, 90, 99, 100], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 57, 58, 62, 64, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 50, 53, 64, 65, 69, 71, 73, 77, 83, 84, 86, 87, 88, 90, 91, 97, 101, 102], "do": [1, 2, 5, 9, 10, 36, 40, 41, 52, 53, 66, 67, 71, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 56, 69, 83, 84, 86, 87, 88, 90, 91, 92, 94, 99], "pseudocod": [1, 100], "happen": [1, 10, 43, 59, 85, 91, 96, 102], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 82, 83, 84, 85, 88, 91, 92, 93, 96, 97, 98, 101, 102, 103], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 61, 69, 79, 83, 84, 85, 91, 93, 94, 98, 99], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 50, 51, 52, 56, 57, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102], "distinct": [1, 18, 52, 103], "natur": [1, 10, 96, 99], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 80, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 102, 103], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 51, 52, 53, 66, 67, 69, 82, 83, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 52, 53, 56, 65, 69, 70, 83, 84, 85, 86, 87, 90, 93, 94, 96, 97, 99, 101], "round": [1, 40, 43, 52, 69, 93, 101], "astyp": [1, 96], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 50, 51, 52, 53, 58, 59, 61, 65, 66, 67, 69, 71, 73, 74, 75, 78, 84, 86, 88, 98, 99], "rang": [1, 3, 5, 7, 12, 46, 48, 50, 52, 65, 69, 70, 85, 88, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "pragma": 1, "cover": [1, 3, 80, 92, 93], "choic": [1, 8, 43, 50, 88, 93, 97, 99], "replac": [1, 51, 56, 67, 82, 83, 85, 86, 87, 88, 91, 92, 93, 96, 99], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 67, 84, 85, 86, 87], "05": [1, 10, 26, 30, 51, 65, 69, 75, 77, 90, 92, 93, 94, 98], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 85, 86, 87, 94, 96, 97], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 85, 86, 87, 88, 93, 94, 96, 97, 102], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 69, 82, 84, 85, 86, 87, 90, 92, 94, 96, 97], "max_it": [1, 83, 84, 91, 99], "10000": [1, 40, 92, 93], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 51, 52, 53, 56, 57, 59, 65, 66, 67, 69, 71, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 99, 101], "diagon": [1, 3, 5, 43, 46, 52], "equal": [1, 3, 10, 12, 59, 64, 74, 100], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 52, 69, 79, 83, 84, 88, 90, 91, 93, 102, 103], "impli": [1, 10, 36, 58, 65], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 50, 51, 52, 57, 58, 59, 61, 64, 65, 69, 73, 77, 84, 85, 86, 87, 94, 96, 97], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 50, 52, 57, 58, 59, 62, 82, 83, 90, 91, 94, 97, 98, 101], "maximum": [1, 10, 66, 74, 78, 102], "minimum": [1, 8, 10, 20, 43, 45, 59, 64, 77], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 64, 69, 86, 93, 94, 96, 98, 99], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 86, 88, 93, 101, 102], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "necessari": [1, 2, 3, 4, 7, 10, 12, 51, 85, 86], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 56, 57, 58, 60, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 52, 57, 61, 65, 69, 74, 78, 79, 82, 83, 84, 85, 87, 91, 93, 96, 97, 99, 101], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 52, 55, 56, 59, 66, 67, 69, 71, 79, 80, 84, 92, 93, 94, 100], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 53, 56, 57, 58, 59, 61, 64, 65, 66, 67, 69, 73, 74, 75, 77, 83, 85, 87, 88, 91, 92, 93, 97, 98, 101, 103], "when": [1, 2, 3, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 50, 52, 56, 59, 61, 62, 64, 66, 67, 69, 70, 82, 83, 85, 86, 87, 88, 90, 91, 96, 100, 101, 102, 103], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103], "rate": [1, 2, 3, 10, 38, 52, 84, 103], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 56, 57, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 82, 83, 85, 86, 87, 90, 91, 93, 96, 97, 99, 100, 101, 102, 103], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 52, 56, 57, 62, 64, 65, 66, 67, 69, 70, 74, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 55, 56, 57, 59, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "high": [1, 2, 16, 40, 43, 52, 64, 67, 69, 82, 83, 85, 86, 87, 88, 92, 94, 98, 101, 102, 103], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 52, 57, 58, 62, 64, 65, 66, 67, 69, 71, 74, 78, 80, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "imposs": [1, 10, 94], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 51, 56, 57, 66, 69, 74, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "low": [1, 10, 52, 57, 79, 85, 86, 87, 91, 94, 98, 102], "zero": [1, 3, 5, 37, 41, 45, 52, 53, 86, 88, 97, 98, 99], "forc": [1, 2, 3, 5, 41, 86, 103], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 52, 56, 57, 59, 61, 65, 66, 67, 69, 70, 73, 75, 77, 80, 82, 83, 84, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 50, 51, 52, 53, 56, 57, 66, 67, 69, 71, 73, 77, 78, 79, 83, 84, 86, 87, 88, 91, 96, 97, 98, 99, 100, 101, 102, 103], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 55, 80], "produc": [1, 2, 5, 9, 10, 16, 48, 57, 67, 69, 71, 73, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 102, 103], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 50, 56, 57, 58, 69, 87, 91, 93, 98], "opposit": [1, 103], "occur": [1, 3, 10, 36, 51, 64, 86, 87, 88, 93, 99], "small": [1, 3, 10, 36, 40, 48, 50, 52, 58, 65, 83, 88, 91, 92, 97, 99], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 50, 51, 53, 56, 61, 64, 69, 70, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "max": [1, 43, 66, 67, 87, 88, 99], "tri": [1, 37, 41, 100], "befor": [1, 2, 3, 37, 41, 50, 52, 66, 69, 74, 82, 83, 85, 91, 93, 94, 96, 99, 101], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 26, 30, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 84, 86, 87, 88, 90, 93, 94, 97, 101, 102], "left": [1, 2, 43, 45, 50, 52, 59, 62, 65, 85, 86, 87, 97, 98, 99, 102], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 57, 62, 64, 65, 66, 85, 86, 87, 92, 96, 97, 98, 103], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 56, 93, 94, 102], "length": [1, 5, 12, 26, 27, 36, 38, 43, 52, 59, 62, 66, 67, 69, 71, 74, 78, 82, 84, 97, 99, 102, 103], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 50, 52, 55, 56, 57, 58, 59, 66, 67, 69, 71, 73, 74, 75, 77, 78, 84, 96, 100, 102, 103], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 52, 53, 57, 59, 65, 71, 73, 74, 75, 77, 78, 82, 83, 84, 93, 96, 97, 98, 102, 103], "ball": [1, 92], "bin": [1, 3, 59, 85, 86, 87, 99], "ensur": [1, 2, 10, 37, 41, 50, 52, 53, 56, 64, 67, 69, 82, 83, 84, 86, 87, 88, 91, 93, 94, 99, 100, 101], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 56, 57, 58, 59, 62, 64, 65, 66, 67, 70, 73, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102], "least": [1, 4, 10, 18, 31, 36, 40, 57, 58, 64, 67, 77, 87, 88, 93, 96, 99, 102], "int_arrai": [1, 52], "can": [2, 3, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 97, 98, 99, 100, 101, 102, 103], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 51, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100, 102, 103], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 75, 77, 78, 79, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103], "regular": [2, 3, 40, 56], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 52, 53, 58, 59, 60, 61, 66, 67, 79, 93, 94, 95], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 50, 52, 57, 59, 67, 69, 79, 83, 84, 85, 91, 92, 93, 94, 97, 99, 101, 102, 103], "cleanlearn": [2, 3, 10, 23, 30, 37, 52, 56, 68, 69, 70, 79, 80, 82, 83, 101], "wrap": [2, 37, 41, 56, 66, 69, 79, 82, 83, 85, 86, 87, 90, 91, 94, 101], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56, 65, 66, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 56, 66, 69, 70, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101], "classifi": [2, 3, 41, 48, 52, 57, 60, 66, 67, 79, 80, 82, 83, 84, 90, 91, 93, 96, 97, 99, 100, 102, 103], "adher": [2, 41, 69], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 52, 57, 58, 59, 64, 66, 69, 71, 73, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 93, 95, 98, 99, 100, 101, 102, 103], "api": [2, 3, 14, 56, 62, 65, 66, 69, 80, 93, 101], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 67, 69, 71, 84, 86, 87, 90, 93, 96, 99, 103], "four": [2, 10, 92, 94, 103], "clf": [2, 3, 5, 48, 69, 79, 82, 90, 93, 94, 97], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 55, 56, 66, 68, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101, 103], "sample_weight": [2, 41, 69, 94], "predict_proba": [2, 5, 36, 39, 41, 48, 55, 56, 82, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 99], "predict": [2, 3, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 83, 92, 93, 94, 95, 99, 101, 102, 103], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 50, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 99, 101], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 52, 55, 56, 57, 58, 59, 60, 64, 66, 67, 68, 69, 74, 75, 76, 77, 78, 80, 83, 88, 89, 95, 100], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 52, 53, 57, 58, 59, 60, 62, 65, 66, 67, 69, 71, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 52, 66, 69, 79, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 101], "element": [2, 3, 5, 36, 42, 43, 45, 52, 57, 59, 67, 74, 75, 77, 83, 84, 91, 93, 103], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 52, 57, 58, 62, 65, 67, 69, 82, 83, 84, 86, 88, 90, 93, 96, 97, 98, 99, 101, 102, 103], "index": [2, 10, 26, 36, 43, 51, 52, 53, 58, 67, 69, 74, 77, 78, 83, 84, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 50, 51, 52, 56, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 100, 101, 102, 103], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 50, 52, 53, 55, 57, 62, 64, 66, 69, 82, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 99, 100, 101], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 59, 62, 65, 67, 69, 70, 79, 80, 83, 92, 93, 94, 95, 97, 98, 101, 102, 103], "size": [2, 10, 31, 37, 40, 41, 43, 48, 59, 64, 65, 69, 71, 73, 83, 85, 88, 90, 93, 94, 96, 97, 98, 100, 102], "here": [2, 5, 7, 10, 14, 40, 43, 46, 56, 57, 58, 59, 61, 62, 65, 66, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "re": [2, 5, 37, 41, 51, 57, 69, 79, 82, 83, 84, 85, 86, 90, 91, 93, 101, 102, 103], "weight": [2, 10, 37, 38, 41, 48, 57, 64, 67, 69, 83, 84, 85, 86, 87, 91], "loss": [2, 38, 56, 67, 69, 88], "while": [2, 3, 10, 37, 40, 41, 47, 48, 52, 69, 79, 88, 93, 94, 96, 97, 101], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 52, 56, 57, 62, 65, 66, 69, 70, 80, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 52, 53, 56, 66, 67, 77, 79, 80, 84, 85, 86, 87, 88, 93], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 52, 55, 56, 57, 58, 59, 61, 66, 67, 69, 70, 71, 73, 74, 80, 82, 83, 84, 85, 88, 90, 92, 96, 97, 98, 99, 100, 101, 102, 103], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 57, 86, 87, 88, 93, 100, 101], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 53, 58, 59, 64, 65, 69, 71, 83, 91, 93, 97, 98, 101, 102], "clonabl": [2, 69], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 57, 62, 65, 66, 67, 69, 70, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 97, 98, 99, 100, 101, 102, 103], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 64, 66, 67, 69, 70, 73, 75, 77, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "clone": [2, 69, 97], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 61, 65, 69, 75, 80, 84, 86, 93, 94, 96, 97, 98, 99, 101, 103], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 50, 51, 57, 58, 59, 61, 64, 65, 69, 79, 86, 87, 88, 93, 95, 97, 98, 101], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 52, 59, 60, 62, 65, 66, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "manual": [2, 69, 82, 83, 84, 93, 99, 100, 101, 103], "pytorch": [2, 37, 38, 41, 69, 79, 84, 93, 95, 97, 102], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 52, 56, 66, 69, 83, 84, 85, 86, 87, 91, 93, 94, 97, 99, 100, 101, 102, 103], "__init__": [2, 38, 69, 88], "independ": [2, 3, 10, 58, 69, 91, 100, 101, 103], "compat": [2, 37, 40, 41, 56, 69, 70, 73, 77, 79, 82, 83, 93, 100, 101], "neural": [2, 38, 56, 66, 69, 84, 88, 93, 97, 99, 101], "network": [2, 37, 38, 41, 56, 66, 69, 83, 84, 88, 91, 93, 97, 99, 101], "typic": [2, 37, 41, 66, 69, 82, 83, 84, 87, 88, 90, 91, 99, 100], "initi": [2, 3, 13, 18, 37, 41, 57, 69, 82, 91, 93], "insid": [2, 41, 69, 93, 94], "There": [2, 3, 7, 79, 94, 96], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 62, 64, 65, 80, 83, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101, 102, 103], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 52, 57, 69, 83, 84, 86, 91, 92, 93, 99, 100, 103], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 73, 77, 79, 82, 88, 90, 91, 94, 96, 97, 98, 100, 102, 103], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 52, 55, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "prune": [2, 3, 43, 59, 69, 80, 98], "everyth": [2, 65, 94], "els": [2, 65, 85, 86, 88, 92, 93, 96, 97, 98], "mathemat": [2, 3, 10, 46, 97], "keep": [2, 13, 14, 52, 79, 85, 86, 92, 93, 102], "belong": [2, 3, 10, 36, 43, 45, 46, 58, 59, 60, 61, 66, 67, 71, 75, 77, 78, 87, 88, 94, 97, 99, 102, 103], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 70, 74, 75, 77, 78, 92, 93, 100], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 52, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 91, 92, 95], "erron": [2, 3, 36, 43, 46, 52, 58, 59, 67, 69, 70, 71, 99, 101], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 50, 51, 57, 61, 64, 69, 70, 75, 77, 78, 79, 82, 83, 90, 91, 93, 97, 98, 99, 101, 102, 103], "linear_model": [2, 5, 36, 52, 69, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logisticregress": [2, 3, 5, 36, 52, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logreg": 2, "cl": [2, 14, 30, 69, 79, 82, 83, 93, 94, 101], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 52, 56, 57, 59, 65, 66, 67, 69, 74, 75, 79, 83, 84, 85, 86, 87, 91, 92, 93, 94, 96, 98, 99, 101], "x_train": [2, 82, 85, 86, 87, 94, 96, 97, 101], "labels_maybe_with_error": 2, "had": [2, 3, 69, 98], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 55, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 89, 95, 96, 100, 101], "pred": [2, 43, 52, 82, 83, 100, 101], "x_test": [2, 82, 85, 86, 87, 94, 97, 101], "might": [2, 5, 57, 69, 74, 82, 83, 86, 87, 88, 93, 98], "case": [2, 3, 10, 13, 36, 48, 57, 69, 82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 99, 101, 103], "standard": [2, 3, 5, 30, 36, 43, 56, 58, 59, 61, 67, 69, 79, 82, 86, 87, 90, 92, 94, 98], "adapt": [2, 37, 39, 52, 55, 69, 99], "skorch": [2, 69, 79, 93], "kera": [2, 55, 62, 65, 69, 79, 93, 98], "scikera": [2, 56, 69, 93], "open": [2, 40, 92, 98, 103], "doesn": [2, 69, 79], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 50, 51, 61, 66, 67, 69, 75, 77, 78, 79, 86, 87, 88, 90, 91, 92, 94, 97, 98, 101, 103], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 56, 57, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 51, 56, 62, 64, 66, 69, 79, 80, 82, 83, 86, 87, 91, 96, 103], "made": [2, 5, 16, 37, 41, 69, 82, 83, 88, 91, 93, 96, 98, 100, 101], "easi": [2, 11, 46, 69, 86, 87, 92, 93, 94, 97], "inherit": [2, 7, 38, 69], "baseestim": [2, 41, 69], "yourmodel": [2, 69], "def": [2, 7, 14, 37, 41, 56, 69, 83, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 66, 67, 69, 82, 83, 86, 88, 91, 92, 97, 102, 103], "refer": [2, 10, 16, 37, 41, 42, 58, 59, 61, 62, 64, 65, 69, 73, 74, 86, 87, 88, 90, 91, 93, 94, 97, 100, 101], "origin": [2, 5, 10, 41, 42, 43, 51, 52, 56, 58, 59, 62, 65, 66, 69, 70, 73, 75, 77, 82, 83, 86, 88, 90, 91, 93, 94, 98, 99, 101, 103], "total": [2, 3, 4, 36, 40, 52, 58, 78, 85, 88, 93, 102], "state": [2, 3, 5, 37, 38, 41, 47, 69, 94, 97, 98, 103], "art": [2, 38, 94, 97], "northcutt": [2, 3, 36, 66, 67], "et": [2, 3, 36, 38, 66, 67], "al": [2, 3, 36, 38, 66, 67], "2021": [2, 3, 36, 66, 67], "weak": [2, 65], "supervis": [2, 10, 86, 87, 93, 96], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 51, 52, 55, 62, 65, 66, 67, 69, 71, 75, 77, 80, 86, 95, 100], "uncertainti": [2, 10, 45, 66, 69, 93, 99, 101], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 50, 57, 64, 65, 69, 79, 83, 86, 87, 88, 91, 93, 94, 97, 100], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 51, 52, 53, 56, 57, 67, 69, 79, 80, 83, 85, 86, 87, 92, 99, 101], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 51, 52, 55, 57, 58, 61, 62, 66, 67, 69, 73, 74, 75, 77, 79, 80, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 103], "deep": [2, 39, 41, 55, 56, 69, 91], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "subfield": 2, "theori": [2, 94], "machin": [2, 5, 9, 10, 14, 16, 33, 39, 50, 55, 69, 82, 83, 86, 87, 92, 96], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 58, 65, 66, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 100, 101], "varieti": [2, 82, 83, 93], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 52, 56, 57, 58, 61, 62, 64, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "pu": [2, 52], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 53, 56, 65, 69, 79, 80, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "discret": [2, 34, 43, 46, 52, 66, 67, 71, 73, 74], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 52, 66, 67, 79, 83, 84, 86, 87, 88, 90, 91, 94, 97, 98, 99, 102, 103], "would": [2, 3, 5, 37, 40, 41, 43, 52, 59, 69, 79, 83, 85, 86, 88, 93, 94, 99, 101, 103], "obtain": [2, 5, 8, 10, 16, 43, 57, 59, 62, 65, 67, 70, 84, 87, 91, 93, 96, 98, 100, 102, 103], "been": [2, 4, 36, 43, 46, 51, 52, 57, 58, 62, 64, 66, 67, 69, 84, 86, 90, 93, 94, 96, 97, 98, 99, 102, 103], "dure": [2, 10, 16, 66, 69, 82, 83, 84, 85, 90, 91, 93, 94, 97, 100, 101, 103], "denot": [2, 3, 46, 48, 52, 59, 66, 67, 77], "tild": 2, "paper": [2, 4, 10, 57, 66, 75, 77, 92, 94, 96, 99, 101, 103], "cv_n_fold": [2, 3, 69, 83], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 52, 57, 58, 61, 62, 65, 69, 70, 77, 83, 86, 91, 92, 93, 97, 98, 99, 100, 102, 103], "converge_latent_estim": [2, 3], "pulearn": [2, 52], "find_label_issues_kwarg": [2, 10, 69, 80, 93, 94], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 59, 75, 93], "clean": [2, 64, 67, 69, 70, 79, 82, 83, 85, 86, 87, 92, 101], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 52, 69, 84, 93, 94, 96, 97, 98], "messi": [2, 69, 94], "ridden": [2, 69], "autom": [2, 9, 10, 69, 79, 87, 92, 93], "robust": [2, 46, 69, 87, 93], "prone": [2, 69], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 56, 59, 60, 62, 65, 66, 67, 69, 70, 78, 79, 80, 83, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 57, 64, 69, 85, 86, 87, 93, 96, 98], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 57, 73, 77, 84, 86, 87, 91, 94], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 57, 58, 61, 64, 65, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 94, 96, 98, 100, 103], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 57, 58, 62, 64, 65, 66, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "experiment": [2, 37, 38, 40, 41, 42, 59, 80, 85, 93], "wrapper": [2, 56, 82, 83, 84, 101], "around": [2, 64, 85, 86, 87, 98, 99, 103], "fasttext": [2, 55], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 66, 69, 82, 83, 85, 90, 91, 92, 93, 102, 103], "along": [2, 48, 59, 77, 85, 86, 87, 88, 93, 99], "dimens": [2, 52, 71, 74, 88, 93, 99, 102], "select": [2, 9, 10, 26, 57, 67, 88, 93, 96, 99], "split": [2, 3, 5, 10, 12, 40, 48, 51, 52, 69, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 97, 100, 103], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 59, 62, 65, 67, 69, 70, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "fold": [2, 3, 36, 43, 46, 69, 82, 84, 90, 92, 93, 98, 102], "By": [2, 36, 58, 59, 69, 86, 93, 102], "need": [2, 3, 10, 36, 37, 40, 41, 43, 58, 59, 61, 66, 69, 79, 83, 84, 86, 87, 91, 93, 94, 96, 97, 98, 102], "holdout": [2, 3, 69], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 52, 57, 58, 59, 61, 64, 65, 66, 67, 69, 70, 71, 73, 79, 80, 83, 86, 87, 92, 94, 95, 98, 99, 101, 102], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 55, 57, 66, 69, 80, 82, 83, 85, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 102, 103], "numer": [2, 3, 5, 10, 13, 22, 30, 34, 48, 64, 66, 69, 74, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 94, 96, 97, 99, 101], "consist": [2, 3, 37, 41, 52, 57, 102, 103], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 50, 52, 56, 59, 64, 67, 69, 70, 73, 77, 79, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 103], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 52, 58, 69, 87, 91], "close": [2, 3, 10, 40, 46, 66, 84, 86, 87, 88, 90, 91, 93, 94, 98], "form": [2, 3, 10, 37, 38, 41, 46, 51, 52, 67, 69, 93], "equival": [2, 3, 37, 41, 46, 66, 99, 101], "iter": [2, 3, 36, 37, 41, 43, 52, 58, 59, 69, 85, 93, 96, 102], "enforc": [2, 37, 41, 52], "perfectli": [2, 36, 58, 94], "certain": [2, 3, 5, 37, 41, 56, 65, 69, 85, 86, 87, 92, 98, 99], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 77, 85, 86, 87, 88, 93, 103], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 56, 57, 59, 65, 66, 67, 69, 74, 75, 77, 86], "filter": [2, 3, 10, 40, 42, 51, 58, 60, 61, 63, 65, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 87, 88, 91, 92, 93, 97, 98, 101, 102, 103], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 93, 97, 98, 101, 102, 103], "particularli": [2, 79, 96, 99], "filter_bi": [2, 3, 40, 43, 59, 80, 93], "frac_nois": [2, 43, 59, 75, 93], "min_examples_per_class": [2, 43, 59, 87, 93, 94], "impact": [2, 4, 10, 86, 87, 88], "ml": [2, 4, 5, 9, 10, 15, 69, 79, 82, 83, 86, 87, 88, 90, 91, 96, 97, 101], "accuraci": [2, 38, 67, 82, 83, 84, 88, 93, 94, 96, 99, 101, 102], "n_job": [2, 40, 43, 59, 71, 73, 75, 93, 99, 102], "disabl": [2, 37, 41, 43, 99], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 51, 57, 59, 65, 71, 73, 75, 83, 84, 85, 86, 93, 96, 100], "caus": [2, 43, 48, 86, 87, 93], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 58, 59, 60, 62, 63, 65, 66, 68, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 87, 92, 93, 97, 98, 99, 102, 103], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 57, 59, 60, 61, 62, 63, 64, 67, 68, 70, 72, 73, 75, 76, 77, 80, 93, 94, 97, 98, 102, 103], "adjust_pred_prob": [2, 10, 61, 66, 67, 94], "control": [2, 5, 9, 10, 16, 40, 43, 57, 65, 66, 69, 75, 77, 86, 87, 92, 93], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 52, 57, 58, 61, 62, 64, 66, 67, 69, 73, 77, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 98, 99, 100, 101, 102], "much": [2, 10, 36, 40, 43, 69, 85, 93, 94, 96, 99], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 52, 56, 57, 58, 62, 64, 65, 66, 69, 73, 74, 77, 78, 79, 80, 83, 84, 86, 88, 91, 92, 93, 98, 99, 100, 101], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 52, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 85, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "suppress": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74, 102, 103], "statement": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74], "big": [2, 40, 59, 65, 69, 94], "limit": [2, 5, 16, 40, 59, 85, 98, 102, 103], "memori": [2, 37, 40, 41, 59, 65, 71, 73, 85, 86, 102], "label_issues_batch": [2, 39, 59, 93], "find_label_issues_batch": [2, 39, 40, 59, 93], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 52, 53, 57, 58, 59, 61, 62, 65, 66, 67, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 50, 64, 65, 66, 67, 73, 77, 86, 98, 99, 102, 103], "inverse_noise_matrix": [2, 3, 10, 46, 52, 80, 94], "label_issu": [2, 40, 43, 59, 62, 69, 71, 80, 82, 83, 84, 88, 91, 93, 94, 97, 101], "clf_kwarg": [2, 3, 10, 69], "clf_final_kwarg": [2, 69], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 73, 77, 79, 84, 88, 90, 91, 94, 96, 98, 100, 101], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 50, 52, 59, 61, 62, 65, 67, 69, 70, 71, 73, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 101, 102, 103], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 59, 62, 65, 67, 69, 70, 71, 74, 75, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 97, 99, 101, 102, 103], "final": [2, 10, 69, 82, 90, 98, 100, 101], "remain": [2, 69, 80, 82, 83, 88, 97, 101, 103], "datasetlik": [2, 52, 69], "beyond": [2, 5, 7, 9, 10, 11, 35, 79, 82, 83, 101, 102], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 56, 57, 58, 69, 77, 82, 83, 84, 86, 87, 90, 91, 93, 94, 96, 101, 103], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 52, 53, 56, 57, 58, 69, 74, 78, 80, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101, 102, 103], "scipi": [2, 5, 13, 52], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 52, 53, 87, 88, 90, 91, 94], "csr_matrix": [2, 4, 5, 13, 16, 18, 31], "torch": [2, 37, 38, 41, 83, 84, 88, 91, 92, 99], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 56, 57, 62, 65, 69, 79, 80, 84, 86, 87, 88, 93, 94, 99], "tensorflow": [2, 52, 56, 79, 84, 93], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 52, 53, 56, 59, 62, 63, 64, 65, 66, 69, 77, 79, 83, 84, 87, 88, 90, 93, 94, 95, 97, 101], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 73, 74, 75, 77, 78, 80, 83, 84, 85, 86, 87, 88, 92, 93, 94, 97, 98, 101, 103], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 52, 67, 74, 78, 82, 83, 84, 88, 90, 91, 93, 97, 98, 99, 100, 101, 103], "wa": [2, 3, 12, 14, 40, 50, 52, 57, 58, 64, 66, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 100, 102, 103], "abl": [2, 3, 10, 69, 84, 93, 94, 96, 97], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 82, 84, 86, 87, 88, 90, 92, 96, 101, 102, 103], "make": [2, 3, 5, 18, 37, 40, 41, 48, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "sure": [2, 5, 40, 43, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101], "shuffl": [2, 10, 52, 84, 88, 91, 97, 99], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 52, 57, 62, 64, 69, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 90, 91, 94, 96, 97, 98, 99, 100, 101, 103], "batch": [2, 40, 52, 56, 57, 71, 73, 85, 88, 93, 99], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 50, 52, 57, 58, 59, 62, 65, 66, 67, 71, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 101, 102, 103], "destroi": [2, 52], "oper": [2, 37, 40, 41, 52, 56, 67, 79, 82, 83, 91, 93, 99], "eg": [2, 5, 10, 52, 62, 65, 86, 87, 93], "repeat": [2, 52, 57, 96, 99], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 51, 52, 61, 66, 75, 82, 83, 84, 85, 86, 87, 88, 90, 93, 96, 97, 99, 100, 101, 102], "array_lik": [2, 3, 36, 43, 52, 59, 66, 70], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 51, 52, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "seri": [2, 3, 40, 52, 53, 69, 77, 93], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 52, 57, 58, 59, 61, 66, 67, 69, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 99, 103], "rather": [2, 3, 5, 26, 36, 52, 56, 57, 64, 73, 77, 83, 96, 100, 101, 102, 103], "leav": [2, 43], "per": [2, 3, 5, 7, 13, 36, 40, 43, 48, 51, 57, 58, 59, 61, 64, 65, 67, 70, 71, 73, 77, 87, 93, 98, 103], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 52, 57, 59, 62, 64, 67, 73, 77, 86, 93, 96, 98, 99, 101], "cutoff": [2, 3, 99], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 52, 57, 64, 66, 67, 70, 73, 77, 82, 83, 84, 88, 90, 91, 93, 94, 98, 99, 100, 101, 102], "section": [2, 3, 7, 10, 80, 88, 90, 93, 98], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 59, 66, 67, 69, 70, 75, 77, 92, 93, 100], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 64, 66, 77, 80, 87, 89, 93, 94], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 56, 64, 66, 67, 69, 73, 77, 85, 94], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 56, 57, 58, 59, 62, 64, 66, 67, 69, 70, 78, 80, 83, 84, 87, 88, 91, 96, 98, 101], "automat": [2, 3, 5, 26, 36, 79, 82, 83, 88, 90, 91, 92, 93, 96, 97, 98, 101, 102, 103], "greater": [2, 3, 5, 7, 9, 10, 28, 40, 52, 64, 87, 92, 93, 103], "count": [2, 22, 26, 36, 40, 43, 46, 52, 58, 59, 65, 80, 88, 93, 98], "observ": [2, 3, 46, 84, 85, 86, 87, 96, 99, 101], "mislabel": [2, 10, 36, 40, 42, 43, 46, 57, 58, 59, 62, 64, 67, 73, 75, 77, 79, 82, 83, 84, 88, 90, 91, 93, 94, 98, 101], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 99, 100, 101, 103], "get_label_issu": [2, 39, 40, 68, 69, 82, 83, 94, 101], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 57, 59, 64, 66, 67, 71, 73, 85, 87, 93, 97, 98], "boolean": [2, 7, 10, 22, 40, 43, 51, 57, 59, 62, 67, 69, 71, 73, 74, 79, 83, 84, 87, 88, 91, 93, 98, 101, 102], "label_issues_mask": [2, 43, 67, 69, 80], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 75, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 50, 51, 59, 62, 65, 66, 67, 69, 71, 75, 77, 79, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103], "return_indices_ranked_bi": [2, 40, 43, 59, 75, 80, 82, 83, 93, 94], "significantli": [2, 88, 94, 96, 100], "reduc": [2, 40, 43, 52, 84, 93], "time": [2, 10, 37, 40, 41, 52, 57, 80, 82, 83, 85, 86, 88, 92, 93, 94, 98, 99, 101, 102, 103], "take": [2, 5, 10, 36, 37, 41, 47, 48, 52, 56, 67, 82, 85, 88, 90, 96, 97, 98, 103], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 103], "skip": [2, 10, 37, 41, 69, 84, 93, 97, 103], "slow": [2, 3], "step": [2, 7, 26, 48, 65, 85, 88, 94, 96, 100], "caution": [2, 5, 93], "previous": [2, 5, 13, 52, 66, 69, 80, 82, 84, 86, 90, 91, 96, 100], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 52, 69, 82, 86, 88, 90, 93, 101, 102, 103], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 57, 61, 64, 67, 69, 75, 77, 80, 82, 87, 90, 93, 96, 97, 98, 103], "still": [2, 40, 41, 52, 66, 82, 84, 88, 93, 99], "extra": [2, 37, 41, 52, 56, 57, 58, 69, 88, 91, 93, 96, 99], "receiv": [2, 10, 37, 41, 42, 58, 61, 62, 69, 71, 75, 87, 98], "overwritten": [2, 69], "callabl": [2, 3, 37, 41, 48, 51, 56, 61, 93], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 51, 52, 65, 67, 69, 74, 84, 85, 86, 87, 88, 93, 94, 97, 103], "appropri": [2, 10, 16, 34, 59, 67, 86, 90, 97, 98], "earli": [2, 88], "stop": [2, 88], "x_valid": 2, "y_valid": 2, "could": [2, 4, 7, 10, 22, 36, 52, 66, 82, 86, 88, 90, 97, 101, 103], "f": [2, 7, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "ignor": [2, 37, 41, 51, 56, 69, 74, 78, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "allow": [2, 4, 36, 37, 40, 41, 45, 52, 57, 65, 66, 69, 71, 73, 83, 84, 85, 88, 93, 100, 102], "access": [2, 10, 13, 37, 41, 69, 83, 87, 88, 91, 97], "hyperparamet": [2, 61, 66, 88], "purpos": [2, 86, 87, 93, 97, 101], "want": [2, 5, 10, 36, 40, 53, 57, 59, 69, 83, 85, 86, 88, 91, 92, 96, 98, 99, 100, 102, 103], "explicitli": [2, 8, 10, 41, 69, 93], "yourself": [2, 5, 40, 87], "altern": [2, 7, 10, 48, 52, 56, 57, 67, 80, 83, 84, 88, 90, 91, 93, 94, 96, 97, 99, 101], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 52, 56, 57, 59, 66, 67, 69, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 97, 98, 99, 100, 101, 102], "effect": [2, 10, 27, 37, 41, 57, 66, 69, 88, 90, 91, 93, 99], "offer": [2, 5, 9, 10, 83, 84, 86, 87, 91, 93, 94, 97], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 57, 69, 83, 86, 88, 91, 93, 94, 96, 98, 99, 100, 101, 102], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 66, 69, 82, 86], "label_issues_df": [2, 69, 88], "similar": [2, 10, 36, 37, 41, 52, 57, 61, 62, 64, 66, 69, 73, 77, 85, 86, 87, 88, 90, 91, 93, 94, 98, 99, 102], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 51, 56, 58, 59, 61, 64, 65, 66, 69, 73, 74, 75, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 52, 62, 69, 86, 87], "were": [2, 3, 5, 36, 41, 58, 64, 77, 82, 84, 90, 93, 94, 96, 98, 100, 102], "present": [2, 3, 5, 10, 12, 13, 20, 36, 52, 66, 74, 79, 88, 90, 93, 99], "actual": [2, 3, 5, 36, 57, 58, 67, 87, 93, 94, 103], "num_class": [2, 36, 40, 52, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99], "uniqu": [2, 31, 52, 74, 86, 93, 97, 99], "given_label": [2, 5, 25, 30, 36, 46, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102, 103], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 50, 51, 52, 67, 93, 94, 99], "trick": [2, 93], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 50, 57, 65, 66, 67, 79, 85, 86, 87, 88, 90, 91, 98, 99], "account": [2, 36, 57, 61, 66, 67, 83, 91, 93, 94, 96, 97, 99, 101], "word": [2, 3, 51, 77, 78, 93], "remov": [2, 10, 31, 36, 37, 41, 43, 69, 79, 82, 83, 87, 88, 90, 91, 92, 93, 94, 97, 99, 101], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 52, 57, 58, 64, 67, 69, 73, 77, 84, 86, 87, 88, 91, 94, 97, 99, 102], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 52, 56, 67, 69, 71, 79, 80, 82, 83, 84, 87, 88, 90, 91, 93, 94, 97, 98, 99, 100, 101, 102], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 50, 51, 52, 57, 59, 61, 66, 67, 69, 70, 71, 79, 82, 83, 84, 88, 91, 92, 93, 94, 99, 100, 101], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 50, 60, 62, 63, 64, 65, 66, 67, 68, 69, 72, 76, 79, 82, 83, 85, 86, 88, 89, 95, 97, 101, 102, 103], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 52, 67, 69], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 56, 65, 69, 71, 73, 74, 75, 93], "test": [2, 5, 10, 26, 41, 48, 56, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 100, 101, 103], "expect": [2, 3, 37, 41, 43, 48, 57, 66, 67, 69, 82, 83, 93, 94, 96, 97, 98, 101, 103], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 65, 69, 82, 83, 84, 86, 87, 88, 93, 94, 96, 100, 101, 102], "simpli": [2, 10, 36, 67, 83, 86, 87, 90, 91, 93, 94, 97, 101, 102, 103], "quantifi": [2, 5, 7, 10, 13, 43, 61, 66, 69, 79, 87, 88, 90, 91, 94, 98], "save_spac": [2, 10, 68, 69], "potenti": [2, 10, 36, 43, 51, 59, 62, 65, 67, 69, 71, 73, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "cach": [2, 83, 91], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 52, 53, 56, 57, 58, 80, 82, 83, 84, 86, 87, 90, 91, 92, 93, 94, 96, 101, 102], "unlik": [2, 10, 43, 45, 48, 56, 58, 59, 61, 77, 86, 96, 97, 99, 101], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 52, 57, 59, 67, 71, 73, 78, 79, 86, 88, 93, 94, 96, 103], "mask": [2, 40, 43, 51, 52, 59, 62, 67, 69, 71, 73, 74, 79, 85, 92, 93, 96, 98, 102, 103], "prefer": [2, 67, 75, 97], "plan": 2, "subsequ": [2, 3, 37, 41, 83, 91, 93, 94, 98], "invok": [2, 37, 41, 94, 100], "scratch": [2, 69], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 56, 57, 59, 61, 65, 66, 67, 69, 70, 71, 73, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "share": [2, 67, 69], "mostli": [2, 52, 64, 69, 97, 101], "longer": [2, 34, 47, 48, 51, 69, 80, 83, 91, 93, 98], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 69, 77, 86, 87, 92, 103], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 57, 58, 61, 65, 69, 74, 77, 84, 86, 88, 90, 91, 92, 93, 94, 96, 99], "docstr": [2, 36, 37, 41, 52, 69, 92, 94], "unless": [2, 37, 41, 69, 93], "our": [2, 3, 10, 56, 57, 67, 69, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "is_label_issu": [2, 30, 69, 83, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "entir": [2, 10, 26, 40, 43, 46, 58, 59, 64, 67, 69, 71, 73, 74, 79, 85, 86, 87, 93, 98, 99, 100, 102, 103], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 57, 58, 59, 62, 65, 67, 69, 70, 71, 73, 74, 80, 87, 88, 90, 91, 93, 96, 101], "label_qu": [2, 57, 69, 83, 94, 96, 101], "measur": [2, 5, 36, 57, 58, 69, 79, 82, 92, 93, 94, 96, 97, 101, 102, 103], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 57, 58, 59, 61, 62, 64, 67, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 101], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 50, 57, 58, 61, 64, 65, 67, 69, 70, 73, 77, 83, 84, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "eas": 2, "comparison": [2, 37, 41, 65, 94, 96], "against": [2, 37, 41, 86, 90, 93, 96, 97], "predicted_label": [2, 5, 25, 30, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102], "ad": [2, 37, 41, 85, 87, 96, 101], "precis": [2, 50, 59, 62, 65, 93, 94, 102, 103], "definit": [2, 7, 34, 48, 69, 82, 90], "accessor": [2, 69], "describ": [2, 10, 18, 57, 66, 67, 69, 75, 77, 94, 96, 97, 98, 100, 103], "precomput": [2, 4, 5, 46, 69, 87, 88, 90, 91, 92, 94], "clear": [2, 37, 41, 69, 83, 91, 101], "save": [2, 5, 16, 37, 40, 41, 65, 69, 93, 98, 102, 103], "space": [2, 5, 10, 66, 69, 88, 90, 92], "place": [2, 37, 41, 52, 69, 82, 96], "larg": [2, 9, 10, 40, 69, 88, 90, 91, 93, 98, 99, 102, 103], "deploi": [2, 9, 10, 69, 88, 90, 91, 93], "care": [2, 10, 37, 41, 69, 91, 93, 94], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 69, 93, 94, 96, 98, 101], "cannot": [2, 5, 12, 14, 52, 100, 103], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 69], "__init_subclass__": [2, 39, 41, 68, 69], "set_": [2, 41, 69], "_request": [2, 41, 69], "pep": [2, 41, 69], "487": [2, 41, 69], "look": [2, 5, 7, 16, 37, 41, 52, 69, 74, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 103], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 52, 57, 58, 62, 65, 69, 74, 77, 78, 79, 84, 85, 86, 90, 91, 94, 96, 99, 102, 103], "__metadata_request__": [2, 41, 69], "infer": [2, 41, 52, 69, 74, 78, 82, 83, 88, 96, 97], "signatur": [2, 37, 41, 69], "accept": [2, 37, 41, 50, 67, 69, 86, 87, 93], "metadata": [2, 41, 69, 88, 90, 91, 103], "through": [2, 5, 7, 41, 69, 83, 84, 85, 87, 91, 92, 93, 96, 98, 99], "develop": [2, 9, 41, 69, 93, 94, 103], "request": [2, 41, 69, 82, 83, 87, 91, 92, 97, 103], "those": [2, 3, 4, 10, 40, 41, 43, 56, 57, 59, 65, 69, 73, 77, 78, 79, 84, 88, 93, 98, 102], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 52, 62, 65, 66, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "www": [2, 41, 69, 99], "org": [2, 4, 18, 37, 38, 41, 52, 66, 69, 93, 94, 103], "dev": [2, 41, 69], "0487": [2, 41, 69], "get_metadata_rout": [2, 39, 41, 68, 69], "rout": [2, 41, 69], "pleas": [2, 37, 41, 56, 69, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 101, 103], "guid": [2, 7, 10, 41, 69, 80, 88, 89], "mechan": [2, 37, 41, 69], "metadatarequest": [2, 41, 69], "encapsul": [2, 16, 41, 64, 69], "get_param": [2, 39, 41, 55, 56, 68, 69], "subobject": [2, 41, 69], "param": [2, 10, 37, 41, 56, 66, 69, 93], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 57, 58, 65, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101, 102, 103], "set_fit_request": [2, 39, 41, 68, 69], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 56, 57, 58, 62, 64, 65, 67, 69, 74, 78, 84, 85, 86, 93, 96, 97, 98, 103], "unchang": [2, 37, 41, 69, 103], "relev": [2, 16, 26, 41, 69, 88], "enable_metadata_rout": [2, 41, 69], "set_config": [2, 41, 69], "meta": [2, 41, 69], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 50, 69, 84, 93], "alia": [2, 37, 41, 69], "metadata_rout": [2, 41, 69], "retain": [2, 41, 52, 69], "chang": [2, 32, 34, 37, 40, 41, 45, 69, 77, 82, 83, 84, 86, 91, 93, 98, 99, 103], "version": [2, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 52, 55, 56, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "sub": [2, 41, 64, 69], "pipelin": [2, 41, 69, 101], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 50, 51, 52, 59, 66, 69, 71, 73, 74, 78, 83, 91, 93], "updat": [2, 13, 37, 40, 41, 56, 69, 80, 85, 86, 88], "set_param": [2, 39, 41, 55, 56, 68, 69], "simpl": [2, 37, 41, 43, 57, 67, 69, 82, 83, 85, 86, 87, 88, 90, 91, 96, 99, 101], "well": [2, 3, 9, 10, 37, 41, 45, 46, 57, 59, 65, 67, 69, 74, 77, 78, 80, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99], "nest": [2, 37, 41, 42, 53, 69, 75, 77, 78, 103], "latter": [2, 37, 41, 69, 99], "compon": [2, 41, 69], "__": [2, 41, 69], "set_score_request": [2, 68, 69], "structur": [3, 66, 82, 85, 90, 93], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 57, 66, 67, 71, 73, 77, 87, 88, 90, 92, 93, 94, 98, 103], "channel": [3, 84, 94], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 52, 58, 83, 87, 92], "inv": 3, "confident_joint": [3, 22, 36, 43, 52, 58, 59, 80, 93, 94], "un": 3, "under": [3, 10, 37, 41, 58, 65, 66, 87, 99], "joint": [3, 36, 43, 46, 52, 58, 59, 92], "num_label_issu": [3, 40, 43, 59, 74, 78, 80], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 52, 53, 59, 97], "don": [3, 79, 87, 88, 90, 91, 94, 98, 101], "statis": 3, "compute_confident_joint": [3, 36, 43, 52, 59, 94], "off": [3, 43, 52, 64, 88, 94, 98, 99], "j": [3, 5, 36, 37, 41, 42, 43, 59, 62, 65, 66, 75, 77, 78, 85, 86, 87, 94, 102, 103], "confident_learn": [3, 43, 59, 94], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 52, 57, 96], "cj": [3, 46, 52], "axi": [3, 31, 46, 48, 50, 71, 74, 84, 85, 86, 87, 88, 93, 94, 96, 97, 99, 101, 102], "bincount": [3, 85, 86, 87, 94, 96, 97], "alwai": [3, 10, 37, 41, 52, 82, 83, 84, 94, 101], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 64, 65, 71, 73, 82, 87, 88, 90, 92, 93, 94, 99, 101], "As": [3, 7, 79, 86, 87, 91, 94, 101, 103], "add": [3, 5, 7, 12, 13, 37, 41, 56, 65, 83, 84, 85, 86, 87, 88, 91, 93, 94, 97], "approach": [3, 4, 36, 40, 43, 56, 82, 85, 90, 94, 97, 99, 101], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 51, 67, 83, 87, 91, 94, 101], "know": [3, 10, 86, 87, 88, 90, 91, 93, 94, 96, 101], "cut": [3, 64, 79, 94], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 98, 99, 103], "underestim": 3, "few": [3, 9, 10, 65, 79, 87, 93, 96, 97, 98, 99, 103], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 51, 61, 62, 64, 65, 67, 70, 77, 92, 93, 97, 102, 103], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 73, 74, 75, 79, 80, 84, 93, 97, 99, 103], "num_issu": [3, 7, 40, 84, 85, 86, 87, 88, 90, 91, 94], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 56, 57, 83, 85, 92, 93, 98, 101, 103], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 94], "v": [3, 10, 40, 58, 59, 61, 67, 85, 86, 87, 97, 98, 99, 100], "rest": [3, 5, 7, 9, 10, 11, 35, 58, 59, 61, 69, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101], "fashion": [3, 5, 71, 82], "2x2": 3, "incorrectli": [3, 36, 58, 59, 62, 90, 103], "calibrated_cj": 3, "c": [3, 10, 50, 51, 59, 67, 79, 82, 84, 86, 87, 90, 91, 93, 94, 97, 98, 99, 100, 101], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 51, 57, 61, 64, 70, 73, 77, 78, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 102, 103], "truli": [3, 99, 102], "estimate_joint": [3, 36, 94], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 59, 65, 94, 98, 100, 102, 103], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 57, 58, 65, 74, 98, 99], "done": [3, 10, 56, 69, 86, 93, 94, 97, 99, 100], "overfit": [3, 10, 62, 65, 82, 84, 85, 86, 87, 88, 90, 91, 100], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 52, 57, 58, 64, 65, 66, 67, 77, 82, 84, 85, 86, 93, 94, 97, 98], "baselin": [3, 37, 43, 83, 99, 101], "proxi": 3, "union": [3, 5, 12, 48, 52, 53, 59, 65, 69, 77, 93], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 52, 57, 59, 65, 73, 75, 77, 78, 84, 103], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 5, 10, 40, 46, 57, 71, 73, 79, 83, 85, 88, 93, 102], "practic": [3, 82, 83, 87, 88, 94, 99, 101], "complet": [3, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "gist": 3, "cj_ish": 3, "guess": [3, 46, 94, 96], "8": [3, 5, 7, 8, 47, 48, 49, 51, 61, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "parallel": [3, 43, 65, 75, 92], "again": [3, 56, 82, 93, 99], "simplifi": [3, 14, 93], "understand": [3, 9, 36, 58, 65, 87, 94, 101, 102, 103], "100": [3, 37, 41, 50, 67, 82, 83, 86, 87, 88, 90, 92, 93, 94, 97, 98, 99, 103], "optim": [3, 37, 38, 41, 56, 88, 96], "speed": [3, 43, 83, 92, 93, 101], "dtype": [3, 23, 25, 26, 31, 37, 41, 51, 52, 61, 77, 84, 98], "enumer": [3, 37, 41, 84, 85, 86, 87, 88, 103], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 52, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "num_confident_bin": 3, "argmax": [3, 43, 67, 71, 74, 84, 93, 94, 98, 99, 102], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 52, 53, 61, 70, 82, 84], "eqn": [3, 46], "margin": [3, 43, 46, 48, 67], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 58, 94, 100], "poorli": [3, 46, 82], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 94], "variabl": [3, 7, 14, 27, 52, 69, 70, 84, 86, 90, 94, 97, 101], "exact": [3, 46, 82, 85, 86, 87, 88, 90], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 59, 64, 73, 75, 77, 86, 87, 88, 93, 98, 102], "percent": 3, "often": [3, 36, 46, 58, 93, 94, 100, 102], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 52, 53, 65, 82, 83, 84, 85, 86, 88, 90, 91, 93, 97, 98, 99, 101], "wai": [3, 5, 56, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 100], "pro": 3, "con": 3, "pred_proba": [3, 100], "combin": [3, 36, 86, 88, 92, 93, 94, 100, 101], "becaus": [3, 46, 52, 64, 91, 93, 94, 96, 98], "littl": [3, 40, 92, 98, 103], "uniform": [3, 67, 92, 93, 94], "20": [3, 7, 42, 78, 84, 88, 91, 92, 93, 94, 98, 101, 102, 103], "Such": [3, 88, 99], "bound": [3, 23, 25, 37, 41, 51, 61, 62, 64, 65, 98], "reason": [3, 22, 37, 41], "comment": [3, 51, 103], "end": [3, 5, 37, 41, 65], "file": [3, 5, 12, 39, 40, 55, 65, 82, 84, 86, 90, 91, 92, 93, 98, 99, 102, 103], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 94], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 80, 82, 85, 86, 87, 88, 90, 91, 94, 102, 103], "five": [3, 62, 65, 94, 98], "estimate_cv_predicted_prob": [3, 94], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 98], "confident_threshold": [3, 10, 22, 23, 40, 66], "valuat": [4, 9, 18], "assess": [4, 98], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 85, 86, 87, 88, 90, 91, 93, 94, 96], "contribut": [4, 10, 18, 98], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 90], "metric": [4, 5, 10, 18, 19, 26, 31, 50, 52, 56, 65, 66, 82, 83, 84, 88, 90, 91, 94, 101], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 65, 66, 67, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 66, 87, 91, 99], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 50, 66, 86, 87, 88, 90, 91, 93, 94, 99], "knn": [4, 10, 13, 18, 26, 31, 50, 66, 90, 99], "graph": [4, 5, 10, 13, 16, 18, 26, 31], "calcul": [4, 10, 18, 26, 40, 48, 50, 57, 61, 62, 64, 65, 66, 69, 73, 88, 92], "directli": [4, 5, 14, 16, 33, 34, 40, 56, 57, 83, 87, 91, 93, 97, 98, 101], "lowest": [4, 10, 57, 65, 87, 88, 93, 96, 97, 98, 102], "fall": [4, 10, 64, 73, 77, 94, 99], "flag": [4, 10, 22, 26, 43, 48, 58, 59, 62, 69, 79, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 99, 101, 102], "approxim": [4, 10, 18, 40, 66, 96], "top": [4, 5, 10, 36, 40, 42, 43, 52, 59, 62, 65, 67, 74, 78, 79, 83, 84, 86, 87, 90, 91, 92, 93, 94, 98, 99, 101, 103], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 97, 99, 101, 103], "arxiv": [4, 18, 94], "ab": [4, 18, 94, 98], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 66, 79, 83, 84, 86, 87, 90, 91, 94, 97, 101], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 59, 79, 83, 84, 86, 87, 88, 91, 93, 94, 99], "suppli": [4, 97, 98, 101], "2d": [4, 5, 16, 32, 40, 48, 49, 51, 52, 57, 82, 84, 97], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 58, 84, 85, 86, 87, 88, 90, 91, 94], "num_featur": [4, 5, 16, 37, 41, 56], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 64, 66, 90, 99], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56], "nearestneighbor": [4, 5, 10, 18, 66, 90, 99], "cosin": [4, 10, 50, 66, 99], "dim": [4, 66, 88, 102], "euclidean": [4, 5, 10, 50, 64, 66, 90], "dimension": [4, 26, 52, 84, 94, 99], "exce": [4, 85, 88], "transform": [4, 10, 32, 48, 50, 52, 66, 67, 82, 83, 87, 88, 91, 99, 103], "rel": [4, 10, 36, 57, 58, 66, 86, 87, 88, 90, 91, 94, 99], "adjust": [4, 38, 43, 61, 66, 67, 79, 94], "closer": [4, 10, 64, 98], "highli": [4, 87, 88], "influenti": 4, "posit": [4, 5, 37, 41, 50, 52, 65, 92, 99], "convers": 4, "neg": [4, 10, 64, 65, 86, 87, 92], "valueerror": [4, 5, 12, 13, 34, 45, 48, 50, 93], "neither": [4, 5, 10, 14, 98], "nor": [4, 5, 10, 14], "larger": [4, 18, 69, 71, 73, 85, 88, 91, 92, 93], "55": [4, 51, 92, 98, 101], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 84, 88, 89, 90, 91, 93, 94, 97, 98, 101], "kind": [5, 6, 7, 10, 84, 85, 86, 88, 90, 91, 92, 94], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 53, 57, 65, 74, 75, 82, 83, 84, 86, 90, 91, 94, 96, 99, 100], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 52, 55, 59, 66, 69, 70, 79], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 55, 56, 71, 73], "pip": [5, 7, 9, 11, 35, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "github": [5, 7, 9, 11, 35, 37, 38, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 52, 66, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "egg": [5, 7, 9, 11, 35, 79, 92], "label_nam": [5, 7, 8, 10, 12, 18, 31, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "image_kei": [5, 10, 88], "interfac": [5, 9, 10, 79, 93, 94], "librari": [5, 10, 41, 62, 65, 66, 79, 83, 86, 91, 92, 93], "goal": [5, 101], "track": [5, 7, 13, 14, 79, 85, 86, 92, 93, 94], "intermedi": [5, 9, 87], "statist": [5, 10, 13, 22, 26, 36, 57, 58, 65, 87, 90, 91, 94], "convert": [5, 10, 12, 34, 37, 41, 49, 50, 53, 57, 64, 73, 77, 80, 83, 84, 88, 91, 92, 93, 96, 97, 98], "hug": [5, 10, 12, 88], "face": [5, 10, 12, 16, 88, 92, 97], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 57, 58, 64, 66, 85, 86, 87, 88, 91, 93, 94, 96, 98], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 57, 58, 70, 74, 77, 78, 83, 90, 91, 93, 96, 97, 103], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 52, 57, 58, 61, 62, 64, 65, 86, 87, 90, 91, 94, 96, 97, 98], "path": [5, 12, 37, 40, 41, 65, 84, 86, 93, 98], "local": [5, 7, 10, 12, 37, 38, 41, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 66, 75, 77, 78, 79, 81, 86, 87, 89, 92, 93, 94, 95, 96, 99], "txt": [5, 12, 103], "csv": [5, 12, 82, 83, 90, 91, 101], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 52, 57, 97], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 83, 85, 86, 87, 91, 95, 96, 99], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 97], "imag": [5, 9, 36, 41, 62, 64, 65, 66, 71, 73, 74, 79, 86, 87, 89, 92, 93, 95, 96, 97, 98, 100, 102], "field": [5, 10, 37, 41], "themselv": [5, 82, 83, 101], "pil": [5, 88], "cleanvis": [5, 10], "level": [5, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 51, 75, 77, 87, 88, 93, 95, 97, 102], "load_dataset": [5, 12, 88], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 85], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 58, 65, 74, 78, 79, 92, 94, 98, 102, 103], "empti": [5, 12, 46, 57, 87, 93, 97], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "sort": [5, 16, 40, 43, 48, 57, 59, 62, 64, 65, 67, 73, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "common": [5, 13, 16, 87, 89, 92, 93, 94, 97, 98, 102], "real": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "world": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "interact": [5, 16, 91, 93], "thereof": [5, 16], "insight": [5, 16, 65, 96], "best": [5, 9, 10, 16, 47, 57, 67, 82, 83, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 103], "properli": [5, 10, 40, 47, 52, 53, 71, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 101, 102], "respect": [5, 37, 41, 62, 65, 84, 85, 86, 87, 88, 90, 91, 94, 97, 98], "lexicograph": [5, 47, 52, 84, 85, 86, 87, 88, 90, 91, 94, 97], "squar": [5, 52, 69, 92, 101], "csr": 5, "evenli": 5, "omit": [5, 64, 65, 88, 98], "itself": [5, 32, 37, 41, 98], "three": [5, 10, 36, 57, 58, 69, 74, 82, 84, 85, 86, 87, 90, 92, 94, 96, 100, 101, 102, 103], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 79, 90, 97, 103], "th": [5, 42, 47, 51, 52, 57, 59, 62, 64, 65, 66, 75, 77, 78, 91, 97, 98, 103], "ascend": [5, 36, 58, 88, 94], "segment": [5, 71, 73, 74, 95], "reflect": [5, 82, 83, 90, 91, 96, 98, 99, 101], "maintain": [5, 56], "kneighbors_graph": [5, 18, 90], "illustr": 5, "todens": 5, "second": [5, 48, 52, 65, 67, 86, 93, 94, 103], "duplic": [5, 9, 21, 22, 37, 41, 79, 85, 86, 94, 101], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 57, 93, 96, 103], "unspecifi": [5, 16, 43, 59], "interest": [5, 16, 22, 74, 78, 82, 83, 91, 94, 101, 102, 103], "constructor": [5, 10, 16, 23, 30], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 69, 70, 92, 101, 103], "random_st": [5, 82, 84, 85, 86, 87, 88, 94, 97, 99], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 79, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101], "comprehens": [5, 79, 88, 97, 101], "nbr": 5, "n_neighbor": [5, 10, 18, 66], "mode": [5, 11, 18, 37, 40, 41, 99], "4x4": 5, "float64": [5, 26, 37, 41, 77], "compress": [5, 10, 52, 71, 73], "toarrai": 5, "NOT": [5, 40, 91], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 87], "suppos": [5, 10, 62, 82, 83, 99, 101], "who": [5, 64, 82, 90, 94, 103], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 56, 86, 93], "clean_learning_kwarg": [5, 10, 23, 30, 93, 101], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 80], "prune_by_noise_r": [5, 43, 59, 94], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 78, 79, 84, 85, 86, 87, 90, 91, 93, 94, 97, 101, 103], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 55, 56, 58, 63, 72, 73, 75, 76, 77, 80, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 101, 102, 103], "show": [5, 7, 26, 37, 41, 47, 52, 65, 74, 78, 82, 85, 87, 88, 90, 91, 92, 93, 94, 96, 99, 101, 102, 103], "suffer": [5, 10, 13, 22, 59, 67, 78, 103], "onc": [5, 22, 36, 37, 41, 82, 85, 86, 93, 94, 97, 98], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 57, 58, 61, 64, 65, 69, 73, 74, 75, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 98, 103], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 61, 64, 66, 67, 73, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 98, 99, 103], "compar": [5, 57, 66, 77, 86, 87, 90, 94, 98], "issue_summari": [5, 7, 10, 13, 85, 86], "With": [5, 9, 10, 40, 83, 91, 93, 94, 96, 101, 102, 103], "usag": [5, 40, 56], "usual": [5, 12, 32, 33, 88, 96, 101], "ti": [5, 57], "exhibit": [5, 7, 10, 13, 74, 87, 88, 90, 91, 94, 98], "ie": [5, 69], "likelihood": [5, 10, 40, 42, 43, 59, 64, 66, 67, 71, 75], "wherea": [5, 52, 59, 100], "outlier": [5, 9, 14, 21, 22, 31, 44, 67, 79, 85, 86, 87, 94, 95, 101], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 94, 101], "global": [5, 7, 22, 37, 41], "non_iid": [5, 10, 14, 26, 87, 88, 90, 91, 94], "hypothesi": 5, "iid": [5, 7, 9, 26, 90, 94], "never": [5, 84, 94, 97, 99, 100], "someth": [5, 7, 37, 41, 67, 98], "123": [5, 85, 86, 87], "456": [5, 82, 83, 84], "nearest_neighbor": 5, "7": [5, 48, 49, 56, 75, 77, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 61, 75, 77, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "distance_to_nearest_neighbor": [5, 86, 87, 88, 90, 91, 94], "789": 5, "get_issu": [5, 10, 13, 84, 85, 87, 88, 90, 91, 93, 97, 101], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86, 87], "focu": [5, 13, 91, 102, 103], "full": [5, 10, 13, 40, 56, 65, 85, 88, 103], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 58, 74, 78, 79, 102], "specific_issu": [5, 13], "lie": [5, 10, 66, 67, 83, 84, 86, 87, 88, 90, 91, 94], "get_issue_summari": [5, 13, 85, 87], "get_info": [5, 13, 87, 91], "yet": [5, 17, 27, 56, 92, 96], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 86], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 84, 86, 88], "load": [5, 12, 40, 65, 88, 92, 93, 94, 98, 99, 102, 103], "futur": [5, 10, 22, 37, 41, 57, 79, 83, 84, 86, 91, 93], "overwrit": [5, 86], "separ": [5, 36, 48, 61, 86, 87, 88, 93, 98, 100], "static": 5, "rememb": [5, 91, 93, 94], "part": [5, 10, 37, 41, 43, 62, 64, 65, 84, 86, 92, 102, 103], "ident": [5, 10, 22, 52, 85, 91], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 79, 82, 83, 84, 88, 93, 96, 101], "walk": 7, "alongsid": [7, 37, 41, 86, 93], "pre": [7, 8, 10, 37, 41, 86, 87, 101], "runtim": [7, 37, 40, 41, 69, 71, 73, 84, 88, 93], "issue_manager_factori": [7, 14, 86], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "thing": [7, 41, 83, 94, 101], "next": [7, 57, 79, 82, 83, 84, 85, 90, 91, 93, 96, 98, 101, 103], "dummi": 7, "randint": [7, 31, 48, 85, 86, 87, 93], "mark": [7, 10, 80, 98, 99, 101], "regard": [7, 87, 94], "rand": [7, 48, 85, 86, 87], "is_": [7, 10, 86], "_issu": [7, 10, 86], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "whole": [7, 26, 37, 41, 87], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "popul": [7, 87, 91], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 98], "raw_scor": 7, "bit": 7, "involv": [7, 40, 74, 78, 85, 93, 97], "intermediate_arg": 7, "min": [7, 48, 64, 77, 86, 93, 99], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 71, 77, 91, 93], "easili": [7, 46, 80, 82, 83, 84, 85, 87, 90, 91, 94, 96, 97, 99, 100, 101, 102], "hard": [7, 41, 92, 99], "sai": [7, 10, 37, 41, 97, 102], "anoth": [7, 22, 36, 40, 51, 64, 67, 83, 90, 91, 93, 94, 96, 99], "try": [7, 9, 10, 40, 43, 56, 57, 71, 73, 79, 85, 87, 88, 90, 91, 93, 94, 102], "won": [7, 37, 41, 86, 87, 93, 97], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 86], "instanti": [7, 16, 40, 56, 66, 83, 84, 87, 90], "477762": 7, "286455": 7, "term": [7, 10, 46, 52, 65, 84, 85, 86, 87, 88, 90, 91, 94], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 98, 99, 101, 102, 103], "003042": 7, "058117": 7, "11": [7, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "121908": 7, "15": [7, 50, 56, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "169312": 7, "17": [7, 83, 84, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 86, 87, 92, 94], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 92, 98, 103], "dbscan": [8, 10, 31, 93], "hdbscan": [8, 93], "etc": [8, 10, 22, 32, 37, 41, 46, 56, 57, 75, 79, 86, 87, 90, 91, 93, 94, 97, 101], "sensit": [8, 10, 50], "ep": [8, 31, 65], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 93], "your_data": 8, "get_pred_prob": [8, 85], "n_cluster": [8, 31, 93], "cluster_id": [8, 10, 31, 93], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 87, 88, 90, 91, 93, 94], "search": [9, 10, 20, 26, 27, 51, 69, 93, 100], "nondefault": 9, "Near": [9, 93], "imbal": [9, 21, 61, 66, 67, 87], "null": [9, 14, 21, 87, 88, 91, 94], "togeth": [9, 10, 46, 83, 86, 87, 88, 90, 91, 94, 101, 103], "built": [9, 48], "own": [9, 37, 39, 41, 55, 61, 62, 65, 71, 75, 82, 83, 84, 87, 88, 90, 91, 93, 96, 97, 101, 102, 103], "prerequisit": 9, "basic": [9, 41, 56, 90, 91, 99], "fulli": [9, 10, 37, 41, 56, 93], "platform": [9, 10, 79, 88, 90, 91, 93], "write": [9, 10], "code": [9, 10, 37, 41, 46, 52, 56, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "being": [9, 10, 13, 36, 37, 41, 43, 48, 51, 52, 67, 82, 90, 93, 94, 101, 102], "100x": [9, 10], "faster": [9, 10, 40, 66, 69, 71, 73, 93, 94], "intellig": [9, 10], "quickli": [9, 10, 38, 82, 84, 88, 90, 91, 93, 97, 99, 102, 103], "fix": [9, 10, 57, 83, 85, 91, 94, 101], "scientist": [9, 10], "million": [9, 10, 103], "thank": [9, 10], "ai": [9, 10, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103], "suggest": [9, 10, 36, 57, 58, 64, 83, 88, 91, 93, 101], "power": [9, 10, 88, 90, 91, 92, 94, 103], "automl": [9, 10, 79, 93], "system": [9, 10, 84, 85, 88, 90, 91, 102], "foundat": [9, 10, 79], "improv": [9, 10, 57, 82, 83, 87, 88, 92, 93, 94, 101, 102], "click": [9, 10, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "tune": [9, 10, 83, 84, 91, 92, 99], "serv": [9, 10, 13, 16, 96], "auto": [9, 10, 82, 83, 85, 87, 92, 93, 101], "free": [9, 10, 79, 84, 87, 88, 90, 91, 93, 94], "page": [10, 87, 93, 94], "variou": [10, 13, 30, 39, 53, 55, 79, 82, 86, 87, 90, 91, 92, 93, 94, 96, 98], "why": [10, 85, 91], "matter": [10, 36, 58, 83, 91], "didn": 10, "plu": [10, 101], "_score": 10, "badli": [10, 64, 82, 83, 103], "issue_scor": 10, "outlier_scor": [10, 28, 86, 87, 88, 90, 91, 94, 99], "atyp": [10, 66, 86, 87, 88, 90, 91, 94, 99], "datapoint": [10, 31, 43, 48, 52, 67, 70, 79, 82, 83, 84, 86, 87, 90, 91, 93, 100, 101], "is_issu": [10, 22], "is_outlier_issu": [10, 86, 87, 88, 90, 91, 94], "annot": [10, 36, 47, 57, 58, 59, 61, 62, 64, 65, 74, 77, 78, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 98, 102], "dissimilar": [10, 90, 91], "preced": 10, "incorrect": [10, 64, 67, 70, 82, 84, 85, 86, 87, 88, 90, 91, 94, 98, 101], "due": [10, 40, 43, 67, 71, 73, 84, 85, 86, 87, 88, 90, 91, 94, 101], "appear": [10, 36, 47, 58, 59, 62, 70, 87, 88, 90, 91, 101, 102], "now": [10, 40, 80, 82, 83, 84, 85, 87, 96, 98, 99, 101, 103], "token": [10, 42, 51, 73, 74, 75, 76, 77, 78, 93, 94, 95], "hamper": [10, 88, 92], "analyt": [10, 79, 93, 96], "lead": [10, 64, 67, 88, 98], "draw": [10, 85, 86, 87], "conclus": [10, 91], "veri": [10, 36, 58, 62, 64, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101], "rare": [10, 43, 65, 86, 87, 88, 90, 91, 93, 94], "anomal": [10, 67, 86, 87, 88, 90, 91, 94], "articl": [10, 40, 93], "blog": 10, "unexpect": [10, 37, 41, 91], "consequ": 10, "inspect": [10, 83, 84, 85, 87, 88, 94, 98, 101], "extrem": [10, 86, 87, 88, 90, 91, 93, 94], "record": [10, 37, 41, 84, 90, 101], "abbrevi": 10, "misspel": 10, "typo": [10, 78], "resolut": 10, "video": [10, 92], "audio": [10, 86, 87, 89, 93], "minor": [10, 51], "variat": 10, "translat": 10, "d": [10, 50, 82, 90, 91, 93, 94, 97, 101, 103], "constant": [10, 31, 69], "median": [10, 30, 50], "question": [10, 22, 79, 94], "nearli": [10, 22, 87, 88, 90, 91], "awar": [10, 80, 94], "presenc": [10, 94], "near_dupl": [10, 14, 19, 85, 86, 87, 88, 90, 91, 93, 94], "signific": [10, 90, 91, 94], "violat": [10, 90, 91, 94], "assumpt": [10, 90, 91, 94], "changepoint": [10, 90, 91, 94], "shift": [10, 90, 91, 94], "drift": [10, 87, 90, 94], "autocorrel": [10, 90, 91, 94], "almost": [10, 90, 91, 94], "adjac": [10, 90, 91, 94], "tend": [10, 36, 46, 90, 91, 94, 102, 103], "sequenti": [10, 37, 41, 56, 88], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 51, 52, 77, 82, 90, 91, 92, 93, 94, 100, 103], "x1": [10, 62, 65, 98], "x2": [10, 62, 65, 98], "10th": 10, "100th": 10, "90": [10, 77, 82, 90, 94, 100, 101], "similarli": [10, 37, 41, 86, 88, 90, 93, 98], "math": [10, 88], "behind": [10, 66, 94], "proper": [10, 52, 57, 62, 65, 82, 88, 91, 93, 96, 98], "scenario": [10, 67, 85, 86, 87], "underli": [10, 42, 66, 75, 77, 103], "stem": [10, 66, 99], "evolv": 10, "influenc": 10, "act": [10, 64, 86], "accordingli": [10, 32], "emploi": [10, 97, 99], "partit": [10, 100], "ahead": 10, "good": [10, 37, 41, 50, 56, 58, 64, 67, 71, 73, 74, 79, 85, 88, 90, 91], "problem": [10, 32, 40, 48, 74, 79, 86, 87, 88, 91, 93], "deploy": [10, 82, 83, 94, 101], "overlook": [10, 64, 98], "fact": 10, "thu": [10, 36, 41, 58, 82, 84, 90, 91, 94, 100, 103], "diagnos": [10, 87, 93], "rarest": [10, 87], "q": [10, 98], "subpar": 10, "special": [10, 51], "techniqu": [10, 98], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 87, 88, 90, 91, 94], "excess": [10, 88], "dark": [10, 102], "bright": [10, 103], "blurri": [10, 88], "lack": [10, 56], "unusu": [10, 98, 99], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 79, 87, 88, 90, 91, 95], "get_self_confidence_for_each_label": [10, 48, 67], "r": [10, 40, 69, 85, 86, 87, 101, 102], "tabular": [10, 79, 81, 86, 87, 89, 93, 96], "categor": [10, 66, 81, 82, 86, 87, 89, 93, 101], "encod": [10, 49, 65, 71, 74, 82, 83, 90, 91, 93, 101, 102], "miss": [10, 27, 37, 41, 52, 62, 64, 85, 90, 93, 98, 101], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 52, 66, 93], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 87], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 79, 92], "health_summary_kwarg": 10, "tandem": [10, 92], "view": [10, 37, 41, 42, 43, 73, 75, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 103], "ood_kwarg": 10, "outofdistribut": [10, 28, 66, 99], "outsid": [10, 93, 97], "outlierissuemanag": [10, 14, 21, 28, 86], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 86, 87, 88, 91, 93, 94, 96, 97, 98, 101, 102], "howev": [10, 37, 41, 52, 82, 83, 84, 88, 90, 91, 96, 100, 102], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 84, 86, 92, 96, 98], "fewer": [10, 43, 52, 98], "vice": [10, 58], "versa": [10, 58], "light": [10, 88, 92, 98, 102], "29": [10, 85, 88, 92, 96, 97, 98, 102, 103], "low_inform": [10, 88], "odd_aspect_ratio": [10, 88], "35": [10, 86, 92, 96, 97, 98], "odd_siz": [10, 88], "doc": [10, 37, 41, 79, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "studio": [11, 79, 87, 88, 90, 91, 93], "data_issu": [11, 15, 16, 33, 86], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 56, 67, 85, 86, 87, 88, 96], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 65, 96], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 88], "dataissu": [13, 15, 16, 33], "central": [13, 103], "repositori": 13, "strategi": [13, 48, 93], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 52, 59, 62, 65, 69, 71, 73, 85, 86, 87, 93], "recomput": [13, 83], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 58, 79], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 66, 86], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 71, 73], "stabl": [15, 21, 24, 29, 39, 44, 52, 55, 66, 80], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 94, 98, 102, 103], "creation": [16, 41], "execut": [16, 37, 41, 86, 93, 98], "coordin": [16, 62, 64, 65, 98, 103], "behavior": [16, 36, 37, 41, 65, 85, 93], "At": [16, 65, 93], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 56], "valuabl": 18, "vstack": [18, 52, 88, 92, 93, 94, 96, 97], "25": [18, 26, 37, 48, 50, 85, 87, 88, 92, 94, 96, 97, 98, 103], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 51, 52], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 85, 86, 87, 88, 93, 94, 96, 97], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 83, 91, 99], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 51, 52, 82, 84, 86, 88, 92, 94, 97], "near_duplicate_set": [19, 21, 86, 87, 88, 90, 91, 93, 94], "occurr": [19, 20, 22, 26, 27, 28, 31, 51], "median_nn_dist": 19, "near_duplicate_scor": [19, 86, 87, 88, 90, 91, 93, 94], "class_imbalance_scor": [20, 87], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 64, 79, 94, 103], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 66, 67, 86, 87, 88, 91, 94, 99], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 102], "priori": [22, 94], "abstract": [22, 32], "applic": [23, 57, 93, 94, 96, 103], "typevar": [23, 25, 37, 41, 51, 61, 64, 65], "scalartyp": [23, 25], "covari": [23, 25, 69, 101], "summary_dict": 23, "label_scor": [23, 25, 30, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 67, 71, 73, 98, 102], "empir": [26, 47, 57], "cumul": 26, "ecdf": 26, "histogram": [26, 90, 101], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 87, 90, 91, 94], "null_track": 27, "extend": [27, 49, 56, 88, 98, 99, 103], "superclass": 27, "arbitrari": [27, 36, 73, 77, 86, 99, 101], "prompt": 27, "address": [27, 83, 86, 87, 91, 93], "enabl": [27, 41], "null_scor": [27, 87], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "multipli": [30, 50], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 52, 65, 83, 103], "50": [31, 41, 85, 93, 94, 96, 98, 99, 101], "keepdim": [31, 93], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 84, 96], "npt": 31, "int_": 31, "id": [31, 57, 86, 88, 93, 96], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 87], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": 32, "mainli": [32, 99, 103], "content": [32, 66, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "fetch": [32, 40, 84, 87, 93], "datset": 33, "exclud": [33, 42, 74, 78, 86, 93, 103], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 85, 86, 87], "continu": [34, 56, 82, 83, 88, 91, 93, 96, 98, 101, 103], "binari": [34, 48, 52, 59, 61, 94, 103], "simultan": [34, 101], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 86, 87], "typeerror": [34, 48], "12": [34, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 57, 58, 67, 85, 86, 87, 88, 92, 98, 100, 102], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 82, 83, 84, 87, 88, 90, 91, 96, 98, 99, 101, 103], "modifi": [36, 37, 40, 41, 52, 93, 94], "help": [36, 37, 41, 65, 79, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 96, 97, 101, 102, 103], "rank_classes_by_label_qu": [36, 87], "merg": [36, 51, 79, 92, 93, 103], "find_overlapping_class": [36, 93, 94], "problemat": [36, 58, 74, 78, 84, 98, 103], "unnorm": [36, 58, 94], "abov": [36, 37, 40, 41, 52, 57, 64, 65, 67, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "model_select": [36, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101], "cross_val_predict": [36, 41, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 100, 101], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 94], "cv": [36, 48, 82, 84, 85, 86, 87, 90, 94, 96], "df": [36, 52, 78, 84, 93], "overall_label_qu": [36, 58], "col": 36, "prob": [36, 51, 94, 100], "divid": [36, 58, 67], "label_nois": [36, 58], "human": [36, 92, 102, 103], "clearli": [36, 67, 88, 98, 102], "num": [36, 58, 92, 94], "overlap": [36, 79, 92, 93, 94], "ontolog": 36, "publish": [36, 103], "therefor": [36, 67], "vehicl": [36, 92], "truck": [36, 92, 99, 102], "intuit": [36, 58, 85], "car": [36, 92, 98, 102], "frequent": [36, 57, 90, 93, 101], "characterist": 36, "l": [36, 37, 41, 62, 64, 65], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 52, 58, 60, 74, 92, 93, 99, 100, 103], "cat": [36, 52, 58, 60, 92, 93, 99, 100], "captur": [36, 84, 98, 99, 102], "co": [36, 37, 38], "noisy_label": [36, 85, 86, 87, 97], "overlapping_class": 36, "descend": [36, 37, 41, 48, 58, 65], "overall_label_health_scor": [36, 58, 94], "half": [36, 37, 39, 41, 58, 92, 103], "health_scor": [36, 58], "classes_by_label_qu": [36, 87], "cnn": [37, 39, 41, 88], "cifar": [37, 38, 92, 99], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 65, 85, 86, 93, 96, 99, 100, 102, 103], "forward": [37, 38, 39, 41, 88, 96], "overridden": [37, 41], "although": [37, 41, 66, 82, 90], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 53, 58, 65, 73, 77, 93, 96, 97, 98, 100, 103], "former": [37, 41], "hook": [37, 41, 92], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 65], "recurs": [37, 41, 48], "submodul": [37, 41], "children": [37, 39, 41, 103], "nn": [37, 38, 41, 88], "init": [37, 41, 94], "no_grad": [37, 41, 88, 99], "init_weight": [37, 41], "linear": [37, 41, 83, 88, 91], "fill_": [37, 41], "net": [37, 41, 84, 88, 92], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 88], "tensor": [37, 38, 41, 83, 84, 88, 91, 99], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 84], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 99], "compil": [37, 39, 41, 56], "cpu": [37, 39, 41, 43, 84, 88], "move": [37, 41, 48, 80, 92], "cuda": [37, 39, 41, 84, 88], "devic": [37, 41, 84, 88], "gpu": [37, 41, 83, 84, 91], "live": [37, 41], "copi": [37, 41, 69, 82, 84, 85, 86, 87, 90, 93, 97, 100, 101], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 88, 97, 99], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 79, 86, 92, 96, 99, 103], "get_buff": [37, 39, 41], "target": [37, 38, 41, 69, 70, 99, 101], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 91], "resolv": [37, 41, 85, 103], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 88, 102], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 88], "break": [37, 41, 88, 98], "pickl": [37, 41, 98], "get_paramet": [37, 39, 41], "let": [37, 41, 66, 67, 82, 83, 84, 85, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 88], "16": [37, 41, 48, 56, 73, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 102, 103], "33": [37, 41, 92, 98], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 67, 85, 92, 98, 103], "diagram": [37, 41, 100], "degre": [37, 41], "queri": [37, 41, 87, 88, 93, 97], "named_modul": [37, 39, 41], "o": [37, 41, 50, 51, 84, 85, 86, 87, 92, 93, 94, 97, 98, 103], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 96], "preserv": [37, 41, 52], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 52, 53, 65, 86, 88, 93, 94, 96, 98, 99], "named_buff": [37, 39, 41], "prefix": [37, 41, 84, 103], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 83, 84, 91, 93], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 82, 90], "fire": [37, 41, 92], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 86, 87], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 88, 90, 101], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 83, 84, 91], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 56, 80, 84, 93], "design": [37, 41, 85], "ordereddict": [37, 41], "detach": [37, 41, 88], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 58, 64], "complex": [37, 41, 84], "integr": [37, 41, 79, 93], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 83, 91, 92], "desir": [37, 41, 51, 65], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 84], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 83, 91], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 88], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 98], "noisili": [38, 94], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 56, 88], "decim": [38, 52], "forget": [38, 48, 103], "rate_schedul": 38, "epoch": [38, 39, 41, 88, 93], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 67, 93], "250": [38, 86, 87, 94, 98], "epoch_decay_start": 38, "80": [38, 82, 90, 97, 101], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 83, 88, 91, 94], "train_load": [38, 41], "model1": [38, 94], "optimizer1": 38, "model2": [38, 94], "optimizer2": 38, "dataload": [38, 88, 99], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 55, 103], "wish": [39, 55, 99, 102, 103], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 93], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 72, 73, 74, 75, 76, 77, 78, 102, 103], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 71, 73, 85, 88, 93, 99, 102], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 88], "loader": [39, 41, 88], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 80], "mini": [40, 71, 73, 93], "low_self_confid": [40, 43, 59], "self_confid": [40, 43, 44, 48, 59, 61, 67, 75, 77, 82, 83, 93, 94], "conveni": [40, 83, 84, 91], "script": 40, "labels_fil": [40, 93], "pred_probs_fil": [40, 93], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 57, 102], "read": [40, 45, 87, 93, 94, 99, 103], "zarr": [40, 93], "memmap": [40, 102], "pythonspe": 40, "mmap": [40, 93], "hdf5": 40, "further": [40, 42, 58, 59, 61, 64, 65, 73, 74, 84, 93], "yourfil": 40, "npy": [40, 92, 93, 102], "mmap_mod": [40, 102], "tip": [40, 43, 56, 93], "save_arrai": 40, "your_arrai": 40, "disk": [40, 92, 93], "npz": [40, 103], "maxim": [40, 57, 71, 73, 102], "multiprocess": [40, 43, 59, 71, 73, 88, 93], "linux": [40, 71, 73], "physic": [40, 43, 71, 73, 98], "psutil": [40, 43, 71, 73], "labels_arrai": [40, 53], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 65, 86, 93, 98, 99], "store_result": 40, "becom": [40, 99], "verifi": [40, 93, 96, 99], "long": [40, 57, 66, 96], "enough": [40, 52, 93], "chunk": [40, 100], "ram": [40, 92], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 93], "shortcut": 40, "encount": [40, 43, 71], "1000": [40, 84, 91, 93, 99], "aggreg": [40, 44, 48, 57, 61, 64, 67, 77, 93, 94, 96], "seen": [40, 85, 93, 99, 103], "far": [40, 57], "label_quality_scor": [40, 61, 64, 67, 70, 94, 98], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 59, 61, 67, 75, 77], "low_normalized_margin": [40, 43, 59], "issue_indic": [40, 64, 88], "update_num_issu": 40, "arr": [40, 93], "chunksiz": 40, "convnet": 41, "bespok": [41, 56], "download": [41, 84, 88, 93, 99], "mnist": [41, 79, 84, 92], "handwritten": 41, "digit": [41, 84, 92], "last": [41, 48, 62, 65, 85, 86, 87, 93, 96, 98, 103], "sklearn_digits_test_s": 41, "64": [41, 82, 88, 90, 94, 98], "01": [41, 67, 69, 84, 94, 97, 98], "templat": 41, "flexibli": 41, "among": [41, 57, 94], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 52, 99], "train_label": [41, 83, 99], "scikit": [41, 52, 66, 79, 83, 84, 85, 86, 87, 90, 91, 93, 101], "span": 42, "sentenc": [42, 51, 75, 77, 78, 83, 91], "token_classif": [42, 51, 75, 77, 78, 93], "encourag": [43, 59, 67, 70], "multilabel_classif": [43, 58, 59, 61, 67, 93, 97], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 59, 67, 94], "num_to_remove_per_class": [43, 59], "bad": [43, 59, 64, 67, 91, 93], "seem": [43, 94, 97], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 59, 61, 67, 75, 77], "label_issues_idx": [43, 67], "entropi": [43, 45, 47, 48, 66, 67], "prune_by_class": [43, 59, 94], "predicted_neq_given": [43, 59, 94], "prune_counts_matrix": 43, "smallest": [43, 67], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 79, 83, 93], "too": [43, 48, 66, 87, 88, 93, 98], "thread": [43, 59], "window": [43, 84, 92], "shorter": [43, 62], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 52], "clip_noise_r": [44, 52], "clip_valu": [44, 52], "value_count": [44, 52, 93], "value_counts_fill_missing_class": [44, 52], "get_missing_class": [44, 52], "round_preserving_sum": [44, 52], "round_preserving_row_tot": [44, 52], "estimate_pu_f1": [44, 52], "confusion_matrix": [44, 52], "print_square_matrix": [44, 52], "print_noise_matrix": [44, 52, 94], "print_inverse_noise_matrix": [44, 52], "print_joint_matrix": [44, 52, 94], "compress_int_arrai": [44, 52], "train_val_split": [44, 52], "subset_x_i": [44, 52], "subset_label": [44, 52], "subset_data": [44, 52], "extract_indices_tf": [44, 52], "unshuffle_tensorflow_dataset": [44, 52], "is_torch_dataset": [44, 52], "is_tensorflow_dataset": [44, 52], "csr_vstack": [44, 52], "append_extra_datapoint": [44, 52], "get_num_class": [44, 52], "num_unique_class": [44, 52], "get_unique_class": [44, 52], "format_label": [44, 52], "smart_display_datafram": [44, 52], "force_two_dimens": [44, 52], "latent_algebra": [44, 80], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 97], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 97], "onehot2int": [44, 49, 97], "multilabel_scor": [44, 61], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 61], "softmin": [44, 48, 61, 64, 73, 77], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "transform_distances_to_scor": [44, 50], "correct_precision_error": [44, 50], "token_classification_util": [44, 103], "get_sent": [44, 51, 103], "filter_sent": [44, 51, 103], "process_token": [44, 51], "merge_prob": [44, 51], "color_sent": [44, 51], "assert_valid_input": [44, 53], "assert_valid_class_label": [44, 53], "assert_nonempty_input": [44, 53], "assert_indexing_work": [44, 53], "labels_to_arrai": [44, 53], "labels_to_list_multilabel": [44, 53], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 56, 57, 79, 96], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 52, 84], "behav": 45, "unnecessari": [45, 93], "slightli": [45, 82, 83, 85], "interv": [45, 48, 99], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 52, 69, 84, 96, 102, 103], "increas": [46, 50, 64, 66, 67, 84, 86, 93, 96, 97, 103], "dot": [46, 77, 93], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 57], "ensembl": [47, 48, 57, 67, 82, 90, 93, 97, 99, 101], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 57], "format_multiannotator_label": [47, 57, 96], "formatted_label": [47, 52], "old": [47, 52, 80, 84, 92], "check_consensus_label_class": 47, "consensus_label": [47, 57, 96], "consensus_method": [47, 57], "consensu": [47, 57, 79, 95, 103], "establish": [47, 56, 83, 101], "compute_soft_cross_entropi": 47, "soft": [47, 92], "find_best_temp_scal": 47, "coarse_search_rang": [47, 69, 93], "fine_search_s": [47, 69, 93], "temperatur": [47, 48, 64, 73, 77], "scale": [47, 50, 82, 92, 93, 99, 102], "factor": [47, 48, 50, 71, 73], "minim": [47, 64, 99], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 92], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 67], "get_confidence_weighted_entropy_for_each_label": [48, 67], "75": [48, 85, 86, 87, 92, 96, 97, 98, 101, 103], "scorer": 48, "alpha": [48, 61, 64, 85, 86, 87, 94, 97, 101], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 59, 90, 91, 94, 103], "formula": [48, 50], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 67, 94, 96, 102], "recent": [48, 103], "success": 48, "previou": [48, 88, 93, 98], "discount": 48, "s_ema": 48, "175": [48, 88, 94, 98], "underflow": 48, "nan": [48, 57, 82, 90, 96, 101], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 61], "n_sampl": 48, "n_label": 48, "worst": [48, 96], "class_label_quality_scor": 48, "42": [48, 91, 92, 98, 103], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 60, 61], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 84], "wider": 48, "splitter": 48, "kfold": [48, 88], "onevsrestclassifi": [48, 97], "randomforestclassifi": [48, 94, 97], "n_split": [48, 87, 88, 97], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 59, 65, 71, 74, 82, 90, 92, 93, 101, 102], "onehot_matrix": 49, "avg_dist": 50, "scaling_factor": 50, "exp": [50, 66, 67, 86], "dt": 50, "right": [50, 62, 65, 83, 91, 97, 98, 99], "strength": [50, 65], "pronounc": 50, "differenti": 50, "ly": 50, "rule": [50, 51, 92], "thumb": 50, "ood_features_scor": [50, 66, 99], "88988177": 50, "80519832": 50, "toler": 50, "minkowski": 50, "noth": 50, "epsilon": 50, "sensibl": 50, "fixed_scor": 50, "readabl": 51, "lambda": [51, 84, 86, 93, 96], "long_sent": 51, "headlin": 51, "charact": [51, 52], "s1": 51, "s2": 51, "processed_token": 51, "alecnlcb": 51, "entiti": [51, 79, 93, 103], "mapped_ent": 51, "unique_ident": 51, "loc": [51, 85, 86, 87, 88, 103], "nbitbas": [51, 61], "probs_merg": 51, "0125": [51, 77], "0375": 51, "075": 51, "025": 51, "color": [51, 74, 85, 86, 87, 90, 94, 97, 99, 101, 102], "red": [51, 65, 85, 86, 87, 92, 94, 97, 98, 99, 102], "colored_sent": 51, "termcolor": 51, "31msentenc": 51, "0m": 51, "ancillari": 52, "class_without_nois": 52, "any_other_class": 52, "choos": [52, 67, 82, 90, 93, 94, 101], "tradition": 52, "new_sum": 52, "fill": 52, "come": [52, 85, 86, 87, 93, 102], "major": [52, 57, 80, 85, 88, 99], "versu": [52, 94], "obviou": 52, "cgdeboer": 52, "iteround": 52, "reach": 52, "prob_s_eq_1": 52, "claesen": 52, "f1": [52, 65, 91, 94], "BE": 52, "left_nam": 52, "top_nam": 52, "titl": [52, 85, 86, 87, 94, 97, 99], "short_titl": 52, "round_plac": 52, "pretti": [52, 85, 94], "joint_matrix": 52, "num_possible_valu": 52, "holdout_idx": 52, "extract": [52, 66, 83, 84, 91, 96, 99, 102], "allow_shuffl": 52, "turn": [52, 79, 98], "shuffledataset": 52, "histori": 52, "pre_x": 52, "buffer_s": 52, "csr_matric": 52, "append": [52, 84, 85, 88, 92, 93, 94, 96, 97, 98, 99, 103], "bottom": [52, 62, 65, 98], "to_data": 52, "from_data": 52, "taken": 52, "label_matrix": 52, "canon": 52, "displai": [52, 65, 74, 78, 83, 84, 85, 91, 94, 103], "jupyt": [52, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "notebook": [52, 57, 84, 85, 87, 92, 93, 94, 96, 97, 98, 102, 103], "consol": 52, "html": [52, 62, 65, 66, 90, 93, 94], "allow_missing_class": 53, "allow_one_class": 53, "length_x": 53, "labellik": 53, "labels_list": [53, 59], "keraswrappermodel": [55, 56, 79], "keraswrappersequenti": [55, 56], "tf": [56, 84], "legaci": 56, "newer": 56, "interim": 56, "advis": [56, 97], "stabil": 56, "until": 56, "accommod": 56, "keraswrapp": 56, "huggingface_keras_imdb": 56, "unit": [56, 103], "model_kwarg": [56, 69], "compile_kwarg": 56, "sparsecategoricalcrossentropi": 56, "layer": [56, 83, 84, 91, 99], "dens": 56, "my_keras_model": 56, "from_logit": 56, "declar": 56, "apply_softmax": 56, "analysi": 57, "analyz": [57, 79, 94, 96, 97], "get_label_quality_multiannot": [57, 96], "vote": 57, "crowdsourc": [57, 79, 96], "dawid": [57, 96], "skene": [57, 96], "analog": [57, 85, 92, 96], "chosen": [57, 67, 93, 96], "crowdlab": [57, 96], "unlabel": [57, 88, 90, 91, 96, 99, 102], "decid": [57, 83, 91, 92, 96, 101, 103], "get_active_learning_scor": [57, 96], "activelab": [57, 96], "priorit": [57, 64, 98, 102, 103], "showcas": 57, "main": [57, 85], "best_qual": 57, "quality_method": 57, "calibrate_prob": 57, "return_detailed_qu": 57, "return_annotator_stat": 57, "return_weight": 57, "label_quality_score_kwarg": 57, "necessarili": [57, 65, 91, 94], "did": [57, 58, 82, 83, 84, 90, 94, 96, 101], "majority_vot": 57, "broken": [57, 65, 92, 101], "highest": [57, 65, 86, 88, 100], "0th": 57, "consensus_quality_scor": [57, 96], "annotator_agr": [57, 96], "reman": 57, "1st": 57, "2nd": [57, 71], "3rd": 57, "consensus_label_suffix": 57, "consensus_quality_score_suffix": 57, "suffix": 57, "emsembl": 57, "weigh": [57, 92], "agreement": [57, 96], "agre": 57, "prevent": [57, 93], "overconfid": [57, 100], "wrong": [57, 62, 64, 80, 83, 85, 86, 87, 91, 93, 94, 98], "detailed_label_qu": [57, 96], "annotator_stat": [57, 96], "model_weight": 57, "annotator_weight": 57, "warn": [57, 86, 87, 88, 90, 91, 93, 94], "labels_info": 57, "num_annot": [57, 96], "deriv": [57, 96], "quality_annotator_1": 57, "quality_annotator_2": 57, "quality_annotator_m": 57, "annotator_qu": [57, 96], "num_examples_label": [57, 96], "agreement_with_consensu": [57, 96], "worst_class": [57, 96], "trustworthi": [57, 96, 101], "get_label_quality_multiannotator_ensembl": 57, "weigtht": 57, "budget": 57, "retrain": [57, 83, 101], "active_learning_scor": 57, "active_learning_scores_unlabel": 57, "get_active_learning_scores_ensembl": 57, "henc": [57, 84, 86, 96], "get_majority_vote_label": [57, 96], "event": 57, "lastli": [57, 90], "convert_long_to_wide_dataset": 57, "labels_multiannotator_long": 57, "wide": [57, 82, 83, 84], "suitabl": [57, 82, 90], "labels_multiannotator_wid": 57, "common_multilabel_issu": [58, 60], "mutual": [58, 97], "exclus": [58, 97], "rank_classes_by_multilabel_qu": [58, 60], "overall_multilabel_health_scor": [58, 60], "multilabel_health_summari": [58, 60], "classes_by_multilabel_qu": 58, "inner": [59, 73], "find_multilabel_issues_per_class": [59, 60], "per_class_label_issu": 59, "label_issues_list": 59, "pred_probs_list": [59, 67, 88, 94], "anim": [60, 99], "rat": 60, "predat": 60, "pet": 60, "reptil": 60, "manner": [61, 82, 83, 96, 101], "box": [62, 64, 65, 92, 98], "object_detect": [62, 64, 65, 98], "return_indices_ranked_by_scor": [62, 98], "overlapping_label_check": [62, 64], "suboptim": [62, 64], "locat": [62, 64, 98, 102, 103], "bbox": [62, 65, 98], "image_nam": [62, 65], "y1": [62, 65, 98], "y2": [62, 65, 98], "later": [62, 65, 66, 83, 103], "corner": [62, 65, 98], "xyxi": [62, 65, 98], "io": [62, 65, 84, 92], "keras_cv": [62, 65], "bounding_box": [62, 65, 98], "detectron": [62, 65, 98], "detectron2": [62, 65, 98], "readthedoc": [62, 65], "en": [62, 65], "latest": [62, 65], "visual": [62, 63, 65, 82, 85, 86, 87, 88, 101, 103], "draw_box": [62, 65], "mmdetect": [62, 65, 98], "swap": [62, 64, 74, 78], "penal": [62, 64], "concern": [62, 64, 79, 87], "issues_from_scor": [63, 64, 72, 73, 74, 76, 77, 78, 98, 102, 103], "compute_overlooked_box_scor": [63, 64], "compute_badloc_box_scor": [63, 64], "compute_swap_box_scor": [63, 64], "pool_box_scores_per_imag": [63, 64], "object_counts_per_imag": [63, 65, 98], "bounding_box_size_distribut": [63, 65, 98], "class_label_distribut": [63, 65, 98], "get_sorted_bbox_count_idx": [63, 65], "plot_class_size_distribut": [63, 65], "plot_class_distribut": [63, 65], "get_average_per_class_confusion_matrix": [63, 65], "calculate_per_class_metr": [63, 65], "aggregation_weight": 64, "imperfect": [64, 93], "chose": [64, 96, 98], "imperfectli": [64, 98], "dirti": [64, 67, 70, 101], "subtyp": 64, "badloc": 64, "nonneg": 64, "high_probability_threshold": 64, "auxiliary_input": [64, 65], "vari": [64, 87], "iou": [64, 65], "heavili": 64, "auxiliarytypesdict": 64, "pred_label": [64, 83], "pred_label_prob": 64, "pred_bbox": 64, "lab_label": 64, "lab_bbox": 64, "similarity_matrix": 64, "min_possible_similar": 64, "scores_overlook": 64, "low_probability_threshold": 64, "scores_badloc": 64, "accident": [64, 83, 90, 91, 93], "scores_swap": 64, "box_scor": 64, "image_scor": [64, 73, 102], "discov": [65, 87, 103], "abnorm": [65, 88, 98], "auxiliari": [65, 99, 102], "_get_valid_inputs_for_compute_scor": 65, "object_count": 65, "down": 65, "bbox_siz": 65, "class_distribut": 65, "plot": [65, 85, 86, 87, 94, 97, 99, 101, 102], "sorted_idx": [65, 99], "class_to_show": 65, "hidden": [65, 85, 99], "max_class_to_show": 65, "plt": [65, 74, 85, 86, 87, 88, 94, 97, 99, 101], "matplotlib": [65, 74, 85, 86, 87, 88, 94, 97, 98, 99, 101], "pyplot": [65, 74, 85, 86, 87, 88, 94, 97, 99, 101], "prediction_threshold": 65, "overlai": [65, 98], "figsiz": [65, 85, 86, 87, 88, 94, 97, 99], "save_path": [65, 98], "blue": [65, 92, 94, 98], "overlaid": 65, "side": [65, 92, 98], "figur": [65, 94, 97, 99, 101], "extens": [65, 94, 96], "png": [65, 98], "pdf": [65, 66], "svg": 65, "num_proc": [65, 88], "intersect": [65, 93], "tp": 65, "fp": 65, "ground": [65, 92, 94, 96, 101], "truth": [65, 94, 96, 101], "bias": 65, "avg_metr": 65, "distionari": 65, "95": [65, 75, 77, 90, 92, 94, 101], "per_class_metr": 65, "Of": 66, "li": 66, "smaller": [66, 85, 97, 98], "find_top_issu": [66, 67, 99], "reli": [66, 83, 84, 85, 86, 87, 91, 98, 99, 101], "dist_metr": 66, "subtract": [66, 67], "renorm": [66, 67, 93], "least_confid": 66, "sum_": 66, "log": [66, 67, 80], "softmax": [66, 73, 77, 88], "literatur": 66, "gen": 66, "liu": 66, "lochman": 66, "zach": 66, "openaccess": 66, "thecvf": 66, "cvpr2023": 66, "liu_gen_pushing_the_limits_of_softmax": 66, "based_out": 66, "distribution_detection_cvpr_2023_pap": 66, "fit_scor": [66, 99], "ood_predictions_scor": 66, "pretrain": [66, 83, 84, 91, 99], "adjust_confident_threshold": 66, "probabilist": [66, 82, 84, 86, 87, 90, 91, 99, 100], "order_label_issu": [67, 80], "whichev": [67, 100], "argsort": [67, 83, 88, 91, 94, 98, 99, 101], "max_": 67, "get_label_quality_ensemble_scor": [67, 93, 94], "weight_ensemble_members_bi": 67, "custom_weight": 67, "log_loss_search_t_valu": 67, "0001": [67, 92], "scheme": 67, "log_loss_search": 67, "log_loss": [67, 91], "1e0": 67, "1e1": 67, "1e2": 67, "2e2": 67, "quality_scor": [67, 99], "forth": 67, "top_issue_indic": 67, "rank_bi": [67, 80], "weird": [67, 78], "minu": 67, "prob_label": 67, "max_prob_not_label": 67, "idea": [67, 85, 98], "AND": [67, 91], "get_epistemic_uncertainti": [68, 69], "get_aleatoric_uncertainti": [68, 69], "corrupt": [69, 101], "linearregress": [69, 93, 101], "y_with_nois": 69, "n_boot": [69, 93], "include_aleatoric_uncertainti": [69, 93], "sole": [69, 82, 86, 96, 99], "bootstrap": [69, 93, 101], "resampl": [69, 84, 93], "epistem": [69, 93, 99, 101], "aleator": [69, 93, 101], "model_final_kwarg": 69, "coars": 69, "thorough": [69, 93], "fine": [69, 83, 84, 91, 99], "grain": 69, "grid": 69, "varianc": [69, 94], "epistemic_uncertainti": 69, "residu": [69, 70, 93], "deviat": [69, 98, 101], "aleatoric_uncertainti": 69, "outr": 70, "contin": 70, "raw": [70, 79, 80, 87, 88, 92, 93, 96, 98, 99, 101], "aka": [70, 84, 94, 98, 101, 103], "00323821": 70, "33692597": 70, "00191686": 70, "semant": [71, 73, 74, 95], "pixel": [71, 73, 74, 99, 102], "h": [71, 73, 74, 102], "height": [71, 73, 74, 102], "w": [71, 73, 74, 102], "width": [71, 73, 74, 102], "labels_one_hot": [71, 74, 102], "stream": [71, 85, 99, 103], "downsampl": [71, 73, 102], "shrink": [71, 73], "divis": [71, 73, 86], "common_label_issu": [72, 74, 76, 78, 102, 103], "filter_by_class": [72, 74, 102], "segmant": [73, 74], "num_pixel_issu": [73, 102], "product": [73, 88, 93], "pixel_scor": [73, 102], "highlight": [74, 78, 85, 86, 87, 90, 102], "enter": 74, "legend": [74, 85, 86, 87, 97, 98, 101, 102], "colormap": 74, "background": 74, "person": [74, 93, 98, 102, 103], "ambigu": [74, 78, 83, 84, 91, 92, 94, 103], "systemat": [74, 78, 96], "misunderstood": [74, 78], "issues_df": [74, 88], "class_index": 74, "issues_subset": [74, 78], "filter_by_token": [76, 78, 103], "token_score_method": 77, "sentence_score_method": 77, "sentence_score_kwarg": 77, "compris": [77, 78], "token_scor": [77, 103], "converg": 77, "toward": 77, "_softmin_sentence_scor": 77, "sentence_scor": [77, 103], "token_info": 77, "70": [77, 90], "02": [77, 86, 87, 94, 98], "03": [77, 90, 92, 94, 98, 103], "04": [77, 90, 98, 99, 103], "08": [77, 94, 98, 101, 103], "commonli": [78, 80, 86, 87, 97, 103], "But": [78, 91, 94, 101, 103], "restrict": [78, 93], "reliabl": [79, 82, 84, 93, 96, 102], "thousand": 79, "imagenet": [79, 92], "popular": [79, 96, 98], "centric": [79, 88, 90, 91, 95], "capabl": 79, "minut": [79, 82, 83, 84, 90, 91, 92, 96, 97, 98, 101, 102, 103], "conda": 79, "feature_embed": [79, 99], "Then": [79, 82, 83, 88, 93], "your_dataset": [79, 84, 86, 87, 88, 90, 91, 93], "column_name_of_label": [79, 84, 86, 87, 88, 90, 91], "plagu": [79, 87], "untrain": 79, "\u30c4": 79, "label_issues_info": [79, 87], "sklearn_compatible_model": 79, "framework": [79, 97, 98], "complianc": 79, "tag": [79, 97, 103], "sequenc": 79, "recognit": [79, 84, 93, 103], "train_data": [79, 82, 83, 99, 101], "gotten": 79, "test_data": [79, 82, 83, 85, 94, 97, 99, 101], "deal": [79, 87], "tutori": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "feel": [79, 84, 87, 93], "ask": [79, 93], "slack": [79, 93], "project": [79, 101], "welcom": 79, "commun": [79, 93], "guidelin": [79, 98], "piec": 79, "smart": [79, 88, 90, 91, 93], "edit": [79, 93], "easier": [79, 94], "unreli": [79, 82, 84, 90, 91], "link": [79, 84, 92, 98], "older": 80, "outlin": 80, "substitut": 80, "v2": [80, 82, 90], "get_noise_indic": 80, "psx": 80, "sorted_index_method": 80, "order_label_error": 80, "label_errors_bool": 80, "latent_estim": 80, "num_label_error": 80, "learningwithnoisylabel": 80, "neatli": 80, "organ": [80, 82, 90, 92, 103], "reorgan": 80, "baseline_method": 80, "incorpor": [80, 94], "research": [80, 94], "polyplex": 80, "terminologi": 80, "label_error": 80, "quickstart": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "sql": [82, 90], "databas": [82, 90], "excel": [82, 90], "parquet": [82, 90], "student": [82, 90, 101, 103], "grade": [82, 90, 101], "900": [82, 90, 101], "exam": [82, 90, 101], "letter": [82, 90, 103], "hundr": [82, 90], "mistak": [82, 83, 88, 90, 91], "No": [82, 83, 91, 93], "extratreesclassifi": 82, "extratre": 82, "ranked_label_issu": [82, 83], "branch": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "preprocess": [82, 83, 87, 90, 99, 101], "standardscal": [82, 90, 99], "labelencod": [82, 83], "train_test_split": [82, 83, 85, 86, 87, 99], "accuracy_scor": [82, 83, 84, 91, 94], "grades_data": [82, 90], "read_csv": [82, 83, 90, 91, 101], "demo": [82, 87, 90, 97], "head": [82, 83, 84, 87, 88, 90, 91, 92, 94, 96, 101], "stud_id": [82, 90], "exam_1": [82, 90, 101], "exam_2": [82, 90, 101], "exam_3": [82, 90, 101], "letter_grad": [82, 90], "f48f73": [82, 90], "53": [82, 85, 86, 87, 90, 92, 97, 98], "00": [82, 86, 87, 88, 90, 92, 99], "77": [82, 86, 87, 90, 98], "0bd4e7": [82, 90], "81": [82, 90, 91, 98, 101, 103], "great": [82, 85, 90, 92], "particip": [82, 90], "cb9d7a": [82, 90], "61": [82, 90, 94, 98, 101], "94": [82, 90, 92, 94, 98, 101], "78": [82, 90, 92, 94, 98, 101], "9acca4": [82, 90], "48": [82, 90, 92, 94, 98], "x_raw": [82, 90], "labels_raw": 82, "interg": [82, 83], "categorical_featur": [82, 101], "x_encod": [82, 90], "get_dummi": [82, 90, 101], "drop_first": [82, 90], "numeric_featur": [82, 90], "scaler": [82, 90, 99], "x_process": [82, 90], "fit_transform": [82, 90], "bring": [82, 83, 88, 90, 91, 96, 101], "byod": [82, 83, 88, 90, 91, 96, 101], "decis": [82, 85, 86, 87], "tress": 82, "held": [82, 84, 90, 91, 92, 98, 99, 100], "straightforward": [82, 84, 90], "benefit": [82, 84, 100, 102], "num_crossval_fold": [82, 84, 90, 96], "u": [82, 83, 84, 86, 88, 90, 93, 94, 96, 97, 100, 101, 102, 103], "tabl": [82, 90, 92, 96], "212": [82, 94], "review": [82, 83, 87, 90, 91, 92, 93, 94, 98, 101, 102, 103], "iloc": [82, 83, 84, 90, 91, 101], "58": [82, 87, 90, 92, 94, 98], "92": [82, 86, 94, 98], "93": [82, 92, 98, 101], "827": 82, "99": [82, 92, 94], "86": [82, 87, 88, 90, 94, 98, 101], "74": [82, 98, 101], "637": [82, 90], "79": [82, 92, 98], "65": [82, 86, 98], "cheat": 82, "0pt": 82, "120": [82, 86, 87], "97": [82, 92, 93, 94, 98, 101, 103], "233": [82, 103], "68": [82, 92, 94, 98], "83": [82, 94, 98, 101, 103], "76": [82, 85, 94, 97, 98, 101], "suspici": [82, 90], "carefulli": [82, 88, 90, 91], "examin": [82, 85, 86, 87, 90, 98], "labels_train": 82, "labels_test": 82, "test_siz": [82, 83, 85, 86, 87], "acc_og": [82, 83], "783068783068783": 82, "robustli": [82, 83, 101], "14": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "acc_cl": [82, 83], "8095238095238095": 82, "especi": [82, 83, 85, 88, 93, 101], "blindli": [82, 83, 84, 93, 101], "trust": [82, 83, 84, 93, 94, 96, 100, 101], "effort": [82, 83, 101], "intent": [83, 91], "servic": [83, 91, 93], "onlin": [83, 91], "bank": [83, 91, 92], "banking77": [83, 91], "oo": [83, 91], "000": [83, 88, 91, 92, 103], "categori": [83, 88, 91], "shortlist": [83, 91, 101], "scope": [83, 91], "logist": [83, 85, 86, 87, 91, 96, 99], "probabilit": [83, 84], "drop": [83, 93, 96, 101], "earlier": [83, 103], "sentence_transform": [83, 91], "sentencetransform": [83, 91], "payment": [83, 91], "cancel_transf": [83, 91], "transfer": [83, 91], "fund": [83, 91], "cancel": [83, 91], "transact": [83, 91], "my": [83, 91], "revert": [83, 91], "morn": [83, 91], "realis": [83, 91], "yesterdai": [83, 91], "rent": [83, 91], "realli": [83, 91, 96, 102], "tomorrow": [83, 91], "raw_text": [83, 91], "raw_label": 83, "raw_train_text": 83, "raw_test_text": 83, "raw_train_label": 83, "raw_test_label": 83, "39": [83, 84, 86, 88, 91, 92, 93, 98, 101, 102, 103], "supported_cards_and_curr": [83, 91], "beneficiary_not_allow": [83, 91], "card_payment_fee_charg": [83, 91], "getting_spare_card": [83, 91], "card_about_to_expir": [83, 91], "visa_or_mastercard": [83, 91], "lost_or_stolen_phon": [83, 91], "change_pin": [83, 91], "apple_pay_or_google_pai": [83, 91], "card": [83, 91, 92], "utter": [83, 91], "encond": 83, "test_label": [83, 94, 97, 99], "suit": [83, 91, 92, 93], "electra": [83, 91], "discrimin": [83, 91], "googl": [83, 85, 91], "train_text": 83, "test_text": 83, "home": [83, 86, 87, 91, 92], "runner": [83, 86, 87, 91], "google_electra": [83, 91], "pool": [83, 91, 93, 99], "opt": [83, 84, 87, 88, 90, 91, 94], "hostedtoolcach": [83, 84, 87, 88, 90, 91, 94], "x64": [83, 84, 87, 88, 90, 91, 94], "lib": [83, 84, 87, 88, 90, 91, 94], "python3": [83, 84, 87, 88, 90, 91, 94], "site": [83, 84, 87, 88, 90, 91, 94], "_util": [83, 91], "831": [83, 91], "userwarn": [83, 84, 86, 87, 91], "typedstorag": [83, 91], "untypedstorag": [83, 91], "untyped_storag": [83, 91], "fget": [83, 91], "__get__": [83, 91], "owner": [83, 91], "leverag": [83, 84, 91, 93, 94, 96], "computation": [83, 84, 91], "intens": [83, 84, 91], "400": [83, 85, 91], "858371": 83, "547274": 83, "826228": 83, "966008": 83, "792449": 83, "identified_issu": [83, 101], "lowest_quality_label": [83, 84, 91, 94, 101], "to_numpi": [83, 91, 93, 101], "44": [83, 88, 92, 97, 98], "646": 83, "390": 83, "628": 83, "121": [83, 85, 94], "702": 83, "863": [83, 84], "135": 83, "337": [83, 98], "735": 83, "print_as_df": 83, "inverse_transform": 83, "charg": [83, 91], "cash": [83, 91], "holidai": [83, 91], "sent": [83, 91, 103], "mine": [83, 91], "expir": [83, 91], "fight": 83, "hors": [83, 92, 99], "duck": [83, 92], "me": [83, 91], "whoever": [83, 91], "consum": [83, 101], "18": [83, 84, 91, 92, 93, 94, 98, 99, 101, 102], "baseline_model": [83, 101], "87": [83, 87, 88, 98, 101], "acceler": [83, 101], "19": [83, 84, 88, 91, 92, 93, 94, 98, 99, 101, 102, 103], "89": [83, 85, 86, 90, 98, 101], "spoken": 84, "500": [84, 99, 103], "english": [84, 92], "pronunci": 84, "wav": 84, "huggingfac": [84, 86, 87, 88, 93], "voxceleb": 84, "speech": [84, 103], "your_pred_prob": [84, 85, 86, 87, 90, 91], "tensorflow_io": 84, "huggingface_hub": 84, "reproduc": [84, 90, 94, 96], "command": 84, "wget": [84, 98, 102, 103], "navig": 84, "browser": 84, "jakobovski": 84, "archiv": [84, 103], "v1": 84, "tar": [84, 99], "gz": [84, 99], "mkdir": [84, 103], "spoken_digit": 84, "xf": 84, "6_nicolas_32": 84, "data_path": 84, "listdir": 84, "nondeterminist": 84, "file_nam": 84, "endswith": 84, "file_path": 84, "join": [84, 85, 88, 93], "7_george_26": 84, "0_nicolas_24": 84, "0_nicolas_6": 84, "listen": 84, "display_exampl": 84, "expand": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "pulldown": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "colab": [84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "tfio": 84, "pathlib": 84, "ipython": 84, "load_wav_16k_mono": 84, "filenam": 84, "khz": 84, "file_cont": 84, "read_fil": 84, "sample_r": 84, "decode_wav": 84, "desired_channel": 84, "squeez": 84, "rate_in": 84, "rate_out": 84, "16000": 84, "wav_file_nam": 84, "audio_r": 84, "wav_file_exampl": 84, "plai": [84, 92, 93], "button": 84, "wav_file_name_exampl": 84, "7_jackson_43": 84, "hear": 84, "extractor": 84, "encoderclassifi": 84, "spkrec": 84, "xvect": 84, "feature_extractor": 84, "from_hparam": 84, "run_opt": 84, "uncom": 84, "ffmpeg": 84, "backend": 84, "wav_audio_file_path": 84, "torchaudio": 84, "extract_audio_embed": 84, "emb": [84, 88], "signal": 84, "encode_batch": 84, "embeddings_list": [84, 88], "embeddings_arrai": 84, "650": 84, "stft": 84, "return_complex": 84, "view_as_r": 84, "recov": 84, "trigger": 84, "aten": 84, "src": 84, "nativ": 84, "spectralop": 84, "cpp": 84, "_vf": 84, "n_fft": 84, "hop_length": 84, "win_length": 84, "attr": 84, "512": [84, 88], "196311": 84, "319459": 84, "478975": 84, "2890875": 84, "8170238": 84, "89265": 84, "24": [84, 88, 92, 94, 96, 98, 101, 103], "898056": 84, "256195": 84, "559641": 84, "559721": 84, "62067": 84, "285245": 84, "21": [84, 86, 92, 93, 94, 98, 101, 103], "709627": 84, "5033693": 84, "913803": 84, "819831": 84, "1831515": 84, "208763": 84, "084257": 84, "3210397": 84, "005453": 84, "216152": 84, "478235": 84, "6821785": 84, "053807": 84, "242471": 84, "091424": 84, "78334856": 84, "03954": 84, "23": [84, 88, 92, 94, 98, 101, 103], "569176": 84, "761097": 84, "1258295": 84, "753237": 84, "3508866": 84, "598274": 84, "23712": 84, "2500": 84, "tol": 84, "decreas": [84, 93], "cv_accuraci": 84, "9708": 84, "9976": 84, "986": 84, "002161": 84, "176": [84, 92, 94, 97], "002483": 84, "2318": 84, "004411": 84, "1005": 84, "004857": 84, "1871": 84, "007494": 84, "investig": [84, 85], "040587": 84, "999207": 84, "999377": 84, "975220": 84, "999367": 84, "identified_label_issu": [84, 91], "sort_valu": [84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 101], "516": 84, "1946": 84, "469": 84, "2132": 84, "worth": [84, 94], "6_yweweler_25": 84, "7_nicolas_43": 84, "6_theo_27": 84, "6_yweweler_36": 84, "6_yweweler_14": 84, "6_yweweler_35": 84, "6_nicolas_8": 84, "sound": 84, "quit": [84, 99], "22": [84, 86, 88, 92, 93, 94, 97, 98, 103], "ve": [85, 92, 93, 94, 96, 98], "prove": 85, "monitor": [85, 92], "ran": 85, "data_monitor": 85, "your_datalab": 85, "new_data_batch": 85, "your_label": 85, "get_your_label": 85, "websit": [85, 92], "todo": 85, "get_ipython": 85, "cc319efea07da004d1544c0577402d71f309fa06": 85, "cmd": 85, "dep": 85, "dependencies_test": 85, "missing_depend": 85, "__import__": 85, "importerror": 85, "sep": [85, 103], "npleas": 85, "toi": [85, 86, 87, 88, 92, 94, 96], "mid": [85, 86, 87], "workflow": [85, 95, 101], "unseen": 85, "inf": [85, 86, 87], "bins_map": [85, 86, 87], "create_data": [85, 86, 87], "800": 85, "y_bin": [85, 86, 87], "y_i": [85, 86, 87], "y_bin_idx": [85, 86, 87], "y_train": [85, 86, 87, 94, 101], "y_test": [85, 86, 87, 94, 101], "y_train_idx": [85, 86, 87], "y_test_idx": [85, 86, 87], "slide": [85, 86, 87, 92], "frame": [85, 86, 87], "x_out": [85, 86, 87], "tini": [85, 86, 87], "concaten": [85, 86, 87, 93, 100], "y_out": [85, 86, 87], "y_out_bin": [85, 86, 87], "y_out_bin_idx": [85, 86, 87], "exact_duplicate_idx": [85, 86, 87], "x_duplic": [85, 86, 87], "y_duplic": [85, 86, 87], "y_duplicate_idx": [85, 86, 87], "noisy_labels_idx": [85, 86, 87, 97], "train_x": 85, "test_x": 85, "train_y_tru": 85, "test_y_tru": 85, "train_i": 85, "test_i": 85, "train_y_idx": 85, "test_y_idx": 85, "scatter": [85, 86, 87, 94, 97, 101], "black": [85, 86, 87, 92, 101], "cyan": [85, 86, 87], "plot_data": [85, 86, 87, 94, 97, 101], "fig": [85, 86, 87, 88, 92, 99, 101], "ax": [85, 86, 87, 88, 99, 101], "subplot": [85, 86, 87, 88, 99], "set_titl": [85, 86, 87, 88, 99], "set_xlabel": [85, 86, 87], "x_1": [85, 86, 87], "fontsiz": [85, 86, 87, 88, 94, 97], "set_ylabel": [85, 86, 87], "x_2": [85, 86, 87], "set_xlim": [85, 86, 87], "set_ylim": [85, 86, 87], "linestyl": [85, 86, 87], "circl": [85, 86, 87, 94, 97], "misclassifi": [85, 86, 87], "zip": [85, 86, 87, 88, 98, 103], "label_err": [85, 86, 87], "180": [85, 86, 87, 98], "marker": [85, 86, 87], "facecolor": [85, 86, 87], "edgecolor": [85, 86, 87], "linewidth": [85, 86, 87, 99], "title_fontproperti": [85, 86, 87], "semibold": [85, 86, 87], "first_legend": [85, 86, 87], "align": [85, 86, 87], "markerscal": 85, "second_legend": [85, 86, 87], "46": [85, 90, 92, 94, 98], "gca": [85, 86, 87], "add_artist": [85, 86, 87], "tight_layout": [85, 86, 87], "ideal": [85, 86, 87], "simplic": [85, 97], "327": [85, 98], "9297": 85, "000124": 85, "259": 85, "000725": 85, "269": 85, "000794": 85, "002061": 85, "125": [85, 86], "002908": 85, "fly": [85, 92], "feed": [85, 93], "simul": 85, "tqdm": [85, 88], "sleep": [85, 92], "generate_stream": 85, "sleep_tim": 85, "desc": 85, "singleton_stream": 85, "seamless": [85, 93], "singleton": 85, "batched_stream": 85, "processed_singleton": 85, "suggested_label": [85, 91], "250997": 85, "285757": 85, "43": [85, 86, 92, 94, 98], "120906": 85, "principl": 85, "processed_batch": 85, "51": [85, 86, 87, 90, 92, 94, 98], "002748": 85, "189996": 85, "093505": 85, "037250": 85, "149": [85, 98], "076397": 85, "154": 85, "294010": 85, "160": [85, 91, 101], "073622": 85, "166": [85, 88], "140832": 85, "167": [85, 92, 94, 98], "041743": 85, "181": 85, "169429": 85, "127304": 85, "235": [85, 98], "090310": 85, "254": [85, 92, 98], "183343": 85, "256": [85, 92, 93, 98], "048720": 85, "263": [85, 97, 98], "138820": 85, "292": 85, "239609": 85, "295": [85, 98], "022075": 85, "306": 85, "103040": 85, "343": 85, "234755": 85, "354": 85, "001612": 85, "359": 85, "068359": 85, "367": [85, 101], "015793": 85, "368": 85, "029022": 85, "391": 85, "106761": 85, "troublesom": 85, "623844": 85, "812647": 85, "816854": 85, "661968": 85, "632244": 85, "395": 85, "474599": 85, "396": 85, "653901": 85, "397": 85, "584554": 85, "398": 85, "817287": 85, "399": 85, "881545": 85, "183": 85, "937927": 85, "309": 85, "939505": 85, "133": 85, "947290": 85, "177": [85, 103], "952187": 85, "314": [85, 98], "997293": 85, "27": [85, 90, 92, 94, 98, 103], "655501": 85, "underneath": 86, "hood": [86, 93], "alert": 86, "introduct": 86, "mayb": [86, 87, 91], "your_feature_matrix": [86, 87], "dup": [86, 87], "45": [86, 87, 92, 94, 98], "remaind": 86, "modal": [86, 87, 93, 96], "132": [86, 87, 94, 98], "9318": 86, "006940": 86, "007830": 86, "40": [86, 87, 91, 92], "014828": 86, "107": [86, 87, 94, 97], "021241": 86, "026407": 86, "notic": [86, 94, 96, 98], "3558": [86, 87], "126": [86, 87, 94, 98], "006636": [86, 87], "130": [86, 87, 103], "012571": [86, 87], "129": [86, 87], "127": [86, 87], "014909": [86, 87], "128": [86, 87, 88], "017443": [86, 87], "6160": [86, 87], "is_near_duplicate_issu": [86, 87, 88, 90, 91, 93, 94], "131": [86, 87, 102], "000000e": [86, 87], "000002": [86, 87], "463180e": [86, 87], "07": [86, 87, 88, 90, 94, 98, 101], "161148": [86, 87], "859087e": [86, 87], "30": [86, 87, 88, 92, 93, 97, 102, 103], "3453": 86, "029542": 86, "031182": 86, "057961": 86, "058244": 86, "348": 86, "378": 86, "357": 86, "34": [86, 92, 94, 96, 98, 103], "54": [86, 92, 94, 98, 103], "039122": 86, "044598": 86, "105": [86, 98], "105196": 86, "133654": 86, "168033": 86, "101107": 86, "37": [86, 92], "183382": 86, "109": [86, 92, 98], "209259": 86, "211042": 86, "221316": 86, "average_ood_scor": 86, "34530442089193386": 86, "52": [86, 92, 98, 103], "169820": 86, "087324e": 86, "259024": 86, "583757e": 86, "91": [86, 98], "346458": 86, "341292e": 86, "specfi": 86, "new_lab": 86, "scoring_funct": 86, "div": 86, "rem": 86, "inv_scal": 86, "49": [86, 92, 94, 98, 103], "superstitionissuemanag": 86, "unlucki": 86, "superstit": 86, "to_seri": 86, "issues_mask": 86, "summary_scor": 86, "9242": 86, "is_superstition_issu": 86, "superstition_scor": 86, "26": [86, 88, 92, 94, 96, 98, 103], "047581": 86, "090635": 86, "129591": 86, "164840": 86, "lurk": [87, 88, 94], "_split": 87, "737": 87, "thoroughli": 87, "904": 87, "_base": [87, 88, 90, 91, 94], "246": [87, 88, 90, 91, 94, 98], "efficiencywarn": [87, 88, 90, 91, 94], "sort_graph_by_row_valu": [87, 88, 90, 91, 94], "warn_when_not_sort": [87, 88, 90, 91, 94], "8561": 87, "001908": 87, "003564": 87, "007331": 87, "008963": 87, "009664": 87, "0227": 87, "is_class_imbalance_issu": 87, "022727": 87, "conceptu": 87, "856061": 87, "355772": 87, "616034": 87, "821750": 87, "901562": 87, "betweeen": 87, "is_null_issu": 87, "is_non_iid_issu": [87, 90, 91, 94], "is_underperforming_group_issu": 87, "859131": 87, "417707": 87, "664083": 87, "970324": 87, "816953": 87, "375317": 87, "641516": 87, "890575": 87, "531021": 87, "460593": 87, "601188": 87, "826147": 87, "752808": 87, "321635": 87, "562539": 87, "948362": 87, "090243": 87, "472909": 87, "746763": 87, "878267": 87, "examples_w_issu": [87, 93], "013445": 87, "025184": 87, "026376": 87, "inde": [87, 91], "miscellan": [87, 103], "428571": 87, "111111": 87, "571429": 87, "407407": 87, "592593": 87, "337838": 87, "092593": 87, "662162": 87, "333333": [87, 92], "952381": 87, "666667": 87, "portion": 87, "huge": [87, 94], "worri": [87, 91], "critic": 87, "60": [88, 94, 101], "torchvis": [88, 99], "tensordataset": 88, "stratifiedkfold": [88, 97], "autonotebook": 88, "fashion_mnist": 88, "9m": 88, "lt": [88, 90, 91, 92, 96, 99], "8mb": 88, "18m": 88, "7mb": 88, "num_row": 88, "60000": 88, "transformed_dataset": 88, "with_format": 88, "255": [88, 92], "unsqueez": 88, "cpu_count": 88, "torch_dataset": 88, "quick": [88, 97], "super": [88, 90, 91], "relu": 88, "batchnorm2d": 88, "maxpool2d": 88, "lazylinear": 88, "flatten": 88, "get_test_accuraci": 88, "testload": [88, 99], "energi": 88, "trainload": [88, 99], "n_epoch": 88, "patienc": 88, "criterion": 88, "crossentropyloss": 88, "adamw": 88, "best_test_accuraci": 88, "start_epoch": 88, "running_loss": 88, "best_epoch": 88, "end_epoch": 88, "3f": [88, 101], "acc": [88, 94], "time_taken": 88, "compute_embed": 88, "compute_pred_prob": 88, "train_batch_s": 88, "num_work": 88, "worker": [88, 103], "train_id_list": 88, "test_id_list": 88, "train_id": 88, "test_id": 88, "embeddings_model": 88, "ntrain": 88, "trainset": 88, "testset": 88, "pin_memori": 88, "fold_embed": 88, "fold_pred_prob": 88, "finish": 88, "482": 88, "720": 88, "943": 88, "329": [88, 98], "88": [88, 92, 93, 94, 97, 98, 101], "195": 88, "606": 88, "493": 88, "060": 88, "715": 88, "330": [88, 98], "505": 88, "438": 88, "476": 88, "340": 88, "569": 88, "328": [88, 98], "310": 88, "479": 88, "reorder": 88, "hstack": [88, 93, 94, 96], "vision": 88, "grayscal": 88, "max_preval": 88, "7714": 88, "3772": 88, "3585": 88, "3651": 88, "27080": 88, "873833e": 88, "40378": 88, "915575e": 88, "25316": 88, "390277e": 88, "06": [88, 94, 98, 103], "2090": 88, "751164e": 88, "14999": 88, "881301e": 88, "9569": 88, "11262": 88, "000003": 88, "coat": [88, 92], "shirt": [88, 92], "19228": 88, "000010": 88, "dress": 88, "32657": 88, "000013": 88, "bag": [88, 92, 99, 100], "21282": 88, "000016": 88, "53564": 88, "000018": 88, "pullov": 88, "6321": 88, "30968": 88, "001267": 88, "30659": 88, "000022": [88, 103], "47824": 88, "001454": 88, "3370": 88, "000026": 88, "54565": 88, "001854": 88, "9762": 88, "258": 88, "47139": 88, "000033": 88, "166980": 88, "986195": 88, "997205": 88, "sandal": [88, 92], "948781": 88, "999358": 88, "54078": 88, "17371": 88, "000025": 88, "plot_label_issue_exampl": 88, "ncol": [88, 99], "nrow": [88, 99], "ceil": 88, "axes_list": 88, "label_issue_indic": 88, "gl": 88, "sl": 88, "fontdict": 88, "imshow": [88, 99], "cmap": [88, 101], "grai": 88, "subplots_adjust": 88, "hspace": 88, "outsiz": 88, "outlier_issu": [88, 91], "outlier_issues_df": 88, "depict": [88, 97, 98, 99, 100, 102], "plot_outlier_issues_exampl": 88, "n_comparison_imag": 88, "sample_from_class": 88, "number_of_sampl": 88, "non_outlier_indic": 88, "isnul": 88, "non_outlier_indices_excluding_curr": 88, "sampled_indic": 88, "label_scores_of_sampl": 88, "top_score_indic": 88, "top_label_indic": 88, "sampled_imag": 88, "get_image_given_label_and_sampl": 88, "image_from_dataset": 88, "corresponding_label": 88, "comparison_imag": 88, "images_to_plot": 88, "idlist": 88, "iterrow": 88, "near_duplicate_issu": [88, 93], "closest": 88, "counterpart": 88, "near_duplicate_issues_df": 88, "plot_near_duplicate_issue_exampl": 88, "seen_id_pair": 88, "get_image_and_given_label_and_predicted_label": 88, "duplicate_imag": 88, "nd_set": 88, "challeng": 88, "dark_issu": 88, "reveal": [88, 98, 102], "dark_scor": 88, "dark_issues_df": 88, "is_dark_issu": 88, "34848": 88, "203922": 88, "50270": 88, "204588": 88, "3936": 88, "213098": 88, "733": 88, "217686": 88, "8094": 88, "230118": 88, "plot_image_issue_exampl": 88, "28": [88, 91, 92, 94, 96, 103], "difficult": 88, "disproportion": 88, "lowinfo_issu": 88, "low_information_scor": 88, "lowinfo_issues_df": 88, "is_low_information_issu": 88, "53050": 88, "067975": 88, "40875": 88, "089929": 88, "9594": 88, "092601": 88, "34825": 88, "107744": 88, "37530": 88, "108516": 88, "lot": 88, "histgradientboostingclassifi": 90, "cat_featur": 90, "boost": [90, 93, 96, 101], "xgboost": [90, 93, 101], "think": [90, 91, 93, 97, 102, 103], "nonzero": 90, "358": 90, "294": [90, 98], "941": 90, "7109": 90, "000005": [90, 91], "886": 90, "000059": 90, "709": 90, "000104": 90, "723": 90, "000169": 90, "689": 90, "000181": 90, "3590": 90, "051882e": 90, "683133e": 90, "536582e": 90, "406589e": 90, "324246e": 90, "6165": 90, "582": 90, "185": [90, 92, 98], "187": [90, 92, 103], "898": 90, "0014": [90, 92], "595": 90, "702427": 90, "147": [90, 94, 98], "711186": 90, "157": [90, 94], "721394": 90, "771": 90, "731979": 90, "740335": 90, "0014153602099278074": 90, "issue_result": 90, "000842": 90, "555944": 90, "004374": 90, "sorted_issu": 90, "73": [90, 92, 97, 98, 101], "deserv": 90, "outlier_result": 90, "sorted_outli": 90, "56": [90, 92, 101], "96": [90, 92, 94, 97, 98, 101], "style": [90, 102], "font": 90, "18px": 90, "ff00ff": 90, "bac": 90, "unintend": [90, 91], "duplicate_result": 90, "690": 90, "perhap": [90, 94, 96], "twice": 90, "67": [90, 92, 98, 101], "wari": [90, 91, 93], "dive": 91, "your_featur": 91, "text_embed": 91, "data_dict": [91, 94, 96], "85": [91, 98], "38": [91, 92, 98], "9710": 91, "981": 91, "974": 91, "000146": 91, "982": [91, 92], "000224": 91, "971": 91, "000507": 91, "980": [91, 92], "000960": 91, "3584": 91, "994": [91, 103], "009642": 91, "999": 91, "013067": 91, "013841": 91, "433": 91, "014722": 91, "989": 91, "018224": 91, "6070": 91, "095724": 91, "148": 91, "006237": 91, "546": 91, "099341": 91, "514": 91, "006485": 91, "481": 91, "123418": 91, "008165": 91, "0000": [91, 92, 94], "313": [91, 98], "564102": 91, "572258": 91, "574915": 91, "31": [91, 92, 94, 96, 98], "575507": 91, "575874": 91, "792090": 91, "257611": 91, "698710": 91, "182121": 91, "771619": 91, "data_with_suggested_label": 91, "withdraw": 91, "monei": 91, "lowest_quality_outli": 91, "OR": 91, "636c65616e6c616220697320617765736f6d6521": 91, "phone": [91, 92], "gone": 91, "gt": [91, 96, 103], "samp": 91, "br": 91, "press": [91, 103], "nonsens": 91, "sens": 91, "detriment": 91, "duplicate_issu": 91, "fee": 91, "pai": 91, "go": [91, 92, 94], "strongli": 91, "p_valu": 91, "benign": 91, "curat": [91, 95], "mnist_test_set": 92, "imagenet_val_set": 92, "tench": 92, "goldfish": 92, "white": [92, 103], "shark": 92, "tiger": 92, "hammerhead": 92, "electr": 92, "rai": 92, "stingrai": 92, "cock": 92, "hen": 92, "ostrich": 92, "brambl": 92, "goldfinch": 92, "hous": 92, "finch": 92, "junco": 92, "indigo": 92, "bunt": 92, "american": [92, 103], "robin": 92, "bulbul": 92, "jai": 92, "magpi": 92, "chickade": 92, "dipper": 92, "kite": 92, "bald": 92, "eagl": 92, "vultur": 92, "grei": 92, "owl": 92, "salamand": 92, "smooth": 92, "newt": 92, "spot": [92, 93, 98], "axolotl": 92, "bullfrog": 92, "tree": 92, "frog": [92, 99], "tail": 92, "loggerhead": 92, "sea": 92, "turtl": 92, "leatherback": 92, "mud": 92, "terrapin": 92, "band": 92, "gecko": 92, "green": [92, 103], "iguana": 92, "carolina": 92, "anol": 92, "desert": 92, "grassland": 92, "whiptail": 92, "lizard": 92, "agama": 92, "frill": 92, "neck": 92, "allig": 92, "gila": 92, "monster": 92, "european": 92, "chameleon": 92, "komodo": 92, "dragon": 92, "nile": 92, "crocodil": 92, "triceratop": 92, "worm": 92, "snake": 92, "ring": 92, "eastern": 92, "hog": 92, "nose": 92, "kingsnak": 92, "garter": 92, "water": 92, "vine": 92, "night": 92, "boa": 92, "constrictor": 92, "african": 92, "rock": 92, "indian": 92, "cobra": 92, "mamba": 92, "saharan": 92, "horn": 92, "viper": 92, "diamondback": 92, "rattlesnak": 92, "sidewind": 92, "trilobit": 92, "harvestman": 92, "scorpion": 92, "yellow": 92, "garden": 92, "spider": 92, "barn": 92, "southern": 92, "widow": 92, "tarantula": 92, "wolf": 92, "tick": 92, "centiped": 92, "grous": 92, "ptarmigan": 92, "ruf": 92, "prairi": 92, "peacock": 92, "quail": 92, "partridg": 92, "parrot": 92, "macaw": 92, "sulphur": 92, "crest": 92, "cockatoo": 92, "lorikeet": 92, "coucal": 92, "bee": 92, "eater": 92, "hornbil": 92, "hummingbird": 92, "jacamar": 92, "toucan": 92, "breast": 92, "mergans": 92, "goos": 92, "swan": 92, "tusker": 92, "echidna": 92, "platypu": 92, "wallabi": 92, "koala": 92, "wombat": 92, "jellyfish": 92, "anemon": 92, "brain": 92, "coral": 92, "flatworm": 92, "nematod": 92, "conch": 92, "snail": 92, "slug": 92, "chiton": 92, "chamber": 92, "nautilu": 92, "dung": 92, "crab": 92, "fiddler": 92, "king": 92, "lobster": 92, "spini": 92, "crayfish": 92, "hermit": 92, "isopod": 92, "stork": 92, "spoonbil": 92, "flamingo": 92, "heron": 92, "egret": 92, "bittern": 92, "crane": 92, "bird": [92, 99], "limpkin": 92, "gallinul": 92, "coot": 92, "bustard": 92, "ruddi": 92, "turnston": 92, "dunlin": 92, "redshank": 92, "dowitch": 92, "oystercatch": 92, "pelican": 92, "penguin": 92, "albatross": 92, "whale": 92, "killer": 92, "dugong": 92, "lion": 92, "chihuahua": 92, "japanes": 92, "chin": 92, "maltes": 92, "pekinges": 92, "shih": 92, "tzu": 92, "charl": 92, "spaniel": 92, "papillon": 92, "terrier": 92, "rhodesian": 92, "ridgeback": 92, "afghan": [92, 103], "hound": 92, "basset": 92, "beagl": 92, "bloodhound": 92, "bluetick": 92, "coonhound": 92, "tan": 92, "walker": 92, "foxhound": 92, "redbon": 92, "borzoi": 92, "irish": 92, "wolfhound": 92, "italian": 92, "greyhound": 92, "whippet": 92, "ibizan": 92, "norwegian": 92, "elkhound": 92, "otterhound": 92, "saluki": 92, "scottish": 92, "deerhound": 92, "weimaran": 92, "staffordshir": 92, "bull": 92, "bedlington": 92, "border": 92, "kerri": 92, "norfolk": 92, "norwich": 92, "yorkshir": 92, "wire": 92, "fox": 92, "lakeland": 92, "sealyham": 92, "airedal": 92, "cairn": 92, "australian": 92, "dandi": 92, "dinmont": 92, "boston": 92, "miniatur": 92, "schnauzer": 92, "giant": 92, "tibetan": 92, "silki": 92, "wheaten": 92, "west": 92, "highland": 92, "lhasa": 92, "apso": 92, "flat": 92, "retriev": 92, "curli": 92, "golden": 92, "labrador": 92, "chesapeak": 92, "bai": 92, "german": [92, 103], "shorthair": 92, "pointer": 92, "vizsla": 92, "setter": 92, "gordon": 92, "brittani": 92, "clumber": 92, "springer": 92, "welsh": 92, "cocker": 92, "sussex": 92, "kuvasz": 92, "schipperk": 92, "groenendael": 92, "malinoi": 92, "briard": 92, "kelpi": 92, "komondor": 92, "sheepdog": 92, "shetland": 92, "colli": 92, "bouvier": 92, "de": 92, "flandr": 92, "rottweil": 92, "shepherd": 92, "dobermann": 92, "pinscher": 92, "swiss": [92, 103], "mountain": 92, "bernes": 92, "appenzel": 92, "sennenhund": 92, "entlebuch": 92, "boxer": 92, "bullmastiff": 92, "mastiff": 92, "french": 92, "bulldog": 92, "dane": 92, "st": 92, "bernard": 92, "huski": 92, "alaskan": 92, "malamut": 92, "siberian": 92, "dalmatian": 92, "affenpinsch": 92, "basenji": 92, "pug": 92, "leonberg": 92, "newfoundland": 92, "pyrenean": 92, "samoi": 92, "pomeranian": 92, "chow": 92, "keeshond": 92, "griffon": 92, "bruxelloi": 92, "pembrok": 92, "corgi": 92, "cardigan": 92, "poodl": 92, "mexican": 92, "hairless": 92, "tundra": 92, "coyot": 92, "dingo": 92, "dhole": 92, "wild": 92, "hyena": 92, "kit": 92, "arctic": 92, "tabbi": 92, "persian": 92, "siames": 92, "egyptian": 92, "mau": 92, "cougar": 92, "lynx": 92, "leopard": 92, "snow": 92, "jaguar": 92, "cheetah": 92, "brown": [92, 102], "bear": 92, "polar": 92, "sloth": 92, "mongoos": 92, "meerkat": 92, "beetl": 92, "ladybug": 92, "longhorn": 92, "leaf": 92, "rhinocero": 92, "weevil": 92, "ant": 92, "grasshopp": 92, "cricket": 92, "stick": 92, "insect": 92, "cockroach": 92, "manti": 92, "cicada": 92, "leafhopp": 92, "lacew": 92, "dragonfli": 92, "damselfli": 92, "admir": 92, "ringlet": 92, "monarch": 92, "butterfli": 92, "gossam": 92, "wing": 92, "starfish": 92, "urchin": 92, "cucumb": 92, "cottontail": 92, "rabbit": 92, "hare": 92, "angora": 92, "hamster": 92, "porcupin": 92, "squirrel": 92, "marmot": 92, "beaver": 92, "guinea": 92, "pig": 92, "sorrel": 92, "zebra": 92, "boar": 92, "warthog": 92, "hippopotamu": 92, "ox": 92, "buffalo": 92, "bison": 92, "bighorn": 92, "sheep": 92, "alpin": 92, "ibex": 92, "hartebeest": 92, "impala": 92, "gazel": 92, "dromedari": 92, "llama": 92, "weasel": 92, "mink": 92, "polecat": 92, "foot": 92, "ferret": 92, "otter": 92, "skunk": 92, "badger": 92, "armadillo": 92, "toed": 92, "orangutan": 92, "gorilla": 92, "chimpanze": 92, "gibbon": 92, "siamang": 92, "guenon": 92, "pata": 92, "monkei": 92, "baboon": 92, "macaqu": 92, "langur": 92, "colobu": 92, "probosci": 92, "marmoset": 92, "capuchin": 92, "howler": 92, "titi": 92, "geoffroi": 92, "lemur": 92, "indri": 92, "asian": 92, "eleph": 92, "bush": 92, "snoek": 92, "eel": 92, "coho": 92, "salmon": 92, "beauti": 92, "clownfish": 92, "sturgeon": 92, "garfish": 92, "lionfish": 92, "pufferfish": 92, "abacu": 92, "abaya": 92, "academ": 92, "gown": 92, "accordion": 92, "acoust": 92, "guitar": 92, "aircraft": 92, "carrier": 92, "airlin": 92, "airship": 92, "altar": 92, "ambul": 92, "amphibi": 92, "clock": [92, 103], "apiari": 92, "apron": 92, "wast": 92, "assault": 92, "rifl": 92, "backpack": 92, "bakeri": 92, "balanc": 92, "beam": 92, "balloon": 92, "ballpoint": 92, "pen": 92, "aid": 92, "banjo": 92, "balust": 92, "barbel": 92, "barber": 92, "chair": [92, 98], "barbershop": 92, "baromet": 92, "barrel": 92, "wheelbarrow": 92, "basebal": 92, "basketbal": 92, "bassinet": 92, "bassoon": 92, "swim": 92, "cap": 92, "bath": 92, "towel": 92, "bathtub": 92, "station": 92, "wagon": 92, "lighthous": 92, "beaker": 92, "militari": 92, "beer": 92, "bottl": 92, "glass": 92, "bell": 92, "cot": 92, "bib": 92, "bicycl": [92, 102], "bikini": 92, "binder": 92, "binocular": 92, "birdhous": 92, "boathous": 92, "bobsleigh": 92, "bolo": 92, "tie": 92, "poke": 92, "bonnet": 92, "bookcas": 92, "bookstor": 92, "bow": 92, "brass": 92, "bra": 92, "breakwat": 92, "breastplat": 92, "broom": 92, "bucket": 92, "buckl": 92, "bulletproof": 92, "vest": 92, "butcher": 92, "shop": 92, "taxicab": 92, "cauldron": 92, "candl": 92, "cannon": 92, "cano": 92, "mirror": [92, 98], "carousel": 92, "tool": [92, 94, 96], "carton": 92, "wheel": 92, "teller": 92, "cassett": 92, "player": 92, "castl": 92, "catamaran": 92, "cd": 92, "cello": 92, "mobil": [92, 103], "chain": 92, "fenc": [92, 102], "mail": 92, "chainsaw": 92, "chest": 92, "chiffoni": 92, "chime": 92, "china": 92, "cabinet": 92, "christma": 92, "stock": 92, "church": 92, "movi": 92, "theater": 92, "cleaver": 92, "cliff": 92, "dwell": 92, "cloak": 92, "clog": 92, "cocktail": 92, "shaker": 92, "coffe": 92, "mug": 92, "coffeemak": 92, "coil": 92, "lock": 92, "keyboard": 92, "confectioneri": 92, "ship": [92, 99], "corkscrew": 92, "cornet": 92, "cowboi": 92, "boot": 92, "hat": 92, "cradl": 92, "crash": 92, "helmet": 92, "crate": 92, "infant": 92, "bed": 92, "crock": 92, "pot": 92, "croquet": 92, "crutch": 92, "cuirass": 92, "dam": 92, "desk": 92, "desktop": 92, "rotari": 92, "dial": 92, "telephon": 92, "diaper": 92, "watch": 92, "dine": 92, "dishcloth": 92, "dishwash": 92, "disc": 92, "brake": 92, "dock": 92, "sled": 92, "dome": 92, "doormat": 92, "drill": 92, "rig": 92, "drum": 92, "drumstick": 92, "dumbbel": 92, "dutch": 92, "oven": 92, "fan": 92, "locomot": 92, "entertain": 92, "center": 92, "envelop": 92, "espresso": 92, "powder": 92, "feather": 92, "fireboat": 92, "engin": [92, 102], "screen": 92, "sheet": 92, "flagpol": 92, "flute": 92, "footbal": 92, "forklift": 92, "fountain": 92, "poster": 92, "freight": 92, "fry": 92, "pan": 92, "fur": 92, "garbag": 92, "ga": 92, "pump": 92, "goblet": 92, "kart": 92, "golf": 92, "cart": 92, "gondola": 92, "gong": 92, "grand": 92, "piano": 92, "greenhous": 92, "grill": 92, "groceri": 92, "guillotin": 92, "barrett": 92, "hair": 92, "sprai": 92, "hammer": 92, "dryer": 92, "hand": [92, 94], "handkerchief": 92, "drive": 92, "harmonica": 92, "harp": 92, "harvest": 92, "hatchet": 92, "holster": 92, "honeycomb": 92, "hoop": 92, "skirt": 92, "horizont": 92, "bar": 92, "drawn": 92, "hourglass": 92, "ipod": 92, "cloth": 92, "iron": 92, "jack": 92, "lantern": 92, "jean": 92, "jeep": 92, "jigsaw": 92, "puzzl": 92, "pull": 92, "rickshaw": 92, "joystick": 92, "kimono": 92, "knee": 92, "pad": 92, "knot": 92, "ladl": 92, "lampshad": 92, "laptop": 92, "lawn": 92, "mower": 92, "knife": 92, "lifeboat": 92, "lighter": 92, "limousin": 92, "ocean": 92, "liner": 92, "lipstick": 92, "slip": 92, "shoe": 92, "lotion": 92, "speaker": 92, "loup": 92, "sawmil": 92, "magnet": 92, "compass": 92, "mailbox": 92, "tight": 92, "tank": 92, "manhol": 92, "maraca": 92, "marimba": 92, "maypol": 92, "maze": 92, "cup": [92, 98], "medicin": 92, "megalith": 92, "microphon": 92, "microwav": 92, "milk": 92, "minibu": 92, "miniskirt": 92, "minivan": 92, "missil": 92, "mitten": [92, 93], "mix": 92, "bowl": 92, "modem": 92, "monasteri": 92, "mope": 92, "mortar": 92, "mosqu": 92, "mosquito": 92, "scooter": 92, "bike": 92, "tent": 92, "mous": [92, 93], "mousetrap": 92, "van": 92, "muzzl": 92, "nail": 92, "brace": 92, "necklac": 92, "nippl": 92, "obelisk": 92, "obo": 92, "ocarina": 92, "odomet": 92, "oil": 92, "oscilloscop": 92, "overskirt": 92, "bullock": 92, "oxygen": 92, "packet": 92, "paddl": 92, "padlock": 92, "paintbrush": 92, "pajama": 92, "palac": [92, 103], "parachut": 92, "park": 92, "bench": 92, "meter": 92, "passeng": 92, "patio": 92, "payphon": 92, "pedest": 92, "pencil": 92, "perfum": 92, "petri": 92, "dish": 92, "photocopi": 92, "plectrum": 92, "pickelhaub": 92, "picket": 92, "pickup": 92, "pier": 92, "piggi": 92, "pill": 92, "pillow": 92, "ping": 92, "pong": 92, "pinwheel": 92, "pirat": 92, "pitcher": 92, "plane": 92, "planetarium": 92, "plastic": 92, "plate": 92, "rack": 92, "plow": 92, "plunger": 92, "polaroid": 92, "camera": 92, "pole": [92, 102], "polic": 92, "poncho": 92, "billiard": 92, "soda": 92, "potter": 92, "prayer": 92, "rug": 92, "printer": 92, "prison": 92, "projectil": 92, "projector": 92, "hockei": 92, "puck": 92, "punch": 92, "purs": 92, "quill": 92, "quilt": 92, "race": 92, "racket": 92, "radiat": 92, "radio": 92, "telescop": 92, "rain": 92, "recreat": 92, "reel": 92, "reflex": 92, "refriger": 92, "remot": 92, "restaur": 92, "revolv": 92, "rotisseri": 92, "eras": 92, "rugbi": 92, "ruler": 92, "safe": 92, "safeti": 92, "salt": 92, "sarong": 92, "saxophon": 92, "scabbard": 92, "school": 92, "bu": [92, 102], "schooner": 92, "scoreboard": 92, "crt": 92, "screw": 92, "screwdriv": 92, "seat": 92, "belt": 92, "sew": 92, "shield": 92, "shoji": 92, "basket": 92, "shovel": 92, "shower": 92, "curtain": 92, "ski": 92, "door": 92, "slot": 92, "snorkel": 92, "snowmobil": 92, "snowplow": 92, "soap": 92, "dispens": 92, "soccer": [92, 103], "sock": [92, 93], "solar": 92, "thermal": 92, "collector": 92, "sombrero": 92, "soup": 92, "heater": 92, "shuttl": 92, "spatula": 92, "motorboat": 92, "web": 92, "spindl": 92, "sport": [92, 103], "spotlight": 92, "stage": 92, "steam": 92, "arch": 92, "bridg": 92, "steel": 92, "stethoscop": 92, "scarf": 92, "stone": 92, "wall": [92, 102], "stopwatch": 92, "stove": 92, "strainer": 92, "tram": 92, "stretcher": 92, "couch": 92, "stupa": 92, "submarin": 92, "sundial": 92, "sunglass": 92, "sunscreen": 92, "suspens": 92, "mop": 92, "sweatshirt": 92, "swimsuit": 92, "swing": 92, "switch": 92, "syring": 92, "lamp": 92, "tape": 92, "teapot": 92, "teddi": 92, "televis": [92, 103], "tenni": 92, "thatch": 92, "roof": 92, "front": 92, "thimbl": 92, "thresh": 92, "throne": 92, "tile": 92, "toaster": 92, "tobacco": 92, "toilet": 92, "totem": 92, "tow": 92, "tractor": 92, "semi": 92, "trailer": 92, "trai": 92, "trench": 92, "tricycl": 92, "trimaran": 92, "tripod": 92, "triumphal": 92, "trolleybu": 92, "trombon": 92, "tub": 92, "turnstil": 92, "typewrit": 92, "umbrella": 92, "unicycl": 92, "upright": 92, "vacuum": 92, "cleaner": 92, "vase": 92, "vault": 92, "velvet": 92, "vend": 92, "vestment": 92, "viaduct": 92, "violin": 92, "volleybal": 92, "waffl": 92, "wallet": 92, "wardrob": 92, "sink": 92, "wash": 92, "jug": 92, "tower": 92, "whiskei": 92, "whistl": 92, "wig": 92, "shade": [92, 102], "windsor": 92, "wine": 92, "wok": 92, "wooden": 92, "spoon": 92, "wool": 92, "rail": 92, "shipwreck": 92, "yawl": 92, "yurt": 92, "comic": 92, "book": 92, "crossword": 92, "traffic": [92, 98, 102], "sign": [92, 102, 103], "dust": 92, "jacket": [92, 98], "menu": 92, "guacamol": 92, "consomm": 92, "trifl": 92, "ic": 92, "cream": 92, "pop": 92, "baguett": 92, "bagel": 92, "pretzel": 92, "cheeseburg": 92, "mash": 92, "potato": 92, "cabbag": 92, "broccoli": 92, "cauliflow": 92, "zucchini": 92, "spaghetti": 92, "squash": 92, "acorn": 92, "butternut": 92, "artichok": 92, "pepper": [92, 93], "cardoon": 92, "mushroom": 92, "granni": 92, "smith": 92, "strawberri": 92, "orang": 92, "lemon": 92, "pineappl": 92, "banana": 92, "jackfruit": 92, "custard": 92, "appl": 92, "pomegran": 92, "hai": 92, "carbonara": 92, "chocol": 92, "syrup": 92, "dough": 92, "meatloaf": 92, "pizza": 92, "pie": 92, "burrito": 92, "eggnog": 92, "alp": 92, "bubbl": 92, "reef": 92, "geyser": 92, "lakeshor": 92, "promontori": 92, "shoal": 92, "seashor": 92, "vallei": 92, "volcano": 92, "bridegroom": 92, "scuba": 92, "diver": 92, "rapese": 92, "daisi": 92, "ladi": 92, "slipper": 92, "corn": 92, "rose": 92, "hip": 92, "chestnut": 92, "fungu": 92, "agar": 92, "gyromitra": 92, "stinkhorn": 92, "earth": 92, "star": 92, "wood": 92, "bolet": 92, "ear": 92, "cifar10_test_set": 92, "airplan": [92, 99], "automobil": [92, 99], "deer": [92, 99], "cifar100_test_set": 92, "aquarium_fish": 92, "babi": 92, "boi": 92, "camel": 92, "caterpillar": 92, "cattl": [92, 103], "cloud": 92, "dinosaur": 92, "dolphin": 92, "flatfish": 92, "forest": 92, "girl": 92, "kangaroo": 92, "lawn_mow": 92, "man": 92, "maple_tre": 92, "motorcycl": [92, 102], "oak_tre": 92, "orchid": 92, "palm_tre": 92, "pear": 92, "pickup_truck": 92, "pine_tre": 92, "plain": 92, "poppi": 92, "possum": 92, "raccoon": 92, "road": [92, 102], "rocket": 92, "seal": 92, "shrew": 92, "skyscrap": 92, "streetcar": 92, "sunflow": 92, "sweet_pepp": 92, "trout": 92, "tulip": 92, "willow_tre": 92, "woman": [92, 98], "caltech256": 92, "ak47": 92, "bat": 92, "glove": 92, "birdbath": 92, "blimp": 92, "bonsai": 92, "boom": 92, "breadmak": 92, "buddha": 92, "bulldoz": 92, "cactu": 92, "cake": 92, "tire": 92, "cartman": 92, "cereal": 92, "chandeli": 92, "chess": 92, "board": 92, "chimp": 92, "chopstick": 92, "coffin": 92, "coin": 92, "comet": 92, "cormor": 92, "globe": 92, "diamond": 92, "dice": 92, "doorknob": 92, "drink": 92, "straw": 92, "dumb": 92, "eiffel": 92, "elk": 92, "ewer": 92, "eyeglass": 92, "fern": 92, "fighter": 92, "jet": [92, 101], "extinguish": 92, "hydrant": 92, "firework": 92, "flashlight": 92, "floppi": 92, "fri": 92, "frisbe": 92, "galaxi": 92, "giraff": 92, "goat": 92, "gate": 92, "grape": 92, "pick": [92, 93], "hamburg": 92, "hammock": 92, "harpsichord": 92, "hawksbil": 92, "helicopt": 92, "hibiscu": 92, "homer": 92, "simpson": 92, "horsesho": 92, "air": 92, "skeleton": 92, "ibi": 92, "cone": 92, "iri": 92, "jesu": 92, "christ": 92, "joi": 92, "kayak": 92, "ketch": 92, "ladder": 92, "lath": 92, "licens": 92, "lightbulb": 92, "lightn": 92, "mandolin": 92, "mar": 92, "mattress": 92, "megaphon": 92, "menorah": 92, "microscop": 92, "minaret": 92, "minotaur": 92, "motorbik": 92, "mussel": 92, "neckti": 92, "octopu": 92, "palm": 92, "pilot": 92, "paperclip": 92, "shredder": 92, "pci": 92, "peopl": [92, 98], "pez": 92, "picnic": 92, "pram": 92, "prai": 92, "pyramid": 92, "rainbow": 92, "roulett": 92, "saddl": 92, "saturn": 92, "segwai": 92, "propel": 92, "sextant": 92, "music": 92, "skateboard": 92, "smokestack": 92, "sneaker": 92, "boat": 92, "stain": 92, "steer": 92, "stirrup": 92, "superman": 92, "sushi": 92, "armi": [92, 103], "sword": 92, "tambourin": 92, "teepe": 92, "court": 92, "theodolit": 92, "tomato": 92, "tombston": 92, "tour": 92, "pisa": 92, "treadmil": 92, "fork": 92, "tweezer": 92, "unicorn": 92, "vcr": 92, "waterfal": 92, "watermelon": 92, "weld": 92, "windmil": 92, "xylophon": 92, "yarmulk": 92, "yo": 92, "toad": 92, "twenty_news_test_set": 92, "alt": 92, "atheism": 92, "comp": 92, "graphic": [92, 102], "misc": [92, 103], "sy": 92, "ibm": 92, "pc": 92, "hardwar": 92, "mac": 92, "forsal": 92, "rec": 92, "sci": 92, "crypt": 92, "electron": 92, "med": 92, "soc": 92, "religion": 92, "christian": [92, 103], "talk": [92, 103], "polit": 92, "gun": 92, "mideast": 92, "amazon": 92, "neutral": 92, "imdb_test_set": 92, "all_class": 92, "20news_test_set": 92, "_load_classes_predprobs_label": 92, "dataset_nam": 92, "labelerror": 92, "url_bas": 92, "5392f6c71473055060be3044becdde1cbc18284d": 92, "url_label": 92, "original_test_label": 92, "_original_label": 92, "url_prob": 92, "cross_validated_predicted_prob": 92, "_pyx": 92, "num_part": 92, "datatset": 92, "bytesio": 92, "allow_pickl": 92, "pred_probs_part": 92, "url": 92, "_of_": 92, "nload": 92, "imdb": 92, "interpret": [92, 93, 94, 97, 101], "capit": 92, "29780": 92, "780": 92, "medic": [92, 103], "doctor": 92, "359223": 92, "640777": 92, "184": [92, 94], "258427": 92, "341176": 92, "263158": 92, "658824": 92, "337349": 92, "246575": 92, "662651": 92, "248": 92, "330000": 92, "355769": 92, "670000": 92, "251": [92, 98], "252": 92, "112": 92, "253": [92, 98], "022989": 92, "049505": 92, "190": [92, 94, 98], "66": 92, "002216": 92, "000974": 92, "59": [92, 98], "000873": 92, "000739": 92, "32635": 92, "32636": 92, "47": [92, 98], "32637": 92, "32638": 92, "32639": 92, "32640": 92, "051": 92, "002242": 92, "997758": 92, "002088": 92, "001045": 92, "997912": 92, "002053": 92, "997947": 92, "001980": 92, "000991": 92, "998020": 92, "001946": 92, "002915": 92, "998054": 92, "001938": 92, "002904": 92, "998062": 92, "001020": 92, "998980": 92, "001018": 92, "002035": 92, "998982": 92, "999009": 92, "0003": 92, "0002": 92, "36": [92, 103], "41": [92, 98, 101], "71": [92, 94, 98, 101], "071": 92, "067269": 92, "929": 92, "046": 92, "058243": 92, "954": 92, "035": 92, "032096": 92, "965": 92, "031": 92, "012232": 92, "969": 92, "022": 92, "025896": 92, "978": 92, "020": [92, 94], "013092": 92, "018": 92, "013065": 92, "016": 92, "030542": 92, "984": 92, "013": 92, "020833": 92, "987": 92, "012": 92, "010020": 92, "988": 92, "0073": 92, "0020": 92, "0016": 92, "0015": 92, "0013": 92, "0012": 92, "0010": 92, "0008": 92, "0007": 92, "0006": 92, "0005": 92, "0004": 92, "244": [92, 98, 103], "98": [92, 93, 101], "452381": 92, "459770": 92, "72": [92, 94, 97, 101], "523364": 92, "460784": 92, "446602": 92, "57": [92, 94], "103774": 92, "030612": 92, "110092": 92, "049020": 92, "0034": 92, "0032": 92, "0026": 92, "0025": 92, "4945": 92, "4946": 92, "4947": 92, "4948": 92, "4949": 92, "4950": 92, "846": 92, "82": [92, 94, 98, 101], "7532": 92, "532": 92, "034483": 92, "009646": 92, "965517": 92, "030457": 92, "020513": 92, "969543": 92, "028061": 92, "035443": 92, "971939": 92, "025316": 92, "005168": 92, "974684": 92, "049751": 92, "979487": 92, "019920": 92, "042802": 92, "980080": 92, "017677": 92, "005115": 92, "982323": 92, "012987": 92, "005236": 92, "987013": 92, "012723": 92, "025126": 92, "987277": 92, "010989": 92, "008264": 92, "989011": 92, "010283": 92, "027778": 92, "989717": 92, "009677": 92, "990323": 92, "007614": 92, "010127": 92, "992386": 92, "005051": 92, "994949": 92, "005025": 92, "994975": 92, "005013": 92, "994987": 92, "001859": 92, "001328": 92, "000929": 92, "000664": 92, "186": [92, 94], "188": [92, 94, 97], "189": [92, 94], "snippet": 93, "nlp": [93, 103], "mind": [93, 94], "alphanumer": 93, "facilit": 93, "classlabel": 93, "guidanc": 93, "labels_str": 93, "datalab_str": 93, "labels_int": 93, "remap": 93, "datalab_int": 93, "my_dict": 93, "pet_nam": 93, "rover": 93, "rocki": 93, "speci": 93, "from_dict": 93, "datalab_dataset": 93, "number_of_class": 93, "total_number_of_data_point": 93, "alphabet": 93, "labels_proper_format": 93, "your_classifi": 93, "issues_datafram": 93, "class_predicted_for_flagged_exampl": 93, "class_predicted_for_all_exampl": 93, "grant": 93, "On": [93, 94, 98], "merged_dataset": 93, "label_column_nam": 93, "datataset": 93, "fair": [93, 94], "game": 93, "speedup": [93, 99], "flexibl": 93, "tempfil": 93, "mkdtemp": 93, "sped": 93, "anywai": 93, "pred_probs_merg": 93, "merge_rare_class": 93, "count_threshold": 93, "class_mapping_orig2new": 93, "heath_summari": 93, "num_examples_per_class": 93, "rare_class": 93, "num_classes_merg": 93, "other_class": 93, "labels_merg": 93, "new_c": 93, "merged_prob": 93, "new_class": 93, "original_class": 93, "num_check": 93, "ones_array_ref": 93, "isclos": 93, "though": [93, 94, 103], "successfulli": 93, "meaning": [93, 99], "virtuou": [93, 96], "cycl": [93, 96], "jointli": 93, "junk": 93, "clutter": 93, "unknown": 93, "caltech": 93, "combined_boolean_mask": 93, "mask1": 93, "mask2": 93, "gradientboostingclassifi": [93, 94], "true_error": [93, 94, 97], "101": [93, 98], "102": [93, 97, 98], "104": [93, 94, 98], "model_to_find_error": 93, "model_to_return": 93, "cl0": 93, "randomizedsearchcv": 93, "expens": 93, "param_distribut": 93, "learning_r": [93, 94], "max_depth": [93, 94], "magnitud": 93, "coeffici": [93, 101], "optin": 93, "environ": [93, 94], "rerun": [93, 94], "cell": [93, 94], "unabl": [93, 94], "render": [93, 94], "nbviewer": [93, 94], "nbsp": [93, 94], "cleanlearninginot": [93, 94], "fittedcleanlearn": [93, 94], "linearregressionlinearregress": 93, "n_init": 93, "fit_predict": 93, "continuous_column": 93, "categorical_column": 93, "data_df": 93, "feature_a": 93, "feature_b": 93, "unexpectedli": 93, "emphas": 93, "crucial": 93, "merge_duplicate_set": 93, "merge_kei": 93, "construct_group_kei": 93, "merged_set": 93, "consolidate_set": 93, "tolist": [93, 97], "issubset": 93, "frozenset": 93, "sets_list": 93, "mutabl": 93, "new_set": 93, "current_set": 93, "intersecting_set": 93, "lowest_score_strategi": 93, "sub_df": 93, "idxmin": 93, "filter_near_dupl": 93, "strategy_fn": 93, "strategy_kwarg": 93, "duplicate_row": 93, "group_kei": 93, "to_keep_indic": 93, "groupbi": 93, "explod": 93, "to_remov": 93, "isin": [93, 99], "kept": 93, "ids_to_remove_seri": 93, "tmp": 93, "ipykernel_7838": 93, "1995098996": 93, "deprecationwarn": 93, "dataframegroupbi": 93, "include_group": 93, "silenc": 93, "assist": 93, "streamlin": 93, "ux": 93, "agpl": 93, "compani": 93, "commerci": 93, "alter": 93, "email": 93, "team": 93, "discuss": 93, "anywher": 93, "profession": 93, "expert": 93, "depth": 94, "survei": [94, 103], "focus": [94, 96, 97, 101], "scienc": 94, "multivariate_norm": [94, 96, 97], "make_data": [94, 96], "cov": [94, 96, 97], "avg_trac": [94, 97], "py_tru": 94, "noise_matrix_tru": 94, "noise_marix": 94, "s_test": 94, "noisy_test_label": 94, "purpl": 94, "val": 94, "namespac": 94, "exec": 94, "markerfacecolor": [94, 97], "markeredgecolor": [94, 97, 101], "markers": [94, 97, 101], "markeredgewidth": [94, 97, 101], "realist": 94, "7560": 94, "637318e": 94, "896262e": 94, "548391e": 94, "923417e": 94, "375075e": 94, "3454": 94, "014051": 94, "020451": 94, "249": [94, 98], "042594": 94, "043859": 94, "045954": 94, "6120": 94, "023714": 94, "007136": 94, "119": [94, 98], "107266": 94, "103": [94, 98], "033738": 94, "238": [94, 98], "119505": 94, "236": [94, 98], "037843": 94, "222": 94, "614915": 94, "122": [94, 98], "624422": 94, "625965": 94, "626079": 94, "118": 94, "627675": 94, "695223": 94, "323529": 94, "523015": 94, "013720": 94, "675727": 94, "646521": 94, "anyth": 94, "enhanc": [94, 96, 98], "magic": 94, "liter": 94, "identif": 94, "x27": 94, "logisticregressionlogisticregress": 94, "ever": 94, "092": 94, "040": 94, "024": 94, "004": 94, "surpris": 94, "1705": 94, "01936": 94, "ton": 94, "yourfavoritemodel1": 94, "merged_label": 94, "merged_test_label": 94, "newli": [94, 96], "yourfavoritemodel2": 94, "yourfavoritemodel3": 94, "cl3": 94, "takeawai": 94, "That": [94, 97], "randomli": 94, "my_test_pred_prob": 94, "my_test_pr": 94, "issues_test": 94, "corrected_test_label": 94, "pretend": 94, "cl_test_pr": 94, "69": [94, 101], "fairli": 94, "label_acc": 94, "percentag": 94, "offset": 94, "nquestion": 94, "overestim": 94, "answer": 94, "experienc": 94, "knowledg": 94, "prioiri": 94, "known": 94, "versatil": 94, "label_issues_indic": 94, "213": [94, 98], "218": [94, 98], "152": 94, "197": [94, 98], "196": [94, 98], "170": 94, "214": 94, "164": [94, 97], "198": [94, 98], "191": [94, 98], "63": [94, 98, 101], "117": [94, 101], "62": [94, 98, 101, 103], "206": [94, 98], "115": [94, 98], "193": 94, "194": 94, "201": [94, 98], "174": 94, "163": 94, "150": [94, 96, 98], "169": 94, "151": [94, 98], "168": 94, "precision_scor": 94, "recall_scor": 94, "f1_score": 94, "true_label_issu": 94, "filter_by_list": 94, "718750": [94, 96], "807018": 94, "912": 94, "733333": 94, "800000": 94, "721311": 94, "792793": 94, "908": 94, "676923": 94, "765217": 94, "892": 94, "567901": 94, "702290": 94, "844": 94, "gaug": 94, "label_issues_count": 94, "155": [94, 98], "156": 94, "172": [94, 97], "easiest": 94, "modular": 94, "penalti": 94, "l2": 94, "model3": 94, "n_estim": 94, "cv_pred_probs_1": 94, "cv_pred_probs_2": 94, "cv_pred_probs_3": 94, "label_quality_scores_best": 94, "cv_pred_probs_ensembl": 94, "label_quality_scores_bett": 94, "superior": [94, 100], "timm": 95, "glad": 96, "multiannotator_label": 96, "300": [96, 103], "noisier": 96, "111": [96, 101], "local_data": [96, 97], "true_labels_train": [96, 97], "noise_matrix_bett": 96, "noise_matrix_wors": 96, "transpos": [96, 99], "dropna": 96, "zfill": 96, "row_na_check": 96, "notna": 96, "reset_index": 96, "a0001": 96, "a0002": 96, "a0003": 96, "a0004": 96, "a0005": 96, "a0006": 96, "a0007": 96, "a0008": 96, "a0009": 96, "a0010": 96, "a0041": 96, "a0042": 96, "a0043": 96, "a0044": 96, "a0045": 96, "a0046": 96, "a0047": 96, "a0048": 96, "a0049": 96, "a0050": 96, "na": 96, "60856743": 96, "41693214": 96, "40908785": 96, "87147629": 96, "64941785": 96, "10774851": 96, "0524466": 96, "71853246": 96, "37169848": 96, "66031048": 96, "multiannotator_util": 96, "crude": 96, "straight": 96, "majority_vote_label": 96, "736118": 96, "757751": 96, "782232": 96, "715565": 96, "824256": 96, "quality_annotator_a0001": 96, "quality_annotator_a0002": 96, "quality_annotator_a0003": 96, "quality_annotator_a0004": 96, "quality_annotator_a0005": 96, "quality_annotator_a0006": 96, "quality_annotator_a0007": 96, "quality_annotator_a0008": 96, "quality_annotator_a0009": 96, "quality_annotator_a0010": 96, "quality_annotator_a0041": 96, "quality_annotator_a0042": 96, "quality_annotator_a0043": 96, "quality_annotator_a0044": 96, "quality_annotator_a0045": 96, "quality_annotator_a0046": 96, "quality_annotator_a0047": 96, "quality_annotator_a0048": 96, "quality_annotator_a0049": 96, "quality_annotator_a0050": 96, "070564": 96, "216078": 96, "119188": 96, "alongisd": 96, "244981": 96, "208333": 96, "295979": 96, "294118": 96, "324197": 96, "310345": 96, "355316": 96, "346154": 96, "439732": 96, "480000": 96, "a0031": 96, "523205": 96, "580645": 96, "a0034": 96, "535313": 96, "607143": 96, "a0021": 96, "606999": 96, "a0015": 96, "609526": 96, "678571": 96, "a0011": 96, "621103": 96, "692308": 96, "wors": 96, "improved_consensus_label": 96, "majority_vote_accuraci": 96, "cleanlab_label_accuraci": 96, "8581081081081081": 96, "9797297297297297": 96, "besid": 96, "sorted_consensus_quality_scor": 96, "worst_qual": 96, "better_qu": 96, "worst_quality_accuraci": 96, "better_quality_accuraci": 96, "9893238434163701": 96, "improved_pred_prob": 96, "treat": [96, 97, 101, 103], "analzi": 96, "copyright": 97, "advertis": 97, "violenc": 97, "nsfw": 97, "celeba": 97, "make_multilabel_data": 97, "boxes_coordin": 97, "box_multilabel": 97, "make_multi": 97, "bx1": 97, "by1": 97, "bx2": 97, "by2": 97, "label_list": 97, "ur": 97, "upper": 97, "inidx": 97, "logical_and": 97, "inv_d": 97, "labels_idx": 97, "true_labels_test": 97, "dict_unique_label": 97, "get_color_arrai": 97, "dcolor": 97, "aa4400": 97, "55227f": 97, "55a100": 97, "00ff00": 97, "007f7f": 97, "386b55": 97, "0000ff": 97, "y_onehot": 97, "single_class_label": 97, "stratifi": [97, 100], "kf": 97, "train_index": 97, "test_index": 97, "clf_cv": 97, "x_train_cv": 97, "x_test_cv": 97, "y_train_cv": 97, "y_test_cv": 97, "y_pred_cv": 97, "saw": 97, "num_to_displai": 97, "09": [97, 98, 101], "275": 97, "267": 97, "225": 97, "171": 97, "234": 97, "165": [97, 103], "227": [97, 98], "262": [97, 98], "266": [97, 98], "139": 97, "143": [97, 98, 103], "216": [97, 98, 103], "265": 97, "159": [97, 98], "despit": [97, 103], "suspect": 97, "888": 97, "8224": 97, "9632": 97, "968": 97, "6512": 97, "0444": 97, "774": 97, "labels_binary_format": 97, "labels_list_format": 97, "surround": 98, "scene": 98, "coco": 98, "everydai": 98, "has_label_issu": 98, "insal": 98, "nc": [98, 102, 103], "s3": [98, 102, 103], "amazonaw": [98, 102, 103], "objectdetectionbenchmark": 98, "tutorial_obj": 98, "pkl": 98, "example_imag": 98, "unzip": [98, 103], "_separate_label": 98, "_separate_predict": 98, "begin": 98, "image_path": 98, "rb": 98, "image_to_visu": 98, "seg_map": 98, "334": 98, "float32": 98, "bboxes_ignor": 98, "290": 98, "286": 98, "285": 98, "224": 98, "231": [98, 103], "293": 98, "289": 98, "282": 98, "281": 98, "271": 98, "280": 98, "277": 98, "279": 98, "287": 98, "299": 98, "276": 98, "307": 98, "321": 98, "326": 98, "333": 98, "261": 98, "319": 98, "257": 98, "283": 98, "243": 98, "303": 98, "316": 98, "247": 98, "323": 98, "226": 98, "228": 98, "232": 98, "219": 98, "239": 98, "240": 98, "209": 98, "242": 98, "202": 98, "230": 98, "215": 98, "220": 98, "229": 98, "217": 98, "237": 98, "207": 98, "204": 98, "84": [98, 101], "205": 98, "223": 98, "153": 98, "140": 98, "124": 98, "268": 98, "273": 98, "108": 98, "284": 98, "110": 98, "136": 98, "145": 98, "173": 98, "297": 98, "317": 98, "192": 98, "332": 98, "324": 98, "203": 98, "320": 98, "199": 98, "291": 98, "000000481413": 98, "jpg": 98, "42398": 98, "44503": 98, "29968": 98, "336": 98, "21005": 98, "9978472": 98, "forgot": 98, "drew": 98, "label_issue_idx": 98, "num_examples_to_show": 98, "138": 98, "candid": 98, "97489622": 98, "70610878": 98, "98764951": 98, "88899237": 98, "99085805": 98, "issue_idx": 98, "95569726e": 98, "03354841e": 98, "57510169e": 98, "58447666e": 98, "39755858e": 98, "issue_to_visu": 98, "000000009483": 98, "95569726168054e": 98, "addition": [98, 102], "visibl": 98, "missmatch": 98, "likelei": 98, "agnost": 98, "vaidat": 98, "inconsist": 98, "000000395701": 98, "033548411774308e": 98, "armchair": 98, "tv": 98, "000000154004": 98, "38300759625496356": 98, "foreground": 98, "000000448410": 98, "0008575101690203273": 98, "crowd": 98, "alon": 98, "explor": [98, 99], "resembl": [98, 99], "000000499768": 98, "9748962231208227": 98, "000000521141": 98, "8889923658893665": 98, "000000143931": 98, "9876495074395956": 98, "bonu": 98, "uncov": 98, "irregular": 98, "anomali": 98, "object_detection_util": 98, "calculate_bounding_box_area": 98, "num_imgs_to_show": 98, "lab_object_count": 98, "pred_object_count": 98, "000000430073": 98, "000000183709": 98, "000000189475": 98, "studi": 98, "label_norm": 98, "pred_norm": 98, "area": [98, 102], "lab_area": 98, "pred_area": 98, "lab_area_mean": 98, "lab_area_std": 98, "max_deviation_valu": 98, "max_deviation_class": 98, "deviation_valu": 98, "deviation_class": 98, "mean_area": 98, "std_area": 98, "class_area": 98, "deviations_awai": 98, "max_deviation_index": 98, "num_imgs_to_show_per_class": 98, "class_num": 98, "sorted_indic": 98, "000000422886": 98, "000000341828": 98, "000000461009": 98, "train_feature_embed": 99, "ood_train_feature_scor": 99, "test_feature_embed": 99, "ood_test_feature_scor": 99, "ood_train_predictions_scor": 99, "train_pred_prob": 99, "ood_test_predictions_scor": 99, "test_pred_prob": 99, "pylab": 99, "rcparam": 99, "baggingclassifi": 99, "therebi": 99, "rescal": 99, "transform_norm": 99, "totensor": 99, "root": 99, "animal_class": 99, "non_animal_class": 99, "animal_idx": 99, "test_idx": 99, "toronto": 99, "edu": 99, "kriz": 99, "170498071": 99, "37601665": 99, "95it": 99, "5000": 99, "plot_imag": 99, "visualize_outli": 99, "txt_class": 99, "img": [99, 101], "npimg": 99, "show_label": 99, "data_subset": 99, "resnet50": 99, "corpu": 99, "2048": 99, "embed_imag": 99, "create_model": 99, "strang": 99, "odd": 99, "train_ood_features_scor": 99, "top_train_ood_features_idx": 99, "fun": 99, "negat": 99, "homogen": 99, "bottom_train_ood_features_idx": 99, "test_ood_features_scor": 99, "top_ood_features_idx": 99, "inevit": 99, "trade": 99, "5th": 99, "percentil": 99, "fifth_percentil": 99, "plt_rang": 99, "hist": 99, "train_outlier_scor": 99, "ylabel": 99, "axvlin": 99, "test_outlier_scor": 99, "ood_features_indic": 99, "revisit": 99, "return_invers": 99, "train_feature_embeddings_sc": 99, "test_feature_embeddings_sc": 99, "train_pred_label": 99, "9702": 99, "train_ood_predictions_scor": 99, "test_ood_predictions_scor": 99, "lost": 99, "unsuit": 100, "ok": [100, 103], "convention": 100, "aforement": 100, "hypothet": 100, "contrast": 100, "tradit": 100, "disjoint": 100, "out_of_sample_pred_probs_for_a": 100, "out_of_sample_pred_probs_for_b": 100, "out_of_sample_pred_probs_for_c": 100, "out_of_sample_pred_prob": 100, "price": 101, "incom": 101, "ag": 101, "sensor": 101, "histgradientboostingregressor": 101, "r2_score": 101, "student_grades_r": 101, "final_scor": 101, "true_final_scor": 101, "homework": 101, "3d": 101, "hue": 101, "mpl_toolkit": 101, "mplot3d": 101, "axes3d": 101, "errors_idx": 101, "add_subplot": 101, "z": 101, "colorbar": 101, "errors_mask": 101, "feature_column": 101, "predicted_column": 101, "x_train_raw": 101, "x_test_raw": 101, "randomforestregressor": 101, "385101": 101, "499503": 101, "698255": 101, "776647": 101, "109373": 101, "170547": 101, "481096": 101, "984759": 101, "645270": 101, "795928": 101, "141": 101, "659": 101, "318": 101, "305": 101, "560": 101, "657": 101, "688": 101, "view_datapoint": 101, "concat": 101, "preds_og": 101, "r2_og": 101, "838": 101, "found_label_issu": 101, "preds_cl": 101, "r2_cl": 101, "926": 101, "favorit": 101, "968627e": 101, "228799": 101, "646674e": 101, "402962": 101, "323818e": 101, "952758": 101, "422144e": 101, "456908": 101, "465815e": 101, "753968": 101, "791186e": 101, "110719": 101, "485156e": 101, "670640": 101, "225300e": 101, "749976": 101, "499679e": 101, "947007": 101, "067882e": 101, "648396": 101, "synthia": 102, "imagesegment": 102, "given_mask": 102, "predicted_mask": 102, "set_printopt": [102, 103], "sky": 102, "sidewalk": 102, "veget": 102, "terrain": 102, "rider": 102, "pred_probs_filepath": 102, "1088": 102, "1920": 102, "label_filepath": 102, "synthia_class": 102, "maunal": 102, "100000": 102, "244800": 102, "leftmost": 102, "middl": [102, 103], "infact": 102, "rightmost": 102, "discrep": 102, "3263230": 102, "783379": 102, "275110": 102, "255792": 102, "78225": 102, "55990": 102, "54427": 102, "33591": 102, "24645": 102, "21308": 102, "15045": 102, "14171": 102, "13832": 102, "13498": 102, "11490": 102, "9164": 102, "8769": 102, "6999": 102, "6031": 102, "5011": 102, "mistakenli": 102, "class_issu": 102, "aim": [102, 103], "domin": 102, "bunch": 103, "conll": 103, "2003": 103, "love": 103, "n_i": 103, "optional_list_of_ordered_class_nam": 103, "deepai": 103, "conll2003": 103, "rm": 103, "tokenclassif": 103, "2024": 103, "2400": 103, "52e0": 103, "1a01": 103, "connect": 103, "443": 103, "await": 103, "982975": 103, "960k": 103, "959": 103, "94k": 103, "49mb": 103, "mb": 103, "directori": 103, "inflat": 103, "161": 103, "17045998": 103, "16m": 103, "octet": 103, "26m": 103, "5mb": 103, "bert": 103, "read_npz": 103, "filepath": 103, "corrsespond": 103, "iob2": 103, "given_ent": 103, "entity_map": 103, "readfil": 103, "startswith": 103, "docstart": 103, "isalpha": 103, "isupp": 103, "indices_to_preview": 103, "nsentenc": 103, "eu": 103, "reject": 103, "boycott": 103, "british": 103, "lamb": 103, "00030412": 103, "00023826": 103, "99936208": 103, "00007009": 103, "00002545": 103, "99998795": 103, "00000401": 103, "00000218": 103, "00000455": 103, "00000131": 103, "00000749": 103, "99996115": 103, "00001371": 103, "0000087": 103, "00000895": 103, "99998936": 103, "00000382": 103, "00000178": 103, "00000366": 103, "00000137": 103, "99999101": 103, "00000266": 103, "00000174": 103, "0000035": 103, "00000109": 103, "99998768": 103, "00000482": 103, "00000202": 103, "00000438": 103, "0000011": 103, "00000465": 103, "99996392": 103, "00001105": 103, "0000116": 103, "00000878": 103, "99998671": 103, "00000364": 103, "00000213": 103, "00000472": 103, "00000281": 103, "99999073": 103, "00000211": 103, "00000159": 103, "00000442": 103, "00000115": 103, "peter": 103, "blackburn": 103, "00000358": 103, "00000529": 103, "99995623": 103, "0000129": 103, "0000024": 103, "00001812": 103, "99994141": 103, "00001645": 103, "00002162": 103, "brussel": 103, "1996": 103, "00001172": 103, "00000821": 103, "00004661": 103, "0000618": 103, "99987167": 103, "99999061": 103, "00000201": 103, "00000195": 103, "00000408": 103, "00000135": 103, "2254": 103, "2907": 103, "19392": 103, "9962": 103, "8904": 103, "19303": 103, "12918": 103, "9256": 103, "11855": 103, "18392": 103, "20426": 103, "19402": 103, "14744": 103, "19371": 103, "4645": 103, "10331": 103, "9430": 103, "6143": 103, "18367": 103, "12914": 103, "todai": 103, "weather": 103, "march": 103, "scalfaro": 103, "northern": 103, "himself": 103, "said": 103, "germani": 103, "nastja": 103, "rysich": 103, "north": 103, "spla": 103, "fought": 103, "khartoum": 103, "govern": 103, "south": 103, "1983": 103, "autonomi": 103, "animist": 103, "region": 103, "moslem": 103, "arabis": 103, "mayor": 103, "antonio": 103, "gonzalez": 103, "garcia": 103, "revolutionari": 103, "parti": 103, "wednesdai": 103, "troop": 103, "raid": 103, "farm": 103, "stole": 103, "rape": 103, "women": 103, "spring": 103, "chg": 103, "hrw": 103, "12pct": 103, "princ": 103, "photo": 103, "moment": 103, "spokeswoman": 103, "rainier": 103, "told": 103, "reuter": 103, "danila": 103, "carib": 103, "w224": 103, "equip": 103, "radiomet": 103, "earn": 103, "19996": 103, "london": 103, "denom": 103, "sale": 103, "uk": 103, "jp": 103, "fr": 103, "maccabi": 103, "hapoel": 103, "haifa": 103, "tel": 103, "aviv": 103, "hospit": 103, "rever": 103, "roman": 103, "cathol": 103, "nun": 103, "admit": 103, "calcutta": 103, "week": 103, "ago": 103, "fever": 103, "vomit": 103, "allianc": 103, "embattl": 103, "kabul": 103, "salang": 103, "highwai": 103, "mondai": 103, "tuesdai": 103, "suprem": 103, "council": 103, "led": 103, "jumbish": 103, "milli": 103, "movement": 103, "warlord": 103, "abdul": 103, "rashid": 103, "dostum": 103, "dollar": 103, "exchang": 103, "3570": 103, "12049": 103, "born": 103, "1937": 103, "provinc": 103, "anhui": 103, "dai": 103, "came": 103, "shanghai": 103, "citi": 103, "prolif": 103, "author": 103, "teacher": 103, "chines": 103, "16764": 103, "1990": 103, "historian": 103, "alan": 103, "john": 103, "percival": 103, "taylor": 103, "di": 103, "20446": 103, "pace": 103, "bowler": 103, "ian": 103, "harvei": 103, "claim": 103, "victoria": 103, "15514": 103, "cotti": 103, "osc": 103, "foreign": 103, "minist": 103, "7525": 103, "sultan": 103, "specter": 103, "met": 103, "crown": 103, "abdullah": 103, "defenc": 103, "aviat": 103, "jeddah": 103, "saudi": 103, "agenc": 103, "2288": 103, "hi": 103, "customari": 103, "outfit": 103, "champion": 103, "damp": 103, "scalp": 103, "canada": 103, "reign": 103, "olymp": 103, "donovan": 103, "bailei": 103, "1992": 103, "linford": 103, "christi": 103, "britain": 103, "1984": 103, "1988": 103, "carl": 103, "lewi": 103, "ambigi": 103, "punctuat": 103, "chicago": 103, "digest": 103, "philadelphia": 103, "usda": 103, "york": 103, "token_issu": 103, "471": 103, "kean": 103, "year": 103, "contract": 103, "manchest": 103, "19072": 103, "societi": 103, "bite": 103, "deliv": 103, "19910": 103, "father": 103, "clarenc": 103, "woolmer": 103, "renam": 103, "uttar": 103, "pradesh": 103, "india": 103, "ranji": 103, "trophi": 103, "nation": 103, "championship": 103, "captain": 103, "1949": 103, "15658": 103, "19879": 103, "iii": 103, "brian": 103, "shimer": 103, "randi": 103, "jone": 103, "19104": 103}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [55, 0, 0, "-", "models"], [57, 0, 0, "-", "multiannotator"], [60, 0, 0, "-", "multilabel_classification"], [63, 0, 0, "-", "object_detection"], [66, 0, 0, "-", "outlier"], [67, 0, 0, "-", "rank"], [68, 0, 0, "-", "regression"], [72, 0, 0, "-", "segmentation"], [76, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "outlier"], [51, 0, 0, "-", "token_classification_utils"], [52, 0, 0, "-", "util"], [53, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[50, 1, 1, "", "correct_precision_errors"], [50, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, 1, 1, "", "color_sentence"], [51, 1, 1, "", "filter_sentence"], [51, 1, 1, "", "get_sentence"], [51, 1, 1, "", "mapping"], [51, 1, 1, "", "merge_probs"], [51, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[52, 1, 1, "", "append_extra_datapoint"], [52, 1, 1, "", "clip_noise_rates"], [52, 1, 1, "", "clip_values"], [52, 1, 1, "", "compress_int_array"], [52, 1, 1, "", "confusion_matrix"], [52, 1, 1, "", "csr_vstack"], [52, 1, 1, "", "estimate_pu_f1"], [52, 1, 1, "", "extract_indices_tf"], [52, 1, 1, "", "force_two_dimensions"], [52, 1, 1, "", "format_labels"], [52, 1, 1, "", "get_missing_classes"], [52, 1, 1, "", "get_num_classes"], [52, 1, 1, "", "get_unique_classes"], [52, 1, 1, "", "is_tensorflow_dataset"], [52, 1, 1, "", "is_torch_dataset"], [52, 1, 1, "", "num_unique_classes"], [52, 1, 1, "", "print_inverse_noise_matrix"], [52, 1, 1, "", "print_joint_matrix"], [52, 1, 1, "", "print_noise_matrix"], [52, 1, 1, "", "print_square_matrix"], [52, 1, 1, "", "remove_noise_from_class"], [52, 1, 1, "", "round_preserving_row_totals"], [52, 1, 1, "", "round_preserving_sum"], [52, 1, 1, "", "smart_display_dataframe"], [52, 1, 1, "", "subset_X_y"], [52, 1, 1, "", "subset_data"], [52, 1, 1, "", "subset_labels"], [52, 1, 1, "", "train_val_split"], [52, 1, 1, "", "unshuffle_tensorflow_dataset"], [52, 1, 1, "", "value_counts"], [52, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[53, 1, 1, "", "assert_indexing_works"], [53, 1, 1, "", "assert_nonempty_input"], [53, 1, 1, "", "assert_valid_class_labels"], [53, 1, 1, "", "assert_valid_inputs"], [53, 1, 1, "", "labels_to_array"], [53, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[56, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[56, 2, 1, "", "KerasWrapperModel"], [56, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[57, 1, 1, "", "convert_long_to_wide_dataset"], [57, 1, 1, "", "get_active_learning_scores"], [57, 1, 1, "", "get_active_learning_scores_ensemble"], [57, 1, 1, "", "get_label_quality_multiannotator"], [57, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [57, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[58, 0, 0, "-", "dataset"], [59, 0, 0, "-", "filter"], [61, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[58, 1, 1, "", "common_multilabel_issues"], [58, 1, 1, "", "multilabel_health_summary"], [58, 1, 1, "", "overall_multilabel_health_score"], [58, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, 1, 1, "", "find_label_issues"], [59, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[62, 0, 0, "-", "filter"], [64, 0, 0, "-", "rank"], [65, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[62, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[64, 1, 1, "", "compute_badloc_box_scores"], [64, 1, 1, "", "compute_overlooked_box_scores"], [64, 1, 1, "", "compute_swap_box_scores"], [64, 1, 1, "", "get_label_quality_scores"], [64, 1, 1, "", "issues_from_scores"], [64, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[65, 1, 1, "", "bounding_box_size_distribution"], [65, 1, 1, "", "calculate_per_class_metrics"], [65, 1, 1, "", "class_label_distribution"], [65, 1, 1, "", "get_average_per_class_confusion_matrix"], [65, 1, 1, "", "get_sorted_bbox_count_idxs"], [65, 1, 1, "", "object_counts_per_image"], [65, 1, 1, "", "plot_class_distribution"], [65, 1, 1, "", "plot_class_size_distributions"], [65, 1, 1, "", "visualize"]], "cleanlab.outlier": [[66, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[66, 3, 1, "", "fit"], [66, 3, 1, "", "fit_score"], [66, 3, 1, "", "score"]], "cleanlab.rank": [[67, 1, 1, "", "find_top_issues"], [67, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [67, 1, 1, "", "get_label_quality_ensemble_scores"], [67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_normalized_margin_for_each_label"], [67, 1, 1, "", "get_self_confidence_for_each_label"], [67, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[69, 0, 0, "-", "learn"], [70, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[69, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[69, 3, 1, "", "__init_subclass__"], [69, 3, 1, "", "find_label_issues"], [69, 3, 1, "", "fit"], [69, 3, 1, "", "get_aleatoric_uncertainty"], [69, 3, 1, "", "get_epistemic_uncertainty"], [69, 3, 1, "", "get_label_issues"], [69, 3, 1, "", "get_metadata_routing"], [69, 3, 1, "", "get_params"], [69, 3, 1, "", "predict"], [69, 3, 1, "", "save_space"], [69, 3, 1, "", "score"], [69, 3, 1, "", "set_fit_request"], [69, 3, 1, "", "set_params"], [69, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[70, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[71, 0, 0, "-", "filter"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[71, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[74, 1, 1, "", "common_label_issues"], [74, 1, 1, "", "display_issues"], [74, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 82, 83, 84, 88, 90, 91, 93, 94, 97, 103], "count": [3, 94], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 85, 86, 87, 89, 90, 91, 94, 97], "creat": [7, 85, 86, 87, 94, 96], "your": [7, 79, 86, 87, 91, 93, 94], "own": 7, "issu": [7, 9, 10, 21, 30, 79, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 86], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 86], "us": [7, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "gener": 8, "cluster": [8, 93], "id": 8, "guid": [9, 11], "type": [9, 10, 94], "custom": [9, 86], "cleanlab": [9, 10, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "studio": [9, 10], "easi": [9, 10, 79, 88, 90, 91], "mode": [9, 10, 79, 88, 90, 91], "can": [10, 85, 87, 92, 93, 94, 96], "detect": [10, 87, 90, 91, 93, 94, 98, 99], "estim": [10, 94, 96, 97], "each": 10, "label": [10, 23, 25, 30, 79, 82, 83, 84, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "outlier": [10, 28, 50, 66, 88, 90, 91, 97, 99], "Near": [10, 87, 88, 90, 91], "duplic": [10, 19, 87, 88, 90, 91, 93, 97], "non": [10, 91], "iid": [10, 91], "class": [10, 80, 94, 102], "imbal": [10, 20], "imag": [10, 88, 99], "specif": [10, 21, 102], "underperform": [10, 93], "group": [10, 93], "null": [10, 27], "data": [10, 12, 79, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "valuat": 10, "option": 10, "paramet": [10, 94], "get": [11, 85, 86, 87, 96, 97, 98, 102, 103], "start": [11, 92], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 93, 94], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 68, 69, 70, 93, 101], "prioriti": 30, "order": 30, "find": [30, 79, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "underperforming_group": 31, "model_output": 32, "report": [33, 88], "dataset": [36, 58, 79, 83, 85, 87, 88, 91, 92, 93, 94, 97, 98, 99, 101, 102, 103], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 59, 62, 71, 75, 94], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "token_classification_util": 51, "util": 52, "valid": [53, 88, 100], "fasttext": 54, "model": [55, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101], "kera": 56, "multiannot": [57, 96], "multilabel_classif": 60, "rank": [61, 64, 67, 70, 73, 77, 94], "object_detect": 63, "summari": [65, 74, 78], "learn": [69, 82, 85, 87, 93, 94], "segment": [72, 102], "token_classif": [76, 103], "open": [79, 93], "sourc": [79, 93], "document": 79, "quickstart": 79, "1": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "instal": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "2": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "common": [79, 80, 103], "3": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "handl": [79, 93], "error": [79, 83, 88, 93, 94, 96, 97, 98, 101, 102, 103], "train": [79, 82, 83, 84, 93, 99, 101], "robust": [79, 82, 83, 94, 101], "noisi": [79, 82, 83, 94, 101], "4": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 98, 99, 101], "curat": [79, 92], "fix": [79, 93], "level": [79, 92, 94, 103], "5": [79, 82, 84, 85, 87, 88, 90, 94, 96, 101], "improv": [79, 96], "via": [79, 94, 96], "mani": [79, 94], "other": [79, 96, 98, 101], "techniqu": 79, "contribut": 79, "how": [80, 93, 94, 96, 97, 103], "migrat": 80, "version": 80, "0": 80, "from": [80, 82, 83, 85, 86, 87, 94, 101], "pre": [80, 84, 93, 99], "function": [80, 86], "name": 80, "chang": 80, "modul": [80, 94], "new": [80, 85], "remov": 80, "argument": [80, 86], "variabl": 80, "cleanlearn": [81, 93, 94], "tutori": [81, 89, 92, 95], "tabular": [82, 90], "scikit": 82, "requir": [82, 83, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "depend": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "load": [82, 83, 84, 85, 86, 87, 90, 91, 101], "process": [82, 90, 99, 101], "select": [82, 90], "comput": [82, 84, 88, 90, 91, 93, 96, 100], "out": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "sampl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "predict": [82, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 100], "probabl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "more": [82, 83, 85, 87, 94, 101], "text": [83, 91, 103], "format": [83, 91, 93, 97, 98], "defin": [83, 88, 91, 101], "potenti": [83, 96, 101], "audio": 84, "speechbrain": 84, "import": [84, 85, 86, 87, 88, 92, 94, 96], "them": [84, 92, 94], "featur": [84, 88, 99], "fit": 84, "linear": 84, "datamonitor": 85, "leverag": 85, "statist": [85, 96], "audit": [85, 86, 87], "skip": [85, 87, 92, 94, 96], "detail": [85, 87, 92, 94, 96], "classifi": [85, 86, 87], "6": [85, 94], "about": [85, 87], "addit": [85, 87], "workflow": [86, 94], "instanti": 86, "object": [86, 98], "increment": 86, "search": 86, "specifi": [86, 93], "nondefault": 86, "save": 86, "ad": 86, "A": 87, "unifi": 87, "all": [87, 94], "kind": [87, 98], "inform": [87, 88], "pytorch": [88, 99], "fetch": [88, 92], "normal": 88, "fashion": 88, "mnist": 88, "prepar": 88, "k": [88, 90, 100], "fold": [88, 100], "cross": [88, 100], "embed": [88, 99], "7": [88, 94], "view": 88, "most": [88, 103], "like": 88, "exampl": [88, 93, 94, 99], "sever": 88, "set": [88, 94], "dark": 88, "top": [88, 102], "low": 88, "numer": 90, "categor": 90, "column": 90, "construct": 90, "nearest": 90, "neighbour": 90, "graph": 90, "drift": [91, 97], "evalu": 92, "health": [92, 94], "8": [92, 94], "popular": 92, "faq": 93, "what": [93, 94, 100], "do": [93, 94], "i": [93, 94, 100], "infer": 93, "correct": 93, "ha": 93, "flag": 93, "should": 93, "v": 93, "test": [93, 94, 99], "big": 93, "limit": 93, "memori": 93, "why": 93, "isn": 93, "t": 93, "work": [93, 94, 96, 103], "me": 93, "differ": [93, 98], "clean": [93, 94], "final": 93, "hyperparamet": 93, "tune": 93, "onli": 93, "one": [93, 94, 97, 102], "doe": [93, 96, 103], "take": 93, "so": 93, "long": 93, "slice": 93, "when": [93, 94], "identifi": [93, 98], "run": 93, "licens": 93, "under": 93, "an": 93, "answer": 93, "question": 93, "The": 94, "centric": 94, "ai": 94, "machin": 94, "find_label_issu": 94, "line": 94, "code": 94, "visual": [94, 98, 99, 102], "twenti": 94, "lowest": 94, "qualiti": [94, 96, 97, 98, 102, 103], "see": 94, "now": 94, "let": 94, "": 94, "happen": 94, "we": 94, "merg": 94, "seafoam": 94, "green": 94, "yellow": 94, "too": 94, "you": 94, "re": 94, "One": 94, "score": [94, 96, 97, 98, 102, 103], "rule": 94, "overal": [94, 102], "accur": 94, "thi": 94, "directli": 94, "fulli": 94, "character": 94, "nois": 94, "matrix": [94, 97], "joint": 94, "prior": 94, "true": 94, "distribut": 94, "flip": 94, "rate": 94, "ani": 94, "again": 94, "support": 94, "lot": 94, "method": 94, "filter_bi": 94, "automat": 94, "everi": 94, "uniqu": 94, "num_label_issu": 94, "threshold": 94, "found": 94, "Not": 94, "sure": 94, "ensembl": 94, "multipl": [94, 96], "predictor": 94, "consensu": 96, "annot": 96, "initi": 96, "major": 96, "vote": 96, "better": 96, "compar": 96, "inspect": 96, "retrain": 96, "further": 96, "multi": 97, "beyond": 97, "mislabel": [97, 102, 103], "given": 97, "hot": 97, "binari": 97, "without": 97, "applic": 97, "real": 97, "download": [98, 102, 103], "objectlab": 98, "exploratori": 98, "analysi": 98, "timm": 99, "cifar10": 99, "some": 99, "pred_prob": [99, 102, 103], "wai": 101, "semant": 102, "which": 102, "ar": 102, "commonli": 102, "focus": 102, "token": 103, "word": 103, "sentenc": 103, "contain": 103, "particular": 103}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [50, "module-cleanlab.internal.outlier"], [66, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [68, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [58, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [59, "module-cleanlab.multilabel_classification.filter"], [62, "filter"], [71, "filter"], [75, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "util": [[52, "module-cleanlab.internal.util"]], "validation": [[53, "module-cleanlab.internal.validation"]], "fasttext": [[54, "fasttext"]], "models": [[55, "models"]], "keras": [[56, "module-cleanlab.models.keras"]], "multiannotator": [[57, "module-cleanlab.multiannotator"]], "multilabel_classification": [[60, "multilabel-classification"]], "rank": [[61, "module-cleanlab.multilabel_classification.rank"], [64, "module-cleanlab.object_detection.rank"], [67, "module-cleanlab.rank"], [73, "module-cleanlab.segmentation.rank"], [77, "module-cleanlab.token_classification.rank"]], "object_detection": [[63, "object-detection"]], "summary": [[65, "summary"], [74, "module-cleanlab.segmentation.summary"], [78, "module-cleanlab.token_classification.summary"]], "regression.learn": [[69, "module-cleanlab.regression.learn"]], "regression.rank": [[70, "module-cleanlab.regression.rank"]], "segmentation": [[72, "segmentation"]], "token_classification": [[76, "token-classification"]], "cleanlab open-source documentation": [[79, "cleanlab-open-source-documentation"]], "Quickstart": [[79, "quickstart"]], "1. Install cleanlab": [[79, "install-cleanlab"]], "2. Find common issues in your data": [[79, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[79, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[79, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[79, "improve-your-data-via-many-other-techniques"]], "Contributing": [[79, "contributing"]], "Easy Mode": [[79, "easy-mode"], [88, "Easy-Mode"], [90, "Easy-Mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[80, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[80, "function-and-class-name-changes"]], "Module name changes": [[80, "module-name-changes"]], "New modules": [[80, "new-modules"]], "Removed modules": [[80, "removed-modules"]], "Common argument and variable name changes": [[80, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[81, "cleanlearning-tutorials"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[82, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "1. Install required dependencies": [[82, "1.-Install-required-dependencies"], [83, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [91, "1.-Install-required-dependencies"], [101, "1.-Install-required-dependencies"]], "2. Load and process the data": [[82, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [101, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[82, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [90, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[82, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[82, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[83, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[83, "2.-Load-and-format-the-text-dataset"], [91, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[83, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[83, "4.-Train-a-more-robust-model-from-noisy-labels"], [101, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Audio Classification with SpeechBrain and Cleanlab": [[84, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[84, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[84, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[84, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[84, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[84, "5.-Use-cleanlab-to-find-label-issues"], [90, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[85, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[85, "1.-Install-and-import-required-dependencies"], [87, "1.-Install-and-import-required-dependencies"], [88, "1.-Install-and-import-required-dependencies"], [96, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[85, "2.-Create-and-load-the-data-(can-skip-these-details)"], [87, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[85, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [87, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[85, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [87, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[85, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[85, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "Datalab: Advanced workflows to audit your data": [[86, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[86, "Install-and-import-required-dependencies"]], "Create and load the data": [[86, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[86, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[86, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[86, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[86, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[86, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[86, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[87, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[87, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[87, "Get-additional-information"]], "Near duplicate issues": [[87, "Near-duplicate-issues"], [88, "Near-duplicate-issues"]], "Image Classification with PyTorch and Cleanlab": [[88, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[88, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[88, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[88, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[88, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[88, "7.-Use-cleanlab-to-find-issues"]], "View report": [[88, "View-report"]], "Label issues": [[88, "Label-issues"], [90, "Label-issues"], [91, "Label-issues"]], "View most likely examples with label errors": [[88, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[88, "Outlier-issues"], [90, "Outlier-issues"], [91, "Outlier-issues"]], "View most severe outliers": [[88, "View-most-severe-outliers"]], "View sets of near duplicate images": [[88, "View-sets-of-near-duplicate-images"]], "Dark images": [[88, "Dark-images"]], "View top examples of dark images": [[88, "View-top-examples-of-dark-images"]], "Low information images": [[88, "Low-information-images"]], "Datalab Tutorials": [[89, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[90, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[90, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[91, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[91, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[91, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[91, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[92, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[92, "Install-dependencies-and-import-them"], [94, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[92, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[92, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[93, "FAQ"]], "What data can cleanlab detect issues in?": [[93, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[93, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[93, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[93, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[93, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[93, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[93, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[93, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[93, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[93, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[93, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[93, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[93, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[93, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[94, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[94, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[94, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[94, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[94, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[94, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[94, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[94, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[94, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[94, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[94, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[94, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[94, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[94, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[94, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[94, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[94, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[94, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[94, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[95, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[96, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[96, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[96, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[96, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[96, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[96, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[96, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[96, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[96, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[97, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[97, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[97, "2.-Format-data,-labels,-and-model-predictions"], [98, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[97, "3.-Use-cleanlab-to-find-label-issues"], [98, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[97, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[97, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[97, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[97, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[97, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[98, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[98, "1.-Install-required-dependencies-and-download-data"], [102, "1.-Install-required-dependencies-and-download-data"], [103, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[98, "Get-label-quality-scores"], [102, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[98, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[98, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[98, "Other-uses-of-visualize"]], "Exploratory data analysis": [[98, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[99, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[99, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[99, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[99, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[99, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[99, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[100, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[100, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[100, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[101, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[101, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[101, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[102, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[102, "2.-Get-data,-labels,-and-pred_probs"], [103, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[102, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[102, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[102, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[103, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[103, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[103, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[103, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[103, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.outlier"], [51, "module-cleanlab.internal.token_classification_utils"], [52, "module-cleanlab.internal.util"], [53, "module-cleanlab.internal.validation"], [55, "module-cleanlab.models"], [56, "module-cleanlab.models.keras"], [57, "module-cleanlab.multiannotator"], [58, "module-cleanlab.multilabel_classification.dataset"], [59, "module-cleanlab.multilabel_classification.filter"], [60, "module-cleanlab.multilabel_classification"], [61, "module-cleanlab.multilabel_classification.rank"], [62, "module-cleanlab.object_detection.filter"], [63, "module-cleanlab.object_detection"], [64, "module-cleanlab.object_detection.rank"], [65, "module-cleanlab.object_detection.summary"], [66, "module-cleanlab.outlier"], [67, "module-cleanlab.rank"], [68, "module-cleanlab.regression"], [69, "module-cleanlab.regression.learn"], [70, "module-cleanlab.regression.rank"], [71, "module-cleanlab.segmentation.filter"], [72, "module-cleanlab.segmentation"], [73, "module-cleanlab.segmentation.rank"], [74, "module-cleanlab.segmentation.summary"], [75, "module-cleanlab.token_classification.filter"], [76, "module-cleanlab.token_classification"], [77, "module-cleanlab.token_classification.rank"], [78, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[50, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[52, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[53, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[55, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[56, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[57, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[58, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[60, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[61, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[62, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[62, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[63, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[64, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[65, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[66, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[66, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[67, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[68, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[69, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[69, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[69, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[70, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[70, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[71, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[71, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[72, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[73, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[74, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[75, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[75, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[76, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[77, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[78, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 0b55b5e74..c84eb4e52 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:50.769823Z", - "iopub.status.busy": "2024-04-06T04:26:50.769660Z", - "iopub.status.idle": "2024-04-06T04:26:51.904390Z", - "shell.execute_reply": "2024-04-06T04:26:51.903868Z" + "iopub.execute_input": "2024-04-08T19:04:20.808965Z", + "iopub.status.busy": "2024-04-08T19:04:20.808791Z", + "iopub.status.idle": "2024-04-08T19:04:21.997144Z", + "shell.execute_reply": "2024-04-08T19:04:21.996577Z" }, "nbsphinx": "hidden" }, @@ -127,7 +127,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -152,10 +152,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:51.906925Z", - "iopub.status.busy": "2024-04-06T04:26:51.906505Z", - "iopub.status.idle": "2024-04-06T04:26:51.925092Z", - "shell.execute_reply": "2024-04-06T04:26:51.924644Z" + "iopub.execute_input": "2024-04-08T19:04:21.999784Z", + "iopub.status.busy": "2024-04-08T19:04:21.999468Z", + "iopub.status.idle": "2024-04-08T19:04:22.020020Z", + "shell.execute_reply": "2024-04-08T19:04:22.019546Z" } }, "outputs": [], @@ -196,10 +196,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:51.927250Z", - "iopub.status.busy": "2024-04-06T04:26:51.926936Z", - "iopub.status.idle": "2024-04-06T04:26:52.095031Z", - "shell.execute_reply": "2024-04-06T04:26:52.094456Z" + "iopub.execute_input": "2024-04-08T19:04:22.022733Z", + "iopub.status.busy": "2024-04-08T19:04:22.022190Z", + "iopub.status.idle": "2024-04-08T19:04:22.250382Z", + "shell.execute_reply": "2024-04-08T19:04:22.249811Z" } }, "outputs": [ @@ -306,10 +306,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:52.125272Z", - "iopub.status.busy": "2024-04-06T04:26:52.125095Z", - "iopub.status.idle": "2024-04-06T04:26:52.128526Z", - "shell.execute_reply": "2024-04-06T04:26:52.128074Z" + "iopub.execute_input": "2024-04-08T19:04:22.288376Z", + "iopub.status.busy": "2024-04-08T19:04:22.287864Z", + "iopub.status.idle": "2024-04-08T19:04:22.292293Z", + "shell.execute_reply": "2024-04-08T19:04:22.291761Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:52.130584Z", - "iopub.status.busy": "2024-04-06T04:26:52.130251Z", - "iopub.status.idle": "2024-04-06T04:26:52.138357Z", - "shell.execute_reply": "2024-04-06T04:26:52.137794Z" + "iopub.execute_input": "2024-04-08T19:04:22.294486Z", + "iopub.status.busy": "2024-04-08T19:04:22.294124Z", + "iopub.status.idle": "2024-04-08T19:04:22.302832Z", + "shell.execute_reply": "2024-04-08T19:04:22.302384Z" } }, "outputs": [], @@ -385,10 +385,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:52.140399Z", - "iopub.status.busy": "2024-04-06T04:26:52.140214Z", - "iopub.status.idle": "2024-04-06T04:26:52.142650Z", - "shell.execute_reply": "2024-04-06T04:26:52.142235Z" + "iopub.execute_input": "2024-04-08T19:04:22.305016Z", + "iopub.status.busy": "2024-04-08T19:04:22.304694Z", + "iopub.status.idle": "2024-04-08T19:04:22.307358Z", + "shell.execute_reply": "2024-04-08T19:04:22.306925Z" } }, "outputs": [], @@ -410,10 +410,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:52.144478Z", - "iopub.status.busy": "2024-04-06T04:26:52.144308Z", - "iopub.status.idle": "2024-04-06T04:26:52.655201Z", - "shell.execute_reply": "2024-04-06T04:26:52.654687Z" + "iopub.execute_input": "2024-04-08T19:04:22.309357Z", + "iopub.status.busy": "2024-04-08T19:04:22.308992Z", + "iopub.status.idle": "2024-04-08T19:04:22.826772Z", + "shell.execute_reply": "2024-04-08T19:04:22.826102Z" } }, "outputs": [], @@ -447,10 +447,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:52.657171Z", - "iopub.status.busy": "2024-04-06T04:26:52.656995Z", - "iopub.status.idle": "2024-04-06T04:26:54.226322Z", - "shell.execute_reply": "2024-04-06T04:26:54.225696Z" + "iopub.execute_input": "2024-04-08T19:04:22.829195Z", + "iopub.status.busy": "2024-04-08T19:04:22.829001Z", + "iopub.status.idle": "2024-04-08T19:04:24.584334Z", + "shell.execute_reply": "2024-04-08T19:04:24.583696Z" } }, "outputs": [ @@ -482,10 +482,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:54.229079Z", - "iopub.status.busy": "2024-04-06T04:26:54.228374Z", - "iopub.status.idle": "2024-04-06T04:26:54.238321Z", - "shell.execute_reply": "2024-04-06T04:26:54.237839Z" + "iopub.execute_input": "2024-04-08T19:04:24.587018Z", + "iopub.status.busy": "2024-04-08T19:04:24.586424Z", + "iopub.status.idle": "2024-04-08T19:04:24.596789Z", + "shell.execute_reply": "2024-04-08T19:04:24.596333Z" } }, "outputs": [ @@ -606,10 +606,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:54.240174Z", - "iopub.status.busy": "2024-04-06T04:26:54.239999Z", - "iopub.status.idle": "2024-04-06T04:26:54.244001Z", - "shell.execute_reply": "2024-04-06T04:26:54.243600Z" + "iopub.execute_input": "2024-04-08T19:04:24.598784Z", + "iopub.status.busy": "2024-04-08T19:04:24.598605Z", + "iopub.status.idle": "2024-04-08T19:04:24.603028Z", + "shell.execute_reply": "2024-04-08T19:04:24.602574Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:54.245815Z", - "iopub.status.busy": "2024-04-06T04:26:54.245645Z", - "iopub.status.idle": "2024-04-06T04:26:54.252428Z", - "shell.execute_reply": "2024-04-06T04:26:54.252032Z" + "iopub.execute_input": "2024-04-08T19:04:24.604932Z", + "iopub.status.busy": "2024-04-08T19:04:24.604757Z", + "iopub.status.idle": "2024-04-08T19:04:24.612374Z", + "shell.execute_reply": "2024-04-08T19:04:24.611848Z" } }, "outputs": [], @@ -659,10 +659,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:54.254565Z", - "iopub.status.busy": "2024-04-06T04:26:54.254191Z", - "iopub.status.idle": "2024-04-06T04:26:54.363811Z", - "shell.execute_reply": "2024-04-06T04:26:54.363293Z" + "iopub.execute_input": "2024-04-08T19:04:24.614464Z", + "iopub.status.busy": "2024-04-08T19:04:24.614057Z", + "iopub.status.idle": "2024-04-08T19:04:24.725724Z", + "shell.execute_reply": "2024-04-08T19:04:24.725123Z" } }, "outputs": [ @@ -692,10 +692,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:54.365703Z", - "iopub.status.busy": "2024-04-06T04:26:54.365531Z", - "iopub.status.idle": "2024-04-06T04:26:54.368039Z", - "shell.execute_reply": "2024-04-06T04:26:54.367639Z" + "iopub.execute_input": "2024-04-08T19:04:24.728264Z", + "iopub.status.busy": "2024-04-08T19:04:24.727792Z", + "iopub.status.idle": "2024-04-08T19:04:24.730921Z", + "shell.execute_reply": "2024-04-08T19:04:24.730473Z" } }, "outputs": [], @@ -716,10 +716,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:54.369822Z", - "iopub.status.busy": "2024-04-06T04:26:54.369654Z", - "iopub.status.idle": "2024-04-06T04:26:56.249703Z", - "shell.execute_reply": "2024-04-06T04:26:56.248990Z" + "iopub.execute_input": "2024-04-08T19:04:24.732880Z", + "iopub.status.busy": "2024-04-08T19:04:24.732594Z", + "iopub.status.idle": "2024-04-08T19:04:26.886972Z", + "shell.execute_reply": "2024-04-08T19:04:26.886312Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:56.252825Z", - "iopub.status.busy": "2024-04-06T04:26:56.252085Z", - "iopub.status.idle": "2024-04-06T04:26:56.262987Z", - "shell.execute_reply": "2024-04-06T04:26:56.262497Z" + "iopub.execute_input": "2024-04-08T19:04:26.889971Z", + "iopub.status.busy": "2024-04-08T19:04:26.889228Z", + "iopub.status.idle": "2024-04-08T19:04:26.900494Z", + "shell.execute_reply": "2024-04-08T19:04:26.899943Z" } }, "outputs": [ @@ -772,10 +772,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:56.265020Z", - "iopub.status.busy": "2024-04-06T04:26:56.264831Z", - "iopub.status.idle": "2024-04-06T04:26:56.313621Z", - "shell.execute_reply": "2024-04-06T04:26:56.313208Z" + "iopub.execute_input": "2024-04-08T19:04:26.902458Z", + "iopub.status.busy": "2024-04-08T19:04:26.902143Z", + "iopub.status.idle": "2024-04-08T19:04:27.012965Z", + "shell.execute_reply": "2024-04-08T19:04:27.012399Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index bac36fac4..19d19deae 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -783,7 +783,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'cancel_transfer', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'card_about_to_expire'}
    +Classes: {'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'change_pin', 'apple_pay_or_google_pay'}
     

    Let’s print the first example in the train set.

    @@ -846,43 +846,43 @@

    2. Load and format the text dataset

    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    @@ -1181,7 +1181,7 @@

    4. Train a more robust model from noisy labels -{"state": {"947502200a574c5bb753e3a810fa8f74": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b9a4822bbbc543158d3165bdc309367e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9b703acaaefe43f2a747995e6baf26ca": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_947502200a574c5bb753e3a810fa8f74", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b9a4822bbbc543158d3165bdc309367e", "tabbable": null, "tooltip": null, "value": 391.0}}, "fb7871277ea44cc992dd5130b07e281f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "83a784ca18dd40209d7df691456fa335": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4d3503dbfed14de4b1ffb6918b31358f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fb7871277ea44cc992dd5130b07e281f", "placeholder": "\u200b", "style": "IPY_MODEL_83a784ca18dd40209d7df691456fa335", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "ef836ca5c2e0473c8f44942bbfbde97c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3b7fa05cbd34b3e8440577d3268b3a2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "795e0495ac274840b84a9b2585fcb45b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ef836ca5c2e0473c8f44942bbfbde97c", "placeholder": "\u200b", "style": "IPY_MODEL_c3b7fa05cbd34b3e8440577d3268b3a2", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200769.3kB/s]"}}, "57a3d879c99546208499a10cab8e04c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b23f615f5b84f338a77080fed288888": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4d3503dbfed14de4b1ffb6918b31358f", "IPY_MODEL_9b703acaaefe43f2a747995e6baf26ca", "IPY_MODEL_795e0495ac274840b84a9b2585fcb45b"], "layout": "IPY_MODEL_57a3d879c99546208499a10cab8e04c7", "tabbable": null, "tooltip": null}}, "f83c84fa51244911ad30fbc24f0dae14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae1d1e4addb14d72ad47d043144ef5b2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7de6723f9beb43dbbad71ef72bf3d394": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f83c84fa51244911ad30fbc24f0dae14", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ae1d1e4addb14d72ad47d043144ef5b2", "tabbable": null, "tooltip": null, "value": 2211.0}}, "ef220577d59248bdbc40d7374238082a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "04b7c5dc6e7948f7b6da88bf9de4c09b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d3d9e1e700e14803bfdd9de847eb8a1b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ef220577d59248bdbc40d7374238082a", "placeholder": "\u200b", "style": "IPY_MODEL_04b7c5dc6e7948f7b6da88bf9de4c09b", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "bd7e59232eee46a9941063b605e66d9b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "202e77f783604892ba40274a0d289276": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "58219d6711ac4cbe976717b4a76aa16b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bd7e59232eee46a9941063b605e66d9b", "placeholder": "\u200b", "style": "IPY_MODEL_202e77f783604892ba40274a0d289276", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007457kB/s]"}}, "83718921424246c8b3bb82278f13e7dd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "328b046d1b9d4dcfa0edb3132c01a4f2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d3d9e1e700e14803bfdd9de847eb8a1b", "IPY_MODEL_7de6723f9beb43dbbad71ef72bf3d394", "IPY_MODEL_58219d6711ac4cbe976717b4a76aa16b"], "layout": "IPY_MODEL_83718921424246c8b3bb82278f13e7dd", "tabbable": null, "tooltip": null}}, "f76bdeeb99374127a9a34c37ef45c330": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a0c9bb1d94eb48e1945c490bd1d43922": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d9f750fd331d4370b4ead712d6fe626d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f76bdeeb99374127a9a34c37ef45c330", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a0c9bb1d94eb48e1945c490bd1d43922", "tabbable": null, "tooltip": null, "value": 665.0}}, "385b07eec10c4e1780987426b0fb1ffa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6942d17c55104716b38548fde85fe97d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "250cfa9619754602808099a37a2351cd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_385b07eec10c4e1780987426b0fb1ffa", "placeholder": "\u200b", "style": "IPY_MODEL_6942d17c55104716b38548fde85fe97d", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "4a44c65dbe25405084910ffb25948f0b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95ba2b873c0b456186466656bd4a4b05": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "10e4288569c34c62a5b336b51d001893": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a44c65dbe25405084910ffb25948f0b", "placeholder": "\u200b", "style": "IPY_MODEL_95ba2b873c0b456186466656bd4a4b05", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007125kB/s]"}}, "751b322f8b584ba699d87d767abcfd88": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f26e295a2fa0406c8e3fff0e0818202d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_250cfa9619754602808099a37a2351cd", "IPY_MODEL_d9f750fd331d4370b4ead712d6fe626d", "IPY_MODEL_10e4288569c34c62a5b336b51d001893"], "layout": "IPY_MODEL_751b322f8b584ba699d87d767abcfd88", "tabbable": null, "tooltip": null}}, "e4e868950b0e4748a7bb54abf124ca39": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "33e4cc93e6f44376a34c0ceb628ca488": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ce5ef1ebbb6d4b7589aa40b6d38dd8f2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e4e868950b0e4748a7bb54abf124ca39", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_33e4cc93e6f44376a34c0ceb628ca488", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "b805e697dc3841fe87f86c354f112531": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64fdd33a9fa24c04b2d980484a3dffca": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5c1ec47f563245d7989ffc7eff2b3393": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b805e697dc3841fe87f86c354f112531", "placeholder": "\u200b", "style": "IPY_MODEL_64fdd33a9fa24c04b2d980484a3dffca", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "27f1cfa796cd4d64880fb8ad1470589b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe7ce2b57aca4dc1b98fc34a52588b14": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "18d5e009472c494c99ff042d5f4315c1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_27f1cfa796cd4d64880fb8ad1470589b", "placeholder": "\u200b", "style": "IPY_MODEL_fe7ce2b57aca4dc1b98fc34a52588b14", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007167MB/s]"}}, "aa772cc8b00945c1aa7b22081cb39031": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d20256762cdf4c06816c5653fdfef6a8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5c1ec47f563245d7989ffc7eff2b3393", "IPY_MODEL_ce5ef1ebbb6d4b7589aa40b6d38dd8f2", "IPY_MODEL_18d5e009472c494c99ff042d5f4315c1"], "layout": "IPY_MODEL_aa772cc8b00945c1aa7b22081cb39031", "tabbable": null, "tooltip": null}}, "e5b68aee810b4fc48e7950601e662dad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b8d38e973ddb4490be0781dbb8717675": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "dd34df9493e74cc89434500b5b18d5ac": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e5b68aee810b4fc48e7950601e662dad", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b8d38e973ddb4490be0781dbb8717675", "tabbable": null, "tooltip": null, "value": 466062.0}}, "f756af4beca342ed8bed100e0bfffe79": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "032871bbc89742aba639ffaee1200e37": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a4758f91aee04d48822bb6b9c3453db8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f756af4beca342ed8bed100e0bfffe79", "placeholder": "\u200b", "style": "IPY_MODEL_032871bbc89742aba639ffaee1200e37", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "d1036ff8e3b44432a630841123cd665e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fcdc6f83ca124a68b2ab9d6ace3e2308": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "806be8102c2840c683f53e27268a1a1d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d1036ff8e3b44432a630841123cd665e", "placeholder": "\u200b", "style": "IPY_MODEL_fcdc6f83ca124a68b2ab9d6ace3e2308", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20077.08MB/s]"}}, "73369ea4b442452ba79dde0f11ccccf7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d2370f99c49d43b39ac2ea8e64340375": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a4758f91aee04d48822bb6b9c3453db8", "IPY_MODEL_dd34df9493e74cc89434500b5b18d5ac", "IPY_MODEL_806be8102c2840c683f53e27268a1a1d"], "layout": "IPY_MODEL_73369ea4b442452ba79dde0f11ccccf7", "tabbable": null, "tooltip": null}}, "6475f269b762452097c0dd8a50483fa7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "829408c009e84267b620439ac80aa762": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "623c296ec27847a08d197e0f9349902d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6475f269b762452097c0dd8a50483fa7", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_829408c009e84267b620439ac80aa762", "tabbable": null, "tooltip": null, "value": 48.0}}, "2b3304b6189e458ba99e1273f6dc3065": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1978592a53c7411fbb7d77958baefc3c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b015ab05281b4ee48af1da0ccdc94161": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2b3304b6189e458ba99e1273f6dc3065", "placeholder": "\u200b", "style": "IPY_MODEL_1978592a53c7411fbb7d77958baefc3c", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "d330efe583834f6e9a4aef2d210f2448": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5108e22e56ca44b8a5f0abeba3da954d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "29d77952655945c5975ed010d32ac352": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d330efe583834f6e9a4aef2d210f2448", "placeholder": "\u200b", "style": "IPY_MODEL_5108e22e56ca44b8a5f0abeba3da954d", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20079.54kB/s]"}}, "974e2a874ecf49ff8142c67afb939afd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb7ad54f03394e35a23b11c642b2c405": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b015ab05281b4ee48af1da0ccdc94161", "IPY_MODEL_623c296ec27847a08d197e0f9349902d", "IPY_MODEL_29d77952655945c5975ed010d32ac352"], "layout": "IPY_MODEL_974e2a874ecf49ff8142c67afb939afd", "tabbable": null, "tooltip": null}}, "9123a1575ca34375b0b43f4289e4f1ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "431300eb075a4588806ea9c78d8531a3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "263444dd6e2144b3b9f73741003fea9f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9123a1575ca34375b0b43f4289e4f1ef", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_431300eb075a4588806ea9c78d8531a3", "tabbable": null, "tooltip": null, "value": 231508.0}}, "2ea5a0c2da3a4d83b5610c2c9d2d542c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a0bbd2409f4d4acfb2e91ffc5b12b95e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "964aed80ab284dd48a31d9d5ad28fd30": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2ea5a0c2da3a4d83b5610c2c9d2d542c", "placeholder": "\u200b", "style": "IPY_MODEL_a0bbd2409f4d4acfb2e91ffc5b12b95e", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "533ead7294bf4d068190ca8e90d78e80": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fade1033c9ad433a857f6d209599eaad": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b6313e82b4f34189bbf42e2bf514a82d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_533ead7294bf4d068190ca8e90d78e80", "placeholder": "\u200b", "style": "IPY_MODEL_fade1033c9ad433a857f6d209599eaad", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200736.7MB/s]"}}, "4a315905dbb7402f9b17e6768c6aa8eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ccab9f1f4f0466db60167c0d669672d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_964aed80ab284dd48a31d9d5ad28fd30", "IPY_MODEL_263444dd6e2144b3b9f73741003fea9f", "IPY_MODEL_b6313e82b4f34189bbf42e2bf514a82d"], "layout": "IPY_MODEL_4a315905dbb7402f9b17e6768c6aa8eb", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"55ca57fbdbeb4dd09672a18d9e527e1e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e715922dec9a4f518bd83655ec5ece8c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "34f290f5d2fb480c8484034ab6752fca": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_55ca57fbdbeb4dd09672a18d9e527e1e", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e715922dec9a4f518bd83655ec5ece8c", "tabbable": null, "tooltip": null, "value": 391.0}}, "34051f0f4e6242febbd69d5ad6e263e0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "938fb2a8d3a54d448069f0b85d12697d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b3270c93e7874c21a39571fdb1d43780": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_34051f0f4e6242febbd69d5ad6e263e0", "placeholder": "\u200b", "style": "IPY_MODEL_938fb2a8d3a54d448069f0b85d12697d", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "f9d2786f039f4739a73d2d301bf8b745": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae0fb7a982a2436ea7ad32f01526eea2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9a1995f42694404abb75d6338d1bddc7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f9d2786f039f4739a73d2d301bf8b745", "placeholder": "\u200b", "style": "IPY_MODEL_ae0fb7a982a2436ea7ad32f01526eea2", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200769.6kB/s]"}}, "acdced823e2a4d6f950e27bd4802b639": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "414486671bbc4579b154f2d4dd8df463": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b3270c93e7874c21a39571fdb1d43780", "IPY_MODEL_34f290f5d2fb480c8484034ab6752fca", "IPY_MODEL_9a1995f42694404abb75d6338d1bddc7"], "layout": "IPY_MODEL_acdced823e2a4d6f950e27bd4802b639", "tabbable": null, "tooltip": null}}, "dcfe560d74704020ba7189f6b35342ae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3912e2b011df41679c1659d40bc9fefb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a85b90552a3e4665b51fc3b6e7d921f7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dcfe560d74704020ba7189f6b35342ae", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3912e2b011df41679c1659d40bc9fefb", "tabbable": null, "tooltip": null, "value": 2211.0}}, "63fe7f89c61d469689356c8afe8f7d0a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "068617b1c6e7410ea8a61aaa3bf35a59": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "161f5f17377e4e528cc2e973474950ee": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_63fe7f89c61d469689356c8afe8f7d0a", "placeholder": "\u200b", "style": "IPY_MODEL_068617b1c6e7410ea8a61aaa3bf35a59", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "427f262b918e461c9202e7a81d04c8dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fad61d9bcd544d64a2896b7a4fafeca3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4ba657e74f59423f9bed6c70b030fcfa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_427f262b918e461c9202e7a81d04c8dc", "placeholder": "\u200b", "style": "IPY_MODEL_fad61d9bcd544d64a2896b7a4fafeca3", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007355kB/s]"}}, "eb1b16cb3c634b0496ccce16fde573eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "596554d1fd004a229dc0e9d5610bace9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_161f5f17377e4e528cc2e973474950ee", "IPY_MODEL_a85b90552a3e4665b51fc3b6e7d921f7", "IPY_MODEL_4ba657e74f59423f9bed6c70b030fcfa"], "layout": "IPY_MODEL_eb1b16cb3c634b0496ccce16fde573eb", "tabbable": null, "tooltip": null}}, "7ba8b4d37b90455ea0856a76fd53349f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5a8a165febd74ab8a0e847c8a208e73f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a200cf245005465880fbcc7a852362d4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7ba8b4d37b90455ea0856a76fd53349f", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5a8a165febd74ab8a0e847c8a208e73f", "tabbable": null, "tooltip": null, "value": 665.0}}, "5385ad8ba67c426daa3e219dd49f7c1b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3a50e9ac92bb47ef8a4dd27183e221e7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c4431e7dcf5a41e1934fd352a0e18cc6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5385ad8ba67c426daa3e219dd49f7c1b", "placeholder": "\u200b", "style": "IPY_MODEL_3a50e9ac92bb47ef8a4dd27183e221e7", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "cbfa8e31e7cb4fd5b0f2827be2777ef3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "16dad8a9c9074f5ab4ed24858cf4f896": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5de73fab2f284817999b4f68149d32b9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cbfa8e31e7cb4fd5b0f2827be2777ef3", "placeholder": "\u200b", "style": "IPY_MODEL_16dad8a9c9074f5ab4ed24858cf4f896", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007127kB/s]"}}, "3041fa94176846a99ea4c32b7fa1cade": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a26fef448554f36a9cb66bea78f484a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c4431e7dcf5a41e1934fd352a0e18cc6", "IPY_MODEL_a200cf245005465880fbcc7a852362d4", "IPY_MODEL_5de73fab2f284817999b4f68149d32b9"], "layout": "IPY_MODEL_3041fa94176846a99ea4c32b7fa1cade", "tabbable": null, "tooltip": null}}, "8cfe5b4829a843b499e9d9b1aad10794": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8c3149008147411a9172b8a0627cbbdf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "60cb8f29c0a04f8a9b8775d425f7c1d4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8cfe5b4829a843b499e9d9b1aad10794", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8c3149008147411a9172b8a0627cbbdf", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "e93f36ea176647cd9b1069f0297aadef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2dcd6e4805fb403ba8b6c1ce8e5ff117": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9f72c96cd44c40618e8826a9fc735324": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e93f36ea176647cd9b1069f0297aadef", "placeholder": "\u200b", "style": "IPY_MODEL_2dcd6e4805fb403ba8b6c1ce8e5ff117", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "99f0d4542e8e423b9018be6c83282910": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "107f3b6a64fb41898b51c78312996d47": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6b70c1af64654cf0bfc8e515cbe2644e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_99f0d4542e8e423b9018be6c83282910", "placeholder": "\u200b", "style": "IPY_MODEL_107f3b6a64fb41898b51c78312996d47", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007230MB/s]"}}, "3c2b01854c664a3a834ebb6315a06d7a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c18cde9a3b464ad1a69d4fbf65c4287b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9f72c96cd44c40618e8826a9fc735324", "IPY_MODEL_60cb8f29c0a04f8a9b8775d425f7c1d4", "IPY_MODEL_6b70c1af64654cf0bfc8e515cbe2644e"], "layout": "IPY_MODEL_3c2b01854c664a3a834ebb6315a06d7a", "tabbable": null, "tooltip": null}}, "7167dd43cb39496d8971354c7dcf8fb3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a13aee655acd48a2bc16f80efcd736a4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "33cce396c4bf413ebe5341fe28d03486": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7167dd43cb39496d8971354c7dcf8fb3", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a13aee655acd48a2bc16f80efcd736a4", "tabbable": null, "tooltip": null, "value": 466062.0}}, "fc16653aacb543948c8bcdbebbe18041": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fdc67e28664e4583ace57f50340b3649": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "792627ad3d4a4356926466777e5e286b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fc16653aacb543948c8bcdbebbe18041", "placeholder": "\u200b", "style": "IPY_MODEL_fdc67e28664e4583ace57f50340b3649", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "30e21853c71148d39d7be87c7c68889a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fdf1adc0e36d4541972658ad13062aac": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "42a8d833492a48fe958eb757ee25c31c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_30e21853c71148d39d7be87c7c68889a", "placeholder": "\u200b", "style": "IPY_MODEL_fdf1adc0e36d4541972658ad13062aac", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20076.02MB/s]"}}, "d27490d630934411bc6291d305749d0a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e8839cb132d74eb9a916dda9fdafe1c4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_792627ad3d4a4356926466777e5e286b", "IPY_MODEL_33cce396c4bf413ebe5341fe28d03486", "IPY_MODEL_42a8d833492a48fe958eb757ee25c31c"], "layout": "IPY_MODEL_d27490d630934411bc6291d305749d0a", "tabbable": null, "tooltip": null}}, "859e480b7e01405fb1af9226d6a94736": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0435bd2a67ae4580b11f72300c8c1b9f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6062369e250e403897e6f33990c23d57": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_859e480b7e01405fb1af9226d6a94736", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0435bd2a67ae4580b11f72300c8c1b9f", "tabbable": null, "tooltip": null, "value": 48.0}}, "f41c778f7656469892daa08fc3f86248": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b0e68483cbf470db65245930283cce4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a8e917adc0db482da10f7259260a52fc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f41c778f7656469892daa08fc3f86248", "placeholder": "\u200b", "style": "IPY_MODEL_2b0e68483cbf470db65245930283cce4", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "41e5eb399b424312bb565497b2f550a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f8c8778791df4709aa10067dd9083588": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7b208fafba0244c7a857e15c10805106": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_41e5eb399b424312bb565497b2f550a6", "placeholder": "\u200b", "style": "IPY_MODEL_f8c8778791df4709aa10067dd9083588", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.81kB/s]"}}, "b93f1aea04264f86afd5ca6e5f3deb9a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5e9e17de388746f4ba1fb4f05e426c4e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a8e917adc0db482da10f7259260a52fc", "IPY_MODEL_6062369e250e403897e6f33990c23d57", "IPY_MODEL_7b208fafba0244c7a857e15c10805106"], "layout": "IPY_MODEL_b93f1aea04264f86afd5ca6e5f3deb9a", "tabbable": null, "tooltip": null}}, "82f22504089445d980458c94bb3f0b22": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b2f57f17657e430c89e1a52e7f245309": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3eea5b07c46a4588903f301a31822500": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_82f22504089445d980458c94bb3f0b22", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b2f57f17657e430c89e1a52e7f245309", "tabbable": null, "tooltip": null, "value": 231508.0}}, "be33e673f6fe4622ab6bfd3a727d2c04": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "00882e39d8294fa7bf11a9929411c91d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b3a0081d105e4d6193af250cc9cef948": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_be33e673f6fe4622ab6bfd3a727d2c04", "placeholder": "\u200b", "style": "IPY_MODEL_00882e39d8294fa7bf11a9929411c91d", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "ab4a32cb43804d52b25207713bc5f0f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c9a189517774bbe90d04de5fdd9e48f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5194d575ab3e4498bcd728fe5c7d9a3d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab4a32cb43804d52b25207713bc5f0f4", "placeholder": "\u200b", "style": "IPY_MODEL_4c9a189517774bbe90d04de5fdd9e48f", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u20071.77MB/s]"}}, "c3f5dd847178422f94661624f9ecf612": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3af073a39e45402187f042a3cf90b160": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b3a0081d105e4d6193af250cc9cef948", "IPY_MODEL_3eea5b07c46a4588903f301a31822500", "IPY_MODEL_5194d575ab3e4498bcd728fe5c7d9a3d"], "layout": "IPY_MODEL_c3f5dd847178422f94661624f9ecf612", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index c1d11beeb..cf6ae4311 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:26:58.967747Z", - "iopub.status.busy": "2024-04-06T04:26:58.967347Z", - "iopub.status.idle": "2024-04-06T04:27:01.569874Z", - "shell.execute_reply": "2024-04-06T04:27:01.569267Z" + "iopub.execute_input": "2024-04-08T19:04:29.937745Z", + "iopub.status.busy": "2024-04-08T19:04:29.937583Z", + "iopub.status.idle": "2024-04-08T19:04:33.047637Z", + "shell.execute_reply": "2024-04-08T19:04:33.046998Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.572409Z", - "iopub.status.busy": "2024-04-06T04:27:01.572137Z", - "iopub.status.idle": "2024-04-06T04:27:01.575389Z", - "shell.execute_reply": "2024-04-06T04:27:01.574976Z" + "iopub.execute_input": "2024-04-08T19:04:33.050116Z", + "iopub.status.busy": "2024-04-08T19:04:33.049809Z", + "iopub.status.idle": "2024-04-08T19:04:33.053073Z", + "shell.execute_reply": "2024-04-08T19:04:33.052649Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.577325Z", - "iopub.status.busy": "2024-04-06T04:27:01.576995Z", - "iopub.status.idle": "2024-04-06T04:27:01.580088Z", - "shell.execute_reply": "2024-04-06T04:27:01.579648Z" + "iopub.execute_input": "2024-04-08T19:04:33.054962Z", + "iopub.status.busy": "2024-04-08T19:04:33.054682Z", + "iopub.status.idle": "2024-04-08T19:04:33.057634Z", + "shell.execute_reply": "2024-04-08T19:04:33.057206Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.581930Z", - "iopub.status.busy": "2024-04-06T04:27:01.581670Z", - "iopub.status.idle": "2024-04-06T04:27:01.658694Z", - "shell.execute_reply": "2024-04-06T04:27:01.658172Z" + "iopub.execute_input": "2024-04-08T19:04:33.059556Z", + "iopub.status.busy": "2024-04-08T19:04:33.059236Z", + "iopub.status.idle": "2024-04-08T19:04:33.304635Z", + "shell.execute_reply": "2024-04-08T19:04:33.304093Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.660795Z", - "iopub.status.busy": "2024-04-06T04:27:01.660465Z", - "iopub.status.idle": "2024-04-06T04:27:01.663899Z", - "shell.execute_reply": "2024-04-06T04:27:01.663501Z" + "iopub.execute_input": "2024-04-08T19:04:33.306822Z", + "iopub.status.busy": "2024-04-08T19:04:33.306485Z", + "iopub.status.idle": "2024-04-08T19:04:33.309981Z", + "shell.execute_reply": "2024-04-08T19:04:33.309578Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.665856Z", - "iopub.status.busy": "2024-04-06T04:27:01.665521Z", - "iopub.status.idle": "2024-04-06T04:27:01.668705Z", - "shell.execute_reply": "2024-04-06T04:27:01.668216Z" + "iopub.execute_input": "2024-04-08T19:04:33.311977Z", + "iopub.status.busy": "2024-04-08T19:04:33.311602Z", + "iopub.status.idle": "2024-04-08T19:04:33.314907Z", + "shell.execute_reply": "2024-04-08T19:04:33.314372Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'card_about_to_expire'}\n" + "Classes: {'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'change_pin', 'apple_pay_or_google_pay'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.670676Z", - "iopub.status.busy": "2024-04-06T04:27:01.670295Z", - "iopub.status.idle": "2024-04-06T04:27:01.673371Z", - "shell.execute_reply": "2024-04-06T04:27:01.672860Z" + "iopub.execute_input": "2024-04-08T19:04:33.316831Z", + "iopub.status.busy": "2024-04-08T19:04:33.316579Z", + "iopub.status.idle": "2024-04-08T19:04:33.319694Z", + "shell.execute_reply": "2024-04-08T19:04:33.319261Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.675367Z", - "iopub.status.busy": "2024-04-06T04:27:01.675041Z", - "iopub.status.idle": "2024-04-06T04:27:01.678078Z", - "shell.execute_reply": "2024-04-06T04:27:01.677656Z" + "iopub.execute_input": "2024-04-08T19:04:33.321534Z", + "iopub.status.busy": "2024-04-08T19:04:33.321217Z", + "iopub.status.idle": "2024-04-08T19:04:33.324298Z", + "shell.execute_reply": "2024-04-08T19:04:33.323874Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:01.679941Z", - "iopub.status.busy": "2024-04-06T04:27:01.679685Z", - "iopub.status.idle": "2024-04-06T04:27:06.350529Z", - "shell.execute_reply": "2024-04-06T04:27:06.349987Z" + "iopub.execute_input": "2024-04-08T19:04:33.326161Z", + "iopub.status.busy": "2024-04-08T19:04:33.325901Z", + "iopub.status.idle": "2024-04-08T19:04:39.132517Z", + "shell.execute_reply": "2024-04-08T19:04:39.131899Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0b23f615f5b84f338a77080fed288888", + "model_id": "414486671bbc4579b154f2d4dd8df463", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "328b046d1b9d4dcfa0edb3132c01a4f2", + "model_id": "596554d1fd004a229dc0e9d5610bace9", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f26e295a2fa0406c8e3fff0e0818202d", + "model_id": "4a26fef448554f36a9cb66bea78f484a", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d20256762cdf4c06816c5653fdfef6a8", + "model_id": "c18cde9a3b464ad1a69d4fbf65c4287b", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d2370f99c49d43b39ac2ea8e64340375", + "model_id": "e8839cb132d74eb9a916dda9fdafe1c4", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fb7ad54f03394e35a23b11c642b2c405", + "model_id": "5e9e17de388746f4ba1fb4f05e426c4e", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2ccab9f1f4f0466db60167c0d669672d", + "model_id": "3af073a39e45402187f042a3cf90b160", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:06.353364Z", - "iopub.status.busy": "2024-04-06T04:27:06.352933Z", - "iopub.status.idle": "2024-04-06T04:27:06.356122Z", - "shell.execute_reply": "2024-04-06T04:27:06.355669Z" + "iopub.execute_input": "2024-04-08T19:04:39.135354Z", + "iopub.status.busy": "2024-04-08T19:04:39.134961Z", + "iopub.status.idle": "2024-04-08T19:04:39.137900Z", + "shell.execute_reply": "2024-04-08T19:04:39.137434Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:06.358024Z", - "iopub.status.busy": "2024-04-06T04:27:06.357833Z", - "iopub.status.idle": "2024-04-06T04:27:06.360554Z", - "shell.execute_reply": "2024-04-06T04:27:06.360115Z" + "iopub.execute_input": "2024-04-08T19:04:39.139840Z", + "iopub.status.busy": "2024-04-08T19:04:39.139530Z", + "iopub.status.idle": "2024-04-08T19:04:39.141949Z", + "shell.execute_reply": "2024-04-08T19:04:39.141547Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:06.362646Z", - "iopub.status.busy": "2024-04-06T04:27:06.362219Z", - "iopub.status.idle": "2024-04-06T04:27:08.620143Z", - "shell.execute_reply": "2024-04-06T04:27:08.619410Z" + "iopub.execute_input": "2024-04-08T19:04:39.143931Z", + "iopub.status.busy": "2024-04-08T19:04:39.143626Z", + "iopub.status.idle": "2024-04-08T19:04:41.418071Z", + "shell.execute_reply": "2024-04-08T19:04:41.417473Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:08.623393Z", - "iopub.status.busy": "2024-04-06T04:27:08.622654Z", - "iopub.status.idle": "2024-04-06T04:27:08.630521Z", - "shell.execute_reply": "2024-04-06T04:27:08.629847Z" + "iopub.execute_input": "2024-04-08T19:04:41.421050Z", + "iopub.status.busy": "2024-04-08T19:04:41.420335Z", + "iopub.status.idle": "2024-04-08T19:04:41.427937Z", + "shell.execute_reply": "2024-04-08T19:04:41.427499Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:08.632688Z", - "iopub.status.busy": "2024-04-06T04:27:08.632254Z", - "iopub.status.idle": "2024-04-06T04:27:08.636058Z", - "shell.execute_reply": "2024-04-06T04:27:08.635598Z" + "iopub.execute_input": "2024-04-08T19:04:41.429872Z", + "iopub.status.busy": "2024-04-08T19:04:41.429566Z", + "iopub.status.idle": "2024-04-08T19:04:41.433444Z", + "shell.execute_reply": "2024-04-08T19:04:41.433009Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:08.638183Z", - "iopub.status.busy": "2024-04-06T04:27:08.637783Z", - "iopub.status.idle": "2024-04-06T04:27:08.641176Z", - "shell.execute_reply": "2024-04-06T04:27:08.640663Z" + "iopub.execute_input": "2024-04-08T19:04:41.435332Z", + "iopub.status.busy": "2024-04-08T19:04:41.435016Z", + "iopub.status.idle": "2024-04-08T19:04:41.437872Z", + "shell.execute_reply": "2024-04-08T19:04:41.437382Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:08.643224Z", - "iopub.status.busy": "2024-04-06T04:27:08.642931Z", - "iopub.status.idle": "2024-04-06T04:27:08.645892Z", - "shell.execute_reply": "2024-04-06T04:27:08.645427Z" + "iopub.execute_input": "2024-04-08T19:04:41.439975Z", + "iopub.status.busy": "2024-04-08T19:04:41.439662Z", + "iopub.status.idle": "2024-04-08T19:04:41.442421Z", + "shell.execute_reply": "2024-04-08T19:04:41.442004Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:08.647921Z", - "iopub.status.busy": "2024-04-06T04:27:08.647631Z", - "iopub.status.idle": "2024-04-06T04:27:08.654408Z", - "shell.execute_reply": "2024-04-06T04:27:08.653855Z" + "iopub.execute_input": "2024-04-08T19:04:41.444405Z", + "iopub.status.busy": "2024-04-08T19:04:41.444102Z", + "iopub.status.idle": "2024-04-08T19:04:41.450660Z", + "shell.execute_reply": "2024-04-08T19:04:41.450205Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:08.656381Z", - "iopub.status.busy": "2024-04-06T04:27:08.656204Z", - "iopub.status.idle": "2024-04-06T04:27:08.882696Z", - "shell.execute_reply": "2024-04-06T04:27:08.882060Z" + "iopub.execute_input": "2024-04-08T19:04:41.452688Z", + "iopub.status.busy": "2024-04-08T19:04:41.452371Z", + "iopub.status.idle": "2024-04-08T19:04:41.707871Z", + "shell.execute_reply": "2024-04-08T19:04:41.707294Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:08.886463Z", - "iopub.status.busy": "2024-04-06T04:27:08.885511Z", - "iopub.status.idle": "2024-04-06T04:27:09.066323Z", - "shell.execute_reply": "2024-04-06T04:27:09.065793Z" + "iopub.execute_input": "2024-04-08T19:04:41.710541Z", + "iopub.status.busy": "2024-04-08T19:04:41.710134Z", + "iopub.status.idle": "2024-04-08T19:04:41.886669Z", + "shell.execute_reply": "2024-04-08T19:04:41.886149Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:09.070042Z", - "iopub.status.busy": "2024-04-06T04:27:09.069102Z", - "iopub.status.idle": "2024-04-06T04:27:09.074062Z", - "shell.execute_reply": "2024-04-06T04:27:09.073560Z" + "iopub.execute_input": "2024-04-08T19:04:41.889178Z", + "iopub.status.busy": "2024-04-08T19:04:41.888817Z", + "iopub.status.idle": "2024-04-08T19:04:41.892522Z", + "shell.execute_reply": "2024-04-08T19:04:41.892069Z" }, "nbsphinx": "hidden" }, @@ -1113,7 +1113,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "032871bbc89742aba639ffaee1200e37": { + "00882e39d8294fa7bf11a9929411c91d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1131,72 +1131,59 @@ "text_color": null } }, - "04b7c5dc6e7948f7b6da88bf9de4c09b": { + "0435bd2a67ae4580b11f72300c8c1b9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "0b23f615f5b84f338a77080fed288888": { + "068617b1c6e7410ea8a61aaa3bf35a59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4d3503dbfed14de4b1ffb6918b31358f", - "IPY_MODEL_9b703acaaefe43f2a747995e6baf26ca", - "IPY_MODEL_795e0495ac274840b84a9b2585fcb45b" - ], - "layout": "IPY_MODEL_57a3d879c99546208499a10cab8e04c7", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "10e4288569c34c62a5b336b51d001893": { + "107f3b6a64fb41898b51c78312996d47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4a44c65dbe25405084910ffb25948f0b", - "placeholder": "​", - "style": "IPY_MODEL_95ba2b873c0b456186466656bd4a4b05", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 125kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "18d5e009472c494c99ff042d5f4315c1": { + "161f5f17377e4e528cc2e973474950ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1211,15 +1198,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_27f1cfa796cd4d64880fb8ad1470589b", + "layout": "IPY_MODEL_63fe7f89c61d469689356c8afe8f7d0a", "placeholder": "​", - "style": "IPY_MODEL_fe7ce2b57aca4dc1b98fc34a52588b14", + "style": "IPY_MODEL_068617b1c6e7410ea8a61aaa3bf35a59", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 167MB/s]" + "value": "README.md: 100%" } }, - "1978592a53c7411fbb7d77958baefc3c": { + "16dad8a9c9074f5ab4ed24858cf4f896": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1237,7 +1224,7 @@ "text_color": null } }, - "202e77f783604892ba40274a0d289276": { + "2b0e68483cbf470db65245930283cce4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1255,56 +1242,25 @@ "text_color": null } }, - "250cfa9619754602808099a37a2351cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_385b07eec10c4e1780987426b0fb1ffa", - "placeholder": "​", - "style": "IPY_MODEL_6942d17c55104716b38548fde85fe97d", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "263444dd6e2144b3b9f73741003fea9f": { + "2dcd6e4805fb403ba8b6c1ce8e5ff117": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9123a1575ca34375b0b43f4289e4f1ef", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_431300eb075a4588806ea9c78d8531a3", - "tabbable": null, - "tooltip": null, - "value": 231508.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "27f1cfa796cd4d64880fb8ad1470589b": { + "3041fa94176846a99ea4c32b7fa1cade": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1357,30 +1313,7 @@ "width": null } }, - "29d77952655945c5975ed010d32ac352": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d330efe583834f6e9a4aef2d210f2448", - "placeholder": "​", - "style": "IPY_MODEL_5108e22e56ca44b8a5f0abeba3da954d", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.54kB/s]" - } - }, - "2b3304b6189e458ba99e1273f6dc3065": { + "30e21853c71148d39d7be87c7c68889a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1433,31 +1366,33 @@ "width": null } }, - "2ccab9f1f4f0466db60167c0d669672d": { + "33cce396c4bf413ebe5341fe28d03486": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_964aed80ab284dd48a31d9d5ad28fd30", - "IPY_MODEL_263444dd6e2144b3b9f73741003fea9f", - "IPY_MODEL_b6313e82b4f34189bbf42e2bf514a82d" - ], - "layout": "IPY_MODEL_4a315905dbb7402f9b17e6768c6aa8eb", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7167dd43cb39496d8971354c7dcf8fb3", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a13aee655acd48a2bc16f80efcd736a4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 466062.0 } }, - "2ea5a0c2da3a4d83b5610c2c9d2d542c": { + "34051f0f4e6242febbd69d5ad6e263e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1510,31 +1445,33 @@ "width": null } }, - "328b046d1b9d4dcfa0edb3132c01a4f2": { + "34f290f5d2fb480c8484034ab6752fca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d3d9e1e700e14803bfdd9de847eb8a1b", - "IPY_MODEL_7de6723f9beb43dbbad71ef72bf3d394", - "IPY_MODEL_58219d6711ac4cbe976717b4a76aa16b" - ], - "layout": "IPY_MODEL_83718921424246c8b3bb82278f13e7dd", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_55ca57fbdbeb4dd09672a18d9e527e1e", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e715922dec9a4f518bd83655ec5ece8c", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 391.0 } }, - "33e4cc93e6f44376a34c0ceb628ca488": { + "3912e2b011df41679c1659d40bc9fefb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1550,7 +1487,49 @@ "description_width": "" } }, - "385b07eec10c4e1780987426b0fb1ffa": { + "3a50e9ac92bb47ef8a4dd27183e221e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3af073a39e45402187f042a3cf90b160": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b3a0081d105e4d6193af250cc9cef948", + "IPY_MODEL_3eea5b07c46a4588903f301a31822500", + "IPY_MODEL_5194d575ab3e4498bcd728fe5c7d9a3d" + ], + "layout": "IPY_MODEL_c3f5dd847178422f94661624f9ecf612", + "tabbable": null, + "tooltip": null + } + }, + "3c2b01854c664a3a834ebb6315a06d7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1603,23 +1582,57 @@ "width": null } }, - "431300eb075a4588806ea9c78d8531a3": { + "3eea5b07c46a4588903f301a31822500": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_82f22504089445d980458c94bb3f0b22", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b2f57f17657e430c89e1a52e7f245309", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "414486671bbc4579b154f2d4dd8df463": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b3270c93e7874c21a39571fdb1d43780", + "IPY_MODEL_34f290f5d2fb480c8484034ab6752fca", + "IPY_MODEL_9a1995f42694404abb75d6338d1bddc7" + ], + "layout": "IPY_MODEL_acdced823e2a4d6f950e27bd4802b639", + "tabbable": null, + "tooltip": null } }, - "4a315905dbb7402f9b17e6768c6aa8eb": { + "41e5eb399b424312bb565497b2f550a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1672,7 +1685,7 @@ "width": null } }, - "4a44c65dbe25405084910ffb25948f0b": { + "427f262b918e461c9202e7a81d04c8dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1725,7 +1738,7 @@ "width": null } }, - "4d3503dbfed14de4b1ffb6918b31358f": { + "42a8d833492a48fe958eb757ee25c31c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1740,50 +1753,120 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fb7871277ea44cc992dd5130b07e281f", + "layout": "IPY_MODEL_30e21853c71148d39d7be87c7c68889a", "placeholder": "​", - "style": "IPY_MODEL_83a784ca18dd40209d7df691456fa335", + "style": "IPY_MODEL_fdf1adc0e36d4541972658ad13062aac", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": " 466k/466k [00:00<00:00, 6.02MB/s]" } }, - "5108e22e56ca44b8a5f0abeba3da954d": { + "4a26fef448554f36a9cb66bea78f484a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c4431e7dcf5a41e1934fd352a0e18cc6", + "IPY_MODEL_a200cf245005465880fbcc7a852362d4", + "IPY_MODEL_5de73fab2f284817999b4f68149d32b9" + ], + "layout": "IPY_MODEL_3041fa94176846a99ea4c32b7fa1cade", + "tabbable": null, + "tooltip": null } }, - "533ead7294bf4d068190ca8e90d78e80": { - "model_module": "@jupyter-widgets/base", + "4ba657e74f59423f9bed6c70b030fcfa": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_427f262b918e461c9202e7a81d04c8dc", + "placeholder": "​", + "style": "IPY_MODEL_fad61d9bcd544d64a2896b7a4fafeca3", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 355kB/s]" + } + }, + "4c9a189517774bbe90d04de5fdd9e48f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5194d575ab3e4498bcd728fe5c7d9a3d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab4a32cb43804d52b25207713bc5f0f4", + "placeholder": "​", + "style": "IPY_MODEL_4c9a189517774bbe90d04de5fdd9e48f", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 1.77MB/s]" + } + }, + "5385ad8ba67c426daa3e219dd49f7c1b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, "border_top": null, "bottom": null, "display": null, @@ -1819,7 +1902,7 @@ "width": null } }, - "57a3d879c99546208499a10cab8e04c7": { + "55ca57fbdbeb4dd09672a18d9e527e1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1872,7 +1955,47 @@ "width": null } }, - "58219d6711ac4cbe976717b4a76aa16b": { + "596554d1fd004a229dc0e9d5610bace9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_161f5f17377e4e528cc2e973474950ee", + "IPY_MODEL_a85b90552a3e4665b51fc3b6e7d921f7", + "IPY_MODEL_4ba657e74f59423f9bed6c70b030fcfa" + ], + "layout": "IPY_MODEL_eb1b16cb3c634b0496ccce16fde573eb", + "tabbable": null, + "tooltip": null + } + }, + "5a8a165febd74ab8a0e847c8a208e73f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5de73fab2f284817999b4f68149d32b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1887,38 +2010,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bd7e59232eee46a9941063b605e66d9b", + "layout": "IPY_MODEL_cbfa8e31e7cb4fd5b0f2827be2777ef3", "placeholder": "​", - "style": "IPY_MODEL_202e77f783604892ba40274a0d289276", + "style": "IPY_MODEL_16dad8a9c9074f5ab4ed24858cf4f896", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 457kB/s]" + "value": " 665/665 [00:00<00:00, 127kB/s]" } }, - "5c1ec47f563245d7989ffc7eff2b3393": { + "5e9e17de388746f4ba1fb4f05e426c4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a8e917adc0db482da10f7259260a52fc", + "IPY_MODEL_6062369e250e403897e6f33990c23d57", + "IPY_MODEL_7b208fafba0244c7a857e15c10805106" + ], + "layout": "IPY_MODEL_b93f1aea04264f86afd5ca6e5f3deb9a", + "tabbable": null, + "tooltip": null + } + }, + "6062369e250e403897e6f33990c23d57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b805e697dc3841fe87f86c354f112531", - "placeholder": "​", - "style": "IPY_MODEL_64fdd33a9fa24c04b2d980484a3dffca", + "layout": "IPY_MODEL_859e480b7e01405fb1af9226d6a94736", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0435bd2a67ae4580b11f72300c8c1b9f", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": 48.0 } }, - "623c296ec27847a08d197e0f9349902d": { + "60cb8f29c0a04f8a9b8775d425f7c1d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1934,17 +2084,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6475f269b762452097c0dd8a50483fa7", - "max": 48.0, + "layout": "IPY_MODEL_8cfe5b4829a843b499e9d9b1aad10794", + "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_829408c009e84267b620439ac80aa762", + "style": "IPY_MODEL_8c3149008147411a9172b8a0627cbbdf", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": 54245363.0 } }, - "6475f269b762452097c0dd8a50483fa7": { + "63fe7f89c61d469689356c8afe8f7d0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1997,43 +2147,30 @@ "width": null } }, - "64fdd33a9fa24c04b2d980484a3dffca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6942d17c55104716b38548fde85fe97d": { + "6b70c1af64654cf0bfc8e515cbe2644e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_99f0d4542e8e423b9018be6c83282910", + "placeholder": "​", + "style": "IPY_MODEL_107f3b6a64fb41898b51c78312996d47", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 230MB/s]" } }, - "73369ea4b442452ba79dde0f11ccccf7": { + "7167dd43cb39496d8971354c7dcf8fb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2086,7 +2223,53 @@ "width": null } }, - "751b322f8b584ba699d87d767abcfd88": { + "792627ad3d4a4356926466777e5e286b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc16653aacb543948c8bcdbebbe18041", + "placeholder": "​", + "style": "IPY_MODEL_fdc67e28664e4583ace57f50340b3649", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "7b208fafba0244c7a857e15c10805106": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_41e5eb399b424312bb565497b2f550a6", + "placeholder": "​", + "style": "IPY_MODEL_f8c8778791df4709aa10067dd9083588", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.81kB/s]" + } + }, + "7ba8b4d37b90455ea0856a76fd53349f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2139,95 +2322,7 @@ "width": null } }, - "795e0495ac274840b84a9b2585fcb45b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ef836ca5c2e0473c8f44942bbfbde97c", - "placeholder": "​", - "style": "IPY_MODEL_c3b7fa05cbd34b3e8440577d3268b3a2", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 69.3kB/s]" - } - }, - "7de6723f9beb43dbbad71ef72bf3d394": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f83c84fa51244911ad30fbc24f0dae14", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ae1d1e4addb14d72ad47d043144ef5b2", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "806be8102c2840c683f53e27268a1a1d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d1036ff8e3b44432a630841123cd665e", - "placeholder": "​", - "style": "IPY_MODEL_fcdc6f83ca124a68b2ab9d6ace3e2308", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 7.08MB/s]" - } - }, - "829408c009e84267b620439ac80aa762": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "83718921424246c8b3bb82278f13e7dd": { + "82f22504089445d980458c94bb3f0b22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2280,25 +2375,7 @@ "width": null } }, - "83a784ca18dd40209d7df691456fa335": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9123a1575ca34375b0b43f4289e4f1ef": { + "859e480b7e01405fb1af9226d6a94736": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2351,7 +2428,23 @@ "width": null } }, - "947502200a574c5bb753e3a810fa8f74": { + "8c3149008147411a9172b8a0627cbbdf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8cfe5b4829a843b499e9d9b1aad10794": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2404,7 +2497,7 @@ "width": null } }, - "95ba2b873c0b456186466656bd4a4b05": { + "938fb2a8d3a54d448069f0b85d12697d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2422,30 +2515,7 @@ "text_color": null } }, - "964aed80ab284dd48a31d9d5ad28fd30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2ea5a0c2da3a4d83b5610c2c9d2d542c", - "placeholder": "​", - "style": "IPY_MODEL_a0bbd2409f4d4acfb2e91ffc5b12b95e", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "974e2a874ecf49ff8142c67afb939afd": { + "99f0d4542e8e423b9018be6c83282910": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2498,51 +2568,53 @@ "width": null } }, - "9b703acaaefe43f2a747995e6baf26ca": { + "9a1995f42694404abb75d6338d1bddc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_947502200a574c5bb753e3a810fa8f74", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b9a4822bbbc543158d3165bdc309367e", + "layout": "IPY_MODEL_f9d2786f039f4739a73d2d301bf8b745", + "placeholder": "​", + "style": "IPY_MODEL_ae0fb7a982a2436ea7ad32f01526eea2", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": " 391/391 [00:00<00:00, 69.6kB/s]" } }, - "a0bbd2409f4d4acfb2e91ffc5b12b95e": { + "9f72c96cd44c40618e8826a9fc735324": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e93f36ea176647cd9b1069f0297aadef", + "placeholder": "​", + "style": "IPY_MODEL_2dcd6e4805fb403ba8b6c1ce8e5ff117", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" } }, - "a0c9bb1d94eb48e1945c490bd1d43922": { + "a13aee655acd48a2bc16f80efcd736a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2558,7 +2630,59 @@ "description_width": "" } }, - "a4758f91aee04d48822bb6b9c3453db8": { + "a200cf245005465880fbcc7a852362d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7ba8b4d37b90455ea0856a76fd53349f", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a8a165febd74ab8a0e847c8a208e73f", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "a85b90552a3e4665b51fc3b6e7d921f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dcfe560d74704020ba7189f6b35342ae", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3912e2b011df41679c1659d40bc9fefb", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "a8e917adc0db482da10f7259260a52fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2573,15 +2697,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f756af4beca342ed8bed100e0bfffe79", + "layout": "IPY_MODEL_f41c778f7656469892daa08fc3f86248", "placeholder": "​", - "style": "IPY_MODEL_032871bbc89742aba639ffaee1200e37", + "style": "IPY_MODEL_2b0e68483cbf470db65245930283cce4", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": "tokenizer_config.json: 100%" } }, - "aa772cc8b00945c1aa7b22081cb39031": { + "ab4a32cb43804d52b25207713bc5f0f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2622,81 +2746,19 @@ "max_height": null, "max_width": null, "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ae1d1e4addb14d72ad47d043144ef5b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b015ab05281b4ee48af1da0ccdc94161": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b3304b6189e458ba99e1273f6dc3065", - "placeholder": "​", - "style": "IPY_MODEL_1978592a53c7411fbb7d77958baefc3c", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "b6313e82b4f34189bbf42e2bf514a82d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_533ead7294bf4d068190ca8e90d78e80", - "placeholder": "​", - "style": "IPY_MODEL_fade1033c9ad433a857f6d209599eaad", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 36.7MB/s]" + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b805e697dc3841fe87f86c354f112531": { + "acdced823e2a4d6f950e27bd4802b639": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2749,23 +2811,25 @@ "width": null } }, - "b8d38e973ddb4490be0781dbb8717675": { + "ae0fb7a982a2436ea7ad32f01526eea2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b9a4822bbbc543158d3165bdc309367e": { + "b2f57f17657e430c89e1a52e7f245309": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2781,7 +2845,53 @@ "description_width": "" } }, - "bd7e59232eee46a9941063b605e66d9b": { + "b3270c93e7874c21a39571fdb1d43780": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_34051f0f4e6242febbd69d5ad6e263e0", + "placeholder": "​", + "style": "IPY_MODEL_938fb2a8d3a54d448069f0b85d12697d", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" + } + }, + "b3a0081d105e4d6193af250cc9cef948": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_be33e673f6fe4622ab6bfd3a727d2c04", + "placeholder": "​", + "style": "IPY_MODEL_00882e39d8294fa7bf11a9929411c91d", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "b93f1aea04264f86afd5ca6e5f3deb9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2834,51 +2944,7 @@ "width": null } }, - "c3b7fa05cbd34b3e8440577d3268b3a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ce5ef1ebbb6d4b7589aa40b6d38dd8f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e4e868950b0e4748a7bb54abf124ca39", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_33e4cc93e6f44376a34c0ceb628ca488", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "d1036ff8e3b44432a630841123cd665e": { + "be33e673f6fe4622ab6bfd3a727d2c04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2931,31 +2997,7 @@ "width": null } }, - "d20256762cdf4c06816c5653fdfef6a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5c1ec47f563245d7989ffc7eff2b3393", - "IPY_MODEL_ce5ef1ebbb6d4b7589aa40b6d38dd8f2", - "IPY_MODEL_18d5e009472c494c99ff042d5f4315c1" - ], - "layout": "IPY_MODEL_aa772cc8b00945c1aa7b22081cb39031", - "tabbable": null, - "tooltip": null - } - }, - "d2370f99c49d43b39ac2ea8e64340375": { + "c18cde9a3b464ad1a69d4fbf65c4287b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2970,16 +3012,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a4758f91aee04d48822bb6b9c3453db8", - "IPY_MODEL_dd34df9493e74cc89434500b5b18d5ac", - "IPY_MODEL_806be8102c2840c683f53e27268a1a1d" + "IPY_MODEL_9f72c96cd44c40618e8826a9fc735324", + "IPY_MODEL_60cb8f29c0a04f8a9b8775d425f7c1d4", + "IPY_MODEL_6b70c1af64654cf0bfc8e515cbe2644e" ], - "layout": "IPY_MODEL_73369ea4b442452ba79dde0f11ccccf7", + "layout": "IPY_MODEL_3c2b01854c664a3a834ebb6315a06d7a", "tabbable": null, "tooltip": null } }, - "d330efe583834f6e9a4aef2d210f2448": { + "c3f5dd847178422f94661624f9ecf612": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3032,7 +3074,7 @@ "width": null } }, - "d3d9e1e700e14803bfdd9de847eb8a1b": { + "c4431e7dcf5a41e1934fd352a0e18cc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3047,67 +3089,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ef220577d59248bdbc40d7374238082a", + "layout": "IPY_MODEL_5385ad8ba67c426daa3e219dd49f7c1b", "placeholder": "​", - "style": "IPY_MODEL_04b7c5dc6e7948f7b6da88bf9de4c09b", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "d9f750fd331d4370b4ead712d6fe626d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f76bdeeb99374127a9a34c37ef45c330", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a0c9bb1d94eb48e1945c490bd1d43922", - "tabbable": null, - "tooltip": null, - "value": 665.0 - } - }, - "dd34df9493e74cc89434500b5b18d5ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e5b68aee810b4fc48e7950601e662dad", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b8d38e973ddb4490be0781dbb8717675", + "style": "IPY_MODEL_3a50e9ac92bb47ef8a4dd27183e221e7", "tabbable": null, "tooltip": null, - "value": 466062.0 + "value": "config.json: 100%" } }, - "e4e868950b0e4748a7bb54abf124ca39": { + "cbfa8e31e7cb4fd5b0f2827be2777ef3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3160,7 +3150,7 @@ "width": null } }, - "e5b68aee810b4fc48e7950601e662dad": { + "d27490d630934411bc6291d305749d0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3213,7 +3203,7 @@ "width": null } }, - "ef220577d59248bdbc40d7374238082a": { + "dcfe560d74704020ba7189f6b35342ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3266,7 +3256,47 @@ "width": null } }, - "ef836ca5c2e0473c8f44942bbfbde97c": { + "e715922dec9a4f518bd83655ec5ece8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e8839cb132d74eb9a916dda9fdafe1c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_792627ad3d4a4356926466777e5e286b", + "IPY_MODEL_33cce396c4bf413ebe5341fe28d03486", + "IPY_MODEL_42a8d833492a48fe958eb757ee25c31c" + ], + "layout": "IPY_MODEL_d27490d630934411bc6291d305749d0a", + "tabbable": null, + "tooltip": null + } + }, + "e93f36ea176647cd9b1069f0297aadef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3319,31 +3349,7 @@ "width": null } }, - "f26e295a2fa0406c8e3fff0e0818202d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_250cfa9619754602808099a37a2351cd", - "IPY_MODEL_d9f750fd331d4370b4ead712d6fe626d", - "IPY_MODEL_10e4288569c34c62a5b336b51d001893" - ], - "layout": "IPY_MODEL_751b322f8b584ba699d87d767abcfd88", - "tabbable": null, - "tooltip": null - } - }, - "f756af4beca342ed8bed100e0bfffe79": { + "eb1b16cb3c634b0496ccce16fde573eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3396,7 +3402,7 @@ "width": null } }, - "f76bdeeb99374127a9a34c37ef45c330": { + "f41c778f7656469892daa08fc3f86248": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3449,7 +3455,25 @@ "width": null } }, - "f83c84fa51244911ad30fbc24f0dae14": { + "f8c8778791df4709aa10067dd9083588": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f9d2786f039f4739a73d2d301bf8b745": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3502,7 +3526,7 @@ "width": null } }, - "fade1033c9ad433a857f6d209599eaad": { + "fad61d9bcd544d64a2896b7a4fafeca3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3520,7 +3544,7 @@ "text_color": null } }, - "fb7871277ea44cc992dd5130b07e281f": { + "fc16653aacb543948c8bcdbebbe18041": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3573,31 +3597,7 @@ "width": null } }, - "fb7ad54f03394e35a23b11c642b2c405": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b015ab05281b4ee48af1da0ccdc94161", - "IPY_MODEL_623c296ec27847a08d197e0f9349902d", - "IPY_MODEL_29d77952655945c5975ed010d32ac352" - ], - "layout": "IPY_MODEL_974e2a874ecf49ff8142c67afb939afd", - "tabbable": null, - "tooltip": null - } - }, - "fcdc6f83ca124a68b2ab9d6ace3e2308": { + "fdc67e28664e4583ace57f50340b3649": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3615,7 +3615,7 @@ "text_color": null } }, - "fe7ce2b57aca4dc1b98fc34a52588b14": { + "fdf1adc0e36d4541972658ad13062aac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 4120a32c1..ffde9c051 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1318,7 +1318,7 @@

    5. Use cleanlab to find label issues -{"state": {"61797416aadf4af5bcea4adfab15ea37": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "648981cda80e4fe686afd77c841b011b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "245795f1b8c14f0580deec4394842154": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_61797416aadf4af5bcea4adfab15ea37", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_648981cda80e4fe686afd77c841b011b", "tabbable": null, "tooltip": null, "value": 2041.0}}, "0958ba1748ee4beca7da01e8e46a9749": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b5d1d793a204f1ab4608428b5ba64b9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "68b320632eea4620bbd3b735bdc34dd9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0958ba1748ee4beca7da01e8e46a9749", "placeholder": "\u200b", "style": "IPY_MODEL_6b5d1d793a204f1ab4608428b5ba64b9", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "9f88f31de9d74eb0928335732d663561": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b74e55a2c5174b88b66ecaa2389897db": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8848bb7bffb545109abca26a5ae067d7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9f88f31de9d74eb0928335732d663561", "placeholder": "\u200b", "style": "IPY_MODEL_b74e55a2c5174b88b66ecaa2389897db", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007514kB/s]"}}, "f6e17f0c62ca4e53a8d555529912ee89": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd5cd533ee9f44c9a03ecc0071f84776": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_68b320632eea4620bbd3b735bdc34dd9", "IPY_MODEL_245795f1b8c14f0580deec4394842154", "IPY_MODEL_8848bb7bffb545109abca26a5ae067d7"], "layout": "IPY_MODEL_f6e17f0c62ca4e53a8d555529912ee89", "tabbable": null, "tooltip": null}}, "87a12f7b60404561827c31d53af0eaa8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "51ff76b0c91049ceab3634eafef03d03": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "38cedb80c4884a7aa9c8360e66697385": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_87a12f7b60404561827c31d53af0eaa8", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_51ff76b0c91049ceab3634eafef03d03", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "841d6e99393d4eacb2171cd893b4a9ae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad0c26113b5641988b98da2e1367adc3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4cb73865490e4acab5b8bd74d5733f8e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_841d6e99393d4eacb2171cd893b4a9ae", "placeholder": "\u200b", "style": "IPY_MODEL_ad0c26113b5641988b98da2e1367adc3", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "753341b93da447daa4758e7e5a5610e7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae98285a153e46948474fc4abeceddfd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ba43a6d3c0eb4eae9b16f9526c18eff9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_753341b93da447daa4758e7e5a5610e7", "placeholder": "\u200b", "style": "IPY_MODEL_ae98285a153e46948474fc4abeceddfd", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200739.9MB/s]"}}, "d16f6084ce1149cd889d6a2cb15f31c5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65cd560eff044447950b5de1dfe924a9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4cb73865490e4acab5b8bd74d5733f8e", "IPY_MODEL_38cedb80c4884a7aa9c8360e66697385", "IPY_MODEL_ba43a6d3c0eb4eae9b16f9526c18eff9"], "layout": "IPY_MODEL_d16f6084ce1149cd889d6a2cb15f31c5", "tabbable": null, "tooltip": null}}, "a0795bde2b3a4af08cc09a2b34f5e2aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b5504d0328b84005b17ed0cf71889d5b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ba716f0978944bb8b14f373794cf086b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a0795bde2b3a4af08cc09a2b34f5e2aa", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b5504d0328b84005b17ed0cf71889d5b", "tabbable": null, "tooltip": null, "value": 3201.0}}, "d64c977788594151a2a69bd522b4b4e2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b387baf48cbf40a79960c2e5e37c6dc5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "451ef1098e4b4a0cbc94307f8c54a69a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d64c977788594151a2a69bd522b4b4e2", "placeholder": "\u200b", "style": "IPY_MODEL_b387baf48cbf40a79960c2e5e37c6dc5", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "399a48d2dd4a4aeba66c8583c6cb3267": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d05285dc1f6426fba9ead2f8bc7365b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ffab753038714d3ca6e89b271ede7406": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_399a48d2dd4a4aeba66c8583c6cb3267", "placeholder": "\u200b", "style": "IPY_MODEL_8d05285dc1f6426fba9ead2f8bc7365b", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007894kB/s]"}}, "9e087829122b4cf38c2f2193a3ae9b93": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "16bedf557e1f48c3b23c71d15d5ff3ae": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_451ef1098e4b4a0cbc94307f8c54a69a", "IPY_MODEL_ba716f0978944bb8b14f373794cf086b", "IPY_MODEL_ffab753038714d3ca6e89b271ede7406"], "layout": "IPY_MODEL_9e087829122b4cf38c2f2193a3ae9b93", "tabbable": null, "tooltip": null}}, "4c0901a7fd664a0386f5506a5f1265c6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c5e187c01984c899378ec18b1b6f259": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9d58780c4a6d406b98d0415c7c2a4ee5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4c0901a7fd664a0386f5506a5f1265c6", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6c5e187c01984c899378ec18b1b6f259", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "202cf82f0f8a4e6ab6c44edcc4f643d4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "68b5eff6aadd4afb9e1940334ccb3d9b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fa3cbfeda5cd4b7fbc3c0c9e921e5864": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_202cf82f0f8a4e6ab6c44edcc4f643d4", "placeholder": "\u200b", "style": "IPY_MODEL_68b5eff6aadd4afb9e1940334ccb3d9b", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "ae7e6d3ea8df4eb8badebf0329826518": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2a522c81494744879ad988349f56ed6d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0148687423ae4404946f694c128d1db8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ae7e6d3ea8df4eb8badebf0329826518", "placeholder": "\u200b", "style": "IPY_MODEL_2a522c81494744879ad988349f56ed6d", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200739.4MB/s]"}}, "c639e0d31a954ec89eb3549596545904": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9527fc8121814f01a443e62ff927d47b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fa3cbfeda5cd4b7fbc3c0c9e921e5864", "IPY_MODEL_9d58780c4a6d406b98d0415c7c2a4ee5", "IPY_MODEL_0148687423ae4404946f694c128d1db8"], "layout": "IPY_MODEL_c639e0d31a954ec89eb3549596545904", "tabbable": null, "tooltip": null}}, "77a067827f5d4c28b687f203c008e031": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4edb5018fb694daab45e95ca9a2d5a86": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "aece8b0eb585430bbc9c4df8054ab74b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_77a067827f5d4c28b687f203c008e031", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4edb5018fb694daab45e95ca9a2d5a86", "tabbable": null, "tooltip": null, "value": 128619.0}}, "25b2f2a091664e82b0b254933237ecda": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bbb63db0bf1246e09f27e3fbcd6067f2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "45c7d5509d354e7db551d2ee42562f4a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_25b2f2a091664e82b0b254933237ecda", "placeholder": "\u200b", "style": "IPY_MODEL_bbb63db0bf1246e09f27e3fbcd6067f2", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "9b265031b424474386c724023fbceea8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13d241d8b1a14cd99f8717170fdc36e9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "283a7fca65ce4358af3da78be675147f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9b265031b424474386c724023fbceea8", "placeholder": "\u200b", "style": "IPY_MODEL_13d241d8b1a14cd99f8717170fdc36e9", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20072.64MB/s]"}}, "4055580cee714e89b235223a231f6c86": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f6af1b2285f641a2b47091704e8edf17": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_45c7d5509d354e7db551d2ee42562f4a", "IPY_MODEL_aece8b0eb585430bbc9c4df8054ab74b", "IPY_MODEL_283a7fca65ce4358af3da78be675147f"], "layout": "IPY_MODEL_4055580cee714e89b235223a231f6c86", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"a2ac773a77354c65a9b27aead854f501": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1845bd7583734a468217bf0a33a4a04e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9dcd19b1766a4f0f9e62b19feae944e0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a2ac773a77354c65a9b27aead854f501", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1845bd7583734a468217bf0a33a4a04e", "tabbable": null, "tooltip": null, "value": 2041.0}}, "6add2113ed1541dfbdb3c42fbbce25fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc4736ca693444da8e5b28edfdc65bc5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "03e98d7846af44088b8a646b91364594": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6add2113ed1541dfbdb3c42fbbce25fc", "placeholder": "\u200b", "style": "IPY_MODEL_fc4736ca693444da8e5b28edfdc65bc5", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "bca20dd54024424b908c519dc7c65413": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6e856fb0c33a4b509b13af9f0bfa347d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4a17f13f9daa4bd3a9e0f9a6bdcd54ce": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bca20dd54024424b908c519dc7c65413", "placeholder": "\u200b", "style": "IPY_MODEL_6e856fb0c33a4b509b13af9f0bfa347d", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007458kB/s]"}}, "6f1084b3c29943cbae5ae582af5573d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "593320329ae4474ea377016a9d84c521": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_03e98d7846af44088b8a646b91364594", "IPY_MODEL_9dcd19b1766a4f0f9e62b19feae944e0", "IPY_MODEL_4a17f13f9daa4bd3a9e0f9a6bdcd54ce"], "layout": "IPY_MODEL_6f1084b3c29943cbae5ae582af5573d2", "tabbable": null, "tooltip": null}}, "099362e1ce5c4a6b8d8d4c331a960d34": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c8c8519a91e4cf59efc5ee43887ceef": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "605873f7b6924ba3a2b8d496de6a3f37": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_099362e1ce5c4a6b8d8d4c331a960d34", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4c8c8519a91e4cf59efc5ee43887ceef", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "358c21f56ec2458089c2e7d7e5e7611d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b38f5dc0540f47bcb4f22237b8bc10b5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1d8d1f51752d4b69aa1135e17d8449e2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_358c21f56ec2458089c2e7d7e5e7611d", "placeholder": "\u200b", "style": "IPY_MODEL_b38f5dc0540f47bcb4f22237b8bc10b5", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "6b84bee63e5341e68a70a1df0644c356": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "702d80d4b5874038a51e0c3fe4e29c9c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "47f17e40d80540e8b9cd62de82c60b92": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6b84bee63e5341e68a70a1df0644c356", "placeholder": "\u200b", "style": "IPY_MODEL_702d80d4b5874038a51e0c3fe4e29c9c", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200750.6MB/s]"}}, "789cb19d03704e0b95b9af8afa82d248": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "69f610d6cd3c4ac58e8089ac7c27c111": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1d8d1f51752d4b69aa1135e17d8449e2", "IPY_MODEL_605873f7b6924ba3a2b8d496de6a3f37", "IPY_MODEL_47f17e40d80540e8b9cd62de82c60b92"], "layout": "IPY_MODEL_789cb19d03704e0b95b9af8afa82d248", "tabbable": null, "tooltip": null}}, "7a1b19cb87394307a53c97aa5de7ef54": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7c70a56bdf6c4f4e9f2f310fe97caf21": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "170825b92f484861b53a305933672d63": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7a1b19cb87394307a53c97aa5de7ef54", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7c70a56bdf6c4f4e9f2f310fe97caf21", "tabbable": null, "tooltip": null, "value": 3201.0}}, "37c6159b215f46748ce591cd48fe49f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af4e6010ee0847468fae428d5bceb881": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "124ddd3253c4476b83146639e17d57b4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_37c6159b215f46748ce591cd48fe49f0", "placeholder": "\u200b", "style": "IPY_MODEL_af4e6010ee0847468fae428d5bceb881", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "c0a147631094428498d5242f0dae3a28": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3b7f0046c33247249156bee86a8ab344": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4911164b858e49c1b45c2acea166106f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c0a147631094428498d5242f0dae3a28", "placeholder": "\u200b", "style": "IPY_MODEL_3b7f0046c33247249156bee86a8ab344", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007736kB/s]"}}, "6232f100dcfc4faea627bbfd5cf8d09e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a992a72ca18a4979975cfb11417f3b00": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_124ddd3253c4476b83146639e17d57b4", "IPY_MODEL_170825b92f484861b53a305933672d63", "IPY_MODEL_4911164b858e49c1b45c2acea166106f"], "layout": "IPY_MODEL_6232f100dcfc4faea627bbfd5cf8d09e", "tabbable": null, "tooltip": null}}, "ca834c7b06bd4f90ba096fa6f8d7103c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "01548e5746cc4788b0d61577e4b012b3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "10f5629a4670476891a02ba1e61d2b9f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ca834c7b06bd4f90ba096fa6f8d7103c", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_01548e5746cc4788b0d61577e4b012b3", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "c05dd7bca0b442bbb6c59095a6fdc7da": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2398940ef11744cd931d78b60fe1bf96": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d7cff1a5c1c84b53a0f820ae0ae64f22": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c05dd7bca0b442bbb6c59095a6fdc7da", "placeholder": "\u200b", "style": "IPY_MODEL_2398940ef11744cd931d78b60fe1bf96", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "fa4f7d539024400ead56c0975b429f2c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "49d50cf65e2243fe85ea4efa439383a4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8227ef3e4a1d4b60bb8d49436af87b02": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fa4f7d539024400ead56c0975b429f2c", "placeholder": "\u200b", "style": "IPY_MODEL_49d50cf65e2243fe85ea4efa439383a4", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200747.3MB/s]"}}, "6b1d25f5e1274b7087e5be1edb44f263": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "344f8176bb9c4df2b5f5c5842359b28c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d7cff1a5c1c84b53a0f820ae0ae64f22", "IPY_MODEL_10f5629a4670476891a02ba1e61d2b9f", "IPY_MODEL_8227ef3e4a1d4b60bb8d49436af87b02"], "layout": "IPY_MODEL_6b1d25f5e1274b7087e5be1edb44f263", "tabbable": null, "tooltip": null}}, "7187ee77d34d4ee58aea3e5ef7ea0d6f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a84cb458429f4ac9ba17b78d73eb1b9c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1e261881c01a4c82af0950354ddbbf67": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7187ee77d34d4ee58aea3e5ef7ea0d6f", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a84cb458429f4ac9ba17b78d73eb1b9c", "tabbable": null, "tooltip": null, "value": 128619.0}}, "3656dfd1293341618ec097a837ccf824": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "153a557fc0794ff2b1d801bc73e89764": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f98ecf4b23e04508a03cf3042be644e5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3656dfd1293341618ec097a837ccf824", "placeholder": "\u200b", "style": "IPY_MODEL_153a557fc0794ff2b1d801bc73e89764", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "15e61f73e248421da683941c01a6ba8a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "770aeb28530d4716aeceac624b99192d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3f10333ce59449f8893619a6a1200e72": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_15e61f73e248421da683941c01a6ba8a", "placeholder": "\u200b", "style": "IPY_MODEL_770aeb28530d4716aeceac624b99192d", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20071.94MB/s]"}}, "6d97e6b4b14a4b088f0a5c2c2e610564": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f91d49b1c62d4d839fff74899d0af511": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f98ecf4b23e04508a03cf3042be644e5", "IPY_MODEL_1e261881c01a4c82af0950354ddbbf67", "IPY_MODEL_3f10333ce59449f8893619a6a1200e72"], "layout": "IPY_MODEL_6d97e6b4b14a4b088f0a5c2c2e610564", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 661651aab..28ea897d0 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:12.140596Z", - "iopub.status.busy": "2024-04-06T04:27:12.140418Z", - "iopub.status.idle": "2024-04-06T04:27:16.566489Z", - "shell.execute_reply": "2024-04-06T04:27:16.565924Z" + "iopub.execute_input": "2024-04-08T19:04:46.105517Z", + "iopub.status.busy": "2024-04-08T19:04:46.104987Z", + "iopub.status.idle": "2024-04-08T19:04:51.038814Z", + "shell.execute_reply": "2024-04-08T19:04:51.038258Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:16.569088Z", - "iopub.status.busy": "2024-04-06T04:27:16.568539Z", - "iopub.status.idle": "2024-04-06T04:27:16.571617Z", - "shell.execute_reply": "2024-04-06T04:27:16.571189Z" + "iopub.execute_input": "2024-04-08T19:04:51.041604Z", + "iopub.status.busy": "2024-04-08T19:04:51.041029Z", + "iopub.status.idle": "2024-04-08T19:04:51.044345Z", + "shell.execute_reply": "2024-04-08T19:04:51.043904Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:16.573587Z", - "iopub.status.busy": "2024-04-06T04:27:16.573414Z", - "iopub.status.idle": "2024-04-06T04:27:16.578000Z", - "shell.execute_reply": "2024-04-06T04:27:16.577578Z" + "iopub.execute_input": "2024-04-08T19:04:51.046287Z", + "iopub.status.busy": "2024-04-08T19:04:51.045963Z", + "iopub.status.idle": "2024-04-08T19:04:51.050303Z", + "shell.execute_reply": "2024-04-08T19:04:51.049883Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:16.580077Z", - "iopub.status.busy": "2024-04-06T04:27:16.579751Z", - "iopub.status.idle": "2024-04-06T04:27:18.276513Z", - "shell.execute_reply": "2024-04-06T04:27:18.275051Z" + "iopub.execute_input": "2024-04-08T19:04:51.052312Z", + "iopub.status.busy": "2024-04-08T19:04:51.051991Z", + "iopub.status.idle": "2024-04-08T19:04:52.964225Z", + "shell.execute_reply": "2024-04-08T19:04:52.963597Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:18.282470Z", - "iopub.status.busy": "2024-04-06T04:27:18.281603Z", - "iopub.status.idle": "2024-04-06T04:27:18.299325Z", - "shell.execute_reply": "2024-04-06T04:27:18.298235Z" + "iopub.execute_input": "2024-04-08T19:04:52.967053Z", + "iopub.status.busy": "2024-04-08T19:04:52.966626Z", + "iopub.status.idle": "2024-04-08T19:04:52.977284Z", + "shell.execute_reply": "2024-04-08T19:04:52.976855Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:18.302849Z", - "iopub.status.busy": "2024-04-06T04:27:18.302356Z", - "iopub.status.idle": "2024-04-06T04:27:18.311115Z", - "shell.execute_reply": "2024-04-06T04:27:18.310622Z" + "iopub.execute_input": "2024-04-08T19:04:52.979356Z", + "iopub.status.busy": "2024-04-08T19:04:52.979056Z", + "iopub.status.idle": "2024-04-08T19:04:52.984474Z", + "shell.execute_reply": "2024-04-08T19:04:52.984027Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:18.313433Z", - "iopub.status.busy": "2024-04-06T04:27:18.313090Z", - "iopub.status.idle": "2024-04-06T04:27:18.744781Z", - "shell.execute_reply": "2024-04-06T04:27:18.744269Z" + "iopub.execute_input": "2024-04-08T19:04:52.986467Z", + "iopub.status.busy": "2024-04-08T19:04:52.986184Z", + "iopub.status.idle": "2024-04-08T19:04:53.470988Z", + "shell.execute_reply": "2024-04-08T19:04:53.470375Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:18.747037Z", - "iopub.status.busy": "2024-04-06T04:27:18.746633Z", - "iopub.status.idle": "2024-04-06T04:27:20.503082Z", - "shell.execute_reply": "2024-04-06T04:27:20.502599Z" + "iopub.execute_input": "2024-04-08T19:04:53.473214Z", + "iopub.status.busy": "2024-04-08T19:04:53.472775Z", + "iopub.status.idle": "2024-04-08T19:04:55.493272Z", + "shell.execute_reply": "2024-04-08T19:04:55.492735Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:20.505556Z", - "iopub.status.busy": "2024-04-06T04:27:20.505108Z", - "iopub.status.idle": "2024-04-06T04:27:20.523191Z", - "shell.execute_reply": "2024-04-06T04:27:20.522660Z" + "iopub.execute_input": "2024-04-08T19:04:55.495706Z", + "iopub.status.busy": "2024-04-08T19:04:55.495509Z", + "iopub.status.idle": "2024-04-08T19:04:55.513796Z", + "shell.execute_reply": "2024-04-08T19:04:55.513240Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:20.525153Z", - "iopub.status.busy": "2024-04-06T04:27:20.524840Z", - "iopub.status.idle": "2024-04-06T04:27:20.527990Z", - "shell.execute_reply": "2024-04-06T04:27:20.527457Z" + "iopub.execute_input": "2024-04-08T19:04:55.515946Z", + "iopub.status.busy": "2024-04-08T19:04:55.515624Z", + "iopub.status.idle": "2024-04-08T19:04:55.519151Z", + "shell.execute_reply": "2024-04-08T19:04:55.518745Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:20.530026Z", - "iopub.status.busy": "2024-04-06T04:27:20.529694Z", - "iopub.status.idle": "2024-04-06T04:27:34.456164Z", - "shell.execute_reply": "2024-04-06T04:27:34.455636Z" + "iopub.execute_input": "2024-04-08T19:04:55.521090Z", + "iopub.status.busy": "2024-04-08T19:04:55.520779Z", + "iopub.status.idle": "2024-04-08T19:05:10.361560Z", + "shell.execute_reply": "2024-04-08T19:05:10.361009Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:34.458814Z", - "iopub.status.busy": "2024-04-06T04:27:34.458439Z", - "iopub.status.idle": "2024-04-06T04:27:34.462230Z", - "shell.execute_reply": "2024-04-06T04:27:34.461692Z" + "iopub.execute_input": "2024-04-08T19:05:10.364429Z", + "iopub.status.busy": "2024-04-08T19:05:10.364034Z", + "iopub.status.idle": "2024-04-08T19:05:10.367863Z", + "shell.execute_reply": "2024-04-08T19:05:10.367337Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:34.464292Z", - "iopub.status.busy": "2024-04-06T04:27:34.463976Z", - "iopub.status.idle": "2024-04-06T04:27:35.183273Z", - "shell.execute_reply": "2024-04-06T04:27:35.182717Z" + "iopub.execute_input": "2024-04-08T19:05:10.370078Z", + "iopub.status.busy": "2024-04-08T19:05:10.369656Z", + "iopub.status.idle": "2024-04-08T19:05:11.087473Z", + "shell.execute_reply": "2024-04-08T19:05:11.086872Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.186021Z", - "iopub.status.busy": "2024-04-06T04:27:35.185608Z", - "iopub.status.idle": "2024-04-06T04:27:35.190731Z", - "shell.execute_reply": "2024-04-06T04:27:35.190237Z" + "iopub.execute_input": "2024-04-08T19:05:11.090530Z", + "iopub.status.busy": "2024-04-08T19:05:11.089968Z", + "iopub.status.idle": "2024-04-08T19:05:11.095044Z", + "shell.execute_reply": "2024-04-08T19:05:11.094507Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.193080Z", - "iopub.status.busy": "2024-04-06T04:27:35.192698Z", - "iopub.status.idle": "2024-04-06T04:27:35.302175Z", - "shell.execute_reply": "2024-04-06T04:27:35.301475Z" + "iopub.execute_input": "2024-04-08T19:05:11.098295Z", + "iopub.status.busy": "2024-04-08T19:05:11.097250Z", + "iopub.status.idle": "2024-04-08T19:05:11.200881Z", + "shell.execute_reply": "2024-04-08T19:05:11.200284Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.304615Z", - "iopub.status.busy": "2024-04-06T04:27:35.304237Z", - "iopub.status.idle": "2024-04-06T04:27:35.316277Z", - "shell.execute_reply": "2024-04-06T04:27:35.315829Z" + "iopub.execute_input": "2024-04-08T19:05:11.203369Z", + "iopub.status.busy": "2024-04-08T19:05:11.202937Z", + "iopub.status.idle": "2024-04-08T19:05:11.215358Z", + "shell.execute_reply": "2024-04-08T19:05:11.214779Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.318303Z", - "iopub.status.busy": "2024-04-06T04:27:35.317968Z", - "iopub.status.idle": "2024-04-06T04:27:35.325434Z", - "shell.execute_reply": "2024-04-06T04:27:35.324937Z" + "iopub.execute_input": "2024-04-08T19:05:11.217681Z", + "iopub.status.busy": "2024-04-08T19:05:11.217301Z", + "iopub.status.idle": "2024-04-08T19:05:11.225343Z", + "shell.execute_reply": "2024-04-08T19:05:11.224791Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.327556Z", - "iopub.status.busy": "2024-04-06T04:27:35.327202Z", - "iopub.status.idle": "2024-04-06T04:27:35.331288Z", - "shell.execute_reply": "2024-04-06T04:27:35.330846Z" + "iopub.execute_input": "2024-04-08T19:05:11.227551Z", + "iopub.status.busy": "2024-04-08T19:05:11.227260Z", + "iopub.status.idle": "2024-04-08T19:05:11.231569Z", + "shell.execute_reply": "2024-04-08T19:05:11.231018Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.333294Z", - "iopub.status.busy": "2024-04-06T04:27:35.332989Z", - "iopub.status.idle": "2024-04-06T04:27:35.338557Z", - "shell.execute_reply": "2024-04-06T04:27:35.337997Z" + "iopub.execute_input": "2024-04-08T19:05:11.233584Z", + "iopub.status.busy": "2024-04-08T19:05:11.233223Z", + "iopub.status.idle": "2024-04-08T19:05:11.238833Z", + "shell.execute_reply": "2024-04-08T19:05:11.238283Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.340521Z", - "iopub.status.busy": "2024-04-06T04:27:35.340225Z", - "iopub.status.idle": "2024-04-06T04:27:35.658582Z", - "shell.execute_reply": "2024-04-06T04:27:35.657998Z" + "iopub.execute_input": "2024-04-08T19:05:11.240707Z", + "iopub.status.busy": "2024-04-08T19:05:11.240530Z", + "iopub.status.idle": "2024-04-08T19:05:11.595733Z", + "shell.execute_reply": "2024-04-08T19:05:11.595243Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.660829Z", - "iopub.status.busy": "2024-04-06T04:27:35.660413Z", - "iopub.status.idle": "2024-04-06T04:27:35.769702Z", - "shell.execute_reply": "2024-04-06T04:27:35.769175Z" + "iopub.execute_input": "2024-04-08T19:05:11.597887Z", + "iopub.status.busy": "2024-04-08T19:05:11.597533Z", + "iopub.status.idle": "2024-04-08T19:05:11.705498Z", + "shell.execute_reply": "2024-04-08T19:05:11.704961Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.771757Z", - "iopub.status.busy": "2024-04-06T04:27:35.771495Z", - "iopub.status.idle": "2024-04-06T04:27:35.872918Z", - "shell.execute_reply": "2024-04-06T04:27:35.872364Z" + "iopub.execute_input": "2024-04-08T19:05:11.707806Z", + "iopub.status.busy": "2024-04-08T19:05:11.707520Z", + "iopub.status.idle": "2024-04-08T19:05:11.814276Z", + "shell.execute_reply": "2024-04-08T19:05:11.813792Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.875082Z", - "iopub.status.busy": "2024-04-06T04:27:35.874745Z", - "iopub.status.idle": "2024-04-06T04:27:35.975770Z", - "shell.execute_reply": "2024-04-06T04:27:35.975289Z" + "iopub.execute_input": "2024-04-08T19:05:11.816405Z", + "iopub.status.busy": "2024-04-08T19:05:11.816094Z", + "iopub.status.idle": "2024-04-08T19:05:11.920916Z", + "shell.execute_reply": "2024-04-08T19:05:11.920366Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:35.977985Z", - "iopub.status.busy": "2024-04-06T04:27:35.977624Z", - "iopub.status.idle": "2024-04-06T04:27:35.980777Z", - "shell.execute_reply": "2024-04-06T04:27:35.980344Z" + "iopub.execute_input": "2024-04-08T19:05:11.923123Z", + "iopub.status.busy": "2024-04-08T19:05:11.922809Z", + "iopub.status.idle": "2024-04-08T19:05:11.926110Z", + "shell.execute_reply": "2024-04-08T19:05:11.925596Z" }, "nbsphinx": "hidden" }, @@ -1397,7 +1397,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0148687423ae4404946f694c128d1db8": { + "01548e5746cc4788b0d61577e4b012b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "03e98d7846af44088b8a646b91364594": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1412,15 +1428,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae7e6d3ea8df4eb8badebf0329826518", + "layout": "IPY_MODEL_6add2113ed1541dfbdb3c42fbbce25fc", "placeholder": "​", - "style": "IPY_MODEL_2a522c81494744879ad988349f56ed6d", + "style": "IPY_MODEL_fc4736ca693444da8e5b28edfdc65bc5", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 39.4MB/s]" + "value": "hyperparams.yaml: 100%" } }, - "0958ba1748ee4beca7da01e8e46a9749": { + "099362e1ce5c4a6b8d8d4c331a960d34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1473,49 +1489,74 @@ "width": null } }, - "13d241d8b1a14cd99f8717170fdc36e9": { + "10f5629a4670476891a02ba1e61d2b9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ca834c7b06bd4f90ba096fa6f8d7103c", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_01548e5746cc4788b0d61577e4b012b3", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "16bedf557e1f48c3b23c71d15d5ff3ae": { + "124ddd3253c4476b83146639e17d57b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_451ef1098e4b4a0cbc94307f8c54a69a", - "IPY_MODEL_ba716f0978944bb8b14f373794cf086b", - "IPY_MODEL_ffab753038714d3ca6e89b271ede7406" - ], - "layout": "IPY_MODEL_9e087829122b4cf38c2f2193a3ae9b93", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_37c6159b215f46748ce591cd48fe49f0", + "placeholder": "​", + "style": "IPY_MODEL_af4e6010ee0847468fae428d5bceb881", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "153a557fc0794ff2b1d801bc73e89764": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "202cf82f0f8a4e6ab6c44edcc4f643d4": { + "15e61f73e248421da683941c01a6ba8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1568,7 +1609,7 @@ "width": null } }, - "245795f1b8c14f0580deec4394842154": { + "170825b92f484861b53a305933672d63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1584,70 +1625,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_61797416aadf4af5bcea4adfab15ea37", - "max": 2041.0, + "layout": "IPY_MODEL_7a1b19cb87394307a53c97aa5de7ef54", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_648981cda80e4fe686afd77c841b011b", + "style": "IPY_MODEL_7c70a56bdf6c4f4e9f2f310fe97caf21", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": 3201.0 } }, - "25b2f2a091664e82b0b254933237ecda": { - "model_module": "@jupyter-widgets/base", + "1845bd7583734a468217bf0a33a4a04e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "283a7fca65ce4358af3da78be675147f": { + "1d8d1f51752d4b69aa1135e17d8449e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1662,15 +1666,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9b265031b424474386c724023fbceea8", + "layout": "IPY_MODEL_358c21f56ec2458089c2e7d7e5e7611d", "placeholder": "​", - "style": "IPY_MODEL_13d241d8b1a14cd99f8717170fdc36e9", + "style": "IPY_MODEL_b38f5dc0540f47bcb4f22237b8bc10b5", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "1e261881c01a4c82af0950354ddbbf67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7187ee77d34d4ee58aea3e5ef7ea0d6f", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a84cb458429f4ac9ba17b78d73eb1b9c", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 2.64MB/s]" + "value": 128619.0 } }, - "2a522c81494744879ad988349f56ed6d": { + "2398940ef11744cd931d78b60fe1bf96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1688,33 +1718,31 @@ "text_color": null } }, - "38cedb80c4884a7aa9c8360e66697385": { + "344f8176bb9c4df2b5f5c5842359b28c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_87a12f7b60404561827c31d53af0eaa8", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_51ff76b0c91049ceab3634eafef03d03", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d7cff1a5c1c84b53a0f820ae0ae64f22", + "IPY_MODEL_10f5629a4670476891a02ba1e61d2b9f", + "IPY_MODEL_8227ef3e4a1d4b60bb8d49436af87b02" + ], + "layout": "IPY_MODEL_6b1d25f5e1274b7087e5be1edb44f263", "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "tooltip": null } }, - "399a48d2dd4a4aeba66c8583c6cb3267": { + "358c21f56ec2458089c2e7d7e5e7611d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1767,7 +1795,7 @@ "width": null } }, - "4055580cee714e89b235223a231f6c86": { + "3656dfd1293341618ec097a837ccf824": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1820,53 +1848,7 @@ "width": null } }, - "451ef1098e4b4a0cbc94307f8c54a69a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d64c977788594151a2a69bd522b4b4e2", - "placeholder": "​", - "style": "IPY_MODEL_b387baf48cbf40a79960c2e5e37c6dc5", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "45c7d5509d354e7db551d2ee42562f4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_25b2f2a091664e82b0b254933237ecda", - "placeholder": "​", - "style": "IPY_MODEL_bbb63db0bf1246e09f27e3fbcd6067f2", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "4c0901a7fd664a0386f5506a5f1265c6": { + "37c6159b215f46748ce591cd48fe49f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1919,7 +1901,25 @@ "width": null } }, - "4cb73865490e4acab5b8bd74d5733f8e": { + "3b7f0046c33247249156bee86a8ab344": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3f10333ce59449f8893619a6a1200e72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1934,100 +1934,102 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_841d6e99393d4eacb2171cd893b4a9ae", + "layout": "IPY_MODEL_15e61f73e248421da683941c01a6ba8a", "placeholder": "​", - "style": "IPY_MODEL_ad0c26113b5641988b98da2e1367adc3", + "style": "IPY_MODEL_770aeb28530d4716aeceac624b99192d", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": " 129k/129k [00:00<00:00, 1.94MB/s]" } }, - "4edb5018fb694daab45e95ca9a2d5a86": { + "47f17e40d80540e8b9cd62de82c60b92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6b84bee63e5341e68a70a1df0644c356", + "placeholder": "​", + "style": "IPY_MODEL_702d80d4b5874038a51e0c3fe4e29c9c", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 50.6MB/s]" } }, - "51ff76b0c91049ceab3634eafef03d03": { + "4911164b858e49c1b45c2acea166106f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "61797416aadf4af5bcea4adfab15ea37": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c0a147631094428498d5242f0dae3a28", + "placeholder": "​", + "style": "IPY_MODEL_3b7f0046c33247249156bee86a8ab344", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 736kB/s]" + } + }, + "49d50cf65e2243fe85ea4efa439383a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4a17f13f9daa4bd3a9e0f9a6bdcd54ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bca20dd54024424b908c519dc7c65413", + "placeholder": "​", + "style": "IPY_MODEL_6e856fb0c33a4b509b13af9f0bfa347d", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 458kB/s]" } }, - "648981cda80e4fe686afd77c841b011b": { + "4c8c8519a91e4cf59efc5ee43887ceef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2043,7 +2045,7 @@ "description_width": "" } }, - "65cd560eff044447950b5de1dfe924a9": { + "593320329ae4474ea377016a9d84c521": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2058,91 +2060,119 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4cb73865490e4acab5b8bd74d5733f8e", - "IPY_MODEL_38cedb80c4884a7aa9c8360e66697385", - "IPY_MODEL_ba43a6d3c0eb4eae9b16f9526c18eff9" + "IPY_MODEL_03e98d7846af44088b8a646b91364594", + "IPY_MODEL_9dcd19b1766a4f0f9e62b19feae944e0", + "IPY_MODEL_4a17f13f9daa4bd3a9e0f9a6bdcd54ce" ], - "layout": "IPY_MODEL_d16f6084ce1149cd889d6a2cb15f31c5", + "layout": "IPY_MODEL_6f1084b3c29943cbae5ae582af5573d2", "tabbable": null, "tooltip": null } }, - "68b320632eea4620bbd3b735bdc34dd9": { + "605873f7b6924ba3a2b8d496de6a3f37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0958ba1748ee4beca7da01e8e46a9749", - "placeholder": "​", - "style": "IPY_MODEL_6b5d1d793a204f1ab4608428b5ba64b9", + "layout": "IPY_MODEL_099362e1ce5c4a6b8d8d4c331a960d34", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4c8c8519a91e4cf59efc5ee43887ceef", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "68b5eff6aadd4afb9e1940334ccb3d9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 16887676.0 } }, - "6b5d1d793a204f1ab4608428b5ba64b9": { - "model_module": "@jupyter-widgets/controls", + "6232f100dcfc4faea627bbfd5cf8d09e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6c5e187c01984c899378ec18b1b6f259": { + "69f610d6cd3c4ac58e8089ac7c27c111": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1d8d1f51752d4b69aa1135e17d8449e2", + "IPY_MODEL_605873f7b6924ba3a2b8d496de6a3f37", + "IPY_MODEL_47f17e40d80540e8b9cd62de82c60b92" + ], + "layout": "IPY_MODEL_789cb19d03704e0b95b9af8afa82d248", + "tabbable": null, + "tooltip": null } }, - "753341b93da447daa4758e7e5a5610e7": { + "6add2113ed1541dfbdb3c42fbbce25fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2195,7 +2225,7 @@ "width": null } }, - "77a067827f5d4c28b687f203c008e031": { + "6b1d25f5e1274b7087e5be1edb44f263": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2248,7 +2278,7 @@ "width": null } }, - "841d6e99393d4eacb2171cd893b4a9ae": { + "6b84bee63e5341e68a70a1df0644c356": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2301,7 +2331,7 @@ "width": null } }, - "87a12f7b60404561827c31d53af0eaa8": { + "6d97e6b4b14a4b088f0a5c2c2e610564": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2354,30 +2384,7 @@ "width": null } }, - "8848bb7bffb545109abca26a5ae067d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9f88f31de9d74eb0928335732d663561", - "placeholder": "​", - "style": "IPY_MODEL_b74e55a2c5174b88b66ecaa2389897db", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 514kB/s]" - } - }, - "8d05285dc1f6426fba9ead2f8bc7365b": { + "6e856fb0c33a4b509b13af9f0bfa347d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2395,31 +2402,7 @@ "text_color": null } }, - "9527fc8121814f01a443e62ff927d47b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fa3cbfeda5cd4b7fbc3c0c9e921e5864", - "IPY_MODEL_9d58780c4a6d406b98d0415c7c2a4ee5", - "IPY_MODEL_0148687423ae4404946f694c128d1db8" - ], - "layout": "IPY_MODEL_c639e0d31a954ec89eb3549596545904", - "tabbable": null, - "tooltip": null - } - }, - "9b265031b424474386c724023fbceea8": { + "6f1084b3c29943cbae5ae582af5573d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2472,33 +2455,25 @@ "width": null } }, - "9d58780c4a6d406b98d0415c7c2a4ee5": { + "702d80d4b5874038a51e0c3fe4e29c9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4c0901a7fd664a0386f5506a5f1265c6", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6c5e187c01984c899378ec18b1b6f259", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9e087829122b4cf38c2f2193a3ae9b93": { + "7187ee77d34d4ee58aea3e5ef7ea0d6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2551,7 +2526,25 @@ "width": null } }, - "9f88f31de9d74eb0928335732d663561": { + "770aeb28530d4716aeceac624b99192d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "789cb19d03704e0b95b9af8afa82d248": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2604,7 +2597,7 @@ "width": null } }, - "a0795bde2b3a4af08cc09a2b34f5e2aa": { + "7a1b19cb87394307a53c97aa5de7ef54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2657,25 +2650,72 @@ "width": null } }, - "ad0c26113b5641988b98da2e1367adc3": { + "7c70a56bdf6c4f4e9f2f310fe97caf21": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "8227ef3e4a1d4b60bb8d49436af87b02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa4f7d539024400ead56c0975b429f2c", + "placeholder": "​", + "style": "IPY_MODEL_49d50cf65e2243fe85ea4efa439383a4", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 47.3MB/s]" + } + }, + "9dcd19b1766a4f0f9e62b19feae944e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a2ac773a77354c65a9b27aead854f501", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1845bd7583734a468217bf0a33a4a04e", + "tabbable": null, + "tooltip": null, + "value": 2041.0 } }, - "ae7e6d3ea8df4eb8badebf0329826518": { + "a2ac773a77354c65a9b27aead854f501": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2728,85 +2768,47 @@ "width": null } }, - "ae98285a153e46948474fc4abeceddfd": { + "a84cb458429f4ac9ba17b78d73eb1b9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "aece8b0eb585430bbc9c4df8054ab74b": { + "a992a72ca18a4979975cfb11417f3b00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_77a067827f5d4c28b687f203c008e031", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4edb5018fb694daab45e95ca9a2d5a86", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_124ddd3253c4476b83146639e17d57b4", + "IPY_MODEL_170825b92f484861b53a305933672d63", + "IPY_MODEL_4911164b858e49c1b45c2acea166106f" + ], + "layout": "IPY_MODEL_6232f100dcfc4faea627bbfd5cf8d09e", "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "b387baf48cbf40a79960c2e5e37c6dc5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b5504d0328b84005b17ed0cf71889d5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "b74e55a2c5174b88b66ecaa2389897db": { + "af4e6010ee0847468fae428d5bceb881": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2824,56 +2826,7 @@ "text_color": null } }, - "ba43a6d3c0eb4eae9b16f9526c18eff9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_753341b93da447daa4758e7e5a5610e7", - "placeholder": "​", - "style": "IPY_MODEL_ae98285a153e46948474fc4abeceddfd", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 39.9MB/s]" - } - }, - "ba716f0978944bb8b14f373794cf086b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a0795bde2b3a4af08cc09a2b34f5e2aa", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b5504d0328b84005b17ed0cf71889d5b", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "bbb63db0bf1246e09f27e3fbcd6067f2": { + "b38f5dc0540f47bcb4f22237b8bc10b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2891,31 +2844,7 @@ "text_color": null } }, - "bd5cd533ee9f44c9a03ecc0071f84776": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_68b320632eea4620bbd3b735bdc34dd9", - "IPY_MODEL_245795f1b8c14f0580deec4394842154", - "IPY_MODEL_8848bb7bffb545109abca26a5ae067d7" - ], - "layout": "IPY_MODEL_f6e17f0c62ca4e53a8d555529912ee89", - "tabbable": null, - "tooltip": null - } - }, - "c639e0d31a954ec89eb3549596545904": { + "bca20dd54024424b908c519dc7c65413": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2968,7 +2897,7 @@ "width": null } }, - "d16f6084ce1149cd889d6a2cb15f31c5": { + "c05dd7bca0b442bbb6c59095a6fdc7da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3021,7 +2950,7 @@ "width": null } }, - "d64c977788594151a2a69bd522b4b4e2": { + "c0a147631094428498d5242f0dae3a28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3074,31 +3003,7 @@ "width": null } }, - "f6af1b2285f641a2b47091704e8edf17": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_45c7d5509d354e7db551d2ee42562f4a", - "IPY_MODEL_aece8b0eb585430bbc9c4df8054ab74b", - "IPY_MODEL_283a7fca65ce4358af3da78be675147f" - ], - "layout": "IPY_MODEL_4055580cee714e89b235223a231f6c86", - "tabbable": null, - "tooltip": null - } - }, - "f6e17f0c62ca4e53a8d555529912ee89": { + "ca834c7b06bd4f90ba096fa6f8d7103c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3151,7 +3056,7 @@ "width": null } }, - "fa3cbfeda5cd4b7fbc3c0c9e921e5864": { + "d7cff1a5c1c84b53a0f820ae0ae64f22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3166,15 +3071,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_202cf82f0f8a4e6ab6c44edcc4f643d4", + "layout": "IPY_MODEL_c05dd7bca0b442bbb6c59095a6fdc7da", "placeholder": "​", - "style": "IPY_MODEL_68b5eff6aadd4afb9e1940334ccb3d9b", + "style": "IPY_MODEL_2398940ef11744cd931d78b60fe1bf96", "tabbable": null, "tooltip": null, "value": "classifier.ckpt: 100%" } }, - "ffab753038714d3ca6e89b271ede7406": { + "f91d49b1c62d4d839fff74899d0af511": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f98ecf4b23e04508a03cf3042be644e5", + "IPY_MODEL_1e261881c01a4c82af0950354ddbbf67", + "IPY_MODEL_3f10333ce59449f8893619a6a1200e72" + ], + "layout": "IPY_MODEL_6d97e6b4b14a4b088f0a5c2c2e610564", + "tabbable": null, + "tooltip": null + } + }, + "f98ecf4b23e04508a03cf3042be644e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3189,12 +3118,83 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_399a48d2dd4a4aeba66c8583c6cb3267", + "layout": "IPY_MODEL_3656dfd1293341618ec097a837ccf824", "placeholder": "​", - "style": "IPY_MODEL_8d05285dc1f6426fba9ead2f8bc7365b", + "style": "IPY_MODEL_153a557fc0794ff2b1d801bc73e89764", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 894kB/s]" + "value": "label_encoder.txt: 100%" + } + }, + "fa4f7d539024400ead56c0975b429f2c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fc4736ca693444da8e5b28edfdc65bc5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/datalab/data_monitor.html b/master/tutorials/datalab/data_monitor.html index 4f1439c28..2d2aa7411 100644 --- a/master/tutorials/datalab/data_monitor.html +++ b/master/tutorials/datalab/data_monitor.html @@ -661,7 +661,7 @@

    1. Install and import required dependenciesdependencies = ["cleanlab", "matplotlib", "datasets"] # TODO: make sure this list is updated if "google.colab" in str(get_ipython()): # Check if it's running in Google Colab - %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00 + %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06 cmd = ' '.join([dep for dep in dependencies if dep != "cleanlab"]) %pip install $cmd else: @@ -1144,7 +1144,7 @@

    5. Use DataMonitor to find issues in new data

    -
    +
    @@ -1179,7 +1179,7 @@

    5. Use DataMonitor to find issues in new data

    -
    +
    @@ -1479,7 +1479,7 @@

    6. Learn more about the issues in the additional data

    diff --git a/master/tutorials/datalab/data_monitor.ipynb b/master/tutorials/datalab/data_monitor.ipynb index 49d632c47..f4ed52c9a 100644 --- a/master/tutorials/datalab/data_monitor.ipynb +++ b/master/tutorials/datalab/data_monitor.ipynb @@ -66,10 +66,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:39.124807Z", - "iopub.status.busy": "2024-04-06T04:27:39.124638Z", - "iopub.status.idle": "2024-04-06T04:27:40.230534Z", - "shell.execute_reply": "2024-04-06T04:27:40.229912Z" + "iopub.execute_input": "2024-04-08T19:05:16.056480Z", + "iopub.status.busy": "2024-04-08T19:05:16.056305Z", + "iopub.status.idle": "2024-04-08T19:05:17.226995Z", + "shell.execute_reply": "2024-04-08T19:05:17.226456Z" } }, "outputs": [], @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -103,10 +103,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.232938Z", - "iopub.status.busy": "2024-04-06T04:27:40.232697Z", - "iopub.status.idle": "2024-04-06T04:27:40.239199Z", - "shell.execute_reply": "2024-04-06T04:27:40.238786Z" + "iopub.execute_input": "2024-04-08T19:05:17.229650Z", + "iopub.status.busy": "2024-04-08T19:05:17.229169Z", + "iopub.status.idle": "2024-04-08T19:05:17.235852Z", + "shell.execute_reply": "2024-04-08T19:05:17.235318Z" } }, "outputs": [], @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.241352Z", - "iopub.status.busy": "2024-04-06T04:27:40.240938Z", - "iopub.status.idle": "2024-04-06T04:27:40.249415Z", - "shell.execute_reply": "2024-04-06T04:27:40.248876Z" + "iopub.execute_input": "2024-04-08T19:05:17.238153Z", + "iopub.status.busy": "2024-04-08T19:05:17.237822Z", + "iopub.status.idle": "2024-04-08T19:05:17.246365Z", + "shell.execute_reply": "2024-04-08T19:05:17.245924Z" } }, "outputs": [], @@ -334,10 +334,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.251546Z", - "iopub.status.busy": "2024-04-06T04:27:40.251172Z", - "iopub.status.idle": "2024-04-06T04:27:40.256527Z", - "shell.execute_reply": "2024-04-06T04:27:40.256119Z" + "iopub.execute_input": "2024-04-08T19:05:17.248259Z", + "iopub.status.busy": "2024-04-08T19:05:17.247938Z", + "iopub.status.idle": "2024-04-08T19:05:17.252838Z", + "shell.execute_reply": "2024-04-08T19:05:17.252440Z" } }, "outputs": [], @@ -350,10 +350,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.258644Z", - "iopub.status.busy": "2024-04-06T04:27:40.258268Z", - "iopub.status.idle": "2024-04-06T04:27:40.262114Z", - "shell.execute_reply": "2024-04-06T04:27:40.261656Z" + "iopub.execute_input": "2024-04-08T19:05:17.254810Z", + "iopub.status.busy": "2024-04-08T19:05:17.254482Z", + "iopub.status.idle": "2024-04-08T19:05:17.258040Z", + "shell.execute_reply": "2024-04-08T19:05:17.257638Z" } }, "outputs": [], @@ -431,10 +431,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.264175Z", - "iopub.status.busy": "2024-04-06T04:27:40.263808Z", - "iopub.status.idle": "2024-04-06T04:27:40.445579Z", - "shell.execute_reply": "2024-04-06T04:27:40.445093Z" + "iopub.execute_input": "2024-04-08T19:05:17.260050Z", + "iopub.status.busy": "2024-04-08T19:05:17.259858Z", + "iopub.status.idle": "2024-04-08T19:05:17.444599Z", + "shell.execute_reply": "2024-04-08T19:05:17.444055Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.447977Z", - "iopub.status.busy": "2024-04-06T04:27:40.447537Z", - "iopub.status.idle": "2024-04-06T04:27:40.744638Z", - "shell.execute_reply": "2024-04-06T04:27:40.744091Z" + "iopub.execute_input": "2024-04-08T19:05:17.447058Z", + "iopub.status.busy": "2024-04-08T19:05:17.446673Z", + "iopub.status.idle": "2024-04-08T19:05:17.799282Z", + "shell.execute_reply": "2024-04-08T19:05:17.798689Z" } }, "outputs": [ @@ -534,10 +534,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.746848Z", - "iopub.status.busy": "2024-04-06T04:27:40.746525Z", - "iopub.status.idle": "2024-04-06T04:27:40.771572Z", - "shell.execute_reply": "2024-04-06T04:27:40.771006Z" + "iopub.execute_input": "2024-04-08T19:05:17.801743Z", + "iopub.status.busy": "2024-04-08T19:05:17.801312Z", + "iopub.status.idle": "2024-04-08T19:05:17.826322Z", + "shell.execute_reply": "2024-04-08T19:05:17.825758Z" } }, "outputs": [], @@ -562,10 +562,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:40.774039Z", - "iopub.status.busy": "2024-04-06T04:27:40.773664Z", - "iopub.status.idle": "2024-04-06T04:27:42.370106Z", - "shell.execute_reply": "2024-04-06T04:27:42.369478Z" + "iopub.execute_input": "2024-04-08T19:05:17.828759Z", + "iopub.status.busy": "2024-04-08T19:05:17.828309Z", + "iopub.status.idle": "2024-04-08T19:05:19.538623Z", + "shell.execute_reply": "2024-04-08T19:05:19.537994Z" } }, "outputs": [ @@ -648,10 +648,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:42.372440Z", - "iopub.status.busy": "2024-04-06T04:27:42.372129Z", - "iopub.status.idle": "2024-04-06T04:27:42.375563Z", - "shell.execute_reply": "2024-04-06T04:27:42.375038Z" + "iopub.execute_input": "2024-04-08T19:05:19.541116Z", + "iopub.status.busy": "2024-04-08T19:05:19.540792Z", + "iopub.status.idle": "2024-04-08T19:05:19.544925Z", + "shell.execute_reply": "2024-04-08T19:05:19.544368Z" } }, "outputs": [], @@ -677,10 +677,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:42.377711Z", - "iopub.status.busy": "2024-04-06T04:27:42.377396Z", - "iopub.status.idle": "2024-04-06T04:27:42.386960Z", - "shell.execute_reply": "2024-04-06T04:27:42.386393Z" + "iopub.execute_input": "2024-04-08T19:05:19.546793Z", + "iopub.status.busy": "2024-04-08T19:05:19.546613Z", + "iopub.status.idle": "2024-04-08T19:05:19.556501Z", + "shell.execute_reply": "2024-04-08T19:05:19.555938Z" } }, "outputs": [], @@ -717,17 +717,17 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:42.389082Z", - "iopub.status.busy": "2024-04-06T04:27:42.388643Z", - "iopub.status.idle": "2024-04-06T04:27:47.460848Z", - "shell.execute_reply": "2024-04-06T04:27:47.460241Z" + "iopub.execute_input": "2024-04-08T19:05:19.558684Z", + "iopub.status.busy": "2024-04-08T19:05:19.558297Z", + "iopub.status.idle": "2024-04-08T19:05:24.640462Z", + "shell.execute_reply": "2024-04-08T19:05:24.639883Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88a3f04de8e44875bbbccd2e92af964b", + "model_id": "2f47e1ed2b654c57ae612b85caf87e33", "version_major": 2, "version_minor": 0 }, @@ -787,17 +787,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:47.463019Z", - "iopub.status.busy": "2024-04-06T04:27:47.462687Z", - "iopub.status.idle": "2024-04-06T04:27:52.754644Z", - "shell.execute_reply": "2024-04-06T04:27:52.754068Z" + "iopub.execute_input": "2024-04-08T19:05:24.642651Z", + "iopub.status.busy": "2024-04-08T19:05:24.642467Z", + "iopub.status.idle": "2024-04-08T19:05:29.933144Z", + "shell.execute_reply": "2024-04-08T19:05:29.932579Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "98349aa633c94f6f8de2ad9b4a7ddcc0", + "model_id": "4f0377a4700449e9a6fbad55e512beac", "version_major": 2, "version_minor": 0 }, @@ -925,10 +925,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:52.756904Z", - "iopub.status.busy": "2024-04-06T04:27:52.756572Z", - "iopub.status.idle": "2024-04-06T04:27:52.767494Z", - "shell.execute_reply": "2024-04-06T04:27:52.766969Z" + "iopub.execute_input": "2024-04-08T19:05:29.936196Z", + "iopub.status.busy": "2024-04-08T19:05:29.935831Z", + "iopub.status.idle": "2024-04-08T19:05:29.947084Z", + "shell.execute_reply": "2024-04-08T19:05:29.946554Z" } }, "outputs": [ @@ -1161,10 +1161,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:52.769625Z", - "iopub.status.busy": "2024-04-06T04:27:52.769240Z", - "iopub.status.idle": "2024-04-06T04:27:52.774775Z", - "shell.execute_reply": "2024-04-06T04:27:52.774299Z" + "iopub.execute_input": "2024-04-08T19:05:29.948874Z", + "iopub.status.busy": "2024-04-08T19:05:29.948698Z", + "iopub.status.idle": "2024-04-08T19:05:29.953956Z", + "shell.execute_reply": "2024-04-08T19:05:29.953551Z" } }, "outputs": [ @@ -1244,51 +1244,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "061ccf039e13444da59852bf8e450df8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "07e9941853a644c2a8e7beb026aa8096": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_83e26b89eb7147a9a08689975eaae0aa", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a50c1ed63c444f5ea7ec0b51e28adfa9", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "1f1380d992af4fc9ac5092887976d69d": { + "07acb035ab04489f9387d9718ae0300d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1341,7 +1297,7 @@ "width": null } }, - "3501255b1f0e4d23b395426656d1061d": { + "128d9f5df2814c66a3994457d9355ec0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1356,15 +1312,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1f1380d992af4fc9ac5092887976d69d", + "layout": "IPY_MODEL_1da7bf46e2e44e11bba14d6dae15180c", "placeholder": "​", - "style": "IPY_MODEL_d71ac3c63a39491d9ed58f8bbc64e388", + "style": "IPY_MODEL_b5256e93be0b4752bbb5eb28c7e6b6f3", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "41752ff7750c4b20be0a41d83676cda7": { + "12aaf4ab3e33466480a03090a29d35e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "16a9cd2938bc424383031abcba4a9aef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1379,33 +1353,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c96caaaddeb44fa8d834cd11d2bec53", + "layout": "IPY_MODEL_e08a5d72b2194307864f4fe35d00d7fd", "placeholder": "​", - "style": "IPY_MODEL_061ccf039e13444da59852bf8e450df8", + "style": "IPY_MODEL_12aaf4ab3e33466480a03090a29d35e8", "tabbable": null, "tooltip": null, "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "4c2a75ebabb6459aa6defc80f93384b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4c96caaaddeb44fa8d834cd11d2bec53": { + "1da7bf46e2e44e11bba14d6dae15180c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1458,23 +1414,73 @@ "width": null } }, - "79ee40937e344d409eebbafc1d34af9b": { + "2f47e1ed2b654c57ae612b85caf87e33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_128d9f5df2814c66a3994457d9355ec0", + "IPY_MODEL_9f28e0c0d18f40d1ac7a57021a0ec5c4", + "IPY_MODEL_ddda3b38d5674c32b89992a35a8fe972" + ], + "layout": "IPY_MODEL_b8ebaa74de964a48a3838444eb1fd68e", + "tabbable": null, + "tooltip": null + } + }, + "4ecbe2397e5f4e2fad1fea3a2a4dab1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "80904aac151d4808b96b94cab7affb24": { + "4f0377a4700449e9a6fbad55e512beac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_16a9cd2938bc424383031abcba4a9aef", + "IPY_MODEL_f5759780d23e477cb1d346cb79ba1321", + "IPY_MODEL_cf3a3cedd097445ba4955da8f0688ad1" + ], + "layout": "IPY_MODEL_b9b22bcc90da434db4010e9e0673f277", + "tabbable": null, + "tooltip": null + } + }, + "6895df27e56b437fb02601057f040882": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1527,60 +1533,25 @@ "width": null } }, - "830d282b791f42c9a26b8731e4e4dd10": { - "model_module": "@jupyter-widgets/base", + "719c4562a8ea4c4fa3a5ad72ded78285": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "83e26b89eb7147a9a08689975eaae0aa": { + "9a88ec1f13854a04a2b9086e55a17666": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1633,54 +1604,51 @@ "width": null } }, - "88a3f04de8e44875bbbccd2e92af964b": { + "9f28e0c0d18f40d1ac7a57021a0ec5c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_91d86c05cce145ae9379b1550341fef6", - "IPY_MODEL_d26d3eb4fe95497db089feb11c392945", - "IPY_MODEL_c4a783fb9d8b484cbe929e6db7234964" - ], - "layout": "IPY_MODEL_91edbbc589e34aee8ae904e8b0a3009d", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6895df27e56b437fb02601057f040882", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fdd6323d006e4b4aa97d49eb699a8f62", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 50.0 } }, - "91d86c05cce145ae9379b1550341fef6": { + "b5256e93be0b4752bbb5eb28c7e6b6f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d80e7ac068684ff2922a11e8e6d52e25", - "placeholder": "​", - "style": "IPY_MODEL_99572cb4f6f14e83856554309f7cc07c", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "91edbbc589e34aee8ae904e8b0a3009d": { + "b8ebaa74de964a48a3838444eb1fd68e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1733,49 +1701,7 @@ "width": null } }, - "98349aa633c94f6f8de2ad9b4a7ddcc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_41752ff7750c4b20be0a41d83676cda7", - "IPY_MODEL_07e9941853a644c2a8e7beb026aa8096", - "IPY_MODEL_3501255b1f0e4d23b395426656d1061d" - ], - "layout": "IPY_MODEL_80904aac151d4808b96b94cab7affb24", - "tabbable": null, - "tooltip": null - } - }, - "99572cb4f6f14e83856554309f7cc07c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a272a4b17efd42cfbf635e41a3cf87bc": { + "b9b22bcc90da434db4010e9e0673f277": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1828,7 +1754,7 @@ "width": null } }, - "a50c1ed63c444f5ea7ec0b51e28adfa9": { + "c64971c872874384ad842ab855a0b637": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1844,7 +1770,7 @@ "description_width": "" } }, - "c4a783fb9d8b484cbe929e6db7234964": { + "cf3a3cedd097445ba4955da8f0688ad1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1859,59 +1785,91 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_830d282b791f42c9a26b8731e4e4dd10", + "layout": "IPY_MODEL_9a88ec1f13854a04a2b9086e55a17666", "placeholder": "​", - "style": "IPY_MODEL_4c2a75ebabb6459aa6defc80f93384b4", + "style": "IPY_MODEL_719c4562a8ea4c4fa3a5ad72ded78285", "tabbable": null, "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.89it/s]" + "value": " 7/7 [00:05<00:00,  1.33it/s]" } }, - "d26d3eb4fe95497db089feb11c392945": { + "ddda3b38d5674c32b89992a35a8fe972": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a272a4b17efd42cfbf635e41a3cf87bc", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_79ee40937e344d409eebbafc1d34af9b", + "layout": "IPY_MODEL_07acb035ab04489f9387d9718ae0300d", + "placeholder": "​", + "style": "IPY_MODEL_4ecbe2397e5f4e2fad1fea3a2a4dab1e", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 50/50 [00:05<00:00,  9.89it/s]" } }, - "d71ac3c63a39491d9ed58f8bbc64e388": { - "model_module": "@jupyter-widgets/controls", + "e08a5d72b2194307864f4fe35d00d7fd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d80e7ac068684ff2922a11e8e6d52e25": { + "e1d064cb9adb4b7fbfd292215390a0d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1963,6 +1921,48 @@ "visibility": null, "width": null } + }, + "f5759780d23e477cb1d346cb79ba1321": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e1d064cb9adb4b7fbfd292215390a0d8", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c64971c872874384ad842ab855a0b637", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "fdd6323d006e4b4aa97d49eb699a8f62": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index ef080168e..aad672423 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1121,7 +1121,7 @@

    Functionality 2: Specifying nondefault arguments
    -/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.
    +/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.
       warnings.warn(
     /home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.
       warnings.warn(
    @@ -1252,7 +1252,7 @@ 

    Functionality 3: Save and load Datalab objects

    -
    +
    @@ -1517,7 +1517,7 @@

    Functionality 4: Adding a custom IssueManager -{"state": {"8e9944f01dc04773b1a6f250b877bdac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "92a77433e43f4ff8a546985e6e38611a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "17c3deaafb3d4e8ba7ed2d539ab37994": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8e9944f01dc04773b1a6f250b877bdac", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_92a77433e43f4ff8a546985e6e38611a", "tabbable": null, "tooltip": null, "value": 132.0}}, "0df42a660b99494ba1a08fc9a8cdd1b4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "996d62a724d14e7f9758fa309375faff": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7bd4b0305523463bbf5bf70b1f791cc7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0df42a660b99494ba1a08fc9a8cdd1b4", "placeholder": "\u200b", "style": "IPY_MODEL_996d62a724d14e7f9758fa309375faff", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "375a2c62332d41db9fb6fda4e1c413b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd9f710c62d542cf9e7b79052a8e5d74": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d482671c5f304dc1af9900d828daaf12": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_375a2c62332d41db9fb6fda4e1c413b1", "placeholder": "\u200b", "style": "IPY_MODEL_bd9f710c62d542cf9e7b79052a8e5d74", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713627.93\u2007examples/s]"}}, "02bbc5143d3a4993a0d1f8da9de11d01": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d02d6b616f48472186e69f83078244aa": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7bd4b0305523463bbf5bf70b1f791cc7", "IPY_MODEL_17c3deaafb3d4e8ba7ed2d539ab37994", "IPY_MODEL_d482671c5f304dc1af9900d828daaf12"], "layout": "IPY_MODEL_02bbc5143d3a4993a0d1f8da9de11d01", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"46bd17b1514d4e52ae0383c64d6489cd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "228185c613e04c9eac97098f61b94e68": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1ae88ebb9093404db35f11a77eebf512": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_46bd17b1514d4e52ae0383c64d6489cd", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_228185c613e04c9eac97098f61b94e68", "tabbable": null, "tooltip": null, "value": 132.0}}, "0c239304d29045c1b64914dcd438f404": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d88ce31af6724956a7b3b62d32858b5b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "914ce1df641b45febd754b94855f6758": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0c239304d29045c1b64914dcd438f404", "placeholder": "\u200b", "style": "IPY_MODEL_d88ce31af6724956a7b3b62d32858b5b", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "ece75fa4a34244dc9e9c365738e7868a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "128b3b1a069d412baa8c95c1d60454a4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b964e793dbdf439ab0a15c97a2a25707": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ece75fa4a34244dc9e9c365738e7868a", "placeholder": "\u200b", "style": "IPY_MODEL_128b3b1a069d412baa8c95c1d60454a4", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712706.22\u2007examples/s]"}}, "a6fe3071a0de43bf8ba390921942df7b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "97cce15af35f4ce7a71bfd4e784c1928": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_914ce1df641b45febd754b94855f6758", "IPY_MODEL_1ae88ebb9093404db35f11a77eebf512", "IPY_MODEL_b964e793dbdf439ab0a15c97a2a25707"], "layout": "IPY_MODEL_a6fe3071a0de43bf8ba390921942df7b", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 6f252d481..e435a28b7 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:55.167484Z", - "iopub.status.busy": "2024-04-06T04:27:55.167142Z", - "iopub.status.idle": "2024-04-06T04:27:56.268393Z", - "shell.execute_reply": "2024-04-06T04:27:56.267802Z" + "iopub.execute_input": "2024-04-08T19:05:32.399757Z", + "iopub.status.busy": "2024-04-08T19:05:32.399402Z", + "iopub.status.idle": "2024-04-08T19:05:33.528700Z", + "shell.execute_reply": "2024-04-08T19:05:33.528208Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.270921Z", - "iopub.status.busy": "2024-04-06T04:27:56.270628Z", - "iopub.status.idle": "2024-04-06T04:27:56.273710Z", - "shell.execute_reply": "2024-04-06T04:27:56.273181Z" + "iopub.execute_input": "2024-04-08T19:05:33.531324Z", + "iopub.status.busy": "2024-04-08T19:05:33.530883Z", + "iopub.status.idle": "2024-04-08T19:05:33.533905Z", + "shell.execute_reply": "2024-04-08T19:05:33.533461Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.276040Z", - "iopub.status.busy": "2024-04-06T04:27:56.275731Z", - "iopub.status.idle": "2024-04-06T04:27:56.284763Z", - "shell.execute_reply": "2024-04-06T04:27:56.284342Z" + "iopub.execute_input": "2024-04-08T19:05:33.536089Z", + "iopub.status.busy": "2024-04-08T19:05:33.535766Z", + "iopub.status.idle": "2024-04-08T19:05:33.544759Z", + "shell.execute_reply": "2024-04-08T19:05:33.544339Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.286793Z", - "iopub.status.busy": "2024-04-06T04:27:56.286479Z", - "iopub.status.idle": "2024-04-06T04:27:56.290759Z", - "shell.execute_reply": "2024-04-06T04:27:56.290351Z" + "iopub.execute_input": "2024-04-08T19:05:33.546655Z", + "iopub.status.busy": "2024-04-08T19:05:33.546328Z", + "iopub.status.idle": "2024-04-08T19:05:33.551312Z", + "shell.execute_reply": "2024-04-08T19:05:33.550798Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.292900Z", - "iopub.status.busy": "2024-04-06T04:27:56.292571Z", - "iopub.status.idle": "2024-04-06T04:27:56.470930Z", - "shell.execute_reply": "2024-04-06T04:27:56.470381Z" + "iopub.execute_input": "2024-04-08T19:05:33.553494Z", + "iopub.status.busy": "2024-04-08T19:05:33.553202Z", + "iopub.status.idle": "2024-04-08T19:05:33.734474Z", + "shell.execute_reply": "2024-04-08T19:05:33.733871Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.473159Z", - "iopub.status.busy": "2024-04-06T04:27:56.472901Z", - "iopub.status.idle": "2024-04-06T04:27:56.842173Z", - "shell.execute_reply": "2024-04-06T04:27:56.841568Z" + "iopub.execute_input": "2024-04-08T19:05:33.736929Z", + "iopub.status.busy": "2024-04-08T19:05:33.736685Z", + "iopub.status.idle": "2024-04-08T19:05:34.103381Z", + "shell.execute_reply": "2024-04-08T19:05:34.102792Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.844403Z", - "iopub.status.busy": "2024-04-06T04:27:56.844070Z", - "iopub.status.idle": "2024-04-06T04:27:56.867433Z", - "shell.execute_reply": "2024-04-06T04:27:56.867005Z" + "iopub.execute_input": "2024-04-08T19:05:34.105764Z", + "iopub.status.busy": "2024-04-08T19:05:34.105419Z", + "iopub.status.idle": "2024-04-08T19:05:34.129090Z", + "shell.execute_reply": "2024-04-08T19:05:34.128647Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.869442Z", - "iopub.status.busy": "2024-04-06T04:27:56.869133Z", - "iopub.status.idle": "2024-04-06T04:27:56.879921Z", - "shell.execute_reply": "2024-04-06T04:27:56.879386Z" + "iopub.execute_input": "2024-04-08T19:05:34.131072Z", + "iopub.status.busy": "2024-04-08T19:05:34.130769Z", + "iopub.status.idle": "2024-04-08T19:05:34.141791Z", + "shell.execute_reply": "2024-04-08T19:05:34.141283Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:56.882178Z", - "iopub.status.busy": "2024-04-06T04:27:56.881838Z", - "iopub.status.idle": "2024-04-06T04:27:58.449402Z", - "shell.execute_reply": "2024-04-06T04:27:58.448837Z" + "iopub.execute_input": "2024-04-08T19:05:34.144081Z", + "iopub.status.busy": "2024-04-08T19:05:34.143717Z", + "iopub.status.idle": "2024-04-08T19:05:35.791854Z", + "shell.execute_reply": "2024-04-08T19:05:35.791186Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:58.451881Z", - "iopub.status.busy": "2024-04-06T04:27:58.451481Z", - "iopub.status.idle": "2024-04-06T04:27:58.472786Z", - "shell.execute_reply": "2024-04-06T04:27:58.472247Z" + "iopub.execute_input": "2024-04-08T19:05:35.794545Z", + "iopub.status.busy": "2024-04-08T19:05:35.793952Z", + "iopub.status.idle": "2024-04-08T19:05:35.815345Z", + "shell.execute_reply": "2024-04-08T19:05:35.814802Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:58.474943Z", - "iopub.status.busy": "2024-04-06T04:27:58.474628Z", - "iopub.status.idle": "2024-04-06T04:27:58.493726Z", - "shell.execute_reply": "2024-04-06T04:27:58.493177Z" + "iopub.execute_input": "2024-04-08T19:05:35.817441Z", + "iopub.status.busy": "2024-04-08T19:05:35.817058Z", + "iopub.status.idle": "2024-04-08T19:05:35.836184Z", + "shell.execute_reply": "2024-04-08T19:05:35.835672Z" } }, "outputs": [ @@ -910,7 +910,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:58.495766Z", - "iopub.status.busy": "2024-04-06T04:27:58.495439Z", - "iopub.status.idle": "2024-04-06T04:27:58.509263Z", - "shell.execute_reply": "2024-04-06T04:27:58.508829Z" + "iopub.execute_input": "2024-04-08T19:05:35.838193Z", + "iopub.status.busy": "2024-04-08T19:05:35.838020Z", + "iopub.status.idle": "2024-04-08T19:05:35.852488Z", + "shell.execute_reply": "2024-04-08T19:05:35.852042Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:58.511294Z", - "iopub.status.busy": "2024-04-06T04:27:58.510970Z", - "iopub.status.idle": "2024-04-06T04:27:58.529602Z", - "shell.execute_reply": "2024-04-06T04:27:58.529063Z" + "iopub.execute_input": "2024-04-08T19:05:35.854417Z", + "iopub.status.busy": "2024-04-08T19:05:35.854247Z", + "iopub.status.idle": "2024-04-08T19:05:35.873232Z", + "shell.execute_reply": "2024-04-08T19:05:35.872705Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d02d6b616f48472186e69f83078244aa", + "model_id": "97cce15af35f4ce7a71bfd4e784c1928", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:58.531477Z", - "iopub.status.busy": "2024-04-06T04:27:58.531304Z", - "iopub.status.idle": "2024-04-06T04:27:58.546063Z", - "shell.execute_reply": "2024-04-06T04:27:58.545580Z" + "iopub.execute_input": "2024-04-08T19:05:35.875329Z", + "iopub.status.busy": "2024-04-08T19:05:35.874965Z", + "iopub.status.idle": "2024-04-08T19:05:35.889385Z", + "shell.execute_reply": "2024-04-08T19:05:35.888962Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:58.548107Z", - "iopub.status.busy": "2024-04-06T04:27:58.547734Z", - "iopub.status.idle": "2024-04-06T04:27:58.553403Z", - "shell.execute_reply": "2024-04-06T04:27:58.552986Z" + "iopub.execute_input": "2024-04-08T19:05:35.891511Z", + "iopub.status.busy": "2024-04-08T19:05:35.891109Z", + "iopub.status.idle": "2024-04-08T19:05:35.896831Z", + "shell.execute_reply": "2024-04-08T19:05:35.896325Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:27:58.555509Z", - "iopub.status.busy": "2024-04-06T04:27:58.555093Z", - "iopub.status.idle": "2024-04-06T04:27:58.572894Z", - "shell.execute_reply": "2024-04-06T04:27:58.572431Z" + "iopub.execute_input": "2024-04-08T19:05:35.898838Z", + "iopub.status.busy": "2024-04-08T19:05:35.898541Z", + "iopub.status.idle": "2024-04-08T19:05:35.915657Z", + "shell.execute_reply": "2024-04-08T19:05:35.915214Z" } }, "outputs": [ @@ -1431,7 +1431,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02bbc5143d3a4993a0d1f8da9de11d01": { + "0c239304d29045c1b64914dcd438f404": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1484,7 +1484,67 @@ "width": null } }, - "0df42a660b99494ba1a08fc9a8cdd1b4": { + "128b3b1a069d412baa8c95c1d60454a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1ae88ebb9093404db35f11a77eebf512": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_46bd17b1514d4e52ae0383c64d6489cd", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_228185c613e04c9eac97098f61b94e68", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "228185c613e04c9eac97098f61b94e68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "46bd17b1514d4e52ae0383c64d6489cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1537,33 +1597,54 @@ "width": null } }, - "17c3deaafb3d4e8ba7ed2d539ab37994": { + "914ce1df641b45febd754b94855f6758": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8e9944f01dc04773b1a6f250b877bdac", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_92a77433e43f4ff8a546985e6e38611a", + "layout": "IPY_MODEL_0c239304d29045c1b64914dcd438f404", + "placeholder": "​", + "style": "IPY_MODEL_d88ce31af6724956a7b3b62d32858b5b", "tabbable": null, "tooltip": null, - "value": 132.0 + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "97cce15af35f4ce7a71bfd4e784c1928": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_914ce1df641b45febd754b94855f6758", + "IPY_MODEL_1ae88ebb9093404db35f11a77eebf512", + "IPY_MODEL_b964e793dbdf439ab0a15c97a2a25707" + ], + "layout": "IPY_MODEL_a6fe3071a0de43bf8ba390921942df7b", + "tabbable": null, + "tooltip": null } }, - "375a2c62332d41db9fb6fda4e1c413b1": { + "a6fe3071a0de43bf8ba390921942df7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1616,7 +1697,7 @@ "width": null } }, - "7bd4b0305523463bbf5bf70b1f791cc7": { + "b964e793dbdf439ab0a15c97a2a25707": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1631,15 +1712,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0df42a660b99494ba1a08fc9a8cdd1b4", + "layout": "IPY_MODEL_ece75fa4a34244dc9e9c365738e7868a", "placeholder": "​", - "style": "IPY_MODEL_996d62a724d14e7f9758fa309375faff", + "style": "IPY_MODEL_128b3b1a069d412baa8c95c1d60454a4", "tabbable": null, "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "value": " 132/132 [00:00<00:00, 12706.22 examples/s]" + } + }, + "d88ce31af6724956a7b3b62d32858b5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8e9944f01dc04773b1a6f250b877bdac": { + "ece75fa4a34244dc9e9c365738e7868a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1691,105 +1790,6 @@ "visibility": null, "width": null } - }, - "92a77433e43f4ff8a546985e6e38611a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "996d62a724d14e7f9758fa309375faff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bd9f710c62d542cf9e7b79052a8e5d74": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d02d6b616f48472186e69f83078244aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7bd4b0305523463bbf5bf70b1f791cc7", - "IPY_MODEL_17c3deaafb3d4e8ba7ed2d539ab37994", - "IPY_MODEL_d482671c5f304dc1af9900d828daaf12" - ], - "layout": "IPY_MODEL_02bbc5143d3a4993a0d1f8da9de11d01", - "tabbable": null, - "tooltip": null - } - }, - "d482671c5f304dc1af9900d828daaf12": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_375a2c62332d41db9fb6fda4e1c413b1", - "placeholder": "​", - "style": "IPY_MODEL_bd9f710c62d542cf9e7b79052a8e5d74", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 13627.93 examples/s]" - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 8fd460cb9..f898d2d07 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:01.140999Z", - "iopub.status.busy": "2024-04-06T04:28:01.140833Z", - "iopub.status.idle": "2024-04-06T04:28:02.262000Z", - "shell.execute_reply": "2024-04-06T04:28:02.261355Z" + "iopub.execute_input": "2024-04-08T19:05:38.472111Z", + "iopub.status.busy": "2024-04-08T19:05:38.471945Z", + "iopub.status.idle": "2024-04-08T19:05:39.585652Z", + "shell.execute_reply": "2024-04-08T19:05:39.585065Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.264649Z", - "iopub.status.busy": "2024-04-06T04:28:02.264228Z", - "iopub.status.idle": "2024-04-06T04:28:02.267145Z", - "shell.execute_reply": "2024-04-06T04:28:02.266735Z" + "iopub.execute_input": "2024-04-08T19:05:39.588303Z", + "iopub.status.busy": "2024-04-08T19:05:39.588056Z", + "iopub.status.idle": "2024-04-08T19:05:39.591474Z", + "shell.execute_reply": "2024-04-08T19:05:39.590968Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.269196Z", - "iopub.status.busy": "2024-04-06T04:28:02.268920Z", - "iopub.status.idle": "2024-04-06T04:28:02.278242Z", - "shell.execute_reply": "2024-04-06T04:28:02.277783Z" + "iopub.execute_input": "2024-04-08T19:05:39.593440Z", + "iopub.status.busy": "2024-04-08T19:05:39.593184Z", + "iopub.status.idle": "2024-04-08T19:05:39.602136Z", + "shell.execute_reply": "2024-04-08T19:05:39.601699Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.280171Z", - "iopub.status.busy": "2024-04-06T04:28:02.279844Z", - "iopub.status.idle": "2024-04-06T04:28:02.284049Z", - "shell.execute_reply": "2024-04-06T04:28:02.283641Z" + "iopub.execute_input": "2024-04-08T19:05:39.604078Z", + "iopub.status.busy": "2024-04-08T19:05:39.603759Z", + "iopub.status.idle": "2024-04-08T19:05:39.608027Z", + "shell.execute_reply": "2024-04-08T19:05:39.607640Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.286098Z", - "iopub.status.busy": "2024-04-06T04:28:02.285775Z", - "iopub.status.idle": "2024-04-06T04:28:02.470065Z", - "shell.execute_reply": "2024-04-06T04:28:02.469547Z" + "iopub.execute_input": "2024-04-08T19:05:39.609991Z", + "iopub.status.busy": "2024-04-08T19:05:39.609678Z", + "iopub.status.idle": "2024-04-08T19:05:39.789021Z", + "shell.execute_reply": "2024-04-08T19:05:39.788487Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.472692Z", - "iopub.status.busy": "2024-04-06T04:28:02.472227Z", - "iopub.status.idle": "2024-04-06T04:28:02.862171Z", - "shell.execute_reply": "2024-04-06T04:28:02.861570Z" + "iopub.execute_input": "2024-04-08T19:05:39.791556Z", + "iopub.status.busy": "2024-04-08T19:05:39.791137Z", + "iopub.status.idle": "2024-04-08T19:05:40.161861Z", + "shell.execute_reply": "2024-04-08T19:05:40.161278Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.864346Z", - "iopub.status.busy": "2024-04-06T04:28:02.864021Z", - "iopub.status.idle": "2024-04-06T04:28:02.868011Z", - "shell.execute_reply": "2024-04-06T04:28:02.867360Z" + "iopub.execute_input": "2024-04-08T19:05:40.164104Z", + "iopub.status.busy": "2024-04-08T19:05:40.163680Z", + "iopub.status.idle": "2024-04-08T19:05:40.166534Z", + "shell.execute_reply": "2024-04-08T19:05:40.165994Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.870143Z", - "iopub.status.busy": "2024-04-06T04:28:02.869708Z", - "iopub.status.idle": "2024-04-06T04:28:02.905119Z", - "shell.execute_reply": "2024-04-06T04:28:02.904575Z" + "iopub.execute_input": "2024-04-08T19:05:40.168465Z", + "iopub.status.busy": "2024-04-08T19:05:40.168160Z", + "iopub.status.idle": "2024-04-08T19:05:40.204106Z", + "shell.execute_reply": "2024-04-08T19:05:40.203573Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:02.907153Z", - "iopub.status.busy": "2024-04-06T04:28:02.906777Z", - "iopub.status.idle": "2024-04-06T04:28:04.522763Z", - "shell.execute_reply": "2024-04-06T04:28:04.522160Z" + "iopub.execute_input": "2024-04-08T19:05:40.206126Z", + "iopub.status.busy": "2024-04-08T19:05:40.205831Z", + "iopub.status.idle": "2024-04-08T19:05:41.861121Z", + "shell.execute_reply": "2024-04-08T19:05:41.860499Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:04.525220Z", - "iopub.status.busy": "2024-04-06T04:28:04.524729Z", - "iopub.status.idle": "2024-04-06T04:28:04.543944Z", - "shell.execute_reply": "2024-04-06T04:28:04.543486Z" + "iopub.execute_input": "2024-04-08T19:05:41.863740Z", + "iopub.status.busy": "2024-04-08T19:05:41.863237Z", + "iopub.status.idle": "2024-04-08T19:05:41.882767Z", + "shell.execute_reply": "2024-04-08T19:05:41.882319Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:04.545971Z", - "iopub.status.busy": "2024-04-06T04:28:04.545633Z", - "iopub.status.idle": "2024-04-06T04:28:04.551859Z", - "shell.execute_reply": "2024-04-06T04:28:04.551428Z" + "iopub.execute_input": "2024-04-08T19:05:41.884850Z", + "iopub.status.busy": "2024-04-08T19:05:41.884544Z", + "iopub.status.idle": "2024-04-08T19:05:41.890743Z", + "shell.execute_reply": "2024-04-08T19:05:41.890221Z" } }, "outputs": [ @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:04.553727Z", - "iopub.status.busy": "2024-04-06T04:28:04.553467Z", - "iopub.status.idle": "2024-04-06T04:28:04.559055Z", - "shell.execute_reply": "2024-04-06T04:28:04.558635Z" + "iopub.execute_input": "2024-04-08T19:05:41.892670Z", + "iopub.status.busy": "2024-04-08T19:05:41.892376Z", + "iopub.status.idle": "2024-04-08T19:05:41.897724Z", + "shell.execute_reply": "2024-04-08T19:05:41.897233Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:04.561010Z", - "iopub.status.busy": "2024-04-06T04:28:04.560761Z", - "iopub.status.idle": "2024-04-06T04:28:04.571254Z", - "shell.execute_reply": "2024-04-06T04:28:04.570824Z" + "iopub.execute_input": "2024-04-08T19:05:41.899726Z", + "iopub.status.busy": "2024-04-08T19:05:41.899419Z", + "iopub.status.idle": "2024-04-08T19:05:41.909317Z", + "shell.execute_reply": "2024-04-08T19:05:41.908907Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:04.573178Z", - "iopub.status.busy": "2024-04-06T04:28:04.572871Z", - "iopub.status.idle": "2024-04-06T04:28:04.581776Z", - "shell.execute_reply": "2024-04-06T04:28:04.581258Z" + "iopub.execute_input": "2024-04-08T19:05:41.911355Z", + "iopub.status.busy": "2024-04-08T19:05:41.911042Z", + "iopub.status.idle": "2024-04-08T19:05:41.919704Z", + "shell.execute_reply": "2024-04-08T19:05:41.919301Z" } }, "outputs": [ @@ -1340,10 +1340,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:04.583843Z", - "iopub.status.busy": "2024-04-06T04:28:04.583519Z", - "iopub.status.idle": "2024-04-06T04:28:04.590173Z", - "shell.execute_reply": "2024-04-06T04:28:04.589690Z" + "iopub.execute_input": "2024-04-08T19:05:41.921572Z", + "iopub.status.busy": "2024-04-08T19:05:41.921400Z", + "iopub.status.idle": "2024-04-08T19:05:41.928223Z", + "shell.execute_reply": "2024-04-08T19:05:41.927710Z" }, "scrolled": true }, @@ -1468,10 +1468,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:04.592157Z", - "iopub.status.busy": "2024-04-06T04:28:04.591831Z", - "iopub.status.idle": "2024-04-06T04:28:04.600966Z", - "shell.execute_reply": "2024-04-06T04:28:04.600530Z" + "iopub.execute_input": "2024-04-08T19:05:41.930139Z", + "iopub.status.busy": "2024-04-08T19:05:41.929966Z", + "iopub.status.idle": "2024-04-08T19:05:41.939155Z", + "shell.execute_reply": "2024-04-08T19:05:41.938682Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 1d5cf1c7b..d990358da 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -694,21 +694,21 @@

    2. Fetch and normalize the Fashion-MNIST dataset
    -Downloading data: 100%|██████████| 30.9M/30.9M [00:00<00:00, 50.7MB/s]
    -Downloading data: 100%|██████████| 5.18M/5.18M [00:00<00:00, 57.7MB/s]
    +Downloading data: 100%|██████████| 30.9M/30.9M [00:00<00:00, 44.8MB/s]
    +Downloading data: 100%|██████████| 5.18M/5.18M [00:00<00:00, 24.7MB/s]
     

    -
    +
    -
    +

    Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

    @@ -1012,8 +1012,8 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
     
     Training on fold: 1 ...
    -epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.940
    -epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.775
    +epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.943
    +epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.606
     Computing feature embeddings ...
     

    @@ -1021,7 +1021,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1053,7 +1053,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1085,7 +1085,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -2003,35 +2003,35 @@

    Low information images - low_information_score is_low_information_issue + low_information_score 53050 - 0.067975 True + 0.067975 40875 - 0.089929 True + 0.089929 9594 - 0.092601 True + 0.092601 34825 - 0.107744 True + 0.107744 37530 - 0.108516 True + 0.108516 @@ -2059,7 +2059,7 @@

    Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 5dbc9174f..e5222c4f6 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:06.972790Z", - "iopub.status.busy": "2024-04-06T04:28:06.972606Z", - "iopub.status.idle": "2024-04-06T04:28:09.752985Z", - "shell.execute_reply": "2024-04-06T04:28:09.752449Z" + "iopub.execute_input": "2024-04-08T19:05:44.455598Z", + "iopub.status.busy": "2024-04-08T19:05:44.455183Z", + "iopub.status.idle": "2024-04-08T19:05:47.311029Z", + "shell.execute_reply": "2024-04-08T19:05:47.310392Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:09.755512Z", - "iopub.status.busy": "2024-04-06T04:28:09.755090Z", - "iopub.status.idle": "2024-04-06T04:28:09.758597Z", - "shell.execute_reply": "2024-04-06T04:28:09.758078Z" + "iopub.execute_input": "2024-04-08T19:05:47.313575Z", + "iopub.status.busy": "2024-04-08T19:05:47.313285Z", + "iopub.status.idle": "2024-04-08T19:05:47.317021Z", + "shell.execute_reply": "2024-04-08T19:05:47.316573Z" } }, "outputs": [], @@ -152,10 +152,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:09.760622Z", - "iopub.status.busy": "2024-04-06T04:28:09.760210Z", - "iopub.status.idle": "2024-04-06T04:28:16.295173Z", - "shell.execute_reply": "2024-04-06T04:28:16.294666Z" + "iopub.execute_input": "2024-04-08T19:05:47.319045Z", + "iopub.status.busy": "2024-04-08T19:05:47.318749Z", + "iopub.status.idle": "2024-04-08T19:06:52.995269Z", + "shell.execute_reply": "2024-04-08T19:06:52.994727Z" } }, "outputs": [ @@ -172,7 +172,7 @@ "output_type": "stream", "text": [ "\r", - "Downloading data: 34%|███▍ | 10.5M/30.9M [00:00<00:00, 27.2MB/s]" + "Downloading data: 34%|███▍ | 10.5M/30.9M [00:00<00:00, 25.5MB/s]" ] }, { @@ -180,7 +180,7 @@ "output_type": "stream", "text": [ "\r", - "Downloading data: 68%|██████▊ | 21.0M/30.9M [00:00<00:00, 45.5MB/s]" + "Downloading data: 68%|██████▊ | 21.0M/30.9M [00:00<00:00, 40.1MB/s]" ] }, { @@ -188,7 +188,15 @@ "output_type": "stream", "text": [ "\r", - "Downloading data: 100%|██████████| 30.9M/30.9M [00:00<00:00, 50.7MB/s]" + "Downloading data: 100%|██████████| 30.9M/30.9M [00:00<00:00, 52.4MB/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "Downloading data: 100%|██████████| 30.9M/30.9M [00:00<00:00, 44.8MB/s]" ] }, { @@ -211,7 +219,15 @@ "output_type": "stream", "text": [ "\r", - "Downloading data: 100%|██████████| 5.18M/5.18M [00:00<00:00, 57.7MB/s]" + "Downloading data: 100%|██████████| 5.18M/5.18M [00:00<00:00, 25.1MB/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "Downloading data: 100%|██████████| 5.18M/5.18M [00:00<00:00, 24.7MB/s]" ] }, { @@ -224,7 +240,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "63f80561a9aa4de6b4236289ee6db555", + "model_id": "0eb8f33ec6a4418f82faef40016d8087", "version_major": 2, "version_minor": 0 }, @@ -238,7 +254,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "230d8fb552244430b2da0fe2e463b928", + "model_id": "ae20b62666184b608438ba88eb80b458", "version_major": 2, "version_minor": 0 }, @@ -280,10 +296,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:16.297360Z", - "iopub.status.busy": "2024-04-06T04:28:16.297063Z", - "iopub.status.idle": "2024-04-06T04:28:16.301215Z", - "shell.execute_reply": "2024-04-06T04:28:16.300641Z" + "iopub.execute_input": "2024-04-08T19:06:52.997585Z", + "iopub.status.busy": "2024-04-08T19:06:52.997287Z", + "iopub.status.idle": "2024-04-08T19:06:53.001006Z", + "shell.execute_reply": "2024-04-08T19:06:53.000502Z" } }, "outputs": [ @@ -308,17 +324,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:16.303464Z", - "iopub.status.busy": "2024-04-06T04:28:16.303065Z", - "iopub.status.idle": "2024-04-06T04:28:27.419249Z", - "shell.execute_reply": "2024-04-06T04:28:27.418699Z" + "iopub.execute_input": "2024-04-08T19:06:53.003093Z", + "iopub.status.busy": "2024-04-08T19:06:53.002719Z", + "iopub.status.idle": "2024-04-08T19:07:04.104000Z", + "shell.execute_reply": "2024-04-08T19:07:04.103381Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cb88b48c32274a769a3b6b2f97e0d5f7", + "model_id": "a30eaea1846c404db6f70144bebe00f7", "version_major": 2, "version_minor": 0 }, @@ -356,10 +372,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:27.421638Z", - "iopub.status.busy": "2024-04-06T04:28:27.421406Z", - "iopub.status.idle": "2024-04-06T04:28:46.417249Z", - "shell.execute_reply": "2024-04-06T04:28:46.416725Z" + "iopub.execute_input": "2024-04-08T19:07:04.106690Z", + "iopub.status.busy": "2024-04-08T19:07:04.106430Z", + "iopub.status.idle": "2024-04-08T19:07:23.674623Z", + "shell.execute_reply": "2024-04-08T19:07:23.674042Z" } }, "outputs": [], @@ -392,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:46.419936Z", - "iopub.status.busy": "2024-04-06T04:28:46.419547Z", - "iopub.status.idle": "2024-04-06T04:28:46.425574Z", - "shell.execute_reply": "2024-04-06T04:28:46.424934Z" + "iopub.execute_input": "2024-04-08T19:07:23.677241Z", + "iopub.status.busy": "2024-04-08T19:07:23.676879Z", + "iopub.status.idle": "2024-04-08T19:07:23.682812Z", + "shell.execute_reply": "2024-04-08T19:07:23.682328Z" } }, "outputs": [], @@ -433,10 +449,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:46.427717Z", - "iopub.status.busy": "2024-04-06T04:28:46.427319Z", - "iopub.status.idle": "2024-04-06T04:28:46.431436Z", - "shell.execute_reply": "2024-04-06T04:28:46.430914Z" + "iopub.execute_input": "2024-04-08T19:07:23.684649Z", + "iopub.status.busy": "2024-04-08T19:07:23.684464Z", + "iopub.status.idle": "2024-04-08T19:07:23.688678Z", + "shell.execute_reply": "2024-04-08T19:07:23.688276Z" }, "nbsphinx": "hidden" }, @@ -573,10 +589,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:46.433507Z", - "iopub.status.busy": "2024-04-06T04:28:46.433326Z", - "iopub.status.idle": "2024-04-06T04:28:46.442750Z", - "shell.execute_reply": "2024-04-06T04:28:46.442165Z" + "iopub.execute_input": "2024-04-08T19:07:23.690513Z", + "iopub.status.busy": "2024-04-08T19:07:23.690330Z", + "iopub.status.idle": "2024-04-08T19:07:23.699065Z", + "shell.execute_reply": "2024-04-08T19:07:23.698630Z" }, "nbsphinx": "hidden" }, @@ -701,10 +717,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:46.445207Z", - "iopub.status.busy": "2024-04-06T04:28:46.444709Z", - "iopub.status.idle": "2024-04-06T04:28:46.471457Z", - "shell.execute_reply": "2024-04-06T04:28:46.470848Z" + "iopub.execute_input": "2024-04-08T19:07:23.701049Z", + "iopub.status.busy": "2024-04-08T19:07:23.700760Z", + "iopub.status.idle": "2024-04-08T19:07:23.727875Z", + "shell.execute_reply": "2024-04-08T19:07:23.727411Z" } }, "outputs": [], @@ -741,10 +757,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:28:46.474138Z", - "iopub.status.busy": "2024-04-06T04:28:46.473706Z", - "iopub.status.idle": "2024-04-06T04:29:19.284754Z", - "shell.execute_reply": "2024-04-06T04:29:19.284157Z" + "iopub.execute_input": "2024-04-08T19:07:23.730030Z", + "iopub.status.busy": "2024-04-08T19:07:23.729684Z", + "iopub.status.idle": "2024-04-08T19:07:55.733757Z", + "shell.execute_reply": "2024-04-08T19:07:55.733140Z" } }, "outputs": [ @@ -760,21 +776,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.940\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.943\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.775\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.606\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eb284719132643f39c4d672792c9676b", + "model_id": "655fc2039c2f44018f7440a3d2e07a6e", "version_major": 2, "version_minor": 0 }, @@ -795,7 +811,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "37a89191786645eba770cde499fad762", + "model_id": "eb19d31ef8f4468b9f0d6aabf630dc05", "version_major": 2, "version_minor": 0 }, @@ -818,21 +834,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.963\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.715\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.588\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.438\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "494d4dec9fa34cdba034f2e400df4b4a", + "model_id": "e9e0602cde8548a3b201f1e9d8487610", "version_major": 2, "version_minor": 0 }, @@ -853,7 +869,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "062e939e5df64531b55a3a30c9808fb8", + "model_id": "d17335f81c08473e83f57bcb91f327b6", "version_major": 2, "version_minor": 0 }, @@ -876,21 +892,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.770\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.569\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.552\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.479\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ab2472f1e90442db812aa71752ac3895", + "model_id": "e3f2da6ea95d4ffea5b61ce1470cc963", "version_major": 2, "version_minor": 0 }, @@ -911,7 +927,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "92a29e7b86344f558ffc62c421168612", + "model_id": "2dcb1da8fc8746cb8d2bcbb0b5fbca34", "version_major": 2, "version_minor": 0 }, @@ -990,10 +1006,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:29:19.287441Z", - "iopub.status.busy": "2024-04-06T04:29:19.287051Z", - "iopub.status.idle": "2024-04-06T04:29:19.302983Z", - "shell.execute_reply": "2024-04-06T04:29:19.302570Z" + "iopub.execute_input": "2024-04-08T19:07:55.736291Z", + "iopub.status.busy": "2024-04-08T19:07:55.736050Z", + "iopub.status.idle": "2024-04-08T19:07:55.752483Z", + "shell.execute_reply": "2024-04-08T19:07:55.752090Z" } }, "outputs": [], @@ -1018,10 +1034,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:29:19.304958Z", - "iopub.status.busy": "2024-04-06T04:29:19.304585Z", - "iopub.status.idle": "2024-04-06T04:29:19.752664Z", - "shell.execute_reply": "2024-04-06T04:29:19.752054Z" + "iopub.execute_input": "2024-04-08T19:07:55.754639Z", + "iopub.status.busy": "2024-04-08T19:07:55.754247Z", + "iopub.status.idle": "2024-04-08T19:07:56.225872Z", + "shell.execute_reply": "2024-04-08T19:07:56.225395Z" } }, "outputs": [], @@ -1041,10 +1057,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:29:19.755148Z", - "iopub.status.busy": "2024-04-06T04:29:19.754955Z", - "iopub.status.idle": "2024-04-06T04:32:56.986962Z", - "shell.execute_reply": "2024-04-06T04:32:56.986440Z" + "iopub.execute_input": "2024-04-08T19:07:56.228202Z", + "iopub.status.busy": "2024-04-08T19:07:56.227984Z", + "iopub.status.idle": "2024-04-08T19:11:33.257164Z", + "shell.execute_reply": "2024-04-08T19:11:33.256565Z" } }, "outputs": [ @@ -1092,7 +1108,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "abb6597d1f0d493ebdf894332caa8c19", + "model_id": "4776167486a64076a84a01784b59af15", "version_major": 2, "version_minor": 0 }, @@ -1131,10 +1147,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:56.989470Z", - "iopub.status.busy": "2024-04-06T04:32:56.988908Z", - "iopub.status.idle": "2024-04-06T04:32:57.444100Z", - "shell.execute_reply": "2024-04-06T04:32:57.443568Z" + "iopub.execute_input": "2024-04-08T19:11:33.260388Z", + "iopub.status.busy": "2024-04-08T19:11:33.259500Z", + "iopub.status.idle": "2024-04-08T19:11:33.713025Z", + "shell.execute_reply": "2024-04-08T19:11:33.712497Z" } }, "outputs": [ @@ -1275,10 +1291,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:57.446845Z", - "iopub.status.busy": "2024-04-06T04:32:57.446433Z", - "iopub.status.idle": "2024-04-06T04:32:57.509789Z", - "shell.execute_reply": "2024-04-06T04:32:57.509348Z" + "iopub.execute_input": "2024-04-08T19:11:33.715813Z", + "iopub.status.busy": "2024-04-08T19:11:33.715344Z", + "iopub.status.idle": "2024-04-08T19:11:33.777262Z", + "shell.execute_reply": "2024-04-08T19:11:33.776681Z" } }, "outputs": [ @@ -1382,10 +1398,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:57.511949Z", - "iopub.status.busy": "2024-04-06T04:32:57.511620Z", - "iopub.status.idle": "2024-04-06T04:32:57.520211Z", - "shell.execute_reply": "2024-04-06T04:32:57.519795Z" + "iopub.execute_input": "2024-04-08T19:11:33.779830Z", + "iopub.status.busy": "2024-04-08T19:11:33.779438Z", + "iopub.status.idle": "2024-04-08T19:11:33.787969Z", + "shell.execute_reply": "2024-04-08T19:11:33.787446Z" } }, "outputs": [ @@ -1515,10 +1531,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:57.522295Z", - "iopub.status.busy": "2024-04-06T04:32:57.521974Z", - "iopub.status.idle": "2024-04-06T04:32:57.526386Z", - "shell.execute_reply": "2024-04-06T04:32:57.525967Z" + "iopub.execute_input": "2024-04-08T19:11:33.789917Z", + "iopub.status.busy": "2024-04-08T19:11:33.789625Z", + "iopub.status.idle": "2024-04-08T19:11:33.794135Z", + "shell.execute_reply": "2024-04-08T19:11:33.793681Z" }, "nbsphinx": "hidden" }, @@ -1564,10 +1580,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:57.528397Z", - "iopub.status.busy": "2024-04-06T04:32:57.528074Z", - "iopub.status.idle": "2024-04-06T04:32:58.038770Z", - "shell.execute_reply": "2024-04-06T04:32:58.038215Z" + "iopub.execute_input": "2024-04-08T19:11:33.796263Z", + "iopub.status.busy": "2024-04-08T19:11:33.795812Z", + "iopub.status.idle": "2024-04-08T19:11:34.299373Z", + "shell.execute_reply": "2024-04-08T19:11:34.298797Z" } }, "outputs": [ @@ -1602,10 +1618,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:58.041027Z", - "iopub.status.busy": "2024-04-06T04:32:58.040695Z", - "iopub.status.idle": "2024-04-06T04:32:58.049092Z", - "shell.execute_reply": "2024-04-06T04:32:58.048655Z" + "iopub.execute_input": "2024-04-08T19:11:34.301515Z", + "iopub.status.busy": "2024-04-08T19:11:34.301218Z", + "iopub.status.idle": "2024-04-08T19:11:34.309668Z", + "shell.execute_reply": "2024-04-08T19:11:34.309228Z" } }, "outputs": [ @@ -1772,10 +1788,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:58.051269Z", - "iopub.status.busy": "2024-04-06T04:32:58.050928Z", - "iopub.status.idle": "2024-04-06T04:32:58.057851Z", - "shell.execute_reply": "2024-04-06T04:32:58.057431Z" + "iopub.execute_input": "2024-04-08T19:11:34.311963Z", + "iopub.status.busy": "2024-04-08T19:11:34.311521Z", + "iopub.status.idle": "2024-04-08T19:11:34.319034Z", + "shell.execute_reply": "2024-04-08T19:11:34.318393Z" }, "nbsphinx": "hidden" }, @@ -1851,10 +1867,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:58.059904Z", - "iopub.status.busy": "2024-04-06T04:32:58.059580Z", - "iopub.status.idle": "2024-04-06T04:32:58.506533Z", - "shell.execute_reply": "2024-04-06T04:32:58.505933Z" + "iopub.execute_input": "2024-04-08T19:11:34.321092Z", + "iopub.status.busy": "2024-04-08T19:11:34.320907Z", + "iopub.status.idle": "2024-04-08T19:11:34.790785Z", + "shell.execute_reply": "2024-04-08T19:11:34.790182Z" } }, "outputs": [ @@ -1891,10 +1907,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:58.509305Z", - "iopub.status.busy": "2024-04-06T04:32:58.508958Z", - "iopub.status.idle": "2024-04-06T04:32:58.524162Z", - "shell.execute_reply": "2024-04-06T04:32:58.523724Z" + "iopub.execute_input": "2024-04-08T19:11:34.793183Z", + "iopub.status.busy": "2024-04-08T19:11:34.792809Z", + "iopub.status.idle": "2024-04-08T19:11:34.808943Z", + "shell.execute_reply": "2024-04-08T19:11:34.808399Z" } }, "outputs": [ @@ -2051,10 +2067,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:58.526434Z", - "iopub.status.busy": "2024-04-06T04:32:58.526030Z", - "iopub.status.idle": "2024-04-06T04:32:58.531557Z", - "shell.execute_reply": "2024-04-06T04:32:58.531133Z" + "iopub.execute_input": "2024-04-08T19:11:34.811183Z", + "iopub.status.busy": "2024-04-08T19:11:34.810852Z", + "iopub.status.idle": "2024-04-08T19:11:34.816363Z", + "shell.execute_reply": "2024-04-08T19:11:34.815916Z" }, "nbsphinx": "hidden" }, @@ -2099,10 +2115,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:58.533452Z", - "iopub.status.busy": "2024-04-06T04:32:58.533191Z", - "iopub.status.idle": "2024-04-06T04:32:59.000364Z", - "shell.execute_reply": "2024-04-06T04:32:58.999817Z" + "iopub.execute_input": "2024-04-08T19:11:34.818213Z", + "iopub.status.busy": "2024-04-08T19:11:34.817896Z", + "iopub.status.idle": "2024-04-08T19:11:35.279403Z", + "shell.execute_reply": "2024-04-08T19:11:35.278877Z" } }, "outputs": [ @@ -2184,10 +2200,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:59.002842Z", - "iopub.status.busy": "2024-04-06T04:32:59.002637Z", - "iopub.status.idle": "2024-04-06T04:32:59.012216Z", - "shell.execute_reply": "2024-04-06T04:32:59.011529Z" + "iopub.execute_input": "2024-04-08T19:11:35.281879Z", + "iopub.status.busy": "2024-04-08T19:11:35.281665Z", + "iopub.status.idle": "2024-04-08T19:11:35.291700Z", + "shell.execute_reply": "2024-04-08T19:11:35.291178Z" } }, "outputs": [ @@ -2315,10 +2331,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:59.014637Z", - "iopub.status.busy": "2024-04-06T04:32:59.014438Z", - "iopub.status.idle": "2024-04-06T04:32:59.020221Z", - "shell.execute_reply": "2024-04-06T04:32:59.019653Z" + "iopub.execute_input": "2024-04-08T19:11:35.293927Z", + "iopub.status.busy": "2024-04-08T19:11:35.293728Z", + "iopub.status.idle": "2024-04-08T19:11:35.299690Z", + "shell.execute_reply": "2024-04-08T19:11:35.299147Z" }, "nbsphinx": "hidden" }, @@ -2355,10 +2371,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:59.022440Z", - "iopub.status.busy": "2024-04-06T04:32:59.022245Z", - "iopub.status.idle": "2024-04-06T04:32:59.229238Z", - "shell.execute_reply": "2024-04-06T04:32:59.228716Z" + "iopub.execute_input": "2024-04-08T19:11:35.301832Z", + "iopub.status.busy": "2024-04-08T19:11:35.301636Z", + "iopub.status.idle": "2024-04-08T19:11:35.505219Z", + "shell.execute_reply": "2024-04-08T19:11:35.504754Z" } }, "outputs": [ @@ -2400,10 +2416,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:59.231415Z", - "iopub.status.busy": "2024-04-06T04:32:59.231132Z", - "iopub.status.idle": "2024-04-06T04:32:59.239395Z", - "shell.execute_reply": "2024-04-06T04:32:59.238963Z" + "iopub.execute_input": "2024-04-08T19:11:35.507136Z", + "iopub.status.busy": "2024-04-08T19:11:35.506967Z", + "iopub.status.idle": "2024-04-08T19:11:35.514273Z", + "shell.execute_reply": "2024-04-08T19:11:35.513838Z" } }, "outputs": [ @@ -2428,47 +2444,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "

    " ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2489,10 +2505,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:59.241500Z", - "iopub.status.busy": "2024-04-06T04:32:59.241175Z", - "iopub.status.idle": "2024-04-06T04:32:59.438012Z", - "shell.execute_reply": "2024-04-06T04:32:59.437410Z" + "iopub.execute_input": "2024-04-08T19:11:35.515941Z", + "iopub.status.busy": "2024-04-08T19:11:35.515782Z", + "iopub.status.idle": "2024-04-08T19:11:35.714780Z", + "shell.execute_reply": "2024-04-08T19:11:35.714213Z" } }, "outputs": [ @@ -2532,10 +2548,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:32:59.440559Z", - "iopub.status.busy": "2024-04-06T04:32:59.440204Z", - "iopub.status.idle": "2024-04-06T04:32:59.444637Z", - "shell.execute_reply": "2024-04-06T04:32:59.444201Z" + "iopub.execute_input": "2024-04-08T19:11:35.716901Z", + "iopub.status.busy": "2024-04-08T19:11:35.716713Z", + "iopub.status.idle": "2024-04-08T19:11:35.721189Z", + "shell.execute_reply": "2024-04-08T19:11:35.720773Z" }, "nbsphinx": "hidden" }, @@ -2572,60 +2588,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01a761c23187462489caed4c9ca92b4a": { - "model_module": "@jupyter-widgets/base", + "0211903c89794ee8b6917c76a058c50e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "01d6c6d5c4544426af39a2a43bf4efd5": { + "051beaa23ca4413db29dc6c87c6eb69c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2678,60 +2659,49 @@ "width": null } }, - "052ba7dd44914624bc95867853cefd91": { - "model_module": "@jupyter-widgets/base", + "08fafba5db2c49c199f47a5f187bd97d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d19bf757fc54a04bea20bd6a7bfe3bd", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0ba9b8ac89734f8aa6f7b25158ce1c26", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "0ba9b8ac89734f8aa6f7b25158ce1c26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "062e939e5df64531b55a3a30c9808fb8": { + "0eb8f33ec6a4418f82faef40016d8087": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2746,16 +2716,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_69040f6c457a458dad3f64ae864e2abc", - "IPY_MODEL_856c1d7d86824b298f7b89334a62b627", - "IPY_MODEL_e36a0c3800fd4b46a397695a9464376d" + "IPY_MODEL_5ce79bcbda6944e0a843326c3542493d", + "IPY_MODEL_e19c6ab20a44441b82013b108be2dfe5", + "IPY_MODEL_f070a30dde5346f9a173c14652288a61" ], - "layout": "IPY_MODEL_18c03d0fbf7e486fa980759c0f1d203c", + "layout": "IPY_MODEL_f229cd5bb5604bc2bbb59bbf7c81d777", "tabbable": null, "tooltip": null } }, - "07e1a5656606425a8fa445a2a98b32db": { + "1489dff3fa9f4025b92de6f3b08f875e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2f250b135ef04e06b65dc22fa2cbe7ea", + "placeholder": "​", + "style": "IPY_MODEL_608e038942dc41a99c6a0a85532e4742", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "1518031392e944988beab26f0ec70ea0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2771,56 +2764,84 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_01a761c23187462489caed4c9ca92b4a", + "layout": "IPY_MODEL_34b68eb2ae824e30b199e73d4a24f9d7", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_44469fd7a84845fabbb26081bc4f71e6", + "style": "IPY_MODEL_934292ec1d1f47d7bfc3a64e97e22164", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "0898a61434e8435fb6d38cda818ecf42": { + "1595a1d05b1744eeb8405298fae08359": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fb2af0144f1742c1a26396a9b5fe4c73", + "placeholder": "​", + "style": "IPY_MODEL_b809fa6c8639462db220a761b405d58d", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "0c49ec751aa74bdeb0da999541e70abf": { + "1a475bdd7b6b4cffa0aa39c22e228634": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_716dbef584c74a10be95d49134e35c36", - "placeholder": "​", - "style": "IPY_MODEL_d53fb7bf594d407c9e842abf6174a266", + "layout": "IPY_MODEL_72ef0108d5814322b3ca06bd5220584b", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ee8869c02a164612932f45b84d319cd2", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": 40.0 + } + }, + "1bf8c6f4bc3e4633b0c368f433ba214d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0ffda52749f54b41b5d0955c9e1f987d": { + "1bf974982e4e4b2481c1302de4d0bb3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2873,7 +2894,7 @@ "width": null } }, - "10d5b8ef6dd44439b5792f3b9229a7b3": { + "1d72b73af5474a01bc6184c102001f9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2926,83 +2947,69 @@ "width": null } }, - "154d43bd379742748defa9f93f6dec4c": { + "1feb2d3d69ac43679423195bacfa218a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_59b99f3d2363470f95240494b60426e7", - "placeholder": "​", - "style": "IPY_MODEL_e630ccc4aafc46e1994dc57c453efa4c", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 250653.12 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "18c03d0fbf7e486fa980759c0f1d203c": { - "model_module": "@jupyter-widgets/base", + "2021e36f762d452aa27e529207b4d1fa": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "228bd7d078cf45699f3b012c267f6eb0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eafbc6640e3840d6acb39b13445654da", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7c1f0a8a503e4e499f398654a3f934e5", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "18f4e2fb304e4207a8582f3b68e46f1b": { + "248aafd9fcd240928857d2c42d281abd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3055,57 +3062,7 @@ "width": null } }, - "19d828f4e1d84ef2ac773bc529b40946": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "19dc464653b042e1b8ba1ff4aa4f3231": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "19ea4bc4cf5345209bfc0f43ac43a390": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1aaabe82fd3748eeb69937660d87bde7": { + "27d17868cbd6451ebcf8d7c7951e2a77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3120,15 +3077,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bcf53273c9a94359bf468708176a7fb9", + "layout": "IPY_MODEL_61971c6d7922459a9b1ed0c9c414cdca", "placeholder": "​", - "style": "IPY_MODEL_eda57d1ce07e4fb08048f276454d81c4", + "style": "IPY_MODEL_49cb378542644b368738ecd332b0a762", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.82it/s]" + "value": " 40/40 [00:00<00:00, 69.64it/s]" } }, - "1bc46611a5134fa6bf3a2e1d7329d9e1": { + "28e8e7e456ea491db9b2409a1bb6ee44": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3143,38 +3100,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0ffda52749f54b41b5d0955c9e1f987d", + "layout": "IPY_MODEL_dd462dfa7f9949738f0551ce01718b0d", "placeholder": "​", - "style": "IPY_MODEL_19ea4bc4cf5345209bfc0f43ac43a390", + "style": "IPY_MODEL_512b4394b0e84a1d9765ebc108a8dbdf", "tabbable": null, "tooltip": null, "value": "100%" } }, - "1d0f443e388d4ac3aa919649a0bd9f6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d6430b8f25744f0fbc6b7c7b994b06d4", - "placeholder": "​", - "style": "IPY_MODEL_868c933ad87744c3aa05cb4cd929090f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.96it/s]" - } - }, - "1f1036a8b18842dfa18443fdf59a95dd": { + "2c4e61dacdec449ab2e9fa6b6459f6bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3227,7 +3161,7 @@ "width": null } }, - "21a93b6159174e5c99baaca057c26509": { + "2d19bf757fc54a04bea20bd6a7bfe3bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3280,25 +3214,7 @@ "width": null } }, - "224bb80ea8ed446ebd6daabd22c3e867": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "230d8fb552244430b2da0fe2e463b928": { + "2dcb1da8fc8746cb8d2bcbb0b5fbca34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3313,57 +3229,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0c49ec751aa74bdeb0da999541e70abf", - "IPY_MODEL_a8de67324e69481aa6f71eebd240332f", - "IPY_MODEL_154d43bd379742748defa9f93f6dec4c" + "IPY_MODEL_3b1df04f38894cdbb06719a2c258a28e", + "IPY_MODEL_bbab2e26c4fd423dacd41b5823f1e144", + "IPY_MODEL_ed9f2e8995144260afc1a776c3c728c6" ], - "layout": "IPY_MODEL_052ba7dd44914624bc95867853cefd91", + "layout": "IPY_MODEL_1bf974982e4e4b2481c1302de4d0bb3b", "tabbable": null, "tooltip": null } }, - "23a4c60ebe91433cabd5be6f58108e1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_677944caba4f4f68bedc7737bb773d16", - "placeholder": "​", - "style": "IPY_MODEL_baa12a5e11064c04934b7f2251564311", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.99it/s]" - } - }, - "2a60a0c90b1b4f46a02f1662dd4c96e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2b93072870f04a1daa0f16d389336ebc": { + "2e43d2f9905b4786bd2429abe71f9c11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3416,7 +3291,7 @@ "width": null } }, - "318a2a3cc2dd449d87d92d835336d9d3": { + "2f250b135ef04e06b65dc22fa2cbe7ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3469,43 +3344,30 @@ "width": null } }, - "36f95cffa25d460ba500ec7de91933d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "374d6a83e7564f3a99a8e43b41595fa9": { + "2f426faf084c41288d432aad9a0cc67b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_56fb1e127c0d4778aa58bf70adf9e292", + "placeholder": "​", + "style": "IPY_MODEL_6e2675fc6ccc4cd59366cae5f0c9e353", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" } }, - "37a89191786645eba770cde499fad762": { + "340e7303a6ad4cd192d14fd90e0362a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3520,16 +3382,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1bc46611a5134fa6bf3a2e1d7329d9e1", - "IPY_MODEL_c0d6bc39047b4081aa9475148f266798", - "IPY_MODEL_1d0f443e388d4ac3aa919649a0bd9f6d" + "IPY_MODEL_c09a89ed151f484cbc846804d8c80a5e", + "IPY_MODEL_f44238836eba40dd8365f2683b775574", + "IPY_MODEL_45ba61488f3e42d9b1983a76067096be" ], - "layout": "IPY_MODEL_dcee1ad305e747b396286c15af30cc5f", + "layout": "IPY_MODEL_c4823f24e46c4225a1be6685c385e2de", "tabbable": null, "tooltip": null } }, - "391330f212e94180b7c1d3f8b79364a2": { + "34b68eb2ae824e30b199e73d4a24f9d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3582,25 +3444,30 @@ "width": null } }, - "3cb626be1259490498bdc43c229957d5": { + "3b1df04f38894cdbb06719a2c258a28e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3ffe5eadabde4ba7bc1bf7d6584058f9", + "placeholder": "​", + "style": "IPY_MODEL_2021e36f762d452aa27e529207b4d1fa", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "432d3960ddab4b78b5489f18eb6be184": { + "3d509074899549a5988580659a594acd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3618,41 +3485,101 @@ "text_color": null } }, - "44469fd7a84845fabbb26081bc4f71e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "45f3fe0616ef4b6d9187942fe63d092e": { - "model_module": "@jupyter-widgets/controls", + "3ffe5eadabde4ba7bc1bf7d6584058f9": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4488e3c1bbcf4f18b659b04ab234f3ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, - "494d4dec9fa34cdba034f2e400df4b4a": { + "45ba61488f3e42d9b1983a76067096be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_051beaa23ca4413db29dc6c87c6eb69c", + "placeholder": "​", + "style": "IPY_MODEL_0211903c89794ee8b6917c76a058c50e", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 584.25it/s]" + } + }, + "4776167486a64076a84a01784b59af15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3667,16 +3594,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4ec9881e872043c7af778c7f3fe8b2b3", - "IPY_MODEL_79d4ea75e0b24546ab4c3e15dcd17fe0", - "IPY_MODEL_b37c27a865bd41238ca6e848152182c4" + "IPY_MODEL_1595a1d05b1744eeb8405298fae08359", + "IPY_MODEL_bf0f538039594aa7aba3502ccbb1866a", + "IPY_MODEL_b413bfe75faf4e83809cfbd3e9c0f441" ], - "layout": "IPY_MODEL_2b93072870f04a1daa0f16d389336ebc", + "layout": "IPY_MODEL_5b71bc4833f84223a9bfc19a48c54d73", "tabbable": null, "tooltip": null } }, - "4df2995557604f368c17b7801a8aa7a3": { + "49cb378542644b368738ecd332b0a762": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3694,76 +3621,43 @@ "text_color": null } }, - "4ec9881e872043c7af778c7f3fe8b2b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_61c55f2451eb4c4e864fb94997319e79", - "placeholder": "​", - "style": "IPY_MODEL_c2f27d13f7af40c4938b2ff919248bc7", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "567dbef175174a0bb698e0c117bdefd8": { + "4ce7b5e8a49e4daf8752a8cfb2c049a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bb928bde160d418985c159d23435d896", - "placeholder": "​", - "style": "IPY_MODEL_224bb80ea8ed446ebd6daabd22c3e867", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "58016631c51a4c2bab081a3fcb222ce6": { + "512b4394b0e84a1d9765ebc108a8dbdf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8665b261d85149c79feba0ad3dc5a0fe", - "placeholder": "​", - "style": "IPY_MODEL_374d6a83e7564f3a99a8e43b41595fa9", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "58b8b6bed5f84d05ade00f2d3773b9e5": { + "5299f330a8b6448cbae432e24bc2bbd2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3816,7 +3710,7 @@ "width": null } }, - "59b99f3d2363470f95240494b60426e7": { + "56fb1e127c0d4778aa58bf70adf9e292": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3869,33 +3763,7 @@ "width": null } }, - "5cc1b33d526e4c2ea671e6aa4a807101": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7dcc2439e854d37a27bed7fba490b03", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8cb9becccf604e7d912917ceb837d524", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "61c55f2451eb4c4e864fb94997319e79": { + "57413d25cf8b43a59d135e9b7f386c8b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3948,57 +3816,56 @@ "width": null } }, - "61e1bb7f02a4489dbe279ece48634ba8": { + "57501a6ea66843e69eb94c16fd71dd26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b87839e9f74c433ab8102575e86bcd7b", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fd142fc752ad437dac5e121ea0a962e7", + "layout": "IPY_MODEL_f430353dd08d430fba9b508f111e2cba", + "placeholder": "​", + "style": "IPY_MODEL_3d509074899549a5988580659a594acd", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 60000/60000 [00:11<00:00, 7101.30 examples/s]" } }, - "63f80561a9aa4de6b4236289ee6db555": { + "5b300800d44b4998a13101625e6be790": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_58016631c51a4c2bab081a3fcb222ce6", - "IPY_MODEL_8dd48fae4b9146fc9977d90131836405", - "IPY_MODEL_a92e3ef11d2c4d27a1956ce5946d7509" - ], - "layout": "IPY_MODEL_b5d8fdd0cad64e94955d5536ac4dad32", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8458fd5694574fd397fa3ed659cf9d21", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_822bcec6c7dc47839c1fd0d48be8aafa", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "677944caba4f4f68bedc7737bb773d16": { + "5b71bc4833f84223a9bfc19a48c54d73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4051,7 +3918,7 @@ "width": null } }, - "69040f6c457a458dad3f64ae864e2abc": { + "5ce79bcbda6944e0a843326c3542493d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4066,15 +3933,67 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cf59e27052914f59bf2cb3f866f7faf0", + "layout": "IPY_MODEL_713a34eee7ad43ca9e8faa69d5fedcd6", "placeholder": "​", - "style": "IPY_MODEL_b8708f41587841e587390f8e235ba687", + "style": "IPY_MODEL_4ce7b5e8a49e4daf8752a8cfb2c049a6", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Generating train split: 100%" + } + }, + "5df8c0f13e114da5a54feb67563465d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "608e038942dc41a99c6a0a85532e4742": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "60b1f65ee807482daeb5f7b6893651bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "698bb2e60fd546c7a86f3c097d682c43": { + "61971c6d7922459a9b1ed0c9c414cdca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4127,7 +4046,7 @@ "width": null } }, - "6aa2909e4e954f21a2e9b886e37872f9": { + "61ffaf9c2a1245668b4f2c0c3cec4cf7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4180,60 +4099,47 @@ "width": null } }, - "716dbef584c74a10be95d49134e35c36": { - "model_module": "@jupyter-widgets/base", + "655fc2039c2f44018f7440a3d2e07a6e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_28e8e7e456ea491db9b2409a1bb6ee44", + "IPY_MODEL_1518031392e944988beab26f0ec70ea0", + "IPY_MODEL_cb4e85dad70c4bb69fa58d8fa9da1fd9" + ], + "layout": "IPY_MODEL_5299f330a8b6448cbae432e24bc2bbd2", + "tabbable": null, + "tooltip": null + } + }, + "6718ecc2d5994895aff73d3a70d4daa4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "758003aac78a4e89a0dd59c12bfd4499": { + "68df804c48394616884c2cfd1f17c6d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4248,15 +4154,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_75938d156efb49d681d43a2189e81adf", + "layout": "IPY_MODEL_1d72b73af5474a01bc6184c102001f9f", "placeholder": "​", - "style": "IPY_MODEL_45f3fe0616ef4b6d9187942fe63d092e", + "style": "IPY_MODEL_bb9b4b065b90414cab93989f1cf870db", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 63.71it/s]" + } + }, + "6e2675fc6ccc4cd59366cae5f0c9e353": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "75938d156efb49d681d43a2189e81adf": { + "6efaaef2d3fa4de3b05d6ab4ce2b1b80": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4309,49 +4233,7 @@ "width": null } }, - "75c5b3367f7243e08df5201fed89d767": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "79d4ea75e0b24546ab4c3e15dcd17fe0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bc9ac33beb964c04b7e19f6a1e1a6eec", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_841bd0118c39439da9678bf5209d9393", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "7b9c395b1818449285ae7e333c19aed1": { + "7134548633584aebb32846399e998599": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4404,25 +4286,7 @@ "width": null } }, - "7edd891321db4e908b5ed0d68bdddab0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "801329626f1a493bb35bed548fee56d1": { + "713a34eee7ad43ca9e8faa69d5fedcd6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4475,23 +4339,30 @@ "width": null } }, - "841bd0118c39439da9678bf5209d9393": { + "72e848187eb646c9ae2eb5c3c13a1b5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6efaaef2d3fa4de3b05d6ab4ce2b1b80", + "placeholder": "​", + "style": "IPY_MODEL_9376be5b85774e909a6da2348e1e3ac7", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "84941543352247e1ba0307848d584119": { + "72ef0108d5814322b3ca06bd5220584b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4544,33 +4415,7 @@ "width": null } }, - "856c1d7d86824b298f7b89334a62b627": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1f1036a8b18842dfa18443fdf59a95dd", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ea07905d53eb44ab85413ddd0eb1103b", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "8665b261d85149c79feba0ad3dc5a0fe": { + "753491adc5dc4a15b482f01444260ff6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4623,25 +4468,7 @@ "width": null } }, - "868c933ad87744c3aa05cb4cd929090f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "89b15967dfb6452597bba424994c0aed": { + "7692ec62386c4b5ea0e3da9a9d6aaab3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4694,7 +4521,7 @@ "width": null } }, - "8a36d05bb1a644cf890db7ec5c1979a1": { + "76fe935e94da4fe49c9fff42053d9f08": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4747,76 +4574,41 @@ "width": null } }, - "8cb9becccf604e7d912917ceb837d524": { + "7859aae2967f4d8982962ef94210548f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8cf1e91b3283461d9e7f008fa37fff9f": { - "model_module": "@jupyter-widgets/base", + "7c1f0a8a503e4e499f398654a3f934e5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8dd48fae4b9146fc9977d90131836405": { + "7cb2476470d344aebe942210b6aee3ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4832,40 +4624,53 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a3362f365ba145b7a2e7a9bab08c112e", - "max": 60000.0, + "layout": "IPY_MODEL_cab2229300b043cf885deb986c9d5f5d", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_75c5b3367f7243e08df5201fed89d767", + "style": "IPY_MODEL_a79b0ad4d31c46fab5f329886f96aab7", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 40.0 } }, - "8fc744a4ac8745b8846e23dbc6bcb863": { + "7df899c21e114a00beea9fabc687baff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21a93b6159174e5c99baaca057c26509", - "placeholder": "​", - "style": "IPY_MODEL_4df2995557604f368c17b7801a8aa7a3", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7fca1639267a4153bd7fb80d23c652ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "903744741edd4db481eac7c207012baf": { + "8040c639d3ba48d7baa187303a949a5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4880,104 +4685,206 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_318a2a3cc2dd449d87d92d835336d9d3", + "layout": "IPY_MODEL_9ca9e07ed9664701a1f4fc752659aba7", "placeholder": "​", - "style": "IPY_MODEL_36f95cffa25d460ba500ec7de91933d4", + "style": "IPY_MODEL_d5de18c08b9a4f0fb3bae9ffcb6e2608", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 68.31it/s]" } }, - "915b6ef632714224897e7967dd8fed40": { + "822bcec6c7dc47839c1fd0d48be8aafa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "92a29e7b86344f558ffc62c421168612": { - "model_module": "@jupyter-widgets/controls", + "8458fd5694574fd397fa3ed659cf9d21": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_567dbef175174a0bb698e0c117bdefd8", - "IPY_MODEL_61e1bb7f02a4489dbe279ece48634ba8", - "IPY_MODEL_b52404a02e14446b9eb8d9c9687553ab" - ], - "layout": "IPY_MODEL_58b8b6bed5f84d05ade00f2d3773b9e5", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "99b1fdbd6a654220895926ef07fb0a65": { - "model_module": "@jupyter-widgets/controls", + "853c7b5eeb0944a5903419f543447327": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9ec788f231ad4c5da7b9ca1152c1d44b", - "IPY_MODEL_5cc1b33d526e4c2ea671e6aa4a807101", - "IPY_MODEL_ec8926923d6642cc965b8aea46f7cdb2" - ], - "layout": "IPY_MODEL_10d5b8ef6dd44439b5792f3b9229a7b3", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "87d3d0fca9104cfab810183eee2ef94c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9c6eb45703d9488c8455e7918665d719": { + "934292ec1d1f47d7bfc3a64e97e22164": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c977511679bc4e89a67b20d915a938ff", - "placeholder": "​", - "style": "IPY_MODEL_915b6ef632714224897e7967dd8fed40", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:48<00:00, 1364.59it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9e2f25346ff041f0a43792feaf401889": { + "9376be5b85774e909a6da2348e1e3ac7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4995,46 +4902,104 @@ "text_color": null } }, - "9ec788f231ad4c5da7b9ca1152c1d44b": { + "9ad282371d5e4b848fe0fbcf04f86eb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6aa2909e4e954f21a2e9b886e37872f9", - "placeholder": "​", - "style": "IPY_MODEL_c76ed92d69d6444fb0a07c53c18b4c0d", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9ca9e07ed9664701a1f4fc752659aba7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a0876f2d03024b3bb5761a0df2937cfb": { + "9cb7ee51c974488f82e9774c7de42d77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cca4bec16de941d8a1f0eeab09f1309a", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6718ecc2d5994895aff73d3a70d4daa4", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "a3362f365ba145b7a2e7a9bab08c112e": { + "9d34e8136fdb41cba0282f20fe3254b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5087,49 +5052,49 @@ "width": null } }, - "a45cdcaa39ac4e7783e3300484169c30": { + "a30eaea1846c404db6f70144bebe00f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a7573684d96b4a809e222e1e9c978b20", + "IPY_MODEL_9cb7ee51c974488f82e9774c7de42d77", + "IPY_MODEL_57501a6ea66843e69eb94c16fd71dd26" + ], + "layout": "IPY_MODEL_87d3d0fca9104cfab810183eee2ef94c", + "tabbable": null, + "tooltip": null } }, - "a8de67324e69481aa6f71eebd240332f": { + "a5fbf7ed0a8945eba908a5b839852cc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_698bb2e60fd546c7a86f3c097d682c43", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0898a61434e8435fb6d38cda818ecf42", - "tabbable": null, - "tooltip": null, - "value": 10000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a92e3ef11d2c4d27a1956ce5946d7509": { + "a7573684d96b4a809e222e1e9c978b20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5144,39 +5109,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_801329626f1a493bb35bed548fee56d1", + "layout": "IPY_MODEL_753491adc5dc4a15b482f01444260ff6", "placeholder": "​", - "style": "IPY_MODEL_432d3960ddab4b78b5489f18eb6be184", + "style": "IPY_MODEL_7df899c21e114a00beea9fabc687baff", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 287662.14 examples/s]" + "value": "Map (num_proc=4): 100%" } }, - "ab2472f1e90442db812aa71752ac3895": { + "a79b0ad4d31c46fab5f329886f96aab7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8fc744a4ac8745b8846e23dbc6bcb863", - "IPY_MODEL_fcd3307eda42417c8c3f83f6bd1ece28", - "IPY_MODEL_1aaabe82fd3748eeb69937660d87bde7" - ], - "layout": "IPY_MODEL_cf898ee7a0764e2b9f7a0b8a17fee462", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "abb6597d1f0d493ebdf894332caa8c19": { + "ae20b62666184b608438ba88eb80b458": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5191,16 +5148,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_903744741edd4db481eac7c207012baf", - "IPY_MODEL_fa5a714c695a458288a525b0b07ff15d", - "IPY_MODEL_9c6eb45703d9488c8455e7918665d719" + "IPY_MODEL_2f426faf084c41288d432aad9a0cc67b", + "IPY_MODEL_08fafba5db2c49c199f47a5f187bd97d", + "IPY_MODEL_cbf43ef383f248dbaf25bd28be2369f3" ], - "layout": "IPY_MODEL_7b9c395b1818449285ae7e333c19aed1", + "layout": "IPY_MODEL_2c4e61dacdec449ab2e9fa6b6459f6bb", "tabbable": null, "tooltip": null } }, - "b37c27a865bd41238ca6e848152182c4": { + "b413bfe75faf4e83809cfbd3e9c0f441": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5215,15 +5172,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ba458d4944864736a9229851605bc597", + "layout": "IPY_MODEL_dd125613a65d44acb8f52566b6d32b7b", "placeholder": "​", - "style": "IPY_MODEL_f3aa86d829fc4ca5bb1496d9254e9cac", + "style": "IPY_MODEL_1feb2d3d69ac43679423195bacfa218a", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.56it/s]" + "value": " 60000/60000 [00:47<00:00, 1395.51it/s]" } }, - "b52404a02e14446b9eb8d9c9687553ab": { + "b809fa6c8639462db220a761b405d58d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b907020aafd94e9eb016e8a6f09cd29d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bb1d38afd1504d6fa78a843fce81e967": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5238,68 +5229,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_391330f212e94180b7c1d3f8b79364a2", + "layout": "IPY_MODEL_c0e1beb3ae784339ae2d251c3b206de1", "placeholder": "​", - "style": "IPY_MODEL_2a60a0c90b1b4f46a02f1662dd4c96e4", + "style": "IPY_MODEL_7859aae2967f4d8982962ef94210548f", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 69.41it/s]" + "value": "100%" } }, - "b5d8fdd0cad64e94955d5536ac4dad32": { - "model_module": "@jupyter-widgets/base", + "bb9b4b065b90414cab93989f1cf870db": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bbab2e26c4fd423dacd41b5823f1e144": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_853c7b5eeb0944a5903419f543447327", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d25bc5458cd94e56a86b43c849fcf730", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "b84a380de582459fa124b9a70e1b5359": { + "be3b3d55d750477a8208878dd73e24dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5352,25 +5334,56 @@ "width": null } }, - "b8708f41587841e587390f8e235ba687": { + "bf0f538039594aa7aba3502ccbb1866a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e24f52db1e9d4d00904f83f3b85ef467", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_60b1f65ee807482daeb5f7b6893651bb", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "c09a89ed151f484cbc846804d8c80a5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f26ae4423ac24cafa84c3645e576b7d8", + "placeholder": "​", + "style": "IPY_MODEL_5df8c0f13e114da5a54feb67563465d2", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "b87839e9f74c433ab8102575e86bcd7b": { + "c0cef619c3e34a9aa9fe3fbde95dd0f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5423,7 +5436,7 @@ "width": null } }, - "ba458d4944864736a9229851605bc597": { + "c0e1beb3ae784339ae2d251c3b206de1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5476,25 +5489,7 @@ "width": null } }, - "baa12a5e11064c04934b7f2251564311": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bb928bde160d418985c159d23435d896": { + "c14d4f58688049a48600554f3cec71e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5547,7 +5542,7 @@ "width": null } }, - "bc9ac33beb964c04b7e19f6a1e1a6eec": { + "c4823f24e46c4225a1be6685c385e2de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5600,7 +5595,7 @@ "width": null } }, - "bcf53273c9a94359bf468708176a7fb9": { + "cab2229300b043cf885deb986c9d5f5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5653,69 +5648,53 @@ "width": null } }, - "c0d6bc39047b4081aa9475148f266798": { + "cb4e85dad70c4bb69fa58d8fa9da1fd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_89b15967dfb6452597bba424994c0aed", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_19dc464653b042e1b8ba1ff4aa4f3231", + "layout": "IPY_MODEL_2e43d2f9905b4786bd2429abe71f9c11", + "placeholder": "​", + "style": "IPY_MODEL_7fca1639267a4153bd7fb80d23c652ea", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "c2f27d13f7af40c4938b2ff919248bc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 63.09it/s]" } }, - "c76ed92d69d6444fb0a07c53c18b4c0d": { + "cbf43ef383f248dbaf25bd28be2369f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d34e8136fdb41cba0282f20fe3254b5", + "placeholder": "​", + "style": "IPY_MODEL_d962cb9310644741b92e8a219b2e7104", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 246927.12 examples/s]" } }, - "c977511679bc4e89a67b20d915a938ff": { + "cca4bec16de941d8a1f0eeab09f1309a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5768,54 +5747,106 @@ "width": null } }, - "cb078ccfa5bd45de92c15a832146aa12": { + "d17335f81c08473e83f57bcb91f327b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a36d05bb1a644cf890db7ec5c1979a1", - "placeholder": "​", - "style": "IPY_MODEL_7edd891321db4e908b5ed0d68bdddab0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1489dff3fa9f4025b92de6f3b08f875e", + "IPY_MODEL_1a475bdd7b6b4cffa0aa39c22e228634", + "IPY_MODEL_68df804c48394616884c2cfd1f17c6d3" + ], + "layout": "IPY_MODEL_76fe935e94da4fe49c9fff42053d9f08", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6806.11 examples/s]" + "tooltip": null } }, - "cb88b48c32274a769a3b6b2f97e0d5f7": { + "d25bc5458cd94e56a86b43c849fcf730": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d5de18c08b9a4f0fb3bae9ffcb6e2608": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d962cb9310644741b92e8a219b2e7104": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dcc296059a18404489cb96f85970a3f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f15c402cc4324dd7b2cf7f6985c8d4ed", - "IPY_MODEL_dfeea2e3d11f410baa4ffc746955acbf", - "IPY_MODEL_cb078ccfa5bd45de92c15a832146aa12" - ], - "layout": "IPY_MODEL_ee99b4bb138247288c3fc9cb7044cdb8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f3adb5d571d446d89e42b148a0e2e0dc", + "placeholder": "​", + "style": "IPY_MODEL_a5fbf7ed0a8945eba908a5b839852cc3", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "cf59e27052914f59bf2cb3f866f7faf0": { + "dd125613a65d44acb8f52566b6d32b7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5868,7 +5899,7 @@ "width": null } }, - "cf898ee7a0764e2b9f7a0b8a17fee462": { + "dd462dfa7f9949738f0551ce01718b0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5921,25 +5952,33 @@ "width": null } }, - "d53fb7bf594d407c9e842abf6174a266": { + "e19c6ab20a44441b82013b108be2dfe5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_be3b3d55d750477a8208878dd73e24dc", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f4ad6c92501549ec9b25fa93f87e6348", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "d6430b8f25744f0fbc6b7c7b994b06d4": { + "e24f52db1e9d4d00904f83f3b85ef467": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5992,60 +6031,78 @@ "width": null } }, - "d8b68b042b5241cf86f858b91a7ab195": { - "model_module": "@jupyter-widgets/base", + "e284f57ce3ea4f358e133be317a427f8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c0cef619c3e34a9aa9fe3fbde95dd0f4", + "placeholder": "​", + "style": "IPY_MODEL_4488e3c1bbcf4f18b659b04ab234f3ec", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.22it/s]" + } + }, + "e3f2da6ea95d4ffea5b61ce1470cc963": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bb1d38afd1504d6fa78a843fce81e967", + "IPY_MODEL_228bd7d078cf45699f3b012c267f6eb0", + "IPY_MODEL_27d17868cbd6451ebcf8d7c7951e2a77" + ], + "layout": "IPY_MODEL_61ffaf9c2a1245668b4f2c0c3cec4cf7", + "tabbable": null, + "tooltip": null + } + }, + "e9e0602cde8548a3b201f1e9d8487610": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_72e848187eb646c9ae2eb5c3c13a1b5b", + "IPY_MODEL_5b300800d44b4998a13101625e6be790", + "IPY_MODEL_8040c639d3ba48d7baa187303a949a5f" + ], + "layout": "IPY_MODEL_248aafd9fcd240928857d2c42d281abd", + "tabbable": null, + "tooltip": null } }, - "dcee1ad305e747b396286c15af30cc5f": { + "eafbc6640e3840d6acb39b13445654da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6098,51 +6155,31 @@ "width": null } }, - "dd33a2c7592548889d520f9105c23bb8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dfeea2e3d11f410baa4ffc746955acbf": { + "eb19d31ef8f4468b9f0d6aabf630dc05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_18f4e2fb304e4207a8582f3b68e46f1b", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a0876f2d03024b3bb5761a0df2937cfb", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dcc296059a18404489cb96f85970a3f1", + "IPY_MODEL_7cb2476470d344aebe942210b6aee3ab", + "IPY_MODEL_e284f57ce3ea4f358e133be317a427f8" + ], + "layout": "IPY_MODEL_c14d4f58688049a48600554f3cec71e9", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null } }, - "e36a0c3800fd4b46a397695a9464376d": { + "ed9f2e8995144260afc1a776c3c728c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6157,33 +6194,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f989133be39d4b8585b24a17aa6b8612", + "layout": "IPY_MODEL_7692ec62386c4b5ea0e3da9a9d6aaab3", "placeholder": "​", - "style": "IPY_MODEL_dd33a2c7592548889d520f9105c23bb8", + "style": "IPY_MODEL_1bf8c6f4bc3e4633b0c368f433ba214d", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 71.69it/s]" - } - }, - "e630ccc4aafc46e1994dc57c453efa4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 67.07it/s]" } }, - "ea07905d53eb44ab85413ddd0eb1103b": { + "ee8869c02a164612932f45b84d319cd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6199,31 +6218,7 @@ "description_width": "" } }, - "eb284719132643f39c4d672792c9676b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_758003aac78a4e89a0dd59c12bfd4499", - "IPY_MODEL_07e1a5656606425a8fa445a2a98b32db", - "IPY_MODEL_23a4c60ebe91433cabd5be6f58108e1f" - ], - "layout": "IPY_MODEL_84941543352247e1ba0307848d584119", - "tabbable": null, - "tooltip": null - } - }, - "ec8926923d6642cc965b8aea46f7cdb2": { + "f070a30dde5346f9a173c14652288a61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6238,33 +6233,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b84a380de582459fa124b9a70e1b5359", + "layout": "IPY_MODEL_57413d25cf8b43a59d135e9b7f386c8b", "placeholder": "​", - "style": "IPY_MODEL_3cb626be1259490498bdc43c229957d5", + "style": "IPY_MODEL_9ad282371d5e4b848fe0fbcf04f86eb4", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 514.95it/s]" - } - }, - "eda57d1ce07e4fb08048f276454d81c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 60000/60000 [00:00<00:00, 300464.24 examples/s]" } }, - "ee99b4bb138247288c3fc9cb7044cdb8": { + "f229cd5bb5604bc2bbb59bbf7c81d777": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6317,48 +6294,60 @@ "width": null } }, - "f15c402cc4324dd7b2cf7f6985c8d4ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_01d6c6d5c4544426af39a2a43bf4efd5", - "placeholder": "​", - "style": "IPY_MODEL_9e2f25346ff041f0a43792feaf401889", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "f3aa86d829fc4ca5bb1496d9254e9cac": { - "model_module": "@jupyter-widgets/controls", + "f26ae4423ac24cafa84c3645e576b7d8": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f7dcc2439e854d37a27bed7fba490b03": { + "f3adb5d571d446d89e42b148a0e2e0dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6411,7 +6400,7 @@ "width": null } }, - "f989133be39d4b8585b24a17aa6b8612": { + "f430353dd08d430fba9b508f111e2cba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6464,7 +6453,7 @@ "width": null } }, - "fa5a714c695a458288a525b0b07ff15d": { + "f44238836eba40dd8365f2683b775574": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6480,56 +6469,83 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8cf1e91b3283461d9e7f008fa37fff9f", - "max": 60000.0, + "layout": "IPY_MODEL_7134548633584aebb32846399e998599", + "max": 2.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a45cdcaa39ac4e7783e3300484169c30", + "style": "IPY_MODEL_b907020aafd94e9eb016e8a6f09cd29d", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 2.0 } }, - "fcd3307eda42417c8c3f83f6bd1ece28": { + "f4ad6c92501549ec9b25fa93f87e6348": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d8b68b042b5241cf86f858b91a7ab195", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_19d828f4e1d84ef2ac773bc529b40946", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "fd142fc752ad437dac5e121ea0a962e7": { - "model_module": "@jupyter-widgets/controls", + "fb2af0144f1742c1a26396a9b5fe4c73": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 43decdf02..763870823 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:02.881954Z", - "iopub.status.busy": "2024-04-06T04:33:02.881761Z", - "iopub.status.idle": "2024-04-06T04:33:03.953480Z", - "shell.execute_reply": "2024-04-06T04:33:03.952937Z" + "iopub.execute_input": "2024-04-08T19:11:39.427663Z", + "iopub.status.busy": "2024-04-08T19:11:39.427246Z", + "iopub.status.idle": "2024-04-08T19:11:40.493201Z", + "shell.execute_reply": "2024-04-08T19:11:40.492649Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:03.956075Z", - "iopub.status.busy": "2024-04-06T04:33:03.955587Z", - "iopub.status.idle": "2024-04-06T04:33:03.973883Z", - "shell.execute_reply": "2024-04-06T04:33:03.973490Z" + "iopub.execute_input": "2024-04-08T19:11:40.495661Z", + "iopub.status.busy": "2024-04-08T19:11:40.495382Z", + "iopub.status.idle": "2024-04-08T19:11:40.513938Z", + "shell.execute_reply": "2024-04-08T19:11:40.513525Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:03.975942Z", - "iopub.status.busy": "2024-04-06T04:33:03.975699Z", - "iopub.status.idle": "2024-04-06T04:33:04.012978Z", - "shell.execute_reply": "2024-04-06T04:33:04.012510Z" + "iopub.execute_input": "2024-04-08T19:11:40.515940Z", + "iopub.status.busy": "2024-04-08T19:11:40.515700Z", + "iopub.status.idle": "2024-04-08T19:11:40.560958Z", + "shell.execute_reply": "2024-04-08T19:11:40.560524Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:04.014896Z", - "iopub.status.busy": "2024-04-06T04:33:04.014722Z", - "iopub.status.idle": "2024-04-06T04:33:04.018157Z", - "shell.execute_reply": "2024-04-06T04:33:04.017691Z" + "iopub.execute_input": "2024-04-08T19:11:40.562932Z", + "iopub.status.busy": "2024-04-08T19:11:40.562610Z", + "iopub.status.idle": "2024-04-08T19:11:40.566002Z", + "shell.execute_reply": "2024-04-08T19:11:40.565577Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:04.020151Z", - "iopub.status.busy": "2024-04-06T04:33:04.019837Z", - "iopub.status.idle": "2024-04-06T04:33:04.027381Z", - "shell.execute_reply": "2024-04-06T04:33:04.026969Z" + "iopub.execute_input": "2024-04-08T19:11:40.567900Z", + "iopub.status.busy": "2024-04-08T19:11:40.567583Z", + "iopub.status.idle": "2024-04-08T19:11:40.574730Z", + "shell.execute_reply": "2024-04-08T19:11:40.574279Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:04.029320Z", - "iopub.status.busy": "2024-04-06T04:33:04.029148Z", - "iopub.status.idle": "2024-04-06T04:33:04.031565Z", - "shell.execute_reply": "2024-04-06T04:33:04.031152Z" + "iopub.execute_input": "2024-04-08T19:11:40.576667Z", + "iopub.status.busy": "2024-04-08T19:11:40.576404Z", + "iopub.status.idle": "2024-04-08T19:11:40.578794Z", + "shell.execute_reply": "2024-04-08T19:11:40.578358Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:04.033457Z", - "iopub.status.busy": "2024-04-06T04:33:04.033286Z", - "iopub.status.idle": "2024-04-06T04:33:07.020218Z", - "shell.execute_reply": "2024-04-06T04:33:07.019691Z" + "iopub.execute_input": "2024-04-08T19:11:40.580843Z", + "iopub.status.busy": "2024-04-08T19:11:40.580536Z", + "iopub.status.idle": "2024-04-08T19:11:43.565419Z", + "shell.execute_reply": "2024-04-08T19:11:43.564907Z" } }, "outputs": [], @@ -402,10 +402,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:07.022814Z", - "iopub.status.busy": "2024-04-06T04:33:07.022610Z", - "iopub.status.idle": "2024-04-06T04:33:07.032179Z", - "shell.execute_reply": "2024-04-06T04:33:07.031775Z" + "iopub.execute_input": "2024-04-08T19:11:43.568043Z", + "iopub.status.busy": "2024-04-08T19:11:43.567842Z", + "iopub.status.idle": "2024-04-08T19:11:43.577436Z", + "shell.execute_reply": "2024-04-08T19:11:43.577042Z" } }, "outputs": [], @@ -437,10 +437,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:07.034095Z", - "iopub.status.busy": "2024-04-06T04:33:07.033903Z", - "iopub.status.idle": "2024-04-06T04:33:08.789065Z", - "shell.execute_reply": "2024-04-06T04:33:08.788481Z" + "iopub.execute_input": "2024-04-08T19:11:43.579441Z", + "iopub.status.busy": "2024-04-08T19:11:43.579134Z", + "iopub.status.idle": "2024-04-08T19:11:45.292514Z", + "shell.execute_reply": "2024-04-08T19:11:45.291914Z" } }, "outputs": [ @@ -485,10 +485,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.792211Z", - "iopub.status.busy": "2024-04-06T04:33:08.791532Z", - "iopub.status.idle": "2024-04-06T04:33:08.814502Z", - "shell.execute_reply": "2024-04-06T04:33:08.814015Z" + "iopub.execute_input": "2024-04-08T19:11:45.296728Z", + "iopub.status.busy": "2024-04-08T19:11:45.295425Z", + "iopub.status.idle": "2024-04-08T19:11:45.320295Z", + "shell.execute_reply": "2024-04-08T19:11:45.319812Z" }, "scrolled": true }, @@ -613,10 +613,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.817077Z", - "iopub.status.busy": "2024-04-06T04:33:08.816765Z", - "iopub.status.idle": "2024-04-06T04:33:08.825617Z", - "shell.execute_reply": "2024-04-06T04:33:08.825158Z" + "iopub.execute_input": "2024-04-08T19:11:45.323669Z", + "iopub.status.busy": "2024-04-08T19:11:45.322766Z", + "iopub.status.idle": "2024-04-08T19:11:45.333647Z", + "shell.execute_reply": "2024-04-08T19:11:45.333187Z" } }, "outputs": [ @@ -720,10 +720,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.828222Z", - "iopub.status.busy": "2024-04-06T04:33:08.827849Z", - "iopub.status.idle": "2024-04-06T04:33:08.838568Z", - "shell.execute_reply": "2024-04-06T04:33:08.838097Z" + "iopub.execute_input": "2024-04-08T19:11:45.336997Z", + "iopub.status.busy": "2024-04-08T19:11:45.336094Z", + "iopub.status.idle": "2024-04-08T19:11:45.348729Z", + "shell.execute_reply": "2024-04-08T19:11:45.348256Z" } }, "outputs": [ @@ -852,10 +852,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.841680Z", - "iopub.status.busy": "2024-04-06T04:33:08.840763Z", - "iopub.status.idle": "2024-04-06T04:33:08.851889Z", - "shell.execute_reply": "2024-04-06T04:33:08.851420Z" + "iopub.execute_input": "2024-04-08T19:11:45.352087Z", + "iopub.status.busy": "2024-04-08T19:11:45.351199Z", + "iopub.status.idle": "2024-04-08T19:11:45.362031Z", + "shell.execute_reply": "2024-04-08T19:11:45.361569Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.855383Z", - "iopub.status.busy": "2024-04-06T04:33:08.854470Z", - "iopub.status.idle": "2024-04-06T04:33:08.866911Z", - "shell.execute_reply": "2024-04-06T04:33:08.866438Z" + "iopub.execute_input": "2024-04-08T19:11:45.365401Z", + "iopub.status.busy": "2024-04-08T19:11:45.364508Z", + "iopub.status.idle": "2024-04-08T19:11:45.376129Z", + "shell.execute_reply": "2024-04-08T19:11:45.375592Z" } }, "outputs": [ @@ -1083,10 +1083,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.869543Z", - "iopub.status.busy": "2024-04-06T04:33:08.869360Z", - "iopub.status.idle": "2024-04-06T04:33:08.876491Z", - "shell.execute_reply": "2024-04-06T04:33:08.875865Z" + "iopub.execute_input": "2024-04-08T19:11:45.378395Z", + "iopub.status.busy": "2024-04-08T19:11:45.378081Z", + "iopub.status.idle": "2024-04-08T19:11:45.384257Z", + "shell.execute_reply": "2024-04-08T19:11:45.383732Z" } }, "outputs": [ @@ -1170,10 +1170,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.878704Z", - "iopub.status.busy": "2024-04-06T04:33:08.878368Z", - "iopub.status.idle": "2024-04-06T04:33:08.884874Z", - "shell.execute_reply": "2024-04-06T04:33:08.884343Z" + "iopub.execute_input": "2024-04-08T19:11:45.386145Z", + "iopub.status.busy": "2024-04-08T19:11:45.385969Z", + "iopub.status.idle": "2024-04-08T19:11:45.392100Z", + "shell.execute_reply": "2024-04-08T19:11:45.391633Z" } }, "outputs": [ @@ -1266,10 +1266,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:08.887114Z", - "iopub.status.busy": "2024-04-06T04:33:08.886669Z", - "iopub.status.idle": "2024-04-06T04:33:08.893228Z", - "shell.execute_reply": "2024-04-06T04:33:08.892752Z" + "iopub.execute_input": "2024-04-08T19:11:45.394135Z", + "iopub.status.busy": "2024-04-08T19:11:45.393818Z", + "iopub.status.idle": "2024-04-08T19:11:45.399861Z", + "shell.execute_reply": "2024-04-08T19:11:45.399452Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 26071ae2b..ebf450e28 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -757,7 +757,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'change_pin', 'beneficiary_not_allowed', 'cancel_transfer', 'lost_or_stolen_phone', 'supported_cards_and_currencies'}
    +Classes: {'visa_or_mastercard', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_about_to_expire'}
     

    Let’s view the i-th example in the dataset:

    diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index a6257a523..cdfc50478 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:11.681681Z", - "iopub.status.busy": "2024-04-06T04:33:11.681132Z", - "iopub.status.idle": "2024-04-06T04:33:14.408684Z", - "shell.execute_reply": "2024-04-06T04:33:14.408170Z" + "iopub.execute_input": "2024-04-08T19:11:47.873795Z", + "iopub.status.busy": "2024-04-08T19:11:47.873616Z", + "iopub.status.idle": "2024-04-08T19:11:50.509546Z", + "shell.execute_reply": "2024-04-08T19:11:50.508929Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:14.411372Z", - "iopub.status.busy": "2024-04-06T04:33:14.410870Z", - "iopub.status.idle": "2024-04-06T04:33:14.414126Z", - "shell.execute_reply": "2024-04-06T04:33:14.413639Z" + "iopub.execute_input": "2024-04-08T19:11:50.512202Z", + "iopub.status.busy": "2024-04-08T19:11:50.511881Z", + "iopub.status.idle": "2024-04-08T19:11:50.515413Z", + "shell.execute_reply": "2024-04-08T19:11:50.514847Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:14.416093Z", - "iopub.status.busy": "2024-04-06T04:33:14.415817Z", - "iopub.status.idle": "2024-04-06T04:33:14.419148Z", - "shell.execute_reply": "2024-04-06T04:33:14.418621Z" + "iopub.execute_input": "2024-04-08T19:11:50.517389Z", + "iopub.status.busy": "2024-04-08T19:11:50.517121Z", + "iopub.status.idle": "2024-04-08T19:11:50.520136Z", + "shell.execute_reply": "2024-04-08T19:11:50.519721Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:14.421094Z", - "iopub.status.busy": "2024-04-06T04:33:14.420828Z", - "iopub.status.idle": "2024-04-06T04:33:14.445821Z", - "shell.execute_reply": "2024-04-06T04:33:14.445234Z" + "iopub.execute_input": "2024-04-08T19:11:50.522130Z", + "iopub.status.busy": "2024-04-08T19:11:50.521805Z", + "iopub.status.idle": "2024-04-08T19:11:50.573099Z", + "shell.execute_reply": "2024-04-08T19:11:50.572633Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:14.448095Z", - "iopub.status.busy": "2024-04-06T04:33:14.447753Z", - "iopub.status.idle": "2024-04-06T04:33:14.451521Z", - "shell.execute_reply": "2024-04-06T04:33:14.451033Z" + "iopub.execute_input": "2024-04-08T19:11:50.575235Z", + "iopub.status.busy": "2024-04-08T19:11:50.574826Z", + "iopub.status.idle": "2024-04-08T19:11:50.578661Z", + "shell.execute_reply": "2024-04-08T19:11:50.578198Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'change_pin', 'beneficiary_not_allowed', 'cancel_transfer', 'lost_or_stolen_phone', 'supported_cards_and_currencies'}\n" + "Classes: {'visa_or_mastercard', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_about_to_expire'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:14.453654Z", - "iopub.status.busy": "2024-04-06T04:33:14.453334Z", - "iopub.status.idle": "2024-04-06T04:33:14.456651Z", - "shell.execute_reply": "2024-04-06T04:33:14.456195Z" + "iopub.execute_input": "2024-04-08T19:11:50.580716Z", + "iopub.status.busy": "2024-04-08T19:11:50.580386Z", + "iopub.status.idle": "2024-04-08T19:11:50.583329Z", + "shell.execute_reply": "2024-04-08T19:11:50.582809Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:14.458570Z", - "iopub.status.busy": "2024-04-06T04:33:14.458385Z", - "iopub.status.idle": "2024-04-06T04:33:18.310859Z", - "shell.execute_reply": "2024-04-06T04:33:18.310235Z" + "iopub.execute_input": "2024-04-08T19:11:50.585157Z", + "iopub.status.busy": "2024-04-08T19:11:50.584978Z", + "iopub.status.idle": "2024-04-08T19:11:54.999343Z", + "shell.execute_reply": "2024-04-08T19:11:54.998804Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:18.313664Z", - "iopub.status.busy": "2024-04-06T04:33:18.313302Z", - "iopub.status.idle": "2024-04-06T04:33:19.193930Z", - "shell.execute_reply": "2024-04-06T04:33:19.193370Z" + "iopub.execute_input": "2024-04-08T19:11:55.002005Z", + "iopub.status.busy": "2024-04-08T19:11:55.001591Z", + "iopub.status.idle": "2024-04-08T19:11:55.890538Z", + "shell.execute_reply": "2024-04-08T19:11:55.889962Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:19.196805Z", - "iopub.status.busy": "2024-04-06T04:33:19.196442Z", - "iopub.status.idle": "2024-04-06T04:33:19.199261Z", - "shell.execute_reply": "2024-04-06T04:33:19.198798Z" + "iopub.execute_input": "2024-04-08T19:11:55.893249Z", + "iopub.status.busy": "2024-04-08T19:11:55.892862Z", + "iopub.status.idle": "2024-04-08T19:11:55.895882Z", + "shell.execute_reply": "2024-04-08T19:11:55.895415Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:19.201572Z", - "iopub.status.busy": "2024-04-06T04:33:19.201213Z", - "iopub.status.idle": "2024-04-06T04:33:20.771182Z", - "shell.execute_reply": "2024-04-06T04:33:20.770550Z" + "iopub.execute_input": "2024-04-08T19:11:55.898149Z", + "iopub.status.busy": "2024-04-08T19:11:55.897768Z", + "iopub.status.idle": "2024-04-08T19:11:57.484712Z", + "shell.execute_reply": "2024-04-08T19:11:57.482845Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.774433Z", - "iopub.status.busy": "2024-04-06T04:33:20.773600Z", - "iopub.status.idle": "2024-04-06T04:33:20.799139Z", - "shell.execute_reply": "2024-04-06T04:33:20.798597Z" + "iopub.execute_input": "2024-04-08T19:11:57.489057Z", + "iopub.status.busy": "2024-04-08T19:11:57.487744Z", + "iopub.status.idle": "2024-04-08T19:11:57.513599Z", + "shell.execute_reply": "2024-04-08T19:11:57.513105Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.801783Z", - "iopub.status.busy": "2024-04-06T04:33:20.801390Z", - "iopub.status.idle": "2024-04-06T04:33:20.811382Z", - "shell.execute_reply": "2024-04-06T04:33:20.810884Z" + "iopub.execute_input": "2024-04-08T19:11:57.517153Z", + "iopub.status.busy": "2024-04-08T19:11:57.516242Z", + "iopub.status.idle": "2024-04-08T19:11:57.527834Z", + "shell.execute_reply": "2024-04-08T19:11:57.527359Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.813909Z", - "iopub.status.busy": "2024-04-06T04:33:20.813527Z", - "iopub.status.idle": "2024-04-06T04:33:20.818371Z", - "shell.execute_reply": "2024-04-06T04:33:20.817869Z" + "iopub.execute_input": "2024-04-08T19:11:57.531248Z", + "iopub.status.busy": "2024-04-08T19:11:57.530335Z", + "iopub.status.idle": "2024-04-08T19:11:57.536787Z", + "shell.execute_reply": "2024-04-08T19:11:57.536230Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.820606Z", - "iopub.status.busy": "2024-04-06T04:33:20.820299Z", - "iopub.status.idle": "2024-04-06T04:33:20.826482Z", - "shell.execute_reply": "2024-04-06T04:33:20.826090Z" + "iopub.execute_input": "2024-04-08T19:11:57.538876Z", + "iopub.status.busy": "2024-04-08T19:11:57.538699Z", + "iopub.status.idle": "2024-04-08T19:11:57.546063Z", + "shell.execute_reply": "2024-04-08T19:11:57.545305Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.828437Z", - "iopub.status.busy": "2024-04-06T04:33:20.828137Z", - "iopub.status.idle": "2024-04-06T04:33:20.834167Z", - "shell.execute_reply": "2024-04-06T04:33:20.833652Z" + "iopub.execute_input": "2024-04-08T19:11:57.548261Z", + "iopub.status.busy": "2024-04-08T19:11:57.547854Z", + "iopub.status.idle": "2024-04-08T19:11:57.554234Z", + "shell.execute_reply": "2024-04-08T19:11:57.553695Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.836059Z", - "iopub.status.busy": "2024-04-06T04:33:20.835877Z", - "iopub.status.idle": "2024-04-06T04:33:20.841929Z", - "shell.execute_reply": "2024-04-06T04:33:20.841349Z" + "iopub.execute_input": "2024-04-08T19:11:57.556102Z", + "iopub.status.busy": "2024-04-08T19:11:57.555808Z", + "iopub.status.idle": "2024-04-08T19:11:57.561366Z", + "shell.execute_reply": "2024-04-08T19:11:57.560849Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.843988Z", - "iopub.status.busy": "2024-04-06T04:33:20.843684Z", - "iopub.status.idle": "2024-04-06T04:33:20.852453Z", - "shell.execute_reply": "2024-04-06T04:33:20.851982Z" + "iopub.execute_input": "2024-04-08T19:11:57.563375Z", + "iopub.status.busy": "2024-04-08T19:11:57.563066Z", + "iopub.status.idle": "2024-04-08T19:11:57.571545Z", + "shell.execute_reply": "2024-04-08T19:11:57.571096Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.854597Z", - "iopub.status.busy": "2024-04-06T04:33:20.854199Z", - "iopub.status.idle": "2024-04-06T04:33:20.859815Z", - "shell.execute_reply": "2024-04-06T04:33:20.859258Z" + "iopub.execute_input": "2024-04-08T19:11:57.573469Z", + "iopub.status.busy": "2024-04-08T19:11:57.573151Z", + "iopub.status.idle": "2024-04-08T19:11:57.578415Z", + "shell.execute_reply": "2024-04-08T19:11:57.577995Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.861773Z", - "iopub.status.busy": "2024-04-06T04:33:20.861471Z", - "iopub.status.idle": "2024-04-06T04:33:20.866885Z", - "shell.execute_reply": "2024-04-06T04:33:20.866352Z" + "iopub.execute_input": "2024-04-08T19:11:57.580309Z", + "iopub.status.busy": "2024-04-08T19:11:57.579985Z", + "iopub.status.idle": "2024-04-08T19:11:57.585107Z", + "shell.execute_reply": "2024-04-08T19:11:57.584704Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.869013Z", - "iopub.status.busy": "2024-04-06T04:33:20.868609Z", - "iopub.status.idle": "2024-04-06T04:33:20.872412Z", - "shell.execute_reply": "2024-04-06T04:33:20.871871Z" + "iopub.execute_input": "2024-04-08T19:11:57.587089Z", + "iopub.status.busy": "2024-04-08T19:11:57.586774Z", + "iopub.status.idle": "2024-04-08T19:11:57.590241Z", + "shell.execute_reply": "2024-04-08T19:11:57.589704Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:20.874578Z", - "iopub.status.busy": "2024-04-06T04:33:20.874128Z", - "iopub.status.idle": "2024-04-06T04:33:20.879644Z", - "shell.execute_reply": "2024-04-06T04:33:20.879101Z" + "iopub.execute_input": "2024-04-08T19:11:57.592302Z", + "iopub.status.busy": "2024-04-08T19:11:57.591981Z", + "iopub.status.idle": "2024-04-08T19:11:57.597076Z", + "shell.execute_reply": "2024-04-08T19:11:57.596530Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 31a8923c7..8386c499c 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:24.564833Z", - "iopub.status.busy": "2024-04-06T04:33:24.564645Z", - "iopub.status.idle": "2024-04-06T04:33:25.678241Z", - "shell.execute_reply": "2024-04-06T04:33:25.677637Z" + "iopub.execute_input": "2024-04-08T19:12:00.906624Z", + "iopub.status.busy": "2024-04-08T19:12:00.906269Z", + "iopub.status.idle": "2024-04-08T19:12:02.013278Z", + "shell.execute_reply": "2024-04-08T19:12:02.012738Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:25.681005Z", - "iopub.status.busy": "2024-04-06T04:33:25.680432Z", - "iopub.status.idle": "2024-04-06T04:33:25.683479Z", - "shell.execute_reply": "2024-04-06T04:33:25.683004Z" + "iopub.execute_input": "2024-04-08T19:12:02.015823Z", + "iopub.status.busy": "2024-04-08T19:12:02.015525Z", + "iopub.status.idle": "2024-04-08T19:12:02.018326Z", + "shell.execute_reply": "2024-04-08T19:12:02.017864Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:25.685643Z", - "iopub.status.busy": "2024-04-06T04:33:25.685458Z", - "iopub.status.idle": "2024-04-06T04:33:25.698037Z", - "shell.execute_reply": "2024-04-06T04:33:25.697552Z" + "iopub.execute_input": "2024-04-08T19:12:02.020260Z", + "iopub.status.busy": "2024-04-08T19:12:02.020087Z", + "iopub.status.idle": "2024-04-08T19:12:02.032329Z", + "shell.execute_reply": "2024-04-08T19:12:02.031881Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:25.700120Z", - "iopub.status.busy": "2024-04-06T04:33:25.699931Z", - "iopub.status.idle": "2024-04-06T04:33:30.316432Z", - "shell.execute_reply": "2024-04-06T04:33:30.315931Z" + "iopub.execute_input": "2024-04-08T19:12:02.034317Z", + "iopub.status.busy": "2024-04-08T19:12:02.034142Z", + "iopub.status.idle": "2024-04-08T19:12:10.633860Z", + "shell.execute_reply": "2024-04-08T19:12:10.633305Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index d12576394..1383c5dd4 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -797,13 +797,13 @@

    How can I find label issues in big datasets with limited memory?
    -
    +
    -
    +
    @@ -1748,7 +1748,7 @@

    Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

    Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

    diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 71792b57a..35b51f794 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:32.453926Z", - "iopub.status.busy": "2024-04-06T04:33:32.453487Z", - "iopub.status.idle": "2024-04-06T04:33:33.577711Z", - "shell.execute_reply": "2024-04-06T04:33:33.577162Z" + "iopub.execute_input": "2024-04-08T19:12:12.681561Z", + "iopub.status.busy": "2024-04-08T19:12:12.681389Z", + "iopub.status.idle": "2024-04-08T19:12:13.734405Z", + "shell.execute_reply": "2024-04-08T19:12:13.733868Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:33.580468Z", - "iopub.status.busy": "2024-04-06T04:33:33.579978Z", - "iopub.status.idle": "2024-04-06T04:33:33.583331Z", - "shell.execute_reply": "2024-04-06T04:33:33.582894Z" + "iopub.execute_input": "2024-04-08T19:12:13.737231Z", + "iopub.status.busy": "2024-04-08T19:12:13.736791Z", + "iopub.status.idle": "2024-04-08T19:12:13.740148Z", + "shell.execute_reply": "2024-04-08T19:12:13.739710Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:33.585545Z", - "iopub.status.busy": "2024-04-06T04:33:33.585109Z", - "iopub.status.idle": "2024-04-06T04:33:36.718652Z", - "shell.execute_reply": "2024-04-06T04:33:36.718005Z" + "iopub.execute_input": "2024-04-08T19:12:13.742187Z", + "iopub.status.busy": "2024-04-08T19:12:13.741855Z", + "iopub.status.idle": "2024-04-08T19:12:16.687217Z", + "shell.execute_reply": "2024-04-08T19:12:16.686507Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.721727Z", - "iopub.status.busy": "2024-04-06T04:33:36.721060Z", - "iopub.status.idle": "2024-04-06T04:33:36.760399Z", - "shell.execute_reply": "2024-04-06T04:33:36.759784Z" + "iopub.execute_input": "2024-04-08T19:12:16.690229Z", + "iopub.status.busy": "2024-04-08T19:12:16.689558Z", + "iopub.status.idle": "2024-04-08T19:12:16.723065Z", + "shell.execute_reply": "2024-04-08T19:12:16.722493Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.763173Z", - "iopub.status.busy": "2024-04-06T04:33:36.762842Z", - "iopub.status.idle": "2024-04-06T04:33:36.801368Z", - "shell.execute_reply": "2024-04-06T04:33:36.800735Z" + "iopub.execute_input": "2024-04-08T19:12:16.725574Z", + "iopub.status.busy": "2024-04-08T19:12:16.725213Z", + "iopub.status.idle": "2024-04-08T19:12:16.748633Z", + "shell.execute_reply": "2024-04-08T19:12:16.748076Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.804245Z", - "iopub.status.busy": "2024-04-06T04:33:36.803821Z", - "iopub.status.idle": "2024-04-06T04:33:36.807084Z", - "shell.execute_reply": "2024-04-06T04:33:36.806596Z" + "iopub.execute_input": "2024-04-08T19:12:16.751185Z", + "iopub.status.busy": "2024-04-08T19:12:16.750822Z", + "iopub.status.idle": "2024-04-08T19:12:16.753746Z", + "shell.execute_reply": "2024-04-08T19:12:16.753306Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.809090Z", - "iopub.status.busy": "2024-04-06T04:33:36.808779Z", - "iopub.status.idle": "2024-04-06T04:33:36.811544Z", - "shell.execute_reply": "2024-04-06T04:33:36.811006Z" + "iopub.execute_input": "2024-04-08T19:12:16.755833Z", + "iopub.status.busy": "2024-04-08T19:12:16.755526Z", + "iopub.status.idle": "2024-04-08T19:12:16.758525Z", + "shell.execute_reply": "2024-04-08T19:12:16.758102Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.813573Z", - "iopub.status.busy": "2024-04-06T04:33:36.813305Z", - "iopub.status.idle": "2024-04-06T04:33:36.837656Z", - "shell.execute_reply": "2024-04-06T04:33:36.837105Z" + "iopub.execute_input": "2024-04-08T19:12:16.760530Z", + "iopub.status.busy": "2024-04-08T19:12:16.760254Z", + "iopub.status.idle": "2024-04-08T19:12:16.783193Z", + "shell.execute_reply": "2024-04-08T19:12:16.782688Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ad7ffe9f7e104f438570b96387ce328e", + "model_id": "6a6240bb0ab443d38a48eadee74f3ae2", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6a93f0182ebb47fc96441f7413ee50a4", + "model_id": "f9a5120ba56d4977aa0d368fb7c66d40", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.843747Z", - "iopub.status.busy": "2024-04-06T04:33:36.843506Z", - "iopub.status.idle": "2024-04-06T04:33:36.850771Z", - "shell.execute_reply": "2024-04-06T04:33:36.850304Z" + "iopub.execute_input": "2024-04-08T19:12:16.789722Z", + "iopub.status.busy": "2024-04-08T19:12:16.789232Z", + "iopub.status.idle": "2024-04-08T19:12:16.795676Z", + "shell.execute_reply": "2024-04-08T19:12:16.795154Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.853060Z", - "iopub.status.busy": "2024-04-06T04:33:36.852662Z", - "iopub.status.idle": "2024-04-06T04:33:36.856158Z", - "shell.execute_reply": "2024-04-06T04:33:36.855726Z" + "iopub.execute_input": "2024-04-08T19:12:16.797734Z", + "iopub.status.busy": "2024-04-08T19:12:16.797436Z", + "iopub.status.idle": "2024-04-08T19:12:16.800819Z", + "shell.execute_reply": "2024-04-08T19:12:16.800306Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.858276Z", - "iopub.status.busy": "2024-04-06T04:33:36.858000Z", - "iopub.status.idle": "2024-04-06T04:33:36.864594Z", - "shell.execute_reply": "2024-04-06T04:33:36.864108Z" + "iopub.execute_input": "2024-04-08T19:12:16.802799Z", + "iopub.status.busy": "2024-04-08T19:12:16.802383Z", + "iopub.status.idle": "2024-04-08T19:12:16.808583Z", + "shell.execute_reply": "2024-04-08T19:12:16.808080Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.866698Z", - "iopub.status.busy": "2024-04-06T04:33:36.866352Z", - "iopub.status.idle": "2024-04-06T04:33:36.905959Z", - "shell.execute_reply": "2024-04-06T04:33:36.905317Z" + "iopub.execute_input": "2024-04-08T19:12:16.810430Z", + "iopub.status.busy": "2024-04-08T19:12:16.810131Z", + "iopub.status.idle": "2024-04-08T19:12:16.843764Z", + "shell.execute_reply": "2024-04-08T19:12:16.843069Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.908640Z", - "iopub.status.busy": "2024-04-06T04:33:36.908384Z", - "iopub.status.idle": "2024-04-06T04:33:36.948839Z", - "shell.execute_reply": "2024-04-06T04:33:36.948221Z" + "iopub.execute_input": "2024-04-08T19:12:16.846251Z", + "iopub.status.busy": "2024-04-08T19:12:16.846029Z", + "iopub.status.idle": "2024-04-08T19:12:16.876055Z", + "shell.execute_reply": "2024-04-08T19:12:16.875395Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:36.951895Z", - "iopub.status.busy": "2024-04-06T04:33:36.951511Z", - "iopub.status.idle": "2024-04-06T04:33:37.080581Z", - "shell.execute_reply": "2024-04-06T04:33:37.079922Z" + "iopub.execute_input": "2024-04-08T19:12:16.878797Z", + "iopub.status.busy": "2024-04-08T19:12:16.878362Z", + "iopub.status.idle": "2024-04-08T19:12:16.997690Z", + "shell.execute_reply": "2024-04-08T19:12:16.997074Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:37.083569Z", - "iopub.status.busy": "2024-04-06T04:33:37.082731Z", - "iopub.status.idle": "2024-04-06T04:33:40.126106Z", - "shell.execute_reply": "2024-04-06T04:33:40.125422Z" + "iopub.execute_input": "2024-04-08T19:12:17.000317Z", + "iopub.status.busy": "2024-04-08T19:12:16.999797Z", + "iopub.status.idle": "2024-04-08T19:12:20.051499Z", + "shell.execute_reply": "2024-04-08T19:12:20.050857Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:40.128582Z", - "iopub.status.busy": "2024-04-06T04:33:40.128353Z", - "iopub.status.idle": "2024-04-06T04:33:40.189416Z", - "shell.execute_reply": "2024-04-06T04:33:40.188788Z" + "iopub.execute_input": "2024-04-08T19:12:20.054045Z", + "iopub.status.busy": "2024-04-08T19:12:20.053678Z", + "iopub.status.idle": "2024-04-08T19:12:20.108066Z", + "shell.execute_reply": "2024-04-08T19:12:20.107454Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:40.191652Z", - "iopub.status.busy": "2024-04-06T04:33:40.191314Z", - "iopub.status.idle": "2024-04-06T04:33:40.231110Z", - "shell.execute_reply": "2024-04-06T04:33:40.230569Z" + "iopub.execute_input": "2024-04-08T19:12:20.110315Z", + "iopub.status.busy": "2024-04-08T19:12:20.109981Z", + "iopub.status.idle": "2024-04-08T19:12:20.147390Z", + "shell.execute_reply": "2024-04-08T19:12:20.146954Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "7997ced4", + "id": "9da437a7", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "57a8d119", + "id": "fce848ae", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "9fb93000", + "id": "0fe990fa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:40.233390Z", - "iopub.status.busy": "2024-04-06T04:33:40.233191Z", - "iopub.status.idle": "2024-04-06T04:33:40.327660Z", - "shell.execute_reply": "2024-04-06T04:33:40.327127Z" + "iopub.execute_input": "2024-04-08T19:12:20.149376Z", + "iopub.status.busy": "2024-04-08T19:12:20.149051Z", + "iopub.status.idle": "2024-04-08T19:12:20.266660Z", + "shell.execute_reply": "2024-04-08T19:12:20.266055Z" } }, "outputs": [ @@ -1354,7 +1354,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ...\n", + "Finding underperforming_group issues ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1387,7 +1393,7 @@ }, { "cell_type": "markdown", - "id": "27082dba", + "id": "e1f798da", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1402,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "5a3f0b1c", + "id": "35842b9a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:40.330424Z", - "iopub.status.busy": "2024-04-06T04:33:40.330165Z", - "iopub.status.idle": "2024-04-06T04:33:40.412901Z", - "shell.execute_reply": "2024-04-06T04:33:40.412405Z" + "iopub.execute_input": "2024-04-08T19:12:20.269272Z", + "iopub.status.busy": "2024-04-08T19:12:20.269030Z", + "iopub.status.idle": "2024-04-08T19:12:20.330497Z", + "shell.execute_reply": "2024-04-08T19:12:20.329977Z" } }, "outputs": [ @@ -1410,14 +1416,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ..." - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", + "Finding underperforming_group issues ...\n", "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1445,7 +1444,7 @@ }, { "cell_type": "markdown", - "id": "bb4c5299", + "id": "798d7822", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1456,13 +1455,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "0a847975", + "id": "fdfd0a78", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:40.415545Z", - "iopub.status.busy": "2024-04-06T04:33:40.415364Z", - "iopub.status.idle": "2024-04-06T04:33:40.424747Z", - "shell.execute_reply": "2024-04-06T04:33:40.424323Z" + "iopub.execute_input": "2024-04-08T19:12:20.332905Z", + "iopub.status.busy": "2024-04-08T19:12:20.332706Z", + "iopub.status.idle": "2024-04-08T19:12:20.340139Z", + "shell.execute_reply": "2024-04-08T19:12:20.339592Z" } }, "outputs": [], @@ -1564,7 +1563,7 @@ }, { "cell_type": "markdown", - "id": "f6c74243", + "id": "623406db", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1579,13 +1578,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "665cd26e", + "id": "78a115a5", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:40.427036Z", - "iopub.status.busy": "2024-04-06T04:33:40.426714Z", - "iopub.status.idle": "2024-04-06T04:33:40.447448Z", - "shell.execute_reply": "2024-04-06T04:33:40.446876Z" + "iopub.execute_input": "2024-04-08T19:12:20.342036Z", + "iopub.status.busy": "2024-04-08T19:12:20.341739Z", + "iopub.status.idle": "2024-04-08T19:12:20.360239Z", + "shell.execute_reply": "2024-04-08T19:12:20.359697Z" } }, "outputs": [ @@ -1602,7 +1601,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7516/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7838/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1636,13 +1635,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "1a0ba0a1", + "id": "40dae4e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:40.449833Z", - "iopub.status.busy": "2024-04-06T04:33:40.449476Z", - "iopub.status.idle": "2024-04-06T04:33:40.452685Z", - "shell.execute_reply": "2024-04-06T04:33:40.452130Z" + "iopub.execute_input": "2024-04-08T19:12:20.362253Z", + "iopub.status.busy": "2024-04-08T19:12:20.361948Z", + "iopub.status.idle": "2024-04-08T19:12:20.365026Z", + "shell.execute_reply": "2024-04-08T19:12:20.364516Z" } }, "outputs": [ @@ -1737,7 +1736,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "14b2e46a058f49b7877f1e0a8fc3b5b6": { + "12810a0d31ae4f278489cceb3717deb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,7 +1789,7 @@ "width": null } }, - "23c0ea245fbd417183656f1b6c07712f": { + "21b83733b12e4ab9a8e1fc932a77b365": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1843,30 +1842,65 @@ "width": null } }, - "245c87c4c2aa416db47130538b929d58": { + "6566ff0f4c9545e0a8d4ac6514750721": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "68c12f7c9aa14eb596e0d4b9f346ded1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6a6240bb0ab443d38a48eadee74f3ae2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7480a084643d44109ad2e89da0ca1645", - "placeholder": "​", - "style": "IPY_MODEL_d3c14fbb47a44544abaeec177f87256f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b66e8c48cfaa46939a45c8b4440cd4a6", + "IPY_MODEL_bf86d89ad3204f18be960f57e96ccf59", + "IPY_MODEL_b765b2a3ff1d4b41a66c68404700508b" + ], + "layout": "IPY_MODEL_cfc2c60ce9954a939a633840b1c6d1f7", "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1599963.38it/s]" + "tooltip": null } }, - "26607dc2026d44d18409e2097833bbb6": { + "995b23ebdb8b4621ae697068c80e4d01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1919,7 +1953,60 @@ "width": null } }, - "538f177063ec4fd38db9281cbb4e4736": { + "9a847008c2cc4912b7568541c8506397": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9cca6ed55b464af5a62dfafe2ab723a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1934,15 +2021,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_23c0ea245fbd417183656f1b6c07712f", + "layout": "IPY_MODEL_9a847008c2cc4912b7568541c8506397", "placeholder": "​", - "style": "IPY_MODEL_f7f940143f124c22a39fad1b33b95e97", + "style": "IPY_MODEL_b0998f9686d34540aef7e956282bc228", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " + "value": " 10000/? [00:00<00:00, 1657172.66it/s]" + } + }, + "b0998f9686d34540aef7e956282bc228": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b37c8cc149634a1fa49852024830088d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5d3a89a90e3b4986a627cb78ab15f855": { + "b66e8c48cfaa46939a45c8b4440cd4a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1957,39 +2080,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c9e7c9ca5279402f833cd03f267b90b0", + "layout": "IPY_MODEL_12810a0d31ae4f278489cceb3717deb2", "placeholder": "​", - "style": "IPY_MODEL_7a5ac41ff90446bda080db1a245f6076", + "style": "IPY_MODEL_c9626b33f28a41cbb8e7ab7eaa6d20db", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: " } }, - "6a93f0182ebb47fc96441f7413ee50a4": { + "b765b2a3ff1d4b41a66c68404700508b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_538f177063ec4fd38db9281cbb4e4736", - "IPY_MODEL_8147d6885df5404da13067a4b04feaff", - "IPY_MODEL_245c87c4c2aa416db47130538b929d58" - ], - "layout": "IPY_MODEL_26607dc2026d44d18409e2097833bbb6", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21b83733b12e4ab9a8e1fc932a77b365", + "placeholder": "​", + "style": "IPY_MODEL_b37c8cc149634a1fa49852024830088d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1108870.85it/s]" } }, - "7480a084643d44109ad2e89da0ca1645": { + "ba6196a4a8f546aabd03b97f4e409a2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2042,25 +2164,7 @@ "width": null } }, - "7a5ac41ff90446bda080db1a245f6076": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8147d6885df5404da13067a4b04feaff": { + "bf86d89ad3204f18be960f57e96ccf59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2076,17 +2180,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b88c297a26be479180743ea12a8782ee", + "layout": "IPY_MODEL_c1cb2e0cc26b4999826ac84dc19ced5c", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8a8358bc01474398ae2c3b719fe94d03", + "style": "IPY_MODEL_6566ff0f4c9545e0a8d4ac6514750721", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "83a387e924c445e394cde04898e3e09e": { + "c1cb2e0cc26b4999826ac84dc19ced5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2139,47 +2243,30 @@ "width": null } }, - "8a8358bc01474398ae2c3b719fe94d03": { + "c5076875c8174d66894ad735da25ceb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ad7ffe9f7e104f438570b96387ce328e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d3a89a90e3b4986a627cb78ab15f855", - "IPY_MODEL_f6ab57c77c6546aeb601051c57a99435", - "IPY_MODEL_cda88cf88c8042acb6232ea9423f355f" - ], - "layout": "IPY_MODEL_14b2e46a058f49b7877f1e0a8fc3b5b6", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d0bb2759b4794473a6c806fa37369c3f", + "placeholder": "​", + "style": "IPY_MODEL_68c12f7c9aa14eb596e0d4b9f346ded1", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "number of examples processed for checking labels: " } }, - "b884a7bf75b9420f8028a27180dff7b2": { + "c9626b33f28a41cbb8e7ab7eaa6d20db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2197,60 +2284,49 @@ "text_color": null } }, - "b88c297a26be479180743ea12a8782ee": { - "model_module": "@jupyter-widgets/base", + "cabf93bc271f433bbdf492408e032d42": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cc473ba1779244319b406315a2ad79b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_995b23ebdb8b4621ae697068c80e4d01", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cabf93bc271f433bbdf492408e032d42", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "be6b5fe0f64b4e89bba0bc6b2e5c249c": { + "cfc2c60ce9954a939a633840b1c6d1f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2303,7 +2379,7 @@ "width": null } }, - "c9e7c9ca5279402f833cd03f267b90b0": { + "d0bb2759b4794473a6c806fa37369c3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2356,105 +2432,28 @@ "width": null } }, - "cc099a9799bc402bbc12d51076fd879a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cda88cf88c8042acb6232ea9423f355f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_83a387e924c445e394cde04898e3e09e", - "placeholder": "​", - "style": "IPY_MODEL_b884a7bf75b9420f8028a27180dff7b2", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1022876.23it/s]" - } - }, - "d3c14fbb47a44544abaeec177f87256f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f6ab57c77c6546aeb601051c57a99435": { + "f9a5120ba56d4977aa0d368fb7c66d40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be6b5fe0f64b4e89bba0bc6b2e5c249c", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cc099a9799bc402bbc12d51076fd879a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c5076875c8174d66894ad735da25ceb0", + "IPY_MODEL_cc473ba1779244319b406315a2ad79b3", + "IPY_MODEL_9cca6ed55b464af5a62dfafe2ab723a7" + ], + "layout": "IPY_MODEL_ba6196a4a8f546aabd03b97f4e409a2f", "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "f7f940143f124c22a39fad1b33b95e97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } } }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 09d453fd1..319d2d3ff 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:43.785678Z", - "iopub.status.busy": "2024-04-06T04:33:43.785475Z", - "iopub.status.idle": "2024-04-06T04:33:44.953788Z", - "shell.execute_reply": "2024-04-06T04:33:44.953182Z" + "iopub.execute_input": "2024-04-08T19:12:23.385502Z", + "iopub.status.busy": "2024-04-08T19:12:23.385324Z", + "iopub.status.idle": "2024-04-08T19:12:24.500994Z", + "shell.execute_reply": "2024-04-08T19:12:24.500451Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:44.956257Z", - "iopub.status.busy": "2024-04-06T04:33:44.955968Z", - "iopub.status.idle": "2024-04-06T04:33:45.136559Z", - "shell.execute_reply": "2024-04-06T04:33:45.135941Z" + "iopub.execute_input": "2024-04-08T19:12:24.503635Z", + "iopub.status.busy": "2024-04-08T19:12:24.503134Z", + "iopub.status.idle": "2024-04-08T19:12:24.674963Z", + "shell.execute_reply": "2024-04-08T19:12:24.674378Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:45.139194Z", - "iopub.status.busy": "2024-04-06T04:33:45.138996Z", - "iopub.status.idle": "2024-04-06T04:33:45.151534Z", - "shell.execute_reply": "2024-04-06T04:33:45.150954Z" + "iopub.execute_input": "2024-04-08T19:12:24.677405Z", + "iopub.status.busy": "2024-04-08T19:12:24.677010Z", + "iopub.status.idle": "2024-04-08T19:12:24.688933Z", + "shell.execute_reply": "2024-04-08T19:12:24.688406Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:45.153835Z", - "iopub.status.busy": "2024-04-06T04:33:45.153455Z", - "iopub.status.idle": "2024-04-06T04:33:45.364208Z", - "shell.execute_reply": "2024-04-06T04:33:45.363567Z" + "iopub.execute_input": "2024-04-08T19:12:24.690846Z", + "iopub.status.busy": "2024-04-08T19:12:24.690671Z", + "iopub.status.idle": "2024-04-08T19:12:24.894029Z", + "shell.execute_reply": "2024-04-08T19:12:24.893464Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:45.366694Z", - "iopub.status.busy": "2024-04-06T04:33:45.366209Z", - "iopub.status.idle": "2024-04-06T04:33:45.393157Z", - "shell.execute_reply": "2024-04-06T04:33:45.392663Z" + "iopub.execute_input": "2024-04-08T19:12:24.896362Z", + "iopub.status.busy": "2024-04-08T19:12:24.896017Z", + "iopub.status.idle": "2024-04-08T19:12:24.922340Z", + "shell.execute_reply": "2024-04-08T19:12:24.921893Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:45.395608Z", - "iopub.status.busy": "2024-04-06T04:33:45.395250Z", - "iopub.status.idle": "2024-04-06T04:33:47.125309Z", - "shell.execute_reply": "2024-04-06T04:33:47.124671Z" + "iopub.execute_input": "2024-04-08T19:12:24.924554Z", + "iopub.status.busy": "2024-04-08T19:12:24.924219Z", + "iopub.status.idle": "2024-04-08T19:12:26.591119Z", + "shell.execute_reply": "2024-04-08T19:12:26.590421Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:47.127865Z", - "iopub.status.busy": "2024-04-06T04:33:47.127360Z", - "iopub.status.idle": "2024-04-06T04:33:47.146064Z", - "shell.execute_reply": "2024-04-06T04:33:47.145478Z" + "iopub.execute_input": "2024-04-08T19:12:26.593843Z", + "iopub.status.busy": "2024-04-08T19:12:26.593202Z", + "iopub.status.idle": "2024-04-08T19:12:26.611348Z", + "shell.execute_reply": "2024-04-08T19:12:26.610866Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:47.148206Z", - "iopub.status.busy": "2024-04-06T04:33:47.148010Z", - "iopub.status.idle": "2024-04-06T04:33:48.575713Z", - "shell.execute_reply": "2024-04-06T04:33:48.575123Z" + "iopub.execute_input": "2024-04-08T19:12:26.613273Z", + "iopub.status.busy": "2024-04-08T19:12:26.613008Z", + "iopub.status.idle": "2024-04-08T19:12:27.994069Z", + "shell.execute_reply": "2024-04-08T19:12:27.993485Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:48.578373Z", - "iopub.status.busy": "2024-04-06T04:33:48.577728Z", - "iopub.status.idle": "2024-04-06T04:33:48.591925Z", - "shell.execute_reply": "2024-04-06T04:33:48.591473Z" + "iopub.execute_input": "2024-04-08T19:12:27.996963Z", + "iopub.status.busy": "2024-04-08T19:12:27.996205Z", + "iopub.status.idle": "2024-04-08T19:12:28.010313Z", + "shell.execute_reply": "2024-04-08T19:12:28.009892Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:48.594180Z", - "iopub.status.busy": "2024-04-06T04:33:48.593840Z", - "iopub.status.idle": "2024-04-06T04:33:48.670108Z", - "shell.execute_reply": "2024-04-06T04:33:48.669540Z" + "iopub.execute_input": "2024-04-08T19:12:28.012483Z", + "iopub.status.busy": "2024-04-08T19:12:28.012148Z", + "iopub.status.idle": "2024-04-08T19:12:28.092332Z", + "shell.execute_reply": "2024-04-08T19:12:28.091737Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:48.672461Z", - "iopub.status.busy": "2024-04-06T04:33:48.672082Z", - "iopub.status.idle": "2024-04-06T04:33:48.894054Z", - "shell.execute_reply": "2024-04-06T04:33:48.893460Z" + "iopub.execute_input": "2024-04-08T19:12:28.094848Z", + "iopub.status.busy": "2024-04-08T19:12:28.094388Z", + "iopub.status.idle": "2024-04-08T19:12:28.305015Z", + "shell.execute_reply": "2024-04-08T19:12:28.304459Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:48.896310Z", - "iopub.status.busy": "2024-04-06T04:33:48.895957Z", - "iopub.status.idle": "2024-04-06T04:33:48.912992Z", - "shell.execute_reply": "2024-04-06T04:33:48.912438Z" + "iopub.execute_input": "2024-04-08T19:12:28.307155Z", + "iopub.status.busy": "2024-04-08T19:12:28.306977Z", + "iopub.status.idle": "2024-04-08T19:12:28.324108Z", + "shell.execute_reply": "2024-04-08T19:12:28.323676Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:48.915370Z", - "iopub.status.busy": "2024-04-06T04:33:48.914978Z", - "iopub.status.idle": "2024-04-06T04:33:48.925166Z", - "shell.execute_reply": "2024-04-06T04:33:48.924650Z" + "iopub.execute_input": "2024-04-08T19:12:28.326002Z", + "iopub.status.busy": "2024-04-08T19:12:28.325829Z", + "iopub.status.idle": "2024-04-08T19:12:28.335620Z", + "shell.execute_reply": "2024-04-08T19:12:28.335205Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:48.927196Z", - "iopub.status.busy": "2024-04-06T04:33:48.927015Z", - "iopub.status.idle": "2024-04-06T04:33:49.014441Z", - "shell.execute_reply": "2024-04-06T04:33:49.013806Z" + "iopub.execute_input": "2024-04-08T19:12:28.337624Z", + "iopub.status.busy": "2024-04-08T19:12:28.337213Z", + "iopub.status.idle": "2024-04-08T19:12:28.422599Z", + "shell.execute_reply": "2024-04-08T19:12:28.421980Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.016777Z", - "iopub.status.busy": "2024-04-06T04:33:49.016537Z", - "iopub.status.idle": "2024-04-06T04:33:49.145893Z", - "shell.execute_reply": "2024-04-06T04:33:49.145286Z" + "iopub.execute_input": "2024-04-08T19:12:28.424970Z", + "iopub.status.busy": "2024-04-08T19:12:28.424722Z", + "iopub.status.idle": "2024-04-08T19:12:28.549007Z", + "shell.execute_reply": "2024-04-08T19:12:28.548406Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.148236Z", - "iopub.status.busy": "2024-04-06T04:33:49.148006Z", - "iopub.status.idle": "2024-04-06T04:33:49.151659Z", - "shell.execute_reply": "2024-04-06T04:33:49.151136Z" + "iopub.execute_input": "2024-04-08T19:12:28.551383Z", + "iopub.status.busy": "2024-04-08T19:12:28.551092Z", + "iopub.status.idle": "2024-04-08T19:12:28.554976Z", + "shell.execute_reply": "2024-04-08T19:12:28.554255Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.153711Z", - "iopub.status.busy": "2024-04-06T04:33:49.153349Z", - "iopub.status.idle": "2024-04-06T04:33:49.157155Z", - "shell.execute_reply": "2024-04-06T04:33:49.156622Z" + "iopub.execute_input": "2024-04-08T19:12:28.557035Z", + "iopub.status.busy": "2024-04-08T19:12:28.556717Z", + "iopub.status.idle": "2024-04-08T19:12:28.560298Z", + "shell.execute_reply": "2024-04-08T19:12:28.559774Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.159176Z", - "iopub.status.busy": "2024-04-06T04:33:49.158878Z", - "iopub.status.idle": "2024-04-06T04:33:49.196839Z", - "shell.execute_reply": "2024-04-06T04:33:49.196263Z" + "iopub.execute_input": "2024-04-08T19:12:28.562193Z", + "iopub.status.busy": "2024-04-08T19:12:28.561944Z", + "iopub.status.idle": "2024-04-08T19:12:28.599077Z", + "shell.execute_reply": "2024-04-08T19:12:28.598539Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.198950Z", - "iopub.status.busy": "2024-04-06T04:33:49.198645Z", - "iopub.status.idle": "2024-04-06T04:33:49.242193Z", - "shell.execute_reply": "2024-04-06T04:33:49.241610Z" + "iopub.execute_input": "2024-04-08T19:12:28.601134Z", + "iopub.status.busy": "2024-04-08T19:12:28.600813Z", + "iopub.status.idle": "2024-04-08T19:12:28.642167Z", + "shell.execute_reply": "2024-04-08T19:12:28.641727Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.244487Z", - "iopub.status.busy": "2024-04-06T04:33:49.244090Z", - "iopub.status.idle": "2024-04-06T04:33:49.337248Z", - "shell.execute_reply": "2024-04-06T04:33:49.336579Z" + "iopub.execute_input": "2024-04-08T19:12:28.644151Z", + "iopub.status.busy": "2024-04-08T19:12:28.643835Z", + "iopub.status.idle": "2024-04-08T19:12:28.738961Z", + "shell.execute_reply": "2024-04-08T19:12:28.738341Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.339846Z", - "iopub.status.busy": "2024-04-06T04:33:49.339620Z", - "iopub.status.idle": "2024-04-06T04:33:49.430742Z", - "shell.execute_reply": "2024-04-06T04:33:49.430143Z" + "iopub.execute_input": "2024-04-08T19:12:28.741750Z", + "iopub.status.busy": "2024-04-08T19:12:28.741263Z", + "iopub.status.idle": "2024-04-08T19:12:28.827551Z", + "shell.execute_reply": "2024-04-08T19:12:28.826947Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.432983Z", - "iopub.status.busy": "2024-04-06T04:33:49.432697Z", - "iopub.status.idle": "2024-04-06T04:33:49.645127Z", - "shell.execute_reply": "2024-04-06T04:33:49.644551Z" + "iopub.execute_input": "2024-04-08T19:12:28.829915Z", + "iopub.status.busy": "2024-04-08T19:12:28.829683Z", + "iopub.status.idle": "2024-04-08T19:12:29.038522Z", + "shell.execute_reply": "2024-04-08T19:12:29.037949Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.647536Z", - "iopub.status.busy": "2024-04-06T04:33:49.647110Z", - "iopub.status.idle": "2024-04-06T04:33:49.836451Z", - "shell.execute_reply": "2024-04-06T04:33:49.835806Z" + "iopub.execute_input": "2024-04-08T19:12:29.040910Z", + "iopub.status.busy": "2024-04-08T19:12:29.040732Z", + "iopub.status.idle": "2024-04-08T19:12:29.214576Z", + "shell.execute_reply": "2024-04-08T19:12:29.213963Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.838935Z", - "iopub.status.busy": "2024-04-06T04:33:49.838446Z", - "iopub.status.idle": "2024-04-06T04:33:49.845067Z", - "shell.execute_reply": "2024-04-06T04:33:49.844540Z" + "iopub.execute_input": "2024-04-08T19:12:29.217044Z", + "iopub.status.busy": "2024-04-08T19:12:29.216667Z", + "iopub.status.idle": "2024-04-08T19:12:29.222938Z", + "shell.execute_reply": "2024-04-08T19:12:29.222502Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:49.847230Z", - "iopub.status.busy": "2024-04-06T04:33:49.846825Z", - "iopub.status.idle": "2024-04-06T04:33:50.065771Z", - "shell.execute_reply": "2024-04-06T04:33:50.065168Z" + "iopub.execute_input": "2024-04-08T19:12:29.224909Z", + "iopub.status.busy": "2024-04-08T19:12:29.224587Z", + "iopub.status.idle": "2024-04-08T19:12:29.437683Z", + "shell.execute_reply": "2024-04-08T19:12:29.437115Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:50.068226Z", - "iopub.status.busy": "2024-04-06T04:33:50.067840Z", - "iopub.status.idle": "2024-04-06T04:33:51.143014Z", - "shell.execute_reply": "2024-04-06T04:33:51.142387Z" + "iopub.execute_input": "2024-04-08T19:12:29.439974Z", + "iopub.status.busy": "2024-04-08T19:12:29.439567Z", + "iopub.status.idle": "2024-04-08T19:12:30.486127Z", + "shell.execute_reply": "2024-04-08T19:12:30.485508Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index f2ec4a55c..a709c4ddc 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:54.655001Z", - "iopub.status.busy": "2024-04-06T04:33:54.654839Z", - "iopub.status.idle": "2024-04-06T04:33:55.737154Z", - "shell.execute_reply": "2024-04-06T04:33:55.736607Z" + "iopub.execute_input": "2024-04-08T19:12:33.752421Z", + "iopub.status.busy": "2024-04-08T19:12:33.752248Z", + "iopub.status.idle": "2024-04-08T19:12:34.830539Z", + "shell.execute_reply": "2024-04-08T19:12:34.829972Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.739856Z", - "iopub.status.busy": "2024-04-06T04:33:55.739430Z", - "iopub.status.idle": "2024-04-06T04:33:55.742481Z", - "shell.execute_reply": "2024-04-06T04:33:55.741958Z" + "iopub.execute_input": "2024-04-08T19:12:34.833064Z", + "iopub.status.busy": "2024-04-08T19:12:34.832801Z", + "iopub.status.idle": "2024-04-08T19:12:34.835936Z", + "shell.execute_reply": "2024-04-08T19:12:34.835405Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.744755Z", - "iopub.status.busy": "2024-04-06T04:33:55.744422Z", - "iopub.status.idle": "2024-04-06T04:33:55.752051Z", - "shell.execute_reply": "2024-04-06T04:33:55.751620Z" + "iopub.execute_input": "2024-04-08T19:12:34.837888Z", + "iopub.status.busy": "2024-04-08T19:12:34.837708Z", + "iopub.status.idle": "2024-04-08T19:12:34.845722Z", + "shell.execute_reply": "2024-04-08T19:12:34.845317Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.754050Z", - "iopub.status.busy": "2024-04-06T04:33:55.753666Z", - "iopub.status.idle": "2024-04-06T04:33:55.808130Z", - "shell.execute_reply": "2024-04-06T04:33:55.807549Z" + "iopub.execute_input": "2024-04-08T19:12:34.847573Z", + "iopub.status.busy": "2024-04-08T19:12:34.847397Z", + "iopub.status.idle": "2024-04-08T19:12:34.894104Z", + "shell.execute_reply": "2024-04-08T19:12:34.893588Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.810525Z", - "iopub.status.busy": "2024-04-06T04:33:55.810206Z", - "iopub.status.idle": "2024-04-06T04:33:55.827426Z", - "shell.execute_reply": "2024-04-06T04:33:55.826967Z" + "iopub.execute_input": "2024-04-08T19:12:34.896019Z", + "iopub.status.busy": "2024-04-08T19:12:34.895834Z", + "iopub.status.idle": "2024-04-08T19:12:34.912597Z", + "shell.execute_reply": "2024-04-08T19:12:34.912094Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.829293Z", - "iopub.status.busy": "2024-04-06T04:33:55.829117Z", - "iopub.status.idle": "2024-04-06T04:33:55.833052Z", - "shell.execute_reply": "2024-04-06T04:33:55.832518Z" + "iopub.execute_input": "2024-04-08T19:12:34.914647Z", + "iopub.status.busy": "2024-04-08T19:12:34.914307Z", + "iopub.status.idle": "2024-04-08T19:12:34.917956Z", + "shell.execute_reply": "2024-04-08T19:12:34.917438Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.835165Z", - "iopub.status.busy": "2024-04-06T04:33:55.834833Z", - "iopub.status.idle": "2024-04-06T04:33:55.865218Z", - "shell.execute_reply": "2024-04-06T04:33:55.864706Z" + "iopub.execute_input": "2024-04-08T19:12:34.919974Z", + "iopub.status.busy": "2024-04-08T19:12:34.919671Z", + "iopub.status.idle": "2024-04-08T19:12:34.946169Z", + "shell.execute_reply": "2024-04-08T19:12:34.945655Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.867653Z", - "iopub.status.busy": "2024-04-06T04:33:55.867231Z", - "iopub.status.idle": "2024-04-06T04:33:55.894195Z", - "shell.execute_reply": "2024-04-06T04:33:55.893624Z" + "iopub.execute_input": "2024-04-08T19:12:34.948155Z", + "iopub.status.busy": "2024-04-08T19:12:34.947833Z", + "iopub.status.idle": "2024-04-08T19:12:34.973985Z", + "shell.execute_reply": "2024-04-08T19:12:34.973459Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:55.896247Z", - "iopub.status.busy": "2024-04-06T04:33:55.896066Z", - "iopub.status.idle": "2024-04-06T04:33:57.627098Z", - "shell.execute_reply": "2024-04-06T04:33:57.626566Z" + "iopub.execute_input": "2024-04-08T19:12:34.976074Z", + "iopub.status.busy": "2024-04-08T19:12:34.975781Z", + "iopub.status.idle": "2024-04-08T19:12:36.687655Z", + "shell.execute_reply": "2024-04-08T19:12:36.687110Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.629758Z", - "iopub.status.busy": "2024-04-06T04:33:57.629236Z", - "iopub.status.idle": "2024-04-06T04:33:57.636079Z", - "shell.execute_reply": "2024-04-06T04:33:57.635555Z" + "iopub.execute_input": "2024-04-08T19:12:36.690165Z", + "iopub.status.busy": "2024-04-08T19:12:36.689693Z", + "iopub.status.idle": "2024-04-08T19:12:36.696336Z", + "shell.execute_reply": "2024-04-08T19:12:36.695815Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.638210Z", - "iopub.status.busy": "2024-04-06T04:33:57.637876Z", - "iopub.status.idle": "2024-04-06T04:33:57.650276Z", - "shell.execute_reply": "2024-04-06T04:33:57.649820Z" + "iopub.execute_input": "2024-04-08T19:12:36.698324Z", + "iopub.status.busy": "2024-04-08T19:12:36.698034Z", + "iopub.status.idle": "2024-04-08T19:12:36.710339Z", + "shell.execute_reply": "2024-04-08T19:12:36.709902Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.652252Z", - "iopub.status.busy": "2024-04-06T04:33:57.651928Z", - "iopub.status.idle": "2024-04-06T04:33:57.658292Z", - "shell.execute_reply": "2024-04-06T04:33:57.657737Z" + "iopub.execute_input": "2024-04-08T19:12:36.712346Z", + "iopub.status.busy": "2024-04-08T19:12:36.711929Z", + "iopub.status.idle": "2024-04-08T19:12:36.718208Z", + "shell.execute_reply": "2024-04-08T19:12:36.717694Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.660348Z", - "iopub.status.busy": "2024-04-06T04:33:57.660033Z", - "iopub.status.idle": "2024-04-06T04:33:57.662546Z", - "shell.execute_reply": "2024-04-06T04:33:57.662096Z" + "iopub.execute_input": "2024-04-08T19:12:36.720257Z", + "iopub.status.busy": "2024-04-08T19:12:36.719972Z", + "iopub.status.idle": "2024-04-08T19:12:36.722551Z", + "shell.execute_reply": "2024-04-08T19:12:36.722114Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.664568Z", - "iopub.status.busy": "2024-04-06T04:33:57.664236Z", - "iopub.status.idle": "2024-04-06T04:33:57.667775Z", - "shell.execute_reply": "2024-04-06T04:33:57.667336Z" + "iopub.execute_input": "2024-04-08T19:12:36.724389Z", + "iopub.status.busy": "2024-04-08T19:12:36.724098Z", + "iopub.status.idle": "2024-04-08T19:12:36.727537Z", + "shell.execute_reply": "2024-04-08T19:12:36.727025Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.669724Z", - "iopub.status.busy": "2024-04-06T04:33:57.669426Z", - "iopub.status.idle": "2024-04-06T04:33:57.672060Z", - "shell.execute_reply": "2024-04-06T04:33:57.671546Z" + "iopub.execute_input": "2024-04-08T19:12:36.729415Z", + "iopub.status.busy": "2024-04-08T19:12:36.729242Z", + "iopub.status.idle": "2024-04-08T19:12:36.731642Z", + "shell.execute_reply": "2024-04-08T19:12:36.731237Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.673964Z", - "iopub.status.busy": "2024-04-06T04:33:57.673653Z", - "iopub.status.idle": "2024-04-06T04:33:57.677802Z", - "shell.execute_reply": "2024-04-06T04:33:57.677364Z" + "iopub.execute_input": "2024-04-08T19:12:36.733573Z", + "iopub.status.busy": "2024-04-08T19:12:36.733257Z", + "iopub.status.idle": "2024-04-08T19:12:36.737118Z", + "shell.execute_reply": "2024-04-08T19:12:36.736613Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.679746Z", - "iopub.status.busy": "2024-04-06T04:33:57.679562Z", - "iopub.status.idle": "2024-04-06T04:33:57.708692Z", - "shell.execute_reply": "2024-04-06T04:33:57.708184Z" + "iopub.execute_input": "2024-04-08T19:12:36.739150Z", + "iopub.status.busy": "2024-04-08T19:12:36.738829Z", + "iopub.status.idle": "2024-04-08T19:12:36.767384Z", + "shell.execute_reply": "2024-04-08T19:12:36.766867Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:33:57.711548Z", - "iopub.status.busy": "2024-04-06T04:33:57.711062Z", - "iopub.status.idle": "2024-04-06T04:33:57.716161Z", - "shell.execute_reply": "2024-04-06T04:33:57.715701Z" + "iopub.execute_input": "2024-04-08T19:12:36.769379Z", + "iopub.status.busy": "2024-04-08T19:12:36.769213Z", + "iopub.status.idle": "2024-04-08T19:12:36.773887Z", + "shell.execute_reply": "2024-04-08T19:12:36.773364Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index e4f3da5a6..93017979b 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:00.530023Z", - "iopub.status.busy": "2024-04-06T04:34:00.529838Z", - "iopub.status.idle": "2024-04-06T04:34:01.665208Z", - "shell.execute_reply": "2024-04-06T04:34:01.664664Z" + "iopub.execute_input": "2024-04-08T19:12:39.372434Z", + "iopub.status.busy": "2024-04-08T19:12:39.372031Z", + "iopub.status.idle": "2024-04-08T19:12:40.491618Z", + "shell.execute_reply": "2024-04-08T19:12:40.491005Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:01.667949Z", - "iopub.status.busy": "2024-04-06T04:34:01.667372Z", - "iopub.status.idle": "2024-04-06T04:34:01.860713Z", - "shell.execute_reply": "2024-04-06T04:34:01.860104Z" + "iopub.execute_input": "2024-04-08T19:12:40.494221Z", + "iopub.status.busy": "2024-04-08T19:12:40.493824Z", + "iopub.status.idle": "2024-04-08T19:12:40.685279Z", + "shell.execute_reply": "2024-04-08T19:12:40.684689Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:01.863387Z", - "iopub.status.busy": "2024-04-06T04:34:01.863099Z", - "iopub.status.idle": "2024-04-06T04:34:01.876408Z", - "shell.execute_reply": "2024-04-06T04:34:01.875857Z" + "iopub.execute_input": "2024-04-08T19:12:40.688253Z", + "iopub.status.busy": "2024-04-08T19:12:40.687653Z", + "iopub.status.idle": "2024-04-08T19:12:40.701124Z", + "shell.execute_reply": "2024-04-08T19:12:40.700676Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:01.878382Z", - "iopub.status.busy": "2024-04-06T04:34:01.878075Z", - "iopub.status.idle": "2024-04-06T04:34:04.553375Z", - "shell.execute_reply": "2024-04-06T04:34:04.552763Z" + "iopub.execute_input": "2024-04-08T19:12:40.703173Z", + "iopub.status.busy": "2024-04-08T19:12:40.702854Z", + "iopub.status.idle": "2024-04-08T19:12:43.329249Z", + "shell.execute_reply": "2024-04-08T19:12:43.328755Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:04.555866Z", - "iopub.status.busy": "2024-04-06T04:34:04.555447Z", - "iopub.status.idle": "2024-04-06T04:34:05.899176Z", - "shell.execute_reply": "2024-04-06T04:34:05.898628Z" + "iopub.execute_input": "2024-04-08T19:12:43.331514Z", + "iopub.status.busy": "2024-04-08T19:12:43.331169Z", + "iopub.status.idle": "2024-04-08T19:12:44.670891Z", + "shell.execute_reply": "2024-04-08T19:12:44.670276Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:05.901446Z", - "iopub.status.busy": "2024-04-06T04:34:05.901252Z", - "iopub.status.idle": "2024-04-06T04:34:05.905303Z", - "shell.execute_reply": "2024-04-06T04:34:05.904832Z" + "iopub.execute_input": "2024-04-08T19:12:44.673413Z", + "iopub.status.busy": "2024-04-08T19:12:44.673216Z", + "iopub.status.idle": "2024-04-08T19:12:44.677262Z", + "shell.execute_reply": "2024-04-08T19:12:44.676816Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:05.907229Z", - "iopub.status.busy": "2024-04-06T04:34:05.906935Z", - "iopub.status.idle": "2024-04-06T04:34:07.727455Z", - "shell.execute_reply": "2024-04-06T04:34:07.726870Z" + "iopub.execute_input": "2024-04-08T19:12:44.679281Z", + "iopub.status.busy": "2024-04-08T19:12:44.678982Z", + "iopub.status.idle": "2024-04-08T19:12:46.437869Z", + "shell.execute_reply": "2024-04-08T19:12:46.437260Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:07.730219Z", - "iopub.status.busy": "2024-04-06T04:34:07.729486Z", - "iopub.status.idle": "2024-04-06T04:34:07.737826Z", - "shell.execute_reply": "2024-04-06T04:34:07.737345Z" + "iopub.execute_input": "2024-04-08T19:12:46.440643Z", + "iopub.status.busy": "2024-04-08T19:12:46.440072Z", + "iopub.status.idle": "2024-04-08T19:12:46.448250Z", + "shell.execute_reply": "2024-04-08T19:12:46.447724Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:07.739895Z", - "iopub.status.busy": "2024-04-06T04:34:07.739580Z", - "iopub.status.idle": "2024-04-06T04:34:10.345477Z", - "shell.execute_reply": "2024-04-06T04:34:10.344972Z" + "iopub.execute_input": "2024-04-08T19:12:46.450615Z", + "iopub.status.busy": "2024-04-08T19:12:46.450220Z", + "iopub.status.idle": "2024-04-08T19:12:49.029942Z", + "shell.execute_reply": "2024-04-08T19:12:49.029325Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:10.347724Z", - "iopub.status.busy": "2024-04-06T04:34:10.347360Z", - "iopub.status.idle": "2024-04-06T04:34:10.351001Z", - "shell.execute_reply": "2024-04-06T04:34:10.350556Z" + "iopub.execute_input": "2024-04-08T19:12:49.032160Z", + "iopub.status.busy": "2024-04-08T19:12:49.031822Z", + "iopub.status.idle": "2024-04-08T19:12:49.035518Z", + "shell.execute_reply": "2024-04-08T19:12:49.035071Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:10.352909Z", - "iopub.status.busy": "2024-04-06T04:34:10.352732Z", - "iopub.status.idle": "2024-04-06T04:34:10.357176Z", - "shell.execute_reply": "2024-04-06T04:34:10.356760Z" + "iopub.execute_input": "2024-04-08T19:12:49.037498Z", + "iopub.status.busy": "2024-04-08T19:12:49.037171Z", + "iopub.status.idle": "2024-04-08T19:12:49.041048Z", + "shell.execute_reply": "2024-04-08T19:12:49.040619Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:10.359140Z", - "iopub.status.busy": "2024-04-06T04:34:10.358816Z", - "iopub.status.idle": "2024-04-06T04:34:10.361865Z", - "shell.execute_reply": "2024-04-06T04:34:10.361423Z" + "iopub.execute_input": "2024-04-08T19:12:49.042924Z", + "iopub.status.busy": "2024-04-08T19:12:49.042604Z", + "iopub.status.idle": "2024-04-08T19:12:49.045672Z", + "shell.execute_reply": "2024-04-08T19:12:49.045228Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index a41b44c5c..b290d6163 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:12.844775Z", - "iopub.status.busy": "2024-04-06T04:34:12.844311Z", - "iopub.status.idle": "2024-04-06T04:34:13.980776Z", - "shell.execute_reply": "2024-04-06T04:34:13.980176Z" + "iopub.execute_input": "2024-04-08T19:12:51.506697Z", + "iopub.status.busy": "2024-04-08T19:12:51.506534Z", + "iopub.status.idle": "2024-04-08T19:12:52.637000Z", + "shell.execute_reply": "2024-04-08T19:12:52.636397Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:13.983263Z", - "iopub.status.busy": "2024-04-06T04:34:13.983016Z", - "iopub.status.idle": "2024-04-06T04:34:15.579622Z", - "shell.execute_reply": "2024-04-06T04:34:15.579010Z" + "iopub.execute_input": "2024-04-08T19:12:52.639569Z", + "iopub.status.busy": "2024-04-08T19:12:52.639309Z", + "iopub.status.idle": "2024-04-08T19:12:55.104415Z", + "shell.execute_reply": "2024-04-08T19:12:55.103670Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:15.582324Z", - "iopub.status.busy": "2024-04-06T04:34:15.581949Z", - "iopub.status.idle": "2024-04-06T04:34:15.585226Z", - "shell.execute_reply": "2024-04-06T04:34:15.584699Z" + "iopub.execute_input": "2024-04-08T19:12:55.107140Z", + "iopub.status.busy": "2024-04-08T19:12:55.106931Z", + "iopub.status.idle": "2024-04-08T19:12:55.110341Z", + "shell.execute_reply": "2024-04-08T19:12:55.109801Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:15.587256Z", - "iopub.status.busy": "2024-04-06T04:34:15.586885Z", - "iopub.status.idle": "2024-04-06T04:34:15.593670Z", - "shell.execute_reply": "2024-04-06T04:34:15.593228Z" + "iopub.execute_input": "2024-04-08T19:12:55.112430Z", + "iopub.status.busy": "2024-04-08T19:12:55.112060Z", + "iopub.status.idle": "2024-04-08T19:12:55.118161Z", + "shell.execute_reply": "2024-04-08T19:12:55.117642Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:15.595551Z", - "iopub.status.busy": "2024-04-06T04:34:15.595372Z", - "iopub.status.idle": "2024-04-06T04:34:16.077823Z", - "shell.execute_reply": "2024-04-06T04:34:16.077255Z" + "iopub.execute_input": "2024-04-08T19:12:55.120250Z", + "iopub.status.busy": "2024-04-08T19:12:55.119951Z", + "iopub.status.idle": "2024-04-08T19:12:55.604414Z", + "shell.execute_reply": "2024-04-08T19:12:55.603862Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:16.079945Z", - "iopub.status.busy": "2024-04-06T04:34:16.079765Z", - "iopub.status.idle": "2024-04-06T04:34:16.085000Z", - "shell.execute_reply": "2024-04-06T04:34:16.084559Z" + "iopub.execute_input": "2024-04-08T19:12:55.607305Z", + "iopub.status.busy": "2024-04-08T19:12:55.606952Z", + "iopub.status.idle": "2024-04-08T19:12:55.612116Z", + "shell.execute_reply": "2024-04-08T19:12:55.611686Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:16.086986Z", - "iopub.status.busy": "2024-04-06T04:34:16.086699Z", - "iopub.status.idle": "2024-04-06T04:34:16.090564Z", - "shell.execute_reply": "2024-04-06T04:34:16.090132Z" + "iopub.execute_input": "2024-04-08T19:12:55.614134Z", + "iopub.status.busy": "2024-04-08T19:12:55.613824Z", + "iopub.status.idle": "2024-04-08T19:12:55.617419Z", + "shell.execute_reply": "2024-04-08T19:12:55.617014Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:16.092402Z", - "iopub.status.busy": "2024-04-06T04:34:16.092226Z", - "iopub.status.idle": "2024-04-06T04:34:16.742313Z", - "shell.execute_reply": "2024-04-06T04:34:16.741698Z" + "iopub.execute_input": "2024-04-08T19:12:55.619403Z", + "iopub.status.busy": "2024-04-08T19:12:55.619145Z", + "iopub.status.idle": "2024-04-08T19:12:56.292272Z", + "shell.execute_reply": "2024-04-08T19:12:56.291640Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:16.744425Z", - "iopub.status.busy": "2024-04-06T04:34:16.744233Z", - "iopub.status.idle": "2024-04-06T04:34:16.915555Z", - "shell.execute_reply": "2024-04-06T04:34:16.915036Z" + "iopub.execute_input": "2024-04-08T19:12:56.294743Z", + "iopub.status.busy": "2024-04-08T19:12:56.294368Z", + "iopub.status.idle": "2024-04-08T19:12:56.451834Z", + "shell.execute_reply": "2024-04-08T19:12:56.451237Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:16.917406Z", - "iopub.status.busy": "2024-04-06T04:34:16.917231Z", - "iopub.status.idle": "2024-04-06T04:34:16.921449Z", - "shell.execute_reply": "2024-04-06T04:34:16.921026Z" + "iopub.execute_input": "2024-04-08T19:12:56.454163Z", + "iopub.status.busy": "2024-04-08T19:12:56.453784Z", + "iopub.status.idle": "2024-04-08T19:12:56.458257Z", + "shell.execute_reply": "2024-04-08T19:12:56.457717Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:16.923486Z", - "iopub.status.busy": "2024-04-06T04:34:16.923119Z", - "iopub.status.idle": "2024-04-06T04:34:17.368354Z", - "shell.execute_reply": "2024-04-06T04:34:17.367768Z" + "iopub.execute_input": "2024-04-08T19:12:56.460284Z", + "iopub.status.busy": "2024-04-08T19:12:56.459945Z", + "iopub.status.idle": "2024-04-08T19:12:56.918547Z", + "shell.execute_reply": "2024-04-08T19:12:56.917913Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:17.371163Z", - "iopub.status.busy": "2024-04-06T04:34:17.370822Z", - "iopub.status.idle": "2024-04-06T04:34:17.674268Z", - "shell.execute_reply": "2024-04-06T04:34:17.673692Z" + "iopub.execute_input": "2024-04-08T19:12:56.921651Z", + "iopub.status.busy": "2024-04-08T19:12:56.921292Z", + "iopub.status.idle": "2024-04-08T19:12:57.253473Z", + "shell.execute_reply": "2024-04-08T19:12:57.252856Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:17.676624Z", - "iopub.status.busy": "2024-04-06T04:34:17.676303Z", - "iopub.status.idle": "2024-04-06T04:34:18.037637Z", - "shell.execute_reply": "2024-04-06T04:34:18.037134Z" + "iopub.execute_input": "2024-04-08T19:12:57.255657Z", + "iopub.status.busy": "2024-04-08T19:12:57.255478Z", + "iopub.status.idle": "2024-04-08T19:12:57.619053Z", + "shell.execute_reply": "2024-04-08T19:12:57.618466Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:18.040616Z", - "iopub.status.busy": "2024-04-06T04:34:18.040298Z", - "iopub.status.idle": "2024-04-06T04:34:18.480221Z", - "shell.execute_reply": "2024-04-06T04:34:18.479710Z" + "iopub.execute_input": "2024-04-08T19:12:57.621976Z", + "iopub.status.busy": "2024-04-08T19:12:57.621623Z", + "iopub.status.idle": "2024-04-08T19:12:58.060261Z", + "shell.execute_reply": "2024-04-08T19:12:58.059741Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:18.484224Z", - "iopub.status.busy": "2024-04-06T04:34:18.483951Z", - "iopub.status.idle": "2024-04-06T04:34:18.910308Z", - "shell.execute_reply": "2024-04-06T04:34:18.909828Z" + "iopub.execute_input": "2024-04-08T19:12:58.064403Z", + "iopub.status.busy": "2024-04-08T19:12:58.064187Z", + "iopub.status.idle": "2024-04-08T19:12:58.481716Z", + "shell.execute_reply": "2024-04-08T19:12:58.481166Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:18.912281Z", - "iopub.status.busy": "2024-04-06T04:34:18.912098Z", - "iopub.status.idle": "2024-04-06T04:34:19.127034Z", - "shell.execute_reply": "2024-04-06T04:34:19.126447Z" + "iopub.execute_input": "2024-04-08T19:12:58.484504Z", + "iopub.status.busy": "2024-04-08T19:12:58.484329Z", + "iopub.status.idle": "2024-04-08T19:12:58.698454Z", + "shell.execute_reply": "2024-04-08T19:12:58.697889Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:19.129044Z", - "iopub.status.busy": "2024-04-06T04:34:19.128856Z", - "iopub.status.idle": "2024-04-06T04:34:19.327498Z", - "shell.execute_reply": "2024-04-06T04:34:19.327017Z" + "iopub.execute_input": "2024-04-08T19:12:58.700764Z", + "iopub.status.busy": "2024-04-08T19:12:58.700331Z", + "iopub.status.idle": "2024-04-08T19:12:58.897447Z", + "shell.execute_reply": "2024-04-08T19:12:58.896906Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:19.329747Z", - "iopub.status.busy": "2024-04-06T04:34:19.329569Z", - "iopub.status.idle": "2024-04-06T04:34:19.332430Z", - "shell.execute_reply": "2024-04-06T04:34:19.332000Z" + "iopub.execute_input": "2024-04-08T19:12:58.899675Z", + "iopub.status.busy": "2024-04-08T19:12:58.899273Z", + "iopub.status.idle": "2024-04-08T19:12:58.902127Z", + "shell.execute_reply": "2024-04-08T19:12:58.901613Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:19.334383Z", - "iopub.status.busy": "2024-04-06T04:34:19.334059Z", - "iopub.status.idle": "2024-04-06T04:34:20.209133Z", - "shell.execute_reply": "2024-04-06T04:34:20.208555Z" + "iopub.execute_input": "2024-04-08T19:12:58.904091Z", + "iopub.status.busy": "2024-04-08T19:12:58.903780Z", + "iopub.status.idle": "2024-04-08T19:12:59.779761Z", + "shell.execute_reply": "2024-04-08T19:12:59.779165Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:20.211448Z", - "iopub.status.busy": "2024-04-06T04:34:20.211008Z", - "iopub.status.idle": "2024-04-06T04:34:20.342519Z", - "shell.execute_reply": "2024-04-06T04:34:20.342095Z" + "iopub.execute_input": "2024-04-08T19:12:59.782264Z", + "iopub.status.busy": "2024-04-08T19:12:59.781937Z", + "iopub.status.idle": "2024-04-08T19:12:59.964112Z", + "shell.execute_reply": "2024-04-08T19:12:59.963525Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:20.344524Z", - "iopub.status.busy": "2024-04-06T04:34:20.344193Z", - "iopub.status.idle": "2024-04-06T04:34:20.458465Z", - "shell.execute_reply": "2024-04-06T04:34:20.457952Z" + "iopub.execute_input": "2024-04-08T19:12:59.966448Z", + "iopub.status.busy": "2024-04-08T19:12:59.965968Z", + "iopub.status.idle": "2024-04-08T19:13:00.154653Z", + "shell.execute_reply": "2024-04-08T19:13:00.154036Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:20.460533Z", - "iopub.status.busy": "2024-04-06T04:34:20.460222Z", - "iopub.status.idle": "2024-04-06T04:34:21.196312Z", - "shell.execute_reply": "2024-04-06T04:34:21.195737Z" + "iopub.execute_input": "2024-04-08T19:13:00.156712Z", + "iopub.status.busy": "2024-04-08T19:13:00.156532Z", + "iopub.status.idle": "2024-04-08T19:13:00.829599Z", + "shell.execute_reply": "2024-04-08T19:13:00.829059Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:21.198485Z", - "iopub.status.busy": "2024-04-06T04:34:21.198170Z", - "iopub.status.idle": "2024-04-06T04:34:21.201764Z", - "shell.execute_reply": "2024-04-06T04:34:21.201234Z" + "iopub.execute_input": "2024-04-08T19:13:00.832154Z", + "iopub.status.busy": "2024-04-08T19:13:00.831662Z", + "iopub.status.idle": "2024-04-08T19:13:00.835999Z", + "shell.execute_reply": "2024-04-08T19:13:00.835484Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 3d4c5d8af..5348041dc 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -746,7 +746,7 @@

    2. Pre-process the Cifar10 dataset
    -100%|██████████| 170498071/170498071 [00:02<00:00, 72776359.59it/s]
    +100%|██████████| 170498071/170498071 [00:04<00:00, 37601665.95it/s]
     
    -
    +
    @@ -1090,7 +1090,7 @@

    4. Use cleanlab and here.

    diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index dff88146d..c8a250110 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:23.301443Z", - "iopub.status.busy": "2024-04-06T04:34:23.301280Z", - "iopub.status.idle": "2024-04-06T04:34:25.945799Z", - "shell.execute_reply": "2024-04-06T04:34:25.945183Z" + "iopub.execute_input": "2024-04-08T19:13:03.168340Z", + "iopub.status.busy": "2024-04-08T19:13:03.168171Z", + "iopub.status.idle": "2024-04-08T19:13:05.872246Z", + "shell.execute_reply": "2024-04-08T19:13:05.871721Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:25.948528Z", - "iopub.status.busy": "2024-04-06T04:34:25.948218Z", - "iopub.status.idle": "2024-04-06T04:34:26.266936Z", - "shell.execute_reply": "2024-04-06T04:34:26.266392Z" + "iopub.execute_input": "2024-04-08T19:13:05.874860Z", + "iopub.status.busy": "2024-04-08T19:13:05.874355Z", + "iopub.status.idle": "2024-04-08T19:13:06.204418Z", + "shell.execute_reply": "2024-04-08T19:13:06.203821Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:26.269348Z", - "iopub.status.busy": "2024-04-06T04:34:26.269036Z", - "iopub.status.idle": "2024-04-06T04:34:26.272997Z", - "shell.execute_reply": "2024-04-06T04:34:26.272583Z" + "iopub.execute_input": "2024-04-08T19:13:06.206962Z", + "iopub.status.busy": "2024-04-08T19:13:06.206657Z", + "iopub.status.idle": "2024-04-08T19:13:06.210651Z", + "shell.execute_reply": "2024-04-08T19:13:06.210217Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:26.275074Z", - "iopub.status.busy": "2024-04-06T04:34:26.274739Z", - "iopub.status.idle": "2024-04-06T04:34:31.314624Z", - "shell.execute_reply": "2024-04-06T04:34:31.314110Z" + "iopub.execute_input": "2024-04-08T19:13:06.212643Z", + "iopub.status.busy": "2024-04-08T19:13:06.212236Z", + "iopub.status.idle": "2024-04-08T19:13:14.211316Z", + "shell.execute_reply": "2024-04-08T19:13:14.210735Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1769472/170498071 [00:00<00:09, 17538639.93it/s]" + " 0%| | 32768/170498071 [00:00<11:46, 241421.69it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 8192000/170498071 [00:00<00:03, 44831466.83it/s]" + " 0%| | 229376/170498071 [00:00<03:01, 939950.18it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 13041664/170498071 [00:00<00:03, 46433907.51it/s]" + " 1%| | 884736/170498071 [00:00<01:03, 2688209.96it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 19791872/170498071 [00:00<00:02, 54704480.34it/s]" + " 2%|▏ | 3538944/170498071 [00:00<00:18, 9239543.74it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 25788416/170498071 [00:00<00:02, 56333002.76it/s]" + " 6%|▌ | 9633792/170498071 [00:00<00:07, 21711409.29it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 31424512/170498071 [00:00<00:02, 55036228.43it/s]" + " 9%|▉ | 15695872/170498071 [00:00<00:04, 32236184.47it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37978112/170498071 [00:00<00:02, 58347764.86it/s]" + " 11%|█▏ | 19202048/170498071 [00:00<00:04, 31213118.98it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 43843584/170498071 [00:00<00:02, 56723331.51it/s]" + " 15%|█▍ | 25165824/170498071 [00:01<00:03, 36748958.36it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 49676288/170498071 [00:00<00:02, 57186066.18it/s]" + " 17%|█▋ | 29196288/170498071 [00:01<00:03, 37692490.20it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 56197120/170498071 [00:01<00:01, 59520956.47it/s]" + " 20%|██ | 34471936/170498071 [00:01<00:03, 41145514.19it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 62193664/170498071 [00:01<00:01, 55914267.41it/s]" + " 23%|██▎ | 38699008/170498071 [00:01<00:03, 40166399.16it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 68943872/170498071 [00:01<00:01, 59219350.19it/s]" + " 26%|██▌ | 43909120/170498071 [00:01<00:02, 43337775.10it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 77758464/170498071 [00:01<00:01, 67611548.92it/s]" + " 28%|██▊ | 48332800/170498071 [00:01<00:02, 41475797.12it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 87556096/170498071 [00:01<00:01, 76485308.02it/s]" + " 31%|███ | 52822016/170498071 [00:01<00:02, 42394898.27it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 98697216/170498071 [00:01<00:00, 86783379.22it/s]" + " 33%|███▎ | 57114624/170498071 [00:01<00:02, 40475978.10it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 107642880/170498071 [00:01<00:00, 87414535.88it/s]" + " 36%|███▌ | 61571072/170498071 [00:01<00:02, 41609620.80it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 117768192/170498071 [00:01<00:00, 91407747.36it/s]" + " 39%|███▊ | 65863680/170498071 [00:02<00:02, 39729349.49it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 127565824/170498071 [00:01<00:00, 93045985.07it/s]" + " 41%|████▏ | 70418432/170498071 [00:02<00:02, 41333024.63it/s]" ] }, { @@ -396,7 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 136904704/170498071 [00:01<00:00, 88471190.33it/s]" + " 44%|████▍ | 74809344/170498071 [00:02<00:02, 42035778.22it/s]" ] }, { @@ -404,7 +404,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 146505728/170498071 [00:02<00:00, 90636821.57it/s]" + " 46%|████▋ | 79069184/170498071 [00:02<00:02, 40305702.80it/s]" ] }, { @@ -412,7 +412,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 155648000/170498071 [00:02<00:00, 86904824.23it/s]" + " 49%|████▉ | 83427328/170498071 [00:02<00:02, 41196757.42it/s]" ] }, { @@ -420,7 +420,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 165478400/170498071 [00:02<00:00, 90092503.62it/s]" + " 51%|█████▏ | 87588864/170498071 [00:02<00:02, 39637138.62it/s]" ] }, { @@ -428,7 +428,151 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 72776359.59it/s]" + " 54%|█████▍ | 91881472/170498071 [00:02<00:01, 40536471.23it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▋ | 95977472/170498071 [00:02<00:01, 39252273.66it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 59%|█████▉ | 100466688/170498071 [00:02<00:01, 40454041.31it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▏ | 104955904/170498071 [00:02<00:01, 39445045.53it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 64%|██████▍ | 109510656/170498071 [00:03<00:01, 41083281.40it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 67%|██████▋ | 113803264/170498071 [00:03<00:01, 41583370.05it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 69%|██████▉ | 117997568/170498071 [00:03<00:01, 40073702.55it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 72%|███████▏ | 122290176/170498071 [00:03<00:01, 40828624.13it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 74%|███████▍ | 126418944/170498071 [00:03<00:01, 39461562.96it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 77%|███████▋ | 130744320/170498071 [00:03<00:00, 40509967.30it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 79%|███████▉ | 135266304/170498071 [00:03<00:00, 41845498.05it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 82%|████████▏ | 139493376/170498071 [00:03<00:00, 40939532.66it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 85%|████████▍ | 144211968/170498071 [00:03<00:00, 42696106.22it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 148504576/170498071 [00:04<00:00, 41635041.16it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|████████▉ | 152961024/170498071 [00:04<00:00, 42468713.05it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▏| 157253632/170498071 [00:04<00:00, 42241843.01it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▍| 161939456/170498071 [00:04<00:00, 43462412.29it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 166297600/170498071 [00:04<00:00, 43386976.71it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:04<00:00, 37601665.95it/s]" ] }, { @@ -546,10 +690,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:31.316844Z", - "iopub.status.busy": "2024-04-06T04:34:31.316485Z", - "iopub.status.idle": "2024-04-06T04:34:31.321190Z", - "shell.execute_reply": "2024-04-06T04:34:31.320736Z" + "iopub.execute_input": "2024-04-08T19:13:14.213408Z", + "iopub.status.busy": "2024-04-08T19:13:14.213222Z", + "iopub.status.idle": "2024-04-08T19:13:14.217828Z", + "shell.execute_reply": "2024-04-08T19:13:14.217410Z" }, "nbsphinx": "hidden" }, @@ -600,10 +744,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:31.323414Z", - "iopub.status.busy": "2024-04-06T04:34:31.323024Z", - "iopub.status.idle": "2024-04-06T04:34:31.843073Z", - "shell.execute_reply": "2024-04-06T04:34:31.842461Z" + "iopub.execute_input": "2024-04-08T19:13:14.219646Z", + "iopub.status.busy": "2024-04-08T19:13:14.219474Z", + "iopub.status.idle": "2024-04-08T19:13:14.735288Z", + "shell.execute_reply": "2024-04-08T19:13:14.734716Z" } }, "outputs": [ @@ -636,10 +780,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:31.845476Z", - "iopub.status.busy": "2024-04-06T04:34:31.845122Z", - "iopub.status.idle": "2024-04-06T04:34:32.343468Z", - "shell.execute_reply": "2024-04-06T04:34:32.342863Z" + "iopub.execute_input": "2024-04-08T19:13:14.737482Z", + "iopub.status.busy": "2024-04-08T19:13:14.737170Z", + "iopub.status.idle": "2024-04-08T19:13:15.227922Z", + "shell.execute_reply": "2024-04-08T19:13:15.227323Z" } }, "outputs": [ @@ -677,10 +821,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:32.345737Z", - "iopub.status.busy": "2024-04-06T04:34:32.345520Z", - "iopub.status.idle": "2024-04-06T04:34:32.349079Z", - "shell.execute_reply": "2024-04-06T04:34:32.348636Z" + "iopub.execute_input": "2024-04-08T19:13:15.229967Z", + "iopub.status.busy": "2024-04-08T19:13:15.229777Z", + "iopub.status.idle": "2024-04-08T19:13:15.233685Z", + "shell.execute_reply": "2024-04-08T19:13:15.233276Z" } }, "outputs": [], @@ -703,17 +847,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:32.351161Z", - "iopub.status.busy": "2024-04-06T04:34:32.350840Z", - "iopub.status.idle": "2024-04-06T04:34:45.259522Z", - "shell.execute_reply": "2024-04-06T04:34:45.258934Z" + "iopub.execute_input": "2024-04-08T19:13:15.235578Z", + "iopub.status.busy": "2024-04-08T19:13:15.235253Z", + "iopub.status.idle": "2024-04-08T19:13:27.791114Z", + "shell.execute_reply": "2024-04-08T19:13:27.790500Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "991b461cb5f14fa38412734f4f788575", + "model_id": "2bb5503dd8b443508a98689b99426ed1", "version_major": 2, "version_minor": 0 }, @@ -772,10 +916,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:45.261911Z", - "iopub.status.busy": "2024-04-06T04:34:45.261529Z", - "iopub.status.idle": "2024-04-06T04:34:46.966878Z", - "shell.execute_reply": "2024-04-06T04:34:46.966282Z" + "iopub.execute_input": "2024-04-08T19:13:27.793604Z", + "iopub.status.busy": "2024-04-08T19:13:27.793211Z", + "iopub.status.idle": "2024-04-08T19:13:29.587802Z", + "shell.execute_reply": "2024-04-08T19:13:29.587253Z" } }, "outputs": [ @@ -819,10 +963,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:46.969590Z", - "iopub.status.busy": "2024-04-06T04:34:46.969163Z", - "iopub.status.idle": "2024-04-06T04:34:47.194956Z", - "shell.execute_reply": "2024-04-06T04:34:47.194388Z" + "iopub.execute_input": "2024-04-08T19:13:29.590598Z", + "iopub.status.busy": "2024-04-08T19:13:29.590127Z", + "iopub.status.idle": "2024-04-08T19:13:29.858111Z", + "shell.execute_reply": "2024-04-08T19:13:29.857584Z" } }, "outputs": [ @@ -858,10 +1002,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:47.197286Z", - "iopub.status.busy": "2024-04-06T04:34:47.197100Z", - "iopub.status.idle": "2024-04-06T04:34:47.844542Z", - "shell.execute_reply": "2024-04-06T04:34:47.843965Z" + "iopub.execute_input": "2024-04-08T19:13:29.861034Z", + "iopub.status.busy": "2024-04-08T19:13:29.860632Z", + "iopub.status.idle": "2024-04-08T19:13:30.577484Z", + "shell.execute_reply": "2024-04-08T19:13:30.576958Z" } }, "outputs": [ @@ -911,10 +1055,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:47.847025Z", - "iopub.status.busy": "2024-04-06T04:34:47.846663Z", - "iopub.status.idle": "2024-04-06T04:34:48.133586Z", - "shell.execute_reply": "2024-04-06T04:34:48.133164Z" + "iopub.execute_input": "2024-04-08T19:13:30.580265Z", + "iopub.status.busy": "2024-04-08T19:13:30.579691Z", + "iopub.status.idle": "2024-04-08T19:13:30.924605Z", + "shell.execute_reply": "2024-04-08T19:13:30.924026Z" } }, "outputs": [ @@ -962,10 +1106,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:48.135743Z", - "iopub.status.busy": "2024-04-06T04:34:48.135451Z", - "iopub.status.idle": "2024-04-06T04:34:48.362823Z", - "shell.execute_reply": "2024-04-06T04:34:48.362258Z" + "iopub.execute_input": "2024-04-08T19:13:30.926999Z", + "iopub.status.busy": "2024-04-08T19:13:30.926574Z", + "iopub.status.idle": "2024-04-08T19:13:31.175317Z", + "shell.execute_reply": "2024-04-08T19:13:31.174782Z" } }, "outputs": [ @@ -1021,10 +1165,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:48.365290Z", - "iopub.status.busy": "2024-04-06T04:34:48.364817Z", - "iopub.status.idle": "2024-04-06T04:34:48.441430Z", - "shell.execute_reply": "2024-04-06T04:34:48.440837Z" + "iopub.execute_input": "2024-04-08T19:13:31.177937Z", + "iopub.status.busy": "2024-04-08T19:13:31.177576Z", + "iopub.status.idle": "2024-04-08T19:13:31.272978Z", + "shell.execute_reply": "2024-04-08T19:13:31.272473Z" } }, "outputs": [], @@ -1045,10 +1189,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:48.444056Z", - "iopub.status.busy": "2024-04-06T04:34:48.443776Z", - "iopub.status.idle": "2024-04-06T04:34:58.624130Z", - "shell.execute_reply": "2024-04-06T04:34:58.623554Z" + "iopub.execute_input": "2024-04-08T19:13:31.275519Z", + "iopub.status.busy": "2024-04-08T19:13:31.275167Z", + "iopub.status.idle": "2024-04-08T19:13:41.679014Z", + "shell.execute_reply": "2024-04-08T19:13:41.678397Z" } }, "outputs": [ @@ -1085,10 +1229,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:34:58.626457Z", - "iopub.status.busy": "2024-04-06T04:34:58.626142Z", - "iopub.status.idle": "2024-04-06T04:35:00.411515Z", - "shell.execute_reply": "2024-04-06T04:35:00.411019Z" + "iopub.execute_input": "2024-04-08T19:13:41.681464Z", + "iopub.status.busy": "2024-04-08T19:13:41.681014Z", + "iopub.status.idle": "2024-04-08T19:13:43.393278Z", + "shell.execute_reply": "2024-04-08T19:13:43.392676Z" } }, "outputs": [ @@ -1119,10 +1263,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:00.414250Z", - "iopub.status.busy": "2024-04-06T04:35:00.413656Z", - "iopub.status.idle": "2024-04-06T04:35:00.626834Z", - "shell.execute_reply": "2024-04-06T04:35:00.626355Z" + "iopub.execute_input": "2024-04-08T19:13:43.395878Z", + "iopub.status.busy": "2024-04-08T19:13:43.395510Z", + "iopub.status.idle": "2024-04-08T19:13:43.601564Z", + "shell.execute_reply": "2024-04-08T19:13:43.600964Z" } }, "outputs": [], @@ -1136,10 +1280,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:00.629326Z", - "iopub.status.busy": "2024-04-06T04:35:00.628902Z", - "iopub.status.idle": "2024-04-06T04:35:00.632039Z", - "shell.execute_reply": "2024-04-06T04:35:00.631618Z" + "iopub.execute_input": "2024-04-08T19:13:43.604043Z", + "iopub.status.busy": "2024-04-08T19:13:43.603730Z", + "iopub.status.idle": "2024-04-08T19:13:43.606880Z", + "shell.execute_reply": "2024-04-08T19:13:43.606367Z" } }, "outputs": [], @@ -1161,10 +1305,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:00.634061Z", - "iopub.status.busy": "2024-04-06T04:35:00.633729Z", - "iopub.status.idle": "2024-04-06T04:35:00.641703Z", - "shell.execute_reply": "2024-04-06T04:35:00.641295Z" + "iopub.execute_input": "2024-04-08T19:13:43.609039Z", + "iopub.status.busy": "2024-04-08T19:13:43.608752Z", + "iopub.status.idle": "2024-04-08T19:13:43.617066Z", + "shell.execute_reply": "2024-04-08T19:13:43.616668Z" }, "nbsphinx": "hidden" }, @@ -1209,7 +1353,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "15c8db426b2d442dafc5fec0ada46d26": { + "007c6ddc44eb433e853f88ed09044f49": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1262,7 +1406,7 @@ "width": null } }, - "18e0c03543334359bae24bc35d678719": { + "086fdb340ddc44499e840c6359ce1479": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1280,7 +1424,30 @@ "text_color": null } }, - "5888f59c5c7747d284d2a1179b08220a": { + "0c6902059f6d43049f050a70f2c4d5ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_007c6ddc44eb433e853f88ed09044f49", + "placeholder": "​", + "style": "IPY_MODEL_8e6e75da45e94500ac3664d6571c19a5", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 261MB/s]" + } + }, + "0c87bf09ff7545318077176d0bc67dc5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1333,53 +1500,31 @@ "width": null } }, - "62503695057042fe9e46cf6d976cf0ec": { + "2bb5503dd8b443508a98689b99426ed1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dc69440eba354ce18f5a8f226872b05a", - "placeholder": "​", - "style": "IPY_MODEL_18e0c03543334359bae24bc35d678719", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 180MB/s]" - } - }, - "66a60ffdadfe43c49835a3149977dd23": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5888f59c5c7747d284d2a1179b08220a", - "placeholder": "​", - "style": "IPY_MODEL_a901c8deef634fefa5bf50b380005288", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b99b680885934cdfa31bc3a843e20724", + "IPY_MODEL_f15ac1823a7f4e549da71d08245aa9b2", + "IPY_MODEL_0c6902059f6d43049f050a70f2c4d5ed" + ], + "layout": "IPY_MODEL_0c87bf09ff7545318077176d0bc67dc5", "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" + "tooltip": null } }, - "710b50fb237d4bfa800dd8ccca2aa500": { + "3897024bcca245b1bc58655ded2b9bc5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1432,57 +1577,7 @@ "width": null } }, - "721bf251193348b0a2bc03a41fa88621": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_710b50fb237d4bfa800dd8ccca2aa500", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ad6af0ebf6a84194902f8859297785ed", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "991b461cb5f14fa38412734f4f788575": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_66a60ffdadfe43c49835a3149977dd23", - "IPY_MODEL_721bf251193348b0a2bc03a41fa88621", - "IPY_MODEL_62503695057042fe9e46cf6d976cf0ec" - ], - "layout": "IPY_MODEL_15c8db426b2d442dafc5fec0ada46d26", - "tabbable": null, - "tooltip": null - } - }, - "a901c8deef634fefa5bf50b380005288": { + "8e6e75da45e94500ac3664d6571c19a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1500,23 +1595,30 @@ "text_color": null } }, - "ad6af0ebf6a84194902f8859297785ed": { + "b99b680885934cdfa31bc3a843e20724": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3897024bcca245b1bc58655ded2b9bc5", + "placeholder": "​", + "style": "IPY_MODEL_086fdb340ddc44499e840c6359ce1479", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" } }, - "dc69440eba354ce18f5a8f226872b05a": { + "c8047222b06d47abb1cddbdcb8b6aaff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1568,6 +1670,48 @@ "visibility": null, "width": null } + }, + "f15ac1823a7f4e549da71d08245aa9b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c8047222b06d47abb1cddbdcb8b6aaff", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fb1f241a35b74a80a9334872055927bc", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "fb1f241a35b74a80a9334872055927bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index bac3e263c..673215d3c 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:04.945916Z", - "iopub.status.busy": "2024-04-06T04:35:04.945744Z", - "iopub.status.idle": "2024-04-06T04:35:06.052331Z", - "shell.execute_reply": "2024-04-06T04:35:06.051744Z" + "iopub.execute_input": "2024-04-08T19:13:47.803397Z", + "iopub.status.busy": "2024-04-08T19:13:47.802938Z", + "iopub.status.idle": "2024-04-08T19:13:48.925278Z", + "shell.execute_reply": "2024-04-08T19:13:48.924752Z" }, "nbsphinx": "hidden" }, @@ -117,7 +117,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.054800Z", - "iopub.status.busy": "2024-04-06T04:35:06.054557Z", - "iopub.status.idle": "2024-04-06T04:35:06.072120Z", - "shell.execute_reply": "2024-04-06T04:35:06.071716Z" + "iopub.execute_input": "2024-04-08T19:13:48.927915Z", + "iopub.status.busy": "2024-04-08T19:13:48.927470Z", + "iopub.status.idle": "2024-04-08T19:13:48.945021Z", + "shell.execute_reply": "2024-04-08T19:13:48.944602Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.074202Z", - "iopub.status.busy": "2024-04-06T04:35:06.073811Z", - "iopub.status.idle": "2024-04-06T04:35:06.076794Z", - "shell.execute_reply": "2024-04-06T04:35:06.076351Z" + "iopub.execute_input": "2024-04-08T19:13:48.947242Z", + "iopub.status.busy": "2024-04-08T19:13:48.946736Z", + "iopub.status.idle": "2024-04-08T19:13:48.949732Z", + "shell.execute_reply": "2024-04-08T19:13:48.949294Z" }, "nbsphinx": "hidden" }, @@ -199,10 +199,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.078868Z", - "iopub.status.busy": "2024-04-06T04:35:06.078492Z", - "iopub.status.idle": "2024-04-06T04:35:06.208916Z", - "shell.execute_reply": "2024-04-06T04:35:06.208494Z" + "iopub.execute_input": "2024-04-08T19:13:48.951557Z", + "iopub.status.busy": "2024-04-08T19:13:48.951388Z", + "iopub.status.idle": "2024-04-08T19:13:49.150115Z", + "shell.execute_reply": "2024-04-08T19:13:49.149617Z" } }, "outputs": [ @@ -375,10 +375,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.211100Z", - "iopub.status.busy": "2024-04-06T04:35:06.210666Z", - "iopub.status.idle": "2024-04-06T04:35:06.392965Z", - "shell.execute_reply": "2024-04-06T04:35:06.392412Z" + "iopub.execute_input": "2024-04-08T19:13:49.152258Z", + "iopub.status.busy": "2024-04-08T19:13:49.151925Z", + "iopub.status.idle": "2024-04-08T19:13:49.328521Z", + "shell.execute_reply": "2024-04-08T19:13:49.328018Z" }, "nbsphinx": "hidden" }, @@ -418,10 +418,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.395403Z", - "iopub.status.busy": "2024-04-06T04:35:06.395013Z", - "iopub.status.idle": "2024-04-06T04:35:06.638949Z", - "shell.execute_reply": "2024-04-06T04:35:06.638348Z" + "iopub.execute_input": "2024-04-08T19:13:49.330913Z", + "iopub.status.busy": "2024-04-08T19:13:49.330551Z", + "iopub.status.idle": "2024-04-08T19:13:49.538644Z", + "shell.execute_reply": "2024-04-08T19:13:49.538041Z" } }, "outputs": [ @@ -457,10 +457,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.641297Z", - "iopub.status.busy": "2024-04-06T04:35:06.640953Z", - "iopub.status.idle": "2024-04-06T04:35:06.645580Z", - "shell.execute_reply": "2024-04-06T04:35:06.645032Z" + "iopub.execute_input": "2024-04-08T19:13:49.540725Z", + "iopub.status.busy": "2024-04-08T19:13:49.540437Z", + "iopub.status.idle": "2024-04-08T19:13:49.544691Z", + "shell.execute_reply": "2024-04-08T19:13:49.544278Z" } }, "outputs": [], @@ -478,10 +478,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.647781Z", - "iopub.status.busy": "2024-04-06T04:35:06.647427Z", - "iopub.status.idle": "2024-04-06T04:35:06.654351Z", - "shell.execute_reply": "2024-04-06T04:35:06.653847Z" + "iopub.execute_input": "2024-04-08T19:13:49.546581Z", + "iopub.status.busy": "2024-04-08T19:13:49.546300Z", + "iopub.status.idle": "2024-04-08T19:13:49.552461Z", + "shell.execute_reply": "2024-04-08T19:13:49.552021Z" } }, "outputs": [], @@ -528,10 +528,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.656526Z", - "iopub.status.busy": "2024-04-06T04:35:06.656127Z", - "iopub.status.idle": "2024-04-06T04:35:06.658766Z", - "shell.execute_reply": "2024-04-06T04:35:06.658318Z" + "iopub.execute_input": "2024-04-08T19:13:49.554456Z", + "iopub.status.busy": "2024-04-08T19:13:49.554124Z", + "iopub.status.idle": "2024-04-08T19:13:49.556701Z", + "shell.execute_reply": "2024-04-08T19:13:49.556278Z" } }, "outputs": [], @@ -546,10 +546,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:06.660791Z", - "iopub.status.busy": "2024-04-06T04:35:06.660469Z", - "iopub.status.idle": "2024-04-06T04:35:14.877273Z", - "shell.execute_reply": "2024-04-06T04:35:14.876740Z" + "iopub.execute_input": "2024-04-08T19:13:49.558519Z", + "iopub.status.busy": "2024-04-08T19:13:49.558220Z", + "iopub.status.idle": "2024-04-08T19:13:57.783852Z", + "shell.execute_reply": "2024-04-08T19:13:57.783248Z" } }, "outputs": [], @@ -573,10 +573,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:14.880136Z", - "iopub.status.busy": "2024-04-06T04:35:14.879546Z", - "iopub.status.idle": "2024-04-06T04:35:14.886452Z", - "shell.execute_reply": "2024-04-06T04:35:14.885981Z" + "iopub.execute_input": "2024-04-08T19:13:57.787203Z", + "iopub.status.busy": "2024-04-08T19:13:57.786649Z", + "iopub.status.idle": "2024-04-08T19:13:57.794488Z", + "shell.execute_reply": "2024-04-08T19:13:57.794042Z" } }, "outputs": [ @@ -679,10 +679,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:14.888384Z", - "iopub.status.busy": "2024-04-06T04:35:14.888208Z", - "iopub.status.idle": "2024-04-06T04:35:14.891854Z", - "shell.execute_reply": "2024-04-06T04:35:14.891406Z" + "iopub.execute_input": "2024-04-08T19:13:57.796488Z", + "iopub.status.busy": "2024-04-08T19:13:57.796215Z", + "iopub.status.idle": "2024-04-08T19:13:57.799641Z", + "shell.execute_reply": "2024-04-08T19:13:57.799235Z" } }, "outputs": [], @@ -697,10 +697,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:14.893970Z", - "iopub.status.busy": "2024-04-06T04:35:14.893580Z", - "iopub.status.idle": "2024-04-06T04:35:14.896696Z", - "shell.execute_reply": "2024-04-06T04:35:14.896194Z" + "iopub.execute_input": "2024-04-08T19:13:57.801520Z", + "iopub.status.busy": "2024-04-08T19:13:57.801263Z", + "iopub.status.idle": "2024-04-08T19:13:57.804571Z", + "shell.execute_reply": "2024-04-08T19:13:57.804133Z" } }, "outputs": [ @@ -735,10 +735,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:14.898553Z", - "iopub.status.busy": "2024-04-06T04:35:14.898382Z", - "iopub.status.idle": "2024-04-06T04:35:14.901388Z", - "shell.execute_reply": "2024-04-06T04:35:14.900951Z" + "iopub.execute_input": "2024-04-08T19:13:57.806527Z", + "iopub.status.busy": "2024-04-08T19:13:57.806223Z", + "iopub.status.idle": "2024-04-08T19:13:57.809258Z", + "shell.execute_reply": "2024-04-08T19:13:57.808725Z" } }, "outputs": [], @@ -757,10 +757,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:14.903150Z", - "iopub.status.busy": "2024-04-06T04:35:14.902982Z", - "iopub.status.idle": "2024-04-06T04:35:14.910845Z", - "shell.execute_reply": "2024-04-06T04:35:14.910300Z" + "iopub.execute_input": "2024-04-08T19:13:57.811263Z", + "iopub.status.busy": "2024-04-08T19:13:57.810959Z", + "iopub.status.idle": "2024-04-08T19:13:57.818786Z", + "shell.execute_reply": "2024-04-08T19:13:57.818238Z" } }, "outputs": [ @@ -884,10 +884,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:14.912783Z", - "iopub.status.busy": "2024-04-06T04:35:14.912607Z", - "iopub.status.idle": "2024-04-06T04:35:14.915272Z", - "shell.execute_reply": "2024-04-06T04:35:14.914817Z" + "iopub.execute_input": "2024-04-08T19:13:57.820889Z", + "iopub.status.busy": "2024-04-08T19:13:57.820509Z", + "iopub.status.idle": "2024-04-08T19:13:57.823238Z", + "shell.execute_reply": "2024-04-08T19:13:57.822711Z" }, "nbsphinx": "hidden" }, @@ -922,10 +922,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:14.917066Z", - "iopub.status.busy": "2024-04-06T04:35:14.916896Z", - "iopub.status.idle": "2024-04-06T04:35:15.039512Z", - "shell.execute_reply": "2024-04-06T04:35:15.038973Z" + "iopub.execute_input": "2024-04-08T19:13:57.825125Z", + "iopub.status.busy": "2024-04-08T19:13:57.824848Z", + "iopub.status.idle": "2024-04-08T19:13:57.944411Z", + "shell.execute_reply": "2024-04-08T19:13:57.943830Z" } }, "outputs": [ @@ -964,10 +964,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:15.041688Z", - "iopub.status.busy": "2024-04-06T04:35:15.041372Z", - "iopub.status.idle": "2024-04-06T04:35:15.143758Z", - "shell.execute_reply": "2024-04-06T04:35:15.143187Z" + "iopub.execute_input": "2024-04-08T19:13:57.946652Z", + "iopub.status.busy": "2024-04-08T19:13:57.946416Z", + "iopub.status.idle": "2024-04-08T19:13:58.050381Z", + "shell.execute_reply": "2024-04-08T19:13:58.049796Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:15.146009Z", - "iopub.status.busy": "2024-04-06T04:35:15.145689Z", - "iopub.status.idle": "2024-04-06T04:35:15.632674Z", - "shell.execute_reply": "2024-04-06T04:35:15.632055Z" + "iopub.execute_input": "2024-04-08T19:13:58.052902Z", + "iopub.status.busy": "2024-04-08T19:13:58.052525Z", + "iopub.status.idle": "2024-04-08T19:13:58.541282Z", + "shell.execute_reply": "2024-04-08T19:13:58.540644Z" } }, "outputs": [], @@ -1042,10 +1042,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:15.635337Z", - "iopub.status.busy": "2024-04-06T04:35:15.634992Z", - "iopub.status.idle": "2024-04-06T04:35:15.743506Z", - "shell.execute_reply": "2024-04-06T04:35:15.742910Z" + "iopub.execute_input": "2024-04-08T19:13:58.544024Z", + "iopub.status.busy": "2024-04-08T19:13:58.543626Z", + "iopub.status.idle": "2024-04-08T19:13:58.648994Z", + "shell.execute_reply": "2024-04-08T19:13:58.648352Z" } }, "outputs": [ @@ -1080,10 +1080,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:15.745851Z", - "iopub.status.busy": "2024-04-06T04:35:15.745490Z", - "iopub.status.idle": "2024-04-06T04:35:15.753696Z", - "shell.execute_reply": "2024-04-06T04:35:15.753263Z" + "iopub.execute_input": "2024-04-08T19:13:58.651502Z", + "iopub.status.busy": "2024-04-08T19:13:58.651135Z", + "iopub.status.idle": "2024-04-08T19:13:58.659988Z", + "shell.execute_reply": "2024-04-08T19:13:58.659533Z" } }, "outputs": [ @@ -1190,10 +1190,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:15.755695Z", - "iopub.status.busy": "2024-04-06T04:35:15.755367Z", - "iopub.status.idle": "2024-04-06T04:35:15.758042Z", - "shell.execute_reply": "2024-04-06T04:35:15.757595Z" + "iopub.execute_input": "2024-04-08T19:13:58.661959Z", + "iopub.status.busy": "2024-04-08T19:13:58.661702Z", + "iopub.status.idle": "2024-04-08T19:13:58.664433Z", + "shell.execute_reply": "2024-04-08T19:13:58.663997Z" }, "nbsphinx": "hidden" }, @@ -1218,10 +1218,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:15.760007Z", - "iopub.status.busy": "2024-04-06T04:35:15.759679Z", - "iopub.status.idle": "2024-04-06T04:35:21.169503Z", - "shell.execute_reply": "2024-04-06T04:35:21.168860Z" + "iopub.execute_input": "2024-04-08T19:13:58.666308Z", + "iopub.status.busy": "2024-04-08T19:13:58.666060Z", + "iopub.status.idle": "2024-04-08T19:14:04.108369Z", + "shell.execute_reply": "2024-04-08T19:14:04.107772Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:21.172001Z", - "iopub.status.busy": "2024-04-06T04:35:21.171800Z", - "iopub.status.idle": "2024-04-06T04:35:21.180339Z", - "shell.execute_reply": "2024-04-06T04:35:21.179868Z" + "iopub.execute_input": "2024-04-08T19:14:04.110851Z", + "iopub.status.busy": "2024-04-08T19:14:04.110406Z", + "iopub.status.idle": "2024-04-08T19:14:04.119270Z", + "shell.execute_reply": "2024-04-08T19:14:04.118848Z" } }, "outputs": [ @@ -1377,10 +1377,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:21.182362Z", - "iopub.status.busy": "2024-04-06T04:35:21.182047Z", - "iopub.status.idle": "2024-04-06T04:35:21.256060Z", - "shell.execute_reply": "2024-04-06T04:35:21.255579Z" + "iopub.execute_input": "2024-04-08T19:14:04.121410Z", + "iopub.status.busy": "2024-04-08T19:14:04.120984Z", + "iopub.status.idle": "2024-04-08T19:14:04.185861Z", + "shell.execute_reply": "2024-04-08T19:14:04.185384Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 60b73eda9..ed3c1520a 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -766,13 +766,13 @@

    3. Use cleanlab to find label issues

    -
    +
    -
    +

    Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

    @@ -1162,7 +1162,7 @@

    Get label quality scores -{"state": {"a6b9abd68857477cbdc3898a45b7c10f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40eb33493e30499e97354717869f83be": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "28dfa37fd60e430591dba8d65770190b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a6b9abd68857477cbdc3898a45b7c10f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_40eb33493e30499e97354717869f83be", "tabbable": null, "tooltip": null, "value": 30.0}}, "7f6b7ffd00bb4a2caab3b50683296936": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cbbaae80c54e40cabbdb2edd591551d4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "621c7249a2054bf59226e64a4b8f7081": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7f6b7ffd00bb4a2caab3b50683296936", "placeholder": "\u200b", "style": "IPY_MODEL_cbbaae80c54e40cabbdb2edd591551d4", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "06ef42058bc7433ca11271d89630261f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60b778a0ef8e44b39608af38b47ca860": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7e7920af14e54024b17aa6179ca38f35": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_06ef42058bc7433ca11271d89630261f", "placeholder": "\u200b", "style": "IPY_MODEL_60b778a0ef8e44b39608af38b47ca860", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007407.39it/s]"}}, "4ad7bb286eca4c09948bb75a92a76c29": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "430f85b602e34595b215cff777f2e22c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_621c7249a2054bf59226e64a4b8f7081", "IPY_MODEL_28dfa37fd60e430591dba8d65770190b", "IPY_MODEL_7e7920af14e54024b17aa6179ca38f35"], "layout": "IPY_MODEL_4ad7bb286eca4c09948bb75a92a76c29", "tabbable": null, "tooltip": null}}, "686826beb1be457bab28c73bcd2ffefb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8db16dbcca284d40921261550c3c9241": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0e3edfaa67be4256bf241604d1fdfd54": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_686826beb1be457bab28c73bcd2ffefb", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8db16dbcca284d40921261550c3c9241", "tabbable": null, "tooltip": null, "value": 30.0}}, "02c8e49579ab4c2cb5010e5d696f7f75": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "646252281ae14f8886cc21d9e56afec5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8b3e196faee64d279374daae7049f9a7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_02c8e49579ab4c2cb5010e5d696f7f75", "placeholder": "\u200b", "style": "IPY_MODEL_646252281ae14f8886cc21d9e56afec5", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "957a7ec883f34696b2479a90a87bdbcb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "562e407d8d8745fc83b37ab7c94d1b60": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2d5ba316556d415b8f9eceaac5bda45b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_957a7ec883f34696b2479a90a87bdbcb", "placeholder": "\u200b", "style": "IPY_MODEL_562e407d8d8745fc83b37ab7c94d1b60", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.41it/s]"}}, "7c0fbc0da1b843e89059929faa931860": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "72840f69ea214918a754b98c138bcd01": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8b3e196faee64d279374daae7049f9a7", "IPY_MODEL_0e3edfaa67be4256bf241604d1fdfd54", "IPY_MODEL_2d5ba316556d415b8f9eceaac5bda45b"], "layout": "IPY_MODEL_7c0fbc0da1b843e89059929faa931860", "tabbable": null, "tooltip": null}}, "60ce120b6f0d4b35939edd06a49b48fa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5bb6200f11d74e33b58d64accf19085f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f5b6a3b6f2474f7c8d2b531dbc37f186": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_60ce120b6f0d4b35939edd06a49b48fa", "max": 4997817.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5bb6200f11d74e33b58d64accf19085f", "tabbable": null, "tooltip": null, "value": 4997817.0}}, "42508acbff6b4c069678d14fb3bb650d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d2dd7b61c9974c56af1e4ae1413f64cf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "20149c21eb1a4d47b708a9f402b4f051": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_42508acbff6b4c069678d14fb3bb650d", "placeholder": "\u200b", "style": "IPY_MODEL_d2dd7b61c9974c56af1e4ae1413f64cf", "tabbable": null, "tooltip": null, "value": "100%"}}, "ea8cdf6af87544368e97f412bed093e3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff45dd3e934e4e0c9f7fa5da7043dbd7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "182b3bcc537c404793b98eb84a4a9fef": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ea8cdf6af87544368e97f412bed093e3", "placeholder": "\u200b", "style": "IPY_MODEL_ff45dd3e934e4e0c9f7fa5da7043dbd7", "tabbable": null, "tooltip": null, "value": "\u20074997817/4997817\u2007[00:32<00:00,\u2007154776.29it/s]"}}, "d2ba7ead109f40f88a0f2fdcd7f79091": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d3ec0bdaf05d45038d515229edd1fce4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_20149c21eb1a4d47b708a9f402b4f051", "IPY_MODEL_f5b6a3b6f2474f7c8d2b531dbc37f186", "IPY_MODEL_182b3bcc537c404793b98eb84a4a9fef"], "layout": "IPY_MODEL_d2ba7ead109f40f88a0f2fdcd7f79091", "tabbable": null, "tooltip": null}}, "2a73fcdba5f1491486544ab0e5fd82f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "83ed95add600447dbcd4112a82b755ac": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "232cb3f4436c4a29aa37462ded23ed0a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a73fcdba5f1491486544ab0e5fd82f6", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_83ed95add600447dbcd4112a82b755ac", "tabbable": null, "tooltip": null, "value": 30.0}}, "70deac36097f491e8666a288db33cf71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f73f43e9ac32458989fecfd81a100778": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "07b675adb016454a9854b4ea300e4cfe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_70deac36097f491e8666a288db33cf71", "placeholder": "\u200b", "style": "IPY_MODEL_f73f43e9ac32458989fecfd81a100778", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "9efde9d20e674f91930d36a8fffde7e0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0ffcaa24253e452f8a885fef873bdcfb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2bc90b79c1364f709f2cc5d8d3ac1a01": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9efde9d20e674f91930d36a8fffde7e0", "placeholder": "\u200b", "style": "IPY_MODEL_0ffcaa24253e452f8a885fef873bdcfb", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.88it/s]"}}, "5b27262a9cd94dcca7fa54df4cceb26a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a41dd8fa1c914418a704a6e5e8be1e2e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_07b675adb016454a9854b4ea300e4cfe", "IPY_MODEL_232cb3f4436c4a29aa37462ded23ed0a", "IPY_MODEL_2bc90b79c1364f709f2cc5d8d3ac1a01"], "layout": "IPY_MODEL_5b27262a9cd94dcca7fa54df4cceb26a", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"b85f1eb5f0e64530870f6fbf949cda91": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d7bd991e20f14b0c98dd8d679d84939c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "365979231dd54217a8aac4a279204067": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b85f1eb5f0e64530870f6fbf949cda91", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d7bd991e20f14b0c98dd8d679d84939c", "tabbable": null, "tooltip": null, "value": 30.0}}, "68c0ed1d2b074054bc0c083b8ccd8a71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6249a51dbc1145c985fed7ad172f3f6f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6b76fce815c1461d9f75cd9b932f9d87": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_68c0ed1d2b074054bc0c083b8ccd8a71", "placeholder": "\u200b", "style": "IPY_MODEL_6249a51dbc1145c985fed7ad172f3f6f", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "99e35d66f5634eb28a74eb5bfa102bde": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "773d8ea77b7443f2ade5b4c99a303fcb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ce77d0d3de7c4b089021754738d5ceb4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_99e35d66f5634eb28a74eb5bfa102bde", "placeholder": "\u200b", "style": "IPY_MODEL_773d8ea77b7443f2ade5b4c99a303fcb", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007405.54it/s]"}}, "5abd50f2ff82441194222375826e37c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f80951daaff1439bae07b22f26431578": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6b76fce815c1461d9f75cd9b932f9d87", "IPY_MODEL_365979231dd54217a8aac4a279204067", "IPY_MODEL_ce77d0d3de7c4b089021754738d5ceb4"], "layout": "IPY_MODEL_5abd50f2ff82441194222375826e37c9", "tabbable": null, "tooltip": null}}, "010891f081ec41c1aabdc9984ea3e880": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "beb83a56568c469189a5939e700e69a4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "83945befc2ec4271af67b93797cadd10": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_010891f081ec41c1aabdc9984ea3e880", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_beb83a56568c469189a5939e700e69a4", "tabbable": null, "tooltip": null, "value": 30.0}}, "b2e6852040e34be68af10fb4a3c2b9a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c4adc9fb2d8c49ab9d863ff53317708d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d2ea6fbb7475458087e30a3aee7c2421": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b2e6852040e34be68af10fb4a3c2b9a7", "placeholder": "\u200b", "style": "IPY_MODEL_c4adc9fb2d8c49ab9d863ff53317708d", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "ffe9b9351b8a4b129d0904a8757b9a46": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc53622cc52741d8bde9b20fe8c9a3c0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "93bd352e7edc4aac8660f540a733e80f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ffe9b9351b8a4b129d0904a8757b9a46", "placeholder": "\u200b", "style": "IPY_MODEL_fc53622cc52741d8bde9b20fe8c9a3c0", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.44it/s]"}}, "e5304a7b2a15495792b3302840dc6164": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4414546b77b44486a511d3a262f3937f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d2ea6fbb7475458087e30a3aee7c2421", "IPY_MODEL_83945befc2ec4271af67b93797cadd10", "IPY_MODEL_93bd352e7edc4aac8660f540a733e80f"], "layout": "IPY_MODEL_e5304a7b2a15495792b3302840dc6164", "tabbable": null, "tooltip": null}}, "380290952081433398d72252f55f3512": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c158f6f873284cbaa7be7bbaebbd7763": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e05c95cfe29749928b6771d970a5fc81": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_380290952081433398d72252f55f3512", "max": 4997817.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c158f6f873284cbaa7be7bbaebbd7763", "tabbable": null, "tooltip": null, "value": 4997817.0}}, "f618acb94c794f1ba33254b732f3da99": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bdd0d707ff2c40a783c34c22c644bff2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5ac2298939434623ab7427ecd71bb845": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f618acb94c794f1ba33254b732f3da99", "placeholder": "\u200b", "style": "IPY_MODEL_bdd0d707ff2c40a783c34c22c644bff2", "tabbable": null, "tooltip": null, "value": "100%"}}, "7388d890f96b440d9df5bb2bcf630681": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99f6441d531f4710baa405c0d7109b5f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "26332d6a8cc44c2e97dbf9c486f38f25": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7388d890f96b440d9df5bb2bcf630681", "placeholder": "\u200b", "style": "IPY_MODEL_99f6441d531f4710baa405c0d7109b5f", "tabbable": null, "tooltip": null, "value": "\u20074997817/4997817\u2007[00:32<00:00,\u2007154803.51it/s]"}}, "40897686e955404f91514151f240c0d0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "71098e13b4334a47bbac4b75032ea150": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5ac2298939434623ab7427ecd71bb845", "IPY_MODEL_e05c95cfe29749928b6771d970a5fc81", "IPY_MODEL_26332d6a8cc44c2e97dbf9c486f38f25"], "layout": "IPY_MODEL_40897686e955404f91514151f240c0d0", "tabbable": null, "tooltip": null}}, "301a3fcd99094c40a1fb9f975619c430": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "332840cfdb9a451ebd2a374dae54e637": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c68ef40a35e04fc39427a9f284523b28": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_301a3fcd99094c40a1fb9f975619c430", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_332840cfdb9a451ebd2a374dae54e637", "tabbable": null, "tooltip": null, "value": 30.0}}, "2c287de703a14c5cb0941da5922a6c41": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1983a07fcf9348578a07d2aee3240441": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2644b4fc5fda48acb706485e94aabc6a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2c287de703a14c5cb0941da5922a6c41", "placeholder": "\u200b", "style": "IPY_MODEL_1983a07fcf9348578a07d2aee3240441", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "001fb5816a074024996ee285412c72e2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dcb3aba2d5ee498da09596d6b1189652": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "328b4d1e22fb41b9be4bc667200a34d2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_001fb5816a074024996ee285412c72e2", "placeholder": "\u200b", "style": "IPY_MODEL_dcb3aba2d5ee498da09596d6b1189652", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.04it/s]"}}, "ef987a4e9c5445f2a1965215131e2de0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "abbf1d8d4dc4498dbba438256d734fad": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2644b4fc5fda48acb706485e94aabc6a", "IPY_MODEL_c68ef40a35e04fc39427a9f284523b28", "IPY_MODEL_328b4d1e22fb41b9be4bc667200a34d2"], "layout": "IPY_MODEL_ef987a4e9c5445f2a1965215131e2de0", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 89e2cb219..7512e088c 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:24.243928Z", - "iopub.status.busy": "2024-04-06T04:35:24.243468Z", - "iopub.status.idle": "2024-04-06T04:35:26.047952Z", - "shell.execute_reply": "2024-04-06T04:35:26.047292Z" + "iopub.execute_input": "2024-04-08T19:14:07.395028Z", + "iopub.status.busy": "2024-04-08T19:14:07.394566Z", + "iopub.status.idle": "2024-04-08T19:14:11.485319Z", + "shell.execute_reply": "2024-04-08T19:14:11.484630Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:35:26.050495Z", - "iopub.status.busy": "2024-04-06T04:35:26.050118Z", - "iopub.status.idle": "2024-04-06T04:36:08.935704Z", - "shell.execute_reply": "2024-04-06T04:36:08.935125Z" + "iopub.execute_input": "2024-04-08T19:14:11.488001Z", + "iopub.status.busy": "2024-04-08T19:14:11.487586Z", + "iopub.status.idle": "2024-04-08T19:15:03.035425Z", + "shell.execute_reply": "2024-04-08T19:15:03.034793Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:36:08.938332Z", - "iopub.status.busy": "2024-04-06T04:36:08.937887Z", - "iopub.status.idle": "2024-04-06T04:36:09.999880Z", - "shell.execute_reply": "2024-04-06T04:36:09.999323Z" + "iopub.execute_input": "2024-04-08T19:15:03.037988Z", + "iopub.status.busy": "2024-04-08T19:15:03.037617Z", + "iopub.status.idle": "2024-04-08T19:15:04.144423Z", + "shell.execute_reply": "2024-04-08T19:15:04.143898Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:36:10.002451Z", - "iopub.status.busy": "2024-04-06T04:36:10.002049Z", - "iopub.status.idle": "2024-04-06T04:36:10.005300Z", - "shell.execute_reply": "2024-04-06T04:36:10.004764Z" + "iopub.execute_input": "2024-04-08T19:15:04.146910Z", + "iopub.status.busy": "2024-04-08T19:15:04.146510Z", + "iopub.status.idle": "2024-04-08T19:15:04.149732Z", + "shell.execute_reply": "2024-04-08T19:15:04.149284Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:36:10.007484Z", - "iopub.status.busy": "2024-04-06T04:36:10.007053Z", - "iopub.status.idle": "2024-04-06T04:36:10.010737Z", - "shell.execute_reply": "2024-04-06T04:36:10.010232Z" + "iopub.execute_input": "2024-04-08T19:15:04.151905Z", + "iopub.status.busy": "2024-04-08T19:15:04.151503Z", + "iopub.status.idle": "2024-04-08T19:15:04.155404Z", + "shell.execute_reply": "2024-04-08T19:15:04.154966Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:36:10.012726Z", - "iopub.status.busy": "2024-04-06T04:36:10.012460Z", - "iopub.status.idle": "2024-04-06T04:36:10.016097Z", - "shell.execute_reply": "2024-04-06T04:36:10.015646Z" + "iopub.execute_input": "2024-04-08T19:15:04.157319Z", + "iopub.status.busy": "2024-04-08T19:15:04.157012Z", + "iopub.status.idle": "2024-04-08T19:15:04.160392Z", + "shell.execute_reply": "2024-04-08T19:15:04.159984Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:36:10.018111Z", - "iopub.status.busy": "2024-04-06T04:36:10.017712Z", - "iopub.status.idle": "2024-04-06T04:36:10.020470Z", - "shell.execute_reply": "2024-04-06T04:36:10.020044Z" + "iopub.execute_input": "2024-04-08T19:15:04.162271Z", + "iopub.status.busy": "2024-04-08T19:15:04.161951Z", + "iopub.status.idle": "2024-04-08T19:15:04.164604Z", + "shell.execute_reply": "2024-04-08T19:15:04.164202Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:36:10.022477Z", - "iopub.status.busy": "2024-04-06T04:36:10.022151Z", - "iopub.status.idle": "2024-04-06T04:37:25.589281Z", - "shell.execute_reply": "2024-04-06T04:37:25.588682Z" + "iopub.execute_input": "2024-04-08T19:15:04.166521Z", + "iopub.status.busy": "2024-04-08T19:15:04.166174Z", + "iopub.status.idle": "2024-04-08T19:16:20.073084Z", + "shell.execute_reply": "2024-04-08T19:16:20.072471Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "430f85b602e34595b215cff777f2e22c", + "model_id": "f80951daaff1439bae07b22f26431578", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "72840f69ea214918a754b98c138bcd01", + "model_id": "4414546b77b44486a511d3a262f3937f", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:37:25.591755Z", - "iopub.status.busy": "2024-04-06T04:37:25.591547Z", - "iopub.status.idle": "2024-04-06T04:37:26.256442Z", - "shell.execute_reply": "2024-04-06T04:37:26.255866Z" + "iopub.execute_input": "2024-04-08T19:16:20.075744Z", + "iopub.status.busy": "2024-04-08T19:16:20.075337Z", + "iopub.status.idle": "2024-04-08T19:16:20.750666Z", + "shell.execute_reply": "2024-04-08T19:16:20.750121Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:37:26.258907Z", - "iopub.status.busy": "2024-04-06T04:37:26.258403Z", - "iopub.status.idle": "2024-04-06T04:37:28.986847Z", - "shell.execute_reply": "2024-04-06T04:37:28.986249Z" + "iopub.execute_input": "2024-04-08T19:16:20.753014Z", + "iopub.status.busy": "2024-04-08T19:16:20.752584Z", + "iopub.status.idle": "2024-04-08T19:16:23.452100Z", + "shell.execute_reply": "2024-04-08T19:16:23.451576Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:37:28.989011Z", - "iopub.status.busy": "2024-04-06T04:37:28.988663Z", - "iopub.status.idle": "2024-04-06T04:38:01.556933Z", - "shell.execute_reply": "2024-04-06T04:38:01.556488Z" + "iopub.execute_input": "2024-04-08T19:16:23.454306Z", + "iopub.status.busy": "2024-04-08T19:16:23.454030Z", + "iopub.status.idle": "2024-04-08T19:16:56.036315Z", + "shell.execute_reply": "2024-04-08T19:16:56.035779Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d3ec0bdaf05d45038d515229edd1fce4", + "model_id": "71098e13b4334a47bbac4b75032ea150", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:01.559018Z", - "iopub.status.busy": "2024-04-06T04:38:01.558830Z", - "iopub.status.idle": "2024-04-06T04:38:15.949783Z", - "shell.execute_reply": "2024-04-06T04:38:15.949244Z" + "iopub.execute_input": "2024-04-08T19:16:56.038307Z", + "iopub.status.busy": "2024-04-08T19:16:56.038128Z", + "iopub.status.idle": "2024-04-08T19:17:10.772843Z", + "shell.execute_reply": "2024-04-08T19:17:10.772275Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:15.952245Z", - "iopub.status.busy": "2024-04-06T04:38:15.951882Z", - "iopub.status.idle": "2024-04-06T04:38:19.737339Z", - "shell.execute_reply": "2024-04-06T04:38:19.736758Z" + "iopub.execute_input": "2024-04-08T19:17:10.775162Z", + "iopub.status.busy": "2024-04-08T19:17:10.774934Z", + "iopub.status.idle": "2024-04-08T19:17:14.602622Z", + "shell.execute_reply": "2024-04-08T19:17:14.602118Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:19.739665Z", - "iopub.status.busy": "2024-04-06T04:38:19.739350Z", - "iopub.status.idle": "2024-04-06T04:38:21.124441Z", - "shell.execute_reply": "2024-04-06T04:38:21.123826Z" + "iopub.execute_input": "2024-04-08T19:17:14.604704Z", + "iopub.status.busy": "2024-04-08T19:17:14.604405Z", + "iopub.status.idle": "2024-04-08T19:17:16.041428Z", + "shell.execute_reply": "2024-04-08T19:17:16.040893Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a41dd8fa1c914418a704a6e5e8be1e2e", + "model_id": "abbf1d8d4dc4498dbba438256d734fad", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:21.126758Z", - "iopub.status.busy": "2024-04-06T04:38:21.126415Z", - "iopub.status.idle": "2024-04-06T04:38:21.155079Z", - "shell.execute_reply": "2024-04-06T04:38:21.154584Z" + "iopub.execute_input": "2024-04-08T19:17:16.043794Z", + "iopub.status.busy": "2024-04-08T19:17:16.043524Z", + "iopub.status.idle": "2024-04-08T19:17:16.075824Z", + "shell.execute_reply": "2024-04-08T19:17:16.075325Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:21.157615Z", - "iopub.status.busy": "2024-04-06T04:38:21.157258Z", - "iopub.status.idle": "2024-04-06T04:38:27.224964Z", - "shell.execute_reply": "2024-04-06T04:38:27.224445Z" + "iopub.execute_input": "2024-04-08T19:17:16.078301Z", + "iopub.status.busy": "2024-04-08T19:17:16.077923Z", + "iopub.status.idle": "2024-04-08T19:17:22.245581Z", + "shell.execute_reply": "2024-04-08T19:17:22.245090Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:27.227144Z", - "iopub.status.busy": "2024-04-06T04:38:27.226803Z", - "iopub.status.idle": "2024-04-06T04:38:27.282607Z", - "shell.execute_reply": "2024-04-06T04:38:27.282076Z" + "iopub.execute_input": "2024-04-08T19:17:22.247739Z", + "iopub.status.busy": "2024-04-08T19:17:22.247405Z", + "iopub.status.idle": "2024-04-08T19:17:22.303831Z", + "shell.execute_reply": "2024-04-08T19:17:22.303283Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02c8e49579ab4c2cb5010e5d696f7f75": { + "001fb5816a074024996ee285412c72e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1091,7 +1091,7 @@ "width": null } }, - "06ef42058bc7433ca11271d89630261f": { + "010891f081ec41c1aabdc9984ea3e880": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1144,56 +1144,7 @@ "width": null } }, - "07b675adb016454a9854b4ea300e4cfe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_70deac36097f491e8666a288db33cf71", - "placeholder": "​", - "style": "IPY_MODEL_f73f43e9ac32458989fecfd81a100778", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "0e3edfaa67be4256bf241604d1fdfd54": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_686826beb1be457bab28c73bcd2ffefb", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8db16dbcca284d40921261550c3c9241", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "0ffcaa24253e452f8a885fef873bdcfb": { + "1983a07fcf9348578a07d2aee3240441": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1211,7 +1162,7 @@ "text_color": null } }, - "182b3bcc537c404793b98eb84a4a9fef": { + "26332d6a8cc44c2e97dbf9c486f38f25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1226,15 +1177,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ea8cdf6af87544368e97f412bed093e3", + "layout": "IPY_MODEL_7388d890f96b440d9df5bb2bcf630681", "placeholder": "​", - "style": "IPY_MODEL_ff45dd3e934e4e0c9f7fa5da7043dbd7", + "style": "IPY_MODEL_99f6441d531f4710baa405c0d7109b5f", "tabbable": null, "tooltip": null, - "value": " 4997817/4997817 [00:32<00:00, 154776.29it/s]" + "value": " 4997817/4997817 [00:32<00:00, 154803.51it/s]" } }, - "20149c21eb1a4d47b708a9f402b4f051": { + "2644b4fc5fda48acb706485e94aabc6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1249,67 +1200,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_42508acbff6b4c069678d14fb3bb650d", + "layout": "IPY_MODEL_2c287de703a14c5cb0941da5922a6c41", "placeholder": "​", - "style": "IPY_MODEL_d2dd7b61c9974c56af1e4ae1413f64cf", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "232cb3f4436c4a29aa37462ded23ed0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a73fcdba5f1491486544ab0e5fd82f6", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_83ed95add600447dbcd4112a82b755ac", + "style": "IPY_MODEL_1983a07fcf9348578a07d2aee3240441", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "images processed using softmin: 100%" } }, - "28dfa37fd60e430591dba8d65770190b": { - "model_module": "@jupyter-widgets/controls", + "2c287de703a14c5cb0941da5922a6c41": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a6b9abd68857477cbdc3898a45b7c10f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_40eb33493e30499e97354717869f83be", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2a73fcdba5f1491486544ab0e5fd82f6": { + "301a3fcd99094c40a1fb9f975619c430": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1362,7 +1314,7 @@ "width": null } }, - "2bc90b79c1364f709f2cc5d8d3ac1a01": { + "328b4d1e22fb41b9be4bc667200a34d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1377,54 +1329,57 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9efde9d20e674f91930d36a8fffde7e0", + "layout": "IPY_MODEL_001fb5816a074024996ee285412c72e2", "placeholder": "​", - "style": "IPY_MODEL_0ffcaa24253e452f8a885fef873bdcfb", + "style": "IPY_MODEL_dcb3aba2d5ee498da09596d6b1189652", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.88it/s]" + "value": " 30/30 [00:01<00:00, 21.04it/s]" } }, - "2d5ba316556d415b8f9eceaac5bda45b": { + "332840cfdb9a451ebd2a374dae54e637": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_957a7ec883f34696b2479a90a87bdbcb", - "placeholder": "​", - "style": "IPY_MODEL_562e407d8d8745fc83b37ab7c94d1b60", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.41it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "40eb33493e30499e97354717869f83be": { + "365979231dd54217a8aac4a279204067": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b85f1eb5f0e64530870f6fbf949cda91", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d7bd991e20f14b0c98dd8d679d84939c", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "42508acbff6b4c069678d14fb3bb650d": { + "380290952081433398d72252f55f3512": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1477,31 +1432,7 @@ "width": null } }, - "430f85b602e34595b215cff777f2e22c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_621c7249a2054bf59226e64a4b8f7081", - "IPY_MODEL_28dfa37fd60e430591dba8d65770190b", - "IPY_MODEL_7e7920af14e54024b17aa6179ca38f35" - ], - "layout": "IPY_MODEL_4ad7bb286eca4c09948bb75a92a76c29", - "tabbable": null, - "tooltip": null - } - }, - "4ad7bb286eca4c09948bb75a92a76c29": { + "40897686e955404f91514151f240c0d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1554,25 +1485,31 @@ "width": null } }, - "562e407d8d8745fc83b37ab7c94d1b60": { + "4414546b77b44486a511d3a262f3937f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d2ea6fbb7475458087e30a3aee7c2421", + "IPY_MODEL_83945befc2ec4271af67b93797cadd10", + "IPY_MODEL_93bd352e7edc4aac8660f540a733e80f" + ], + "layout": "IPY_MODEL_e5304a7b2a15495792b3302840dc6164", + "tabbable": null, + "tooltip": null } }, - "5b27262a9cd94dcca7fa54df4cceb26a": { + "5abd50f2ff82441194222375826e37c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1625,23 +1562,30 @@ "width": null } }, - "5bb6200f11d74e33b58d64accf19085f": { + "5ac2298939434623ab7427ecd71bb845": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f618acb94c794f1ba33254b732f3da99", + "placeholder": "​", + "style": "IPY_MODEL_bdd0d707ff2c40a783c34c22c644bff2", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "60b778a0ef8e44b39608af38b47ca860": { + "6249a51dbc1145c985fed7ad172f3f6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1659,7 +1603,7 @@ "text_color": null } }, - "60ce120b6f0d4b35939edd06a49b48fa": { + "68c0ed1d2b074054bc0c083b8ccd8a71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1712,7 +1656,7 @@ "width": null } }, - "621c7249a2054bf59226e64a4b8f7081": { + "6b76fce815c1461d9f75cd9b932f9d87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1727,33 +1671,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7f6b7ffd00bb4a2caab3b50683296936", + "layout": "IPY_MODEL_68c0ed1d2b074054bc0c083b8ccd8a71", "placeholder": "​", - "style": "IPY_MODEL_cbbaae80c54e40cabbdb2edd591551d4", + "style": "IPY_MODEL_6249a51dbc1145c985fed7ad172f3f6f", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: 100%" } }, - "646252281ae14f8886cc21d9e56afec5": { + "71098e13b4334a47bbac4b75032ea150": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ac2298939434623ab7427ecd71bb845", + "IPY_MODEL_e05c95cfe29749928b6771d970a5fc81", + "IPY_MODEL_26332d6a8cc44c2e97dbf9c486f38f25" + ], + "layout": "IPY_MODEL_40897686e955404f91514151f240c0d0", + "tabbable": null, + "tooltip": null } }, - "686826beb1be457bab28c73bcd2ffefb": { + "7388d890f96b440d9df5bb2bcf630681": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1806,28 +1756,95 @@ "width": null } }, - "70deac36097f491e8666a288db33cf71": { - "model_module": "@jupyter-widgets/base", + "773d8ea77b7443f2ade5b4c99a303fcb": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "83945befc2ec4271af67b93797cadd10": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_010891f081ec41c1aabdc9984ea3e880", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_beb83a56568c469189a5939e700e69a4", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "93bd352e7edc4aac8660f540a733e80f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ffe9b9351b8a4b129d0904a8757b9a46", + "placeholder": "​", + "style": "IPY_MODEL_fc53622cc52741d8bde9b20fe8c9a3c0", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.44it/s]" + } + }, + "99e35d66f5634eb28a74eb5bfa102bde": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, @@ -1859,7 +1876,25 @@ "width": null } }, - "72840f69ea214918a754b98c138bcd01": { + "99f6441d531f4710baa405c0d7109b5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "abbf1d8d4dc4498dbba438256d734fad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1874,16 +1909,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8b3e196faee64d279374daae7049f9a7", - "IPY_MODEL_0e3edfaa67be4256bf241604d1fdfd54", - "IPY_MODEL_2d5ba316556d415b8f9eceaac5bda45b" + "IPY_MODEL_2644b4fc5fda48acb706485e94aabc6a", + "IPY_MODEL_c68ef40a35e04fc39427a9f284523b28", + "IPY_MODEL_328b4d1e22fb41b9be4bc667200a34d2" ], - "layout": "IPY_MODEL_7c0fbc0da1b843e89059929faa931860", + "layout": "IPY_MODEL_ef987a4e9c5445f2a1965215131e2de0", "tabbable": null, "tooltip": null } }, - "7c0fbc0da1b843e89059929faa931860": { + "b2e6852040e34be68af10fb4a3c2b9a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1936,30 +1971,7 @@ "width": null } }, - "7e7920af14e54024b17aa6179ca38f35": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_06ef42058bc7433ca11271d89630261f", - "placeholder": "​", - "style": "IPY_MODEL_60b778a0ef8e44b39608af38b47ca860", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 407.39it/s]" - } - }, - "7f6b7ffd00bb4a2caab3b50683296936": { + "b85f1eb5f0e64530870f6fbf949cda91": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2012,7 +2024,41 @@ "width": null } }, - "83ed95add600447dbcd4112a82b755ac": { + "bdd0d707ff2c40a783c34c22c644bff2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "beb83a56568c469189a5939e700e69a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c158f6f873284cbaa7be7bbaebbd7763": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2028,7 +2074,51 @@ "description_width": "" } }, - "8b3e196faee64d279374daae7049f9a7": { + "c4adc9fb2d8c49ab9d863ff53317708d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c68ef40a35e04fc39427a9f284523b28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_301a3fcd99094c40a1fb9f975619c430", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_332840cfdb9a451ebd2a374dae54e637", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "ce77d0d3de7c4b089021754738d5ceb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2043,15 +2133,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_02c8e49579ab4c2cb5010e5d696f7f75", + "layout": "IPY_MODEL_99e35d66f5634eb28a74eb5bfa102bde", "placeholder": "​", - "style": "IPY_MODEL_646252281ae14f8886cc21d9e56afec5", + "style": "IPY_MODEL_773d8ea77b7443f2ade5b4c99a303fcb", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 405.54it/s]" + } + }, + "d2ea6fbb7475458087e30a3aee7c2421": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b2e6852040e34be68af10fb4a3c2b9a7", + "placeholder": "​", + "style": "IPY_MODEL_c4adc9fb2d8c49ab9d863ff53317708d", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: 100%" } }, - "8db16dbcca284d40921261550c3c9241": { + "d7bd991e20f14b0c98dd8d679d84939c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2067,60 +2180,51 @@ "description_width": "" } }, - "957a7ec883f34696b2479a90a87bdbcb": { - "model_module": "@jupyter-widgets/base", + "dcb3aba2d5ee498da09596d6b1189652": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9efde9d20e674f91930d36a8fffde7e0": { + "e05c95cfe29749928b6771d970a5fc81": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_380290952081433398d72252f55f3512", + "max": 4997817.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c158f6f873284cbaa7be7bbaebbd7763", + "tabbable": null, + "tooltip": null, + "value": 4997817.0 + } + }, + "e5304a7b2a15495792b3302840dc6164": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2173,31 +2277,7 @@ "width": null } }, - "a41dd8fa1c914418a704a6e5e8be1e2e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_07b675adb016454a9854b4ea300e4cfe", - "IPY_MODEL_232cb3f4436c4a29aa37462ded23ed0a", - "IPY_MODEL_2bc90b79c1364f709f2cc5d8d3ac1a01" - ], - "layout": "IPY_MODEL_5b27262a9cd94dcca7fa54df4cceb26a", - "tabbable": null, - "tooltip": null - } - }, - "a6b9abd68857477cbdc3898a45b7c10f": { + "ef987a4e9c5445f2a1965215131e2de0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2250,25 +2330,7 @@ "width": null } }, - "cbbaae80c54e40cabbdb2edd591551d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d2ba7ead109f40f88a0f2fdcd7f79091": { + "f618acb94c794f1ba33254b732f3da99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2321,25 +2383,7 @@ "width": null } }, - "d2dd7b61c9974c56af1e4ae1413f64cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d3ec0bdaf05d45038d515229edd1fce4": { + "f80951daaff1439bae07b22f26431578": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2354,16 +2398,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_20149c21eb1a4d47b708a9f402b4f051", - "IPY_MODEL_f5b6a3b6f2474f7c8d2b531dbc37f186", - "IPY_MODEL_182b3bcc537c404793b98eb84a4a9fef" + "IPY_MODEL_6b76fce815c1461d9f75cd9b932f9d87", + "IPY_MODEL_365979231dd54217a8aac4a279204067", + "IPY_MODEL_ce77d0d3de7c4b089021754738d5ceb4" ], - "layout": "IPY_MODEL_d2ba7ead109f40f88a0f2fdcd7f79091", + "layout": "IPY_MODEL_5abd50f2ff82441194222375826e37c9", "tabbable": null, "tooltip": null } }, - "ea8cdf6af87544368e97f412bed093e3": { + "fc53622cc52741d8bde9b20fe8c9a3c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ffe9b9351b8a4b129d0904a8757b9a46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2415,68 +2477,6 @@ "visibility": null, "width": null } - }, - "f5b6a3b6f2474f7c8d2b531dbc37f186": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_60ce120b6f0d4b35939edd06a49b48fa", - "max": 4997817.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5bb6200f11d74e33b58d64accf19085f", - "tabbable": null, - "tooltip": null, - "value": 4997817.0 - } - }, - "f73f43e9ac32458989fecfd81a100778": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ff45dd3e934e4e0c9f7fa5da7043dbd7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 1c7d43cec..0cc09dfcf 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -676,16 +676,16 @@

    1. Install required dependencies and download data

    diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index e868c19b5..1733ede8c 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:29.398070Z", - "iopub.status.busy": "2024-04-06T04:38:29.397578Z", - "iopub.status.idle": "2024-04-06T04:38:30.762030Z", - "shell.execute_reply": "2024-04-06T04:38:30.761463Z" + "iopub.execute_input": "2024-04-08T19:17:24.524829Z", + "iopub.status.busy": "2024-04-08T19:17:24.524651Z", + "iopub.status.idle": "2024-04-08T19:17:26.451617Z", + "shell.execute_reply": "2024-04-08T19:17:26.450937Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-06 04:38:29-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-04-08 19:17:24-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,9 +94,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.98, 2400:52e0:1a00::718:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.98|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "143.244.49.177, 2400:52e0:1a01::994:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|143.244.49.177|:443... connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -109,9 +116,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.04s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.49MB/s in 0.2s \r\n", "\r\n", - "2024-04-06 04:38:29 (22.5 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-04-08 19:17:24 (5.49 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -131,9 +138,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-06 04:38:30-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.84.148, 52.216.129.163, 52.217.231.17, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.84.148|:443... " + "--2024-04-08 19:17:25-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.130.187, 54.231.165.233, 52.216.62.161, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.130.187|:443... " ] }, { @@ -167,7 +174,15 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 14%[=> ] 2.33M 11.7MB/s " + "pred_probs.npz 1%[ ] 211.53K 926KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 22%[===> ] 3.71M 8.12MB/s " ] }, { @@ -175,9 +190,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 46.9MB/s in 0.3s \r\n", + "pred_probs.npz 94%[=================> ] 15.37M 22.6MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 23.5MB/s in 0.7s \r\n", "\r\n", - "2024-04-06 04:38:30 (46.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-04-08 19:17:26 (23.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -194,10 +210,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:30.764412Z", - "iopub.status.busy": "2024-04-06T04:38:30.764032Z", - "iopub.status.idle": "2024-04-06T04:38:31.972111Z", - "shell.execute_reply": "2024-04-06T04:38:31.971535Z" + "iopub.execute_input": "2024-04-08T19:17:26.454458Z", + "iopub.status.busy": "2024-04-08T19:17:26.454223Z", + "iopub.status.idle": "2024-04-08T19:17:27.676181Z", + "shell.execute_reply": "2024-04-08T19:17:27.675698Z" }, "nbsphinx": "hidden" }, @@ -208,7 +224,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -234,10 +250,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:31.974580Z", - "iopub.status.busy": "2024-04-06T04:38:31.974308Z", - "iopub.status.idle": "2024-04-06T04:38:31.977556Z", - "shell.execute_reply": "2024-04-06T04:38:31.977128Z" + "iopub.execute_input": "2024-04-08T19:17:27.678806Z", + "iopub.status.busy": "2024-04-08T19:17:27.678375Z", + "iopub.status.idle": "2024-04-08T19:17:27.681955Z", + "shell.execute_reply": "2024-04-08T19:17:27.681515Z" } }, "outputs": [], @@ -287,10 +303,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:31.979700Z", - "iopub.status.busy": "2024-04-06T04:38:31.979317Z", - "iopub.status.idle": "2024-04-06T04:38:31.982377Z", - "shell.execute_reply": "2024-04-06T04:38:31.981830Z" + "iopub.execute_input": "2024-04-08T19:17:27.683962Z", + "iopub.status.busy": "2024-04-08T19:17:27.683699Z", + "iopub.status.idle": "2024-04-08T19:17:27.686524Z", + "shell.execute_reply": "2024-04-08T19:17:27.686095Z" }, "nbsphinx": "hidden" }, @@ -308,10 +324,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:31.984377Z", - "iopub.status.busy": "2024-04-06T04:38:31.984017Z", - "iopub.status.idle": "2024-04-06T04:38:41.053110Z", - "shell.execute_reply": "2024-04-06T04:38:41.052521Z" + "iopub.execute_input": "2024-04-08T19:17:27.688377Z", + "iopub.status.busy": "2024-04-08T19:17:27.688200Z", + "iopub.status.idle": "2024-04-08T19:17:36.852616Z", + "shell.execute_reply": "2024-04-08T19:17:36.852071Z" } }, "outputs": [], @@ -385,10 +401,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:41.055687Z", - "iopub.status.busy": "2024-04-06T04:38:41.055498Z", - "iopub.status.idle": "2024-04-06T04:38:41.061081Z", - "shell.execute_reply": "2024-04-06T04:38:41.060531Z" + "iopub.execute_input": "2024-04-08T19:17:36.855120Z", + "iopub.status.busy": "2024-04-08T19:17:36.854821Z", + "iopub.status.idle": "2024-04-08T19:17:36.860286Z", + "shell.execute_reply": "2024-04-08T19:17:36.859865Z" }, "nbsphinx": "hidden" }, @@ -428,10 +444,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:41.063230Z", - "iopub.status.busy": "2024-04-06T04:38:41.062809Z", - "iopub.status.idle": "2024-04-06T04:38:41.426124Z", - "shell.execute_reply": "2024-04-06T04:38:41.425590Z" + "iopub.execute_input": "2024-04-08T19:17:36.862236Z", + "iopub.status.busy": "2024-04-08T19:17:36.861904Z", + "iopub.status.idle": "2024-04-08T19:17:37.207147Z", + "shell.execute_reply": "2024-04-08T19:17:37.206565Z" } }, "outputs": [], @@ -468,10 +484,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:41.428511Z", - "iopub.status.busy": "2024-04-06T04:38:41.428316Z", - "iopub.status.idle": "2024-04-06T04:38:41.432566Z", - "shell.execute_reply": "2024-04-06T04:38:41.432029Z" + "iopub.execute_input": "2024-04-08T19:17:37.209618Z", + "iopub.status.busy": "2024-04-08T19:17:37.209283Z", + "iopub.status.idle": "2024-04-08T19:17:37.213376Z", + "shell.execute_reply": "2024-04-08T19:17:37.212864Z" } }, "outputs": [ @@ -543,10 +559,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:41.434828Z", - "iopub.status.busy": "2024-04-06T04:38:41.434438Z", - "iopub.status.idle": "2024-04-06T04:38:43.797032Z", - "shell.execute_reply": "2024-04-06T04:38:43.796336Z" + "iopub.execute_input": "2024-04-08T19:17:37.215394Z", + "iopub.status.busy": "2024-04-08T19:17:37.215083Z", + "iopub.status.idle": "2024-04-08T19:17:39.552115Z", + "shell.execute_reply": "2024-04-08T19:17:39.551400Z" } }, "outputs": [], @@ -568,10 +584,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:43.800002Z", - "iopub.status.busy": "2024-04-06T04:38:43.799357Z", - "iopub.status.idle": "2024-04-06T04:38:43.803395Z", - "shell.execute_reply": "2024-04-06T04:38:43.802849Z" + "iopub.execute_input": "2024-04-08T19:17:39.555424Z", + "iopub.status.busy": "2024-04-08T19:17:39.554614Z", + "iopub.status.idle": "2024-04-08T19:17:39.558938Z", + "shell.execute_reply": "2024-04-08T19:17:39.558474Z" } }, "outputs": [ @@ -607,10 +623,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:43.805438Z", - "iopub.status.busy": "2024-04-06T04:38:43.805041Z", - "iopub.status.idle": "2024-04-06T04:38:43.810204Z", - "shell.execute_reply": "2024-04-06T04:38:43.809632Z" + "iopub.execute_input": "2024-04-08T19:17:39.560894Z", + "iopub.status.busy": "2024-04-08T19:17:39.560573Z", + "iopub.status.idle": "2024-04-08T19:17:39.565814Z", + "shell.execute_reply": "2024-04-08T19:17:39.565368Z" } }, "outputs": [ @@ -788,10 +804,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:43.812097Z", - "iopub.status.busy": "2024-04-06T04:38:43.811923Z", - "iopub.status.idle": "2024-04-06T04:38:43.837570Z", - "shell.execute_reply": "2024-04-06T04:38:43.837054Z" + "iopub.execute_input": "2024-04-08T19:17:39.567759Z", + "iopub.status.busy": "2024-04-08T19:17:39.567433Z", + "iopub.status.idle": "2024-04-08T19:17:39.593200Z", + "shell.execute_reply": "2024-04-08T19:17:39.592668Z" } }, "outputs": [ @@ -893,10 +909,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:43.839685Z", - "iopub.status.busy": "2024-04-06T04:38:43.839262Z", - "iopub.status.idle": "2024-04-06T04:38:43.843573Z", - "shell.execute_reply": "2024-04-06T04:38:43.843046Z" + "iopub.execute_input": "2024-04-08T19:17:39.595168Z", + "iopub.status.busy": "2024-04-08T19:17:39.594990Z", + "iopub.status.idle": "2024-04-08T19:17:39.599302Z", + "shell.execute_reply": "2024-04-08T19:17:39.598861Z" } }, "outputs": [ @@ -970,10 +986,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:43.845456Z", - "iopub.status.busy": "2024-04-06T04:38:43.845286Z", - "iopub.status.idle": "2024-04-06T04:38:45.262927Z", - "shell.execute_reply": "2024-04-06T04:38:45.262416Z" + "iopub.execute_input": "2024-04-08T19:17:39.601340Z", + "iopub.status.busy": "2024-04-08T19:17:39.600975Z", + "iopub.status.idle": "2024-04-08T19:17:41.028748Z", + "shell.execute_reply": "2024-04-08T19:17:41.028272Z" } }, "outputs": [ @@ -1145,10 +1161,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:38:45.265138Z", - "iopub.status.busy": "2024-04-06T04:38:45.264818Z", - "iopub.status.idle": "2024-04-06T04:38:45.268799Z", - "shell.execute_reply": "2024-04-06T04:38:45.268374Z" + "iopub.execute_input": "2024-04-08T19:17:41.030867Z", + "iopub.status.busy": "2024-04-08T19:17:41.030672Z", + "iopub.status.idle": "2024-04-08T19:17:41.034715Z", + "shell.execute_reply": "2024-04-08T19:17:41.034283Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 753559168..4db28125d 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.3", - commit_hash: "e0b7615c1169c6d8fcae15be6477bd7327e82e00", + commit_hash: "cc319efea07da004d1544c0577402d71f309fa06", }; \ No newline at end of file