From 35d16d75b3741e9bfb70c2d3f6ac814ad8a25105 Mon Sep 17 00:00:00 2001 From: jwmueller Date: Fri, 2 Aug 2024 23:28:40 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290735 -> 290735 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26578 -> 26578 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 250944 -> 250944 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 78825 -> 78825 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 114895 -> 114895 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 4972 -> 4972 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79564 -> 79564 bytes master/.doctrees/environment.pickle | Bin 16812033 -> 16860218 bytes master/.doctrees/index.doctree | Bin 42710 -> 42710 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 145 +- .../tutorials/clean_learning/text.ipynb | 1633 +++---- .../nbsphinx/tutorials/datalab/audio.ipynb | 1172 ++--- .../tutorials/datalab/datalab_advanced.ipynb | 338 +- .../datalab/datalab_quickstart.ipynb | 153 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3952 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 148 +- .../nbsphinx/tutorials/datalab/text.ipynb | 182 +- .../tutorials/datalab/workflows.ipynb | 1220 +++-- .../nbsphinx/tutorials/dataset_health.ipynb | 49 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 536 +-- .../tutorials/improving_ml_performance.ipynb | 306 +- .../nbsphinx/tutorials/indepth_overview.ipynb | 225 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 115 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 352 +- .../nbsphinx/tutorials/regression.ipynb | 218 +- .../nbsphinx/tutorials/segmentation.ipynb | 976 ++-- .../tutorials/token_classification.ipynb | 146 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 60765 -> 64488 bytes .../tutorials/clean_learning/text.doctree | Bin 230169 -> 233886 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 333649 -> 333645 bytes .../datalab/datalab_advanced.doctree | Bin 203505 -> 203507 bytes .../datalab/datalab_quickstart.doctree | Bin 142186 -> 145906 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 514366 -> 514366 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3367 -> 3367 bytes .../tutorials/datalab/tabular.doctree | Bin 120657 -> 121626 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 149929 -> 150907 bytes .../tutorials/datalab/workflows.doctree | Bin 425652 -> 425652 bytes .../tutorials/dataset_health.doctree | Bin 325916 -> 329657 bytes master/.doctrees/tutorials/faq.doctree | Bin 199353 -> 199353 bytes .../improving_ml_performance.doctree | Bin 372312 -> 372312 bytes .../tutorials/indepth_overview.doctree | Bin 220325 -> 224033 bytes master/.doctrees/tutorials/index.doctree | Bin 3181 -> 3181 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 64488 -> 68223 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104195 -> 107897 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 20514 bytes master/.doctrees/tutorials/regression.doctree | Bin 106940 -> 110660 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176679 -> 176697 bytes .../tutorials/clean_learning/tabular.ipynb | 17 +- .../tutorials/clean_learning/text.ipynb | 17 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 17 +- .../_sources/tutorials/datalab/tabular.ipynb | 12 +- master/_sources/tutorials/datalab/text.ipynb | 12 +- .../_sources/tutorials/dataset_health.ipynb | 17 +- .../tutorials/improving_ml_performance.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 17 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 19 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 18 +- .../tutorials/pred_probs_cross_val.rst | 10 + master/_sources/tutorials/regression.ipynb | 18 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/objects.inv | Bin 38442 -> 38671 bytes master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.html | 7 + master/tutorials/clean_learning/tabular.ipynb | 145 +- master/tutorials/clean_learning/text.html | 27 +- master/tutorials/clean_learning/text.ipynb | 1633 +++---- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1172 ++--- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 338 +- .../tutorials/datalab/datalab_quickstart.html | 7 + .../datalab/datalab_quickstart.ipynb | 153 +- master/tutorials/datalab/image.html | 58 +- master/tutorials/datalab/image.ipynb | 3952 ++++++++--------- master/tutorials/datalab/tabular.html | 13 +- master/tutorials/datalab/tabular.ipynb | 148 +- master/tutorials/datalab/text.html | 15 +- master/tutorials/datalab/text.ipynb | 182 +- master/tutorials/datalab/workflows.html | 464 +- master/tutorials/datalab/workflows.ipynb | 1220 +++-- master/tutorials/dataset_health.html | 7 + master/tutorials/dataset_health.ipynb | 49 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 536 +-- .../tutorials/improving_ml_performance.ipynb | 306 +- master/tutorials/indepth_overview.html | 7 + master/tutorials/indepth_overview.ipynb | 225 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.html | 7 + .../tutorials/multilabel_classification.ipynb | 115 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 15 +- master/tutorials/outliers.ipynb | 352 +- master/tutorials/pred_probs_cross_val.html | 8 + master/tutorials/regression.html | 7 + master/tutorials/regression.ipynb | 218 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 976 ++-- master/tutorials/token_classification.html | 16 +- master/tutorials/token_classification.ipynb | 146 +- versioning.js | 2 +- 190 files changed, 12865 insertions(+), 12405 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 74ab52926..1f319c804 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 59e8199fdccc20214d3ba6bfb97e71d7 +config: da399c314656edf666511f8f45e8bb47 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 4cb4a44fc4a4de105baabc74b6e44ef688e7f3c7..3c2b03f82a3a033df216718c497240786b70f2bf 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO@ol972)ZiS7Vv33B<_^XHPBOG{axZ5D01TcXOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OjC delta 1464 zcmX^3o8{ndmJRWYhM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{RwqFtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= Oa6anbcJhz;hK=M+g@#V*E*_d+~Mx9%i-*Dx;jIZRr(nF z2*{$h7VEW*v$82#Ys%DD_=GQU^o|Gf4?^-Lea*khF==$oZ+Q?`^r1GM0y(t44t}vh zO1~Z+>cAGgL-*f^DT!0HLREHX^<}a*8XL9i@^B}>-)&NV>1w2_r>Md<*w=473Af&k zogN$QKb?3{qJiEduF_`mSy-R{JdlcMd-cVy_a#)T#EXH3H8S_=b3abP-077iSX=Td z3(ov*O^3M!e=fkT&6qtN4jfG&cHc7JRBY=zOvQy;Cl-g~WxH5dp4j$G<43&h-aT6GWKJ`dH(@^n|h%}Ik ziG2@mGP5=xmvSg@Pa;b)F7H>RRC@JH8b5})G;1-1Ws?XKLHl9LK?E7eKr?vOB~@Gg zD=mQrBn&#z0rB>p%+u=jaSN3yd|Xc2MiVwx3S{t$S;=^jh~!1)Iqd?MDYx{5w*Imu*OVkMMrqn1% zFj`{@iUN^t0<|ID`~$p`>MGJC7b=88A@ZWoi_R!wUhcCObNM{K=RNbD_neuD#mtGt z%*iIEUhEH7RJ7ixw1*<9!`bF2cdIUs%h}!@az@e{* z$1r)s!scKyx3U*7xyr`8FgYumT?WV`n&c%6{hi0g0O-c}AayVM29qZX*j1Q3UC55W zq3{{Nu1Q`cP<90XiMmz^Yky3}mP#P!h+ zE6G&pmHfcv$Y{4s1Jfbt?JhilNwb`l6gusfO2Nb0h+!h(a?A|Ipidpr&lFUAxLfMU z#>D+QY3>tnd*zVH-`@*eICBFJvU*MIw?9nU6b)Dy95fUWdFH zVN;`J6mzpSlPX(?7xGc$vS`?lusM#5i>*=)(z=U3ZAxG{Yp80J^Xr&HBZ(#02UJg@ jfT@HE*F@oF8p@N;nXv3CiI2nDviQZuS3HS70lMuU+W5<; diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index ae79c783784479f21f7ba6d189e4a7e3114fc6e2..110643d597b6a77fa9195a4c0be1c22d407cea2e 100644 GIT binary patch delta 3571 zcmX@QLh$Gc!3~~_hABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ?OK74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL2J4c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL1D8xvXp diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 044f932317908a1053e3ed84e0688320a1068379..ab02594e2f03ef8a0276329a0f624b77567d5947 100644 GIT binary patch delta 477 zcmca~p7GLo#tqSohABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ>~n7;liFt5MKl^HruDOyp^u{ExMPES-Uy*j-u3(>aMaMN;*~a=RkYh{I;@u{)%2V-vecegK#v zg<9E??zEwNqlPL=I*XDvB>=jR>|%=9v;{(CX0^EW04jyr+3N0Nl@NNKrRzT+4NIXe zwsxe=1zBeSN(@)&7^`A4QZLePAt|#=v=iAU4ZYVJp-|H@yWRf)wLXgVqt@w!8@2Wg z_)zP)VJ~VuIx+%SSt0osHOiwcfKk!b!FlVh4p;}03$u=~735|jxvT8m#7`uvhMtS>7xllmF1F!)vuN~hO6z*iJ6aQiEkTLfQtgb zdXTLvkc;5NRlyqhpKl}wer>IQUbTD|@lULf;3nG8b5UiX8l1t|b#eie^S!@Feh21N z_aCN49;I{|dBlp-vQc1SE4@>Tcd&s&qbBN zolqNIZVA#ncC&j`!S3UOowOP|y57{&8eSWrX)OGIytR+68_SQ*r6D>6JU&&y1^Bfa ibly_FRBcHK_{n|R2kaXc@G!D#8-L`tbN3wWrvCua>;tU; delta 4228 zcmbuC-%FEG7{@thZMiLN*$?v~vIhOSadYb4MMz2^wGCZuWRU2)U+F}V)W%Hufg~Xr zvX}8fFkFU7tRi-Z6NKFq)yT}{m9(z9(HrT$h|ZgT!M^?hpXc*@pZ7UuXX=VcT`|4% z5_|7xsJ=cJZ>W{ScAFz&tCQ?bm(vlA%8sy9=L$Ewzl^~IfPzdDeDKMVY$1L ztsiT3Le@Ee62n#6$1B*Z+=KL6NCa6r+JWqohTiLmP^jr3yWRHywLa?aL#;D|5^9ZI z^P<-CBOcUxJRS$EtdRJN8iQlafKk!bq4CyT9k3207iR6_tH{kna=q-`#d<{mBGsy_(9R)@SNt)VlsqhoTedeiWU`w4zxDX5XXM#X00hSLjd^ z9r?V7JYGo7%?1iGY91(5u*)mI%fQUb#g8ToRhEkuW?d_C3|HHp6EmO45bqAG02c)U zR*IQUbTD|@lURjz!uujb5UiX5}d)g4RR5b^Zma_ei!Cd z4<4mP9;I{!dBlp-vRPnqJH1nlcd(DA4^ad71-XduX%8;ft2NEEj1QiowOg2ho{K6& zyP-Bb+!CO9>}L0YGIz5mTGKh Rlx$?2m||kOxtyh&2LMO%5-R`z delta 62 zcmZotYEs(Z#$uRRm26^?RBo!Dm||#PoN8cXVQ6k?Zk(2uXq;kUWSL@?m~3foXlb5g RY-DPYoNQpRxtyh&2LL)e5x)Qc diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index f0f45787b5133e17f033cf2fd3cf8036e6675417..d8c07a9d8c8e088ae8c67d3354b36da0e0223e38 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|ChABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ T#)d}8M#hOLCZ?Mk8KWx!-D(ul delta 64 zcmccfmGRD3#ti|ChM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* T=1ImzrWVP`1{Rwe8KWx!&$JX~ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 446020680bde8ed55644665235051487f7445a42..aadc02037d71ff3efc10ef35eac6593915a99beb 100644 GIT binary patch delta 62 zcmZ2yxXy4xHltxml972)ZiS7Vv33B<~fW);s9$a5_bRq delta 62 zcmZ2yxXy4xHltx?RkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} Rv5~1oa@q{G^1fkl972)ZiS7Vv33B<{rk?x&VR&6LJ6m delta 62 zcmdlUw>@q{G^1f=RkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} Rv5~1oaGjf@jhOiVZbVNLl20Q|2OQ~&?~ delta 64 zcmaFxf%(A)<_)J=4Ku5fO-z!?P4yE~3=ND^4U8-d%`MH1)6x=+Q!I=uQ_K>REzJ!r U&6A9cOf8a=4JS7Vv33B<~qjhf@Ek*6TZ&~07B^_DF6Tf delta 117 zcmX@AbyRDEFQZ{*RkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} Yv5~1oaJpSkT$C!1}I{{B4A z^Lx&DIEy!2i~8A1kuYN)*XCY1=EaU4???(#A&cU@Zx!z;MkeF!wK)hl>+ z@u31(y^+wnt?WPY3(~$o|D`h-r#~}niLmfMZDbL#oA=Se+7l(P3}w2ZxPKqKg0>d<-|VD z?K%whO|-TY@}1UcY|u#&@9>Gwlhxuu+b38J9PjwTfS|p?d(b0pW=7cGbq7eBD6P#? z@Y8W0HhUZH?s)<0o&{fqORwa&6IpEPmar*8hYkLqZwB{XEY1#^;c zE`Iq`77c`DBrt2e4jvbO&icj1_I43I(~pq1a@{+z+TzqSSqgocaU zcP3w$yAIBRZ@JNx7t!ecO8UOoej~56DJz)RoMt-Q4_i9^-6C_ zivzrTY7eb|3DxozyhwieB=tJrSlmYerBmL6#=SPaXD{?TMsxC6+#Sqn~!9I#Pv6E*y9icsH;wW|Ep*2)X zn%W)UrN*z9zA^d@?u%h_ygp9Y&CxA#)rS0df=X5P7^U&N*d*5VlD`<#{0S#3u!>F1 zP11AtGOS{S19O#5_v%B|FPe${SN>Pn!f-5 delta 5702 zcmbtYUu;ul6wevlZqV+o>#}T(NC)W{IJND@XbU47ZVMw!)@-3647!zW&CoFf+#F+N z7zLw2Hu*HypoBf}VuCtz0^frWNc73Xq$U!hCTgOIhA?L|ON@Vr-|Z!4&%ZCZufIR% zoZq?kwp@tX|EJd;4+qYF_Vq22^KvrC0$OKgO+o#-QVT>Cq!tz2p2rpcAWgoG-6GfU3>~ z52C79>zaW!ae4i_Se{ed9A4vsW||TgVkNw|#f!DchW`o*C*tml&uus!hoQ?!n@ZaZe)kq-*pE_n<%d@ zQ1Ib|51YLMclW%AbFT+b7&xJBY|oAb?}7vbJ{P~wzrG$>3+N{4ookAedXD+Ul)VQvu6$d{q+@SAQW8W zzccy#%r$TpeDlq&5N4jwfBLZ>g9^uZ5=49Nd8}J)w2r^}{x38^4>>Btl{$k@{#XjX z)EzGl&yzn7fO8PudnVW1e+j!QdWE@Ua?>As!631@G>t{LTMX0~*2{4k=E;AnS3v`H zII4;XyKM?^`C18$nHus6Utw8Q)TzPIy^aD_zKwp7&-$qkOQzEd#T1lB*H980=rWSg zwRAwkiBwJ=!FI!$%VLnSIz=danKjiz+vSEjx~maVc_u`|I!+YcD{~Rbp(gURtEJkM z77e`h^bT4A6RPBGc!~ApQ`D=$F~5rfQl-2HjfHJQkpyLaCmwLSnTliv&G!E$7P^Qu zEAd!=2Wg|cmY^sau!nX$@?;NfD$$ruO&6Kgg%H)rbRWfZ>=c+zMQDdSevmrx&>FI3 zh}t#qmcp;Ld`IXvxG#po@x~}&H%GU~*BaLC<5VtlM`;Mpi$h{xFNKRi&YsX&fn{uR zW{jT0mth%`eG$p`Cv>)=z~;05391;5OzCWe!z8z!rj7Vk6i8fh;T(HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqHrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqS7Vv33B<_5;O%tj<@)1Ul+U21bCYY7hk{(~fd delta 122 zcmcbsd{=pcKciu0RkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} fv5~1oaybc~NePk$#e~L0U?pS+a?7szp+&MT$|Hfti81rJ<>Xd1_j! zv7u42k#S;*iRtDJMoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}~d@KkjG delta 1125 zcmeBu&(!;#X+t=pVP;jbiAhqqseWRLp@DI#fsuuwxuv;rT3VuUiiMG7idkZ^rMaP{ zd6Kb_sYP`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}~QIZWLE diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 7ae83be69869e82377a38563305079c9188bd66e..9b0a85fb6dd735edc5927d10c2f51355cc8cd823 100644 GIT binary patch delta 62 zcmew$^+9TbE0bYLl972)ZiS7Vv33B<}#*VTmX2-6J7uS delta 62 zcmew$^+9TbE0bYnRkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} Rv5~1oa~n81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<01V12kpKVy delta 2628 zcmccdp5?}SmJQL2hM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{RZh81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0GPWOZ2$lO diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index af4961803d19fcfdb9207c1457fbc6ada61fd912..4799ec669aad1c05095bc75e6885816880142826 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7wkb(Q=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ_r+`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1ONu^EV%#x delta 2632 zcmaERn&s_jmJNZ7wwYDQCMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{V4$`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OWcF8*Kmp diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 62ac64f9634d146e8b9f8e20323571b581514654..16682ce6c2d5dbf87f51348a4ebf72dff2834a4d 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7wkb(Q=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ_r+`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qS7Vv33B<}OAFVE|om5-k7# delta 62 zcmZ3axkz(EB%@(wRkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} Rv5~1oa)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NRkSqX>$ delta 2506 zcmbRCjb++5mJN}NhM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{RyU7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NR;`1qLs diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 1bb6c8fed217e483ecd6d461d25b066ab70ccc3e..838bc0885802be273193f9896e76645085cde9c0 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFhABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ?OK7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>i{H?9)^ delta 3034 zcmZ3sg>~5$)(xJFhM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{RyE7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>jfeVJzf diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index f06d332d0c1139aee6430f332a2fe0e235f18775..29e50b61c39bfb9bd944ddb2a9e8f715e0285a75 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#5gl972)ZiS7Vv33B<`%|>JOFoO6HfpD delta 62 zcmaDV^HgR-Fr#5+RkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} Rv5~1oaJOF8~65{{> diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index ab66445644f94973cb26c4f7e260754598adc844..388344c4ddfcde256a8c3765229d78275ccf625d 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObahABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ?OK7(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+3aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~tdAuG#3aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~xUenwkIr diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 57d06f7165bc0fa9e2a0b3da09de29ae14672075..4e5ddd316c93e1b66b888ba1577c0d4075d6f16b 100644 GIT binary patch delta 2688 zcmbuA-77<39LF0wb1XBFT+p0CbE9qN?2R%+u~OV1$;;+!g_M}6$xBi$)-(^fATKv4 z7dAhME3MqPafKpFuDKDrlDCt;z;}PZr_cBM{GQ+Q+^nc?R@Bi(l_+~f$LO#un!J+P zFMI6$R>|k|`kb=pH`~pQN{h|u@cDg`MeG+Pk8HJ>SY5i6Z5uf{Qgw2cfAj3AYLKmE z=F(|Kg9^rHAu>$2+AKAMGTPM_VReJ7R^VtX-_1j21?OqRP>P*akZOf*Ja`@xT54Fe zF%!xjCa(MvJ@Dm=S~@#5YW-Z_=y%+N(Fzk=a6I0qz7^R zY8DkoUXa&bu`Bq+S`zuD6nuLtn*uxYs9nL2_Kq{4?h8~D4FETe;<3v@$T-EKV;UB| x)>7luGcxZ;VwsY6L%^Fxk%UGEh8A8qazDq=8TY;MbogGN0qxN*o`N6u*+0-`Q566H delta 2688 zcmbuA-77<39LF0wb1XBFTo9+w+-NUnb9R&=iq(pnk>q7BR_sQZ$mAs{7nU-ubL|jY z%g(3MtY#IA&p>2^ZnZgT2xYXZFTv`DS%bjQNTHL5%nHuaaA^g0T48Dse(>N0OlYfT zb%tyxdxW^EOZ32(t7ovvjBbtV8BkzGHgOTP&fCsWD=+T@R(h^=Wr98591DOkwY`k$ z8pqI{OM~;u@G?MC=tIbhK!ReHlksX yYb~{0y&&_BJ}y)8E(pA76n)g_z|g`QN6wcxI^+I#o(?~XG@w29%~SaEKKB=|EIx$* diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index f8e3d1935466fc3ce2aa2680ff9f38eaec7504f6..1913138ee94f756a01f342134a64ab9bb8db1eef 100644 GIT binary patch delta 2967 zcmaF)oaNpF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6tpk#+ delta 2967 zcmaF)oaNpF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6t8#t; diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index c8990d99a63c66c2e1356377a6a0c84ee4c51fe5..43fbf2598f179d077ed7d2a3136c44c8ba750bab 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#5gl972)ZiS7Vv33B<`%|>JOFoO6HfpD delta 62 zcmaDV^HgR-Fr#5+RkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} Rv5~1oaJOF8~65{{> diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 2bf527b57af8ff1426b4da6d658fc38c451a7d24..21cf8dcc3b2063f3956867cdc56f5f875bd6f5e9 100644 GIT binary patch delta 3483 zcmbuC(MwZd7{>W(XIgU;Tj|6SB#4O0voqb+Md8&zp&TY+N|f8#S_}&p?xMnmE|5|S z4`UbASgk@R*y_c75Rn%}SCYGlZWfK8i*8~gsEcBBK5z1N&;Eel`@GNdzVCN9)eU2H z!WG z8k1+WPD8AAK|wB?tfWfc4H*5>w74B0E1?%!dcaKAo5vC1N+?fncF!PL33PwkpKVan zd6GKrN&w2_3|;KHV5uD?CO=1fGWn?%?l;jLMQW{GRbLE&p9V;Mw3HsOASsF2B)l=i zu0a0|mC&)i9a%tCoo5W#1>~vg>K`1BG~ULQsc=;>>HAI)^&6UQQqP^|P0+y96bD;*~5 zx11S@Pv9MiA~Vs#&*dh(#A=b14?=i~-#f&Pppz?v8+b~_`L)Z9{E?HLG(x@4Y1x*& zeC;^qCIzR&mjJkNVLl}&wR zQ=jc+)`@AQt84sPcc;&9mF*W~o6G8SJMDph&+d2G+apb?nwa3C`{(l(@{krZ!65n2;bLMw#W-Qb?J6b~*)E_e;lh|&; zJAb@}4z!6_X!7=tT5}j!%76o;wUSI}V__^GGmsl;Z(qRZs^7}{FF?4eIP#sUoIKO_So6D*ylh diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 3eaf6e517e86cd3e2dcf125746f53ef61286c3e9..c6ce7e3c7f9d653c50b5ddf8b62d48624cc78f57 100644 GIT binary patch delta 3812 zcmbuB-Ahw(7{~dkXIoR(+(^x`qJ<^&va_jMk)s!kWG2xoQBm8@MnZ#{)+!aY3wxmv zn+H0*IEsQ$BH4O~bGHULif$%EP%;XF3@VZ!=x%g2z3I~L`2#-B=Xt)r=l44&AJyig z+EgFo1+UE!3JSI@Ub{6QcshJ-cE8i>cM7(EwZrPz%C|cm{(#@k+k7^=M`&vo@39{M zm2k(z0nS8+Dt(A_9*;ocEPd6i=OA>7SgnMi&&2&!jt0#S>L7Co*FA61V_}tOv*>Ek z6SpC#g&Q~yky#q!XR*+7bjcaPM$XZ%ZN&!?+KVg`+A=F}6QVM_bXSAkp9*!LM~wlFEi zhgXSXyn!l$CpCz@T*5-0foo9G3;6eoJAlZ%|th^vrSc#A9{@q}E{7{~dkXIoR(+(^x`qJ<@N+1a$6MUE~Q$xNavQBm{E(IBDJT6ux(g2x#;qG%VS`|Jlm z#l2CfkF(H`QW23Z;9*Fdrmwn<9E462tCTVHnRL+3(SUWV3NjaP!}A6s7FL0_N}dKI zahtmJa04eHGEJlW92Q!Jt_WdlFa?V1pzwJbi zxq$!qxy20GlhRDMimZ77`iIIDaiyh6B1{bzlozc;+}|;xRi0^2(noO=0Gysh5 z=9F{t^j*`Zt{8*T(uCs>vWonABX7|(sWCYF^_AGTRqUUAeHx}Jn_kE-joqN~IDGqp z%kik+Ty!EH^><0Zc+^vtm7ou7eu^{$+d2=W4Wl!wY(_G#(sD4p2UI7OtrYV;9&v-z z8_&Y8X1~GUr`Wuq7`SS_o70XhyN1&?c`>s!yft?iFe_KkUVdMYjb+k9?Ik)|7fj*L z#S%8NhucfKKy?=FE>M+3yO!6NX*EDFqrPe~>`~K>q5bT3`4RI9g@zk<_aFl(@F%c$ zBfUMmG5dkJ+T)G=ru?d;sP7CJBt7ZAAK|%s>w(O2)b{|%Yt&cA1&3Y(in8fy^42BN zAHUpa8@l=7QHq0x|M&~hXQ#L@@w^jf<8UAkVq(W>lM2j%w@%9|Y8@zC41NTK#o$ct zXedJuM<3FJ3X_EN#?WohfXu+9%~i9YdqY3MLrt zed$Mzeo|jU=f1WA`}>DLN58)1;UxTNbR}}|6CUW(sF8|t)g1ki@jqxD{RBTe+@U*( zLh60HPz~CM;mwgIl>k+Uybgun{0ss7;&4Y~2f0WcOo%U})Y{FFuX8Tjtx z>#?ZcU2-xO_4ld%Sk%*3l%fwTDP5e4ZJkFm$I+P;79APZsMw#?52};GvJ3M)6LGCL z5X-`E=D)?@r`fQf1h{Ixzo{Erc0Ffqc421gc}KxGU{F&tGtMLnL^1;`}&aqWcXv) zyN=!+*_i*x;Hh;*fB*cdq_F!eX+;gGzaHg9br*ola@hR{$!pl%$c2aB0E&`n54jo> z>6ce(v<vYG-dpaF@2cU`GL-e*#XxaQXU1VGsrJUY`E*Y2D`M)w7e^YeSB zfy}WlXa!*83)a(M$Hx3FyeNFZgJfve{V9u|51Nt0%QSi}X%msskl<`+k08oDeO}sn zMlOtw&Z{_uo|ip_-jT8cJuiKN^ejnmwmq`|SI#|s;{Z%jJVZCbO4=PB2Cifl%@Z%G zkt>P9%bzBYXv?6i*KMEyi6PLxR4C-3fwf3WNG_O%RY*&O-A*c=)-+AV^PbTNvVvKL z2a`j{(f`p`()p=&V1IuRsOiU-EjS5}MOGsRKkI?UB04HAi0AM()Bm99`VM}0I0LPT zLdHXz-~nw!@rF>dLVzknT8B(%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*JeIoVqs*NVwRX}X>Mp~ zo@8ufYLT35V6nM|@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Jebl2N>R>s&WZ2`EDDE^2-1Z{ z5IvU>jEE!>raVNuv6~TeV|XQmP+J!Uf$YjV1pu4GlovCL#Hq1t-Z)-A=6l9JXd_vo7K*s84L6xFm6JzVhp@q5R}h>y^A zQxPM1KM=*GVfql90mP>6@Tb=Ih}hI8`QN$5CctXM@AK10Uk8MaQeSM>JIO};SF?A_ zU8+N`j2my1762CGEh>M}@kX^U5?@mb_hOCS6UDVm9q5&P4}K%lt!3tTd2Agp zl0bLI$588@*$JR5Tb+v6bgvT#SHyUr&WO`F0$&3%vVX9{cYks;*q%^B--* zZp0<7u52Uwc2U>d&ao0S^;0~soWv7LR}k|DEd6Wp|27+gX2a@QAg69?e1J1WU;PZZ-AK&+V4=Ub+iuc=~ zN1iFzu~;hC+he6=Nu8DyUDgau&15V!tt&>l&$10oHnfzg^y;=P>74f*dfj7WMn`GC zv51lU&lkp}L0a+80b)zf@RycPh}hC+`FCqWBVaY7kNHKYza2s+s6TS-o@6unv&lW? zEHy*#%)1|yW&jrBEhJ#%_$F$7{{XhW9UVbJSWCX7q7vXYW03~;iQ-za4)n^NC%=&C){+HYnp_8r zB+%ojN!0q+>Htud(;e7S3S57tqJ8en3;@NRkEr~72#JB5P5IoX$1x_TYWRt=A=dJQ zd^FAx{Am6wP_(e~!r~k@K0)sHWhM3R wP29OP{y!BsM}XOE~3zK0=l972)ZiS7Vv33B=B-S}xB!fx6TScd delta 62 zcmew@^;>E~3zK1HRkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} Rv5~1oaAg*W3#8}h6-0u~hf+c$SGwlV?$-E3|> delta 1253 zcmdlng>Ag*W3#8}h6-0u~hf+c$SGwlV?$)#+u; diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 902b119d4dd891f548006ad33f9184174683c349..cb00c061338683b6f6181e200b00cc5c81220e98 100644 GIT binary patch delta 13101 zcmbuG`%{!<6vyYh7j%(jxq4R$MF(%Jiy&GG2$5roqN13fh(L-Lyd)-Gl0s1n5f^>T z(NZ%VHAix*BjR;*$i^Za19MbFx_CE>#6$;scDEV%mGAxm-|y#~^PJ~A@B6&F<@N2$ z>)V$m(2(>r%fJP5(k&rrq2|o=Y2nicgl0sfWkjS~GR@)UfrI*oMGVZy%n0ponQjT4 zmOdaXBt3ij!jOg8ixy1Ju;%r9)q04|^l!0?RF1LLD{eX_6*WEGOxCrn=VNl)Qo{ii zlUkP=e690RHQNc}RRyw0u!eMOWqsu5EACAoPg{(4cPtc#kL{7)aSaQ@7SeH3D@Z!Y z79Xg1v|MV->z7Y0m&sm9wk8j2W7}@Fc*F8>fRa+)u`iO*Ha@1p2hz{B@q~CJXG)oE z+m)1ow3uDGdvYIuYNM3PC~;BhD1d0S2Rk)w7)l+Qu@9Bz&lrnJ7tVTt=4zTd5v8j0 z<521!3*cO<7A2z8?-ox*b3Kzg50ze6UVuvfS($+5TK7RLNM7jiAJf1H%Fn=qE8x7YT&kXl-lhx6Ds{_=Q31!d-qH<*N1y@ zP%7>BN2RteVQR%8nEKvfc;}4%rXH>E4IYY?>F7~-HkBURj#BTQ+=xm$oH>h1b1UGJ zZuYr#DAjuY3c9X_O1OtRU%ZM^OD=6fbFHX;hEk_o*@jZZwR(UaQr8X*|kZY^Ecq_J>f~gVxy;PSF6D z^CIXh%B&kqvjC?35{d5)q0donuP7Rha!oN5hH`JlQVhyH{U(h=wO@^(VpMx$6rryK zTs4}|=PABAmgWKbPei{>*(@({g8(s0G4i3n4t0ij%o| zCPl*HU2{ln-SV4qd)SHGJBMBajw6w`K^-HKmXW`Bo=aB&y4`@KL5UkE7TE=462=-W zlj}Yt52SpK7^F>38#IPYEBy#+`Rfwe*$xzo#=~S3amO_;@xDNfC@M|R~p0{L9sADrq<0GsM8}VL3@CuS8urct~Js@bn^-+Hn8stx&YT9*H>x7 z*+yj@oPcx~fr#y0EKI57!4oj#{LwMPqOjmZi-Se{{e(YC5t=5iZ3bq=P5tSe4V= z(Lhd}Pz=qsNvkp?0_``JUOi#)jI+u3ecoMQF_OTaOgl}PlQWVKddGe{OiKB~L8 zm8b@ZEN^u;=)%$^3iug}^C4kOceMjL7ljmiabu8rurnCD-N8-ti&5{mV!)rqszzx}M$y0&B-&-G4_vWgX*H=U=8)nHK@_QFEjM5} z^9im(z;VsM9(&bmzEOfp`_&qBEC`3q@^aN69+#<2Eic2%U|70j^>D>O z)COy<#mc*?#>?x}Tj;cM=Je95@t(Rh%+u1LZRzV$G*Ky9 zJJEHo>Lnf(YAL)rNi(Cb4UST=G<+7~YDk_Us#tbpNTBA&GOnF2g(PH1PD8d>wb{X7 za4fs~HhSFJYtxetoz}kZ1meY?b+Q=pdSn_}43-WJ=);C{akKAeD_kjoK}ZKrUiCn0 zg5Of?Lxzo{_l6H2$C#21eq62SCk^0&a9g7u0I$Wj-ufo^<)Epzj9tDQY=`mEp#&a@ zdm?o2W)HwwVR|`w^04%}gZ3nQMe06q7f7*@OQZDMK41fg19S9BP|J;T^$jCXahs!h zE?P7p#YXl$rJqM1|9I*}y#Ss9QtZz2tMtw20N^#Z^epHC;C$)XQ@l# zOV9Ks_(H3%mzyW2y1R`;SDd9oN8qmpjt>eVK11HfRd;qPaBq3H+W(=#@^2>Bz5fHo CzGVFX delta 13101 zcmbuG`*VzE6vyYhm&isoo2&b!4UvgkR$?X5l8`htN+bwT2_csfm$(!amo_beHi8Y0 z8d_8t)JSdHBjP$ts-sOAP1GPFy&x{thNv*nXLmazzvjDt!1wz(=RD^*&-*^_ZdrZ1 zvif!)dD&upx?`a@d~6T>k84;Mw$KinT0znY zwuC^%v*l7-e%}?;a+&OvRBP(c*0$~DFdtYx22fJkJN88~+Q!C~`$GDeHXfINi3H#qq&~Rn}bR(EGs~zk3L93bFKX_4yB%1IRT}X7Q~~}ZEK&R z)Ud*VDAlk&9Hm~_FbSppQal8u9^M>-Qj0!qK&gS-GEr)`&rPWG=bcMY>FwRq(Oe(w zS%^|;e*h}AeFam?55d&;4#PWV)VK9$g>Ud+v`j~j!n3L5*mjg!cXA^tZGYx0D$Og0 zPr8}s)}mDF`77wU8Y<>KRI%bY&Y#71!>f)UG$Cqtu|<5h&H` z_x&g}`4)WAh2PnVQgiM_qq)XEIF3?x{5=|_7S*3esZScVs+@ndm;MUG7H%&^jjtPzB08){fGV+avkX z&ZV7cHOj4ih1Q|@8oE(F$_?&8TTpFk2o)k1b@p1V>O*5u?jkcCLA5`I(;l?WrU5hr z;BtN>okf|o18D}pv|l1|-5~k`<@SuBVJO!WOBR%SGmc_W?&&va466NlIBh_+H%1cr zO2Cz)2z{R7tD|WSu>Zu6w<(w9C2kNPW+_HK6xgBf@`gze)G3}gm5e~dPO&kYUI)dg zTs57dVezh6q`J5KrraKOGWS|YuK~xA$X~A}ij<`kAfD&ZRe)|cU};e728u;)0hxrc zTFd6zkH`}#pCblov#>Q9L$;NE0=4{2G3{&%ibdmLGK%=)nzwl0s0`qcgOmt-*K;f* zORu?b58PwA0VcsCN@Wk@8n#TldnvvSg=1lf9y-P3fF zJj9nZ^ea#SN9Rg|1S2RG=EvmTtbsZ{q++xOSbFt>yYE^f9Yi;;kYWS-y`T$l9rFB? z)|_ip*1`!$hvA6W-o?U{PM$ojz2b?sGXK_9xd=C~B~aM`d}Vcx|B493)U1ULSd?9G zAkwQ2ELB@b?6yA4a5PmpQo7$(xeU)1!_ z|342_WGd&;Xjpn(hfhRDMG_V(UL3PPS%b#lC@f2x#R2GmbJTQ1ks@4*K}ZKLUT9TL zcSi#`bwV*T+a|3_l}NPTSb7D+;%R4xihNZM zaVuF35;;EVZqS9LOAPQc80SMmVt2JYIv0f$dvjxudax51yWPP}^o>>TxMIMc#i>WU zU2?ddta`gr1~(xcJb3wdwWf_LfryXis7BGi6eQZ_s`p*7Vrey@3+9mK3_%pBr7bsL zIr9mwLf7M(fj#%C*MR#7=gDt(5YoYySL|1-(Xk*LHp|LXgLqu3HnqGAFN0y}lGDQ# z2T>EExr-0#RE?L_s<+T-<;>}&SL0oEtHss00z^%r=FPEznji4%!DdyGac$}2QZzAX zT3gX&uj(xx7HVm{Dn&D+uMLh;u{3-Z>S{<{B4&f^$k0H|pJiM-T?$Faker4bX4Phf zfWfis?%U{bYp+c(A3Cl5&=JIoziMSMrVEy(_#H-}&g9;Fp7@UNUz1a-I6`+SqvF;_ z^*pp_LW+&-cS=8xKK}9Ki+TY(1*F)6=T_>Q(E-4#Z|fm&eX9{@X^lb+~Lk({M2 zg)cqRo8SwrKHhF#obKT^0$p*I4jq8M8aO^Eh=eS8BUjbQt-zz@-D>}b3d_HlT=)48 DVfqYZ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 782fbd99884da98fe71d01b995386dc6f9444afe..8f0be9bccfb0d64f4d6284b62ef90971dc320ad0 100644 GIT binary patch delta 1676 zcmeDE&D8swX+tohZAy}nc~NePk$#e~L0U?pS+a?7szp+&MT$|Hfti81rJ<>Xd1_j! zv7u42k#S;*iK%`{esZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90GdV+{Qv*} delta 1676 zcmeDE&D8swX+tohZDv)niAhqqseWRLp@DI#fsuuwxuv;rT3VuUiiMG7idkZ^rMaP{ zd6Kb_sYP{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90ES7Vv33B<_<=VUl`Zb-jt@8`eP4uX| zJN%T0^NF5o9@3K8$-DVtFKeOUd_5NS64CnyKhsikeCN?v7b!Kzn~f7ABy`$pU%E^r zlgqDYB%fP3K%3%eZoNs;(7ZMEZpL|EK3F+I4eWn^*Lk40aPs`>hwHj?l+6_25-#nB zAs-cf(GR}~Lsw58J_ParF`0P^aN0SG;*+&j=bT;mp|u?H;A{~xgd3_M_QsRI0R z8!l4ejrv`)u-BC!@Bps35=@q0t1H2oIe6_#P@9J&;dyIpVaszU6NbDYxX0nIK3U= z+=dJa&GAjnJK)cK(s|1I39g7cG^rGH9x5KpG+P;#WHgRRZwdE+EkGf7LO6JWHLa@b KL;qRnSI2+so%R?2 delta 3290 zcmbuB%WD%+6o)y}rt}df(NIi%MkLrSq%)Z`$q0oOMG#%Is8|q`yit@E#0Ue@G!Q|M zXdU#b1x11uY(ec64uWaxBPfVUH^prig5XLaQNe|Gnnl)g<`4M3-*4`{=iVu-b`(}S zo@GHjVx3+bsyJgG-jJ(|!$1F>XMiSawIk${=Q z)eIkM+0kV`aUHG6#TFWB&If#EZ&2nT-$*N2;peI!=nedQZEKjA&gTOQwB)Qg-WTG% z!KXx=kM~`3k(SI#-pLpGSsM-KYmuOvh~D4-nU+ad9t< zc&PA;LHJD=x<>No0g#7?$;?%RllEB@pRBdp=d8jH&82_~XG)MG+)z!y_nXj772ucK zaDfW1*YBBu-Hrsl2XMuaV4@709SKg&!fQu@`W)zl=dHPgZO@@X81kmz9*4h@lT&yW zAxoUQ65go5C&Hs+)h{styKq+(+6g~Lmcd}kSMad8I(XTm3MBCO3Mj-j1`5|l!qeL* zGVud^`0^XLi7RQKFidvR_R(PZKj6m4bvQ_kZy3t|;6yjALyn!_A_ds33V3m4lT;&a zLk@-J=mz^8@aG=s9A*6kSHf+YRQB5s6%S^XEsshvrjJN(3HN{{Kp}WSICz51m^Imh J-qX^ruK$+}-@E_- diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index b5c9a41fd7916a0124f716a1cf682aa75e5d06d3..f291c1f321012ff4b1acd8f3479bdd5c7e01a666 100644 GIT binary patch delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e39a#N^9cq7{E4a5MuyMiXst2RA9h>B0_3xF^VoD zCTdy6S$a~mWf3bVtz z^7Eo1B6B07vTe~;`&KppsA_`K9saV#fJu3Mo|nJ)AM|^A!p?M*I&0S>G}nLfIVkm7RTN5X*t-g)eo-Bd zQvXsj52c>{%~vSZR`(i8-CXaFN~a&HM5RAFT7c%d{rHrXD{DQ%g_7 zJE!2x1GK{0xfHZa(s}r7QX7w;)TPZ8sPyfYOQ_V`3g2|*&-bF#jJ7N2x_a^9)QZjma?^u^|#AV?7q8m0IWWmR`s4jsjLsa>h65? zJCr)Je>$4$GXpIs^}t{zNTtJ!eFwIFWN1g#of^WB*BLQm(lQg9 zkCr*#%nT?uD43biQhgf2_MqC3Q7jDAc7?J*R9iWQ#h`UA9>+RSZvOsWEtP;(4QzWya+%s0T9o2pv$EwkOo-vgrqFn29>|<10pTKH?I@8AI*#(sOD3PTD zOy}iC1IY||fYP<&USj)DZfOczh~~Q{m03~lf;5(fau=kt7f@|dCfkQ<`C^8AE+8>e z^`Xo&xoj1%_jvCHR>%((vjDofjKzB55JHX1SrY0%B8H!!VrK#&bmUd`lxGeb*Rai? zLowB^Wg`^#pTSA2z*^wz2ItDgi^~fz#5}`$FtXyKl2b1crdC@RM>OvcVgv0Z23nrVSv*-@fnmtC;b+E4ZvbDlx_bWVi;_Pr znk_ws@xtM2IPpbk(mP1q^&KO`M%t7qy^J`_EtAqICtKQsG^#GH$djsoqmG1l6S6Ob z?iDI3mo6jsn;!9nZPFn$T`t6aG<1jb^C0&(C+|Hd<#Xc9#Mfm@X;e`w{RjwzgpGAP zfOobF{kBDV8|f6i*M!)cKK@*aLmg;KyVL;W?Aqf^SEXrwXyTRsl9J#nO^5?&)k7)Q z0^)i4MEMG+rT4<+c|!ql$x3-4*?%k#M~*dJ96MD$HVP#3JDIW%U%yc90u4wQ95-QN z8$}n%Lx8+VG^UiEqvR>SF zZ;u=<%7#oU=s+Td1sW)JmNS&<;|*y~d*EQC%3?z!a?d|m5F-~3!8GtwL)m0c0&&{- za?>e;7me6&X!bay|9Ne#H%tikATDp3{+Xcmg5M~*!;y5QYLfd~bJsC7jkj!8S}`e2+@jPaV_II=rVQcY+15lQpDM2c z1#|{a!sQAuzv+qh+)=z;5&XSd*#tC!9)WP#1)KyYj;T9& zUKh8`S9@20WG=)3yx>DM5i=;W56x&hAl^=`EkxG`MhU*A!$!v%}Dry{?7aFGu`Q11g|61_bUPWRv=bw6;` z@wu|Lf_fgS$Y4rByc)PFoMp<|-K#3QFQ^JFHfbM$X@6^SI#9cWMnYr8Xfm*1dK%;y zt5qZ9_)N{lZ(6i#z}4Z@QdXq)Z(t%9e;>5+qc$y!-+fLCC-$rc{!i8ALc(PykpFkW z2;j{r+Hlv`#bqyP?*ohRT|W|jGmY+7mPBQ}fvL|)CsEXO6WnJ$i9Ct^wq1*vfg5D- u)DW*-lz&l61Remt4I}G@78~I~7$m~@z@rFGKI4@i14WQd;;-A^nEwk*n+6L2 delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e39a#N^9cq7#?lZAjSZi6h$J4s0d;}5g|3SV-#IR zOw_WBv-G5B%OX}#TAx$1lWL_#TSLHNLZTQN#7b3)R?!k8CDJo@YP0g=eCH4Nem{Hf zv(Gtu&dk*HhSl|k9nEAB1-9Ji=%r=W$vJrumZ)Wx$he5u_}HlY{G6z~xXAdtn4H}B z*ogSprBRXAxZGSzoP8@B08}->84iEhV!))lewmlQ{jyeq$?ett0gf)OZ~+Ky~Z&(>%JM1+8lcqry-4^nJD$#>u|2E<>@H3bz=#d>)kit zfFE!9B}$#XZ4R32)L*=eQm5^J1|w$=C+^HZsWW#yLUa8mpN&$lRYjrHhP|s%>KD}s zDD^Kjb5ZKq-+YBq^XgthshjKlQR%cpm8kS*M+?wgw;z8Kr8b-hLZ#*J!_?y^VQT4V zc;^(Hd4N_}JC}-`^TPXL>Muv7&-KilAd7Tk6CM`Fy zd1#sQ&CGyugMyhEE!C$XY!9jp8O6d-ZC5B8M75P;SPWX{;&H4K<@QftOR(1*8!1n- zDwLaIVU=jUn)R{Iu&n}?MM@cLL zU^*{98c1Qt1C*{E_Y&KOa!XU$0yN*UG-gG)^V3;6%AKFVUO=_US!^Gw<%<~dxq!q> z)rT_A>3k1Z@#^rx15-S*dou$GJ)YHv|1E-~{_l4M(cHd^z$j;MS z@DF|L7LfcCt&yML%*>~5QPSz1hwT0k)N6xL@}gmi)P*(z35Vz57ECcoXVGm;I|HQ- zU-uIyQN#ye#EWTMxRi;A^|tLO6@3#rS+c@y+h&z+0>hAN!_SD5-T=O8b@lw!7bSmM zI7@mApMn>jkGCCdKqz;W0NvyX^yl9X;fWYu}rE0jye+JO~}3! zx>u;ET)K?hZ+gTRwn>N3bh!}w(a;^z&x73GoV@p-l+TGX6JM7jrBg+%^dle;5;oTH z0N&Xy^xGEcZKPB5UK3((`uKAx4t1a{?NS4fvulqxU6rQ#p@~=iOG<{XG$9V8)eogy z3y9|#6Xh$Qmfj1O=MDwLC9C8GWdE@|968o>aqJZN*eH<9?_|k7eEkBs3p5~MaNLB6 z^C-GV9s=Y|BJWkm^s3jZutFXWK)Eg+@ur*>3Z$!V%~uY{zI?D2Dz<(w2!lrCP}Av0 z;|<=_a9X|(kDa>1v=8M@bc1u<;m{|tFR}pt&w>jFZ@wZ&GE;7=9Q%EAJw!A^$ye@paY2*=4+tXS0zS=0|2j3+KCcF$@dTzqK2p!C9@1@vQNZHO|_vtvX!1oP4R4Q5{Snc+pM z9iddBCjoshPO-wvBg6qz5w5HUrgYcX_10A7B#NiTMCDy{?4o`4xJ9W;!L+=vO&P+)v#p6rK2=@? z3g`@;gv%9Re$x~0xubZyBKUi^vI%GcJp$pf3pfc*98-4y9WRiX)TF2n;hp}1NyR@N zZ3|R=(CLXrj#cx3b#}d<2(cfT!&N`vt&Zkc)eXqg$tQj4LR$2!8W-$-lXG1>Hcf?2 zd0pH#Pwia^lDQBE@PZH3B+S5OADrb!g=f_!WXVMM<@Aq6H5R$yba8W&x)Pc6b@8pg zs);bU{i2Hea@o1w<#fGOZGg#hFR2URoEKeDQ($sNySfu5S9PeZFnRPf75SNltJ=%E zROGvDmw5IKbpxF9>)mQ8aAUa0zrLehhYJ>QPep$F;36M>pxy__Bzk)yobJI#>VDv= z<8x$fCG|X3k-?ONcnxq>ILnm1yH{0qUr-fVWYRtY)Be`vbf9(#jfBRG(PUu3^fbsZ zR;xzH30YbmziH8~0au4pOWBdyzk!Kd{C&{MkLGD%{O)sFII(9n@PDc<7ZNTzf&9M{ zMgVV4)rPyiF1Ed-y$>wLcl}8C%`m!OSrV1?2BtnIokUUBO>m$2B=ThX+jcExI&P53 u(?Yy#f$7u)rVXi#hABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ?OGG4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb704pjz delta 976 zcmX>#f$7u)rVXi#hM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{RyAG4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb71WY4+ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index c5e108a9ce630c7c58c90363a2c9be9ab556bd30..90198be32d5f4d2b124102193d3ab66a94113585 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%QsfVM>ybc~NePk$#e~L0U?pS+a?7szp+&MT$|Hfti81rJ<>Xd1_j! zv7u42k#S;*iRt7T#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3V}@B* delta 1139 zcmeBrz}oeIb%QsfVP;jbiAhqqseWRLp@DI#fsuuwxuv;rT3VuUiiMG7idkZ^rMaP{ zd6Kb_sYPLXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3)I3qY diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 29c17697ff03734f2e9f6b7d5490ae9db2d56358..1b8265d76586419da0a5100b0eaa598996fe4631 100644 GIT binary patch delta 117 zcmdm@yhV9~Kcitvl972)ZiS7Vv33B<_5-YW-_$duvYK@03aM9F8}}l delta 117 zcmdm@yhV9~Kciu0RkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} Yv5~1oa%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?~n7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi6AE(N6k delta 1690 zcmaDdi}lGY)(z2&hM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{RZh7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi6i%K63s diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 8dbd4d39be569821f9a4bedd12844337a79138d5..b1ee1a6102c3fdbe22f7283e03ca9f6cd9533b8e 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ?NbFtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$+$Fe{0Qau(N%R08Ru1++A?WteeBaLnA$ma+1)vYi-C z^f5$IL>Db!b--g(q;=CmMMOlDh*E)+)rEBtWu0#frS9gL{(#@}Jnwtnvv6Jo4X=WR zt1hz4!-dvBp%9?G>$+KnU=6I{T4x7Ew?r?cBvobt& zl}#BD@mh+^jQG%iB>4((B&g&X5oS%ugqQg+uZ%*RFam`@x z5I$xsqnJDIH;>@X7G5*s1n4Y-Tlndu#nDjkR%R_V@%GsVv92rp=G+}v-3osl(qRq#*|-;}S3~n#f~ae7hYGlImw!2cF)gfj z4|EA>Xt#17t+R0dPBgIppaXTSKiq`6UO2WA*ycPfurCfcSX_P|FX)^DqAb-rn9^%?CRKmsE=qcel zvWB4|Zu__kb1mX&pUxnMqUM@83UydRXMI}%?1E6OFTZa?YrXm77vQS)MUfWutxD5H z2PLt9xsVD+tiaj^oEunY`V{ddlf2hQz^~0G=MpepZL1}*YOjyz#PMRH#6+l~7njNj zG&Zsq6Il{OZw1+EiZIK@2zb#|L+r?7WTFfyFr9rd%eK~$H^^=BM=3=Zo5+a>qNJ!& zU_462cG3sz5c#ePtxbyPZ6!J*-d2O^Y$kfOW01@g+mDhMd34DtW~ delta 5860 zcmb`L-Aj{E9LG6FXUplfpYGD@)br{ai##}XEC>yXQ@po|z zVDJz=YA&UiJ0Gx);LbK)J?$juEQ8zlnWP2LQ1BLJFR}2}nTN2htNhmNomkx}e>1lX zt6Alr=B-3sN9K2dt{2uV1W7*Gz8OW6ou|=Km7KUJXev~m>MF%1qKaDzs;!V~6|)o= zcyduPR&NMr3)h<2U~vZ?Kq{0%bPKna9L9E`%6;XnSk)?T-*^w0Ego>208CyFDqmeO zilU?5+sH^N{^RnXGV_DJBxEcVe}HeU9Y8v)qd#}-Me5bj{Kg>a8r-P?u3Ygi12CqC z_3nW#Asy{h`_MX<9@vEj_8)ShuC+(%QP+#dR{-0brv>)M0SAlX_wj=ESs=<%y)${@ z6^99PX1lvgY^3umM)TcWv!`Gvt9@kT%ld1v<@JT|k_Yb-!*}O(!@Y=W-Ec7%ucIf0 z@5t(g3%TP%Gv->z(>|U>4n^HH`wP@z9i8!QIj{>twLbs89j*1&k6(bR))Pe$8*r~@?dg-mt8DVt7y-W~pPWy?cx~S{603Flh(VkvB5F*8Dn@a+ zj6h=}doi9RL3Edst(FM0Y>0pt9n~ZYd5nygAqA$g&sN#i8uALcP5vmQ2y;C-89|g3 zO$v-fDQ_Y@zz&h`y3pFBi0&3*Fyn1CY3>GM)Y^u~bkTH-#2_crpDbfiVn%>81A(;b zi)fWtbdFent1|>^?R~^32CtG+z=1KYkRVb!$QxVu9UWHyhFoWT+TB695(CfWWXQL( zxYJK=0F&{zlucwjCegsG|10zE3AywiWL7;R$iK@(8X^0W25h|v1--*Iaq}gqMrDLt zsJY;bg;v=ljtr5f8Q6^ZG>er^?u@5xz+N3|gD!A7o*G2vR9ci0eheYU^$FO3V$@Hs}X+u1tVM>ybc~NePk$#e~L0U?pS+a?7szp+&MT$|Hfti81rJ<>Xd1_j! zv7u42k#S;*iRt7Cj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGn@Ol7P9 delta 1199 zcmey>$@Hs}X+u1tVP;jbiAhqqseWRLp@DI#fsuuwxuv;rT3VuUiiMG7idkZ^rMaP{ zd6Kb_sYP1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGnj;9Wcb diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 18e408bed1aba156ee38b35acd935510a9ce1874..5b1c8f4137c1409729f12a0897f36a699c25ac0c 100644 GIT binary patch delta 122 zcmX?Va@1slKcitvl972)ZiS7Vv33B<_5;oJVqpI)1Ry$Aia48-&$?}0H`Em delta 122 zcmX?Va@1slKciu0RkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} fv5~1oaWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~u`vOcnqD delta 1928 zcmbRJif#5Qwhe)dwwYDQCMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{V4$`N_rl#rdU0$*Ge+x~gs7!dS~_NU||Ntx=QrFgK8=bMtYQBo^|t zPCm{ey!kk%D|yWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~!q(KW+d3 diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index e474ac86fd7234aff799f3e8047dcd14c07490e5..1d813fdcd68dee62a502c4576c14350cfe741e24 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTVM>ybc~NePk$#e~L0U?pS+a?7szp+&MT$|Hfti81rJ<>Xd1_j! zv7u42k#S;*iRtDV#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0ALC?=>Px# delta 1023 zcmZo!!_=~dX@fVTVP;jbiAhqqseWRLp@DI#fsuuwxuv;rT3VuUiiMG7idkZ^rMaP{ zd6Kb_sYPj^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0QyTXy#N3J diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index ce97b98b581eeeecd920996ffcafb3423ff4fe7d..e57c073b7e3f6b46cd22e05969e2306a5ddf14ce 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#hABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ?Nf7&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d0B-!8?f?J) delta 527 zcmX@{m+{13#tq(#hM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{RxZ7&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d0C2*YA^-pY diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 9ef378275d36e42e1f196d91a803508d209a4251..e9d30ee9a901ebf6b018e1e07cac2965a4974aa4 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVhABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ?0?81IpxD_+!P^F^jPg=ATrGg=ATrGwkb(Q=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ_r+`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dcMD0y+Qy delta 1705 zcmdlyhh_5|mJP*>wwYDQCMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{V4$`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5de+#_FDh| diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 2254729b577f284aef2df36307735280c5aef585..dab3f1b60993184c5a8b1e1148198646c5c3cf80 100644 GIT binary patch delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaMpyND=p(?nY1o*NSd)B8JRf1Ldyn15w;kHk~vYb zB?}pR#hbmalRKUdeg9wRpmPCl(mbpLR;SYG8&vVYb z=X`J4@g?KSl zw%6Jn9&gS@rHxGjsu^pc9N{{SNkuSMV^Un&7D!$%-MS(RByEzm#O+9zW~@yzC3!nm zuV3oZe!{4J*|~NrO0CN%N2#x_-vv&-CUCZd7`9>wdJ(p=~=+>bc?$fGSJfvncV~5(hvG zclZ3xR+M_94Ek1t=JeDq(}Pl%y?apV z;@&Qln%-assPb^*J(T#s?*fS7gZZwd6s6wUzX7H8ym&dwP&5UPQeG#TuRwX2EY+`&ZB>A)Dr zZ}T-uy2DI{mzf>g7f$iNiP$&AV`;LCnN3g}m-yVn;^_5SmWF*p9~nf|v$wGu>JmHJ zSSls7vmtCk9vSRD#ImrTgq$MnLl#5&9(Dms;3U-`DginGr!rP#rb|~?3)cS?{b|Vt z(CM82o9V>-4=h?l%`-FIzsmwftP~NlBGpPCw+aL0mr^6O%`p=?8=({-6R{_#UhVXG zX22G|GgMEiXrE(N@#91G4_;F$RRvl3DpKffWb*Z^=|^8Ce^T7J%VLGv4?X?Ccnr7& zsX3BA4c=9uY7;2M%+G-a%2l6rI;?LT(2HgV*V1wh&qs@RY;t`Q zKM{ppDPz=sp7eQ9!DAP@M*LN)r7j==Y<9=1a0o&N6`c9e$PxVp5|V386@@d22d-G zNNy5ck=#ttgIos=6R9p2L9J4FGJ%GN`2%n>hxIvM^6MZ!^op~H`Y9em?RR(+c>ZA* z+INq405ODTmX}lG6#ok70jc5%0IL3Kv+{x!e=hJCq0%k%_3!)>Ai`rSQmq=nEJ|Qd z{Wuo$c$$02ucDt8)r69k`8xCwnrYD_i(4iQ_|70z{}Gs7ETw6ZRz}g2sL2A`NUF=R PL}-Z>lKOw}_xk?;L3V;Q delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaMpyNE0hhoOj?&IHqF?Oj7%J0X<;iuk!?|ik~vYb zB?}pR#hbn0%r+LX7dCfU&M+8_lVvV}pbkxNDqv##L4?FPOCrQ?%iJIE@CQ84=Q-!z zbG|q2*rIW4(Rj6(CqKiAZeqtC2vK#G;M8^X{lSW zdV^A*@e@W3%J$V;P-#SPOqsR@r6YS7m45JaH!2;mwW89W?dMVH z69u)X^r?;Q=$X1V34kgs&L}_@Inx`@c~I$@E&I?q2VdBZQqQ{E0IDqY%%H??OY8tK z(%p00_oCG6Wze@GJf|mjAh#$I_?w;EfLdi~#S~iScx5#}jD#Jl_M+6Wnl6;ObaHxO1<>f07_kG>qM#6 zL!SavX=xusiT;k=08zaT^|J1;TMNAfgR-RaMUhX_npw#&@^(b|r?*dBQ+z(Sd7yD6a_hkoKYyH)~Q0c$28I>9dzQeAeDuh~E z(Ikt8PeegOS1zkZ-qmALrFujw8%Go4A-Pj|bt+bBX9C!^SeDQKHem+owlxOn3h5rh z<%%n$rCW?uCSo4qw1*k#bTa!DJ3D8@K&S><(qyqOR<9(6b2IB*Q4G}}mG*jAf)0#v z>=s|8WZKPSc!}j<`@$*yHxYX#c|1*&F|!GZ;}V~HSpvQ0V;R^t^r1mafW3{~P?y-& z!qO?Jl?`GO^3Y)CL6(F4B;*tsAF?>ocd_$W0w<{kF-gz?IF-?2GhMvQnz8;b>rYA6 zk51>@-%Kaweqga8W{#QZ-W}F!#7YriD^jiW2`eyAeknCl%PcdYvk^`aHW9l*>ebGi zV+L&TJHz#)i`H3Y6+b>;|KK&HQ&otSuONl)dNyCXl794L^T);QJ1kzP{m|1NjK_gn zkeZ_Tli*zysy2zz%=|29pj@dn(X)xX1YEumeRKwIL5KDA{d&=4=UQ6I=Y?nyk4&y@ zf zXwO~V2E-8F8D35ell&{72c(L}0jT<`&GHLY{5j9#gi5#2*T3^mfC!JQNVRGJvnag- z>c`Q|6KVDVzk+^RR1->B;%m@HXtqU@DsGxI;5&m<{YPMSv6!JrSsq1ivL**?BdIP& Plc6P6MC$*+-|PPa@Muh- diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index fea6bbbd7f2cddd59987048d8d422a5031287610..6b35195e4826e7a8d1a7460f9c802844600b0c48 100644 GIT binary patch delta 1783 zcmcb6gz4@PrVYW2wkb(Q=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ_r+`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VS7Vv33B<{HMuY-DH);E>@409b+|asU7T delta 117 zcmaE(_C{@kH=|)@RkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} Yv5~1oa@4043rfng9R* diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 6229a93baab6271cc6d9e32d5ab5fccb711f3003..27a1fc9c25efb81308636f5871518eee353edd11 100644 GIT binary patch delta 4131 zcmbuC-%Ha`7{+-^=iHW=o3f~MQlnv--)-(!OxT5%1D(Mlx+uiCEz3q&Ghz)=%nPwX zIKifZPK0nc+j?|aVsKAg>Y)#kh^ z8)?yAlm|JA0b!5qBu!4%?!NQ*n8$4!0{3jo7WW9-F;8+~i;hxLLe& z8A-Q!Sy#zg9ZpI+AHiO-V2h*V0h09T*`obn5n66!f82w+CFB*&-*@5UEa@|-cP?e= zwx6Xtmx+rCGIy{NS8I@cIQ#q{?o^_UhfvA@Nlj>plF&2Fz$EsHg#}X*5yV7@j{PGr zGFLK=yyij?M%Horlq`jF$S+G#d*`q$MRtVBQq+u2%2Heyi^@_&?uTV5`o=@D6jw<* zZYZ~2XBqAEf|jvWC#}89(O>$6v16LSS5zAigtJ*ha4cWOse?% zW?0ANh-g7ARFYO|p|@J#EfON{u{v{+drrbK7DQB{rHw&Q^Qm^w;Sx2!)U;fk$I$_58KS5m8lzyd2GFGT2OpwIJyw}5mfE2U}IOn<+Qn+euuq54FnXGMd4QN z?qwwDakI|+^%|U%c07jtWWgRr$-N}jT*4L|k8;p*6Z@kM?v;=iH+|oOle1WJsc!dD zmh}8A*u6|#l#i*tGF+`b_Tl{8Vce<25cZ>#UXqwF5G7i|^pQ#I6$=ZdM7t3aAv*St zz{H%fF!GwSMVMIooinl&jYFC&Mb+J-vJ|NiDoas0Iw?zWX)Gj5(fuGOOVKy(m!-Hy z+Hga;{W=S2hZ`)UpT5D37)wl?%EL*?YP^tmsD&(jE+NmS6F3*P8m~nHu+gV!Tx5CK zuV?+GIAEeAi>S2+Zm=t_n-TjvvsQ!$bGxw)kTS*Z%(=I(GbbD{l67JXm_O<&az*I{MNC zok)*FHB=LQL8HQ?j#pHI1-A>c2J2=R#%;o^LFq9-CR5g6)dClg1YGnW zge;$r*T5&_xjVhrp9EwYYTT^A6RE>{9e@nMY}>;PFd#*6PX(LA5SG(+H>8mRB$i1z zf8PWfxEv8JsDd)mN~`JZ7I=$<$at*9FLT#vSjK{gN(|KM10A1g10ya`GfU0Dh09f3 zIBK-W2E}x601RZ~)pb7810C2Mz3s$>Qy(rQvnbO;kjq6>QtWojU;$- e4+W$yWuePs@B;r#j9eHk7*PgpF8ybc~NePk$#e~L0U?pS+a?7szp+&MT$|Hfti81rJ<>Xd1_j! zv7u42k#S;*iRt7X#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y)Rf|6Tw9 delta 1709 zcmX@x#dWreYeO`nVP;jbiAhqqseWRLp@DI#fsuuwxuv;rT3VuUiiMG7idkZ^rMaP{ zd6Kb_sYPn(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y$%B^Ns)j diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 7d3c34429b01f74ef584f7a206dc3652d88ed8bf..3552a98baea66fc8b626f8935abce3d3e32aef7e 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVM>ybc~NePk$#e~L0U?pS+a?7szp+&MT$|Hfti81rJ<>Xd1_j! zv7u42k#S;*iRtD#MnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgX+-XNUj* delta 1200 zcmX@z%W}GxWrHuHVP;jbiAhqqseWRLp@DI#fsuuwxuv;rT3VuUiiMG7idkZ^rMaP{ zd6Kb_sYPWbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgWj{Ul;%Y diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 4289dd72616a9a7a139183eb6dea226171a00a2f..a1d5b07e1a89f7f358640df3983dc931244f0043 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVM>ybc~NePk$#e~L0U?pS+a?7szp+&MT$|Hfti81rJ<>Xd1_j! zv7u42k#S;*iRtDVMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFS7Vv32WeoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6K+p(-H& delta 139 zcmdm@wnc42A){SpRkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} uv5~1oaMWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vzq;b` delta 760 zcmaF+p6Ts-rVZ|lhM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{Rwu7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~v_m~X7&nrk%Yi3o@&=|wyg_K&uEyEWMp2Hn_{G&WNeU@l4zD}Vw`G`lxmS;lxARNU~Xw>YGIz5mTGKh Xlx$?2m||kOc>-fEIokY~_i+ON0^K4? delta 117 zcmeB?>yg_K&uExgm26^?RBo!Dm||#PoN8cXVQ6k?Zk(2uXq;kUWSL@?m~3foXlb5g XY-DPYoNQpRc>-fEIokY~_i+ON&@Lfz diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index fb79f5b5de3bcdf97884f72c45d03a0c42b58496..32f1da62a461f4ee4bb5964514968d1dcf08da63 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ>}s7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0G~Sk3IG5A delta 1704 zcmdlyiF5NL&JFI2hM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{RYm7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^092ClIsgCw diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index a07ce482945ddd21102df390fc899133b1a22509..df9de6993eaaa3b59852d0068931fc1367712e65 100644 GIT binary patch delta 2429 zcmbW&%_~Gv7zXgp^*xA~g}5ePQB2I-%gkj$7$%7YuCmhHxpz|7D9y%KnS~P4RaaS9 zjLb@@7pG(=B|BRS(}<<=v9MCE`~~y;0l(*Y&wDzZ%>&2gf#YnHd38((Nw?pw8QA74h5lIf~?H%SSBS57ClV&Qn%)Ar!FilTc%K}F2 z;&n)_QAz%H0Yo?Gs%#foZ#u9+Kh9h1sBwx_yko6#601(Y)4Hm{(qDfcnhnovBTq&LYxX`U|+r8mkOKq(yvWltQ(S~u_etjv#sJZ=GP0r7q7K~eCA`^Mg#b&Up zQvU-68`yLOIKfef)mb4IE9Fz&><0T5RBoqaSArAt&N0#4N|tg}V|qRo!tIc-Gjq!y z)>yJUb7$Eu!i)CVl9oBPpQmcNyBe(&6LPGfZhQCr-|Pe2{a+HdlXxFC2^WLH7r1uI Mwl(}>RG8@b1rgEg?EnA( delta 2429 zcmbW&%_~Gv7zXgp^)&|3n1#3|Ur|ivcuJ9Ny*OE!Zc#3d@QV#D}TW}f57i~-t(SLXY;_kd0;*pW3IU+)#HgKy^cuC z<&@%1x9sxyeNrM3kz%sjAM1*!exJ+li%M>TeJ3Kur)0^K}m1!I7&;pN>F+uzX6nTfnWjj+*0(|cMUXZxj>3W2SQdkR4&^OOSZ7Wm7l_-muun=y9M6CH+ z{;5BC_mANXb;;O_sDxRJ#Bu}QcX6u!W< N>xOOM7h}R??=Ldv+zkK# diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index c821aae5b4e93e8212a52e28375ded3ae3bc994d..3962caa7610f037c89787c138c02ecc756650d2e 100644 GIT binary patch delta 1486 zcmZo@W@~6>+u+M+n37~KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WRCD9XeD delta 1486 zcmZo@W@~6>+u+M+m|2xIoVqs*NVwRX}X>Mp~ zo@8ufYLT35U@^Il@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WRQGQgw& diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index cd5f5f24d73b986a0c63da75530d2baafb8592b8..e67131bae3059aea2731cd884b5e68a832260709 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#hABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ>}s7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DN_1Mx delta 2066 zcmZ4ggKhl}whiu#hM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{RYm7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DU{p;^ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 2b64b7a8d92ae762a90d3763f04f156075ae3755..0cc0ba39a58b89a69c59691b502683fa56d418f9 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#5gl972)ZiS7Vv33B<`%|wGPF&ez$m&oklB+P0FZ+t4FCWD delta 121 zcmbOwJ4<#$Fr#5+RkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} cv5~1oaJC-3hAM)tu%q1J+3GB-@Pxu4x6{?;atDH?Wnx76 z24K1^QN`<;Rja;iy+!1h_7@qq{-^P!xEsQ~BDLw43Zi~zG7Ch?on=noAQX+7s^pP+?2_1Tfi1QE~UW1w|Wgd;m}pxD7j6?z{#Z zGkKo6cL438*!`oZ>*+^l09WCBoP$l%sFNd0w8}hPrk=i=nOqFDg-2 z|I{ezs?Q`*SJP}a>bmMxHR}3f4j$Xp$$V@#`^5a42|Khbd_w!$9x;y6!+lB;S;&%W zq2+!hmS^0QD?Zl1`yxs<<##G4fX(`!g6*V|T4y{4d3hUoU7?cC6K1x8;&H`mU5v^h zD>KvCF{Sq)q*AXtZkqTWE3@&TxC|=Q#LDTjnWccUk*Q_mNXl)`PThz zGG4Lt8@Y$fVb%ehc^YovlRZqM)m_XE4BU(YNresz5c~5ybthfzW8=UI=V_Qr*h=pQ zSaU95|L1$Lkv?8v{fqqi? SR@fH&hk~dfiU1yTw&p>InuN9xC3gJTRt>1-#8 zP7epLlZuGxb79nVc9c+b)x`-E?TNJmsIbL<0GMo~h`4jjf}-`;-vg)!+=3k~w_gE{ z={!%|-HUcn^xh%V_0+@DfU9sm%EG2;M9kA$z%gB-y2m%sJTFadMqRs}Mp4&+=jEuY ze`*wU)n^i@t7*0ybzSkY5_SDP2aoN_L@u_Q8^rwU2|Khb8ie+xwZk|{4|XdFWFbqg znU?yMXpV7Ht~9VZ-q)dIQf{Ym6xgi)DAB$E*8fr2 zZ)IjWGp6+JgH&pD#|;zTX=OG(6q7+E8(A5BGP5LbHZrxe97(x#S#UTSA1Y_dsUVNN z!GqA~az68EU=WALH162SGH9fnso0&W)ujkYk*mPPBH5^0fC-XnPe08yvMA8oB;UH< zOvWpgdL#FcIn3IDGf%w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7~X7*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl qjdq#FcIHO@ol972)ZiS7Vv33B<_^YMMkA87=}(@(BDUF=xt<#U<1r)E delta 122 zcmX>jdq#FcIHO@^RkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} fv5~1oa!f%(t`<_+$QhABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ>}s7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-AZ<5uD delta 707 zcmX>!f%(t`<_+$QhM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{RYm7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-APWjM! diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 82f710a5815c8d7f56d2c60c53627c443af0d756..3684f8fc7656094f927ddeb2a276ae068cf54d50 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)hABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ?0?7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20p^`Fp8x;= delta 1026 zcmbO`n`Q27mJPm)hM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{Ra+7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20W+p8-v9sr diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 20390e97f891d41db502a600b4803878755925c6..3c5afd16cb24d2900c15f9671cb7800cbda85cd0 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#hABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ z#)d}8M#hOLCZ>~X82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5df5}llcGu delta 483 zcmX?gh4IuC#tq(#hM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{RZR82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dcgekeL7g diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 93f8a16e8b82c2f8d5945ff72ec6fa559345a5e5..fb255a28a728bd0ab53cbcdc36771d08df46fa5f 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_Aql972)ZiS7Vv33B<{6CZ8I4HRrayTfi`?ev%*VL_5BMb& delta 122 zcmca7cTa9ZI-_A`RkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} fv5~1oaybc~NePk$#e~L0U?pS+a?7szp+&MT$|Hfti81rJ<>Xd1_j! zv7u42k#S;*iRt7D#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OUO+(pdli delta 699 zcmZp_#@v35d4oHnVP;jbiAhqqseWRLp@DI#fsuuwxuv;rT3VuUiiMG7idkZ^rMaP{ zd6Kb_sYP5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVc5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVcrS0;JpRZ}LJ*|dytid~Z@C^CL8)io)m{GfhaW1^Bu zM|bagmDqEp^x9;6amx}2UQ#!G0nXQ&fA5jG7DpdZy9y`1Q`DtP0`GdX6@Rnl5I1fc>FG|Dc0yCwGTo0t^UWx&w>Lo(BCAZ^bm8z0%l!{6^*iBIlq=l?8j;}7;Q z@duM!e3xQHz_KSPHc@&6NNdz6g3kyugNzT)Ld2Qr#liU!1_Rjt=9!Ma*D*@1@?j4c zI;3x}ZiD!9$?NlFnu&g0>Vfo1OQCBVQvO+xttVP!c3sGcu2@OeeuoDmG{ zqcrmF;$~iTStd%i@XdOJ@OQ%HeDllI`PN~@K!Lu9ipvBC_B06-r8|JSepv@%N5?OX zup_A>_|z~BzJk~tB{ck!#1ec`FDu_HQHxY@UOC#s=Ox*AX9*b}(~eP3lqcfgaNVKtY|kAuZb_l zt2e7=RTg1v)K=#Iw7CsNLlu$C1Pm0iRNYud*CHR?LOCkGMIX6&$Zx+Ud z0M7V4gdf)d73`?voh4=bxRMq4!~_rDyi0MuWt0&de3D`ScauZQfCD3qq5K~n55Fuj zj6WOi4|aVUU{(hCbUi4se;>YchcNy@WH>)A(!t*^S`1lz*{5e#MP|CRSO2cvM({I} zOo&@IpB)t@t3I@cGdd>sW|X9O@IPTPLG|R&7*V=UawEvznquTnc5z^5-~=^kGt>XS zmX7XJgZhaRlvvD$*Dwny^0eVUf3OP$ZTemecZBnxrY|MD?pWT09Pt$bXfjuZSJAt3gSb&ufldRSD! zKBws3tM3pLf61Nf-VPwKSU7c16hhdscvXimbQ6WJ6`{~>AP^xT&*nlwvxs?Sko;t- zf)DP5ITymKNXc;i0@5$_YfYk+uiMdtfJ<$AVL>n?RM6GTFUt+d>O4vYL=RHT{DGpO z{Oj%}KDCIM*cbIO-Z;9S6b?#1N%4r%4S*Z=!a(|rgJESjJvgvDLCI|W-^#4xoJt0)LqyL$Nh4@6M9v#JmT1BXh;{<9Ep$2QD zx9b6^C#3xLe07?P&tH(J{?Hzts&IZ1Qnqc z66*RGfjUO0*Q+(;-Y&_1Qc&|dd+Q1LklY+`$VjN!gfcX@5b7SG4tEi#O@vy#!AP%!Tp{^3@_q{C%wU1DX7qlYOB|2}d>I$K%#`Y!DGD3}x7pM<}GFpd{ zd#?!9``8FVZ70;x&m#$Sfl#MYQhz1nAwrg1Cs3;iHEz~ua_<45{CbZe)D}X8O%|xT zgxWekmE8MGsNCn{2{o5c-Qfg6%_7vNcU$)UycnhESV}3)BWe)%DCyAvf<6a>aF? zP)iBbyiq2hekW9unF95UQ0hejwSZ8v-Nh&4xQB$|&V@|D)LTNmXtj4LrV0qPv}Vz1 zn0ig9%x|-%rC{;|AxnLj7!vqvw(_ns4~+R>Qxm^wO=VN+Iho!iZgn@;1?|^&tDqffiF4I%h|u8Y4lGZbO(<>_)e+pI(+mP2d|q{jjum?Ie%qxI6r)hi!{!6 zPA!g5@$iIEBT>s9@amP>pT9QdH$Oa1;p}pJsox@jbG}Ex51LvEB=;(zMTt6m&9q2f zl^VorrvE}pB+s*}`N6-{;K!y{n(mBQXuz8L6X>;_*f{PK4bGXw4CqF9)#FnWVfMXnwfc@o3e_8+ovq+CU{dh(Y+Yre?5h6pKyE5RSgvVx@@tE*6qb>^$jX~6FX1{&&k z;KyJI+hh0-^P>5Td1d+V92Nh4s~#lJ>?y|$;^_b?GkbxRk6%!hFETWg7{BjA6LDAK zCZzu`A-m$)0xF#D=3g&2@@vwRay((cO<=b=GLQ5}aW|W2g9O##2?V~2r74@G_V!j1 z)b2YzW3z!*%X{)Gx70<>D&-q3wejUQ zMx*>tkTAQgAJzw+pWyNZIgwl^>WvECZ@GqRg{WHmnq?YfR6K9NrSc{<;ZH5M@FkYH zgM@XpAovdc$?}qZcmjh;rI#h_#wpv|_?9b{a~J<1`nFj$5W`n|dAnEE8E&p7&rXe@Ypy43En3i?%7{c>Y5h=J7y*-4MHjdktD}|Fi&x!;>Ri zwA8wmcs$_)*Q>#R?!Elb8s|WIGp;EAZJiS&|I%B|&s<-Vzp%Cpl6VWYEGp^X?(!wp zuaV^6rV$^$QHg+O z`Bdp0`2Nc=<$`@SqB7BZR#q`SCc7&Ms1Iwxxg>(3-(p1Z)0=iF{IV^5ks?j}nj9Sh z--aw>_}TTmo2S97#ceeBoQSVA)q)D^Nssk6;pJAYk?)XOp1VfE{Z?)e4|A1%c-n>p zM!|G8*NRr268`lXJ%20LfSS3*+qR;3-B2A3^mR-_26pWil{k20|1P}-2>jz|9jc3? z76f5Q*lR?!d7=>$+5p;%?Ozbi67$`4QP@SXp1#?IS^`QbSk&Yl3&U--VjvHPVN z1v;La;oM2STm|UA`=t&!3!bN;Te$;w_2>BhJHPO6c8mtL^)LPS;X8-&LwBU`o%f95 z@9a)Ru9UE690J2LGz>OY0CP59=Fb=GO#>x1ph|uBkKpg^`;C9Re=MK4FAXe-TH%N4 z;Mp0jGn!93*cAj1gldq#;iZBfejttils61G2SPvoV_quK)z;jR2TdF|haZ^Nm;Z6h z!i@&iH}C7lr=B#T65aWfW3$26O{ng?VN##|?Quz#gJ?YPlp_LBv zVAGbDGTw9ol{t#;A4m5O`=NH$@e5841AVg*(z25SK$UF7Jx&DU#H>?)g3X)v;aiXS zSEq6Lll-$Yjg>ql`{g+B{U&;T6$^QrV z*O!WNk4gF=-|%ugx1L{jxhgk5_sQkK+`oTB3ra0lhk$7}o*BWn&O`ii4_|G>Au#pz z>2d}zG>0|hKDxV*_BC5KfOOH5`fNq zN@4`c&HJ1pfaJz~y&)!Wb1HKS8R3wCW#9sidnsUo1rn}1BNWV#a??4&5R8;_H)zuA z$3dFB=kH6d3*;UM%!4H=j$so9ueq>!%0NF2cS1^<1@{eHH%9IWRDg+FNx90iayf;8 zDr@HkQJwB^a*2h3y6NJYQw>&gbDt@L^^0!$5)SM3x zAV3A!pWj)weGnH-xvoBf3!%xLW4RUzLBi7$xyw|R+-Y2gz(O?bhIwz{aiFPRrSMM6UzP4<6KiAx&4ec1ryHul6jZ7 zr?lvv>)d2&_ExvJ=W;<4Ego{y{elmh+b1} z&iRY>(%eOXqW1xX&}9G^aQm4XHZ_UN{(@tSb&HmY3yla6q72?GDr!U}sTw6xQu#WS z7B!&B9pyzos8GkNh*nUy8C^?sn-=I(Uv!MwsP_H$Bj8_6MO_5ZfWE1S`pV4qqE*a7 z64+<)qBt6{jgv&XXwukSWT2eK_7+7^(NYJ9Zqa1_p`v_Rpy?=4DaF56G(;mwX$~Zf z(bNMaeiLo^_Xxs7tPd0igE_Stb%j|IM9W#`bBRzK3tm1GIY9I{i3(nwB>GDP;!bJQ z@WNEleWj2*HczyZ6OywQh(xr&%0;M2A-ByE(MOuwdAYB^pp~LKMTG)Mr$t#5%<;?ic=XmL%2$~ z#w6a$=slP*CHQI*JAtEdBPm4NupVl?Mh@`|7VD+0ko5yEP7SFGUhNBv0Rv7CaRZ%4 z{GLHVFH|XTHB7851VA+0T10$`3YJk!{1^4+X}^fys03%7(LmgR7Wlidc&tRoozh%f zjwbV4i!C%tzP1&2q`AF1i8s)ADAG+lS}Ih_?JaIA2B}@N8ffb;{!T-qM6&phkla2< ze3NEAA1r>%fmbbc8u)0a81>2|e5;QV_n_SD93%dVmfe~nK1-8)nmCUZ=sH21Mj87s zNj!zJkTKnt8=4_LPs>U&#q(K=N`08PiW(@Ni{iojxndiGNf1&`h+^}1L2E#Cb6D!b1qv9Sh=Msl&q6HkU) z^2Plq50MwdnXIC8xhM`~)`RMbZ$R69jl~RtIzL_)uVLmP_O^Hl)x)a-@nTjzMBNh~ zWVXfZ2jZcW2jgRQTQvSte3+SsoWI1sQyzLh7tdqW!^#)pTxMH*dMzGKc}RW7u7_>! z#iyC|5c zE=f1ancqH%n&uYIlh|p)?T<<-QqESLl=#u){<9K4TJ73-$$2Wp?kf@#&3$-Xl0(7P z+>%_Rxzq1T{-!+4y)UWaC&>2bndAdSc>YG>9UIralMJWTN_~=S^cTv$6iM$=gu4>y zE1J9~lWwMEm-|Z((%hke(qzi-2bI)K3l!5yy=%&Mdg&!v_PRkjhn7vXO2;uyG+V++ zPU&ydde(4hl|X^(-esh1twQobob(%2%-t5!T`Z3$?j}j&!M;*STHvf+vp4*`y_A!9 z*JgX;rEeLShY0foRnYG4Qg5)$=_wsUwc_q4l~E&A93+ip+89PU`jKvlDz0teNDKpj^5%h)U3Mmej@))@VN06vQ2WCWoJZG+XLb z`o2Zdl7)f;elG?F!m%r*bEyrAuJK8Lp7>UyHfXj<+J#DRBv+bA{jB$HX#p+JAy4{- zMTnlEI*$f1?19XDF_MpN~rW7`+mXyd!PNIGj@8E%F{p*!P~a3uU$7k#q`; zgHcbUn`v&v7t%AdcQk&J)(sG1CRrg%rIEzxWiN!>?Jikw3&ZrlRa@2rMDLF63c6R3 z9isx`v=-!b7n|XLsSBC5w^|OFX8QLEuezqV>7Ek@mf1#`n!;}vq znR}0AbBCdz>5LIF2twt3C~Mjxaj`Q3y`d9ENp!z z|3qV9Z=j+y<(ktdP%NZEw2(QVRd`oLz4QuiEEG2=+E4@Vc13B1jUW7kLfCJCt&1wk z8M%X?`k}CT;8HckA_h6}$rrdYR`H2tIC>qgh=i(|ieM3ljVqys(X|ySiI8koUlBo* z(;6#|(`47?iY_esl(->)8ghWz@rqyny_gUIhyw^`K-yc8^6wEqsd zWM8Wd-j__1%sUnJsma1m56P ziq4d=`>PdyQpRqsQ!qSg7Z9Zz6lg_^MFsp87G()A=BOfuVf6-3PhSn(J}O0P z%fY==@a1X6%|LMdTnRlaxTXka>9h!9{5`1>PQ0afDToFq-c_Ijf+SL!+*h0z^ai6J zDdOl*H|sBjnwHIdu80+S2`G81Kqq-fwVUr0=;#PZR{5mZjo#J3L#Ut3FDXPwj<))B zpw<3#`H3|`?$^?OE&YUKVimuS6ropjzxFJH0+KBXIBWZv!IH0jX4s~#-wrv^7Fb=! zPYdGwQD(EIepL&NEr+UBe(U`O#!q+l`%@((k0kqf^*DWypI46qhWa^VLV+c}`fV3R zZrFX2UqgkEdvK=TTO)&OWpDSZ4U4b!i}V+KqJOTRhQTKw!bzg6c=r1wc$Vjr;Orqk zJ@tfl$NY{{|2T6J9nTjeIDXD=4K-fc1-~B@Y}QS`F4VfxM}7_ELfORUen(l39uVuM zrurEnvhKKGLF96Q{uLMlD+*vR>?(4A%qas>qrV#DbyTQeD`h|o2NoFotw8lsS{weZ z^Y_jQkA?V`q<$>5`g^T?#^&#}_GYKQS67!j{$5>eD(b(HR_j~R|D94$#lXt`zfxs> ztLmRf9cn;*|G%k|jB4e7ohq|iyg%BFAYoN8!9R~C1CsnV(&ULQ{>y0c*KYoc3ZoSR zoY~jE6>a$a5dXC?Y~EP`6iigeK*An>1wekPh2d-bTM5nzF0ApVA-O-tKgO>x4M5bu zZ&bVQ5BR^Pz0b#U{*`H9)++GdP2ErRr%#U$pZFi48r%KUAFXwWc1Jz;H&eG>_1eD^ z!!wIHuE0uQz-&brh zyFD%%u$^TMlwB@xm~U^Wod|9#5wM!7rEg@wUFx>+RRY3-h2}FG1$aH!*)-q=b(z4n z0bXCd+b+PXW7r|UtK(sve95w%1H!58`gaZRV_8t4{;L8k7!a^EMCcUOP7G+y(#K;Q zfN&zf{?H^DkY@xqVQzZBQ&yfZmJ5c@3#dbbJY_+Ecff43C?J{kjaOF(9H2^Gw%4cHLsox$f0d6xahNH(JKK%XvA!|9Z-QL z-#-jM`%%OP7yK2loF<#R^qJfJ+Gp<1Zvx6v+-jc!vKiuNn=5dKNigXPQ(!v=lcMP9 zA{a9>EYJmeXamAH5bX)Hfh{2c^=tKZ<(H}WJo3_}+WK$eMKVahi!0j|Z!w>ijD?1se zr1}m!?^Au;RiEnT-SMfu+JnGGG*}k?8MuJzu-=QnbF2d&O#KvinD%$=f`fi#8SaTK z5Kahe5fZeSGNrW!U7`cZ=g^?R41pjhZDG+MuhP0i1bL&OdQ8y&Nic8^)m(akaJ%Z3NQsOd0dIfo-p+TRZ z5UP`b$w5jcXD=667d*Wk8vyp6YNUsT5kU)Og0mkV8|2TjL`MEt7dA)>s!YWMlY+c+ z(9TnWymQd%=|SE(Xpf8_@1!7>5Ar^`G|df~K)b5V^Mh8}JgOd8Q_Nlwq+JOb#xTi4k95uaj3WM^(bb?EG5`8|eNlW`5d%!V z7BoW4SQ((ok)ZRfpv*!5go6S1gNh0#=ojA(LMP~BPmEH7#Ct)D3WEv}YK*in2*C06 zz6N@p1P$d14`Y2Av_1&bKm4m6-ux6a0nIOvkZ_P(xe$33PC9~=c>aTvAC<~7XuX4z zl}*ZPG`EOFIRZH&&fV-*;-JLI@nOnT>_>7!g1gv>?W16e#$*;^#AXBw?!dGd!_*gi&CiebWu z)r7fIf}1ClYS90J$_O$RcIpIU$173ii{W-Utwqwrph=nUI_Xl?T;qCh+l@&Q?DGM1O6ihssk*AV>zb zpHog_!|DmI=PU0pMnzB9{DLx`+Wf#J<;;K214MQk!!jVFdOabyrtCtS54fq!`1j3Y zx9JJX+*0mmRzdn5B|0=pqVn-wb~6OrS6*P|VfaHOIyFytc>h?*vVTDI;C!NVGuz_k zQ)MjWq2vqY6joa_eW`5C693D>gL~j^QU{y8SAGzJ6tw-yN0G#{{b!QAx;L6)( z2cr|?#2#jGFiU76lq6U|5-etA0p5@Wqqp!05AlA%450~#8m9XP$1wBIIVgAzb#RFnjPt zW*+`>2Ct<&taJynobn(%-1P*bw_>qdWrYVP|NHoW2n8KrC4Tw3L@-M~LHIC72H#}% ziL6q=EvYWPlxF9_Q#N=V%aao%Kr zh8vrz4k@`WaA3Sj${1G-0fvL06I9WZQFOjMs*h?96|`dEj_3?|N0Iawq^_1b`bQH}K=^+1tgu-DcxY>|WZ7tAV=$KFAQYRc}2B_`sUrMs(t=~Z*IA-S|%5gNl#Tt ztT6^-->LR^`3ApyRB1s%*@zZkCllQQ8)(S_SS5athV}$Qol|j6p5(iU#YO)lXTR2ctuTK7eu=9qJR~ zn_F$5xnU7%^qv;!G+q`{qbJ-#|4~9+fp!l+qSZqf7Y>c!t8(h59Q7^Gx}2KYD6N9} z4Wmd1v!WUus3L4GsG^Rb$xGFIaxAH?Mz6Gy0!3@9i?cGH6&h>+iyb!fl&ieDD=6Cl zabK^4S_$^(?9D*ak;>xWWkYpIuXN--@xb^->Y4O;()XrnhPfPGAvE$fuY{^*YV^)B zkteT(Ps*vSd{S!Ksjo85ml}fNJ=B4~KeD_QPKZ~hNxU6_rHeX~VN}4ZH-rfD0JXrk z-s(NnlTHp$Kcm5OY?zwmAOcYgTsBr6FZHUu{&=rbRsT(Wnc1l_C#utF|5R$0`XST% zI^HLeaLqz>2FI<%Pg~K(Y+X(YJ1ka*BZd4mNDVTVsTrQ(L9}nsNI-xyR;e#af#=aw z2S{75KFlx{ATSU9K^!B@*`QWQxUcZg7WFU@x>n3pANEJrAA8km3%aVWsmtK}Iycm% z@O8v3br)Rz=3Vv8AavdNQawkEu1(*n#Zq)_@ky<~=(d_)B-~-xyQAillRF@Yw{DDP7pr*AJJSp>f2<}u1mq=@R>RqIG%;c!d1ODUMq#kC~nc~ntY0&xUE4C(utVk3p6ef zvI}`1Zs$D>I`c#FYd_Syqoo@>(afN^Po8QX(PY634LVXl$}V}O*-DdL-}stVzSAtG zxqIJh7SUv%kD6MXx4pxkH1#N)?TcmxZEw$aO}LP|?Y-7#FR>QALQa}<$+YOW6iJHx zwO+lB2-Kn%`AP0Yr4}7zCCM-E#4HMCwo zRoB+Grv*mW)q35#N`0-@IjxPfUg!MW)ThM$&9&aBC}`=cwyd?*8x_6UX}xY}?nGPD z!0w&3?PzQHiN0#Hx@b4i+_>&quXSJc(o*Zf@V-9XjOedL`yNEvXG65@{-JtMZ6vZ& zpJ6`MZjI0;P~axNYCCxgLuAxIYNA`e`Ap=TOiiSQN2X~bX+_BlpNV2Kd~9UQ_BA4! z;}hgimQVg^^L*N_vdE|H$xD3Ne!I+9ZR-l3w)xdQZ6~kuY5U;@Uu$hP`>GkUeXSMb z`m{X@`dYiW)7M(vJ-%v+eLig;%kycw`(dB9mmKwp`SQ5-9@X}}bK33_LGkS_YSAYY zhz+b)w2f(U)HUreT7bK)eNSCdUf{!xz2_^t_3_5gtzR=tQ;kw5( zxwDvVH%(3`p+iSLNVN`;I`nQEN!p@yF3LmG7~OfjkXx#r?wY@lw6xH9y8*71E;Lxk zEz?zpzI;Ux*7ndv_zB7T$vSVqt{9}-Mw{q0MAwSy7yS;1SGJ7Ny8aX)I8}F(B7B{q zbJJurud`GC?YuzOotC}4ShqqYv^I6K53FIf?gKST^X)qH1q#Ah*bbkVk9X?O`4N)4 zdABZ(;;IhoQm8GK=Ief?vXvT|df>^qFo3WoPAAU$ySv zbxE|qHBSE=z0!{jdnHJJo2vS#N}oeN#Ke~;$+8T9C7XHxBVi=LwecG~p! zX@QLnz11KTxL!_wlN#$-bv@b$A=R4J(!Zi*5!CziRcJ7DKBY%fI|3GQMt__li1PIcnza0(_YTJ=FX%tgvVUCCdq>U4tNM$y ztoDZfE-fIvrAH^y3GU_Fdi2%^NtVB_pG}3o{z9Kls||mxkE5!-`b9s4>a5cbJv!-5 zs?}43oZ-No=4I5dh=0ghs`UbONFS=5j+T%ev}~9sqzgruS2ScLEzqP?2zmlRz$~Rh zD$s_zmJLazdU#(WB%1P2u5m~Yn%vYT#OuE$I)waA!5(xC@%q_^?jaAo<4?bkCrY7- zN25c~3vZ;g?r9-|X|(*65mJ}p)>sgtr8AB0OGBPh9=dJ{iKR_!gCSA0mwSIQWE&M| z_t}tlv_Rg~kgHVUwRb}{)#7dni=~1&X=XUHh(W^gI0dh2(2sIT;qwxPof7UQ{JoT+ zh8SJ{Dq~oQuQMwcs*2F{Y()e58p2KJU&YWAU)xtR48+&d)eU(Zx=ycYIELv~bqv|K zp1gsf0j8TbGK|I7^G$?uv*QeFarw&44YzT=rIq0(F8`^mVF;%CbujeB*Xx}ObMbX> zf?*`SK2H+rZ|W+vGpvVU3$9nRkI>GbenLC12MFbI1`6$T9BjCQ>sKCTD8S`yqYR@k zJ$JMr3SEWS?9H);UvXyJG=l^yq0JjeVWxA^4Tte{_zVHum0{R~ z>HJxSjrcm2H?%}o0rYXEp&qUr4GfEM%jf1BDqvc%NYG&0C59WAF05zLvdVu$u`47TxbVu;Pb17@A&q!>w*(3zAYH%Nr9m^=CS2{!8rPdg7M!y z7L0%XsUUit7lKpmcqNn@`9?5y_4k6Y-+U7As(caf)_fDn_4;Ahhw;NjMxyFtQX^LN zc7>7nYMj5ZrwrZRsWSG$T>CT#t80usam95yV=}&4490%{C;_64MmgMMG=7oeVooCo zj^}P8369xCja6~A^ASc896=?720KL>NpPHtHj?1Th%u7jXj|4ug2Vq8BMFXHm5f9$ zc~yjRY1ND*C=zNINl;X&V~Yh*d%_FCd`f>8}iU}#k z2Vhok?|L9*pRowYNi_~*cv665C<;>3jL#YBmb!0j0yd?YWnj{wI31LYH`-aAqI+Q+ zV4B4o51bQ?ET4cSC{gJ~`iG##@*sInav%rK4-Aui%) z8JDmsm;lY6ZG6V^pwg=qJ9N)6PQ|Qj0)=Gduert+3@!{1D=k3W9%BGVUME;d2cjR% zm%zUl8~+v~&fcRRB4Sh0Ph2}JyVCeKqo)2F=H_bLBc1_`*BV*AeCiVxB4Oo>PW0dW zcs3eSF+Zy|8<}3+|8M2n;nOX~>saMSxBg$C1#UOyv3dkV9wEblO3tnJ$uo||QvP|+ z$nx=WuhzBj#~~xzZy8ZNX#qlz!Qi7tQz4z{gfSRIKQTsvcgI*eS-}rr@(Cl;4`Fz< z5&$oqGul};XnY7D`LaAz>y2aABBrn40Zd1u{S(>$yk(SJ0G#t15UqXOvEmO z{RdpVY1D#@>n1adF2Fh%M|9wW)B$xSMF_@VI(WAJwd1D+TI zV2LM2C!+@n2;imK)EhQ?YV5%nqMbp1G5V}x)7M4|qwjPE`^C@H5W5YtCl2H`QeE6x`E6LlM(RIkL#ClBVBq9}*I68qL5G!3rs5>ciq6xH5PIOb($VDO1|y zWH1Vubiu0?O!3I`VfiYiCmg!Es+s=AS8H|CDSZ92hA9VM7t}Is#@B{*Oy}{{R?oBt zU$55}?oV$h+^^EubR6f)nwrkL(e>&e(?v{g9AetY*xR*$w}+c*U?yFoP2mP~ZNQt1 zEC&?4ieva@KFpqLI)SG}zb-VbU@$nUK9qm;UI9-pGA+S4eV3V*Gva`_CkcLV?{ZUZ zmd9F%lg?mjl({LqyVlf%<+v0=XbE0rn*!ke923*wSRVpF2b9pWzU#u zGKR0fD@45BlOlgExM)ho{@v`FX)(UOx@8)}=-)rJK$pw|?wc5w%mhjen!Gg8b@QfH zW*rCHKQ#5gN<8@3w6YMEBEWX2e`2~{7$s7e-=CVulFazRw5l*nK_ujhW^M_# zY%)qgUyE4*s|K5^%V==IOucy{_NE#}GefTo{sFCoLrmuWEYki1hM5nQ$4uX079!=E z&5Ry(o&gP==Cuq?Nti;IQE-jR%oHRT0V0I8n2TLS%8lup+ z!fYObfTH3COF(#ekfGzA<_Cr0K?V?lMhJ*KRm|5I1EL*t)HB!jg~6C6LKqZp#u^6g zVAJO2(TtL{1E{hRbZKd3dDj&ww;QxQFje8;!PbJymubi9^4$PJ3L#UaS?!tKUO<7) zPUdmg_g8dg_5J^1hf8Gge~8pmnPuvW>h%E`QRe#aU{7;8qt~|wL4(afxDzi8qAQtY z&@sf!G%_J>eqy0lBZiqTv9N?jrX~>W3v8BfPlRKP*K$jh0oNv)nRh6nJd>ZDScJc zkbcSd-@pDq2Ou170_N@L6YYpYFm!>L1eq@-8zvltG;A>s~YZ zx*JKBJ!F1|KBAAku;LN(cl0YeI9dOk*+P>;ulkb9?wSv?JWug*!!pJ3nqCLnJvKj< zf(%Vv4QT${%<{YL2y1Lsu2>FNzA%4fP%A_LyJ*NRd}~HWw1~30zBi*cPDrx&NAnvY zkU`{EGs^~>kH_)f%uKIVdjYofv7qmsVXig%DYqU93pOMg_cpu>A4 z`cG7|csqiO>Xx!htCnJxo*+2N5&-%vv z1ATgIT@Ai<+k^P!fvERWJr8w0_TaTW!9ImUv1_m7xzf12eq1H-@v1`wD+ zc-^w*1Pl7p^hqptZ4I23WhukxnLR;<2?>#~(9(h> z;)zRO1b`4!U`Kv!J$_l(05cX_YKR1_JYH&fjebM~Yx~I>i0O`2J{(-HxuWmM9V z7658t08H3wK?jGi^1+`u7WBh(Ys_Z&+jh%%7Bk>hAZn!tozEEeTMknbJU?WaP#6u{ zVE9Q3Pu(Q{jAeM$z+q3)yo zQT!bX(*t_cYj*;1LC^HC&LfLaOy;s+;zO@}mOim$vpCyN*mqAYZK;tuy|&DvM*8vI zf==EOM?3P-f{vM!C!SkbB4PjHLQ z+6-Ss25X)eT@RV9>k8dA%f#EqJgo1qZbqzt&!N^e47&6I0R$vGVoC5=nMP$V6#bUd zn_|}b62w^Ls6sI|0B(r3GJV{{%g+EV-g=cK&VI5|x}xkdX%AadF??0vJVTbX{W(#uUV@V%W?0sN8!G;n-9>jekGY}3e?1YwlXZFkRt+wGnC-PIw}e%Y16B ziSJ*1X$`~q-``m;uzcW#NSA7`H32`$SamR+vqj_BCtI4I#WpR-ciPPGyTo>jSxz51 zK&?DHU21jRTRj_;|wVeYe{B5@Fel{cO$f3#KhR$?T+HEWcEWFz5MWlio95y31$`QA~`LrA(2Z6-OlNO;0}uBL4RL;r)0f0qRNBcJ=j`?YMl#M~mdxSp+s2wm?suoYt&3e}0W zcrc@xO$paDwrxX5AU@8P!5uDi8mW63sC)@l&aR(50YOp#B zJ-*%E&Zdm*9fDrPPtRq3h6@q98Hh8myqj$~gCS7$RFJPK;s?KXw@qN_DG@?%Xdhr( zfPEsnY;iq2H_SF18=&q;rtl(w@uO_*Se`=S$^cbX!i2FlRUk6iz^S%qY`Wz$Yz^`C z#cbOKRyheWK*-dD^MdWViu;+32MD)u%Wa{;XDgR3v?XC%ikI1P*lgJwBD73K5A6+5 zNWG@y6Ljb5P+^n@7hKozlPPH*q-D3sHe6> zDZ0*jWxFOr*FGO@mvMfL&o*?FZ4rF`x9upt?)hpvjPcTBb{Q@|Ilvyt(C-QklAy6W z!H$`#NVr60XZpEkEILFmMr00Q4l`YEN3Sp~f>llS$_g%r9qp^(kY@IcEDnPzL(nk6fqo)tBXaAyE$wSr1VS)OC%gY) z8y&0@Z?^T(3MUBe2N; z`+Lem%R%^CVle~z>tDHJ!EzuLX}^&55KUtXBghFJIn*l_ek?-{<{KZ zeYD?_2*dZ}ul84r{l-s3ItA_^ah__4gavLhw3qM+o*CuXOEsNT#&MIXqiF@lFqY6K z?c_;9yTjAf9BWk!J&zY5A}diPgSDGEk|}pbTR9RHLU>e&cRZF0$>{D5v>i@@=Ih&VHoY8fTHt-M1AUi;*`mL<=URIIdEu8;*B0V|F#=7v~zNoa#_g z+m}ptc*FVqbRTDXW;&KIH-Y*-)b0HpWd$9UIQqfdEQgym_IR#iGBd1F@A3niMbRdR zU^6J<*JX}f0o;4x+1mGwj@1mdB&(-{iqC_fVKdST1H#=~jv?S=wu5O$>6T+9ImHM1 zhq`32d9LHJ7ztDnI{sqgWCP@OI^Hsc#VyAS(EksIV$PNlT6i|kp$bBrkcZr+GpILm z-gKIw^Q_~t2xWiFcQ9?Fpf(_CqX$bjhV)DrRDvm&9m11wkoqn<0zA9u$Y;~mPduhY zD>a@De!t>)BtdF{e)Q66fj3(It zOa1Bi12Z6b%4&uUF#DNI{bvnWfRAX98;Dc@M6%X6H`m#MWvzh$gk{FtMb2(mdF_@t&!CPR7G3RphH2e8=V*q2h6s5m z%g-F5dYNQ7!5wmu!zBCm$Z*Umq&ARpg3+c10Gk55h+h+i6Jh9$o^0rrX`--Pg+{zG7+ zCFfeo3?FQL<_A=*LrubBp@zcc#%*->cd-Xbex-+gFi+(|pL2T;`)FOu8GV<`=^gOA z#U%tntVRNl!7%IpbBef=4V^pxanARAHlU+l=-tM6e;O}y={3t2{mEIp2w za-r{y)ahM*5F&?PasiPN+|Dy<_I#ZJO&O<>Bma>^uye=wjJ5fyf|fw99@w z%>`LikU8DO^oA#DegR0??CA$xb6oow)+A89*tMJG_$6vN0|ZwMe|x5@{gL@k|L+J;P1Va?&+Y>}7iG85jCpDl+8MKks7OBfv@~ z@JmgOKp1|(h4u#sqV%#0?GKRT!z(Ta%WMi+J`3cByFDOvba-=Ey}+elbcDVj?zJlt zY-~}yKJ4_&)tYg1?F$jiJgTz4-?`B40uk`|XBXOCAjxgtTmu+qHGM&>sbn~K)jF&S zEFulv!m`DH%uQe-;j)lWw7o!h3blly?FEv|bcdqt1(HlJ9*VXXNV0XwP_(^3lD4Q& zw7o!*&B}$M?FEuNUojMIFOcNSYN6;!JxT7X6^gbONb>i3p$%Bv6Pb7x2>#-7uKA(%OM_n;pf)jG5o3j&D~N3gJ4&>LRu6dKFWS>eg)5Qrw+7LI!<%>A7` zLpL#Wx@7KeY5d#|R_PVmU&g(J8wP|Lq(Lu#{<2hf6aGN2Vti^C`ugI~(1}tm$Jb&7 zp#C+K@ep%akl*yV8h-yZlyAcZBL3q4pU#t^O@`kxPFT3!5uJv&@|A#^#mV*SgZEOYz+ zLA!S)lxer*e_(#Q9=aPd6?-f6Xkj!3k)|FM%Bx_)-B9#N{~S>5LFlo z(AR}A8il#>H55G^&jGW46pksV;@l7Z5BRw%cB9?M957wxW?7~EkIEwz?n;H}+li6_ zAUfxT_CRvr1+^RPs^q}MTK5ZH7v`78$T!6S>H*XDdr zlJi@;(UasH_^z$HCChXc<3cp~k)nAD+@9zzQ8+K${5muc?+>BxHVp2i%GwrD27c`6 zE=gv3O&aTA#s2P^h3lcbEzljPi$jrt$ut44KSBN=cS)eSQKAHFGssz^2pOXj>`=Moo9ODpVAZ4Wxy0+>a2dz&4nRyt6P}J47efQn26!i`{59DF<#^ z;YPbjIdH-6?oO;O1QRy7*9LoewC{6QWaSa&<+-n5w&osjqrIgZ=zrFY_Lg#>=&~E_ zE#<(|SA=lnues6QQVu*;;6{5(Ik4_SH`-gufzrR+Xm2S8mU-z$drLXc_SVhx7M$0< zwINztOjB@cK=ngm13&|bhheP)(Gsf`i%Jq_c>02MFw6n^HuuDXrV5XZ!T1PeEQkv! zLKio+{5&hgAhy0j4L%2YP8I^t4l|UVGb~<1Sc=t_5RP&c4e=xgfm7EMdbq*u`5_XR z+f&5Dw1~w7`P8zG_YC z`>N?1dS23M`X-(!EH6_2LnxNBWIiu~aWN4|BB*TbS>&};ThHb~xlx7o9;QWD_iQbcZZ7ulux-}RsJFw*y*=oo za)g_O{XDsa;>J3_bDTM*P#S|VwQ*HOM3`m z4IIOJ*fuQL0cd^bk7qg^Z>BnvF8+>8SHuDSx1w@pL)=*b7Q}N^`Cpt=eI~Q@TF(H;4Sd@ zYY+N(9m)Ov(T8yTvkzg;7au~8Z$5-#KYR#}xUfc)hnn)RVJr(VB2{dqcRCQPMcjO; zo1_I>o<-_FLw6K3X&`0IS#80jYW1S+W0Ne^htqi5|&(VhsWM)})szeYz z#|Up(!q9t|m^<*q9ERR@5}{LO16DDEoUs3>WML5kEP$UfPWD;Zj86Jjq zGD-4yv9OoS-kBU7rpIR*d%*iKVY?Z_q{q(}rZ!a#E6=o%Im08M2qzhHYKEaV#fW&} zb;Hn>CP{v17>2eqN%DTvuttnR_W>3q~4SO_pV~MdFdwb{3on4Z=zkhQ0{^Jho z&U2r0=FFKh?c9l|-AsWgMG!AcjqDagcQhHL&%J`^jwUPi9TY@&G+D9hs35wd$%@J` zLFVZGU2zcI(PZDsCI-fa;)eDbebDsWwn58X*)23)c+}H z6(R&(0m)Ka$y30uL_tRu<&qDAZ8X{&pmh?>02Iz z*~OxDH?iwi@aY&e7%IlalR>W$Vo)G}t*3*|Vhn{=E)(X|!gM{6D7N@}kOy7EV^|3u zT?*=NONp_4$*z~Fqbykv><5dk1zoqMUyr;Qgt>@iexxfn-wtYrakCZ#;$JtIzHM?$ za81grO&d6VH^_@>60YA5I)s@@{{wh@>9HWpvNHwQB+jJChG#+cko_!(Zj+RgYA=Hj zSA+!x73 z=~fP>wguBow{qCEGk7dA9_ug8cTx@nFT>1t7(vT?XXn{qdZUZl+@)Z;>sAi)Zv@j_ zw{nil|!3{!E_V692!0frn_$C(ELR(-E}L6Utb5)UAJ;5{SZud-OAy}S2ldW z#%hw**tR7VZo%S>E<$f~O@dL?B{c-Qnd2;B{i2PlMC9TwS&4lHwI92`rGRKqLqhlB z%OSm%WI7fSmIO+E6hIo+mmJ4}kmo^k;x24igPT;c-qJBEWDZ`vl2qq{C!$oIr9lMe@mNmv}xjAWgCa5sI*B zT>EVjdk9OHxM4if!6%YFVsRMJy>?hf4#Z(T40hXfsAjt;)?didi zNw(q-x{b8_Kt0-0v?;dy_Rv@fUE&nl4+6iF{8mjYI!%$NF%FfI9!uCcUDpK?Cr_q< zRq~Az5teATNLJ%oXDnd{b60JZpk~30mw-S%Zk2ct=iU-N3(npyp%(&~_!o9cUT{rZ z+9#n4TkP8<2P6l0vELyH-OOg+HaslpU?&z!e~~2fYLCuHYGK^Qzu3{v+CTo6D)msp zx2K0)lPtAnJW1G13FakDl-puhe@lXzQnSjsyOJfG!;5>8&A9eo4E-KRP_t^r!Re8N zrk@m=j$C~#LG0%Ng}H$A!Hc2u3kiLR7<+ugUlL62S0=@_*AmpcnpMtzCmF{%-25O} zi*1G$pCsjChnb@cS&v28U=?zb`-I81AsetT_VyvDNj6o;SQ2nU;#^uNmBLi#kZpYU z$oB|Ab`lW}4tR#tN16#oSmG0MnYYu#njx5s*%s+Y`pjj%FUVG2>(i^0wFW+9n)bLX%; zWutAYko$a0{nR0(5i%MaONyf(y8*p?+1py=II~9xJ#SH^P-k|MvSA#_iY z@foo{Pm&c^ z+zO$4lB_uG_YfJ{4sX4e&;ya-p|!=UmNy@TyhLMB^I%i;-tgu{$a^%5i%-4kLUzU; z;PXC2g7i*(fKDmtYs&5st7_7_h@qQJY~8g|TgbDKy4YCVgEkIQ)LN`ZTWJrFIZ2;m z#y6odp_K#4sgBaNB)+E9i#)dt#dt{yHACE=40e-ls76(D!Bct}p&ANQ27|n%$1#qC zRvtmV+zMjHiOKV2Evti@zjT)^rNb6BZ`6~1v8I1qZz#p=MVjGVAum{px*lmkAbUE} zTm73iN%@gtcd0amY7Lsmq^~e@<$nN=k3Wo`J5i(=!rbX2HA|8mBgI^fq8MdxK30mF zGO@}X5~Op5minNPVzRz4jAE@6HD6+ty$w>j4||WCNRb}GnsKu0@4=*r)J4(H#*?MjF;~O{m6d9w)d@|WIUR<~5>cnl5mB2F=?To4 z6tN)|OFe+*v3Vl!JiS~>Hzn`E4=bf~^W`4&TrEC9y;l7D%R1>H#FKzN=`YLZ{9(5g zb+?d$Oc#^cO!%1&s?L8%c`}>L`=vCU8MeW})-lKt{TYDGQej+fG7LQH%7jg;$G$XWnCx8DKrKdv39B4;O*%f8i|=Q($Pgk0aNWz zdZF?jR0M?5z1@4Ts6i-`eu^ZtA-V+@=ZDiI8p8IcjXadzN4^JMicr=Ae^Z9i?azC# zEHbnZ4X=m|{rg>HeS9e0|GWpC6GL;bn9$A;x>W%2ObuP>Nba~dH;{@yJ?u*JLYH9% zD&du32ZlazB29CPI*{qr{1rsk)!zZun?n0xMhE&v1S!#dADT|~6@+3=VwwT^iPIf* z<4`(RE?Uu?=ICl3T7eMJ3^)u9wFq^_bPzK_D{0J8&Y zg{o}D7Cka96mw0^3^)w3z6nLmfhrO1ObA_WEwUk#LNSZsm012$sLMoJD9}EWz)fjt zNhoIeTuG$H%uv+Cs1hM?PAFY~WZmu)3EhPi%DpVqfLXn*BoeeBbT23JYEdXA*xV<;j25nH4FozF>{>IyJ^UtA} zi^KnrRtm{S{wKVGkA?2!yq^8?zu-0QWGE^o{g-(DXF_*yUU$#pZMCuiiq40k^7&Nq z+PFzR6s}wi{RXqhTnV$}cIe-)PEP(k6m^`j60kVwu_q~tZct0iPpW$!dJPjkR{}0} zyzd3~K8B8SMtWhw)PCA2%mIQN!@6M>el2Vu**$Dal@LgT&U~el?)9CuXMq&C>>K7q zZfyzkgS&xYsM|jlisA!=8=j=GB+P?k4G$IPtHjhWj3>Xj+#u|h7=yquX&CAbW99Rn z9}E>=+vckXn`bKqhDV~q#)u9Xn#6^nwgmsb2kVbqENWEjC2+l=^WHEktbqdcU?0(b-aH!( zgb}C0{H(0*2zMWc5w|m8h#W&i*juC-THWE}nXnc%6s&AtP&Co)lzG7X3t=5>h#rPz zklt_mgpgiW&`%(@#y|0ewpYXaFwstjRpH}E*!3{X{F~J^{vO6p-!8oo_OTjKoTe{% z-f$=E5n>1u0D%II$5;}rJf75zl-2%QVx=RG!p7N%l$t*a!<=>d2WkL(cpm12RC6V{ z0C@Q-jK2Musp{REFw9i)U%be>Fau`2!VJ@3`)1i6F2ujxa39#{Dyz=h@wkT!vr=J3 zl|rtU47EsMMu>;SKC;~+8|Ya}*2$J>4Q>X=XnrO^fv}^ljGlyL#qRZG)FrZ_qM@t? zuhv{5yD1t0WXNO?Y@xZ;~CW zIxo8d8EWC-U%YlVmaXQz1~!vn4h~oVceIc>aUbg6Mz+7|A|7iid&&LFiHH}bCp$xSQ!9?6VT&5A$k7-^?t(^@7_K0sFrtnL{b@1e4XST;Zr0(qO=8dXIii^j-M3k{WODHtdFm8&J;Tf9j!wY-`j z>x>=}DyGOnNb#nIy`gK+QZZfT2WNK5=sGkTZfoz6S!0chu*a}j_=96KNu>8a z*+5sUshcj!6k>+i_6LLAVfraqmNnxI&(6r^a<+5N%TV)dLCZj&V9jwl{VJoAYNmkX ztFl;h09JI9w!bi+20EV}ggJ0K_LXd@_=c0`Pi5^9Giaa)&OAz5^j1b^%S^0ZpJa5l zEEKo52rtI;6N>vi(e(<;f;;x%yD;-)hEOpo%p3aD3a8U!M(kOga5_C^#SX#Ybb8E+ zE#%>Jdd!Lq6yfGr@R2f{PLJ8Q0de7Udd!N8G~sl5%!;iI;dFY;ic`|V>GYTt2WEx0 zLQh0!m#za#^20Y`bY^x6^~Bejl(Yy>LBrh2cpM}iv#rq~d@IsKXA_<0YZsW`JzQ=t zP7-bug}*~ighVj1_l3e4whauYIUbq1zaJVtkhh2DsPKEd=rAsP2XDJGlfs=b2QsNP zXOku0hquG|6js*-&Q1%b*QOZL`7^@j`22S;phOml>LZs|hjS;Y-xNL*smSH9dTaP; zuDP2svs}&nkaV%4zbZGIB9Wj=2fXFgB{?sM$NKJTOlFP9V@bQI5Eov5I0~ zyghsLD81ZQFv{5}@;|W3AC@LZy~SRXJyRYh5ZIV4e~u+EFIWBq*&$BA_*LHR=( z%kN+bG-)bFtwk^m)M_E8$;-;frB-sx@hJg(&VMw-YeF>ngvB z#c0!Az7!Et6OUQ)Gi+@EJp0N!+ff!n2gz?ESWuwL&|!!imCKe@9yMIkIm<apQ51va>^(((koZ{c<4BE+#f4p7%LgKz#YSSr zq@-?y7x*`b zD6Y01^Pi!#G{$M9_SDWpHwC1ih0{2J;q1 z&^sAr@ZHjgH3**$6nU8kqH$@xC8ZtQ?cnOJ2%2E846^n|&;)yBu(v#dCfF;3?PtW6 z9dlM}*|hT!G{IgO48Iyd6YQ12hZ_+z!Co2cycVCYZ+8Lj`#+%TFBb# z>+=YHj%LNH2-J22gP|joEzmb1UqNV87^XLp&3*6Fvtt{BdP1#giY~t7tj)*_QeI1e zIde>pzeq~s6t3hqKg9<`Q{4_#w1+PK3Tuqz36;tFx(dvK3#~g&4BK1QS3I;K?Rt;& zAdMsn%=!k!nhZxn6ps**6VS@CYU1Mq4lQJ|8dP!7FFMYh6$l;x?s$TW?z56n(g%&bN}g^cup zgiOV7&hBWIqBl-My?{O-57|nLohvD7q3|F@e<|GI&pd^@Eo(GzZld@J6BU?+X0Vv0 zFbcqWkry0lsh|gnSTDNXMzH{=pve%`PJ!Cy7bJncg^G2YLs&NjCIu!_2!*LliaO{V zVQP29&xk%vEHEs)qgyYF?ab?=Sd3FmFCx%lc<=ivmSILAGb>xr3|4$ES~L7MRPh(q zbfDKL#VxdcXk|BYW{}dB+yIR`xD+d%SXtc^14g%Tih5`fOGeyxBv&pdBEfN@Vi}qr zgIRk?QJpv!Ik}T|Ql$*YWW_!U$sSV`;g|(z_(Ux?-uJ9s(SxU@AlR^z7tyU|rDF+dOPy{={A$2J|t+;6RM2}7@^k`zHJqmkrW3ll~sTP3bzM2G3!8zJ(W@7miEFzg|!vDvR6*${$^Hn zC00xUHW8ehm8Y;aAR?@ERZinB$C`E|~ zU=G%2E9q@{HbqR%Q)1#c z0Tn2!IgTr8ti;4|W^w^=xrq`r-J}S!{_fjyTPvq<(H^zMiZ&nGwpXHJI!b3gJng77 z$8(c9D-rP=P?+w>elQAX7>9}h=|cyRzU`EbX#1teji@>hf%2z8-!kun$KHq8$XBome@N8p~`3cg>aJVMn#8m&}f@{>>!tq8^N zB^7bOj<9`|(ppgJ&b7+7n2}h3gM=+gcMnR5ZN{}fr0h?dhnzpG9Ep|jwf8UJjKCx#V%ip%kcyW|%nB$4=m^hVDK7|3e)uhFJQ6Sn#qcG? zo$5J)-+LwMOqc}*Hh-i;0p*kM1vM5~fY?IA?61me2+ISCvR`P*4i2gyWN+-jcJU-m zszpMZA9Yo25ZZj8m+A{<$&wOk4PR@hVlhr#s7z>Ocj9QLBGA)MMfab1k4o`Z?Guc! zT7A_ff#8q9D!T9aBPuc2XDKs?ysv9;X^aYa!(2kzFH+gU`50AuYqB_0)Ju>B-K7l3z!iCNvnaXwxmUj%A1@TsKRty3e|{gE>`h5 z^x|Yy&uUCHq;|Rrv&L=)41m@dDpXDrhLAW=IG z#b{kHgrHHXLf$g-#?VNpu%jxbfA2z7M8`-)m%@<^EmU<;s1-4B%IMgb z&Rsf3Dpj3SksS)7qKP0GP^|4$BVs?^LS*E(Xd*&q2!PEKRHSNb{+Ouxj;m$t6cuLv zYHsiV*fUjiuxe}qr>h2VHb2Zz%|SMjsGF-ZRXX}|Y5RKq?kw${e{2Tbd zl}oB9tQ2HP>&Mk$!FAO&bki^d`&%mCYGS;hx~nR+6=TFJ4^>A+uK=5$sGf-75o~;+ z>Vw&yrHX4tK2M^4=hDP07Y1d*~n*)KY6UcO-%Sb);DqumII+M&EZwe$g>z*VnlXS6vRW{x{;_84-CQk zd_f+ZtsnUpX3vKrWQls{8xpw`p$DJ{nD+n!wM^8@d}zI{a7q>F$F1;POymQM6|$bO zL=)*mlC{Z^up%iE8<{pE45m))_I~g}7ir6h*{4NHoUBd|{rANIq+*nm7+Y&GQdt0r0#il3pG-OC}G9#DwzyLOV1t(hI5dzsojoNaPO!shYzhG3Q#zG3HMGV0>aSH9RFPi83K={JQ z1DI783ouaNF%%A-ZjU@Ebf(=uMMk>N&u2#?x7Nqn?DGMUwIJY8#vu&m%=qHHF{Z7#TItk$yIs5Cy{ToW75WaiE{cbD|b`qD5a3 zRU6u`jxq{u#6;h}C+ZMhbPBiQP}CwH%4_lEs3Pi3!2Nnu1j3qt>atHQ&Wa5BJ<5v| zuZ;AAx}T#^F$#stB<<%!*g@vksMobAF>USWD}o|x)sG%$Pd^t(qc7IRDe_+q*@L`F zjox8(PTZDykrurY0ZYdpU$~JTZH0(LNWX{CCTO1-y&R!=R+-Ssc4Uev8Z+l*PhXNB z9Z`+yprUa!CLg(gK`4eVTf%S9G^T^Xxwpdzd^!|;6lqEQ zp>uh3JAuHF^-P%^??>N2C<18Z za^cx=e@0_2AF*c-eH?us@oZtl?+;ebqMHZ=n!Sj|O#c|h+?Ua((fz>jO>~w(pvgPD z24=sHMy(Pv_HRE%(?cP2X#Rrtg)6^CpGG%94QsVYAkfW5jrN7BZPh2xP2lUO?kf)lbj_TDhyo2?TC z1|GFg55*8*m2KOo2MPp+x5Ez!``fEg2`L$Ygih);0)cy-)tCei3`5;jjUSa)br+i; zqZi&C%@-xCN7|6aWd z+XR=VsUM*IK!=&?=>mZlv+=zkp;SFmz}Pt#KPX-;Q#TL>#V-rgm@9ZpnOTd}sI&;I z@|GoHXBhT_8o999A1aosn;@4F`@^wyVoNmNh#eFMz_Lwh)SH-?2HI^^ee2m}9N1DKDN<-$Rc}Z7OJ7K?z(sr$#Sc*1DipAcPl(g~ylF%>@Ff zSMc-YZ?CEkp*8U6n!2$-KzkEER~mgwy;K~wHRT8gMt-67J}h_OMNMbYK^ZgAN@2KAo4+n3`_M4?Si zBlQ}@pss#%fSRzrVay54;XFp6Ze)xnS!hfi4HM-tH89O1zyO6|TX09zF*?lk3C6`g zCB}&zkR$sIG1m}Xol&7EzuD2YeP@i>L5&wS<;K_xe?#M#y_h_sjM}>~$pfK#rmW6XJh zXVi`uCAR;OjR$GhalVpVNHTWCctN+_F$)FTx7&}mRG^rsmpL(oojM)kOeVcdnFt?` z$K+$>0t&NF5M=7Pm}!`|VKFXk|A=uV)#Wi>rGM7U2bViBs|CI9xL*a`P{?K&V`A~d zrf2tENq~DwCs_9)<}C(>iS_kUj59=hh{5Gcq+WX!MWD*v7F!|okF!>>4uYz$+QdqQ zPaB8W2ZEj+JICHacj)5il)><`Z!GF{u}n&e;7Q*KmtqH9YsDrCgqGKdeS$S8aym5D z1p*ty+6f0lf431qnrP0>$Ont%AF{do}hMdW2Z)n_7dkaY|hSUVp|8a-{Y? z>91JKwi@e86s-=)_&`;C%r`ZTEcig%uqZIqfu?|qeL<;uzKx}+9L~YP_p$!M=Z%lC zg9H&8e~rB){2gW;SBsvzgH+czH{tIl?r|Y?=;!G0xEq3}ZW9srJ6dUN)p0IxCMwPq zvnC;k2Na>L;63*y#Ie9?ttKwW4cURfloQth%Y@L%UP3Ut9$w_d9S~HuwRPNOK}D0> z#%&coHSOb037<|K<5Dn(n3=#81LI=Q9BE~5qTQa{g*+NW*{+)$7YI>9;uZ-SJU>!o zyKc0|wrz17&3b>!V7sBPE+tUC7Sq?sD+?KCTX$ycugN^qd~|lRvVN zg?6$dn@^`E!5{16q*Y@>VcbbkMMGQIxG`>y3)NQ29#M<_`$R3C*&laH(BkHUaT(rN z%HhAp(RT-&PL&h56o9j-h_}$g%=i!d=Ctd01jDGRA z1>yq+#eWslK455kJ5Ty~escW4st7<|aykBSb+Rut-HvR!m`>9RL)t|6W_G+iCT$3{ z3?@`1sx$Ff7cT}S(0Eb&PC-VOCGmd=GFfkmpDy&lnS0{@5M AfCPlkwz&$$M1Hc zpBZQ3yCGx)%3>DM1_y|(5pXj;LTH8D`|)f<2!0s9ThRKQNAavHRy>Y32!DG$i$5Sp zbm4h?kPr@jcoQ!XB&%L;WN)H+KNgu``kQJU~k5b11K0u$-2G9gJ2Nv%uxQxK(oNzNP7 zCLE*wfoz$OfQaOP0tp*$uyb-kEMkcm>XjsX#;AnW>p>1oqx0SUa}p*C42)$7dj-em zurgt>@b~I932!mTg3l*)wj|Udo6e`pp=eV=1FWY83eym|m|8&k-c8>LBljmPL`uOB zykYat;Bz}+hhRDpWC3M49w-ON>*W$Vs1#*VYw-fgZO&oML@hvjY zGm)=K+KT6i=tT>lFna~{?0uKG2W$Q0sXTK7ta8vSrv^!~T{TmXEiV9hkUr{6 zJLv1C`5+in4^NFwFsOC4G@me@f~{~rzpS8ES`aDKNPS5E5#QD! z2jbd?k>yF6)d+Eg>#l@ecXcIok3MlDo3)w;2$ZvpGzH+N*VM%bCR8SSGc}mQG_>x} z9a)-AwpNQsp-F>z0X&5$hV%IvOkQ}PmFcUT7ZImsDDAUn7dF?}WA^k|W&c*1_12WY z@iv+jxP~i+z;>E5m_dUPSlmIgT_Dh;P_q(CV0~u|>Qo#fFr=HNk3isl4^1hSKzJ_= z>YOqou)dFGh(MrWKMf{T2E*vnUsHl{E3|S)m@!my$bk}I7m~Y;)to>!W=B#(n&e7W zEz`J?M(g9#NQtY13R-@nxlhFd{dXD%8~SOSB7QcSuIVrQeRP)QjPO}HS98UReiqHs z(CzX?khMUwL-@2_q@k}qS_B6dYaEdxHX-Uxk57(DW3=f6sD~sR~I?D zQbRKwOx4f~2U|4NF{3?gf<|ONX#B{B0ZKW%*{(^&@&gJp-_G2UefMe9XhId`Pilbf zXU%Xd7a|}KieLjRj%a9ZA8udoPiRh{n^AY{i9O_<)1Sa_mWU zauGDO;I}$SVZu=b9~@3>t={8dE0KF z8`15^b%%~&Nu`LvepbKI`sDMj+#00fmuP3`6O|NUWpxr3MJJWnkr~75XOJ<8Nqefo zlN6nJQj@IGBz;Dp^y{YU0tworE7qj%nfe|OWJv0T*>MnX$Qq44khITF>IXY>k{V!o zGK0x$p2Tw%&o4;oX2XaP?`BEMvGP&C!fGPS;Z{lGkT8V81i;7EN%uLWmmQK&NlOG( zF|346N&PVPPPNpPEb5aKEoK{;+C8a)i`Tn%5@tje0D%Hl!^}k)n?C&?*MpXWlP;hU z&YXHelempcawIJVC;7qC(MhqGStAo=-}EFv^i{${SseDf76g|i+4&R4eGPm_^SMc0 zJ4GH?jEodQuxlvDoQBlC_gq z9Q-n=W_7W+_*2r4cKip`w5@ru!ciM+D}HP5rtKtJ1dQ<1szuIl$XA=fzpde?UBG{P zI8f{2AXd90(Y8X{Ba`ZBxOOzIdvUeYiO}w?3II$|XcI8QYh}|9QEB6=gg`n*X;Eo^ zgl^5$xH4LMyee8Cbz`)s8_i}0&?{DJYcE>GIIXq@x52eWZ5?hwzvgIvvl4%BI8VEm z7iZ>cpP7q|w88wh$D3-u@^7y+*Z$6nr(0@|^Wy5(TKZOHHUM>Qr~Q!^r5&~Fc=2AL zb{{Wp>#7as2K}<9wgZ1eVPEYR{(}MiwVyfe*n!#z{_VlR+5!Bxsl&DJcrkahb`$@B z>sT#)DG=kZX1vyi|KQ973-y~5Ez~be)}G*x*gRGHh*w)TU3;7tzn!Ul$cv-rXfN_& z;au$wUJRSBt;HYFWRbQPFP>YfeanAvb-9Ia+tu1Y{)1`jv@iIBOEy>kJR^a-Au7x z5`|i~1E;X{@N3XtcO1nb#bDqNVHCeiMAQcK0RmSK}MzOzQGE0 zBTbjg*{F=V%~+WIS-SlkW_li8H*ZZA-RK+ZHe%VFY@++h*<5R(L-vsMplzj_DcU!= z(@ysjmd(%(x)jXH9c$*YLLJT2E_hfny{is!zZ)pbE@Xf?jr@5-SDS?O)A@j3Ki%|d z#Cbf;NxpBO&W-Ek#!%famI8n5F-~=rv z>$Zt>$#;{e6JfEaX`1ddw~L6G*gnG_(0!K9g%kg-R9D7}%6Ym!xl0URtos%j7!D@~ zHokEuiZzYx$j3JU;<4i6E2$VgLFY=G+S=xmTicQ}WWq|FTx=8izy7>U-mJxTz{=-3 zL&kbb!xV1P<@1I)x=ptZD^%%EIu~;DsI8xHlYq?Lt@}-+{>>g;b58xq0c>v_&d}T4 zv2}siLpqgChfe=g$q&mtL_L=h`~^CL${9igOWSC?wok_2iSfvm{7z9 z(Eg#0zPg)5Qp+FfcJmmd=&3G;lRo`Qw-_0Y3?{m2dM}pu7a~6DeCq?5+Cpp5N zP`%Vf475JT^{A^))JuwBgn~K19;MzKQ5Q$)5A)_|qSo(4GVKC%@_Nd}>Q`}{ZC{oi zGrC#U*;XCM)+6Ry@FGXQ0Au>JUR&bdSdUn{f!mGs$u>l%rbAeC3q2!JT1 zF_@YG!=QdIq5|y1s^qkuO71; zOtFgL-ah>;jDKR42Orea7g#e6E{F972$=rI`v8O+)f zdQ{F~Ryq2#z62 z^`-t6hf%-Q&%wfse4|GtTw@w>dav)!Iehz3k2%l6U`~G0qtbA)%ALMiI9#_f%*E;< zxS9c#lbCT>VP|N^_2A=ZKD9f#{>$4dY?FZyu!;sUo*-a z)e0X2+F3sFHK6hmGY;MT4C6V6&;A${2=PEM7y}HyBcdm<^38gNQqEyQL&H+6IsO`C zKxHRp0*nbU%;X&EhZz=QIrNtqPzj0|2N#8f!)6tl!;YvbP?#TM>6K3Ls9vf6%Pez4->zWQ-Z7sj*=t7sb9A+Bl(Ea|0@AG2_sum0G8f2m5|h0MQ(m48V^WPX-!L zxr-TxAwvv%IfvBY2GqHDVcc3Y!hkv!%sA8;ZP;c_4#d~@BzKE3<|qz-QR57l491}R z#*ojw!mRHMtFWf<=R^Z4e=$?Rh$)8Ocr$dJW>|;i@bh#7KB6v|Nn;Pu9Mk6*Hefld zD6N7yMwA)eaSpKy42Z2h(G=z_G~7n7LCBUE-g6G>9}Jibx~xg(FE>0uy2!B*wc4o(%Y%@dmpF}#O({b;}(r(_!Gw#|S_YRoEM+hOS;$9^)PHVy8~ znDd>iMLq44Q7MpV<&LDnBRN3a?4#L_dvm=ma!*FC5Of3z_>#k%_en-Bb}(MS5MCpB zFUR`mmyGmc9IL=Tc@4*MuA7YPdmO7>z2pYi-LKL?4;&#tlKhQMeMri8ePS7pAc_il8KZ6kxAOp?dw+?gQ(~M9P?&T#<73~JbHA+r#Liig7R+$6&n|8@} zs(>;aI(JAOV#iz;Jn5RelCxXhGx@Ep`0e_B$>lD{M*z);oWya`zfG=zu}vm0#c_vM z-zCRmHrp8jO=+A!o=i)|WYIPQ{C_!-zm_Bi+KXz6n4A2Il~}AkFS$J?e;4ziU)Lmi zfb06?MMzt1LR#*m-HxS4Ua>tn0;%#QKw)_B2syixuW{Mp_a^%y4lDvy;Wx-m+<|Of zP5ZBJd2%8*)J~_8-*ZFleKz@Lao7X>h2#We_iREo9gL|CG&OQ4cYNvB(bmeq+)2~h z$*$zYqm-u5{8sXHq}?_lr%%(I%`8Q7?!)A+X!$6N2V_4VF-IvRPbM^Zav?l5r0nE~kX{ATpom`NSXK(}Prn#b-XQuDyvR@S!bBmoUKesB zCe{v?HcR<~4`=h+q>RI4_Mu?SiKYb=$ec$R>I_V=7u7_fho)er>1NPckTopjGxw4$ zic^Ll%n7U}r37KrMC)}2nv=|jKmY#hl##v&7sG^EG9`8z3|pU~#dth3f(N;omuv^k zx1`LiEe_3Ar&5|?T8$ZYWnSd$yD3|_VY@x7f?-ocPuTk?B@yHE1WrJ+8{>PbkQ$lL z)W~+=^e)9bG93Gu@*X`h2q}_*rbyOQXZj}Vd{QwRc}z5lHIci{*qW(}xI=y5m+H)m zHg!@v^WkiG-PEJvx2y6Sq&ka@-7zAS-YgWB2cW+)wPqc$I6pV_H2-$EDfJ=7zL+%# zDUu0Ikt`?mo2K4J*tr>Hz>emrR@|$2wn;TdT3_3yN-+uQJW5krlEp=-E^wevYGX{y zB_IGrnC>EKOglQYoNKH`aq2Q&{AFw^z1YdLJ9m6)1|n}V&1r+|+GciE|fO_!cd(@NKXx^$h1*ZFy=f%uPF{+RCKKcQ&S?aw9VRQkXe)5LUw~ z)AYu@k&0_6q*xYnBNLh%c@-3%O|{_-J?w@>arw6_inFGLwxq};ad&UQliSyI)JjEY8+>kaJ zAqG8%me%=SnU#TNR$hTgs{9WuXDB+Dc7@B=^5?YQxg>e#(#G)adh=%56)x2AyJ=s! zP*?7!t>aBP=Ve-dq)=_i*BkM*fF=@GV+@sw!Vm&smUVgrZ<_Ot>E>}{om2WYYpY+O zy=(dtE@NBwbQKq2sb~6T{%uF^baOm8(J#FQQ-UXK2}wW4C7&%z|IDi`i%7p`9s;7% zCs##smwzQ;CNv3ie`uslN8P70YePf@nuEI$=UG21ogeIknK|iya-pZ?S%lu!Bwfy1 z{#B>+-?-2>yQb4SnQZL++#}sQC3#zf6Po&jHb65p`(UDep|X(Pxt`c5uZ&5bCEhQ9 zQM1wm97U4r7o-Panu9TGw<5iVs4jAKZ8|2LWE?4st2iI{b6xr$++^-;OgEsV{`^zA zhwz@6QINbnU4{uHnS2yxDR0b8d($^?Z`=Eqbb1Y$HL=U-^p99{mdY7uD(7a%(V~rj zPy!7vr60z)Ybs$=psAdDBDLI9$OG+7XclKX81YB?9o|Fw{F#1-4?rEBr_-CrOi^uK zr%%9y%q%=P?UYdi=$t&2+uFtI8JMZKfCUt5Ew`{qt{Go3rq6I(YG%;fRDx_|T8TBy+WkzrplRUSQWNZl)+pbPQhBc<` zUUbZ84eL8(cq8Zlt-Lc#eEzO!84tN}{aBLW%Ukd2%#4@(+v~G4{^G?ur5O#mXREO! z<2ARwIx8~H@Obp|hKyj$G6Ut)lq_DDI1OSCXI#Jxyk-PfSb8Gk5SL=$>5O1L2CuuA zu?*9XDQ*)|vL|sWw7Z*;f$>HRq2geoCukpLn3qSB{>(5hkGeg{*vIYj#`BB~nDk!k z5zp*1oxtBZ^NiRmlcK|E z?$EMd=3eeILPlhcuDS#Dv#v&RFO@Yud$*^Y^<_~m5)(L>Q<}i zLHgD(+CjHkMk%MathRA_6|^sd2mZ!v%obFoy8j3?_UCMR)i+|&EB%nt5v}$T;7-cNsjdVn9#9Xkc zY$Wek<44hvk-CXS%&E0XtbQ8f&Z?>Srp|blOLj2XxB}T3;CYJiRn>@;Wf*Bz78dun z$ueS&&sC~rYqs$R%&5!|Zn+p;;YlOotZK}?lh{T^FH*5N-46~mGomt8TVM%=bs)vZ z?Cn6>(m09_XVAv%E+M_Wu`ORF+0ofp12bV^58LeW&=K1AG}80_?2ufaKE}V$JwN~> z6wF0r?$FO@4zhn6V4TP4P8epa$BR2h8}}fVkj3bMYTt(Z_KndIoW>gsXwCu*P?!^r zq5^hLGv=W!;(1-86D*!%#J!+Vh|>fFLJ{o99%V-#^5LX$2s|T3nnsB=Pq&4}*O<0e zt~HJW_vOath{`}K_owTTq{F!y-mr7Mu|;+IhklTqH-Q~S4~PL{0j3oxYC z>^9cJ_yjY8KMdbz{DaRw2Ocnf&u0XlM~pV2rvOR0u?|9Z(bR-SnN!zj54TPlKk}A% ze$E(z0X*9+Yc^c})wn$x;X!HTu_SNWP&+WXW%cA<;izYpS@r|oSvP4SeqmF0vn(rv zcQZ#-)<&+JW06^Nd9hz~))rojjLF)}&n5h&vHbQ&t>w3^_2%DNe;Px!>`hmZimWUj zV#>>^OWG!7d6D^hvgnL3Ig3WU?D5w#EjSCZEI6q-W*o53%i7AH`AZYaZznag{8rV% z^4q^!W?kmt_O*^#hY@NAs=1*7Rna&ZGChmVAN*6?q1`ikM=KIAEz6&jxM%f*t&_5L zaZQezVrh#Z-)BYC6qNxhveLL-T-RA-J+)?$RSz|Y6t>=1qy~Fa`Z96T$ZL`br z+rT|pH@RNi4rgJ~1POXcvVw*uvV1Z7trmNn^H=sil;ifytehVnS(MY~u|+xEo@RaJ zhC0+PTgR1i+$q~^s1seXmvWuPyJedV^^<${Jg%HoH7vjFQY+hR)NZvczdh@peV!|4 zd&BH+F^5RZ`Oa#=9a(m!uhl*=ZQGpWY#)-;ubT^*GVyM0vN<_>6vDDBS=@-}^^;m; zUP|_R1WJBZb`OxJWxqr$o)B933+9=(Rw3GHFmbdG@!c)68dI8sYXbHhCZMfkiFcF z$pi5|(qOrh*8QB~84`$8Hc5)PduxV-bHO&4n zW!IT3S(EJsiuKvlQ!{2Id$Z{Z64QLdL2N6Eu!O?eL(!pZx|Pi2D?XC_4PqoBjHvst z>{>*(Wuz^6-m5YF=Z~Rnq4vq_#kL~vGiS4DDmcb_{>5xWI+=ezMYmq(0Ix1(cjUIy z7j152Z^gvE)Q^lOJ?>>Mv$`mH$OCP=hmz6vvj-z=o%zLt2ia#4 zb=$tnRzUBE+3PU}n1srt_O{$WD0`JX8`HBW0zGDR;C-woY4|1kdz=6*S&qw;ui2<{ z(UgJ+P}@3Zi8U$N9_>L++T={E3YQ1AIjNWc-@;|TV-7urz_^@p&cV#sEl^)wa&}{e zate?F5xzMa5!Z^qwSLZh%=QL-sFECLn(HYfJgzSK%|j76eFDhw9??GJvOLF&lzh$h zgZ{ZWj+kN3@&I^d%6VbOR17bgK`0;4YIa{%K<7CbU&f$;q zIg`A_Z^u8(Y3(i+pTEnA=D2FB+(Jk3+jZ4*3-}{k19BhmAJ|E9^_Xogrjn9vHZ-J6 z&aDl{V{&)ci|Q_m&E@JosLid3G-xFeuz_M<&oyiFX-4i?u8ZQ_+%;lxRea-I zdr{J?R=M=B2Giit_PM8!cFZVvkh;Zh1IXxweI3Y`@-|+e?VdZjx+v)2Ze~Hh4#>S+ z6+tVX;tGR?<`&tAOpi#R0Isb4xJ z&jI{*=Z0BPHlH7isR8ZwbxFu1aRZ&%wQcNqFLV5{|UPh z&GYIbW@ct~K>KX54SAf{%Llf1&5NmG2a}MxyYlQ{LC-w8kRb>P^ZMpJwik}nOB=Cx z@Nk}y3+;b0FWEu-w&+4$KSWN4f3m2Xl2;2R+{rsD3JJX)<-MtjQ=^SY7sv!q`=@zF zxl}h^H=*iI`4VgnIt@i3|J@Xj<$f_P>Q; z6uJsdf#F?NnqG^f;d-p;4lh<{P4&0{))}V#yxGoWnl|y`%q$ZPl~`k@=9pIU;-_2_ zy>rOEO>1r1&cAhTYkI@A<<-&T%O4Tn%~Zh^SG&mM&UKVH$drwkiCA>xKIgG337l-Q zgTT?I5?j%_FOD|xe*9v*scJol!UKi3=FC+yOvdV>z~9d|UE?YnzT8ygDt`NMt0@Yx zY{BJeP0sE&9U!lIx62?`4w&}*_r@lcSh3XlX-)F^py@RN#A9K8A)%8MZ?bsW40lp| zl)h1V_s^!62uDFE)+o~Is0lN7nPHnhmK?ZY;sN8_4fS)2ilD_YVDvG>Q&b8k8SYU1avhnEZ=qW;zN+D3~4e9G_3$#KY)4 z`!>G|T5$oNOg`{oN`9)SI1)R>+`?l^@~5JSGT5!N^685o7{?~1`BO0NhsG!AR#peZ zP1Gfe@^>Hx3QN#MbdFDb$nM4Y&k!gF_Y_2f`_lYP7@Y`}39T$8xy$o031H0t4M>~q z`8?p7vm*a5damy~jR%>xHh()(CV>`14S+Z6@-gd7o z6tDm~m*?AJwFDI51Xs}dllh3HH;ZHi@a$AR>g5BKq7+wHnybb6d`uWtiM8QE{`Xk5 z5T@9dmxYmlHPXnd`7^Ng%&?C9mfxUiY?j=}r*DR4Z1&vF-%uqs_3q|7U;+fQcB4qM z9~+H@lt1$wyhzJ^8Xq#}GaWukybJtb+L!!XQEPLa6!fhE%_tK0u#qd+SQiYygnN}- z8BCx}fnU{O2!-(=r+YPOOH6hJn1iBbTHFyR?F-g%U;f0YV09JLRRB3I1#VTbu~e{k zFSyJt{+VaN+A6Wh_bxzXc{D4i0P5B#c*WT?^efm_B{n6s3raDul9|o_BksH7qDa=Y z&ybVkpeQhyBO+o>V2-E^1HSoIfr#ks~FdaX$@=q zs=8_hJ?Gx<-cy|K_x+(=)KowHywCeq=M*o*)OM4v#FO{Qm0mA8;`T zD(e@?^tHbqO$FyI8`;B$10vCE7p{-e4~}G6eE1_ONAUWPNM3D*TwJiY!m*K&m(h+- zXvhV%vdG;mcjw=c>k{P-&#NP=DdIU@WOeNjd&NBRgNCd~GzpF4c)B<;o#C~fc{mnY z9vW!{HkE&{g;k>>nRZ4un`?#w2+9iVv5E46H^)S}SaW@U<;2KNXej~~cHs0#ru~%6 zR|1>FkL=4AMB0FgKSF}wnz@nNYu9OGyvhZUftF;LvU35RV26h(af>5YlI9%xu871N zD`Ep$uZ?sh-7y@vG4dwE)Dr9fAzZsVlI0r>5S`qHVHOC!Xg_fJc%%zxHqSK(Y?3sz zfvb*2ZekR#A4FINh7lsnJRjMHrL{xnjfDJ5k)s$p>3*>8H73b9>7e08B+Fw8d~yeT zv(Ol9z7ts=F25U@$0+%CFyKu|urIuMKQh*Vi&{ANMP#T0?*J_MJF)_89fJck*g}B! zvBb%@wt~HAfe=m}vKP#u1ybAvjc9?zJ_0mFlPfT`zMw0^i@opcY`x%_J+RDhtOrvX z3kFbv$ASb`YiBoxg(2+(^C{6=p@OBfBF^X{m_w6Ydzy_(>mxYM5TG@dzym`BXud9Y z_fl_&fHn)4M+yeg9;{82Ahi}_l*RyEz#VoF3Yb1OT@zUt2EbH-4;bD~P!~*JAd|sh zk-*es^_B^CQTID31bCYq90`9Y1w9#CFB*xa%l=$j4IJPfIzcAAbyZ{vSl)vDpoRlL zfZp8LV7p$hs5bpB=OhPkK3(7j{EGzK12zxH&lPN-d~X#9ShgGZC%zaTBK+C48OMCb z6^h0PUXn0{vEu}2)-~t!zzJsmzn&;KM01Z!7ObbqQBwsoYFGVHR5*aoX^$L0rA?GC zJOu>zY1jJaJX0NdHD4fO=>z^rG<+5KY>@zMD!^GceW_qQZ3l*}64=pX!a6}rt=a*= zha+7<+EIZWRBRLc=0uv@K?ejz+76sMRLge2bOC30@37!i?b=C<1rb^FzJn9R^^~9= zZSfN>37%0u$NeV2n?&MKGT=Uej5v=^P)D5Zp1iQQ|z3!l{k(?60L=?N3hfWSyb#Q&WuTg| zhQASPrUB#nPO$Vp#4ziL5uwyCPkAtJo z^e&D#Z+KJ#YI#s}lqD_DTO75*rM8}T121wO1>p6X?crr@l&sc%s{yozXaQ)T4bi7* zR#XtZr_|(`ohK-c@}Xneg3)I04IUeXH-5z~J2Ek9AT`&2T9gOFl&|lapoRI5{$*uq z_XSb&>;1;EJUlVnjHs$rUMkP^`euhzaO9gD5Y*!Sder<9v>OJ*# znfc36L)uHa}bUO;~go*9x zaX%`FCMzFBt*YI?0_)r?SNVi?gzn8)KSCNI5R+6q}7dDp!3emP9&1{wzo z8Me=#nVH)ZZ0aWrhV$DA`!htj82}`O3K>3pXgWUzZtfuLZH+W}(^Yu*-*3H4I0~5B zUFcW~Llm%0FX0{wMC5U}a7}H94D2Ih`S>EX1R|H5#~exr3K!Of!=*vOYYYz;Yt&Rn z2#uJ?)e*HL(kfEOXBfSkh=jv?u|g$7Wv>CaArbblM3!VWwDN>)6vC@0*r1I@c*+VL zFD47yF*Hji^mgE-3!3iBO{Utb7mmTu;km+&wTMFs+2e`a2{tMaoEWd+eILj)!A43~f zLkc2NA1x4{WQXW&Y|_+N=MT?0Mk{N@2aDtn?>a}{z@+xMMYF62{wI<69?{MJ1EfBA zMK8mo7T1klS$m~E)QcYQA0YL*LG&aX*~R?mtFJ@gS;ra+XI2m;=1tJ$f0#kcQMQbg~!p?-l*P0V%!y_Lm3Q&2%$H!gqU@;EZP^fXzC*_#F^3k zT+rVemPWV7bnmQ;E?`*02wqi27eGXJCks<_ax-TW(>6z<$6yC+Jw+H!JVPAN`Vw)# z+sniOzg;H|n17QvAn6uyfKOHQM(m)Y526p%LB|Piq90<%WW0@bMez>H-bbIozYqTs z-5gt-%Zr)CVlk3eR=(_+8(ilS6M=w;&d#1OF^rXyLj#{&L{8AvCuSnnV7_0>HO$f2 zFs2N1e%~xcf&Y$a9kZV0;S}Z!Di%HpfSbF=c$!m4EHy<3K2Mf;99~v{bTOn z*g8BsrU7POC5(y0$M(_~G~nJ3?c_1`ap>rNFs2d1Fw=ZFKD>7%W&uN>eTUHIcnlwL z<(vk*PsE_FD;iuf$xyLhrc|a}FOTRmB{@4jB3{<{~yF;8Dyk`1r@; zm=3tS$IF`5E!zx-#m>XUNfV!@tlVJAQR=q)E zHxWyJTl1u&)VtaXc6JxBOu0bg(k7tS5m5w)Z6VTkUC8|M!UWV7ObHNqmk;UT1)qC~ z!mW5WKwDqY(SN_2`~lD(&Z#eYZ-Kz3`-^gG0R|DfDV7MQek0M+THs(S{h_k4$iQ-k zNJVc8{OgIlVR}oE4C{0zNW}7JFcFe5?&bPg2Io5xF2hpn9 z=w?O*BaVdILw+YwF~d0HN0zWlPm#c$cLPotATrjpQ6~q4c0NXAs1>(f zb*t^bfi@ynct#s&c2lOl#S>?RN?UXJ4dN1hVRvqaWCJ1g49RJR*I#Aq5@1!LDqyC0=QMtd|XnFf=8z+o}tts06kU-u)@| z4cbEmCm&9Z6`=h|aB}dh*lD!DlX@bEspfIU^pkyn0Ib987ZNctSLp{N_ z{n2*NbzSUZdqU57N9;%jXVqXsgzZYA2D;c55;z%$<@bW?P>DR+1NHDS@~Nm z+CrH#`oxvk^VHI{H)D$!`W?)sFF=(5@{W^^N1iLT0Vf~CdIR*>Vm(77*K|Q6oW=Fw z*@v-KEOGJ5MWO{^Pm$O0b}Vq*qga0ywM{S#FGvA8HwBb>i5rqizW!OP-Wmk=D|G{H zU&k`MDK!JOME82JOe?oclv={s?_xJt5H^CpV_DX5)?n@U7|Zg$^gDYdeTiL2*v#%C zu8r0$;ar~hCS$;G-f9WES&7jS8O~A1Y{V=}!fT`nv=hIq9h=`B#FHr-Lme^8hXQKY zTyz$*>{(`ZlpjFL553_$H!=F08Yj>oPch5nTTBU}s-a=&FHH70!725{O#6(~Ak6m@ z`&gp3iyP7%$-~3!(wWIDop%>TA=E0wxHQSaWk5$7$!bW?dm*SjAo^Cc3F%R zqy5Ubkdnig`3701%I086t2dPG2sr1E(()$1|IV5Q40T_r1W?Wny>E z#L6{dv~r4L4L6#@plGxB4P{-n!<;(+iqW<`T-i0hm~+$ji#=%BnTN&Q8D?0JNFTBK zSsj>rTAa*kA>a@uo)rgDGdjl-uk;i8VEUT{B5TntQ92WHig< zIK-G6X$64#-6RKimjTbR#X!)wyM(1h5xgtff1(L07W*Fd^D9KZnfIut^P!=P}w?G80#!3Jy z0Z)m9X#qS(ppjgXi3!YBN?7hIIgHaP$vtKTqT(fGn81|;3CmY#IRef}lB+B?58TO< zQY4o!0Y#c*HLDBOr%Mu9UY2nLc4kQyV*;XV3CqZu!vHyw!^{M}6-Xvv0uzdvngou( zi4qCZEe3aT@hHi5OrZT($x>Dqb)X&*L@fMKshi3$9+Pr|ZQ6^G$?fNgxpoxJRjBn1<2 zIU-?stifRnJSw@x90RA0OQe`U^Hc1@0mW$vkD(!gh`psHy7ue~?D2Q$qNE$cwMqN2 z?KjC44(fvB`;+Z5KHoYh5$Kzdw zsrMy&tq_|Qk0mURA32M(PuST&#AXd9GPhbX0TXHThP_(G{v~P192orflGWHRC;pZ& ztQjG}<@iZ*mYG2DSIJM9fHhCb+%kq)NSS6FbAD`TEuD@D?6H+Hch7&@Njotp09B4s zE8H$5II~}Sxr?+X!?lU)#<@%5vGLD5r3|ey+~Or2!|-01T>HAO^k;l+ou8Cti%ZUV zoBgHiv7Zwt9fb*eY$RoQUceFP+C&<`@T>(Z5Di^|rA4^*<0ru2L9o;VjF3ot;n`5> zJjOeoX!xSDG#+8Xs2)}Ih`v$>YjlhqByEn5qaviO zSe}Th9?HU?f0Q&7$1!Kf>S&W8vtrolCB_5@(+8@=QZ$$4GF+t~*5s&&HJ##!HBaJ+ zHA@ntZE?8^Dbf&DD}a<=?F36RrEU%;Q~u01nR2N>%Jk_0&J+v`5U>qwT`bK;LcwKa zQnbYBGCVj|8jO#xCrHt=)XOk%s`M>B`plI6iI3laRLEiv3a?(}fykWm3#G5@Oy+c2 zXfnrgm2^I1qru?Vuqhq^6(u0oZ z_~wi>yB5|o0?(gF>p`!}()G3`lYDNNO}Z(KWUMvVq()$}b*K~k>$bE63vakDeaC_p zeqG)Nj4(=E;PXe)0+!KA4Z_nW(#c3R@`7mcJE;xJ-d`vZ!a&7XiR%sz8Q)w-Cs@d6 zV`H?G@mLHs0Cm)V4-0VWeJ1j^DFgEe}M%tibgA!RAto`6Ivdt{~aVrS;<7J+(c%p2Ki>b{J%{4_%-+8j1S?Z`67$9Ku z#diFCw8RB69d^cVi)9|zh{wxh4e`-wwG6!zxeS}Fm!aw2D9|>`dgJ5z?Xp{pV<*li zo66m?xZ04nDc>z~2cM70yejv~(CT9vk#i5q?lLwAgcne*f94IQrwq3OLodpLV3(t^ z_O;?^2DE|b6TZjHOs}7jJ*gej#cL%_AmFmh1|p_RyIPnc!3JO~h_Du$_yNyrG|noo z%bZx^7gdv3V4vaW0oUA?4Mjmi+6;&LvZf4e21Ic8(0CX2do1h0LWi^U#WR^Jw0I$l zMirFM(Y=+`VW5MDz`f9IIfDE6UbY!miFKc4r*J!#^HqixpIzP&Cf|Yoe8-b-#>Z8b zWJjJGnEc7mQ}4E^ROWXlmZUpiq-tw>rryneF1xcb-?&fdO6R z_&FGC)I)v@8}+m&F>YrVF=kY6IqMLi7eJRmGb$fHvW9|zay;_j!V|0*VlraJP&w-} z?C;SZN61TYHPVihzhrKHdN!^01e;^zR@|1X&^21#fLULR1rb(9Q_BNCN#zh%sBJ3w z&AM#Q`+9+}-z5#etunbC*fc5J19mKsqZLL})X_yIQPYd%_n2!xz63;Hj*I0QS ztn0CHa&#tY(F{3$5exaVNJC&%E+5G>mR^Sj_vbdEuNSVF z6kZR$Tr9tBR;2S{lOk@*QYZpf*1Y zOn)PBDBn+-E>HL#$}gGmZ|{+>WO1Jvw{kzJ4P^)A{aFZdy+FW4xj$&N#@+)a9g}x3 zg)w+@%B1P-)AIAIgC&U20d_yUERSWN2+}N&$Pj& zJ_@v30B!7&>M3aV9_6bTR;x=ubct)2?8k-*v`F|eJl9x(hdOXhQ^j9M6F8-{LWdi@ zPr-^hEOR_L&%NA?w#W3^859B!cTzYr_bV6%in}Q6O|1pk)y<^DitY-QJ$bm`g^Jz^ zZxbe**iTWx9HR)S0jwOP0Qhz>VuXTw0MR&7VS_bn6^%HeW41)WjSr(`iU%wU4Unci zA)1vn$d30r*djL!1l`jV468iNi-zoHW@I~pp6QDF41F`tpco7nW+<3mM&pw~$1DZI zY#fNr9b^OiuI0J`Nxot&8+8M>G4s{}g^;DvBMJmyd#PfJ1>urCTEX(-$PBe>jG`w? z{Fwokk5{1Yf^fPFoTOlxYG#HSH(9~7DZd%u-c-dJ%4Ok<+Htx0vto3uba4U-v`I3j z%g=KalWP+%r{*b`WxIyr;ouX4RAp+dq~ z1?2F_9z`ZG2d3^*q_A{Jh>i#0Lal?#~T3dbygk#fg<%l@U)APd7=EoHr1{`w-%y}W-HN$-oJEJ zIy1x{?A}MI=JA%m#eJ2#tU>smU+BJp6@!&5@8r2D^f!VKwaRh6D)?@Qvcih@4uBC# zmf^yZyUOlx<4EN?9`79#3zU(T=(r(TxiZVY`21_cPz84Q!4Z_=k+Q_4Zk zcqPln`VdqEsGO;!A71S-L5YU$@4&h#N|p)lCNzI|d#dsPG8I((%nSq(tq~Z*7ARR} zIMt8|o1+XxRzc$er7z132}Xj>%ar5n5F2i(+uC)?L<{tX`$lCUn*$>N0<;5)ZAu$h zf0Hs08`@*5l4TMHXDCKPpLb9`vO$Ip+^u|XjgDall+O`o7<57zg^!~zC~aa*~PO}-qspi0Ryofsk(ud(Z9Jz&4~-G|DvEM3o? zN6NGK+MAy$7qi;^{+V(u!?gjjI|mMWp`4EiJb0yK*oTN+OgotLsjUiBx@C;`(i=SE!B9K zZ>w^|tp(Q*&2v!su?)cxpW)!Fr^*3*byeAbmk(7z;A4!+1Lrw{nJ%h3Y~CTD5P?3& zDr1h7o+_4S$T(hx!o6RH9%kJ>qntNN*&LDlKOzF?=fIu|zR zrMhXd2iEDYddqUZVg`oO2dnb1DGm|Dlv~4zDN9DGA{iU{;Q&##h550nd!{G@S41Y^ z7t2(vb&mjpIZd=oaD&{>oj__7$2=7LTscA3fX+3LF~X@Ws^fT! zFso9vj-f3=K!xxbRIO(T2JYm3yH#kt%R6vtFFS!o`&3MwHAf)-fJ%i4+&rXO{_iUQ z5k_~Gn@sN7^Ny-k;A@ASP%-VNgw>yaQpGe-;0UCgQK6-`@4&-zDwcJh97eYbY>gFn z@}*0vY)oMA6?OuPe^-rT>75Y)IX7B>k8i5186#K@(QsjosSSrM@2c7{a*2Xf4^_Px zX+!~ZvMWeQ8SDjat8)`!`^Tgq*lVxm#syL*^(K~a0p<>;d#lTAQFw7GH1$`1 zV;Kl=Dj*~;xWA!Vk2}IT&+bsRGX!&>!5szdt?YKGNjfYTvoqdI|Bx9TnG&MZwF!cl?YrD{8PV5i#X3tC#% z^MZpfsmmB`K7zdIZ^hW)+6-f#{sP9sP z`hQmEa;Le&^OkXFhb*pDnP(l>)R!bL1jM=2A<0**;kdSO1JJycUiI8zRfo7y zG&ier+yHA*_Ee9!(KJ^P7PpD!2J|;0>=+oAXGhBR8fh+jNf0-X!$n`d7stg?lI60v zos_yl9fx)*<487%kK0OjBWm_N;+X zs&2sj06!dxd+AAB_vQDvShwL&%5IGqb4u@6dz2JRXmN! z`W==Ula!OJHTkrFx09wNt^6aMHI5Wl=b>p&bGLYD#8lM=zM2Irv4UFEeqj2pXI|i1 z2SYt54bU{UBT?hS*U+dr)J)TZK`q?s6KpuKrDhKzT8P@Yn6_rCTes7!qzc{ZteHfG zEeY4Gpt&6eX$H~cv=JIL%a?Z$hj1``gW3<4N;O7H((E`WH5(a61q2KrFk2WAujxgj zeo=1RJ<`qNXEDfSC{iz@%v!mSHghNGxBa2_i$|s_B~P*5GMRcQ;U0t~te^ z2gU0MedlO8u!OZ4z;C|hn+4(0W|3w?ZMdvntYO-r!_4KErJ9$N%f1yFmUs3Ts&bWP zTdgE1TdTQ9X~b{PEN7GiR&3OqW*Hx18-Q}a<9Z{PGdon^Db#F(qz$9jns}5cv7W#Ompu) z(CnqjEl)JQ_N2hgH=2V1jM9OMbqNhY+LHF@wYX;jS~*D#|IjGGz-+h)(;0>~OQ?1r zEZc`9Ja!_Y`_LVD-Sq!T*7TP6V1H22~3+jaWRX5 zVXp-V0!PAf*{XzHl)G+Y!ennYak-}Z6z>w*Wc`3Vxg|JrG=a4f0jLx41*JC=Y(WE? z!g%0vJb~q1$C9qqt;)|Nc7Z)lBy?rzQA_{;0oZ_Pnq)gr|7-%&)C@ueEfH&-*8%37 zOE6f0=@5Ng`}3uQLkyBrW*lBaZo2g7-x9j8RJ(sgD!ZD1p2u+P%5EgEH1Pk5`SNDM zM3%>-W+d0WXhl`kQEPiJA}e_WEPRkq;0NYT5_&-=%fv4%L#!X6m3OV3;6B^L9Ba;U z*uPGqzavQ+>n6rKk>r!ci3e>-a&POz085g5);6&|aVM-Bnz)kYp6ir&!JZV@5}v4} z1se8GL^t19T)1Okq7yB9aY$kUEih8oIF?Gf_eP>KwfDw@#M{({Q%@2b(By~e z#8uSD&94&=($hwLHhE&ln1b(2gbR5cu3L#n&gKjt)|Iq9g;TCB_hRfNpxB2T%t0w1#D)lRQ~E9|ThZDs7E& zAS_Gr?0Sg#vx4x|_@pRnq*VW@Ni4fnqtmBxUCg~{NxfLQ7z_Xo$XnaPr#~nCWr3Jf z%}(0QpsbmR8YC674Ak5fCNb>-gU%}fFH_OO#g~tB?(w4DxPqW6}b9-b#2F zCdn<)vEiPiLMwD!yg$hsA1ev#$RTq;wAuqt&zbDN`8bIUqBo|zM>>o*M5EyLx zH0hxoI(q+=gueN{65fAHj$7X+q0MGiLjB*USwP3oPe~i``S-pgIidK6FD;W5EVuqh z%sf!xn(PFvos+k*+_Kjoq`4-qbTA3hqJHvdM?`Ex)8q!&z>_VKC0K~2LCKf#-=Eqg z55)!#?3K(3aVtET6Qa6rGQj128kB5{4VyYVc`3tJXd$XNK0Mxi^H7v!{`?F@@)?Ez zy`xW#1QRsL0p+UXU5w|$?&{=|EY-|(ah9PnIyWAKMGvLloxhWie9#g}xJ;YO^4)n8 znm_bTO=ju%Awp>AhzM{stZs3#A46>i2qYDh{$XbWuZ~VW$X&t+gc%yv-y8ueoTqGsFT4!DireuWCp5 z(p9^irG6s&>%*7sS`80TN$c+C19hI-RyMpl-}RX`^|dU0CP(gNZ}bU-oAtF17_18) zqK$xIe%dQ6k&aIW=wutvdVG={`0B59BRyr;D6L1g$(xzGN`R1y$m73Pfm-zOwdt<| z+<>r!b{m_CW8uD*+Bb|Qj)jRq+NEfOi8=VT)3WTzjO-Z;RUz6b%p8_?&|ab(#&_1T ztP|llT<@a&%o4-g$&$?w}kl_t%!Q#shz#_9X)c zh;$f)Zf9^P%#UD~;PG%RpXELrT|N<1Xrs_fcJnC6L8M*e1O}`5UhtQAEz<^pHLzjp z!|cF&Evm?+8Cq93Hc4CM#+eJV^R;NX9kv|yFVv#tc3kppkrutuOK*f6ACgmMf=&z8Jy|lo=&=eyrFrb?`*Rw~;MD$buBW&t# z#vL^ zg5mKQL|`Xe2usN(vl&5K%mV+p)huxN_7qcPjjhB2SKQ^hL+#!a^i4KSh_MIF2%^Jg zfxVBI1r9iE7P#pJvy^Wxrs$}^nb*v@J#VDor$kub%lFN=s~(yKPI#1(O$C1Ln`#pH zP=nNbD)6wt)JjHyV?fvd)PBuxnL5&))Y*qEQfZwH>XF)=L244}7#2KPoKgq6gs0k4 z<(rL2HHG%ak*TK8-X=&jg|=FlYEr&QOsXlgJIGQ^p*>P-sUNVbmXArkJmGep;$2;HS+wwnZ>Dn-wKoM*k>8@FDWL`DVu{;9777;Q-o9T*bM`lb*-5x?_ zL>nEeybvjKsCGP_x6_>VBMrzRiwE?bWHO;Ysfr`(EUZo zJRhlBT`Mvp1iE1?1ArPbq8Qy-LZ*{g$I@-pKuweAeqkBPa|oMnr`3h1Q=Q;|`V#IT z-FTg@KXZNH;7~sr(i*o|aMJ=^AfHR!*{i#6!=%PT&k zJ4o_IoYM_q87pvRmG-UXgXiiDdl1kv%@vBT>J%=>z%At+yx_S%bqkmc=^N zPjyp>MSEW9S`qf|-{~SqUi25;ajpx2ZEe#6NS>lj8nwKwOWJZ`<$c$*y(G28-Slgj zr|H*@-f1hyug`qa&XH@J_DefL@|Fgq9U>`XU>a3zK%+FKb-|o!imqvV*q~(^uMQ0c z5ZfZn18j~=^M#5|Y5AQ);p~yf%wP;e(PL-Jd2sL+lL>ZR#piXUrqA_C=xy3+tX?B zb|$gYeoL!h;0F*tB}ABWh^7N?n@EnipSFnQTf|&-IWSOX4_=o9*N3Oyq&@LAkv!#) z{*{rW5Pel!XAecr=?kqmIc+@BcMzYS_DtVHQggi1H<6U6Zu%5EuG~9*I&BJ0G)!Ma ze$8#1zLli9HBDdb&6WGBdpfNer+cP%ugm4ti%F+V&_hwWh$u8%k^Y7>Hv)|bxoKiL zZM1GArSBxj%eCqCh~v*@n({zax)aIUo^LvLT%n0o$Kv$$E)z}oHrqTIm>$? z&I_mxSpnA(x`y9yS&+%hqEblW8HiaY6$Tupb+^lO6$>2pcm(TC}0$<7Pdia?i-1t{|ca!4q+n4kV<{E(E0D`lDb$J=1iGJ&CGpNpm_8Bz1TRCRX@UC{s zpgOnl$e=nmtD8Y}{#-93m}u1_FoWtmv`NNM5_*l=nvmZFn~;}=WY7>*gl16vnsqe& zdZkka)vvTm#wEfpJ}jfsi8qJbj6aNxZ3U(d%V4}2_W?sAGA=PRoNiq+LqPi_XkY&Y z!!u5>)F%$%xG;m|#txm^7c7)ykQdLDF&X15ks#y687#M~7z`q?Yb+f#$3)pQ(+>HPX2PGxWKPG&MiVm&9oQPafw1oE%tttmc}p^F8R-v%Wy>;;I3th& zTQgf>=2?3(D=}!xW0^i~=-B%zVSfF3<}=3X+7BG)l4%3p18ejg`)=mnHYVM*k5LQ7 zW<9}#cGa2RP%i}SK4pHuI`gdbb+8pKb@Vb@bkuq3m%FfCAq1dqApp*7teEdAUCg~105YN0>LKxc-`5CU%O%JYB|TI!!z0#`{hH#jCp{}+!WCj{&FSdgT! zz5bXjNw(>xZ-~Z;xU905ek3h$C|n=P5-o_s5HeHcd|y4wcB0|YdI@Rzru5VQYQqr& z>Y@6d7z9CBaj7>`ihqP6<4^D_zb&Lybuj#DTbdC>62<{l%sY|;KojYj~H0|4k#D%n1#fNqPoE2Tg zdRGz-KqAw}F~Wc#rQQk3<@!N1o^~qq4=C)$IDIK2EIbsiXW9^sGc7z(e~>EVq18`k z<zrY3>F8o}hohSp6t0o;U+jC+p9m*&Mi)8Zuk2uqVkqi}c=gNb>GF z{m>R9+3PnwTCUHP^}DSPwz`Fdx!)d`wUXLd z9%0UHJ~Hcfn(G>qb(vcKR+3dfPb-sW9i#;W@mVINRwQSwp}mJfm(`P{??pk;2DDx9 z*cHgivgqQ`Ci*P74N+%KZdMG-pv(*l5iEM;%=vie_^g@Kh?i5c8qlQQ%&b<_;8>9L z6U$v6x!SrcU$XdByD%%qk??=FI_m~wP`80?*JXuKlBJuo&?E!S3LBV(_8#Yw=l5p) zLYvq{`^egs_Mpiwb z%Zcm+_Fq9Wx!ZO$I8$>XyBY>Dn?tbw%yI%N!wqQC;ZeOSoa&g>nFpu#G@PK`Na|-c z&t-_&ya6Mzd7S6wMjMVX1QkT%zyKa^1O8CZi+{gUhG-aE#Ztk_S{uFKdzB%U2Xx*2 zoS{6;nQh*e)OVWA-alpHj=z(}28vL(nc z^m2nQG7L>x|NHs?6C%qkIXX8ItXXEDD)_GESV?ub-pt4{qk`kmpoKA%fdfP*Thiubc3UIEjR|h+4Dd>@ z@e*UxYk(1<=wuR(A)SmXSVN((vyo{xV$OiR-HgX62fv=|91?pO?=UuH2KYSOm`ORL z_cgMt@Zd~Y+t294>8z{IN<^>!4WIWC?ib4=_kkQP_2IfsQqV3_h z!9%~9M)YkmF6lqpc#R}i*#V;i$*i};h*pJgzdu-NL|Zm+$;#zMboa?6$E-A-rOCL} zMltEp;n~f`t27sGHU3VMi?(B#NUBif>mL%6rsIDjY%yX`mjaU{9ZP8v_qvMHyH zvuRnkOGeYErs}fMmyVVkuNsF^dy;ON3v{|=6w}et(g)_;%s-7DPUI4^-x!zC0)svo zTe?t#9I`Vg9qT&TGMdbC$&O%HhK)NW0SJz>b^-g^sXbt#Uv`=`apRMQ*^L-FOEaPu zT-h``g(}dnW%dcG*5_8)qp29vgR}3`CqwDz3J10aa;39l-&gR<1B8 zCmXF!Oy3*k1xAm{Mr&TszPWJP_-vMe5%x8`z-HS-XP7WKJDfUv=d|p8G&G%m&OS>(UZ_T5-K9yS_bf zlFgIsIC@%sb#_OFDRJ7P5uy#1vw!QH z_mpWwNKOapkXfB`OjRYLYfc3%5Ezz&HXq_@&47M6C9GD#h#@&>OHgbJSTi_>)(z|7 zIlEX!2Aow0(GSK&=6t2D&`0NZQd595r!P%DQ|H)F{+3BOE-VkLxpus&uh9`CM%l~* z-E=uD8=%#o)Qz@D0c&+gge!&|XOKG9SPYcuIgN>@=ceb}VR`nAo+T)tLtc&_!w>^M zh){reYX=9wD&}*mb(00v^Y zmmSv5RMz6Bt|0uGAr$cY=X!#)5xM;G?ztXtUFY0(6!&=-GeUVcGlHl`E_&O~acI-m ze6?r&%w=Z}Fqe%Pl)IOfZ9KwU_TETy*~tQP*$83oHQEhzmgPFKv~S4s{XyDsTX!y$ zAo>JN082Atf~gCqB<3EX@uSq{&Z7=-%*YL-$sWes87xdqfzS$^yo!Q8|EBE(=w6sR zo8=R+CaiW~z)JM7`wGikSEzVlYtMrv({jTp{R=b9QFdx(?h6`ar`F}RrH$G`F)gZwGnYfALiAR))&NJ?`g6p?%V- zPUrs40C4bht}oc|XKr)Y@@(z_EA(zW!wr7An44%pl3BmyuC*k|pli9QEd8VT5}?k_ zT$XnLCV+5I(NarZ1eC{Q*nrvn^i9C+)Ni(M>L0m)umm0NA z!$2e_(`VRB90qW^dO)+pdA}Pab)vi~$j>HKkKj$LLIWG;d%(Ep9TNP)U=Rh(I zZh4kyK|l85c<;QIEZ?&+(P)nS6#yI>=S}5(BvD$`IFIE4)RrcBM;K!BPDI{d5Y{}8 z?)CbuY2Hyr6o^oEv&8PdQb0qG9rPTIS;=9rVfVbdbwEmftQV{|I1eyX1c(q_ov}U8LY8Om z%B33U@b;02Hx zQ1VM2%aqCQ;aY?AlX-N1|LA>rXii5}6P+8lbSRJI6PW*k+!40^HSaO2drca0Bs;>x zNAu9*XO5rtMBbEII;J&5mLIg_@L>4aJhb;MhK85V=Z$9?OMU0`)?j~WemxMjr4a3p zY2F@6_3YQG*n?IeFJv2C9LN6RNJijl?6Kj*@5Y;KU9j78V9+U3@UXIB3g>psy zCvpLxjn8L!fo#GD2){qs25N>T|7Uw*OK5sN`cM&P);mM~acb7Ng8cQgz~r&{XrmLZ zK>WD;OLinVaC$zv@!)d3Kz>K6r*u(%PYSkfS^iCynfl+em9CZ^>tE^}y6$3OWE+t3tZ*Nbc5rrVT2veP%4KwPX2wi3z16aNV8n z4F9Oi-;JjD^&g2QFzm@+#n^seS_BXvKyPjz;J^3gk6;|zaAy89-kbgTYtWQS%yh${ ze3rrVkEU}>Vb$UM2LDNxE05;Sqbx_B$Y*Vj|4C0+dNN z;110#8(koGAO&7dG0Spznpqb8i~_VPK8MhEzPW(ULUVzmiwdL^xBYUn+@DtzJf)ZT zu(qHD^s)%Wmfg+{Q@+Q;1Kd27odRzmz?^%0MKN|*9GX=6qkGFeZf|iPllPo zit9rT@@|n^4DRbGeXI*vdNsV`ex*&JE5jHRhT9f0eGM3$rz9UoIZ#$e?^eguEkt*# zJJ|155vUj(xS7x#Pnq+88ka)!rtiS+A~(?8qmX59EfZic+~isKjo}Uxa0nT%i#)*X zqt@2oOzO}eSmIk)!l3n!SPtZyChr;)+Bku^?~1)Z-{$D+0abkpePPcQh3#!P!{Mm5 zh0vNL2X`p^+nyw&dKID^^*AuQC=0w=_U{-Gp#9wY8cwyn5f8PdxQ2<8a29j$Q6>eZ@;>{=^tP9%r#A_*n;aFW-UO2nf zteUPY++vC0;G;E#OF3XTe|@19OPj$lb*)GW0Mi#H1;MN>h09sO*90>P^0ybpxqv6# zcwTVM;lc&>9M67d3jZLf_P-bQbLH|T{8_l0$EBhk7d~#nr6OF48gcG}qdbdj9k{%C z{zbo%a_Rh{og~${VbN_H?$_omisU2(+7?Z5VbwPHU6CiK3NNw-JEyq@!PmWt1k5sE zEQqi|?THL6h7@HGqt=cn+D&9Iii?&L7q*laeIUQKk1x_Waz<@QFQU>EW)|^C-qgaP zX|~+2L1T&_k>TCgqP-+_cwA9y?$^p`MQiQ2VtYVQ8pEUvTmx!q;~Ee(WUU`s+O2E_ zHf=0g%Al{gkyOgKdszjjx4DRAmF39oMQVul&%Dc0Bhkt47|37PS5!vk#Mh}T+GfSO z2M+EoI>rVx0ruWoBxfKG5sPq3bZw7AMQd2Eoqf2-o#EO5T^kWUTC~st5vV#|w1SmD zuaiZ$SXwAVAO)cNJR7+GToF^_gc0Dk3q=FnkO^oX1urPOS7d3&y9ZTIi>}+EWA`^j z1;{?Q^KH=$liy!-DZb!<{yx~ZSYv~Z z&4v_Lv%Eq@7Ro@FyxI$YfzFDI{GLP=Phe@oe!$|sX6Fjgt>kiKAK6Ibk+xWa#f!)y z#`+tHF=w)gu@iHPo$&9Vw3rjsV{|bm>Wgut{Qe1~eA=Yqt5}o)Gl_`qvx`?cqQ7@l zkiW+)Exw6GR&64pg>E6|-P>Bs!{r|QQasuk9g`0e+%8AR?~jfW9xIL)_rv&4&lSgD zar;~;u8aSc{!tvm@Yz8D6^zA6qw1`t&@zAHvwZn*~) zpNrSxqk}~W7fRPHOSn*)U|qt6Qh(c$PS~2_IwfOq$XdCUjKd*2*^`u)dXw^wbxY1+ zYi|UQ{B?mOU)+e`_%tawjL*B#qD0QpZK4LX06geYvXoZ=!l#t_!yXxuGMaFi6=NyTG9s2C@yJc zL31F=5u5%XKPQha>4nc3eE9bpRhaXoq@y$V_AbH= z?sF{t!-*u<*DZZzMUor+N>ABx$yF1Zlsb~s{NPe+TCziFCHWa<^(ftLNpd@fmwuqh z@P4J;DAbferRbdmcdb6dOVKie@#}dZM$m zsmH;E<)y>G`QPg}SR@|@2ffM~@Jc|tq2oMD<_WVn5=qHf{B%UAO;);5AE)7GsNzyo zi5k8pAwd&oNY2)z=JDfHX?(pV)0nK+@UxN=(~=XCQI>%}Y$#uoo1xJglCv~?Ra!jx z3t5w9P#Kcb(^~U0QjJ;sB=l1%zF54*fG{=j$kGyIYI0VVQIo}?t2O*MqfV{SXQk^j zK|k95|Ac8YNBn<9_5aHB2fg#D-h2x*Bil8p%)z0|l6V4%zrImf08swA(8?<+NoBZO zIyZ}-la$BL(eTyA2!UY4$4|Cm{+7SlNa z`-7K>?h?=O$8G;%R1>(y{JW(yP14jgN%LQ#fv_f%TrC}2wghc2mH5=PrRx1yb_MlR z=_?Nh_wOzw3gG?YAOBxvb`SdRMY0S0-UHxL&yDUrHpC}Cng?riv~w|)&}KD8Er};s zlHu+N?5axKUA{AXvLmv(dfY4@3*?mWMrA68(KVr~I$0Xf$Gv+7A2m&hX+0Xop$e|i zH|%NhIq}hdRe-pg)Pak~!N`$i8i%npz^G36H<{e9uwz`XCQcI?9Ipydg?8xNK^3Zw z3+dD`BqX?fhfW>iLJDVrktg@o<*fiO^zO+H{I050Lsx!Ok_NPM_VEN6RvQAqt}OTV zAYmD+dP$PB$NG?IUCsD6^Rr+88M} zOZy7_IoZ;vPoAa4!f3l7MT%x=yJ2Ba23XR0hlh8a6X=(Jk!fb&Q+~tA{Qt>gAbg^i zkH6!831My$GcT0t%>B|V5O`^nXH#=e*9P^EZE*kC2KSF`($m`D{;>_|A3=EBI*(?} zvi?_nDOmE?`i7t?sLUUAe)uAA?2@vUmR$oeJ8Wf^b}jNm(X9X3tXW!oQWj8c-QZ)< z^#nY-ysRs)t2P8>PHt*q^M7TYH_NEq%3ZCww(AMtxw0%!z@0zAsP(1!BQUW%9GfF? z>exQ?UnEXt>_`6zaO&Yf^j{QC*&Igy32`du2>LG?r%-p});O=!ZV19aO(+Bx+RhDv zL95Dsv9r*gz|~OPZE`aEOAIu`X$I0W(8KGA5%Zm$67e;;N|Sh^{N=>SKHq1cpSU2( zKVb`A{kbstzx^@u(ZUX(@z$~=r&-_Ofh}Y6`fwu{?-}1^*Pw#%*Aun>-ERfk%1Zwa zd+z}rRkigGdrkrYa-tv*YBC9eAa!~{6i^fagT!(b1z{>pDGFkPWF{m-GD%2io1y~B zwIL{?4k%TxdI1r*RurTNN|Pp{fav$z`<%(_b27!(`@P@)`Th_0c`i=&S!=Jp+c|qJ zX$6NzP9J|FFAKcLaX+BB?2OAeknn`J{OO{!mTMx0-37Vim3RDQ(!coT3A3K=LyE%w zG2+_Id;8P>m?p$)fO# zlO>(;MkA}dxS!Z=3)%Zx;Q&(hnZJQJVl#0rdNNPEW(ylnvqwjj-??@#;X(iM|5KED z^Gs2bHI8C+m9cKvLh^S$);qI12g-ZJvyZn5fA+C|x*!eaAPAG$scK0BcZ0VO-4_2V zYFH{XM_4ZtzUMCxesQZmAV@_jGE~_iRSP9tw1rf+d#t4zRzuh*6D~+hc)#w6mLw-d z!m(>fR!h#u6@{scwZD$v9nZ<$*p3){kLOeqG`(ehR`Vdt`Y-J8|0r$dn}t6fZ%ewA zPP$Io$v5w$qHo?p{L3b{s)dkCbng{*l)jIJkp7v!Z488*i)*?{zr;eAy0)-KEd+(7 zw5^=$M_BsebH7E6z+9$9ELdhamAslbxjBxe!jFFG&k!Vos#EG94pj@)l3^?9^R<7h z8Ww8JC40a2ca;XjLKwNrZ;pYmzVoc^($H844}RnCphnOLa!U+BcFyx>l7=V4GsQ_; z>74Qa=W~5y!8;3@gpIrXM@6xCD_Obh2|ejG>fKDTvC012)^ymSE3p9sVqnG?B^!R7 zl@o5Y&)-Fm7OEtoT6{s(LbbSXE0GTP-D+5-#a<1~R_X0n2wlGSk5?mTl=6Vgsw%Le zO4(LRDMMqyI}4hI`ycX;5X3$4mEw$rInUpe6mBWJPW-7BrH2#3U#bN^AqIS+AwqY= zKU-??2^T&!)3h#=YmN@c5%U(1(|Ze@nX!S$fUO0s$hiGgQzbpu3t@(;c(J&HWapb% z$m%~K4PPq0PmQ24RGBOuPn7JWivRSu|D+%e`lQAi?VJyn$G~Dr;roe7NYEo@=gtOnwQ zPe`NcP!`46f7YKDPi4-B{G*cSd>NTg5A{{|{^Fk)Z_FQc&c8r%Bhfh>D0@$^T(}p$CQULEd;f zki)GAw#Xjh*hVJI2;`E6Z_KcX)@{VFx3GJ&Ht1E^aMs-j0_;Q%onkD@B0Glr^-?oR zS6McbB~O(O&SvZ8$ZA;`4?mDGAt-U?zCE1mC|KA|7|*f)a7^|`ZzGNFoZdHF)gW*< zRh&~w@`qMo<8xKu=TxDbVz-|AbRe%u&9W*lO^^wdg8wz4rs4Faff2Y2*8}z6pQZ5E zlZK~@+i(aiGzibWun>w`PGN^cb(GgR0!H+`0t3VnSv|rdq>(w0ErQLcLPqckY4l;> z{#XjhyF%$OjJTkym^dzA=p2|N{K)C)U@Sce`@_S#1pY0ES9~hR;w3Ex_v4S4#4@l zagbpNEEdOuN~@y&;=||*3)Vm@($NvPiaZ=%*q#h|XW=zuw>6MW z>^A%}-x|mvPuc>V$R2y3HCbf~-2OMvCaqrBR4o0J2v7M(a-KCrv2Y25gDaA(H46um z=ighXBme9kXp-*6f$|9NkYVFTjU~^mL2L1Q3$sW?_ds*9zkdM7K|KPgc)VD+|@IXN#0(+usJF232om*f0f>dDEoW34W}q4fN~JO3bS4pc!1+` z4991$K!33aT3-|R2Q_?60A{HCnr%dzshT1)8n*JsrZjCuw)YMcNMBJ0jSORSr;r^T zR3_KNDhHD&YHz$5VRBXplhaz)XLINYIZVhieFA&MjO}vRHrTF-C>AB>lqdm8vMABT z5mY%JoK99YevybakVCi#W+Ds?=*Ye~{*I*JlQn7NhmRLtMLf3$?jiraEihXgv|a1d zm5L_v&;u53;gkIWV+7H;UF%PC)NthP+XFt*_x3=6I02Yyn?4(bHBg)O2UTiQ^Y(-` zjW=Sh85r0sJx3METT>Uc<|{F*nKn12NmtTgP#_?#+)no2UD%3zJSfmhdWY|aF4R(1 zZBHY;*R;u!@FPlsE$x=)2X2)9%{Q~9-Ky>6);k0DsuAeYj`Qnf3QwU4aL1`oTRUjH#m$rtl-mRPTENPU(srTnh!pb;RHA2@H}{pc-~wQ`q?-Av+|x zS3mW`@=oy#GX37bm^jbE_3sND7Njmbk4%->_XoO57QUIOvda##>i$4CH3H?G3)XN9 z^Rg*6No=emD<9a{k1QUu@fvZ+4ta(fOgX5v{Qbucd4|&u4csLNlgN%o10&NP(Sowj zeQ<|7!2yM>eq)CxTj(WWZ!6g`ZsT-m5w8=?F!i}2`7=BWJJA^V<-!xva=uxE`ei)S z@F%W-Rgm7}ahZh{4;j#1`hahy7V1a=Bd@zsa=K~W0@dy&!yB+mUue4#-`hbJdjrqJ zqx)klgg<pLijL!(nHa?4+o}6M!uDuiT2&I(3=8a^7@{I1!^p2 zqX)iQc%RglM`KacaVJ?gE-*=rpoyX*u~MtFGY<~isq!qkn;_aOBF4b6q^m-<+Qn)0GG^nq?g?IsK zx^wz%#Qap?b#h^PAWO3wx>8}J@qfb3rvn`Xp*<01)ZPO%sR3iNI%zmHFhj6W&>kdb zXK@ZUQMHPK(#cwANDOlW_fkfpa{bE76?X%aru39#1N2)V%s7EkF%l;8*#B^LG&me4 zgU@NVTf8o_%jb32jV80zWV7i#HoSLr$aYK$MeQh*QGxkAUk8Q5Af+ywaT@*EgEV|1 z&`1O$QJKg5hYR<(wrmrXnc4DPPOk8OWLvH*3A{qQvuoMXq~PuVS-SN4DHzBQgo7~+ z>QKWHe`%mpI2+TTy`rGZpxD?_gMyo=aBuO##WiT>sBm0w zjO1AMcWfLv>B-Ae*zEHeJ?`i)_Wq16H*qdNZQ2R!)Wm0p&;E){`$om4HWeq!5{VN( zlkM4hChU1;Q7wDkr{Glpo}Piio?VDEJCH{jmaokqduIhoge4If=1x1%DJsH)8r0*n zVP2eIMdTe+eH|CF-Y7I%Uzag~|3Mjy$~u9UHLi*Cqp~KL3&^J=utq#4>p?h7ExTH0 zF2@1|9EnY$=(Mttyd z?MA6c1Ny|`z-lIR2QTLy`$j|d4$2DbjRAgq#)3R7>HaVe~vh6E@l_Wb{%aqS6xM^P~Q{$|6 zx{#b@fqXK2`MU1(*HE$57h0>ntieisEl@3XLKkYQz8(c*R!t?FHo(U=&UmJs2*#qO zJ;uu!*R%_xawanEi4`!dmy#MFy1wAdYVx?SaJBr5N)FF03@Yu9(8@-n-wkY!r-g&dtP zy%pF%7QSE0q#rA2|58la`pLD-r1eR+cLFEHuWMOzn+D;Z;lLvCa4lm7=UL#>x&G4uz?^;Fx)@C||C;%-IoU9#Ze4Tly61@V_! zlGjnb$2+4)zU#+@KMO)#l79#upH-f%ebJGwf&XM{;9)_?jKKHgYCQse7BI-oiuu@daQuS_fWu<{vM@JYa_qE*=P+ko5c$O|JuD z^~%QiI4an6FfdtofK;D{S?;49*D}jJU(4q!jvoTKf-sSS;tmM4%LFYvv&+!0WxD|H z@7hH=0;ZP8Og*P1!d`PMl$jzA9StlK-sN}-Yrz>$FDN_#?eFrm`8ZU+pY|T{jHm+~ z;hU+$WKh7!dF7nBKLzHJs&$1KYJ8399*Si;c6zt&WZ-;?B<$j84|}35*>T6!-K6?_ zGdqVv(!%j)1NmwM4Y9GYh$ZrqmA?cgi~3#iL0lI~vzDWD+$G1a>DNG0a>Kl5G6;U< ziv55@PvmaZA~DMtcQJ1fI+7*XMYqKnm=Xo?-1C7d@d<^o$Fww?Q&&@()$50 zP2UMOT(+^2qT~wXU`A2Xxpx$0kf|Ns=Gt<_bGx*QnQzs-gv+linkuBsnKg|#i>5UW zH)~i_Mppv4ZHnac51a>Zr;|TMu&HhahqO69HTchlZ$xqtpQ@;JF-^~O8_ z-=I)6kwugJx2Hd>g=d~W_#1hg1m52rla93nXU}q+EznY8{!bLnGS+Pj3c@=aXREaE zjI%`wXTW2p{lgw~i1Xy|x||}nAe^TRjN;aXEmP%l z?Q;O9i|tiyina=3gKxF|*+v6br(ID$L2UW0cD3Cp3ddI4KYv5_5cdk-aEnV7-|}l0 zRa3;ko5Q_36g3m2zTa}*qVXuZLXYo2{^0vy$D+5SdlH~_kA<4Z8K-wHnk+s7k?EH* z<7m&d9Py!V<;Wa2C&rsPx?75>L}9nAus^g^ z7(*AomFI^~tVQ_^#H`)g`N6FispW2NerUE^{*o2yV(p8p4F#lNL}&a-P&p4MWxTt;FW&078p>}G)=<{ZAc6emihH5MM=kFVzlv4L_tVMTr0@qyQ7MsZpo}w|Cv7d$4 zdx|OqsTGH)-Pv7KMB+P;ZNj&32k~pfb(~wsbfjeVgW&18XO>g zgYIZB4G$Joi08i3PG$Eg(*6vdlt}tXOxvrS$sW{zoh>aIBR1QsoyfdVFd8hvDKg=s z;_h=pfh@{LqIl88RxXsu#;!5s^p^*kgvXT^*;A!HdpXzD%pl|ASuY8J$;9y6+9u@P zNySx(j|lTl5n;fht_3w$hW|fEso~=UR@{rME`Fj1yP>Lc*M1tk?wB`)7!D)d&i_h2 zi@%=E;{SB!jp2Wt)xVy3V=Ye~c)Iik@zos3|MPh|T5I!k zs05_yi;=A(H%x zViBW@ptfzE#;0XAm(!@Xy4-rR&tkv_gFb`9>UG!*PQA(G_^)$(n0|sDYv=fge!gCz zaJM_EZ+hSBCQg80ECHyt{#wS5Uu2C8j?yfR(IE>Q3C9Z8$+?=Yz?MMH_K{Rae=Xa` z0SL%t`#6R_m24kWMXGEcXppmg)Y+#@XWWEUQAf%4k&G{v?W039+ecLXh|X1mFI~bV znJZ_K#nnX*=HQD8hsW(RJB?nWS#Pnr9D0w>WHvh-E|=A9aEDjEP&O_#8(+}492T$D zXwu_-z1!up8l4Wk-e~dR|Az3U$L1{(vOOl7#o*Sv9agK?Y_xkE2AkVucUue=y~E@n zId#jLhQ~X~b_u#9M9HKDMFVp@iHTatl2OyTU1xF_y6UG)>73KXfiJWSMu=iDILuBb zV!>d*XCgkk5#Mup@V(_1vzxp_<_t;AHX5yVj~-uU`n+bV(PsB~9CiynDRDZ?dWVZl zNUdxh?zL>*%YqIf;Nwk?$7y$%9UiF4>vGxkc6`Wbu^7Cr@M!~C2dE^Jhqs<*)Fmd0 zk6w0{>PelYMLF3{tI_Lonw@TZXy~*VTpqW_YB4$SU4-4~bcUTbPJ=~EKBHZ4Fj<_S z4coXKHnRny;+rR%)9EHc>GI6*p!bWG3E38x*~^|b7GRj%HlM+(cN)Cm z2@ft`FXR{#6E%|F&UuEc#58-)o_8%d)v@eq(s+4M+s>A*#xXZ_dvs_UW*xoL?bLhR zUWds|-OKJWo6J6&0jhJ`oId2uMUo+1l5d|$b(69t;lh8HmI(#sB&KNtkLWjO@UXl) z`rLB+u*9xuGpM0`iB)E8Gqf|AWZjpUomeQcuV6z5+Oykbak${lUX$Kvwz%C+H$GXy zplmm~ZC105IEzV>aMg{=;hIjD(d4zb?QWCD?DW{}_~?|H*o`lVT}D^9k&y-(Le*q9 z>)jTo%W5{+92n?*b|2iu;c(j>;hk^J{z=d!BYJRc(V!gkkcgg##+d#(qahMwUaP@p zcY8t2v7w|r}xj@ zAY_{@W{fa)s~(@Vn=wy0@y(^%fvzp+(o2^3_TtjPO=ZgjU1Fj}GGTYAAv-Zm(mQj$ zflU6WsHM*4u>lqub$Rt>i`U|?nQV51hrww@5E#Ra)-N5Gs&msX%REMm2_Bo-gl`8i zrdjlMhs$lnKL&Y_*w?S@B|)c0vN)g1WYr@?@!g@zWw1MaR)@iauyk521V(ET)^96% zRY*pg>=)-5a*~ktlAVW2t)y^!QTr|?yN!!6kJo5&8;wST&xor7Mw`px!q;(DlO3P2 z8azJIXnARqaIYDqLsPR7ew$8m)8{vR=hfMz2(yGnGF#Mvlh`pWPBnBAy?JPuHN7}5 zQNj;*2#gtxjiP#I+%IP(1XKa!xR8_@>#tehtCyW`B4!DPlLm2$B<}n z+B{~nP4B{@$$+3UdJJ}($sk9W&Sth*t$LFeUj}>3a2lrv1F6*t6YHIJgOlXe#bAW_ z>}w$@S#r-_OlbPVWLdCvyUuF0C=(hc0hmIcC*Ln zaQiSOV=%E8%^SUuCdaNeQU@)rL1+jf5qupe3`Rw=vmo2oY=G-C{QdORkqFHIh!8FQK&+4}ZI0xbz?JJ}>m zyG!RwOqQ%{J5Ar!V#Zu-vYM1&Gg{pytJ7xJ>oKi)3|70|SJz))2*z!jMTU; zj|t)B#>}g?V<>QXEgqxMZg4rnh5g7z%m;dx$%j?2#fg-Q7R+s+2QI?hLyS5XEZsn*l{>5K9>XgN6c2at~pJ@JJ#%d4GVgk&1rO)T$td^ zdILVw#gv9+uh*eR>RLk>>tw7P6BBlr>Flh}@g$~dmglsGnoMio8NQGgT{q%WeyRBp@ zcWUM|Q(~QYX{e>{Ez8VKB3JK}eb=%nO=mQCO&*WO<-_j8Y%#jvj207iA!ghp!@Qu3 zoenqVDWlDc`$$f+85lr39Sny$*#u(}}ncNn= z%jI^34QQ12#8icpwo5lBVGuxpS5aS$c=VZpHS_ zg>9NqZ}-};Znn9wg!Fh#7FnLiT#$&aQBVA@&!LOR1a$TCBJ!&)({wuQlZ}{7Z7we& z+wOt(>=r$?k{(QJW}io%g%%%KigQ&77^D`$K6OIb@yI zuB!pV9~W$Htm^3)j$4WJ1`WKzZ7^FM4x`P4g=}P=PIh|+yeg|lgCU`PG?Q8q@6oa>jE(5ND+36t&-6}gV2HH$|y+sK%FCg@K6DB{b zo3P`?gk`gOJT{-v>cV<}^lpUZ{`iY?LxRo%+j(t9x5tOAJkCyBcCX$IRJ++=!`h6S z*^<#Ft8bk)P?wDK{(=qd$f@RK=^e~=CElFam{~EtCX=01mwT0*Nh)N@)AztqfW$rOf2%OQ34mNm^z zEEZ|>?p$S3vwNLBo6qL;VM}ecn;dqV-iK@NCWFD^wYwaV4FPtom{8q5C-p6(*@Y-F znLJLn%VTh1jZIJVlt}YfvCwqlXwGG$8#IfZE{5z5lht9h*|7D+T18nyVjGl@Ht9BM z+MPMLd7p^1ogR$z$nrWpdWQu^rUncbUNcrp^oZ1I!O4dkCwhnHWy))lY_}T&q1S@# ziovY+Vdy_|95}JVn%S+K)Fq^8 z_PI%KX`extn4neOn|<`iw3a#_7Ozf+1)E_U8sJFR<#alXR+|AkPBXkxF@@FU_ISJ) z6ks8&WF0sOwOOzgwHv({Mcm=)$Cl$r$7IqwF^l7<&*Q~iTFe|)ug!*5A5MBaB*!(U zseBNUotP?d-nP$}otP%ce|EWX?h?#oJD!@>wyUM9+0M^oE(ewmSl|1cPOKTQXwt*e z%x=6A!J)NFmMSON4YTmd!fDS61xXBJRR>oRSM;i(6RXTOaO$*zI)4n3#JyCpZ-9KOT4_{7E+c9ZY|+i~#r3U+n7W1N4`BuUvwZDi`;}ewIs+{<5m7X-fF2qGFps z3YYma!UI<;4Yv#8IOaB}OzQsol}T5gEYlJ6pH5mA7hfqoL|I{%xgXlcDwFaJc*L#; z7wl6ilg4|vv&VZ@GNYupK$_3>7p+X%Y%bT#_nQ0prdHwk!Qzhu=_L+CE+<-ET3jr> z&Ns8$bK_#(ekc;)le;`^d}H#r1Gytq&oYfHX#hF>$@d)Qmpo~imy{+QIQ)*`MgTz^B^3Bmj2w&(T}Q~^rodhyUs42 zCrBN6TJ(N0*I6UEvupP!?`-MZ;=zJ+6W^IIvm#&W&$qCwXcQ)LEfVP(<`$16dC%Q` zr5aZwRb!cv8xu1UEg8bfd)88l$`9BjdA@~H&%Oo4Bc&&K&Z%NJ$7&<fclOIXRp=VKuZf3A3(8bRaqZDa6;`*}(o z%6FkcBtGM0xi%I&t^D`&;^IYuxMhD$<-bg_rft>ur4Yp}Lw&^R1 zQK~5bIHZb@3V1l0KTjNUKu!|@c$Q%*4*N8jSP}zGm2>B8T3H;(jN>PR-z=Uey~Qh` z#zit$a?PADJysQuj`J+Mc2)5JLE6e8%FeK$?+YEJ&-iBM3|kM7HE$RD)d(7Am?2w% zXNGxxGrlFtUK;sx)cirDuzdbC;swPPzf!^~TbxyFQL?)DEF8q4$c{BEKH(S`{A?*A?5PoA_p?lJ4J=wDrYvVjyf@Uwo5vcPs?o zhT;`!1dR?~j-x|eY@Wd?8wFO739T265ubv3kUUL#oL3L4TQ-R}j}~_g4|~7(xfF4> zqQz<+jA?Po_p(P%`d&_a5}RrwEs|G0Mr>_T7+KF#V2r#+8PSnmFN8XVb2b-WFOtts z6|*8NS4U^I&9WAdJ@904)9~@F#U-M6;(L}5g@fA3L1l)2`?UC&ApQZuNbJSU_TMN_ zkcj5>`U?N0vHO7{>3iREIZ;&NvK&H5^bY65z#2aLpW@Df)afASIjAJomJIs5_y)DxlLiqF^L z_xBi}Y$m$x+u|+t#5WJt%tZ2hpIzf^HFZUK>l2V^PTn|J+*N#Ero|z&QtAt-5ZK*z zz9l+BDN&kt4RMZqt4a9eq2dmL^erzx%gNN|$Ku<`mQ^JU#E15=B6Z@o2g$J?i|F_t1=_(g*tGYRGjnIHJT3h0h(hfy=mS@7$L-I^mb+mYjAY4PiQ?=R_^u*r_>i2X@$}i^)^7`_f&(>! zaUCl=+$75QV1=C>hq!Ew+ZaP~H69_%7$w6`J#UoWq9%&WWUM3v+vi5MzVg(OcbC%V z$^)!emYDj3tbgGLIce42cc%x%tRLj0RZ&((DrhYMPWAqJyVCE)u0P00tD<0IHDHx} zr#r4D@J0OEAGQRuzt4ZAj2Nr#4F9>o7uki;yWdS#Ly2U zFI@708jB4CH>@t{BfZRHv9S~gyH}S?P$RHSIon>p%Oga$*T7=iYZY^vF{DUQ8ZVu^ zY2jO<@{)z`l}r*3!i;pav7ZuFE!w{OK^`{FuPsRz#Y=#r3+M|x92+uzfRE8i=YVI6 zwm8(-0y_3HP-e-=7OQ-)%0b6kcU~ z(5mUuOFSb&+tL9jw#{;okKI~wx~}jMAg?D?J^Z;`e6Lkh@xhPWz_k%P(Sqr(p~G5f z$d~>YU6)Bqc>S|Hza(%;}eNl2&6f+NN zN4b+qmyHk0S!VCwRZ^WIwm+;L<{}jbBXE!GDcL28w!@mmXr83hIB86JUlWA6mIS(p z4beB$Ap9;{3M{c9k5!64%?loP%sX5oc*3AvexPKsH~~D-pdEWy<4(dDvN1c@Eu3+% zWLSz=1~3}4K^~07?4yU}X?_e9VPIw)r=cMm?^*T{@DWz{c#9{%b_gqFKBgWmnI(!l z6h5}`V2qD73LhxqmV^&oY#t*+M-Q^8m%mAP--(iGg7hn;6KCw`tr(B*jww6|fxfg< zOX(wm z;=Q0i>%ZTP{%8dBIae|@RUCgr8v*w!LO%?8G|%!q7fU+T5&cKB5inWIM=^Tc~Sq-r1 z_=p-oGcPSwOrYXyW#eF39Vv(JkS#4nwg|o?b>N%X(qdT4V7Zucl>F2(I82SjW=(d` zdjpR}XU!CJPqu$wSx7dPU6n=_-!U^ojjLhw#TbmrBOK2kb(}u?$Qn( zgE|(2jJ&R>B>Hy28Kl?F2Q$H>kD&{y#c~F_-^ig^JlHNIplbeRe zWSe9hz%D(bg`dBZ1NRXG^{)5(E-qQOy1{wtq-mg?>eR(|Mnc!sT2qjS6M>{2{*Fe$*hVK01nKYxE~3MqN(gy7scNdx zV?-|G_+8>}LfqEi`XqxPAuD&S=}N}hfA%~4ZCNSzbq7Y>P` zerL`f-fs_%6{Qcj4z;7Cpj0g3yJI<8!{1&X#M{%IJT80nwu^6J;j;4>8GK`Kn;LfK z2Ze1(ztp?Vg3@@l?D_(tE9*M3x9)**g zPC716_AlHNJR)`i7#)o|@LyayDhuiuIOXd>#d zw+25J#~#=EdJ9G7F#xB&{_nm)haeUl*ZO*{8jeiw7hEpR0Fv6*J4V5nua5*l>g(Vl z>gy`D<*8oPRO9QU!|lQMrL|N?5uasa=t;Z)Q%h_BdIb7tB>7Xl!hYXXDH` zEUX-e0qqzBr7P&eyt$Zq4=GmNvuD0VO#Ml=s_+wMd}h_36srO}nN@YM89|S1j=7ce zz6HZfSCFFS?evqpmTP}k@U8k{Uz`Qg%8$_{$?b}~eSVVHa$|=EuWKOQ_mkGX<1}#D zBZC$7#gU+*Ht;MCj;`f;gCaFB`1l(J4nOxO+)bK8^%b$OX7~PHEQ7J#yL(dblJo+P z%ABKW<^o$f-^zUBg`Y_FXJ!-&wH40=6yTe$z!;GBA5zZ2}m0(V6Er6Mmo%oK&=C$$`llTWZXAbUDgT^T+Z3O*u`e*f@i zkkK8hGU(q^1#$ifZE)z6A|Z26u;6&7GFX}-zIs9%8y(eP;f6DVmqhVh@S=_lD+fo@ z@Xul@5evW?H5XW{2@z=`uZ6g~{N_rJuN;%tz_G0v9!G)~Md<|Jr6!7Qt?7tU{{98Q zozm|Kux^Wqg@nG%Vl$FPcHVlRCn+4UpfRg=BDOe5JG(gVDnqz}{!d1DDxNLl4IfKh#aOiu;?S{b z4{sT!$!}x}65+MrVDUV_r~%LMV9bCA6axZ0nE{hbd}U-p{g(z2{SBLJ;&rEFwyr&; zb*yVng>f+XX}WmJDK=_xQ{gN{12w;~?Clr1k)AB1kN;dUDDY-f8gH7s+b5P_$J$-+pbT<=h(xaFj z9|kwq6<<81^~F;fxbjbe=j({?fUMdX)0A&>X@7M3o*|1bK6OftvqyP}$MX`$9iu+0 zkyt($OYFBH!Z$&s z_IB}UHkb+l((umd>xJhi3)*+IeH6hL0+zlj#5>wO!s`?gZ!J$3x8dTle-sq2X2%N~ zDAW)RAU_JgoOa%6c?1ohZ@tcrV&GxF@@I3v$a?EULK zAfg@&9#-^lC%~yr+51=D8SPl`s0NI^e|-!%>Y?DtC>Yb~9ZaZyh+rZrkM#@}J#mMC z5lUBymnmdm|LL2gSNR^J@%Sd+%;NFYGvvJi(;aFAO?Va85a!tY3p@4@_2&LaeHv~n z?t*6M6!#_NKox19LA8i9f=C-mveyLbl9vZg-!7g30-fwm@(3*4zJ>khN)L$tWw_1Z z!mTyFr>AR|7C%$(SSMP3);h*BiW-c7j0Br_>(5%pcs>e715Nw~z|}tSN)&?mL^qJ4 zYZZ|GJCT-g@ANfdsltBA&vK+aaNqPk!>&I3q`WwpGF$$L=XpG(WsIXc*LM_N7X8dc z-ZP9LCGyZ?)KiOo=3F3dh>G+VJpXIi^E)*Pw-x$Q&RkNT zvl_=2dJ~~rsg7*iSJ;r;_igY&vT-Mz|Hn8MLp$djQ8cj_u#qqj-ioL{o6S4i zF7{*uoGdn!P7wYT0pvdhI#&Y&fd+`ro@McX4~Lk1+Y17nV=Ud{iG2GOgu}10AmZ7x zayTs5I(_RsV#8mwd+e0Da$sbT30Wa!kKKU&?oRaU1C52Vlm(?`_i1VfercK=>s|S! zsH4zX2S!3~Mlz_czlC_?FWk&?|1a7B=4yqRdw=2lf6Oo10j9YIjLkex0SBWDr+8fi zjO1Tm*_2d$-Kai$EiT;6}75>$=j(;@e=14*YM@ zo>c??>%YjmQ%9%LZi4tJ;OKb2m4{>Q9){L1-eX-u1(|i~Xg$*Fw?L zM^#TUd_!Qk@Ed2BUzlCiiH*)_O=49fz4Bbt*~K>Jv?l2h1!H5r5#Z`E|K=zJ9g2i> zlK)4Ufed>TF|aR>YUN|(xDPt8OnW9+Ek%|{p9gxG` zp?4$MB{I9CY=n|eH5*ypZAi=MvLm&p*@~3?4yOaDZ&BF@^)S3-f_E+oG||MxNNlP{ z(tfKG=}0|hRANA8Rio8|nnMQUVJC+EC@v&da!O3sNJd^?c1JS0`41s2EX`Wn(TJ?m zO5S1zTj z5!B)`A#JhGid>~0)Y1aGO2r%$n{b$recS1@BAqm<4LuUtH@&dWq-FC?0v|Eg3R911&?8``Ki=-zuyET#@8_9W* zSP%Kpy$7muu)Hq(M8F}0+$e+Qkdrp=OPNROv3T8fgU8^p7=VN#N66r7bDB`0 z3uTdfK2_pkyB#TMQ4|ZwfX!}~4cYx!24TGsUf?x_kxl%#kduV8kL(>u^?dT0_}r`PL2As~zr zs2PA1$EZkPbR$bO61_JMvl>V_KCctWb!`SK@>rPdNc?LQfVrm2{bgdP>re5lWXz;c^VE)Q9u?MNO^OMZ+) zeGZlyTxT>JjV`p?^r$d`T3ZgJJjZyBu@Yg2YAr~5twdTf^Jroxu}^A}i6aGcLbcHh z#!c(Y&CE_L8OeXUOvw(8cz_$B`i~LgxYLaSOsF2?M$t56phkHeE<3u;h1y|AEp5Zd z3I{Y>Tt<({=|*`nkHuy(DwPR!C?$iO@318N1GR#XcH4lI`0xcE3Z}SyN{}TX>m$QH zE4?Ep2}QXqA-VKfX}Zp;hf^B8D4k;0Bh*mF!j9baHq;cv(CBe8Iao!))^K2}$Axlu zZWK9j&{WSznT>)unAY@Uf48z`w3Z+0hhYFk6#teU~bUU5 zkCG7gv3Vdn5n(+_`OKYTAitEBb;$OhEF?4wq9}ZWjO-Saa6-Cz4=Q`0T7W#F<&@C+ zGHxr%137(gT};?s)I`uDr#rH`gJl$(lWTIIl)!5!-eE`bb4=Z+y@PcI3VAr8A_II~ zkK#N8ukw^^;W;R;kchgS74Og`CTyV*H?)h@Y~YGG`7r*$Jai7gbd11CQ-VniPK8>DE`trVGc713rZQU{&gi5Av%zh4g zc+>T?YGx9$SW>gvM~TTQr9Yp1tt>}JYiM~eXjmPnLWN?TC{c=a;yVV`ulwOIIFDfp&Tn?WFgQyuQgvyL49SaL!R&$_&A*##*hfc;my5^vB8Y+M$wvb&tr6qAr zZNap}YO~c;yvRu+7|LnUifI@(9Zt+SE?U9Dii&rb6^vFC+i~0NMuRe;G4Zp^PQ4ce z3{fS5u3FqEz2il7O$?1FK(HFmJN#^Masgsg~5C!H!?@+2v5 z(h^h0y!K&Pezr9+z!2CahXfB~dAhD6daU78iCe zUOUQ>p*pSC=|D|4y&ki*)r7^cM~=6}H_m-o$VNpLlxOrBTqcN)ifa}t>X@PCmBogd z6MDIX=8ku0{h7q%QGUlc&zPN%E&?vM>`t8?MLMBbFLuqSt7Ai@5I45ac9c1GdTb`8 zG7hTe+Vq(0urx*n=ZP~QiYSW(f= zj`DCGqZ@g)!>AXDAtMP@xiC&LszT8;R%zGP)!x{a9bMkHIef!GhX0mVJl&|5qFS}TZZ}xd!SFIG^ zyXxlSE17Zw$-QY|6QVm+$8rGH;L(&bQD10U_Hbo2@&xhx$`(MthO|9ufxluJhgmQTR# zp`Yil)D~X)izOHJ(O)d3)d>2F<;fUHf3f@Fqv$Vu;MAz?6NUAt3o?h;}rKq z$=%R!mw2sI_qV8$<)k2|ehpu`P*x#GJPOh9kr{&zc2l6zs-3hlqcQAfw7bUT#v2f9`8urBY9Q`*~F2*kuQbN_0s4BeYTeS^!;%uy`LI-Ra(dsW-k2#-@;sa;cujE-B3q0ERwlgL#EUX z4VT{L5m+*pE@`1#L|{!!3z^hd8mH39qN#YJ9|bn!TcT!7BX=BMH$vLY6Qu6Jg-cht z$6Y)Kq|FSM)elL6bd+z8rc61*H#3=!{zmRj4>>gm!=7kM7LS_QO-en_1yKZHoD>?P zM$m|>kHH*1CYN)L3$4liAt3`9?^}}2@-%W%8Dk;R@gXSE zw5SFJnsFTW!Qzs=S?-2Ml5fcIEu49jA!`6}mK1j(W3CR3l^*03Rg?Bm_W;*iyMug| z5+pM=5czlG(5KQ9TnBP)(@E#a=_a8`(j@+g#sEWPf%uN)N(T?ud+S}Pn#a`m)q}M$ z!@12ubwy#3R{6tggUVXt$<`M7VUjz1{up6B?JkQ9pZEH$>69O3&XX@FtR_2$;dWl# ziIqHa>#?{s3nxit|S2LP&J|Jg+Nenby$&8#6(hE`!*B=|sIp434)z9}P ztDkSF&BQD@(Xs6UTRL+6&5O|=y8*%y9rvvT|4a;cHr}o)zq3B+UsyR#x|e64B`+Sv zx3GEh-V1W_;^;uWI7Y`TdGVvQcz8YrC`(=(4pc5~+IY^@4b&H;iZ0Y-Gq!W0zZj#N zXddHPGTH1J4r>x0^P2t(y3ea8C#YnZ+uyt(Uz~WIYJ_)w@ij1sEc#^1!pd#pR)Eoa z6aVJHnB%{7fjK?}XE{K5X1Fey)5m@m9)DBl4pBP8+k}129+kA2k|B}rfJvIkw{YZM zza@0LSpTBDFNyZkCRRUD?`lyC;o4XT%)M^R-}tn2-9^xh#2@o41K&bDOSq0yKYX^CLEwz~F91E8D*GK(AEgOsXT#ULCM?xP9E$UC+T67+Yg}`nl#MUxo zrvpmfMCwluiPJ91uH>gGP`T1nFbG$gJ3RD~_$;8PCoSNim?xE7l!wr%vclMfv)F{? zj7f2x-FS1L7rT5TehgCdvgN-nhI_k1J%x-t98J{8vA;b?{N`fx`Y*1H!Bp}+tPEA} z^7R;1Q;mq>bYCbaNcDc_TtVZ$p}(ovYBHhDGfl{%ks(iqeCwVQg04h-hK7sTj(k*1u*y)t@0N&FkJ<3e)zm1J-)lX^qtHBgDHP@L1C{e)5MenE zD|n0=BFJ$#TaBR+X=yBxXr#o`tKqTGBwSzIR2gzfD=AG?e609AjLXSRLD)u|RiTm6 z79N7ehVTw)SRKk1SNtvyvb-v}&e%Q7*v|mPVs*9bQq@m}UXABc`A>yPr9XMaL|y84 zu9+j;@9EH(%-GMuTb>RfEmYKfeCLRUrfWTm46D-oqVs1&i#A~qjTpa^4he}HELLv zg7f!jp~=!iJObObefMeQ;1u*sdar4d6$5QlNhm1!YoYZDh8|{UOXk^Is?iu{b9oHr z(Uit>J1bA9fi)`F7FPwAN<&)&X$9XcBlHg6!c?&05-BJT?N-BT=xmQgheZx=ea^K8 zRE8#rdoIaS%QuuJA39i-=e`h9t~b9jBNP_T0hG=!Kl7k$e%X6To?pHqD?h*}KYmz1 zAIE3qT$HgH0s}0N_RE3PZDwd>yg*t$GqgeK{0HawbU~2P;g2-3x6jc|jXTKeJ^URF z4XEp8Li0Fgw&R*PsYlI5sKt49bav=uo}~zQB2D-Cy(<;qWXp)74W^XasInEH`%2i-^>^*_#<4nAardk3^r)b z*J5PQt|RGCJCQ;2L!C%Poe5WJNY)%DEKAryU9$4(tR`w)ji_g1iORf~7oM})gy-PJ z|M^4q;_Z|?@5SOLe~=}MLO+Vf070GiFb~0;_wzsGWi}vLI*K@S*bET+8E7)cO^qf| z6`GRVC(D&<<5&MlZ_)M*k9r~0rh(Y?Px+E^#jg>(21@GFPJhbji?UaQmNXE1{wd#5 zj>73{;KE3A)Ubhg$Di^wXE@8hW?bE{u7)>W*jzRP2*dbr#<~AY4~v{poZ1hI-tnIlb2_w?0;jhdq&l1 zP1e$-s%ET}#Ap5_>oN2rqBJdO<}&!`!r3%q4Qf3tK~zN%ipZ zY{H5Gd_$?KT=A8R!6pn77ID#^bh66 zxqWB16s{l>Hob6LShq72ZZ0~mAp0*?kBpuh=Pgh~wUS;-%QM5Hj)t5q#Qs+h!=UqP^l~bNSb>^y{K2R>0ss+^~f7JG^(V*+QkFMmt} z{KwpWaW$*PAN@* z3RUi$D&WP%GhNA+j^!VU*9gQvsd9vr!-Fw*mITt zy_c3Z4L5g|=QS6Dg4UgfMB%7Ai^By}qnP;*$_Mjj70>c+R@GFaweWpUl{Xfox2T3{ z22W~JmZx_u-^@nPx4_Dj@+vig#-?v7%<&Wx+H}cO*z|kFru%qfvHkoW#il}G`NQJx zicQb+V9ch60Cv~RY~k;lv}K@tv2ZP!AXW?zuMuU74k{{tG)L?yYAyP)B4iIS3`^zY zii1S0F*_;Sv zd<@ICM8${<-HpkTRj>D-yLMw+v1y7teqEiS9lx$hk;kv4KbIGXT~p-os}m2#e7#wU zJbnS3jbE`T%i~v^XWM@%Uqe$6-Vaw}d4%puAxr!-*JRCYad;S+&I zA{Y?ztNTj#P;n!J5z7$6zC}>R`G`6rnTTFPbX_Q4DJpgHhyoY=}BH& zgefQYieQ3?^BgY@OAHfBoa<`5iui3+?l^8wb_f-V#ipt9taEj$EN0!5iXyRVs#e0= zlrB5r31z=^YQ-_JXR21pff}&NIu)bDJFsm~ub}RUg0U&51BlZp2TZULO66wql%r~@ znR3X{w2Bv`r&Bp2(u0FZG=Vw1MulA0 zY;hcik;(=Ylf`AJaxA_~8B(n!{+TMr;)!&C{VP?D#Z5dIi^b)sax4P;@5W-ID`C|W zsbt9`FAhLKMz${QdsRiZ=3-hMtyLdWq)e?tHVt_tGu)s<#rw_0=5@4Y{V)p0mJ)aM zt~j4g1`Vxh8phAx(#hZ_$|bQw9j%?4rpd^TFY?~8pR3|$X%*ioTV}tykSrRCJSg4EALiC+Sp$)M#1Klo567kxfH;HX%1ZQt^m5r!EOUQt_BX_`a!? zxE>0W9%gBKIP+-5Q{roN$+(FXcS$Sw9+-_zPORuEz0Ef>{j8`<9-mavDFy=b@Q-65 zFeg+|&?vM};qg@skKsO(D>6mt2;V6puPsTxZ%P;GG~djaJEAbBMyQF9lr+wnBM6K+ z6@rF2zrx%hnK^MpU9zeFKlP-rps*FE=ZK}?6nJbS8%-$ z8i=Ft7u|mQcsMp?-ify$bo&kXMq4WL;*8z$@-+@8tt%=%ld5>xn9ng6n#VUYD^-Ez z%8Fhw5ZGb)t1%H~R9vS)prh(qEo=tmBC=L#K;D>_)m)86y@4~>d$E+xzA@-sUGbLm zIp05MBwtjsL09^3+riD zMGK;EY*jQEgD71Ufe*I&RWUEGepOA;KyjX}$il~n1xUB3bK8&$5y?yp*k+lr-?AhB z7&1=TeKxld>5JrCH&r(-r>WqOjmGXXB7>NdCICccJQtEJn9Ob)vLTsh29_pr(nXyU z$r+JX$V$@?Avuf3;X`IHi@|L5=}qW9od3maq=HLA+CX|;@~cy_u2A z!;7>gB-e$kWW7p})k%lcZ*~uoU$|T@s0LYdj7AF*njzDJ-ir)Fawa%kVyYG*AoEmC z5~^l7(c<>Hm3^{lzDi_?p=mA6$kS&-J{*q~sYZNOH?q8u9AvXlvZk55CS*;tAP;9*4teK&mmM1d8Jht=XSc#(d{XSKLI z_@50)tKb*N85yn?ry;LVl3hK`O|?iUNMaXtUXCQbsL8IASXo{V%a@aRabDA80#QY@ zBl}M6?Q=QOE=StsNHci;*CP$}MOG}A#O0WYap=b_cT(!hGb}$HBC8bchK;zsvNGQJ zKzfhL<(aXsAQ5&OjBO%oZiBJE7U1K=fuk4V-_f^iCMzE=-X(6SNBZ@wG>It}$kd*d zUB$M)lNCKHv&HkjlTUkA_7>aVHG8khoRo6B2{ZSq>>|D*5_hjki+Fz>vY;0b->*lu z_o}?UU<;NurK3~u&1&iBw)iNjbo6=lZyUU~E*%YY{QC-ylS@b6k4<#x==Ul7q|q(G z%#_(3M(?33BX)xR9sR|=2H#76v2P6b(O>L4uKn~E`w-;-{l#8OeveVV4n29L{Vd*oq{v75`J zNAg%CN;DyrqSx+0?k_9m2Bagjd40&}W^@}(NC0OcD^HfSCwm7}W=rQNDRvxt4(q&i zRpps{3!bqpK>hmU)Q``Oj`wW*;b%LNd-5tjl&-1Ib=SzaFfTKQYvH=Pvd8?<@t#%o znBO|w?haT~>ds-4(>p5jrJMMc+})LVV)y#t^gAn?2{C~0jsZ-*xvTOTHEi|Ls=kts zhc&z~gLX`o-Cg;e8dmteDle-(g{2>0M6Q_eQj$&2BYA#Sd2zp#!us{dzSj!-O98&~ z-riMt;#3qT{ZEx`Zu@@et!sK~CP$O1H+FiRPd+onIE}8H5~VCDo1hf<`{D0ARue*;zGT|E0aw9uByNISS^CRV?;qBOROAS z`KmON*99ASW^gT>-Im{vktfcxE)UFaO?(ekz9}u|kXZm^yn>dA*MCnEGRpr)#-9iB$0gMX@9^803yCYp2RM5=o;rK|>p|G&4S$m?$4= z0=hE`DD!Wb6In+@Qlv9()s<(&66WoWbf8(!@j@SN%F=Mz*@;Q=-6e`?b9&sjj3tr4*aBWl}OyGHJ-aJ}iJ2w#}q z6e~P)#?D!J6s|T-6ByJ+DkUeLsV$Xoc=g%Z8O1qJF{R1=E%oEBTAZ?)LmN&j1vMb0 zje)@Q9>%U#v4Om@GHOrlG##GW!4xj`&pGLlf3 zj0iLg$<`hdlDnJWPM^Ut(aWTSpR0OYVNxQrUYV_RCMGX6X}u~NY(6=ud>C@_g&`-O zngoDuDf@`a2|Gm9rXv@VmK{ZDqGIwD6B7!|@~a|g0%#sNA@4j^yIXbuL7Vtg`rujL z-IGbt9c>Shh}Mf~B@oV0Zf5mWd|H!u+0O zdW;{ijGnq_fc#iTuJ{kr9+(_v3ZqB2CcgZ1?Na$wgQI^jfl+_?ct_?hr4$|HyqaI2 zS2vIq*Y_wgj?C87;<3Cwfz+naM#awl@WHPr9`aJ^_t{F!p^kN zYV1r)(`xKY%WzAz)5x5owM!T_cBaKtjdg9jSc7rzr;cRTvDz=qJ+p9ccQ)}E|1_dd zexzl#*eb)Li6v|Z07EuxzxGYV1Z+W+KH&D>ipf5HgktkLX?@7LB_K+P85k!&O|3m_8JbkKj#Ex_)@PYjStI&%w9)Hwsk z7p=N><{|T;f7Ci8S?$b?dW8v&8ueb}xKdXt1Dr+7*-;Z})C;irB`$G?KCV5OU*aG& z8@KhSB)|Kl_F^SSJCwH3OycGVB^jddi%RSCSGdIG2YQoe3-2pRIX);?eI6vd{0r)_zHs_|+{_pZ`+(oh&V; z@bp1f{-S76rcxW@9EnjWwX{WDg)Ci`h94_{7H2@&TJSkt_*yW!M%RKBkwhL6i6z45 zT-T=VM`a%!ue7!?`ReoRwNB-rSj^;WUl(#}yShc@3Kou^Y;;XT$U}OuMCihe?d#U! zP$eA|enRMF6Z>c&daMhNTmJU99UjD+jLDyyplI0gMi;!UkSvwD@IW*NIu?lL`1ZGs zb-U%>T{)Xex^gym?_7s-!nFJr=l|r`0{% zPd=wBU*FHbwK5K9pgqRZimsfe=*NG@(>Y7(?#Pv^=(Du$kg~n2z;Bj?su4;A){I(K zx41a_x74G{>in{@SExu>oL07?u3p)1DyDJTjGu~2NWYbJy1W;Z(=$1ysum$yXN-l2 zn_I-8tLliXJZWm5hKFCQsk>Hr(Ns*)K67zhmHcE^;#pf)o~71RYwLC??>DKn>XNz* zwAMG5)SY3jwIX(BIkCTf=M?2zu@=(~ROo(bU5&Ydg|N%A5ytYZLoTaZBPm_F39MnN z`0V9%rz<_hVuq|sH?s7Kx@*i8EXc0RhKw0saa=R}#xLegw~(&)#m*p4eDq+sJhmGT zB}UU8q>b+iDK=H=#&vS)6Lp=)+uwHSKrY%)=aet##zTs8MR;n1u2^p za5J3a+vrVoQTZC9M_Wx8sF~P=mOY8dsTVibEo~>?(v4*a1gqI#jK`jCMEhyy1=3Aq zeyVPiysaBKF*w!*n zCgk?>ZrVbk_tteM2Y1$eLWW#$(+=U!XA*Tq^1sk=dQc!^8vbtJI)NdiTZyWZbvL(= zTXnaZny(w-QaIx^sD<34yVc5^WE>hoQ`E{xU+^*btHB&}la0Yk;uvThV!z2c25)D^ zfQnTvQ_=3GxoB^EQ$p3^20@~9%@OX{3xr&T`r9%<< zYHi1zsJ=~pZDZp7eN9?)KB#ZpBe@iRK z0J5Up?K8=S1v`Cmt0LYlxkzY(b?X=4p*s7`opm)W<+38H&JH(*p|ptUtlS6xr~PbG z#FZBHnZW)i4rNZI9oRUiTxq|W884U5H9B`zlg^!4#80<;b5Gq7c?J4rR?G8^)|TN5 zPPe3{+*em2$vBfs4+snDdyyHA{B(ca?NXfB+nAst87Sue7aNqGU&J|r&M-=+(Qc;o zD5q-9%uxC(EdEk*B=BC()ZmBerbx<@B7);T?!}FW57+sW7sX=k@QR4@k-9PF3QSRV zJyJJOc~`8!ROZPdGWyZFwOJ~>`)J)rBI!yBMrRc^cC%z=xqJFHV>m7&jzQ7Jm(lTi zlpOBCbqGx{$(l`(q$Mk-4sC86U#3I!G@*14@8#W1dU;n59z@T4v+l!=(u)+#I#=p! zoIQOG<42v_vme(Xq z-FJv|=hUdSMq@Qy`E(|`^-FDR7hNMO1B!*AWGcZVe3+@2Zr>PCOdeFCE^`GI`1R}< z9j%-qR$xkp3U_ymmYFMLFq|n?VBV2-C9Om4$oOH4OU!kFtekw%DO#auV%;>dC7rQ` zZzAXT^Y;!QFLaK&l~rN|rr`sMQ**jRw@T(377g9jIFiC3u^@P9x9Dk-a;?~G#sDS6 z;#u47nt`RM)kV?WX80AWq65gOJ)%RDTSa)*yK9TdlRYqYCIptwU6-wMzrutj$e~Yn zokaXJ`*hUiiskW=&GQo>91pzZY{i{GJJp8j}}`xiJBJA!Cvw>LOkG zM5A(#65f+;CDxvFF5&j0Rax}BmSpC)J3FTEGuTpglvsW6eq%@~OSlgnhX2z}mXvV& zfu@)qDHKUT`*BO-0COMAMoc&Q8En$ec_rL}ygejZ(n8*d&Y7L?zl`RtEMexOq4sK5 zYC|PNFg30+dQ6hzC02L*i@63(&a_G0tVaJW%fBtL#>*XyGmL1SdF9It+7|#FJwJl( zG1}*dwCA)TpJ!g-rRmc$a{0*U8A|J(f&?%N@-s%1&h||eEGm~icr4=Q z{TE9zJt8YUy6Y_R)fw*$lq-62`5sCUn>1~3Pwuy`Jtg{_JgFyFv{OxBRE9_N8D2-t$hxOr4!Wo>#r-9pENr6hbEnSq9@n0O=m_wZYjTq z&YATrVKny+28_DtpU;UdZzcb;r&YW5THy4#(F^w_V2BX!o;_D@dD|0k2hNC`ZtXRyX*w>59*P}{55*< z)vd_n#nDP-wfK#7bV)CAbaC{AxfavUFP21yDpy%6bfnFvqk|X7yNjYPl4;AL9nB3` zy8K+WE@Pdjh1jsae(0?lSq| z<|y0h$>{mlYei+G zg0aTmUJYaRz6i@k7qFYxLsRA^D;yky3vuK2?I5G^UyLidBd-WUeQ+G*qfO=VRrJdF$`A{M<{O0PA(%y!tqh^ zg5KQfp$YC`Y2yW>i}xDGm0G=PLp*?U{2?yHY>l~a4`qm{D!b#JT5o0h4<<|WT@icWA7bgHaO5u3&it1|M;&6r-y5{v0Js}=y{J35-y*t0u2P6=6S z$W!`|(R-o;%qSR9Y-wPPSb>>nx-`&{HlH?sCAcf`vf@7Wq-o*S)BzZWS;{uCDP|Xd z`;ooTXU(|Tc7Yp3SY{Uh>$)|1i5b>1jG>&v=({Z%#a&rqtBl5f-Hv(Cqo(3(lBbb_ z7Y9qokNcv_MydvlnK z>32mh%Qb0v`>yB#d)}QX)0gpkp4JaOyINlsUbJk1ef9F?_N8k=3+<~HE!FMIm)Ysd zO7<0Nv?YsHuN#}JlCS_jH(Avg|J(knYng#BzEWSYX3q@$R;|%jvDSmSJ+x+NP+z%f`BJ^oJUaiAp3Y|-|5aVh+fx%qiiLqE zmif>sLn1}yu+>8{|Bt&`_Bdyuw)(vdJ674(E?j3{tJ{NX7A;v#jy}I@e5;BIj4jy{ z>ei#ja(iUavheSB4;@NJJF@7Kp+kSan@Els#bv|o4pqIx9?@2<)>krSEL{$EX`#@X zmD*}>k=*v}T?5-KuZBD>x>OI7E|c%;Nq%~MeTOy%%Sq=K)=wF-P+wBL%D!&-8rpn@ zV+OA-UZmMI`>LhdO7hYV#eLdU+UK9Ma-DtAYI6MfUBzdPnLlsd?{`O*ue3*2>Uvq4 zk3+ba7iT5XV%o~ZF=S@s@h!YpAev*9$gPHlaQ z4nv2M5r0`<(!Y%{q~;3aMZDAtbQ4fsV8eqJ|4$jvx3bXiwJj4lME)}7ciqZbbDo(g zJzJ!dI-|~Mu&Pz%Fj7TiPj$B<()Qi;-8u_nu)PBY;ESu1C5m}$&1+8S8-PsGPuC|V zbQ@i5hfQ3t?3Df?*bRMU|1oK?;ZlIR~o+PuLeYB@^EBSI|w?*ykBef-~N7~O> zs1rx0k|I*w@_>yzw5pqnRPTJXbxV)H+5&3H#@0!9IR-RYbshfP-eS$l zMae2UUR41M)D_99QFOdeK=%0W?_PX6{bD3i(!;W`O`_~md)an-0Y;MX_8mQkbO1$7 zTi^m@8d#PA6HA(6zKUoUURN}z(P>w})mKngUqM}c#qwqB5ycAb>dE-f{_cYZuliMC z0on7fyZRT{k+_0kCx;J2pUicrbk^&;#yFE81L*?WNmCgvg$S*Orj0cBOi?n9~_& zg~!&8ldtMZI^Po=A=QZe&}j^xFww)UidV%O!c-?mXI zMMN|~QZh^^$soe<*O!mP#ujQ&AcC^o|ajKH68h`HKSOaqLge~NnLh5bm| zC!+(+wdiD{d#3-LIleIK&G=$XXel!qgq|Eub$BY8l9YM@g0NlLyTlSUeXGaD!)LGt zXM$yUAa;QD?ras7J{t{~D_DBkmG?AOu&2FKo1cpwkdkIj5 zWv8HJ2;!RNH<(YRj_#{Rq;Lroy`^u>giqj(KslvvIN_*Aik ziNdH-a`4sYATw-ce9z5RA^KW$kGTSCe1R3V1v)_3aZ6KAGOe$(){xPiC*J_~Ocm(h z3sje9p}O&;v=k%S&(YERxyj7f56V)99o&8D&FCAFw1-x5ka3G1E+$9!wzmt|hGwbR zcy8LnOL}e^M~Jea_whzd;4EVxmI(U%$UD(HmA{Ci!`7>g3MCn6{9>l=H2&ydexRxB z(LqvuJbH!liO?Kh)4J}qtwWTr#bTy~03=;+-+I2ehJ`INIgKKEejarF`_aG3a(f#; z51Qf0Sy?KuK@pqCkV$5L7+o!&Y~v~5K{nwF+gLTg#xKHq;G<~w7V-rAMK8h|Yl5RW z;9)kN0|q=h>X8E*+cur!+hw0eZ?k1*U4|L#IMLECqE{-bX&=%m%(DI~gpv#$so#7V zl_h19@X_kdHt;bM>+^*}u_V(XnR)_acC#^NH;QA?bp_5I+IZG{-`CL{@`J{R-7iA1 z<+we@i0!cPta%PxY{YVW`}|+g2j#y*1Za-@J+$+7>;aqRce&hdJ&b$E{BEaL*Mbq3 zGZ4a+V{W(V(#XuyV>JbVPL$u$Oa9r$^XwVnGTylS0YnXoogseyeWrn6h0-w|

) zyHTVuC+kwY4bVt$DwjVsy8n^Ex}~jSkH{^{*b;~^yifC559a*rJC3^-3cY+{Qu(@#hue@&-C_sj zBTabrIj?=VjA%n+i%IVuu^wdH&6@_0<+j-Qq)(4n5jlGErvCDuo3QbpjWt>LaKINk znO0vWzt@D9-#3D?^{Yo{7e|xb|A_UGv8Kal{jErAPJaHQk=A_te5VBb>`RV}h5YyG z&siCA_;jx);0gzW0e9G?1#}%(I{MsB&Et25JzoAyKmjOH{hw$r+0)-*E~mFK&Tlz! zt0j&)jG(BUq>FxSAE{Tvtk~&FaeoUZOS2fv>5|cmp>~qaNeK2A*mzSvu<=UtfUZ6^ zD*g0sM%Byub3Wc>7x;LcT-Tp3LuM-U%v8v*54D!bH}~i3j~Q572A1*f5>6j|?n4SP z`sRuBv8Bgs^mWM4SJ-q;FDG3`#12Yt@IiQ$^UK+NlX-Gq(lXKcUZZ2U}MQ0WGBaa$jWvkB^G5>%R)Kit@X#=c`Jf#tYznQ@F5Dga-wMWcL zQS_JR46w3vVx|@|uO9S`x`c!8iqPw|mEeOSI>)jYQ*j7OwW*PL|HGoGjcMRZe zkYcB%H7e4Vlao`8R??h&$DrY@CY=1r9lJ*Uwh8~{7!7=biqyOUOd*y2Si43Wd!A6n z3~jq|D~E%bM$)QEiKZ%B?KD*y!1!a?a97IcF)w zPFXs=ToBouEUnJa$3mMMVP+7^lPBiIrjYZ-#a@u_2WA-8OeivaqfzG`a%6t2IQ78z z7!Jcf$@wIJU2Os*%TA3QkY8=WrrIq`!j9+0&6U>y# zT?TS~bsWg~rH6tpuO3vv8^7BX^80a>GwxG#=#GG24MswgUp2NuK#W}{545uD2BU|A z26A={7|7X0kyCcHANXt7RiB}gv1>LXp-8Sji5%Vh!2r_bg=>4u=M8L}Q9LKFL{H4V z@iwE4<@kcQwBg5S1(`V`b`j~a{n3u(dgIS3dGkQ4=G|qkNyeWU+b<^uS~c(93>ahS z5|CVe+xe0~>DeNsIXQZBhSFcb(Fgf~_v+y{4Uk_L$S3vBQatHYGMg$sWef~n6?#+t zxXHjgZlL@JADGmzb7Ln<^7l=K;b}7*dGoy39toGJU1!X&1iSm^3@96l_rWikHh5_u zPaB{|Y_F2&DcFhg{PU>k{4xeoH#-(le1inZVQcxBP$hjgf~oyqF`ob65QpK9v^O_mc(m zZO3^X$d~`_*u_|ne2vz!POGQ4G>)v_OXz!5r)K!OVu1`kj%m->KnZa$NcD(S1R$Th~K+P;+a6 zpo1K`;_xJ1g^2YDyT`C+6WCj`4F%+&nCz~NU8W2<8R*h>gk5H+ ziY4qa!yza0%M3FexFcJm>@vfNO**hY8!Wrbuum+8w`I>cnJ#fmVk<}jjdy3O#%?qW zH$l#y2a zmU`L7cQ~_++zX3B-fHU~h)dvs9uFqvSE_yunzA|tqYNTbD z8IJx!NrsNp!6#y^S}HE#qt$SnWel6x0GV~|UExxpQl`apPq9GJcooXbq1;1Er!`C? zc*amZf~}s4b?hK7!e8vsDH9wW!Lx?)5d=ItZy|O@Xp_Y(IldkKOKi84AVSZ1HZS(aHIjFC!IY@wTMe9v_?!qDZ=ny!%6J zkq|y6j8VH|D33I|ycWAM)BZ4W__bIEii8|{9Z@8ke!bB@K90-0AXTL#^?~ zE(@OBZ^Wi%>Zj@GPdW{Z+jEdmDZen(I*;3zX_ii2q}%AY8P6JH@Yu9f9A|!2mRKTi zWonQ6XOsDlZ<;TkG>nIgKcNYh`3eQ`GA&Zix-aC$D@U5k>7(!6_`(5~9t?Pl%vT{O z8Z^>-2)e{ak?81+Wda}4k9QXjS+X%z*WD+Ghjnt|G=ab4QXsX6%L z29cU$X-JGC&6vzV2WYNx(lAcVslzbrX|>N8FFux`hU#$-VF(1SNgu^_%MWvgVK>6e zPVr}PFL@Rk|7J9Il+)PR6aT05ftAMhMW8FBe`O`_lQfV)-U|kKDT6#wzVb?3uP-n^ z89bZ`n}j4;Q9Nby(xasbK#{b-OtnIg@9PPeB5yB^yEKA z$4?o~rEKJIK0PTX;|Jkz)=TR*4OhyB3%toGX(x=9`orMS^~P#WguHZkM%3gQbih14 zk&UY*uEG~gPne*|JBM4XMcWKm*YWX7Qu$w+$LIR=N6nZj}QnIq*HKvM1oTSmitrMe_Ge#;K1%-hYg7f>|C% zQa^E<%dre2_Mc#zfy!!|^TC}i;S&83@wtNONne?h#s$;don-H?VV|>qtd#oDrbiKK z3`2wSUwYtoa;}6L*D#)?zxEiv;$Y2NE0k7BL!77vP#(Q*H1W%?R zo9%T3Lt#B)Ecp5gK{3<3fcM{Gn#UXc4_9!d(JHuUo{An&(|mfxuThv$Mk{HBAr;)k zBr7rsBON4CWqgq^cGHYn2gr#LX}f%cF;Dn{ z6)};DoZ50)hKjE*Yk0%n6$pg_o{+06iK8{2Ylm{aper67E-Wn)bGa-o+E#<0lXqYPt&4o3|fFOx3g zBe;_tPL55CPa$d3 zeMU=nr9VJAzlyc@>H)Y(icGj=HZ#LNV8O`jdF8;k-`tvoR%Y5S$O}>_ElMLDEAain zG(NKD^th2ro`4M%)E^J0Wkz7}tIho3!7%eTj$o^N*qH%+OJP@>8V(e{hXEPvs8oY?ax4dAVv020u4iU4kz(7^FsD-q3{D ze_Ft(!Iz_)Vu5?#XTX?)TcmOa2mJq?x&NCV;`axm_fMcUwf6xXkDdBmcsw`ca{B^q zgd09zFcQX_v3R~!HNuR7P;A-YEzoP;`_RU?HRuhMOWvy(GrD_|Vy8y_G48~|+sSQ)&4@=4i;@~u%7#Q@KP>j)|NvRnu z#WrJ2P^+(!aAp?&5l3w5=oV;#pB*u^#f~ccEHuL|Phr69X$&(ky|JO^^!S}h7pK51 zmP`J?LHf;zpJMJQYrVe+%d(?@#XATa$rIZ;w;{XFjCZuuGG{y|G_qX4NexYL)+v8m za`fd#$MSner#N}aZW8T+DP?ymw&c>MP=1;f-zx{P&yQy8=80e@9=&svtKoRhIV5{tZwp?RhqFeEVn-S$2_xm z$4A?XQsMLB7f8x)1yE}e^g?4K#pd|6+NWO-|Bb916zj4>LJx{1jCTi}yg75xf+yNi6Y> zIupygLh(J)SsZlt+Kp3{Geyu9XYU+E%67y{Wx%ssd=88(lbroq>K8q3mz8xQ>1_1I zEW6H6KC6$nmvOj}4cs~xd1oQyvMDS(AD0lDpcPsGkeeD)4Q32(wF1j%z4hXFb(YrO zzUPQvNoA|xT@tS}S72)^u_f_4lxM^WY;9%R(s-PrDP0D+HFc?xVC8MGRwEJY_AXNm ziwvy#Z)IRub$qSd%FWG^?6&g%7lZ%Tu87ykrEYGP`k27zLP8riUq}ErTS&;xV*Wl$ z_HRJUY|^HTi^L3N#R*JC-inC=OyvQ zE##GMYh2Kffjj>A{k>8{E{|`OEq=Y9<#S&pC z$J%%CR6W9ZPLh0MZwal?SPgH_tC%ZbHjcOG!(k-o{b4V{H#I`f+oUH81)$huL4Fa# zf>2EetRFPUeU9Sg)AFb3&*}0#1`&5tW~S{@&IIZ`jdH~jsM5~{9h5acxOu=fx9IUU zO$Omj zqw%eL5K_<7##55KqY1_DTj1Kn;x37FYL_U*h00@vNyKLvKt}T>PP4RxM2izM6j2)U z%4bCqPVo(oAPCIMzbceuq#3`Mrhd=7JSne_KdpQyKw6#rk47iO*7yRkSdwX9O}D&s)Xe$8Yt1XSLA+PZjpM6P;7@pYcID*KYO@E%7KeHq#WP+?Tqi1 zCwnM0=MSR@w(pfMz2+z z|CE7ato@Cbi!=Jc#98b!=dD;GjM<4VK*b@0ir?WF3VqFRcjw2j{60AuNqqWHJ2Lp~ zM+4-uui}H1r^In&4;=mxHR#+9HUB%j*MAMX-xzqmM(^jvPEWn~PedGYC!clnDva%a z9qL;To z+3B!lAHTG;PbGW4juU!_YiuHYh|6agOfvST_yp3uMRKsR#wW0V4y1&mSLg##4{z!& z&7s{gUW*jbGDa5Y$T|EHkeR>4&nOlZT)=nmm-td;KkY%DMN)R{pn-TZ?~EoTdQwD=>+gi!0hDVsd9cHy4Uu1fv1Ww?00x`igSK*h!lM zAu|~{zCGMN5tYaKd1pq8SlAOaet!AnG$nCzJ46)ko|%{1ebzHExrMynZ&lDI z(k=N@hx#U7Y#~4Dx9a9|8ITk9#Do^|^M0#ZzLo}Il(7Aow;Dvo{G0(b0+CmVMCNqa z52YLR@$<6TS%cwXUh6$F>$zP;se1+`c1y}h0bvwb?7ec&xq=4z0DDERC zK5T2psnVjhL>Zje-rIbaR?{|>p@}g{Z)=XK0iJ}rR~+}8TKz-g zIP;6NS^t!gynpRRT8FXqNUqwQCL~6+kcW)4s`gZ)lLJTc$mOlm5(iqyfst1IKF4|Zc$=|@}|fjCKj&?B^fNKH>wiPNXo~; zM{C&moWV7*0pk_grHQK~wNxH7noG-o(HR)dHv4EUEn8PXcbEsmuS4?K(Ohmun<`Mb88Vv7 z4JtCZ$=(6(!Lol#ckb=B)PrfHQ}LdGv$Kt(3Xq(=HzIttyiApF=mgNhJgCi zheq@HV#`g5cC!2?x@X>)SKf|0*4Hsqbhf>FOX3Py{%o|>XN}0fv3cb!S0}!d{ z-PNcJ9CKH%7~~!?Sb_d9C3-+4HmAGlmu?NFp|Au^YDd^zM8mfyW-6{zgwbUBqY5P% z(Mo-~J#n+7j2Avy^=F3B3$X!i^~91)ljPF6#5DPWQ>;#NcD8ny(_GjDc5XIU<}`c6 z5-%#3h}~sQbAwpIoaQB`Se>Sptx@JQlTA7h$_C4v=KG1nmEGi9PRZ&t7i6o(oaTK^ zP~4FXmO0HF<65>4-sCT*aQkqS5^VA&FPy^d!^S%jH^`rz!mYx`CNQdbubjfI0>GJ7 z$bpP`lN{fk-j7L7F*)%|I)l-DjK!lQmLVOq?LcCF$Khi#{cKB)-1OKiT5r0HDohhZ z6g+JqmI!qXJNXB4|kQOQbqfeHZ@E+76>I7oT>GP zVCs}hgpXF`c+Oy=*Z_Afm)w{5gQQ#~)@6_EE`A^}MX42wnRB^n4C$Oggk!3}yb*h| zV|TU+*FTte-(11!jI#BPs!^)V!-+~sc~ETCa-{C1Y;~!4+C*A2gN0wrk-b8WcS)T= zmK{lyORtcP|4syzKT|X&S$zotgDF{R>tl&y65eVBSU>*$;HM^7DzLAO;R1^~OklI4 z=WZ&EgZ{dVY^>SEN&%lL+8vM&E1}R zw5!K*k9N~5iB_%U8^&5a+9V6y(6@=lTMS~W(LSAkp+AgRT_iTA zN2@SeTQG)uknH>-e|tZ%LwQeZk!q>^9ib${v@~~Dv}YG17JypYo=@t&<7^csb(b4` z6S43!itWZ(ec6U=u*^S6A13~)^cp8{p82OTv4r`jUgNC(X-l?7nSb&$>A+RlV3~h< z^W(&__VQ`tvihfO*{U)BbZ!$AcV~lT{z)963?E3lf5Shm9!ECb7YlZv^olAkEh8)X zBu9`%|4H00Uk4zXb=hWuqB?Z(I4)Mp#*tZV_n$7RkkH`9Is2<}e0ugf%yd$qo`!$- zp%rnavw+y{{IV_C{zD=_IxI*GR$dT0z@|ITq6%H7KvkCC7is0w9kE2{(~6&f_y>&Q zx7elM1n;n46648`(=o&9I$o&6P<9&6QGWa1qUmZL*8+Cq^Y;8kRrbJ8+X>)d+Oo498tj3g zE~etf2Zq{C;13L$YFRw>*SVCfK)1eaPgb<8>Q3(IoV=tshczA7C3#t{c<5M{F2$o; zl5>lbZe_9fjYUSG3FL#~u1^aB{ZPg8r{B`Rdudr7fzy z#5tP5$?kOIm~Hq#6seqnTaQKw;(^->3+@>xokBYhR7Rd^l@H&kEECc0&!ekX>SNm5 z?PSC8y|z{^x8Ln2M~?69p*V4z#_4SDQJp^Q;YLY&#uI;gSHML!9zEDYQ7fGemm2W5 z_hEb7p{I*@iO=izw)bN%cG-vV9&G^QQXSY6tR3mme*6CzTU!GgmILFPif}js#9J@* znQaWydDv@;6bre3c+yAyuHVw{e@FX?c1KDY&fMIQ9Ig2O1J?klDlK-#quv>@3umaO ziK7;O`d=}=SDF>(mv8=O_=+3xZB5c=Uihrz()2)xyNjwbV?d`6(%GW!jfGgyc?9%> z>7JWvPTIBRoJX9M(Y<^&`%+i3UO6PT$Y%S$6G{Xmtk@ zwj2EsYqPn7^m@)Z(QI|n3qyADus69+`AFy~VH1h3#1b}<_z0Hej9bSGy-8+knN1{G zPPEQs8nVH%i9|4vtZpM0P0Tux*qN;wn@E&5L6OP^%Q6Y#aAg>QUo4aGI4L`4kB@BV z4cGI@wtLFuQzvroJ8ohImMe1ExF)ix*4ec+|lfWMI+iwpYV%u=Vwf} zmEU1Q%=F|G<%HNns$;eENnUUom+i0#j>`7T)3|H{p2>Fh z4lvm+z?|>MivD|Ma=l}nBSz|wz9?%(eiCGWtK7Bv1sYfL+8MP}rTzkX;Odlr8+%t;QEKQwy! zL6e>y2mk55?*|toU&3qMldO5Ou}1e!nnb#`*j=3Jvp6}fgKrQl62uD zt0Y}8i5tn;Ym)Wy+DTlHR-3@6AkCk|1qtAV1SwZXcCLky+%t(A$(w*yG?Ec=@R2Xu zlez1XezN2jn9G#d1!gYqLltT+QI(C7NH0&qh$RA@lP^miQ{JQP)VIlW$Dh zUXi>a*W~$zE0PP8mXn2+Sa=}`C7HgZR$Q69rlrzN_()jlfW1xG+fn^NvJnT+w@ zaAB@mBXZSB9o?GTCuOO&;pJWPm5G*W+bAAO3~`k)P$DsW6;dq8kcVH)EnKINS?xD> zC-Iu(88)}miA&EN5uaCc;;{%fZg>d<1CfXm*JwMPKGM~BebED?eoo6$em%N|7eX9v zf55MK^iUwIdz}%yq!{w0j?HMeS+e2qb3k*sA~=o;C?}cU9uOz940rs)o`W_FE-L!*>j;Khsw7&$jHAnw70o5cf^Ymupy_Hp098QTzC~j z4S0QSk0+qwY{ynol(Jt{15zSxzwXy{zb~S>Jx;!SOIZ#gX43t-04*}Ll;KcI$uk$^9V`>-R95IM5E-e8Q&?@%L}U-!Aa zZcPi~E!Y6Pci96@IDFpJv3;8#mr6sffP+2|f?J_L2?+POR1diB#GTqsjg(!!rAO-M z1NHkQTYkLQ<=yvsM`?bXLCqxn+H@# zRw(S&{ThiCZ7WJ0?6Bp+mNvXk3N=zasz(dBb+=Q~0=PjY5(L*&TqKi%W>SRHt)(0PZkZ0d2AsLVIk( zHkB+toIKg)*F8QB$TUB&dP6V?4refkaRr4Dm!H$})l*3r504M`ng@bfFbqXhgIYL@ z3s-Q9PtXklop@z!N6*x|Q?}hM*&<;V&fU9%uAnFE_C*|8AmpPq2Bi3K-pe4R0O~Lq zue|Fhg!TCP#|M(HhHmRdUg}DQ4hu}rXk1Wt1>G=*YS?pd`IzK4>rnw2jhLYejGDhu>k1Jz>!NL3>q;E~pFfOOl00x) z7z!^W${+CRPPm3JoKjbn^x%S8>U0OfKKMN?qPyIofEP*>f{*irJT4z@Hk9@>^hj0z z&~PoxB>vN>Yjc9dZm-MlR~><%%K;hi=>bP-)+?Ae+4Ex#xyantl4slVW7XYM>C}eT zlbvinpYGFCJXPZNsqO$SWOIigj~<^l6n5!ujR32mbEVFR&m9b@VHJ0?xgBr~phNTO za9^5=Q|HnQ5Y1Ii52!A9O`l7{l|gDG0zHOidhkq<3YVv*%35!O$`wG3^A>-vag^po zs!~gc$Nj3wAY0Jug|TwrF(kY)hR_4XErbE}2Rvb~KV)d!6aS{}T8B6H_+eSXKKQO+ zAOxD=rF=L?8Sz7ashwez^wR@g7zngk0ee-sHix7?FmW10^X{-*%^D z%a5B|54?(=7jKvx`+JR-D4!&URH&+;aA9h!{J$#E=RqiHNDOT&z#oTMe+meuMK|+~7+f;dwm(g2D7F`(ij;k~`DB z&=*!6FnK!O+V=Yb8my1Qi!Z4?BOkABS&GLY{O&M}Ct`pAdpQDkmiU4pJgbC@(u`0N zX>@o?L}r12?)HTIK}0|iE#%j|u82zuvjE5lB@1A6k>lSbXWHs~P5^09K8A=t5YTUwh&_ zGHSR-RI!lP>-9O+Agr?k5(Kjq(7YJk2*fTNOh=K0Uf@CqZD<%CiO<6vr`xPy1timJ zh7RW+E(g`Ht(_4?79dKDB5}bFL=Le;z~c_-{s1OqPBj$4Q&s^e6?f^oXKsOf`gNzn z>(t@rFe!>?ng(zV!q5;$IMwyf*H^c+ z1yqkSxi#Ai175we*L8Cy*T+i+^%9|*#-xxy;$_rh&Uh%6#HI)~@{5D3x4g`2!b2BlV~HT=F`}>RQ0J2Cm896&bjp<= zR_KU6)E74231^%iIZpBh8XW!fyokqp>j#nf_J;1H(}?;(!vd~Kui(Y-;skUl6o|kK zV+9ni`arZo2zIoHmt3@!l%!@JxCH`M;CZynOsxQuEPe^zGp|gVbu9nDxf;C~k{G$E z3VX@X4cjmzbfShCl;(Hho?FCzZU;ud>(f9zOrDMz32srOfff%>5RJi+>8cO$HS`ZG zbAnx{hhRUXrjA@p=V`%E#G&JnG8jlY^FeL|(TpqL4LicB>U5{HTj~)m7QpH!!)nNx z_HcfTUOq>AriLh`Dm=uCN;h0G=!8L3SsCPIw}!(?uUk(X>=l-U4fZCsRDCj!Bo# z4OZ#f1v1l${@kY1@S zU)_RPTwcVwi}^8o0n8eY6}Qc*A6$Vsy^s%ygtVYfbs?DsX>t1;)HsA35lE5hi@1X{ zU|InKlIM9lJ}KGobj`KW`uyw(o0X=3NIK2X`3EfMgB!DxR_|=H9!Oo{u5%aBx?sOF zpO%Fq4nMM&kO?QQLr3r!!2}Mk$Ayq(0j~-2OX&n;UhMvGgv`_GrE~czYD7hZLeRsAU0^O6enNjMM<8yyIS9C(EZ z(Y@xw6WJPUInt~y2j;wuiO2$+3Rtu$znEImmifoe+34PEg(z!Gi6G<)IW(shbZSl~ z9uUAAs1EoEhtq+~u`7Z!R%;|8yHwE-5--~ZJQ1fW=!bavkkO#(iU|y6wtg=r1~gmF zl~1P)VK0;)LhQx`N0>n&&!WLsI8<0|!^ssu?I6>;Uq921q((lpEGII8eAfMX#U6q~ z@&O@&F}&j%aB8a0gAmHEJDhk40U9^!U_InD;=-K97gPh7dDCKqxAb{XPsoXkkBci@ zDb_xqSGX$KLtO~MG;HMZV(!TN4w-F5YLWZk_U ztfqwM!=>&p)+SUPnHV3YyiVl)F()2HmbdJOA=QxQ4S4*4Flt2nNceg%_j19)VU{~$ zTS>}3Z3`mFfUbpoKGpB=VQK`H=(vO28KJry3i@#m1I@SY{&F+Y{rT}C=%k6%ym(bS z?$}U2ueDG0R;nH{yg&ADIK> zi>cZmio`k?RWD{@>?%IOJB3}~4w7`CU?dQRv4M@lyf&-`Q;x;&+yonsI0Y=kbQjZd zACh#T5T;9*t~v2^F_yQ4m9+xM9c1Zk^)n0Nl zG^|8n9RRUdD9GtxA*4;qkJoT(`LXg4^5AQvEBVd$#D)jfJ$M+{4|NV}ZYM%SWC-EG zu)qiRr8$DBt}ghteqOrAGw6Vg_hJc#&ETm)!4jbk<2ZjSa;M{J>gfVuBnap3hoPW~ z=ET%m_ux%whu`bf)o|*>#RUGj08&OsKVLqaw@GPuE4)a-@cXH6a2uw|FD9xuq`qQyk)@*vdv^p%;nScxEKos|;&MQ^FnfSTV*UcP z@rFWJUGjLbK*}a)_At%bd!TX=dA~ADK7?3cc?7o`dYq{vGY%ljh#V>PE*&!#!b~JgBJBkbd-w!R zeZHXw=`iT}Zfy`j1S+vI$-J2}7z$$T5wnRP@-oOohl466B49-b)+3lg2(-Lq!KXP5 z6~k&wJ_h+Lfnou%G(%$_N1j3RH0B!Z1t@|$ffus}J>D>OAoyMIrO5O;G#^q?Dsr#L zgLtTIVJjJ>SZ)crR2LR)kvxFO3?j(#LM0)>U~;Mp%Q1#AZ$swM;YAh?3)NU_#cFl{ z_g*4?@#8fV#(BOoq!3#2X~%}?_WW2~MyhedXZ7vuVGlwd9kVAS+o3rKv0O0ux)W1? z0A9{YPsv;nj|=-f@URgU|2z?F5plpLBj9x+EROh6$mk*X!w@(jzetNAjf3oH(BVbS zfiALYUhKW#3d;7#{vcBVv_BIt$u^`rQJy?^(!ZUSa=q6H+ z*o)(h82eigQXpc7xMKSbmijQYb|D52V+w$cFHcilsp?Dbx`5V@884CRj&b zTaO?ai`gpXbaZA-14R%+_l4v|uhKx#fizb>%*K-0rB^rfuXI%UJ;Iy}NmI>-1+f53 zGc{`(p1}<|B4Hkl2*&0R ztcH1m$TeaiEZ`0WgV<<=3>>B%Di&}we@Yv(Wkt(A*k_@^Iw51=#;OkDd6$aaOz>=O zcdE1hAmz3?UdoI?E5I>5m`^3AzvuskG-X{via85v=pMUC8xEbT2|CcvwH) zEr9WNLwLb0F-{@y?FZ zjRieeMx>Zv1pP?2x)3d}d}%2jW59|<09j;k%MWviO)apWuoPIk!F8o{I{{CZ7Ql^_ z#IkMJc9j<^^~OHZ`{(-pmEKB^PtY!`nIqZZ#gO7@X{4L+bQ`t@_@G|lkg5ezT@T*^ z{uFw#xSfu&-biw2kpS`skw66N zJRZy-LU;iWPvSYCbXX&yOTOt0V*%V68TI(}Gy3I4O^)x}>|i?9*MSu~-Q_}t3d^`i z(IIH`f*3FI?9SBVGY+h1S&Bs?bjb^oA3^Bl#8PMoTT~DzB0J^x5o9lVrJ|ARu^O#< z!k9vWQp_fiu*JqFx*yUN@KaIc+X2-(x9ykmVr|%Uz*Pw6_!jRP4$SAms9}R8qFrb_ z=71X3%{|!A=#8kl?lg=94bUA<>^*fN&57+g@WyWFlrM;g7C}V{@hhA#GIErqDt1+1 z^$@$Xd>XQp*psPa9azP>X2rXJ%8$^=Q}+cB`gmmcaMktY!@L1Orywnw$AvAkbm|Ac zhv=7X1%vHF5B$X5dK(@&r`t{Y<$dCf*gNbf=6e~j*qMhZ*l%ds%ZQmuJ~^~N7Z@-v z%Wrt!Ew<$+3zx5!Z(;7Lbt!bkfe>B~)1AWzQ?bmfBeF$Atbw^)Wp;l|*9f6U$ce*~ zVJ(e@`#RF7Ze)Pr?7W_UvEPHHzL5S6VZTTaii-VzE^Lv24W?U%BW&Vg=#>p`=;cNI zNymm6Hh+Gsln@6|KdWzR$8vJm3l1Wyg6&~+g);*2bmCv+-4TYQ4(+A+ZmjNN%7Q%; z*v%J2xDvrmHSium9+Jr(z7%c8Mll_m34B=A#zs%f}Sb~^PC_gtmG$^HhC*pI5s{5(FxSW_&VG8DT(X=t5Z9}o3;OHq5FW7SdU*yJA#)%oJ=I53!heu;oXMZDvm;9i;^@vwVFQ zy}^y3(CZRZ4BJm!9z>K_wRK{-Q9~*o3n&O2Fj27cX79iU4V>Z(CbQWe)VegSH#MU@WU_wX}U}G~jazwD#3ZWntgsG3^n+ja8gV23! zorCSfwh(B$ide;q+`hx-Or1E6L?Y554&?1z*a(Ep$JpMYVIO=LGgYq_dB`9Zpy+BZ zo4b@2z+6qIE?R!1eCr~eiIu9D{)QqhR|xyV+*mybU>g+zN5sC^P3lSQ`Qeu8mi@5w z4}rx}7mdD=L&VNROk|)|(98&N{BT_{Ux~JXk=St=fI0O0-C!Ald*oTMmn7`R3Zjv) zdE#EW6rC4u2+w99S8vaY*yAxW9lif`efe;oS5P*bl)x4S&_g$XA?U~7Sa*a8!6qP( zU<68qUa~_BZzx&;_E?gG`NcA1Sr98QW^^%{Dq4vxKTR-tG(=SOAT|_Wry)$9Ti1|^ zLUgBLNhOT+Fe*qwvL2Z#ALcbaA8aO)96@A0u(pXT6%qlM${5Lds21`e$dDk`MjQqs z>(W#-MW-utGaZ7Mbc|R4xq~G;Y(S9@FOB?F0xfHAgS!E20FhQ0oAR-M1Uos? zDQrH)acAVW{jM;!8Tg=Dc+naAz{5xkz(3K6H&!S1^u>C5v?W1)+mA&voTtIQ5iH7M z$sKlu&MW;x z1O!3>Z zg~wqfHWPEgVPc~qOa9{En-57dY|X$JLfc?Uyx0T=pQR%6;td!s%L9rq#|npNBph-e zwS&nYW?@KkBdP3bOt)c&UjejupXu*4&VG53W?UBLOIW$bybFuUut-?z#6G7`7(MeL zogGNey)dW6{u3;d(6~DoMhXd|jA=2pG$My+q&8XN(2iAe%%l-rV*euq*@Nx;9vyR2 zKUSWwI-btZ6u`@-V2;uPXz4K>w)TbeeDMVTpe3tEsp?2o9X@A`Q&q90#OJH@iOEEr zW?GP%g#h8y9o?OW{areuP>2+Ed8E@F`CntA=_o_z3b4(RM=T(!mhJk51~MHp+6xec znOVOb7m`2zrD1;aq0Z(*oyeUwAL?XhjxB*E(i3?O!Zsi3Y(CW4e5f<)$y-aBzWGpR zj^m`whdP@Nb$Wxye$Zu3%=|(wy1N^D(Xm`4%;TC5bv7UBY&=oge5eykTLsQP8drlf zAL?vA)Y*KflOE8?dYZKPP^bB*YV)Da=0ly$hdLY28Cy=hG#~2BdY-iTP-pX@PIkLo z^Px^`I%q!BNl%eBAL?vA)Y*Kfv-wbG^Px`DF68Dzo#}I=&4)Uh4|V1`b!**c)qJS4 z$yw6oL!HfsI&mUF$K7N&#E;!u*anTbJB*9(g2w6K=0ly$hdObESM#AxewBWK^N;CW zj<_Tmd%SUq1Y1sVrv>&@dtErPKrfJB#|s*7uxdWk*?g!IM@gFxbv7UBY(CW4e5f<$ zdD7-Xo#J8G=0ly$hdP@NbsA@GEqm>o4|QfgQQCZ{v-wb`1DAj{AL?vA)G3}NZ9df5 ze5liOQk5O*td_%*t#5)Svc3J;_1W4Ya106kBO7YJu(h@g#qSa1MC}(2xzUR1|Jq7>l zqrVoQ!&P_CU+;{iP2Wj>PDIbE_S0YN)%3gQFZTTJ0s0HC(c*dGvh{7LbgcNJ_$FnGr}<&PAAJp_DsGVZ1PKkU7ETvb)~Fy7gKf*c1Fah8j7DhfD@IaSUmIOYr@ zDhL9C;>_Tzh#=_p-pl1qnx$#ZS2In^Cau(Znl-h_N^__zEv?_4E@z#?x!BY9{r=wf zkDkxxvCGwabs^s_A}8m`7aAkTwP>BY;C;8&1s4a0`ru_L^=sl+R_9EU zzID}q+~|*5U8S79rvF@{|NKDz`H}u}oBs1N{pVLAy6pv5m*H)auF$`~qW^qL|M{N& zbA$eKi~jQy{pT+ECt+Sv3mOlR^dI(>@b_sG{qXKkZ~l4h4+he&E;q)(`xmwg(or|* z{ed{#>)D3*$@a!^^-j?4!b0SinXfp`s9xu!ff)KY}k%RE=xVn;r-g)j z^f!*u>38ngoG^KnwjW9!gr9oS_@lZ5{YZV2NQ%omBanLr6cnFw6x78{@>dS_vJLXZ zS6;{&B0C`QehCMnq%wSU5&5Fx-XUEA0J(ZPz<3*MUI!hyu0F`Giwo}^FGkY`v%&-D5mpi3b!UvRR6?19aopB|Spc_lMO;j3 zlqOqjBv7Cs@v<)phoE&8nDyfXRH&7W!oH+}uK3D$;}rQ>XbhGhoB#p_ZubO|AUw2% zPBa?j1iy-2F9V^GFduYr(folXAVq(6!uJMzNuSn=p1shJ% z=|D|T50X&yA&KJrmEQQ|m7Lo6)*r6s=)qvTZ{x-||NB&4HhDzSV2Hrc19KZlzv7}| zV@KD#IHTl+>JGuV^9pAA*B+umjgCB&Ge9z@q06j`SL(2fjf}s=+%1)K+2^fY4M2zD-%679zU?M5&r(OoSpI%(48eH z;H4Y6g&_yboD4z~p7_s1VK4pydhYszHwlX2X@S?`fWrgHhWlc`jwm&=(LdOl$sMCYIK6I=~6t<<@;sM z_G;+L5Ej^Vl*IoWH^ZeNIPRh88T1+XuWMsZ^u`c;r*%mk+Px^KI7&VSEqS$_WqcDh zk#oxTm*SB@8Uuraap|GL& z>K{e3fQSz{)zG21-?sd^uBpG|RQE>xhT`ytg_8oyHHq?-)Of>I8FRf*%upOswQwT9 z3smspx@{VQ+79I^2NC*oU}_BID*ID`-QF1IUo=5iN^Og&f~$cTulm%VIc@%hw~Yvgvrz+h_h9WL~3194axc6+OFyW9hU`Mi5~Y74m^1ha{{$1vQ_WbC5T z!SKh?4)Q3y4(-jxX6g=f<^Y2cttVXhYzhYiUtLy|`Uq=G!0A4vf%s&pF*z7cuN4M! z=n5RSYGo+i8I=2~yb?;zX4O0ZQTpQN%Z#&w^xIr*t;X4sTnaj}j0{wrEmVaBxZgpD z!jAl+StlwT@0)ls866$Q6U|}DLObQ51H*W7{>ouYMDGi~JEumCM90Vw(i}jr*_@}( zn8%lXo9oYQgn@h?>d782E*Ww=%Tg4P&7D)i>Ei`K#3>=USlvS!vONUPUU;mRTnF}` zwLiK)3}-)Y%+hpFdrgj>Df_)e3XZ&;##Ar49i+v3a~Bjm5>jBA}V&XfFc$Yc{)9&EJy zX@B40<*iDofP9AY0iJWpSW}W(aC}=_!GMMqUmfYz!9<$CJ(&PwC)p*2DeqtT9fFs~PSObj0CV8w#jsPkyni z{VC1bgK@3HN1977gTX&arKk|yhsEHpc+c2Fl0F23|GpYO5}go(f0zz_W8CLnUV9J5 z<`J$hCQiIyw4uL-(>1#x=)rJ&YHHCSm-T&P9VFGq_GP9-P*PqOHmExS-?7_*TmwEd zo<`E+6s_^5i}kSWUQSzpeosNC&)lw}PmK2^sYf}wA-d>srT&eof_RNt7l$k)-fXky zg`(Oc@Tng+jg=lyC5OvU2UZ7o(s=1bW0sW6IN_5o6%6oC9HC=wk{#1$nL6T2m&hW; zN{(&K${psPr^Y7fbc8#d650N_u}@qk#(r@GGq&^sWiFlxez{^?+f;gsiU1AXOqk?# z!k#=69I9pN94viWZa|H_*Q>EzXM;`gO{MS4(KYtI>qZCmepT4}1q%Bw>>bkAlp;5X zCN@?jh9CebxBnp5!@j2aNNx=pF`1lO;KKQf7$`gpvlN#Ak_zfyA~k@RIzLn(#_($N%CR5c0VfY+Hf1>?Pk@(jS6 zYKV7Se-YoH%SaD|k9-%y0!F$*rEZGP$L5B~m!OS322E8#F^Gg74Vv50n_5U+sQ}ab zJB`#arWA(zy>B7~#r(tG_^r{o&G6o4W*=A2rKSlIE*wXqz2;I=ktB_zG_=7KFSv~u z$=8@VWt%p8N%3xdD@4y64gQGbCORHGT1 zr}R2pUT|b>*Tein((0O;aWLQ%Fz~Y56+c*pwCI!Q;;tm=ZlzJR>%m(&axO zH&&Y81CVlW8szF&XzGk)zfp?32-A_ z!1fZ7HM-+F58O{fT`1cMsUu<(pM0HLOq=mh-{R_+{IZjHWgS@#8LsXaiF%IWQ!(kw zreY{kIgdfSD)!KJd#kBX$_3IbQ!^2(e2a1J&!$1HJd^3HFG+z!rb%EzIV4PC!m$rc z;}IUkLt^n(B2*s#h!BevP7}v<&!O>3qZj4^aMm_NAU^v^s}aKyrdr~ zzBVWPDG2{StVY+Jd+jpCc$1eR1T|7SoBH|iBFl{%xYu;t3)L8{U3;#p;IXymYeMx8 z#K;h_*j)M+RNZ4H_)SrrI#g3#hav;ZswV@!^U;^&Lpz5}g-Gr{8aTKn`dSJZp$Amv zu;-7OQi9cf*rLU{sG1KQro(mewL$Q;*2!dHG z&K-?EJ7L7b6qPC_-vkw2?Kh$4eq{vLSWb<+?WyFRxCvXAC9aT%4MLRgwd^RWEz z6e-+Z8qI5Bml`z^IY;wAB-ktv^||vv^w5@bnvCNQLY8Z42BHf7noy@zaPb*arZ+Em z$+kSw{Bzf z?ACbZIn>zZSu|z=f4hR$&n+3^HV|XwQ`^5CN51Khf`x0n}2CwuBQ(YgFHHHPE zti0oR$p>#}ZEndQrlW#)rP_V4c^mL%|!^E7^|I=Mk;u8P9jejOx@*#JPigS4O4dkRM+E_)L9UV zBdL!BLy*4zxVp>cc9Q%PB&l)9Y2}1~mH$S3&B8IMlLK*D4fA`l-#E}$LqEk6eGekz z4z`T+J!v3NCLL$6dZ4z+BTC^&x-JeHFdbxRI#MIBr>j{wSCCB+TG?=0cPz zgh^I25ZOPGP^a1d^ZMp}K4|?oZOYFV23RwWru@EWvls3YYz{^%$=@{fr;p?APUx`l zp8<{O(cM>;o0Yoz8uW^g@nu~ZkB(!@s(5PX@v35P(1USWm%pH3urlmJq4Oy*GDI$>^I@p7N1s2c z=v0-BsW}%mad#S8Pa9s))NR*<_o>WH2#jC1w~>iO``Lsq^N>Cm7P= z;%AfnUkNo|j>mMVgW+v*`($gl58YVvB5I489khQJx=7qo5rstrrw z!-GQF8_2a83k);jGBOk9vcX76CBqdLA3twyTqYSs{Or9KTKc7?5r0fvlrSCF8hEfi ze)vwde^oK$xaPargWJqXNKVTzEKHq8$txo!#%g|IoFUGTkrFo-pZg=IkzWTx?C7}* z4T+if>N}R85xrxlPJPujBXzD}#@vL25cfE?;cgzJtE8bsWkUzFA+-AMqZo`LF z4}p6OPlGp}VO0Xylk9hS9SUaCnV+q(t-H9gL4=)b51SOdnP8?gATH z;gcU_CwHnoo}5<@Co5Xlm)s>+`8Elks$A{|ioN-kZ@MuaXz`bx7Sv>|y?b>`(-?_^ zpjqmUXJ#3%Bz{RSh8c)OkNkGk#~$Ys%VTspdapwV!=nv_Z_cfqq-UU}-qosAV`i-9 zlZ1#haBh{7&Mk-`OOpJ_pZQ+%<|dXTQ9C8|AO<4GJ|d}|2msr=AF317lD6OG636ud7;@O3JWq_zxreye6qLs9ZzRX*pW9j&gDnm z*k2WnyuIAB2Q@9VZ${EiGSo{;9&ON)B-$y1yyo6r4~-m;oAfu2K>dc`IsMJet7ele zWBCn|ad_Sj4ZM@~Mfu|K+jB>w=;7G^NpoAToM(LTzT7LV+TSJ1eA**$Q^>kZ#Y1lk zo?(aGvWF0+`K{b`tkmWUOXi95Lv4~ql5XUX8rk`~Hi-(imI_7wjV3!T)+P~o$iGyW zwMmry+N1>xLYaYMYct0CPJJwi?KPZ9T9VjK@mcg2+q;-Zf3dA!N%R-nh%=l1Vhf7N z^cP$6PoclqisT&ni#=AR(qF{i_$f2`=9Nre+wg^sWPjL%w<0oV#a&Uk*h2|`F43%ug-{B)CtHg>w{!3gsbc{e1- zRz`OM2q4E!H+g6yr<)qPmdBW#Uh-+s8?)&@<3w(%{EiAtr~imoa--4d@viA(&96)9 zZglQxQcQc$MdYF4z!KyQ4lI37vJN}2bRDu_n-;H)#{usbcEbiFRRi?Ii6s?1c48@F zf;mBweI@_{(`S@AiYVf!jx>Q1?ichYUIn#8>vdfw;Er+T?P^?VOQ3)_q!eB$Ps|P|RnS^xF!rnmAwYk2Kq&>vN6iRE zKpap?f+%!;cco7^*C9K~Ae?O!T@E2s+3FO>T{uSLss8H+VV~&*LF&G2b@R&Gg%R>* zEdjK60#2A|PE>c$c%C@0q>_`);QYYS?g?y$26~ADODcSJ;%0H8d546KPhh8(8Y`9+ zr_54j z6ZZ%tvbfl-Y8{+*wQ#9iWg_Y7PEl+O*fFLW5KITriy-o2OsXE5L6|7YL?9zS#&k2y z?1NCNiTo&-V${hx9m2;Or#A%@Dr%XCLt>4y(bE&zVw>Eb3hPd#Y&%|`iF~0gdY*YI zLQ}|JWT8!-sKTRbSOX{Wl{SLUwsY$nm%nH6&=$AQTo?=oRgs1K5`)6F%3FWUoh}zb z!?GN{0YH?#xYlBGQjmwX!o}uHv|DJuQ>7K%jJRVWf5$Z9e(pK+hEV=B6&h9kMWH-F zXUmKpn6VA89@=JQn>V0eg&;qxI8Z@u6Uuanas0#F*Zrj0_|$cCFSauTWH}S}fSQx| zizS)-mkM`pB41r3B=+665BCQ~!gO)537aj&pt}uS%xP^PZpMxmWt&?{11ML%Z&-eE z5->1xl)jVrYo(3_=4*b^G>Xe!^8x`s=0vAX;;ZTYb@OIc!&iFc`I7A%1f9R?1^C~W z8RRN+nos*l%PHz4fc2mpi!Crt5^4`3T=BTdG)d5n7OBaJXwL8nJ{T;TH+jBc9gs#>KmE2?4NYp^0K*w z)Ru|{_U9?`wb96z`b1v)Ej@@~7N0N&<57KxJgxiW1>k-shz#F8kr#y1kDEKy;Nnr~ zTDLc}#uo-J55#MF=k@w$U2C;oDi$`l2ljM}+b2+wG)$3{`FfqnY-=(iD~e)&yvJ&Ej-({a^N zLhVbF`FoGGZ<})^>5h9W#O5@`OcT`jxah3;p(Npe`pnbd&`nb?+0cC^hK>mJ-wj>v zd*-!rhbf+iZjSEIoilIt>NkZfRcvnD1b01e4wnZ&8mzi}l0e+mWgmRvoVhP99GO>L zrttFAN$V8gl4*ilpDFy|pclXegHIn0@cj$sALL|!fLR4UYYOiDfjL^91zR+1(gmC8 zm9rt2dQ9^))t~u~dA6svp&y!y<^#uGIv#gPyUSa3b8cgMN zYS2{RTde%3GnFTn_ph4$B@{80*Qp&Xrn#z+3!T+a8W$o7_sZ5&6r`YjRc~W`h z8}n)j&6~Q)oRG+k;E%x<0vP{zXEorm`2QN)Z#aSB-Y|Y~CCRZJEm7rYh82 zZZtyRhB*eM67D~4dJ5m~bfPvQqWpKMtPlSFra4l62e##g zI)+PAarP~9l)95r#5?AD@;xX9tMu;z2=IjSKamjEZ*#@` zY<}BIt{Dro)x`LxLU2gHRrH&=50aa}ZtRTdkF{2JkXx$2^o%J%#90BWH>i6kXH2`n z9&EX$Ni6>45As@C#X@7!&vhi@rwT7VFgHf>2uPJJ9gKqzmSso8;`hEP$i*ku)vStb zBQ{mn^il`wB|VPp85>#$m_AY}orjji^6*?txvS>=1+hFlji|H<+1ySJY|_Wb5{P%| z`U{a#EQ?NQ0gf}4iX)>Q7_x^c4{fpY_cXyPeM{BbhsJ$|HcXO+@L^4rj2Y<=Jj z08#WIzt|?vyZqc}dpfUsQgbRGny&4vynVnsjE13HoyI z(--<}?oq0ZV_vu#=o%eRYC!U2%1D*!*2iw>B_}{Iiii(H-J zxb40apBr;A=n7p1RlLzUmgN^k{v&dCc%*bXcf-1VU3M1dIUwU71m7CTF zZT7~60TW3e4cZefA5`_DcD4ySlm2Wn^uU~jnuoTsMx{3CD(-ifoa?!5+SE{rW6J=z z=EH*9xL3>4U>rN>R3Lsh<=~z2KYek{;8I!ooeHXbSPT`G`HhH1wu0kYn^t?fe*CMT zhs3(OYE3&B%YS0>GYH4t%aM`)G`=xOiKj>nnG~;$KTrY&d~#w#84pi5c%A;)9yOY# zonwb6U1_B*{X&)Nxn+G`6ZAzKpJAabc-00WV00$7ETU>!{$d?AHumt!arwH3)gS z7DL2gG2ul8b?eHuYwGD5AczrNSv{dYPJ|N6P(AUf9^}|eK3@F=l9xgTnnJx#IawgY z-(c`Gj$51`=(=^Rbde;NRKj40CkFLAXn>nezT5}f&YtLo_KBg~Q(-7~P3Nytj=oZQ z0iiSGFIoe?slub)e?Zup;Imm-pC_+=^xNDPor(ieUdChwBV#D`D&LvT_W_4yIIH6M zAoRtL-h?2{}R7qFMr966^kEsa=wqQdHg5)D#VV?AxWmlGMSC z57)%zE2u2-R!!iEm&nMR3@XPGZ!m-qB}Hy=tGkSiFD7S04F{hmmD?(+{xo?xC9Fz_ISDRuk=@6VWMu~8OQEGIH0ly- z5_tIKB>YcZ0`ud@(HF>ZLaJd{i1)O}g$LJ8>3SnTc(}7~duE zS5DuM|59-;B=A>GgbtrUp+P-nMq{~Y#rX|-1}u06&y0;{Xie9E+?+uV?$`gibfXW7 zB)1IFJ?x5bUkP&EXYkC}^M}%*RnV{*+RS)YgD2l9o#%rl&Cq5>Uva#I&|}`(h5VN) z8$#&Q)JWuE$_7zMADJ32D$4$i%+-(`WjcJnlx(gjg!I{j&(0Zdg<$p+Q#b<;{-gAm zx`Sqd4;D&6=lwgmx+ULY{$qh@*dwZ;gQ6M=ODgUupN2xRhwM`TqKq*4#ioRI{0LXt zpQZJX{60Vhwb5q~%oKm0j2%5ItnQ#*;0P6pL;hTG2&pJhCwe|{4q4-uk}Tp~=$}*o zRaE~mgO@oiy)7S04LK@%cg#xn)HdlVezt3D^r)kg#MXUqmgaZMj1)XCM-4-W^9R7gP_B z2L?-!>**j%D+yo8e7=TjK#(O|lHR19CWGqDeO8clsOx%I&+>^Reaw~L`yeMEbn_vJ z?1Lu%erNFn@D+QS-FWAESibQ_*Jf#Fh(-z?bC;7uTWbCng!zd)%wOzKPmlg`OVRUh_)93h znoah(=M3}lc6IA#>Fy;rN(9!_R6r3zQs{&Hxeh{rw@rQ8lJbZ|-_D0W_OherPeA7E zv9~9HD1=?-2UxBkc_?TEseKd#v(!E`5ziT7*{kWGPVIe#a*!ie4nhEVL+* z2U!;7S)R>j?H?*7@)(;FW%&aYC-N98RAJFUUXsXTEHjbEm_aWlK)acUr%H~hx=`} z1oLZRUV>)!nAhEhS9=mV^qLqZUY#UvwOUEgYE-=HNi6sSnaPrpqQLPZ0u?{*D_3!S3tU~ zYGdcm^C6gd_=+SvJkye??x3mK+~*J>TmH6S_&iI#ybTi7ME;d>$$_4g>2PK~364`@ zm`_m3<-tLR`4}0~s68EVy9Jg3=(8jq9UrUEsMEbB%uLYP3=6NY(6pht+9|h zk5*GuaUY5@IYnr2jq5Fw5jj~-aN!)*M?qu$pEjG%z=Q*JeE^-8*3^v`pMu5QgJwIwMizWbQ$P1oNN(O8k)?G*&St zORK5JSGPb(LcW<5A$5RsU^aZq26&a*<%mz6d8(M~MK z=E7|_=By>q6|=))NAl;8fpVbxD;1dTVPOZlKPP(71Kp}#nne11xiDa;D$9lwUa&0o z^p5WO3zqeA?G!+XJ>k{_5Yi^Hr(3~8TtT$Q@+*=J0F{0TqXk~O-x4affnYXC7*g=w zeU|4vb?B+rA>e@JLv;s@F;6 zP0oOv@-}+OZ6Jf9ZG{8nFbJWytD`n^@Q$}Ez16rH5BvEa3Ui;GWyC+dZAp5>`@};O zvo5~&k!7Q&Ek!qvzS!;m*BcL}16zra zcH;qH`TyXJ2Py@r`Tq8e2QNZRA93RWuz_;pfr_;zLwo6YKb;2q>s@G|x(-GU0Uqr? zgYAYg`pS^MMglv7ee{@$n-98@FHpvJiks0bZhCy@Zr#WSD7z+vbr0{-WqRlCab3I2 z_#fYV(D^#CXT_TjlssHhNcWk_?(P$|Kn*`VHK^@c{jIAHepcIOydr_W4q+Bfx>q1P z(qez_3WO^}U2p}$_vBA;1p+mg>Iwt`;8!4crHc6tOk*{D#T5vTl1qC9f}+2B1XL-R zJv=~2Mb?2hX4&EYy(ElKRG=>YnR z9km!pf3aP|gXk}|k!vvh#a@68p}*J)_)z+bJ(>=qzgRIIMSl^GW0xR!k+H?m4M&Kt zx*on{IqHkzQt536)5HJSM|5${^EYeqkGW2vtXM@qC6!-y03oD}JzAxw^6L&fw2|u$ zO6B#C5`7-6w+28IN@O$de@-=W;qNWWB-sd1=yPa{Y=;o`2x?5l?_Re|(ZM~S#q}ce zaB9r;hB$2DNnd~1OlH1x`E?b9)(r3eXz7Irhgvr+4b>c2r7`ZNWr+M4>=pCO&ZqHD zH!a<0uXeXA{nfqbEY~ERcA%>YL;ZP)2Q9(ZaUn#p4W4w{^0F+Y5r}(Cm?i%N5-8Zd zxbSwJhAzh)3%TK;ChWv4Sr0;(C2OYP;9o2&)VNH~^S@X!wY9vsLdm)A+u!U%bi&AlEgoGICJ=TLPoI%f3=!(8Yyoj^d~46h3S3bJdhU)e}WZUq|oRVu#z zWzWbRRA3qfd;QA>qgLto5C5_Q>RuWb5?3iet~}ZyM3Dnqs+VO-e?mGpKcT=@usz7YUW9mP zYi}U(l>zz8DlYV`%+_?iO6&|N>n2GrQCz;ELdk(Uxl6jz`L@2~=4Hzz=`6(*=kOKO zeQMNsEz2ZH`kbQn!iEbg4RsXMqvfbf@%SXLdn&>ZJD8f0$`&{lKOG3-Y0{l4g7mdf!Dm>~CedltAAowgEJuqVq;h}9}c-cu$MhcH8 zE0fnkt!Y{dS_L4AOI2wiXne-l%`U)f&>b;{st z$O>LP4PMz(WgQWEGJ`K7D|oFGJhq73m|U7ck0}s2q?n?CG8CT26odd9zBH)pD4H*{ z$jES=8eI0WAKFM17*RYiP+{o410bKE(l5=d&A>5E=P;BZ7^Y z+iG2e*sI7m{GPuLofM3Z3-j$5Th`7CeOkeM>qWnhxcP8e$;KCOyK!aFxZvhKe^>Iv zGV-4PhYHr*s&vcUy0Mt{c<8DUTed|)zgIBnvkEdZ=?B83L^fv9m!O91jh3EOpu(5FbMD=^zZuWP>1u<2${r z!{rW{e`gF1DiX3WSSFY+&g3o}onKb73BrUqd6}qW^Qi6O1WgH!>tYRZ{q%gjH_U*E}jnR=z=D+~0vp7#tLPZxJ*DK0oPAo0v>MVfjcr>_G@FOlo4Q{C1 z;ETlu)a&1sb(L>H1}qca01(A{apCu6Bhg=(`0MY>y2#QzU}bh{_hF`T$y!q-WR?pR zAyG_jS?l1Eu9vl{A~#YIBK0Z=x0RxAy?Lw$zVgLxAJ?0A%A&mFuu8hE7TwyDZsc}0 zugB;4;tQvwI<8OdmNoK{hpD>KkJ=8J=Nf*$Y>p%kf=x7a17X$*s!wUD=KN7M%v+uV zyVANFbX_mHCe33PRvj8{4VBQ6dGx-j0rsFN5ryRF>AP~eCpXgF67+3MKPD8eNILXVJAUi-io9_X^V!^zO>lmb>Ri4K% zyVq`yxAkL5K3WO25<%_IJhHRua0i#6sx@Dd--kWe#QEMlT-DDyN`4QvkcX)d%&u(v z8iHwu>J-tvblx8ue63G5;LECQ`1GnGq#4F7LZ~xbMf4^ahW#5WnAVL(WUth;*Zr*) zx%PY*3}oyblp9BW1PW07(` zPJWNFQ5BtM=kt30^(NMqh<*l4cAaiwZH4fl-|}Si18Jr8{WVoTT7P~ppV#-KKdV3W zMPc=4kcYNQ&8-EfVHTIHUY1s}z${)ukWX-K^hI5>v?avn!YrM#cnJ|k{!1lmoF(=v zWr_Vtl=36%x&M?KneKRtqgHE)l7w(GD+o6|i{K*gI*p+saId?#vl*=ezmW)Q2rKjV^RJUfPhiG($D&;{0nHKK^}t7^|$tw zA3!jR^k1@Y(v#LSbq7tL_ZO#)AVaPUga8rFJY}6HHOKv)vx+qk!vfGspMNCMu-)3x z)n5>I_eUx>!8dqb|cwth=izgchQMi*|Y}QG{MeUal z#K9|yT1vZsfuEyNz>GsKb7uyAD%#rGOFGRBd`g8y4ZNEhc>4mLUi6vs$6Nh2w_wZI zVNrB*0k+S5b||@mgTr2UhfFFBDh?s=rVh(;I{d-9$Ezx4wqjEYwEx76pw(v$T*u_+BR}(+6Lu7T-GsA&OPq zidyIq$h~OdLjDBy%tD?%izi$C{ZS@SNc{x1U9e9l`1A>E&O-heO!~34tT77-VYmBv zd4?0o7(2t2zAjcN+{J1CGddUZ!t67_Z9udYQaxiVIP#cda@pnZV_Q+eg!O6ky?O)c#uV!1bgY^@nduYf#B=qZr z1v%CQa??e?t~9KJ8vzJu(=0Uf#o^zP&pm9)wVLGi08?8f^cNO@)L7BuI+AC-BFQ}~ z>HCz&zAaW--y)AxmGm8;*OyHwP!dHid~r3&!3p@nC+-|PjZ%jx0!>}Si;|vet-)2K zWgM5SJTF$^(&>KYB0l+%KCBS&z?G)rM_76emOfi8F70@35s#wni^ywH+d2H|CTpU6 z0y00@{ZI@#Mw;o`5kX^a2AT7ig%Cwe@{46nQV-C<{h-8pTmBvznY|~wz1g}+zM}$% z*e2m0wpe4)_lx*KrK*=Em%ESVK^b^1hmeX=$*T|pzC%z8rzo6Nc{#*0d=WolfF0oDoMgv@wM zY_nMVO7esXRL3rM^|4yXV)0nmq#>KHN0z$00WwmwBEQ&ZZxTnzX4|ckUpArFjL4C=SJO|+joRLz~%xk38I#CWImb@>-)0OnA4 z07Oy2b#|9^vLvG=1myNV%~Re>Vl*KEZZ8N?NaFf?tXU{{3Aa~cN?B#E21|JITJWNk zETDHMe^H}#QQ=Xeg)HGlBlzqMi3e`XX!>o0GxMu++-QXdtlK;pZOB3ERyhe;ff@}b zwX{`};o`3==8&}=!hf`}RYPQthQ?GM3scR6gjlYJ5MYqxBg9mjg{d~FOhDf?Y!s$? z=cskO585M4wM&IZO@)Q22tG5F2X4$%`fYAg-RGwI<)k&ulc^S+vL2AHKn=oG zVd<;Z&*Yn+jpwUhA%x|tn@ezq)7BC-t|qZa;@B1B#S=D!DBRszRmJuLFAiZ}xJONv za>s1ARKeqOS-qv)F$3SV-t}=+eb-u}3hGK=)IB??u&K?1mooR1>fuuhY~r#aeJS`u zzK6C`|FPQetOd4CIC@}i12lOlufKo$(E2@ExKvwzhYJJDCoQ!8z7n)6)MfkF8YZE2 zOSN@&4-N9TPp#*WX{mO7zP}rdDk9eBGl&@EC6h#ME2hew%g$>rLj~B}ZGaHPm~NvF zu7U$z$$JsKyOf*v%u-%($6d09*FfJA4b%m9jF96if=>(XD@*w+k26$;;qsew1l%dg zW4%385V=Gmg1mMjqjPnYZ72#{#>?$jZ(1k%p|E9IyS^s6g)Zae_TGEeTYjkDGObCk zmgBhsyli9rP|PyzW6NXWumd4QD{XQCIgua&pWIm5l8V8~pnzpS7mwBUaYYwaZC7sY zru?wPS2b*#JVoyMnl^`A2zj%}-2foUFuF=>*&0f68EE98`z(a8&@CfIphvD$xSG&) zpKXN9_$&e;3VXbujx7tlyNn0x8Ol>Ni@dpv2kR$+ws_>Vxsin9manMe8dT4gO18m} zMjEwWsk+gqJx2zZE(MY9tQz*foMlS=HX;a{R0d%CPn$5RmCe1odbW!c!rjS6mTVv@ zD}tM6^CGxMUvkDjamWHgaD8L zHzb58B=Mq9;^ALqa}U2lDXTpEQa1PS&pO!FH%1T0U(}`VtMI5xe?#1B)TX9VHuq=` z%&12Pd1woWvK>W_ljEJV=4h3})AZEgwpRkA{`kVjHf8rdSi${LsN0A1qv^U=4)=1> zpXIpbIYc41lX}e8?jv%CvibT*hL9pHhbQde@wUNLq;rTwQBc`x$*LT_^hBg$x}`wfJm&A2 zf(p@%`Juk`UGgH^JW2irl4S3iujb&3i){t+RoKE-gz*wvZ}~R}W@(so2wQ3kR(D|O zVaZb4R@pBX42ZI!bip#)97MXZ46fp(Nfa-Xs{`mz#SHq25iFJ{_mi*c73QW$o$%Fr zHnFT6MrBcXduT5A_K~@^$GxOs9G5L=3|8S%kMEMplQ`+alDIy9R(3r?w%5rgnP`o& zFqb?3d_s|4t}$=5ZFenc6P1GBnFO5UU15ifqz`rc{9Nw%q%U)h3}|PMj{j!4HM!%z zCL}nS%N;+y%;xQdPdsy^x{Lg*G z@)g@_@;eYruA^^(7o4v+T9@@^lZd>Zf zqbI*%J0K6BT-~!H^XMl51W1(qrtN)sG-%^R_#_BnMjgEz`@L-|QR8Y-_=m!%kQaA; z2m#zToUvt*Pj4}6oqVZafSg15stmhyIS+sz&)UB7r&pwvTh^$;rIuZ}9N&4)+LTaa zdD{b1W>^nxOFp&P&>PEnwtkI#6pX&C+S_4UReba_+ZE|DWuFN0nRhjwATKWG`<>fg zv`v(x+f2$$7wci$y_~iHT~?#x8eiDnMUSn}KI7F@&{&rIln6riWDwt`PSL0{TF^hLu~XdjSU2(E((KAm_5tl$$5>Bn+&=n6vF?Nc5n zo~DAzlgs(Uvy^j}7UA&0_F&xCxxTHd(M{VqZ?uI-pnhwgEczC&;3e16pKb9zXvYfe zWAZW$-pu>9L*B?$!Hz`=Ufeu#<<<&r#zjJ*EU1vj$!3P45X%qxrrx~R-UF>)R$02- ze9eB|(<=SDk{!zrp*%Eb4Zj13GOXkm%hb$q+sdlr)YSAyYT$7t$62n%BW zl{mPH{Tnr|CWvANe%&s+FO*ov(e8+zqm3s&odBimJG(;qdns1iAwK z>`zMa(*RdHNgNg8L3(_1(O1>%Z_1-!S7wEY5W=i5Y9*c~+o!8>HC8yL$A*r7Fl1a& zkyAKCD(Qy9o;cMF<*mdaH%!ymz`&d)Ex|Fd_6~UJlwCfqhBfWy5Hhdi6Z=*wY&kB? zX)9LpiG9gRK3nLs=WBo-+RSzA89{J30go1e_UGhxp^4aRaRxvDc4S@q>>v+qFV`hr z_`^zG$XrwDLHBih&2)A(s%L*n^4c6K@%5DC`t}hL@><2Ue{2=t#WoY&5ZZselBaYJ zyjfYJ-$p31V7X5R2BXkbJQ=oK#dEu*vHdI>KrT{NXQIc%S-vMp%Y%HfKeCU*4?n(n zZ+*OX(CPquzOg-c%O}=m*xb}^MdMa!6O^y2dtDrrf65P^3AWpCY|Bz#G;@_U;|C}m zSjO*5#G@IXh{-ZO)Qx9+2mw}`)y#ernS_#<^rnv+hnw3U`k@0v7xj{;L2%tm@M*^1 zy^3di(vM~Q5;`7_%=irjl`~|l=vMr%1^26~_@l;GVfH7y(8CHgo+tYKzKUo21D)+J zdZ8MtwZ>ej#>2JdA12@K=xz`8LQPj|4Y@@@PJh`llw6U`>_}u`8hrsZ@|f~d6^*2g z#nbER2gB^%c8jO5YTCzcmM5yH5SF=S6MgAQs0vq; zx%LR*Aus;YHM75+thla+R5dS{_Im1z8$MQuMZaHk^Zk8-MDeL)CCHm{M1bb(#$nh9IWC%4eG z*dA}kXz*I?yjE4_&np8+3w^90qx@2{IHw6l_=eJo|5w+#57%9}Auk0zd+Ms3AlliJw_u&yvV@ z$a^~)W484045hA$;IhXu3;u59hWL)#xK zNaKb-aQraM-)ak~fYU>CnC5n+Dqi=>q(dLBt@e-4nPzSaueP~2-9cubMM&CNb+2OOQTwx z&RPV)Eav8}$2&fJp_RHrdeP1n*zn2D!E(M{hp6-R&($3mhu(8GbeGHYI(&D*epuZ> z6V2Mqz|ZTh_^ZCDIZm2zPp}B z=8TW*o2y7SI4*me^Sug}M&^gaGwCaN(uYN+K7Urf1?#uD$MRzw)8YBOs6jpt(V%=D zqIWObo%K;fzV_+rvM@nMf=^?!eLjy((vSIZoqR&r?MfbF^V4!e^4N?Q++*{3Y`*n} zeOwK+gm70s!EUL+19M?M56u159ADL_v)S)4{&k9_CA@hG@T4J^%${*f=V12ToSQC`h$VrZtGaSEVz9~M;2vtmgn#}rQ{_w7tfKAj5Uc4cPrH~>+UaT5;b zCa>MaVVCCuOm6Z;5W>^p20Xi~qmLR_WAaYIIS}4 zWq!i(I(oQ48|cG@-oKL;QqsGA?(OI%p&A9+xE`yTX~2m^Nn#N^xX#=%SQaNU*hlr_I7Kj&9!QAdx_w zHm{0)`wDp4oG`($-5b4L!J5C7(g#8YEg>^Ztx7plwkdG#*Iosv9qHCJ~P8HO%B`$Ov~!=001Fv zB0yZ`nT{5c+zd4G&#T;;<>(~0gPRJD-LquzxI4o^T*As?nz z3mqR;MF#R0UG!_B!lQ%aSI7s6;IpDppD!yK4f<_vnR05eEkIHfKGnw=j%&TUz9AYy zsFH^}e0RAcI6E#ZqD#coxv5!UQ{z*U!`d5~kDjWAh3mi~bYPuyV4ZbfT_7wwH7i_) zF@vcPQ?nv;@EA;k*GUJD!8CZCDV|@s#<jW7@@ICcPO(Extk75gU7_v z;4zp6kBO(kBX(gx4I-0Sg_xSfU>dwGR5uMCgK6-(>fkY0wg$1A4kCkT@Ve{ZF_;Fg zhYlWt3A}8#TZS{g)TqLN8j|76X|$LOsKwM9mvGgLaCmo~Nk0I+F3)zo1){CZqd`BM!xphkX2!GYlr zenIG+Jnd+~(1vbw^kY9ZZgdP(L6^`>JWBWT&=c#8eVc?-%Ify1{EJEUzQIu9y#G-N2!+m3#~ zD$=*qDiq^vv7-yau)ggW%zlh05v+?!1naajj(&=Aow%K|Hu%jtZpy(h`fHfS$ zj$kIjB@Bn4GaZ5;eC1t7Yt}kvtMI~;TZI^ZZ53i%eou&DF**hV9(N8C9_LMjxxY#1 z(9R_Kq`H5MI4?%yp-GI!mGh1fiYdDA(O_hbn8j$MUw{Vff&<6 zqSW!ULar+}$t&**2OMG%0u@-G_FcL51kDHkZV?U`TqaDAUM5Viw@mad{EslfaI0gG z!mS%FDk72{wmRA{BVM%%k2v|EP~04h=H_c)hJ9Df)b&y zC;eD#(thoBI2x*2s9=m@(heb5{thA7w>v~uJ$Fgid+Bq+-mzae1~5^pKQDr4{PP0R z`?4d(zdRL&hv8F)h(~9CL6|q(>1e2G3OL|ynz&PNU%FFd=TCP!h5+PnEYaxOxQoyk zvP+Ct+AgSkIF8xqsLxS8-zDfh+$97Y{DKg$!=pvPy;~(<1Q#&&Ya(FJJwm|PJz^yLeJ!}(+#}@a`J#XXf1{Eog3H6`{PChno(L`v zYwERE$TMZHkmsenj-krXk{bfwCbFmPb5z0Y_X%-sek;b$xXoc9&RIiNGt0GlJq^Kb)mXQBe_wMrg-|9XB z|6ASvTiw$KfPbrdTF?Dk-IFD#f2;d{t9$aWf&Z=UBk;e~J=U%6M`Ob+hm2+vve%g4 z9qJnK{vw{P`HQbP$MW_6oZwxJ>H0t07cr2&cW}Qx@%Sn;ul#KYdzDE(!mYeXC@JLc zh9~{x2(Q*PBBDzt@|7s^Y<#lC+6H*91~~lKn)+xjkyic6GcAC>r`%26hWzYE^jFCA z#&;IyM&qY{akN%Jb3ZR`hE5e~-!RWt2(itjhP#e7e&y6~%w0$KhUI^T^)7**@w-r{ z-Bhwvp++~ANISXO(F=~ZLPTw5z#?cskMB;C1f`?o9Ua|RqW{8X%RR>}*{2AM2-}0& z_`YL}TwMjGdr;-y9b=JC5#NKV>ZN%Nwx*mppj?R}j(_qX&)+o{o^6ctAE& zJf#wp?0pI92OvZO_Z!^z9y<0Rc_e7m?x@@%1cwB;{UAgkiBlzKhMWv3vRBB70HR>K zVvuvSBrgJuS^>5R0U!Y`0E8$c@mt=`EQE{ryT1}jS@nvxsEEJ&Yg5Jfx-Z&G{-W>x zcB}B{yFX(QfA>f5*$Y|^+}I0R4{g?3&QycGnTS;EU8N&{zo4BM;7pRggl1s-XD$PX zqKLcmySS+1foZ{&BYl9c&N?szcL+Gp0{tbd@<636JqB^V2-6MguDXHFOA@NTiCd-a zCWR@x)>)G9)tSzw4BdCvpt`!^;oM2Pk~}n()pOcV|4sZgY@ba$Z5;vw>IcCd4we307Lo%vaq z>;n)$$!c)U4)V}u2yr&YVe4}{;>97(mgvGJ?)mSj#*U8hSu(2ItsPuzn>ly;p&!H; zUsK@`&nKHM*%%Xa_R`w}Tefjbzl{jaoI9d64j-7e1qBwf@sV2&VFnL|5T&=9ZzMkT_Jlh4#c*d)aOL4wm1EA0 zaOQeSsD7QChvZpQM%6$i0Ei-iE3~sS6v^{Jqc)#CS)0$ZkO02W)wx|>1ADRk6)TGI zg>KGK@(S3ZnOUCJqes39(h;BO?res(7vr1Vovq{@kObXm0k&EX6eOI*>? z#=cd7f9~OIfnF}g4SG7;$R_|I(-ROKB#6HBH;5V{onh#MVmva^*;)Ru5~70z(F>0z z>PqP4oG-~YAT>6X`}TI0$iJw-^owsddONexjbi$Zihe+iA%f#~m2=d5aKdd-)gZGE zPFVUn4U$~11o)F?+siP)QPr1~3J?OuWp{t)VmTaAWOGLc08y~XFBY5R6LcSs2y`8M z()p((_W`I{f1M!2f#lfy8w?>88N@OM_>}?9J@QycpY8ZE4Rp4Zr$8`ucrSv8`yFl8 zM5jm6AmVUo+8$_Z3I1`AvxT~YCPWfEsSu>E0+xo*5~4(u5R|97geYN?C5{{F{1NRf z5fy|Aja3jOqJk*liPQr#RzY}Z`#p+Gm!FX@B+>l+aS7YBh{HxWYgg|c8Wv%Q=+rYJ zqGxy~JYs}11E-F2`uc}=@6sW>M~@ESVLe=NlblGx!56Po!L>#?8#M{*mQk%*L|8=U z&@kA&v!P9Rr*Lu$kh3Qq5#wz2zeu|(Heb9Vqn}H(v-%P-M7N2}wvk!A&1h%$igJv> zk>ki@S3%MAan3O5(dv!ZGGcjkY#;l-Kzbtb-mEP*@-;fy#yjPTI_Zy_;Zf?8O?LLc zhbB53{GX)wGz#3Tt%fX$7OWcjv4mGc#2Z;P1U;8c&ISlkLdTtWcGt%HX5|jTZDL8W zGH^4Gv8OgGh}_xxZRW*F*Er`NJ}8#_Ma%TbDm)rwgE#XaBlxUL*JsYpb?CRb1v|%U zfwYcZ-Z+1J#|CKXdVY_GhqOB)(Ya18q5`Q3g8~2nN)1YKekNN%8{Jbm(jNlYlyBXP zKb!3wrbgA|vya7)Kvpaz8z4ks?$+>CaLTRO#)l&HPzl{v79r61pZ# z|FsH_n*O{nJ;7&%qCRuJJ5s;RE!ZtlCr1 zoxFw`@Twm|fDMN(avnv?geHqg?=OlD8@h$Zb&e0~KCQ>}8S$OFbd8Ja6w!Ug^n`@? z9$^VHrp@SvV+Iwic{En~Z-w>A$`6yjuvad;Q>~7Wzhn#f!e!AARJ4T`(NqHZA&UiD zh>UJe^|;DZT~H|?V@o&8zbW)M%|`^cYO`&M6Ri z^2)<_KC{wkle*)pSDZsp7tGHM6s&R{sEWhCC%e0svV(qjM;6T_T1!htUNSkhnD&ie9O6zGEZGIJh!a%u~nR$s@@f1V=FNV|E9@A0IrY;KtRw;3+o=FB$eXVCwTz4ri*s%RUA zJ(Cau97-T0fRJnukQ%mS3m`@59XnEFH@hndH6#d#7y_aM@u3BVPB7U7cC(v=w$h7= zfb@=ZyQl~@u%Q1vGiS4NPIeQY=l#Fy{oe1@>oT03x%=F6&zzZi=Jo(q>nRi zpm>{z;CE9pk5zrcl?24|BNx=ef&r2>n-##U{tpfmRtNH$;fXc!jbiw6jwX$=e_;Gd zVcr-yf+EUpkWA0>#|dNKvBhy*$_wPhmN|JwJhM?wU0i3)=H{r)ayG`bBvQx%ZS&=9 zj7xImeU4Cf_(jIJZZbF$XxlAkV;sQKK+8+S(IgYe_~3N_MQ8m7h;SH9-CD@#TFA1pZSL<>;cERRlNw14Qha8)Z zFyvnod|h{eI(YDXIJ&6cmX{EYXU44((NCbC{2rXoB&qHK6>{w8_Hq_M2{jTy&+%>) zGJ;-}sC)wvfZPq<9G5oA?}wVM@TKj~TY^yM6-v9diDn~D#}#buo6ZP?`t|; zJ>G-;`WX#cp)|Kifw{d`{^JBQ*4On=-bDeuxI$_9o&gMEd5CKuopf(_(-ln5_!VGR ze-{iHJ)23CKu^*s>IdxPP8E$ntZ@UnN7d;9M`Or${TT{;D4Hxj8 zvw6|@q+@M0ta=8rT1JWMRjS717cf_w%xWWp4%A~!m5q(?!n}ei*kjGF+C-gb zH0w-yj!sX@*mMw*$c=9SyU?Wh+>Fmd*dJ=41l1|cr zNJXphU0c42-dT)QpXU8z#sA!jZIJ_df_!`Bl;pR`E7@RFV$V;)-?q(Z^55;Kal`>a zIcj1ej#^XD0+)==kNm&KOB>=kU+2}QqxhMSJ0bcvcx>~q%r*;2W@jnl$4RG%-*49LCuB20M?p6N2-&@ICqMtB|O)tn7dxXB+ z^rF|wzcc&(C@{SUJ^S_z{yyArz~(vLpuU5TsT&x;rL@-=i{=Hw4~kBjH{V*0+k zccpLKk9qLPI~fLfVdfO9Q=h%Z>?E3LmJI%^>awqUR_DG5?g!v!+3cMD@SpPri$C&g z6`NvpCE7C7tP`u+<0pT~`zV$A^flV`$w*N*th1lygh>W1P6hs za9t$fy6`oydNE9VhA*LV0W5xyH&>LwD&(p!$ z#0F~=dbZz+@+XOJR)E?t7%JVhekCk_6k53oUkS^%iK~?)ICpzkBC(uPb14U}Fh7p3 zlK-B#nFF9ZogBf&62aoi2`aXG{i4XclWzC6u9`0j;xQ%H_`r2&aX~B*i5Gp;F4}h> zGXGzK_^AxpzIgz;z6!gm=Pwnn^EH9xuAlj0>NS8sZ%LFPD7;1`$#GfIzV*-+T-Wv2 z$}|ied9bBsepXEIWj}nsX8tAd(bZfZrKvB?xROBI`MTE5|5Ol@xJu;?b)qCWPk?QQ z@Ff9~@I)8G^!3?Jl)Y|#bM)kDwn{gMF!Fa>vh50AiOI6$$K$~V=G5_}*UP^fj>fEJ zD|Mq~uwD6qduK#MbQWsnRvL%vGb!iyQb;8|dW%Z2-0a&L|ey#x9E91!;O_$w` zh$y{%ZPW8Q2*|ryId^|rGK3py$Q?kxX5_)0MSE8(=S{;Da9yV4#S7>Jd{v?9!eQKM zUUC4AuAyuof;@*7gK}g&jF*`$I`bu*8OJrv-!34WR@W)reDN1hAiE+~lh$F>TJ?H^ z#-Vp;&1R#+nrt+h;3d;&(do2oSEN!XvMYifUZZ@ePm{!NKsYxhH}AlWgj5KceoKTP zYW%^wR>=4HF%q$6(86R{uOFvQ?=@^;i)@Y{8^|GlrFvCDwXDIgZu+=v3nbXC2%5Y` z*K}f1@k2TOTm9Fkh4ya4_MnbggEA7BP zcX6iJE|~&8mhmMzSI!hmC9@4?0IUzF2#jT~;7Hvc2^OF4B50#H=l6P&sr z$iL^L@9Oj6^JHt;!g!0dWedo|BGKb(l}p9jB+gv`o-7r2TFaJ-2_EsON7iyi4(U_H z5*5j(P`bo@;##suv=IN^EB~->_2c=_+2?}@a<6(IA!n~;J58`^d>ElMYn853J%-K7 z{BW>FtU<`LR_Qwp0&v8b=#8~(O&)}yDvje+3b`u$OF$*!H>%)%1ID2dxLFKK5d2J1 z{3b|0ApabCP)^%6l61d84OtvsF);sURBN45S*-%B{^0yH6t_;PYli?By&hgt71#&& znM%~?8pF09hQJOPNz@s*j(N}ir}9HA5x?^ctj3Oe)xR1`*NK06CO?W>;-!nl-Jj)G zZRv{f(z2o=RdFM>Z2aZ3fErlb{cl=3-ZnIUUhoz1|0mUjrE+OKIdz>fKJ=Cx>?QCB zdV}3M79YSfXwpo-b$=&5JT6i3$A?vte=T39SVXQ}wuo#r8DMlzaToS#|wiXn_RuLAl{^o5DlN7EJ$(_W7R|K$L5p{|gO3mnqMc zn;RVo_z0Z`de^aeAPhQm=vvATT_NXzYXU#Uo{BfvpE^eKcKNj3KQD-bcqXtUIYfMpFQMxyzAx0!*sT4z>ktq#4~tT$UB%QDGf zNOC0UOd7Z`Z4Qq1<$j$%JiJMAveBHJWYDWM8ofHnX4OODrNd~~TkO^(I~KA%F+NrQ z*WE&#(PjkQk}Vd1G284`gGH}PHaNgeW?vNwR9Rc9X$k)LINsV33+3S!XioZEC&AVb|)ddX2@QHCgl; zn?q+x(irVHVbAqw-^qlfMM9iiueV#YTD!vn7?5vjHrSGET8qV@Hmj|6NsUUl;+tr> zMpX$@3qJLEwgDF}$$z9hxJ05+os!W$eMHk4Guo<}+Vm#1T4S;5tOkwVWH(sMcD2Kz zwu+=AWDA)|6*rE(DX{D_c<74*26gYz|HaB&QVCt5 z#q3Q-w8i1q=f$Wh)=2}c@aybWaT+V+Hdw9DjT{E(I!3e2Vze7=CL645=?u8rQ+wgNcL&QTwg21o1rt=VbX3-)@k*S zO>EX#EjCM%!DNPB>CoeZhyto@WV6X?bU5tLXY@9W z(dOGfVd-8WUI#6xNiu01Y8`Yv2V_KRtp+_fxK8KL!Rra_uFh?M)}ZlOI=>EKPOsHMp+T>6sP%eF zlEZ8_>9q#6Q40-bH^V)dHC8n6-RLu~P>8o13|75GZ!p``Ht1zGt2W7CNY>em$p*90 zo{Xck%cFf%i@1t;V@vNF+DbX!%-q`?-?*5cq=wdpvprn@N>&>ng**xRm@!#zgqJv* z$z(7kL-4TZOj@w|Ko6)^$r>s?wPCi@!76DVwY_vJD1l_-V5 z9>ek4*nic;8+PaS{bv;WXB4Y&?EGgG3yk~!jAH+cV*iX{@^R_EZxkDirsmSc<0gTO zfFH}h$-#x>uvaiG%(*?(rh4yiXKAP_3~E<#u80{qA@I)3z3mRUxTafG%Dekv-+tAK zoJ7Hb%>OOrPvHPsh#0!llgIY=jPk-_+AZX z19W~qjuM^mjYq;KSLWAE8K07oVi`+hCZdkDSaVWqEx`RnfZVnKJ49#mx&}f5s2Ouo zt#IAI{1!I6_tLEvv8h)`g*b7NeWGO&!_P_eF2)~=py~@taFv?Q_7O{A5n#R=&wux} z7JY^B_?pf}C}B08SJU}0dOH^v)^zsITmvxKsiZlwQ|qRYzoZ$mQ)kn^gK0T2em2;f z{C$_g6Pss)Y02M4w0vGBc_v29PTfOcK7N%v@1xJNXze}t27Puav1c|lU3ThonedU^ z>{Md2Y-%oerU>WZTUptu#7@~@6Y_T({Y&hTO-+$aO^^*rlad#}IN7O0;q26};224E zY65J@XQ#eRN+zc^0w0`_(=xRLex}YPUR+9^{+!SW{%#_V>n6gV&E%;*SRr)_d8z|8 zNZm@F-XKrg$kVqO@W)40z)@>Mrus z9Bh-in>@jND|y;L zo=oJ=d!*Jwp1uRyral3tO?{t~(QmZBPrf!yzvTV_DWl){K1iPES4=-7Pvna}^XrVA zV6oADW3yytSkmnoIjQs`hldFW{dn3D@&d7}5OoF-2+w&**H~)6FcGcy2z#|Z2~@0*V!b7+Dw86OlghI_n@v5 zk`W`;D~K%{5)mP+muP{d%V_P123pkWTVKIt#>3O3L`oV4(^!`^AKYrnI||usc6|EJUiD0lw;!Q=5_4 zdpr~VM3X1#3n5whsxy`!HE{k*d@eZ4r`O{lBNmy%Q=!?))DatjWr81!$6XpZ+eMOb zW3m+*^i=y5iN40AzM5fp)YtREah+z)I=&`Nooxj?)16h*_eY#_NH~0!;zlIOSdY`b zSThXoe8gD|Zlco~Cyldd+go*Nhs|P0*6Zvhs~y(49PsLDG{a(m(GCk68f~&xXR+y% zaOwB+9wy}D#I!O^($?dw-3#Z(@FjkSczr#-^W~b#bawLCeJbQZgc zD+!Q`#0h8j!@-vp&TV252SLv4C*WbfIBnt^`Po%HHQPAqnK zi)TeN=7d+V9@?D;p=q$2lbqMZXZT`at@}A~1YbhMe&!uK*yvoOfR+1B(;!@EF3iIF zyO*HJaHt!OvvN{33j%-lnHBZ%zs$~^XwEy>vix5?@yWdEDh{b-5G1%)qsg+|nQD=@ z4}R_1!oFx#Ij(v}Kn6;8fcTPtap8$}j83?l@y$g1AYzMM^zr7Qsi9lAk^nBA@R&0- zCPdx$k2%ka$2mOerkth&n4mm5Cg$-C?&5@NFRoDgbig-07!}1~4GDrp)#K>|MD(jS z3@40QF$Vqm4ofoqg~&z6G6-EXW$4Fu*p))|C!9-B-8`0GT04&iBl)FpDJ1=hEr8S8 zPJ(l#S8jwdOi>T#@|fU_fnVt9d`Ij~xcd7xHGem*gp+7YFED?Ix^H?p`=McZN}rs@ z%*P|)ZVQ)mM`Ox?&IkfZJJswy&Pn2QP9(Ul$!Qm7^CdK|etI6g%!_NitROTKo?6lq z;d1O}2LT25i1z*1&l&ARg?T}{&znK8N?nV3B40TMdxC&cPvVUeur@r=j&hKF((&dG z&RL;aaoUg03*z;1=D3`P-9I^>5HIsJY2R!c5Oa|$32?+Ces-P`?{Rh9@b?#AOheec zJlyD>(;!DsMBd{}XPzG${(ipa9A2|=J}?(xm>iLlS{vWJ=j`2(-3==Rr8rXWcTB~g zbCOYRlrL@Va-f_>bZd9fug*JS5(l6hz)mq*nu=*D1~5qgnQGKsKm6VKllTrx#7k$7la^J}*wI$JM&yPz(bl)rR+K_fW{A_O<#ILCw-FIi&@M^=$<)m$N(ST#;}4mg7_}agQ_f4DHta1lNFOo{fep-JdWPY$9Jj}43T3gOnot! zsmbPfa5=ELYQa45OP-%%PVglo_!$pE{h>!>!A+Gb1n_$4gUjZJLSzH8A1bHdSbCrO;MKC(1jWFJBIODicfpr*jgv()Lk z*|6Y`aJ13M@{G$S%mWh2Kv?p%Exuq-I4(X_7>Tw!X|{2o2MsXzfr(!990FSGq)9cx ztE8y6$ZNt*Qt&05JxiMxY)9WRwS=$n&4UHKeSftmXi^_lDWGF5$M#8yEyDYE7qUAI z&|glPhYF~a?-#uH&@^@WdL^}<-yZ!WLKpMc(FX$|*bnInm{ogrDM%O5AmC5Z5d${5 zC86~%U^eRCzo1J^G^#*p%j$@k+YeXwg@U0XnpnV+wgdFq1mI}4e;*=-bae^HLNmA3 z1t7G4h@it@CjoJ zA`m)NPSF?2K-l4jIuV6q1az~UqP74WRdffZD2NgD#Kzt=_~G~FYl|jS+(!qD#X{Ds z5)@s?Iz&_6 zs1kv`DyQyfNxaV`b=&v~#zdfB%c(m{0oPDQ7f+X)&#(* z)}KgPgE&EbCzL{$KPcEPbizZP+Rzx!ys#U-_Et5k0W!lWFmkt2s}Bp-)D@m76Jpd? zS*^I}vsV)0NrFFA7{tijIg+Qsb*9aVqGX6G88-YKS9({X<_|${D5aXcftmWwm4X@7 z;ifV$O$uj{{^88AR&St=we72duo^;1ne4guXSU{`N6Vpo^L{Kyt}g5=16SC4P5_+t z*A->Dc0?c-?J+ZXHA8w@4~Y_}S&^r$&soVlO}MAD!%rKyFeSkE->+<7Hzx+-XraWU zCcb%PLw#TF4;z0FgaiUPf@{ALIaKY4!m)y&AyDk*L=JRE0Q8ZKY<#P}k##f>=ihR< z(bWpKBilw6r7Rnnr){fV*vTl&V7%$AhXG|il6b!YI3!X{*~kVs3%>ct#@^z{jep0x z-j|5@1C>`2z`c<t|&v)K092bH5xRl}fgaYofj|$IJK|@{2@O&!(M+21>KJEeGS!j&wJh8D)xiL-^ zVw`64&;enQ>=f2~NtiH&KD2%UzoS+!F`7Pi@Vk9&AJAg{OXq}6V zcZ389Qg68ajvG~xsQBIJyd=mOmoM#B;pOV+`*IdtA)$OLS@inPg$-+hKAJIkc)b`neTLWbAbnq0$-I6 z?LSF0N4TZ=QCc}AAC!Uc^P?=LBo}Y0R%5L-0;b9v`=J+rGx3`4Uc0~-K=V{-I&u&O=fntl4Ha%CJ86vs}!!&5E@7jzFTUwx&MN026 zO4|+qM=#fg_%o0Y{jn|{Q&>1$dfc(2uqHAUDP3x10GYZ}R1q`x@0_mpd0j)g)p1GO zNsD;qxkJ zV>xY&0XVAdET%02IsUDI?C@tBwxcVO5|@gYJH>vnAvPNQ3`)q|X{f~X2Y@H;^gXmE zxDz6HB>bE&`a7=lq(sHzk;nNzZi%022cO|?|9v0P)SKC-DqQM@e z7ez^XG=8}7*o}v4piv&B!)OC=)P!aan+t#(R2!9t(|+zMzzVo)XhcSuckkQhrk z=KxQ**wn|~)=J9h{JbQi$0J3f{pHlPl!5Tk=u|m%#{}T0x-Lmw5aHkQnBIvSw+rF8 zbgQc$61>b|mbKq#tt&La2~WF*MW+VFt5+qSjR?4OU12QV?{js)>OHgSQGDV!fAXdd z`JOgeq9!?xFpvq+&&&L#X^)Lps|zm?A?Q?+8#g1RjYFH4xz6Ij8+X?brV`MOxX#@< zO*z<>Ww5^e!#7^6F3crhov`ZE92E!Frwoi zhu{%6YEjG?Jfs`#m8kgR&&v|`^kNLtpFX~K3pXx~K?{Jpd}iR2HjL*NGbg&bXJf-y zlv}KfKVK@~W}M$REe4eoE8|atI&4S)dbC4k7qj>Sa!_q1^4f%qKP3`3$$dh-BMyfp=>a&ZX;a`&GzB^6iOzD9 zihAPPKdP!xoX8=vR z4U7Rfd#aT5^vU*gO5JK#B~Kn_wNFZ)FwUMRH_!hONk>t^|CXo~N-ArT1)SyS9$;Kx z?(#3m8~N73-3~!s%Bc6(gx7z1v?b${nJdy&Q$|lyO|h%2lT*fK;FCw!bgR;?9oQDH zPp(_P{sa|d^x6*Owr)+V?MRv0y7hrvENBMCB(zm&)at1!hb2A3K8ZHQxCzi)aG-Va zBufUgA}+XJ)V$h+iQtfszH7sEdTnWd9~{lBQB`VkT>DsNpO&NTV<)DorcIbk$Ol?X zYO9x1EGmmCeVk?ZysF}GpO^Z7hgP(>zFV}<(Oo*C-~d3 zWom8W=P^N*R7qb#ZOMkOHM|Y!9_QZIbH<8JSuxq;9QYvSsb~TXS$dRwGu0S-zJ>6a z&fdBS5v2-B@;>z<8;YoZ&3%u`q=2(5?rpSlVr8L$@8wh2a!qQMN zV6`OOJ(;~vFEnBm5~_1*_&-4_ix|XakA`<@KT%;NR>a$-&L(P?p@9&zJcwOr_Yn_Q zeW+Dd4#_ruh;-EBiHWMpEroASs+$_jLUG~Mt5>IXjIEOT0Mx`;5jpy1V9A`+2(Zrl zu*s8Ba#D$*Qq5qY89AvPiJ_nXuQzS2S6@YH6uYsj@%l?06PnIfRn~&I+r0X*Eo*>E zR-$H}JTxWf<@086D)F)MkZd4S2}iDr-4Hr0Vg zInLTFa_)K5ZY80?1QCf_`hfO8ivsOy{E&$T8JP20qhwP!r-`cIOzPc54ni;q9; ziWOfbtmx+Z%bQrTHeUjD)RVI}v1IKKbu?MK&$F&(VjfS9CTr(%B>{3$vi7}aU5CU{ z4g%9b^V{cKL&fcU@sQ_TZ=upn_}cTXL^%S@lF25pbS^6`eDYlBZN)x3)RiKLXL+KO zSG!@Z8R8XLF&Us=HSHB~#Bf(KI=hMG=EzVLT&2Yr8CUXZ5yzKs+DpP>p;mq(c8ze2 z7sEC~wZ9#R;o=|SO3I@)#CNaHw8Vx0!bOkHY~*YDqH9{X*odRU%zG%=^{UuZR!mgR zvAKq$Mw{^uHdk5@tc7-0x@ati^_0UkG7Na&k^`9y%{cqxzahZZ_OB2UnH*JQEB2?z-v1PK_y2FeDlY<#tPyl87jF=*t;1&HPMwK zdife6PrU%qu8gQ_GfS^5 zMYH41ZpNQZag7cogen+9{b{bwas+XvItapzF#}qQO_d0K`5WMor&1#5FWUK9FLjL) z^-5@>z~@VYk_QFa*9Zpx!7|r9xj6I$&GW%vUs>)-QoxcEGyyMuDU@S$SmC-Nh#5Rl zdV*l$R-CrV1xI!H8fw7St6gKoH~3;|KtQ;=+SMxvf_;svuedxILiM$-g>nRiKc@x} zn|8kD>s&PiaSKnBie0i5zm@A+FP88%3Zi3!5Tz@a!Mi1X_#IaUy1bR;_+BK0{j)i` zdV6jw%kiC>=NgL8PwG7Me^oayXr7CQ*BuF$nI zCiuvX2W@a&5nF8Iyqq3qd4wzB^jNtO#`55GzD6#WQ4k;F5ZUzSHMeV|*h5xKLVDXG zS1q;I#2O$Dj$@SZj-b$62a^I;^fnXR9t71>vOS~6CBg7 z>f=jDC#gwb{9|1-PTSWJ6ZPWPS*Y@4^pU8N$z;%0I~T zAp2(DODcbN(6v;kg|nK0D^Qhdyvw@+QTd*v^7sG0sQfEV%cxz?H~6q?6cUpNGrx1w z+3wYkTr0)LWW^*j!fJIazIN1=ijv;NeUCx-l%Xo(nCxg43)gYEqfQAx&TwdWqb`xBb#B>MOPoOh%crS z6+n3ZqN}4EfzE8&UV@jgJ;4wTUvfPqMG+6^DO8Y1C5@lFlynzAE? zo;&7H>jp!m8V|n;Gnp@Vc|gn|;%&Z!s`SOXcw zahLUTYT|dUyYwhxd*Ee=lQljV5%Pkutmo(m-;^7!B0+4lo$C*DQWmovzxIjCB*ySH z)Z+AIqAg!c^#O!8K6Uk!Bhaq(>!+?a#LhedeUUuznQIsVthS%KHp#IRR(K?s0?&Nm z8qF!$JQxgpi@NiL>q$XO=Gl`CBs}3OnA(rwi>cnp+wo6dxqNa2s>a2yq4&?=5vUq8 zLae#vN<@Hq?3PO}M^)(ZXh=EV{>BA++{=0TWYpz!Y!wWbI^BfZu4QP$c3ky)*KpCr zlb|AQ{@%4vfFnm{w~1|51o}XmU^MB(nhyqnXo8#Eb?vV>N)4!vv*y)L#BF|XtrgG8 zgdvN2r?`>;U3ek`(*Pr0^xQ0KOmHCI_8(n|Vd6I&1$M?a`X0Qk{Kywmm;7cs-hR(z zkt5K>kiPd}F{H{4&guOK7w^N`Qh5%ydv|_bj17j6@Eh2?JOX{kZKXsA13+x~F}#r+ zgU&oVDuEHmFaF_LB!{Ja@W>yq7(5^t!cz}iQ-dJWi~e+J0k5j<-i{1AS(=V+C;Ld1*{ru(HEK<=-lWy5tv0j90vFXJ z8{noI4csYfp&zM=uLKGw?4H#S4cf_assf_FE{WcMC!C^P)ED*H$#SX)b0WHWC)cHD z>K)xTky;$;XeWP7qH=0GJ)wy*B^6%XNi&V`#~rRciR(0USHs2i-D}Zu5QC%~1;kh& z5m*W}q(N@PxJL+R<4$FRES1CIzMZf2CxqWd+sn1e>HsWlmBkiCAqHYr=?KtO*JCA&caChHSySfS%;@VyF{*R7+UY55BEM zG752Vg8Mu446v3r+ZGAyNvI*s*8UOq5CJ)MDVuGF91g$T_gYWVYzcULbGHM%yi3`m z_6HDX+YJIaNZXlrF}F1A;@mQ1<9Px~LF0{RzI1Y&bmE%cXvKF+E{e5l31P*vi*-Vm zWPs#W?oxEHoB@tX9NuFFz>T$Uw!>#zyT3&j${FFb0=8FMH%4EUQ~go^jHb$p6$KODsYG`-L5$wbS&9xdUDWPp#m0Ow9V(-D<2!11_aF!sjk~Lu7!2VLjawT8 zfsUe zKFK{Dy||lf6|r0nF3@}-(H};uyTv@uVRJq}FX~7)xc7z6^m9ZrcjF;O5PuGbg6VYZ zizYjFpjp8gekn10?Qby5FuT3DSN|0a@Dm-}`@;%B#UXS0_Z2sm z49@l|iS7D|*^;X+Dv4=d&b5DdlYrcw3 zl5X)O#1U%}82|E|3ZLlWR^cYy-L>Sn)RXTFhD#5IcL(qMLrDdl-Hq>ccNfXA6wdZz zP-m+=%>RZL&E3}*@B8ZAX6TVUY$BxE!?_P#3u>~5ElK~_%RQ_f>IA>YlC)U{M`l9J z_pq4|z|$pZzJqf#>5^CQx@9BWQ&5T|h(pGJtk5J&f{YsJK7-IKNsvq#91&!UBnZG) zCP*djkc89LXGLR_?A{V;ZTx7myHMOhWGGv;ftLwYDOVCu9-intqa&iJ0x`j%@bSru z8v8QsZXXgq;^>f9ie}g`+TBh(!xz)A_t74Fd$hZi9D%+bc299XBYw^!(9V7}J+lV_ zEOn~e6a;H&s(YyT8;=F~9zAfEG47rO>&-E4mmG`sg4%mIL-^(Teysa>1+09%qbFj^ zQ@lB7hDhO=ac)6;lqafq_3RT272<3nF8Sej72k{r?$40ei6=mN9DNDu&KFZ*JMG1> z=@1&rBha;lXM-UaGu$iX2&8v%p}LPN^iSfb1YCn&HRvmu?7k$3Q#lCft|;u* zi!=FRB5xP~vX?d)27QrSIMuBa7YD_dxaaY>AUsm1xd)2*N(?l0FRu3r(2}vBM!el( z>XYKOUQV`a{5Ijrn5AKYAao zGRK`DM^Lc$UyV`+ZcsSAuv<(;j#T9hw_OlB^L#X~!kwG=O?OMNr>r<{!2r~GA8s_) z9Tx<_KG&TnKCeUw1Io3C-P!f5E493RdC9UY$N7=VRQ8TIjt3*2kPBfK1n0Qa24kSB&ofb+ex&|QSY>pU)1 zZTb@TSn*4~n8peKWGNEmF$RB_5ssJSKwJD86s_C#rcHt{qGecS?7LI z4ojQAZLWK!xIP#H4YG3L@{wwoWUc}GS%3*)E_$yV?~j}*N4(=66KYy>?HzYsZ15C= zNIY|Pi~%3da~~2f@v@Ud1J!x1B)|)vXh(X9O{U^2h8l;56y1#W#3BqFgMt4uKaWI4zT<*z1 z5dLt%3vOaC1drRjP>w(xpIeciB()@O6PDP?mjrBy+j(H>{mcRO4)7%5$uEYYK?m47 zz}sH;OV!YL_(k3U#>n8v)cd&u>>U8$g_;X`#f0ES-vL6@$$6ojEA>JH(HTS#Cf>`}M&V#78SLI3qq~M8q`yPaE zPFZh_s}SgY>g@OqS|9Fv?mhSCf|$U;GmoeK+lnuy{+sX~jyvd{7zAPGL6{kL42IzN z(0xmepm4{-l0A9Vm^<<%0cCO5!{CnA_n14rNO;QJark@89dnPkJBnyJ{37l+RR%}g z(e@s5M}Vj97=jzk%?V!TH~W2@U|VEl*C9IJW6t@`d+em`?n|(yhW5Ot^v*vet#^VH z`LL=u`Qux!xmn&c@hv%al&+?NH>!Q;~5HuVRX?T+V*NjIuV0R4+UR$Ow&ZN;O0 zgvB2j0mW=ZCo#9a&xYR@IjWp#>6+evpWJuEg&Y9u)TuwaM~ln(V%n(}zK`4e;_f9! zP;gI@xX-VYdn4bI_sDDY4xSG+M)Gg&-r@nin6M8gfVlmK>CNOQbai6r@9rDoSssP1 zPGtY#E}xi)SPQ8Zudz{{iX?2Zyc87kch z;!6T<22XUn>4u}WEb0qa7A|Rqp8J3W;=mIzk@Wpb(FH+70q$DmywDEF8~ zN>_%v&<#X47+JHpQ0MC3DdoNv`k8$#v@kHjl|X zy1goP?ATfh51v(26~C5IGzc4K7UdxEpmOy1OS(+28q|4-g9z{t7+FYX;oQEFBsT98ETT7oo2&$J29Ha7 z^q8Ob+Qd10F^z*W4&vN-MIGb_3TBOiF{6nmJbSJK9C@o~3Mx9ty2eJr)894d@_E5Q z);C(eUGzIbAHXj%S2-YqBQEGY$T|nW)456rZglD#qVCk9qFnSnv?=Kd-yUQxH@@ea z8oWEFC?0n`vZE?4es*0=JZ4EzGK&0A>2jSU)vG`anNA<-_2zJbdKESNQ0aEv6|i&r zyxE4p#^J%&YSqHm%YN?bxwa;1^`X)g2L$k`E20nC6b8hmF379Mrr3N5XXO3Mi*~9) zyj4mu?2#}$r0eEHd}Kw@P0{ip=V){aGm*MU2|4fg7|u#xySU#%EIMoS#BKV;K|H#k^M z4KiKuUC1qJfyC_`1l#c&kXN)8ZIzg9<*OCUQY2=j6*E(eSAG#?MxcWZUlI@&p6H-6 z0c-B>ipD3MMfXEZN3RtWeIWkCOHA4_{w`Nip6+CP_xvZ(zV;i6J_;AnApr2tWg%(| z5v%hhBw!>G82>b`sw#P`B|W`^{FVb56-6kSA{mVriiXNc#C#2xezUSKzHubC8PXhL zfhCd1CJQWW4za+pbx+Y7wR{`)6s@a;`a&5AFTG^YB)sSjvG4*|bW@C%iK9%zOYl11 zug8lrk(kCCNioUzI+(&V*)jZd(Wgkvq`=z}cm1sBK5BPZ8P4Mr2zx&-+KV1Ltc==^2Ea(v7Gju4gQxCpK}4dFn^%uT zZoY&wV%k?=-ih#0%moW9;<&?H4IRKz57Pq|zEfWpO&3u1VdmLy$l!>1Cmm*<4eDtoBB1&%{Zs^p;F=$S zX7C3^8c~~aC4nY_CmN}T+>O6A-MDG+ zOOj*o#`bjz^Xw494jo}Poy72Uf!1QLRKe?f>#KOGhFta86XEfQ*JQ%MFdK83E8*CD zT-7rsRNb&h&l~985&UVSCsF*B!zVM59{9&dPZUnC<{5&1K0@X*((N^Y)XG_s_B?BL zmcK)F&sTz2?;{Yz@43|EwLkLB5It`QVr{-kF(|wqj4aJvUr@`lPi(`Z(h=*`+MdTn z9bZgGtTrFvhIKsi

oGoY!wg)Fcmoy8z8i%Gr@dlD$$W8Zq19qWKXU6# z^TkZQ04maXSP3+oSO~+Sc1@5uQk0o4%DjtZUJ>AHrsg*St%ZzoGN+0%GdG^C%fW9P z!K?rxGM3|G^qj47~HT9*&a$IRdc1lSQ0ZdW) zrDF+l3bNbg^MOwp1;3I4iztZ+^p_JThA7vLk)C9#3eIQUfCx}v6tTmbigMJ4g|^<&0Bg5@pDAEGex;$n}FOO8i3sO z<>Y3ua)ID)$^C)KeO{D%T9o^1BFO#p63Bh4oZQ!0xj>*E*Kz9hdhR3#KH`M`Vy?1~ z{!IqKA^l&_1&6c@R|@G`OIa3pCoUk;kd{$MA)Tb8z#{am0^P!i&?yOsh+gNKHI-A4 zKG|1^jJb1d0vF}Dk~*W+2-dX?43iTmdRU}*;F)!=`0lJ-;2I~)X1Nk?-S-3x!Xg$- zrYN(QqPraeJ5&fxcMP-z7HkB2Zxto>4tgkNNoUW=#uz2<5I)8f>}2(b7NI3*Oa!bwH-G7yQe zN6-fbbHcmKL;5~>tsyW(_?QJ_??wP3T}_rzD7+IVTE~hcML3>?NJ>P(JxKd{prl7m znfX7K(o*~z79C2L+ExWA+)|n?cbWsA@C}yHN?d;#gGDkWTv7@6q?l~S!_1=KA+BP)!Ix3gVSuYSqv_l(Pgvhopz(nM&<*F zm0+QC$FYX|q-DxkT}RPr^ zOgMD!2gUIZ(J#MIzw~Udww-4||3JMMzQJ;(W70*w^_SBFGmXXueyzo~U9L1XbgN7V zZ~xT5(ptQAx#~1woy3%wTo>5kX~J)!$*l5Zkd?$jq!5N*BwOqkFTKzVJJ*7rvz&IU znad?a8spQKGn>%YuMLz&q0^~rqdoBRZWO#OO0UNO98!{KvC5m7ahqufwmM2k=z2mNH5H%pYiQ^ZEFku{0iC$&tVNh z)eTQHxffBd;EhD&E6%Kgs=X5Uj=#2ombmv=R8ry!R?zTzaRq%{p)Q_o+X?gRnG1o% zJin4E^9L(|DDxYmOm%PI-+behRG9`V8NG=zktB z6zlCuJTbY1MqLc_K#nLFsE=nwl8MRKm26Q2!dK4^5Lo7P&dWj=t$V%(;&McBkBQ=b zdL6`7jRtXt%8A?0iUR_5af#~ULP794d(VL={L)Gf*c!#5sZlVuzgbRjF)R4e-xOR# z1sCsH6NxTe4!HQ3Rn*h9R#8t6cn3`HmIS7^Ud6bHc)GO$5J?$N(bYgxUYNl=RIdAkZUSK$(6>!XJ_y_qRHHtBqL~P=$+CpHbef66Ji8u%(RP#7G$tFaW=7j~r{3T; z=}mg4(`tYZO53y=hs&tfT3lw04Ze>}SKlkeg4Oqi9GuO^XX>QUP`VM9Pt-xFSs@2K?Wu$nxcll~M(thQm ztsT+%F9Q?llKa*#1H1XHpptwnT|+^2{HwrG{t&UY+<-bp!X=}XCB)j%JSavCovbia zeU$P*vhhy@Ts%2tZB#}&%~AI4U{<-7Mh`#%Sju|N&|wwBn@4O0CCGj zaZ9MU9YfxWLYt}-ThZPoATqC<$Xr$=5dAfgbE|pDM6eLapQvHY;)}vVSpW&;U_~vQ`d54DWubU#lGbQ9IZQ5t!J>B=v$K9v(eykSdA#ydUvd+ z&K|UhOLXb17QnK*T`sf1ZPeSWP6PZjX)F%2({4w>x7WscicjTy%vCBIWv(nvO|n!h zTZ4N2n4>{WR~1)Jv|0>ygUz7P!Aog_&ZMz}$~KML3YO@M2D2yMzGqHkqTBAY8VwdJ zm;ol6O%{v8;WW8SPMaQdHF>mya=l!l-L5m~YzBwR?a~>*Oq<5;wz;(yquFJH|9QaV z0xqc%iFTC#$xcmW5|QoPE)9C{_K68-)w9Jl5*@HZ!e!P&jdz$07PAJda@x&$qrv3T zIrMNP&ilo&o}?}7CPXIaZ4SNDW?Jm3CX15ybE>GT=bzn&)Lao#iN5uk>f518on)`fl8x3sm=wvca zU(k8}#AYj3c1UVwvpHOPi_K_vn6=c0jv&?1@XL*eXc8yIP^l z;La+Ec9YAf(LhWZjBbNNW3}6iCNuOlqtjxw+nt^>pB}-nsWn@y4lS&unk)tDC&a4LXwjgn*HC?ruM>_+1MKl}TkJNs z&1x_?UAU`RjaIGMXw?|aaAn@i-3>f-1{5FVn&?e-qtUFl+3W_$JvM{Mpf}o`X026k zfRoh2cGdUvyu0>UF0o?SE);Wqw>H69p6>b^xd5kjZudy(ACT?m&Isu z>+O2G2~vW?=Co@xc8Aeqw>aE(x5pNRpjFJExz=KUtxV9(oHnx!mb~3&EfBig8XZo5 zxeYw;ez5TwF2QBAfrFr}w6HMl)LQgr=w}YQ#flqT>j^g93w^B;sc`Kd&Ki|T^|#+> zMw{Cd*G7Xp}U$_SE-e zb}Zh=t%m7G_=eIs+ra=c%%IFxz1gMlBxh}eW_1{?Q0$xzyTPe3*c=YK&FpY#AfXy9P(YwmF;&f> zF&Rx(BUB0-lM4}B3zw9{pWf^ULAak$-Pv(9Y?S7;5Mxt1rP{8cPei)@Q`Ym+Jw z>O%J*j!}=t(l}JX(y>@AnDi*BMVoS`hwW+v+)?hXnJ6WwvZ?l;ptclR8@^Mj`(P zIbvtCLYqOZfk79vg~jNynp}3sI1ZN!Mi@F19j-uO7$2Dk<3^X+rZt)^P_OJR7*sl3 zHj7j5vO+F(Iz9Q3L0sM-sanh~7>2rG{NpxQG~i#8)df5?Q1@uRq~)y=*;Z2C5-Jvp z?j0@Gq9&_~qY_O{y$OcD8W?v$jGCSB3eyEKidS6>cB9Laes~w;4GUBwt;Xqe>Y$Xn ztv0LHZGxTy<4BWL?{=YimM0r{NMB1dg9n^Wqg`)sX$?-70oXyb>K%}2oX{UU`EQ+o zdQgd22dxK{iG}p1MYT2*cTcdmVc4p(+AMZZ3ksao0mB)q$?CScj9Lp?)8a|!Mr8b` z104L))&+=Gox!5D*_|$p6B+;p>~K3JuGGYmB%1-+%I$K(fEnKT;`(T^;>4+QgMYL- zqvy=J;sVGU6-jneOOhNFi*=!1&lmSc`z?E7I_or@3|gkI>1{eaj9;P3LPCVRV1b>* zdf0_(c0zG>>%}}$@nRV2H30I++_!R|uT|1OdU^M$Br+94&dOYd2ayZ-O>v2p7=`=| zH?~CEP;qXhQ>K5WYyV8w@Eq}<=^8u5{b#!N&vfmd=~`%B{m*pmpXr*~9Pyv&+CS5^ zf2M2yOxMaLivLX4WHa2qJY6%#`XdIKui08(}XD*0Er8&E%~+6`VeZq}oiAHFkI ztpQisZ0?L=lD}(;n#7mJ@}1#`eVbql-jIc+vo1mT_vkDc% z^Qs*%lLqL_&)+pb22c~oQ%$J6gwxwKp^K~FM3W!AJ~bPlQ9PN+2mwkdgdVxkZp}YEEt>~#(FnNUwzvz{y zGLX3cXc;^tSE7b{NUlVEa^dZ+=zuXeO4!M;rT3!dF%S?*b~P=_^1!{Qd==qe%tLx5 z>b9=IJ;Jjrm|Q-$q+4(X|F0}`t6MN%PK7s#GzB&3{)W(%sH{|cH%e#JzI(7Ue<=%1 z=pNJymstV$1$JGDLoM1p-bDF*0$Mb8Tho}h*BErk288b;L9==UJMzISw7*ACE8Jud z$(A^VZ*9sq@F)2m>j}a8Qx+=j88i#ORKT|m<@>{*2LyA4sVtZrz5ztK zYe`0d1CnX>I4W)eWA-BqCn=mf{z1VFoRGsjq}#R^ra+g-W5Gl^AX4cv3WfA|Dt&#W z(viaHqS`VqkrNv%L{c7g7#f@=_*o^%zIUlxwW697uqdPz6Nd%&3q>qgLD{A}rAM0< ztja}{fD7PbPEFC6^k948OO^-OvsStmC5;KT5=z-8&+GTw`o(vBKd%rwq*MlZ&@B-6Y+D(H)_ zt`jeJ>RwJr*LBp|uIv+HZ5j(9769&l#sp^z<#Fw5xWXerjU1O)JN=R15MhBDL7BC6 z%dBlrtu?R1J3M>Eg}1bk=i0d7XA#2ga*Vf&7H(&s5DTASA;dz!y*@eEU6A1tt+#a$ zs-V;h=j{(xWzU|qU9w_xoeL^W9`8f!VNX5kL*w?lvLuaQ+JgF z(HJpw9#V&rnwG?(lM{mpsOX&=wd7pL`A~knGFrhC7o0(-9G7@vs4KWlh*cv{X}=D% z{cC#MH@ z@%-@h(skHOAuyCD!<*rnlKZgPG)M2lo<`*|40=-rGSrH4QrOO5(%PW;eN7u-9}C989|4H;UThf!*-tCEZ8%k5CZ4$$`?>Yf zU9A$)=<-B#53Y<&**Fh<_GoYcUjz-1@UpGuWvnP20pih$xc~I6^(f}&^PN4`1;J-I z{;Tz5BW}%Ga@;Nv8CTcSjkp*;`sD#}VI-1`xM7}cT^u~b*L{p`2d(`WIim&}1D>f- zzhg(8MrY`#F?ZB!lC-8S23;4e329aZ9Sw|{4oR@9LDR*kb7{J0ZSbp$R%6znVcUWa z^F|Fiy!DAx^zFvrD5S{?)<=g|2iw(?@kwf9>SWTPZOei`N6Q|d0u+3vg;sCrWU+Qg zGU__P+rv)qlDCu25c;!O2xACKi~2y6+7>ineWkqAJQ=8Eg^5@--*5 z(dtm0wZUF!-{_~J6D?I9dZ^pnM_t`({NFS)m2VGi37^=mCk5&(8mMg^BL_mct?2IB zpjqL4Xx>q%|@p)=U#AFjXo3!aBbQV%pIaq*_y~T_W3;mDlH+#aGuEKsjX(kq=;VY)7^xK% zmYjbDUx;T10%hvJ0?N1-9=D<`M+&D1m#}DY)rBsPyum;u8qb6y!J3i6$IL?{-Ai7~ zf~6C2A3ug-js|zgsmPe{KP&+m9Rsc#-+UfMLgWTUPniUA^Epe!-h3XXAWP*zPOam? ziE=qar#38ZNT;?Zg7@XP_=^Odl#?*q6S}YzWK}5tRPa0&G5K_`o1Bb@7{(HWL_Bf^ z2L7x82u?k5k@*rumrC>A0G z1Dg0kFooZ_fiBld74E(Yn|YmIsgI^K-r1QyQV#!T6?`%SU-|inDD>cLaK7*YYmelY z^DG!UvJ*xOO-iaJxu?%m-fzZoib976ZgL9muw3v04gbOh`e98xEpAdaQT$y+PhyvE z)=n*7LhWLP|9_Onhn11%qGLV1&INzw`2TE>hW`>-YJ_-)6zg<))=!iDl9uPQ71NB= z(9OOw0y5rbAxyjdaz40_PtK+pDj~b<36r53XVWuiV+&w?vr9HjP-ZzQ41Jqtlc6uy z7^VLaXo51MPV3^r2*p_{QT-VxK+b?Ap!5&+#(K8HKs z8Bq+VcE1*!E~g@s^J8kb$6gP%l;h$FP;6NTN^L0`k(o`GBvvw9${H(+Ec1F!y%Bth z6Rt8C^xEkw+356J!I8oh_6e~>dkON!O%_ay0D{Yxf_>!##EAP!+z4QbIO~d*a%6=S ztwbx{s@Mv0;dFW1*+`-HJGHwKe1#Jl<}hJ#?;Tj?NM<3}lnB6~pAS(Yw?OsY3pN+@ zN(#PV4x0RKut(;H%5t$S?9e64I$G-KI2Vo6EeHe%WTpJwfX=Sj+T}au_y<5KL~CW7RjDKOi4qW)X+7{kD{3Bu$`B@KA6Mc zE90u;hr!XDaEQU6arJl(y73XL`#vsvBA3-(GzV2KOVRovEoH4wYC*v#!54&!tWdlz z!}R=)YCa@Kk6C7tnedAw9X(p}d_f=n(;Q`5h0mtO!fI#+OHT7JsbgQ4Bj~0^K$M^I zE3A7|y&l{U{R?A(Sbq48Ohl9N^Gl9Yewv2LPijv!_EP=>FvGDU%B{i-+epXCBfbd^h~#H) zq@`$v92ZK_n2mH52Jp#XnQgW*zFG8+0rh8|A@_njC+uR|gJewd&8!0~n4}p%q-jP* zK}L9|l*s(9ji~thpheDIkp?!0^JBQ0TKzs0@()G#y)So(4&A+;-G~#t=l&tslIOn@ zy?0xV3f}uz^xnH0=^B>0hluwoDdLCdjfxF7(Z#H|P4vR0S-%E*Rp)i^FIWy?YTc8f z&7C*V3$l7emYk~2_t`{mFpz@zq5^MmbVI$zTO{`EaI+ zc(E0$9{r?7+a@Jbs|Xj$aXq&QeUn_$PB_OtA!WRXg^-dDxbP~%n6PVAwa^v}@tu~8 zniwIyoCvD%AulInR7B?YYPjU(gbbHRkX}wy+06PIkIO()@^V5+CBB@9S0l)8RWe!b z1`yK%Xr65N;<6BQ*BC$w#W{>XvXT|%*_%B|t_xYL;feuZ zr@v}mmocv_<`0SH?U(B;z5?1y&GX#vU2=lsUlQ#*E5`-<@V0+;q~3HEOvX`w zNK2=Tg53GDV01}q!J(w!2j!w4Mwj^IBFI-czZ_H2QCO%(FlQ{Jb(sWOb#Q0hphht6 zkrIoXfZSbtY+Okcdi#-*4#HkFs^Q~G+Nx6-g=1<2UB{QSk`pMpt@E$Ob^3&o#r%7@ zwA&V8ndQ3e+XJW9M~s{K~a8c#{p*8H%o zsbY_DU%B(?#O#&&s%|6+>WsubjF z-ZBbBOmq}?#IhZ*!c@NOR!P3_GAoRfLJtEei<2zR#xF|ZIpIy_A-zXW8ew-86<`@q z1z3p066JjbL3wK{4aySCnGMRM(f&s8&JbTE=ehUqlKUM0U@Hy9U*)I}ieGM}p%~ao zLotj%vfilv41|-Z|4?%A6W?YVjmehVXiUC&r{qjiz8CyU9+M+Qo4aqLF)2jf%xcOH z-=>VooeI4A?Qh<1!rQm02Ie&hnIzq=zzzo{C_@61wSXpF7EB%S*QP!vmT>)VwR@lhPhTJ?5$HpY1U&mC??;@)Ri9jC% zk+3}zhu$>8vL^FT8G&s?orDyFwxlXe z4IqPFzIoCQ*}xo5nf}#j>GvN|B(U!>SX<6opm)xy6>KB|p>kvOVW2md_2ot$Oi zr)HrM4NKc_Kcf{5ORsTzk*!T>Gjw`PX(O&9x+j!qcchipM5}w1wn9bYN)xy)5^&l8 z0N$Qj+JqY*0c*4>ZH>-vD6Pwllz^*;0p`m`ZZ+X-67ZLv0G!gHv@(qy<{vy73i2>^-6^Aa$#6#x}#z9l{W(u_r9#t3MV^;T85 z9k`6!s=@H&@SIx>xtkL3aSZ@JPA;v_-Iai?9tL1qv(h;3cL`X{2*9uVG>xrJvqg=a zD7|HAcNA?ZZBCTr<3-3j38gL2D@SfM=3DH9m!PFK)U!otJg*fWAMXSNFJnk|5n>(+ zkc2O5RYOJm7qNVb2yTrLCGc1g+^#c#HLXhP@h%b4d^kWZ4g8`3|ELIgr%?!JwFr5k z8$ceP4(vDYM7`2MsakDH>+*ZW#{&}J@!gUCuFpRuLYf!=G9~rv2K@6Orj5a_+Lynm z%lkygkU@ZRyKQN6{)!0sZ3sZ_H~g|b+R(1FHvg#zPHhk1m1mM_p@MqfROP=E!C#~S zcy4>pm`!G2|N&^8ffc^T3>ruaEamkw|26P+s->3qJ9FoGo_X%Q z-hbLLdG6<&IWu$S%yQ?h?1&su|2L4+9fj-gXlX-Mxlpf(mAr7N>8Pl1nX@bnIV;m` z5iCaLq&$qA*w%nHkvW@qi8kykt!v?ljhc;nHiSyvoLEH`ag6-MJYMvT?aRX1>oTWzteY}j=6ug{&IOc3vkzrX zJTHTIYMIPg*ar(HewQ~PAjXS@-LuJXIgiQ=3|IgoWh=Df*E z-o2x(9=jrQmefa%DCcdN)1LRyPMy$btCDW_{^(mmLz;f}LUZBzGr3a~D%QvTbuwy7 zFjD0c$CB|xY$k@c4l?KEB*|bsWzPS20~CnCGUxkt$T?flyDCjyUY5k3l-X~#LiWdB zm1VGTGUo!XoPynD4cKIvbA)%&oQG{a*({lJHxW5^9=5e$3y7{Z;Tm?cMNme{l}IY; zVXMYg${%j!mVC`o)}DPKbM|mQ(cnheV75!^R${aH11aIHPqrd^>z1f>GyIumai}Nm4 zp^#i#Dw`v-gSsPo-81ExY>~`qkcyl&t#F!s$rI&O*lLm8fqv;{3!k#E5{?d}h{%Jd z+Va#-Jk^b-KI5qYJhg_WM)K5OJoN%ko#d%EcU*9_;HmRG zmBv#ic&Z~$eaTb3c5 zYRFT6^HeLITFz5hJXOk5**x_DPYvU#`8@R;PZjah1fKeor>60gi>K!D)ES;y%u^*i zwT7pT^3+%Jt4?`f)Q3FzJ^qULp-&Nr@Hdg6`tzPQ{VB_lsuk1$dhAuY6DNb&QngFn$A-PcH3% zsRcZ>gr`;_HD%Oop8SGm?&qmpJhhmoe&MNIJoN`pt>h^OPhH@tzj?~WQx7aa>LZ>C z;;BD*sxD96;He~@`hurg^3+#6mB~|fp6WY@Cx79|M|tW9Pd&?1|MJv$o;t)+Z}QYN zo|?l`4xU=XQ`dQFHB#f>t@QHPCtmuHPlzyE8ER`yPYkv_!}czqslV8|7FKeGQT|?g zb+%^#KP}k0S}}iIoLu^50Y58Hk9Hlm^~FrbImEV^or074$ezjYH@r)i$-Z7dBlkNx z(zp-G+OXXVXxS&WR$}JEf))w^basB3E

R-LwDX6C^)Hh~GlGy5A|Tr)xMIvn(2lKzMVef~RIJ6bxiJU|;{3GZ(W59?;{OHby(-OpS|FiHQE-{jOPjUoO+Xh+}I-R8XQ|QyS0PT#WjFY}H(t4qVpkjFo(JG0*@mi<6Pw=1p zeiub;=l*U>r%TTurjP$fZz*|E7iC+F`N-H7qdwBx;+)x-x1lzLVGd^Jxn~LwezWIn>4$GX{IqjiH5+S7 zX8R;)uL3HJf>tPC0xe!!?nh1X5gY9>VRxCaBbPdJsP{NbpRP&lUka8ALQ26cutif$ zy9t%)Qp|Wi>hz*5fL$@c%gu06H@)Aoh0xqqYwJ?%dd#BYKi2Cf=3}LPCckcLNF{43 zg;CD?z5OY5#rpv)>SJRi)%jQ)V^+<(`-&r*Za-RuT0BuI`Gt&ixsE_~)m~(%3NxI;w(#w?pHN6K$Q@ zVH53unFb>~Mj?}Jb+iX5uA!|Bm0YM9s4Y_J%WZ;(*c}t_mKiwimOYn3pD#<+QgxuH zrxcY~Qef-BlJVgd-+r02$W-OfZi4oh!WpV^+?v&+)aS=nqJkg%{HW?IaYtTqq3Co~fM}{2Z(}LtEfaC7mnb|Ryowkb+kB*tmGE8S-*rCH$I2>64)0jG zW4f(6jc;OWPDRUYwdin?BZ2)Yfa*|uXpzTJ31$6e+G4fqy0UY7Rr6F69uK4MX4+b^ zt0pxsOEoVp^0=w1KbB@wb}tjV zyP3UvCE9$@989uHo4dRI8!9=p4aleF*qX6dO}z1D-jQM8Ma)Btuy!$RYUT7*^VfNp zCa*McmYX@ETEahoUq2yD`Mavsl@DwK*{>$hq5FVx=iAz{%1iV*VM~-c$=GeHM*n>P z=UOs0FrFS;>+eTJ3t+u_Ciw09z^B!%mP%9RW2WC+N@%7^NZsKQ62fW3l1p)lgeFUj zb>C=-sqV+w(4@94#6USh!iTBwim%=3?^<#xlAUrY3uXQ^LVT~Evt zxEwvdF21(mc2l*N>a7E$a9V#FF8`fBf`Tcw{1SEwTtPwf_j1^x#!_S5g)P9yQuo}$`aTh@wBRK|D_fY+VHtyA+$94VioL4cvXH? zsti&Xop~7jHE{W*P>QV?6;k*q3_RYX?2Aji{%;DL%au=Uk=jZHxm-nxN)yPut>sl| z#KGXoboetwfJ;r_MbZijmwKF{=*d@B!_2>W1O#d-zv44A3c(L$A^wHELIUaJ8W{N( z6aFVNUIdyIXKj9kpJS-K=MfRWZYwehM>_FJ(Ba@vT6!`#kP1!*`&0Snu+2@AjDO8C zP=x+;=>3`zBKX2IYFS^|Trg*f8>-Y~m=Kiuc6F@TA^g%3^*`qYIii&*Rehe@hKgG} z7{C-u2|xd4^4i*k@4i1uVY1r&DgS)+AX*=R zHuXP6;JfA(s;r8(SrN9;D6C`^T14>xCuT{! z&PKR`Yf^CsM}W4@QsNqGiJ2duX(wz&vnWx7oiPggW2>#LcG41j+!}nOGn`!9HiY{@ z%k(iNV43bUL>Kh7=i;g%b@e#h58o5^4azDl(;bG=07U#SyVo8+ipZ&1oqpcw2xe`i zgw{S1zP5E^EltQYGt%Ar@OIOSE5oSxs=W$(Mk1e7kcHpaIpt+8i!t%vE#cp)aE#V{*$xwEn+3?zzCW88 z79{siE=%S`m5J(4phr_es!{S8I0To8ZofahDt+=j{9xpA(F!!&8#&I_jYK05*rLf{ zmFbPWwlJ+G|5I}^tgVFeT)9kvb|3~j_+~M1jFkfk1_Jy$3m#Lf49&OMqbcXd#%cQW z|JC31>Hnto7t^WTK3fVKyIc%~^Yi3LsErmv4C_SCVK-W?6NxpZ**}K4=l<_`0O54! zC+tzr@&FVcHp8pBh8uS#*`g~o9JL!OR^?@_>F&=6EH){e$@{TszTU%8)(qAf6v_Jq zTOCJ~NB{W6)<8Sxc~nthzoNoEu0jkS*5{>_r_6x5>!ZB4YRR;bIC zC}Ejz{loDpHAmH6;kIlzl^jBpUtheWd-*mZh!b|I;14ZX}_hz&?Kj zF>+Uh_~#KUZ*6Sj@)+zLI2!rw$+*tLR|UDB&p zNLciTtpW4@M34EPS~x|Xv^CZ$)5v#iZIs5vKJj5+KWW>j#fTqKNkXRphQGV{?xiNd zA38j|zVsR0RVmM=*i*26$E7Ik5En?kYs+F#QgmRLLqLn9JtsY*ug3~9KlH&0Bs1q( zTY@&psPyZf_?q*fDdEXdnWgf<(3frDw4=n9j`ajXkr#gA+p(YhrFsMT^e*-3gtbhS$c>Q+cIcXQBW} zc2KcBYUo4vloI@F%OGcVjU-uuhASz|W$VKltmMP(5IW_+&TqVl5F>IjSrnwXi@`|& zgKH#E@O5pq}erC32Mkc>%^@qQT?ubUXJ+=sF7qOB?WTryTm zMt(W^$SMy*u!;w#+(ppDk6Z!gE!x_8`y5Vko1i z4VcbU8{FA9yMrc|`KeM79W;9Yt-ph+?kJdw{o8%&YyZbO)NCZX_LEY(kw)!?-Gh@H zZq)8kp`A8_mTf?<<0B7m#*2E^Ow>F0T#1`)#6i0_tV@{a9h27;_*uqIQ(?OW8yD)yGF#%Fq!hSAim?j8$e!YRPdURw*sX=0x$4dfYFMp9LOdos(Aqz(${ zv_BwijgZy?!cI$5p_Fb@x%&c4HH3}-OlcBF17M&Rjij+U$>_vR2HG331?uBXL+ufi zH=?LAyB-gT#BXN|ID{p^$N0gU^`@qwkah_3${1cwixyJLf2yhM0$I322J_9 zW=on90zc!FD4T+UPR+FQM$}mkN^}}1<~ELxpWYp2k6=-&6$=&DwEI!paC>c5XSH!a zthL&=c%jwpO<1SZ`cT+@wLTQutJ~w)L#AibMNTGb0by$4F4usOpO=hhB?C%Cv!_gq z$Gr?uD(GWbs@QEfP1~)uy&fx4i}r18dqcL^ME%H6svbRSrAlA$oz$yX>h)F~dt>&E ziSV`5>nlUq=497O(Y?SG2`ZN$s1inRMZ(IZCYr-b6QzWH?ox_>Bd`+xE;Nj}_3~=P z(d5QBeVa-Jzqos0m1uhkRX=KbNEzgksbaqjljAS8rqXD8yq2Rp^HdBvVxKj}>hCFX zGFi7Zo+=b`oU_wv#pr@xQXu8AXdL+_$QUyOGqrRY{efHiLIv_lyuB&=zyz6Vh6qij z)weg$wkyxG1Sql9^!#S?^J2Of)WDtyujIAf>;{nkhw1ra7SHoBXhEXAC6@lY&nG6? z+p^oH=Wm*y7jAv-Vn-$F@msA3-JJ1s{+PQSzitT66+@Y4eH>|&$j}$?lxj)a$tU5b zY9$H|*^k<~>rqsmEWF9Z$0-X#W^7S9QJfe{LCw$+nM={iC_P23GdN&Y>!yLl|{!VUN^mQ>N2r?5Od% zcZx`NdpJTUwxxZ!mL`6uml;11J^!*nLQyLKhbj_kq@zaVK@DsNL z;cI?ft6TXHFJ32_cDhu|$gfU9kG)b57O0>0-=K@0WS4V$?Q?-tJkDw=K8Kwzghyf> za7kNxJ?#j8DvdH0_=jOx1=hemL}_V5ihUD%9awV>qq)l>s#4C*h-x&mojpw3um6az zVJlRC~R!^22$S+_6+Ts7pCa>7thUNS3dW6II+aKs3XR- zhU@et)&}eJB~}zS90xU`JZfTxrV~7R{5sBwb$xDe~YnO!i9Zj+=fs@4_r>^NM1GNLApEsY4ENgbf@ z7bb-_NQFON=P@!G#W-e{$O|emrn|j6J7;2?wq*3B{N47-^jZ%LU*YTZrO*&c`^Vj~ zGJ4wkY1Q-$!%j$5o-21kpqQ}a+v_YXx#4Vt-~3K>LaAeKgk-(eQ`l5TmLg??6NhYs zQH!h838EHX1cqU$MrdJZx>@TzO;=d9YF}7(yskJk#LP?Y5W=j*_3G3r%(mCn#(Ggo z9gWuY-`MS9ASQY42n%){M9p$=v}(CD2iA6_Ia*LgZ}c(Fr8>FxT3EsH=%|2kh>RP? z43@@@kE|0(2Qus-?2r`ki$_F5g2fwBYJUtFKUva$@SzKNb4TKEaDMM8H0Rf2-BbdR;GFH zvxp$ddlZdvfs{L6k^A5v0;fNI}cJZ&32yKhVnn?6^K{Lly=ycnvAf=vMW+VxgsL;Dbyh75mYY^ZobqK z?C=2#b3lEAIkac(187WW-D>V-x{Z3}HlSspb~(I=6MrGk*&}J=`iRQ(aF4QZEnfe- zp}oXx^qA*rG|tr(A8$|zNBS`}=_k3_3b*(bdn|2iP`4UQX@>s<4@XgYd%22@dhpyV z)^(%DJ~+er5}Tq!=?TmY^`?!}Zi!S9UAGEVw5=N?tV65#Uk%P{f(Iz<0=><4d75pL zN^en=b{nI)_JvnfWpLeKWrD_|V1f&hc21$WO;Ckm^PqIz_)%vhV z$NoeFDGscL&)0XXM99ZqP-H_l=@a3$AG;5%4i;2(V`ac5&!RY5TQ;3Nkmi2zYob*5 zHK{Hz;pFW2X_AjnEIH*CuGIFjJ&_%i+`}pt?mE_ktVHL=+v~CeChpJo;Z}JCQQZT0 za~4(2oiw|nve7ttuv;eBbxT-(ihRu;jaP3yFw6i(ChCZm|_ zC5R;R2S>)z*aAck>n%mBwHAScp4miGu@;E+C3mfASX%O}h`cxLgSAtZ;1kwh(G0(z zW^d1eH|t$I5XUh1`EF6OIQkw{INjcantc%&M9(@AM*43ycKFJh^$xF8s5tu`_CI?% zYbUX7RBZV|2gi0{txT}yW|%mk-G2r`$!8_(DHYbY5~95S-mo{Kxu+sSX#@5(+2bbe z2rpN7C3JD&mGXVMWHvoG%O1~`NjXbYIqp`T#XdIC7f3p2f)3v#=(%VG{N;`1hh6Ri zsp<4b9FA<3Y}P$oFBwbCli%rz?@7bSZ>`T3d?n$liXgDDxMJGwA z7g}v(0$xZFua(?3>337=_b;SM2PAyv2>&Rz&upgC5ol?h?A^!>?~U_J$S|E#NTeeV zxqGrg7149g4-h>Mle|Y1UU7n>5tX!y3Z{E4qiWE`^eBItTZk}mkfn_N)-uH8^7Z-l zBsTL){Z$aJ#vKdo!|(!#mBs~Ln)WY^Yy<7Zg2qXn&SJ+m>s58Nw|**b_W@Tgw(m>5 zmWun7C1`sEKpB(weCb^%z&WI)3+)@xCxuTLG1}xARw5jf`~tS6U`@6dyKSQ_oIv5#`eeNb%2{5o8ZDg=CtoEP zWPq!r;4yQF>{NkE-bfuHH?1If%mTWmSZ>ghw{4mxu9t#Y=Mr& z+GuJo)D=`0-79g6ekcI85&!nXLO$HxWUXY&3JZCTIIIX9M6W)m1d5{cqKeKmGb_@n+i8gO8@IMusE|D^%=Gr(3=L@ zvv3M9Y>0ad6|}O??Blfhdahw~i{-gltln0SNyTdk&#kei@s7iB{f)TtK~Sz_esm+s zdp{Bh z_;0{eXroSFXQZFrV4t9^vBY7U%wUSJP4?+{XG-XK(nxCgh5Z%nxFzW~6G^nw?VGV~ z96;x}6u+JI*{@!ur^caD`R)kzS2iQrJ9yC!J)uMwqa4HV;e`L)>_B5 zRI$n1F;9A-Lt+gPHL)}kw(0$`t+Xd~;z$GWMK;{TdDP4iHL?0@d#W~1=e(zK@_xmz zUyvW&kj{3(#Tv6r#2IFyh=i`}L?ndIlW`O7P>CJO+^y!lVNI)1${xht+f3LkW~^AE zYq|>uZ7%9qmx^^OnnF3nc+1jmB3>{PMbWWD)r>`K)7@sxZAxXQl-e6p=+c<9`6C=* zEPR`>u0ytY>RJr<=;^}${4MM zerd=)dvmry;yzb!vz~M$7y8FGqk^B%dzu4Qbs@wH?sj^+vizwd3&rmHz_hRZ79E6do z#Gz)Qa1bYt+FP-?5<6SLHZ8St^C!@h39&>c@F)?j+tZp{JYC!igsyLj?YfM1QTI zFAd@i#V-!S!;f%j+<~*NOxQ2YShvP?Y3>OuW|o0n2QMBeXph!&=R@ncO%wgZIc;V$ z;m@1#qW*WEgiEST+FNiSHNN&%KPDqjv#_s?H6Hx6sm6sLdh%v$43*rnSJNKWS(yr} zqM2@h1~g|_(?H!9bu^*dnbE=*wLb@6G)||!pirSQ(1RK&zpeHnt`Ioubs!y z0lf6Wi~O+y>~&K%ftZjuf8mT4n3(guOyP{sy}9$D%;#j(DPmE06XBAEZqq}gyWyT0 zNh@&~6IS~mUQX)|S9c{ahXAWC>CdlyT@oVkT$#hc8#XJ86Z(jN1Z zm=|H_*lo3%2ycY*nD~=EnNR|0w!`C*u6DziIoySawUwkbS7>NlqqSyUhVUfYXSh8{ zqa7YcBs|+^W$>bMCshx*LCtQ=AO02=i2wVhy~(ZiN?Z_{`sk>1xr{MQFp- zcj}|5XaaECLPjgy&xGzY_TV7oyoOUq-r75V&HlF5S!ZRaEU&)B)8eX8{vuq))xiX8 zYXS-lC*45AoUc>Is8n>bXV@qc<{1+P>o9NNElW|xk5oeN8@e466@Nk|;D;ul(Cfe3 z=>0$I)E`wU^vb4+{%E0-hcxn|n7W9VzBf^KTT_c~xvJ2y$#J!aI}aLh51#P4F619o zNN^rh&v-08MfjJiCj4a&Ubq+ZRpChPeXY;E;1k5ZOTN|}OHzXVCZ1T#^1qbrHOaV2p$P}^;nuO*118QWiqPt-*$Q$@Vt=V-x}m_&T+D`JE{L~N5H@Hb(H zA>ZgrKq!p(_e0<4c6t0?{S3XqF8@lgMU~y_K!2OWR!Fh#slRxO>B`L6)rH%|J0_VM zFiWdRXhIFW+gOVG7S$^*aS_#zb+#^4P~D-&AzD5D_iP1PmuJX9O{pkx!lHGg zBaY?lqOfK5EQK2y;Hp;`<>;^VG{U-B!^A4x$a;<>HVLp}P8BAUbhjv6dx;q}jt?1> zeA${SRv7okIfBHbnyryG_>})zwZYtY*dXV0xjLwQVwAD$|CiB_9hdmuEbvd@;EX}% zgVsDW*=*7h9PzADv0h~wjXdD)tf;NWw7W*sf4(T;d(mTs8>_|}g}!{r;2d}!&BN-F zcad?;HYL0hcV%W5>kc?(hjcX96NL`O+k$!&`-XUE!2@XD^HI95VdJF!FX;LM7EWW2 zWBcd7W{z~~^dS~>`K(iWp8wtCah@&qcpMzgZb=^{JNmMZB@!11agzunCbC%+`$dBE zG&tVtrYWuXeV!{@@f?&+-C0ZcHX)iqQXF{UNaFV@_}TN}bSkzbVCB&h{_U}pvFrbl zQNNiZm0gqgzZ5(s7f)(eEP3Vk;cY?#c{~kA<>Ghi^WK=%h;6w>}O$7-*n?E`M5pD_AZm0B3 zkkh;gCiqKcxR^v0wRhm9xf6~^wpvP9rAp8z4i7of*$NY~$cz-D!iTLJ;3~#r*swk( zkw;Y|TtYIHl$1Br1JT1K?g2B`t!fH;aF5<~AE0q(-0f5-Da??12cE_|+r49A-!ij> zi#*X0E;3cJQxx{>|MYIvnx?c!tU^UM?cvyZg>2JaOcKvEcLW@j$fin}j{58|i65%q zca;NwDAUmg#}lof1FWIK&W$=d64^TvI$eQ!buO?Yj(E$GJk^>k*0%<90r@LQ#_o>C z(%!)`Z+(MU9;#}aEa~fg>B4Wq?+Cy7l<0lJONvP`oSpEUFa4E%ONLv{3o8xf)mO~Ut4}a(DrQN4uqC`ZIw^zDr!5+CC0f?Amo=QQEO9!kt0 zM;fd5J+6#Ly^Oo=wiSvv7AsK5P*tkIGh{bYN+&$!s3Gu_J-?^ig+3rGE+!ZDPi)Gg z(I_J?)0!t%E_MucG-t1TuUF&C{D&g8Ng^?s&Z%gC!+bs-2g^|gbzis-o*yOfe+(nU zClbF*!DE>=nFQYJbe0&&A6t_}WY%MZqaiyY$p;lOrkT%b`;Dl5)+iB=zctd4%0-U4x?(oW8t>KZ+mJF79dhLhoi3cPJoG$$ zQORLC-xbe)DbKGcO~74cwe|6Ah~y45az*78H%w~fUCq_{=|3{;n`Qe75?%~FRCuvG z;SKbI=x_ug5Ah#&GvYW^W_x9~LEL!0Vz2JM4rR&h2CYc&mF~ZIuc!Nqo>4jqJ!7vd z$R4F2V1yHvJJKk)w7fnAjz)LeWm$%udKn7Fh6d8rD2JSO3+FQXWqd4IY-9W-MO-n8 z5XU+KV=pIC=$}d9lv3^vEz7;a6#YxR`irXmVsOLi6mvEykUEWZ1hFVg=-?4qogehD zN|XX~&&Ie9tYLz_!BOi6V}Mot2R*yH3=(#D z_a#_)f&{&!f<%B-^beY9>cb87&5nE%c8nP-;+2Eru|l#!VvAI)D01w@q&hUW-?eJW ze#K%F{3A15=v*+-QA3}59hMRfs1h)(d)Tw18K{}CKi&tM`8vj%JCb-yC8DuC#jcw` z|J(-z{hG1lAN8)CL|Uw)8;R6$RdamEkDoIFoG&-qlZnl#J^#U7m-wr zX^5mYN&I>R?^ZmL4!_n=t`Oi>3Ja@zW{nqN>x0)DM(SSltdwy|k%1{KCRmrs<3*r$ z!jk^GFI~7e^kVML*migYe#I%gl5lSy@jl<4+C5X=j>k&kt(TC7c&ED&op0!N-89Y} zoh8z^rVce;s*lS+_(i+!6*O_`ywmik+WHDwFHXtQy3>(HXd7Z31+Z}b@<%S-7(lKX zDP`^RxJuC>uFb-_(Rdy4q6xt*arpH{al*%71&qU#IA=6hHH$sB&*Nc4qf2_v(NJ5i zGjaQruUeu8WBWIXD9lU1ITU`j12+%)a&bwnfh%+!IM>lkJEU`eF>=vC8q>zkjT%tK zMocz-GBSTKF@>w0_r9aCc3WrOG%`g?Nc|Ekk)FL#tc4kr{o4c<^Vml}#yeX1hZ=>@ zl@plBH^Q3>JgUXnnGWdFqJ}V&AI^`>bTIenSlaZEuVqEQxLJsPF-W3tZpMQW6QU_a zj#gAWzLA`7;mC{yxsRF5uS<oUaX!cqNM&uZRz^`MCa4Wda^fv79kQ2`Q<)qtFKMrP}PG>{Mpxo zh*j7{tFQ|DiPU+SS7%T%+m%M)D@D#QDtRM0nU;PECyr|mxv984l*r{{?EJ`gKSbTn z{|vGDK?&XO1Dz7@Xh#*(lcT8PYHR`S^YRprvX|#(u{|h|oPUX4dT5QKG5b$qZ}?z$ zzp7&s>F`DL`)iiizf4#WC;F|!(se`920&y3Xp5tVD1GQbx1t*^CF{{k{C;C}6|-ND zt`tqhT&mXwM+{ox^rYA@cI+)O`Oa?FG~dLLZFZHTF=;x#btHml(5l%pFe z=Ug+lB`bC(SEJC$*c}vS_8;WGFvUg>(2+df_9Rq&`fG%)>5|>T&2D?sE?Q{3zW*5otOYWY*_ZbvlxM&hvzs+)INWmgovI|Xeic2#miakKz&)UE;Novw3VY;$zMI;6x^dNPjg;{19Jy-7J~c`B`Sy&~8HHp`! zp}$De{G^+PK*21R?~LdC*|?=xGGjlO?DO3LkLwnzQ!gCC>eRmy^|y+`^3=<$!UVXa z8yM?VVG|wV(i-6bcOSuOQvHK^zl|mBWrRCIBfg$Qq1jDZ(A>3nQM4ZIe%U9Qtjm9^ z&tnv(=&xbFIoh(EgZjRnmlz%D1aWzjj$+-crxDoA5-1LrjXj37`AGosy*)1wB^^u| z;}ez1CHD3VdcJIl6?%?81kP@IMv(tJ&^%vuEB zXo)<9jh5q*{+mLtIOTX%J7Odqv?lQnQb5@@tkNO9qOhm;CX6p$EE2WlRo1Xpch@N5 zKT8o}fIV;yel|^tz_)RIMTmoZsg+V%(%~I=&9SlmcSFS0kmqJ84MHpuL|ovPXO-t}f2TZX| zf^oFg*A!xL4d9f*$ixtRu=v6fzCplQ8Tu)oW1b2y7^WfGTwYhIXeG>3YwtxP*EI_hiDboE2jMI?oN=+jojdQaZH@_5R**w~*A zmE-!}2>nL}qu1oQS*%#951%GH<1*

$cNhrWDthTxw*C$DRHVDcfaHmVBX--%|0R zPlP-8uy2HmMlum`FrLlQCMxOzfe(LFI9}9V^XjL>vl9+`oT6wBsed`zYPi{lb8vl` zs!BNd{q2~nt?+V`IJSuA^2_4m-q&3tj{0ZQ2md(Q@Q+&ZKOHsFp1tOnq#d@T9Wc?v z2W5V0+Ja(Vi>^YG=Q^se2ao6jS(rQNwakH>EAp7-dhrBn|TP!hz_X=^Qv%QkE$4EkG@EVr( z4OZG|shHRSSsCVR&i<0PD@NSQ;m%jIawD$P5+|amo7J5ySrv4!g~ir?AsKA(VSSWsF~N2w`+D(%GGD)^%09?#81YuPYWeo78jGV}D9Oi3+HgfUi$nnq$X362nsy zX?BV;fSob%P6|ac*>Pwuml3eZ{Gt|0VY}dZgXsKT1f@cwx%mJF#yY$37pL}`Cy;(T zS1ztAI1COr=^f{c*E;CTwhB{xA_L6EbZ~mAKgEnq^`nWGaIgq3QCWy+=_^8;E=C72 zF0Mn_^feZ{a2=Obd9GTE5GE^V;!I>ozw5m`;di~4 zi*|)Cx>TdSDb5}&4toW@SLH|luFp(i9TCK#B8;^y+E5r-OUGHF?5!*7g zJ{@ia11%}T+3KOX9K{U}rX#;N+K79!h4lwUrNvN2nzI^vM?$Bo(0BjiT_MVexqof^ z@LD6RBfVu(eyXlKHg$53=%I}W$a7mbQ`lD$`=upzenDC-Dvn93N-K*n9Bwk9*PGB{ zO);@iS}g6)fZ8_6Kd zmez=Nwn2ly*6$g!OYo<#6KJ)QX{rnV8_fSFch!yEwQIZ7y7C3-p2zg#6<&e5m*Bm1 zZhLeH(NQ1v3RF63CPGHJ$SPW0zxK{#_OdL)IR1!qX5P+|^L(1@r1%KDMH!wKWnj-9 zGxg8LY?&l4u_pIVi>I+8(n9I;B4+>GUek*D25k3trmaa{&bUMguH-qx$$hI1R^eBr)ux@xG1fhP+~`b39QQO1abWwo9?od?zU0kOdG0%8 z9%ApBC^Lo1ne2Zkhxg!9HcjXS7qm;#cB(X7sTM_f_s|aR)ovb0qj3uu+iv1+^>T$d zp{+3IFkJ7o1~Z1n+Hk*1)R|B+vIWgHmM)&j&Q1*9F22Qf%zJ6bBr9t3slw91CCrdB585-_ib(dbz^3(g$f`)*0M$%4t zXyJ74JWgXCT<^BS;nU5l(!WDs2Q(%N3BOrM5a&H>4t3UN0e^^{IqeUyzaY_TTv2^ZhN1de|DkuVmMYcVA>i`AYF>>xt!W;v zTtt#);x{$&Mdh^}4*rvpKT_qpFMyN$m=Or5hnuL6T2i~^!PxU8^*xoUSi5G6nsjJe z^I%2mStkAr6Q6%eCi`(H^R49XQ2FBPo{>*EBPrzxXC1c91l(c*@>yp8Ct-$*66jKa zxR|XAvzss%EHNuPw($K3X2eOo^VXzsHJq~Zg4l?PI)7DQ2&y{g# zPqbRTT!yaA-HjH@n_w1$%Mkz6_&?jzUn}g7Pyw!_l}B3J(#4@IaLxaOb5+=AGJy%@lRd#)(Ob#NnE;H96@E&K~Z zTmjk)%ksRfl;=%oBi*!!YF;0MsAh*0u}u*n#*oHOUXG(NTU+>1#>=GvxWUBATwhq@ zMH8Pf7K67-;_V7vw3VUx&X&05-3ofn8Y(7vi^e(Y;k~c0x~L>^duur5#-bWylW{g_ z$cxT2Ere&NiyYN>hOAPUKvXF#F6!_JA?8SpO1Ie(lFWbsQHqvrZ{K=7H%;bgJGcPGiU9>JbbHi#soO(e52-L zyqasH=;}l0D>w=yjN5d0t3WxY!&;(8Op#FxMyx<;{HC)mz40nU;H#N1juIt)cX2{;<;w!5~QYacBp6<#rz zWqHJ0H;PG_2;=`_WL~vqiWtTo(;6FC?K)SHc1fbCarpFR0)-`^fp{%nkm`yMx|jc( z9z+?FVU{@l8@0_u^9;Ss_~<^xISMU8aC41Z;bODjg$wLh;H<0lH8OiyGtsR3)2OM= zI=F&OfF~QlxVH{#&yq{D#q^DXQHFDI-`%>&2_B!s`cIaveiEJjx&xm)1gXdXmUmm z1=Q9$1+_DGma{f{TmnZ(J>7+G#fF(ck63{Ca5rx@$~#Ab-Zd6jG|G)87sU^;T&fzwo_uaORU?$MAF!~&YEniiMH8H6E~#2KM$oXl{AN>;Ul1lH2QtW z`O^d{F@x~F?z61cS-lFXpVezNrvNUmVvZ|lenIOH8uKB0jQN|?%;rWs_M$$wXuhhjiPAB0*Uu=|# z_KcY(bSqj2-4;vQN0NqKn@DHxw!(!F?NFO!qJ3zlq4V~qH6J@`u%9LEM@bVscS_`? zD%7xpD~x?_qU|=*gl=mVL$~Yrc_%D8NLbzygfUl5h|6XKzUe-WC7jcPsW@8J2ToD! z_VO{z)2FDob~?W7TRpuxjmbnP60QHxuyqv4bK6i(53~Z$XdpW5_sh^>bMc86e9_q; zgSfZm{78DcvnyQdWr^;7U-WM)fSxQ1@P;M4DC$xa#l)ri(Yh{B{#8o}Ms}Kv|(^lMe29qqeqKYnk;ZtK(V2m6e~xIJ#L#YimL&A;nVxg#Wfn2FBE`7O>GbZ$Ms zj~KzYN6rc?-UzR<5#z(V5Zh*s-LHgefO+A3;W~pvnG>~rFFiFUeI-c6Qe;Tk7~<>OU^n}@55kHpeBaIk&NzI;VBQ<(t@jkL$LsN?9ZH9GwhN-e z`S4D+Ek)e479j?qUk^E>aiMvRTB9>r{;KF=2!V>>9MTnwd zpFiS^)rRTRM|3K`0sUb%$b{%`M!?UF#Pg=0JXn=^_{Ga(Ah2&~U%)2-i~ zHE~mw;B1zh!*kqq^6N3gb{kEwb!Hg8P2Qhw9Cy~ny;K5LB4O@%M2Wz?%ML8SX0)@P&17d0@Z35Dr8?+{wi1Crr#)+J zLbNm^M09iG3__w&I^r3L@Xl9Woa(B{o;1Nmnqi{e|2~H$A<|(VO4!Caa*jWu9DVG} zB^avbP3(lsGg03&Q!#nzUw8r4_`MF@Euo6#E4TKik_)i>w+ zM#+C;sYon6^%6@N-leDW|0qjO-*oKYJ`xdP*Vhm$?zyi^s%GaEqn@a!YWFNZiKUQ5 z4s7S7*@Y)&P3`)cH~`|40CgzeiSebe-B{rb1vis5fJC`YDBd4h?Sd;CE@_XdG+f1v zy^IN%s~_&!A&};jIvcSeChkBpS41j5lp#`?CAl+HZhlh?avO(rh@o#T!pLu%kZ+oi z;w_ys<=9EvCXriIB;0OK_Js+w!3+|O>e^+@ne7sEK?S)xb1)TOL6msTggk9VihgsY z0uzOBhdw-p(7Zx-z%42Uoe*!Rj_XiY?2zJ1LHN76B2^W~n9*lZH(~)3H7;6J6}!A^ z>y-Wmw76pXV2Z5{%f(kq_}cTjGwwH_u_Cq1XY;FAJg|44t;8h;l} zwY#1tPWuGsD6d+tkIVF<)$KdFznZ>K%A7OQEwj)l^8<&csfvC2lpD?_Y=>?YTE4{D zg7SuxB@y2G!X1?Xu6SDVLdO{D{~tzo+*9pqlP@?ti*0~Z@AhL~`g~p|e|qkgvpRE0 z?$#nV*V|%?Q##e8oT-$oz zH>JgcJNnbodzg^5H?kk{u-#{XFp^}`V?8_8lgqkuAN0fVZ#nz2}y=(E&sgO3Dv6YY-=?4@n-so>f?LvA@J zr58HS4s^9;eFQR#p4#M|NeQKK$~ut7R&x!<{U-+G!`4V~VE$B)D~-J_wS0NAkCu27 zQ`%ullS?(}u~~D&w3m(WalUYUi^QpW7^QcK(|SunT@h@vE({l%LrvKb_|#Hw`UPRG zNPHc@P=Ymz5I}_xcmv^K<|-a0Z7eQB#y*F5mF7@Wd|CM~m+s0o&cZ<(aXrix!7^;Z zl)F4FR?M^a)NsYJ8l}3!4Wn^8plQK)dlF%INu*tmWY(c?Ya+N0=6_OsZ6ME()#r~- zLaEN>_gb!GmMNhfJ<#T~qmC<*X3xruq%*Y<6}K}&+xSA=y;H@ zh+{IfX9Y^>nopJb7Ib)$D}YMsg0Vm{<|_=87MH$O>+DBAM`Et=zMv^f>2r97EbY7A z(u(o4EDE>c?v>Cz3KXBF38YC|QRIS)nE{2ZI|ox~JrsMFk-pQKE~Xlb8$<8UyL1ku zdNJ7T{7cHYqR7Fp9YOhfGGpm(43sZ7;!CaZBEDEU82Es`orB1=0_O%}=;|SOoG8+M z!Ne48NqkB~#4imfINlYd)uE|B`!s}Fw0j>MwPF=920T9z;0{l8Mo?MbRSmbw32+ZD z*gczRuXQydJDZW6as90@MX#wa#bXVCd`(AA@FMxVQCK2^CLPc8r;dp*$4f?fzKJe+ z0vbpx-b4^;u27hwX%v@ahEPlnIzo{Vx7dUe0pW{{T!|V^-*R&vR&ZFGNG)8`Ih4k{ zgJBPEp6zosqz%cgRHe23Y(l!5LL7VGqTW~UC`?i8;=j>XAKMIrx9x{UcFU;ebraNG z>;U>E1^psLl9TZPT6g86@ICO+CS;fvBoZj|xNp4+*Zo5?S3NdVq6RA{tl4$JzMvH< z*M!1MGn+!%pb4Exb5&>4CGRbT=bmdfpl_PHYGGs0iagmw7D|@1fYCcN7k z_27oXO3Hs@E zZYg1eNrJZ|xgA|~@cDNk;eCSy@)n{fEvpi>>x7z~V=3ZYvxpyYa^YN0G|cBST+!Md zT?B4A@+kygfyA}{oIW-KN4Va5^| zUD)ErSz$E0Gu%|Er5uN~oRtr|5?RzG-Lcf6^H<$LfLTTmMaN;GK}@LAzLANMG8+;aB9^qq0}s}yPv-CgH!#!WE|tSvWM622K9m8 zJuLBfW6z^*aUb|yoZk24;iSG5PqdXs`ny6YG{@yfO|xAg?2d%qQlOsNEX;8=;%D}K z={TfsMHk1Q4va;Me|KS*F#32Fj*BN>7Hx$kVHKQzRf_u{_tdTdl^p0&g=P=W3N74( z<)nnm#x<0<%VNwYKx-Jo7zlY_Tuzk%~(LP=sh-maJ zsqs{mi_a+{?r-W6Du+?QAnY1XHgVrDbKQ=nKHDU@>s7AT!5nT4FS(`xK9IN8#Qn_7 z75Z*_#Ffgz?8EVJA$q-_1043l5+it-FTkJ3fJ!74Vne{Ap@{ONRPr%enXj z12WXkjBoS?xXhhds2DsPQ@%D5)k;CRcQJ4<<)f^4irv-KkMcXUtxT~aFj6!(%D_i` ztz?KjlTLZA=Ikjc<8eg>?)-dI8(~D@Q@&Ox@yggMkGop3_a$nMg2FXKfwW_otLglV zZq+FywHq!1*@YE@ca8L!*7Pv`?&;h-X353D_ecIKYl}j0ze|TizQenLWR6Ma;9esxfOFh2iKds5$_R;G( zS2U}GtH#kZSgi`B>!EEtM4d)qI$OQM*pEXiO#N8A4fE9VuEwmZq;*zlV&g?vWZf6t z0w{kpI$VZ{+ri8g+gx+TxLUE7BsX8>x|bP(sG!}YRiev*M4~GCfJnS_^(BZu9xFpVoj?m#Xgeq8a^(EsFpcUCY2MVAOue)lq zsS=N)fL=VG|K(lCs!QMQ#;AOz3^LaIfp4wgWT3AMoD8&-F$^6VQ`cy=UgB{+(2e(m zriJIbSD|5(;L&hI(3guNf>vB_2=w-3gg~bx9H#}{aB_!0?fCIPUnq_TT0up-m{EZF zmj7Skcp&8_x+_k^JA9J}+my&v9XpN%-iMY=^WSvEvsQoU4WYTh6JInQG0l~MJxK$v z3D3CCK!J%?Af4;cqbe1@g{J$sB#%(YV)B~TrAHiX?S~`h!;JVxeDPvQ42wHrWgiPq z?lmG|41VHQzSr`x6orpGdW^!i&kAR_QZX~&Wl&a&-v7(9T7=V_1E}sy1ZI0BVvmB* zYv~ggzRu7ILwouHG=g1%rp(`W@(gK_?SFaJ#>5Us+$^-+za;sJLdHfa+HO!!y!9~) z6OwWxwA31kmerpc&Bk;GYd2}GEEe^*;=VDT?au08_1AZMxYpmg=T?*x_G>u@6EiH; za83`E<35(yf^{{)I-6m9caU1mL+isL4TnuoVZsSiWL%1*y6?kLzholjn~7p$w!;Td z4@)$hxI!h0_d&$sVo6ZXN|c?6Q$evGf?Z@{FE+Eqo^+@A&=%`8oPAhjyLU8$D6ehL z8dR^)Rf8QcVShGbMVQ}-u&VR`Wwr(Oj*4}6C~Q$@UaBD)61!!>UN>WfB_3G_OQh)7 z zYCB>vrgPJE>{}|WbK&f%NQ&(r~ukgk5XK ziaMIP0d;g<$DUQOVhx-V=g0Q+qbB*bFm}pBJz=JbJ~?Ft#?;_zx+@K&so5^Mpz3xZ z?RXHL4TqhdZ>y(x4@BbG7TyEU0rcKVL}KkEw2cKchAQ%5fl;4`g&8Y6f^aLmr?%L$ z691Hf7jGIM2)9rdk+>DlQ(vVwE0} zhlO+x&+A`uzHl|bii#CE!RN_RX+kf{jM+ zA(Hw1mAg3lG_%FA%m3N@A!SKylvMW_6^Tn;1L;%&_J2Z0_HN?c{bf&@;3K_oVPBX-*cT^Z&^*2N zz1T{z?|Zv3T&_j|`7w)-4${7Cm0+pIb5@|d^8G&1QBLo{68(Ou@;<3D0OAGXKb%0n1ilI4>4Rbu0HtqO(8Y z<%r%UVh=M>c-?D1yE@^DEra8e$yOhNq!~sg*LtYQu)I}}zE34~y4{+44@G=c=>YcU0 zO})NA(VhFjfYPc|(H&Q>j6RCy6o1oLaWO(lCX2eM>kAn|-#b#@_PzD1)x^i-bAHFn z_Zg|_#%c0eHTI-Q(~&nl?Oj~+vGSNJh0VN4NY8HqE3}fz)aeWXZjE zTnF(Q+bYYsSz(BE3{lR|cG(ehWkz;&TKX0)A=zlct}|mrE4_BomBjv(>=K2|PjUy+ z{=2zV3Gmt!+#x%ZHXe83z@-U((hL_3w)zLk{WXQ1(IeJ&ijni!`he#BiCsI{Zie5~+xewwN;|(@oD)SQX|^i3 z6AyNf-70T}`;6Esfinz9D{gt(kT~Nq#tu8~*EQUyYbajn1O~U(^R>>kTP|l(_PNq9 zT=;8Hc#p0y|D-Ly-s>HgxJ5w>)2p1=hq|G25hC&W@p8o?I=GE#sSD==FthcoDJ)v@ znlf<3Lg7!P2r(M`M@L*ZBerQFLLs54SVVrT9lB-4KRLCiT_xLeFzu}aulhU}+NT zBFR|_8U1gd*2$9B-kK-;&!)2IE zs>teBg$Cx~Wviu9&>}?;Op=QOqgI9}v?gOT&ZYTh`qiPj0j1U0FB1Bb7wYyGU2uNX z3XCthsTLN|9=eK%X_^`u@~Ud3$*l5Sy)GFY+2pQE-Rt|8M$*Rf{UT|75G-`hQXD#= zN1TEe>kS8jOKY*_65mY0W329k_Z+A0@EPr1 z9JhHMqe=1a{SzqY<(C8Sq9Z3OA?l#J9#w}XtN*spR!X~VW$91!~=P^?|}+Q4D3!N5AOL7jVg-PfWc-?@i< zcV|wdjJlM|ZZqN_-g1kgOEW2W4~k_tjx)*^E({OrxDD@i_1>xV=Tg{e zgD`hj#CBI)X)*?EgQZp|f|R}?f{ns>)aV})e9Qo*ocg6*FgzQ0hwsDV+te!(O55OT z5A%LSko_Pn`wcaeda0}-iCt=8k9!pZk}3N_t{nUy(0^pG%^hD6!ZsML&tF4;ds`1| z`~Iuk^FMadlq%G+*}!mlvc3z~K!&&HZlRLJS!KM!`I}37PdEl_M>cA1=g*i^ABW575XH=+4`dORIaP zicyVA6Y(CZ5Q7&_eZ=T99UjP`kMu6;U<<$_(uZGB{icy5+9i}FtB zvmtSW@s&2E(d>IEVz*I*+uv3tA)?(+mqY2fhaloxOA$MaB1EJ*qitylyDCLoHi~f1 zk9upkY@Qd;pf)a>_f=c;psnrUd83)I48#4yBTu=ylCX*x)u3$+YWDNxy0ohUw2h#Q z3qB)cO-5Jiqj7qTA(rXRb}Wr$y(G1}O1(Q8es=$X%UBXk98`-Ab}FrnkER)@SthE` z^{Hb&#F!M?p$JEVs@PenGL zPI8v19xj{qeKjPC4s|Q7!m2!|H{S;-^NM@S1t^>lCDfpey-Ts^US~+n!tF!+1HH2o zY%*T)sj)j!^IItR3G5PZ1^Kb+^;3t`)&;eYf>Mow#1_@uo~7;h9wVsA?o=|*kb}EI z7V89~HV=uFT`*6gA2Xu$<)Q?dU6Hu(c2|O}>+Y$L{vQ;5b{# zc*iKiZKv8)^!|_#@!clA2k9&0EngX;a#1I|a@i>ynpkqNBjpDuv)8StSnU_ezlIpN zOJG?7zJ$k3VOW#-;X&Q^`K&o6V)J z$0t?tG*7XV(rHj>6D^xRm&JNl(!B>B#c|`BrBL>zNAR-U6OYs*SI4q&_J4d`cR&=! z_xBbAl@4|hK~(I31+k%`*s=EpsHm(x_KF(y%UQwpEKw0P7VJHCjV6|8G?u8bV1niD zb`?uBF_zz(*}d7h-ShX)&CSlf&%Al>&CHv+tz4nWpU>NI4t8@_rTJ(I9X}{-DfOO` zdRW5nGZGYa5|5g96mNNs=xM1hj5lD7VOV=TEU|bz0Ry$`D(9*w?tUe;H<7GS5Yrno zImQ(^Gu%Eed&E%ggIc-ip}_ThET!<;Ez03Nl|!WWSG)m_-_VfDN8$d?-wkZuRN1`F zicGtY_3N$f5ZI)b2Y3v&c;d|Fbx%vI;GSO*DS@_ojRj%P>z<{c(LX(XAUgqub#W{H(^%)-YtKrGik#O=-&m;YS_nP9sa-J7H>GUrjHl2AKcp=q*u6< zo~egl`xSU{aY)1%?AULp@Ygta`V|8Tzx#ThvfS02SM>0gz6#$SdW^$idOmkWbDuc) z_A^j(5#uf8@pzR^8t1ljE%Z!4m8m~8Qb_=#9m!$^{0 zKCB#hYP5rpNtQ`MFO|jaJSb^6vFpYKjyrfc=`e)HQ&-NAJ32?E^=keU>|g()^D$ZY#+9WPuHL_|W%s4mvhem9fp&SL;pRqK95z%^_Ns1I)<6 zn$vp*dVrZ5dl!avvvHJL+bMhv1H8Q`A;J(9K3NB^72tG#IRLiKMdtfEMNe>!{`3DV zA;NMMeaTnQYv7(AX98JZz?^Be3>VI-aHn)|;2UlAglp?i+%KiRzVPV?wj#&oq17CB z3jc!vo{q$C%(s*fUaEOW`aIGWSfX%)k27|k8t|xnUtWlvQ6M~SfKEvXxZV&eGhHU5 zjsEYOu(GE|_Vb1vi%_;WpVrW!y~kO!hED1^1wL7`A9m-9Edi!h3VL%r`pc0Dx;tFE z*xMD>U&d;*D;))bQ*4g;;7ppce5i%|lwk?M8+mB~#^|!p3}o#ROF7)@qr)BU9GA|s z|GE^X2{$UZnL1qZi-H|Xdjf%^fSNf_6rhX|Dm(e^_K zE2Ox4)HKl2O2VjQ+)jLNHTqEH3hAA)kV4ccGc*|gtU(W>y9$X@rF2M7AzxNQr##|A z?@&7DBXl%CwlhLf@3hc5oZOhLLeAtN?R73(m~KFu;slMH*!IfAMq#gtwu?j4tSQ{B z5AJx*Lhm+Pfu&zsdf433SecCC8cAxSMY9m{p$hqjQ^*-#unHu4_3>74?-t^*lTj6&1iXo=lP0Yj0g4KOVbvbiW0>r4uJbc*RiHFX($zOtcDAn+HPQuc?4v zbT&yNK;aQEi z%7XeWT*o%=!A3b4uJ^+Zx3s6iq z8LZof8N@3Yv^Hcg>Q8jS7VgJt-NFFd%m_>C;G-b7{P4jg(F;xVtEbo; z^HIxw;UnHizs^=4Mtvi=;XRxihS*2=4`@OR9D2`XxBEEG;aB%se%;nxSx=|}GlyCD z^@NIEu=kCvE|~Ea2E%5LT-+*?3*1!kYN1i{13i3MO@wRMF| zt(BLEL&wc-wD4l}gLZg#PT|7xWEFRU9v988Io>ZrbJKZ-qsh})(+D{8jfL*NvBUYp z)xt?$5I8;8Q`n*cZ*l@$nY>pB^3I}nxWQ=_>-1Ti`Oz{)xT#`Z*JILs`uERSYMHJ& zg}bbWqb+IapDf`5xvhXq!{Z{TqhNDp;9Y+x*fO|aljKb|)|>uwivEut9j$nRP+bK^ zEst{07@h<0gdId<2<%SJ0pM5Y=}S66mnTnoK_hSy1dm860HZFUqu*Q2qQ}>>z?a>j z?PU~nSEpHYvS;D99gR1=4K~gAFV@tIC^yKpqKLLg8~OWP6H9~d6`c89rsN8n#-i^? z*SDx4(jzD*uUKm1auX{IXMXd&nfX!af4XKVzT!_bgA&toeT0*0QI6@0Lbr(T`PI_c zbVP&Yrg{(30toxOS#xbij}&Yw=<~0E;^*I+@o^>kxSgfF|$AHo$cU8`w#+kxXdw5zn|UUmZhc;ry}F^VGNm0 zh*9K-+qg{INDtb;IVfGK8S*b*H9V3&Q&_4(r8B6cL(c$&Yooa=3gUypP2s_~WyDt^4n#BLdMduy+k zIO{h>1)Io&*;YOEgpxaw%R*-Mpt5jkT{8XNk1)=F{f!ZuHfk$gVTZL<#oo+g=Y6o? zl|W+$;Vn(CQKDG}$n{1@>T6wngKq6D74kP8l73Ba-CIk%@T&ps7Y&W-2PI0~tWZD2 z&D!^o+gw3UR}{vtG!d1gf5KXe*=@Gy*QC7tnO5k*75oqZ?U-wlm(@uMq{c6h9>Y&H z)|+{(nJI!K@$=EuC@|f|D^&JpilM?Q_rVe&3{XK6^`I!g1pL~#4i7&xj*K!qT2|zf z+9Gz8Y9SO`9Mpj;^UnVb@`UiwLwq1-)>Jpuhs#oBaIq7Xg6t>(zl|3CIfU=17}RYE zS0VW`Zc8|#WtCH|Q6T}}p)9P@p3~|u`>3*@gew9q1oRDOp0c}|&)Az>kBr}-vTt9} zb_sa~(B=`Y@4_xE@d~aX(S3&ZKE4eC-^?MnCJ=-(Lv9ec%|Y@mH3Io0!Z0QgM9^*n%ruYJy6&~YCoWBd>$WOpxq5k38o(#$1NMW(r0Mg zqW5FZPFd^3oT#!!YR{>%{)*1o}M z_b)kSito@&uW8R|ra8EOhIFUYLP82FQu_75b2YypFdcUok(4Uz#6+4FRxH=rU%9!qzyvc-k4?%ba7~e`Qno$D1g7DS}Sa1NYSf9LS7Rbj+?)vvxEc)q@jYA+NfPIMdNJEkD6i6x@d;Ksi42=LFob2Dz&V5?NmK$anmn)K${G*~MP=l;T~8?hGQZ0$2$y3}Ky^tXFYqXeuXw68i!*`K*2KNB zHBuO+!lpRD((znQV{5c&kREY>b3{5Z`K4k?ey9>_Eg`Hb4m0aoV;wxZgS8(F2GvK`qB}Tp`3IinkM<%CGb{k$xbwR2(Sdz_Y}j^%n--VPnhEcTw_&CV^M+E$dJDjT}+1cAJYO7b+t|#+tIlpxR63& zC-AV3hNBPEdw?|`gvJvrmU+Wx` z30}D%*k>Lr-W7HIxgYk3{~2)paf*`!r&95L{Ar0+A5(RTXsQB{g{BGA z=ruF5oMxHoG)p>zb!m__5O0cyRz5M= zIb29l(FXBoRH2RM!uXYdztbf&VKi z|Ca)lRn&;iUEFbJ5-Ed_O`pX;n@!v#37Oi#am~!K_PQLj`AIp!zqFo5AMCMt9?9Ge z4qTBgR;X24Q9qK>J+9ceOtjV!B1`L)UcI!U^eUybHC_RcDSMvuVGL}ERC+!7v7W|_ z(3Zz@?B&%~eRpURV%5*{jZ&GUo$X49nQGlHEa3CP7ieC?)x6eUR_3~icZs`+H7P{= zjx*I{x=1)?5XBLi3)M5z6s}ZLQ9MvZf%MAhwE6R_ct6!m+~S^jb&@h|A>1S0tx!g(XGrf4bgrt6@5}1Y zq1_HYA+(IXvIXO{kYtNe=`vhp!<#fHvv^+Ef!RB89J9eqa?1)sRAy_pv@@G*V79-) zEUj+);hzkwZqxbP`YX8!3G`tMR87&Uo3KaC;Pga$RoiLEU^~fxdY!DM3BRe*_*In# z(&K#ka%+3x7lRBgsxtTq-!;^$FDlSS9*FKx_;0xtcYCkI&Hn!yAm3?_RQ=o4GHy}J zSZ)C~X%`c$X#C{@^w;ad-d0wA(k>buX!WQot3uE$);b^XeLtxFowXJCH??-)%%eNO zh!wg7v+_7r6=>4TPEIF`+OI<=z(39bW3~aqUMYg0V{<$CqZ!zZ*Dw6CG+ZnE(ifIh z#rf%AukyG9^2@)7>e<7BaXjHg($K`a$J?#grlS4_ziByvrI)on1mx`TO@>U zwg$P>4=Ds0$D0MffXz5%8;f(bE>b*dr^#r0A4nl}RVB+qPrRyO#&3 zmu+n*>@omk8v$rJ>h4O7QrFgQ@-WsN)<(j01I$$;40hb@h4(z|c&=m2N`f#}yo=~%UdTS0_8w)?G z3@=KydwQo044E#pKQ%&snDqnN%OeBf{j!SH-7V{Ab;Ih;u-}rF zKU5JI=I;+)$E;y^0raZ@4h_ziub`~zJ0n2Vc|{&&_Hk<&yzY*maFr542B0MLtjsup zI%>m{zdvCO#raSjIZgsPBfmdpMx@Ha2p%Nul(nI0s2*ep1EC5-xe|p5N6RW} zVLCL+Z7tx+0htWKaTJ}Iw9%Kj^~L8j7pnNZ4QvAhuX6VHAN+Yh!Gjxt;SqBT*#%TQEi zH-y_Jm^wJiJl=Wc6eRkxwT3XBf$YC*ZH0%#oRnbH{{wRO7i$Ay6$2UVXTg=)E4bFV z!Wq(1Mq0p{3zmnI8;%jy^@YfuV&eL-Q&yDY$TcQ}rsDyLzZ?HfsmrwgKvf6DY~r7q6?)vC>_(h7121 z=-(OX(T!{(Ec*zfUtrH&HVl$h+v0^XVesMwwuu;C|J#aRMY@2)$Vo48bs{iKulW*T zism^P5lq}GJ?aIzGNFt{KbV}20^143k#@y_C6JUcNnbt+ZrWcsKHl!hyKD2 z1N=4(p4#t-3X1&>t)SR%e9ALz0g&22`G2h4g|}f!_jQ@}wZba{?u#(inp3L90a9Hd zprW11udvhscdD8)4Lz<{z-H?lT29BuIzbS({D_4cn`jaxYGGx!)&kp0%AlPu8n@Xh> z=*y60Velvz&88U-&?v-K%hW^<5JMisl24){u)k?|KjK`#P z+zeO1sIs-0EIQS(f~WqaoUJt3=;2rv+~|R<2p%X&azWb*czh69^7Z`AgZzudrFi<_ zbWN8+Lg`9Mvv;5tHwcbsnOjD;lDPn z%0;?)G&@ChMexc%Kq6+s5n4;IDQLItmCdbJh8 zYp8JaW6~&TQ?t0att`4z8hN1>w#q_;fxMc5oR*i=C3K`T^2_CHK|*H(c?X4D$gQdj zcCq}_U5HlWXjC*_0>5uY+=p2gxH*N9t#TWhRx6owyog6(K*8snlx1-GzA}QMHu(d6 z85iWqOpkELz|MZPGAno37Z2_?0CR+4e1Hf(P06~pyiFh-w z3V<^`Md3kXTaxh60Prslz*|sYtgQjoz>YS`!-iN}XIwu@`paQXF|azTf|~Wj+G(a2 zu|?vsIzq!qr~!EpiyQ9tT9p!0!%1dDakiS|4iZPA1U->vGii28;xn4&=qYFEDXD9`Y+jb`fppJPqbA}zu750HMgsF%46kh)rr&U$TQBLCXQ@5#)8kZW(x#_MLHXz081;p`keVl9RjGY6?er0JpBTdct7?zyVrz z&6%TyyRhPV`y}{19%E29Z2f*WVBA!hxQ?GiWG)>7)20IjMAeHzrtym5Yyk@oUDks= z9r5hgwM|dlgd(^Noa`b*_4>in9@t#^N9c9z6TwtPR}D_~v{e;q^Mp-%q3d76Ko}mO z=&NdkrY|y9`*p_p5Ov(%gNM1*+ZHZ#HNbRo0z-yG)_Loz!|D2{wJAKxh`zS^!bAhg zI3o(KSd9|a@w6oq(0tbzXjf{qRIVryyB{jw~cQJ3y}x0 z0*67%k(rDduE~>^AB1fp&MG*PS94C@ZnUi-Oe$b&shHK}!M0}bq=1bdNq2BgDGjkj z3X}MZ$EVn$aR-hr<1vh!>I22;R3B{zW;Rm|Z7UCYa40$on<*$aFv*H^V&@lly2it8 z#qk3sI%dvNX7Jl3CSPTdSf>YE_|@tdLga_LBWwY9AF>YTi5_P|SsZhFe9SDZmchFQ z2h@C&tqKk(XBKu)XaVvdmg9x$lPE-p76RFPN=_oIK$Dv53>3Nw zGHwn?Up>Q3X#+O$kPp&qUU&(?hSCt;)#itH{OQVwA9o{S(&KuiZm6Ql`X?T4>O?fc zAN3%o?I5Gdqr9-3PUZAs$A$_@t^S*bTss*n)N2aK3G1aMEULH#vo@Aeh>O(ZbpLsZ zt)k#x)6h`kAs;fU?^%Y?{1DPIKWz}Lu^DuL#VQs5zfT>}Gp}tP*p;>{7tb6k) zzNzRX_b{Mz{R)b8Oje-E%yb@R=?sLKVt|=wgrSmIJrhUv8+d@wS++XDIs?F(uK?8f z77Krl2RQRBIcjSFIH>{93V}Lus_4FRu$_Lx16t=`Pn2f>lxwmYL5tG5$;M)kHy7Le zfLffA+yBp2PVlXzSF%?vW$=PGQB_l#8w!F|qLvWF(_wbd+l-^To;>}$ zdA6oPHv@fVg~-_$y{uFzG@#=i%yuyr!z(7v{#sPC=78PBl_4dQhL^w&ols79!K4aKV; z?K=U;@@f3s&DGW70mDeTg2P46RXE&VW&p}C0?|dSW0?@K8oQJem;qVTI$9g{tj2Z~ zL$Z>CoYh~0!^gu0zylf}6%m$?il}XEWlVE;6*s17+y-y*`l1S`^mppcFX5vB^0r7YVF`xdC>>TE(JY=TxUl^wIESE&~95RoKDgK zq1TSc&Vh#6c8DraPY!6wUfXz_SkeJ?b`C@py!f9TjZ~ni9MGKowzlNM=#E7j?;MC~ zde;G43ZC55q%-=UZ6q$p=^*e!QeQ39i9icV7X>K5J_%oaX`JezY|g z&KdwtX#i9eC=jZOn$c`Bg4)>2bGAXkTOM%tdD}4Il>zVtm8dptLaDF*WNRrDuFG`j z52JpzwG;g6>UHQ{SCObkU2ehzA)WHH|L)!dwO4D(V?VxV8!9w5U^lGmpz9TvZJptl zWE}sZQTfBp%eJ1-V~~ws1naACgI}PSIY9B^=%o93+rH{BY_P4JLix=V-0JBw1pCp` zE1~reTN|Mlaznf>%+V?1f2HnEQW-zUGydDJw&B7)1LM0L8HYF5a7N@7Pk7?GZM^WC zf$&$A|6dsYR2#lGY^C7YFnh`8+^~f}kKqm_f351_7qukFg1scPWLVc|yl}MAefKNG zO@CLfdmtVfU&l(+pq`@g2#=@ba3**3IEO)JR6PfU0QGTtYb1V<47R$a9+Zxo8SY9S zD6Mm+dRo;ZHRr!OIJq;O$C!85*3dLXk1^3X26b}$r4=??3AlXE<|AxEd~|eNHqab(>2LM_kY^sI zdWv3AtUSkfi}K!kwvw>uF>)MHU-A8_)rS|4ZJh-S=`J2BjMabIdgCXbu1|K*bXa|& zX&tLu|FR_rz3MXy!4E{{+6I}rQ(}(QE?}C8(*Pamb7ff&@u>Of*c8Iv62bb_s<(_k zw7EcK*o=oOp4vJI7-|gnd4>y!bM*{=>x|))=eB{uA)et17VLTV>lxmoFpS^lLn$Z> zBc7dMdrv_vVeNZlxT5e}ZzHH=GhH?gTB!S zeP%-myV1&(nN+H-A0hlLP8@7di@vS_?0t(4Cx%+l$NX)ZY+9qo!V3=#MbCU^n=M@C z3q9?Ku(2eg zJ_3dstNTBoKlfgr-CHND?npd5SoJBxAY%!-%d}Rm`Dh!9-&1R{)IrT5^Z{*0anM8( z6-~Y6nWn4X$TB?_lOM)>w$*Xz)=)VdlV2QZ!mYula<*4gPPg|Zc}9|pAUt8z(_BCL zX5!*+OG3gIn;WBZ5oelU`WIUT)TJYV(5)f-{RO=z3|aY?kCsN5I_tUbz;Uk^ugjkT ze&OORwpdS1Qc-N2NiOs*kr}T7^23ZmlAo}qA;b&PaF;c#FmDAc%$Wzpi$S9ehfBlA z5InEHThAbpCAvrz2{~gB9=k|8P2>xH4z1quhK~JPkzpqVqS_~p*W2OT7zk3PU}?A674(Rl#5s5Dxr!~+~DCQTrF9vuNf9Rc`-f3Ff!N1?3) zL z`sO-Dy3z-#Z{C%ma75#uGBC8N)LzKtF#@Vd-As@57!RFe;6(Er z!M%y1OO!g^r&As43w{Ugii0jqU&wc9TW7U*}oyt7M?g+F8+#~OZQOrrfMV+wcr zr&pBJNXSq#9Vw!rEu#5xikjcV(a^k8q{hM?jl>VOq)07HJN0~SSNPo0#L>oX@RZcX zuIVYSFv_o(*E=4An%5hO!Ev2Oxz+|WbP=N7^+#pY2B~PQqGl|!9|Sj)stE!35o5=5 z$G)-3T!$BKgkqaR5SYpv%jLk`k8USwD8?VhL&r8k0mmAk8^t;b^`FWo8mXKm^W--g zOKpYz2J!@af_p5;9c+Aq`>}~sUP$BVC&x-vg*gWLS&W|A402;HlLKDCW>T1Nn8!0W zld1~`40wB0Nuf|EAleK8G~sPLX!eTTHO5Of*$T_%_PK3@mnw4b9s5~Z$$*U4P~gB+ zBYe<8s(~LSNP3E1EWOYp5XDzKokC3j;}#o>1qcXdF&@cRP6svomLkWTXaPERz?L)9Q1-Q2_EfLr`*-Ao?o(PLVqjGyr_+X= z!rZ~53wpj1SF}MjEae1?0r@GFs;1WoU8P#M55ts)PB)VHfonIZo=~8fUZwe)DJm73 zF}cz$;SHlthp9!b&Y@&=$L_g`0i~jbLd%8R&~p8S-!~T^lbk>mW*K-%Re71Jm5A_P|kk^g`GUbjq0@Av=sEXM{e-WBtJF2ttMMWbdP3Z+_ygFn*wv9GHI! zD@RLB@%H+eUJ^eC=1m^N3LG=~ez*=pcoq620P2mADwE->f`QAae6 znjYO0oz*zSQvP>^`$pFG+K-zk`zNL-IYF1J&&!!6(kwWCVO(=3*0Ne7QN0|{v$jlO zEu*;;b2-72cO5E4<1MX1ir$cRLdQO5)s zUnW8zUWpsb{8lQKx(cT!+L**0BybZilE6pYN&-)DI|&5wH3|I0dnCvwUL%3Kc!&fh z@i!8Lm5A#S+LbQ>L&MEy_ylJPCZoKS*E_&yv7L+(ZI@F`ER1#T6uQ z6)%y%OWf<4ieWzS42k9!Z;_ymc$x(6;u{i}#4Hkci53#H7nhR2Ra{O2H!+h0CUFZ1 z1o1fu+{FhZC?MvLpqO}r1o_2fBru7`m9!S`<1k#O4>su?OzfU6fcm#P5hn&Ch@)! z`;a(d}0py`4fMVMWSIO+J7lO5?uwqG^to$ zqCN8NFMZtdiC4+bHT+4YDkIPLe#A%n@h4d%iXxAOcXH1sjwC;$@h4d%N+Qpzq~fD$ zqFndE0S`S~CDnMZyW zlAm<^Nu~-Q1Ov!KWit60Ony?x&rtF+ocxR=KcmUd81gfY{7i5ozxdhiLuM(IwnXVv z>WdMLG%S>tbgBdUqjYiIH>P|fM(mBYH0k11^$}@z(#2~Iv5!ZU*GapRE`D~1)bP-Q8a2&wBt~jqy7*h1TPlr` zwlrP58Ry2uZac(Cl_Z3uilXT`#7HI8(nuvGG1AVa)7q-VNNpuCQhU>BwN2HcqylR( zQh`Z~ROobCleHMB(ps$hJ|#w~M!MKbjiG?@(b|$O_H}q6(cuM@KN1aact#%$GCoQ% zJ{o3xG}8F!8{?yK>Z4SS&xyv@rWhYhH$DROks^Ur4zV>3v9%7d_50iv{VRkU91=G= z#5Oy`wm8JLImEIZVmlpTyB%VCF-G;TWWV1b@t{NOutV$zhZt$ai8YW`J)Jh^T8uR3 zBu2W~blR?KG19;rQ?DhGHeZX8#$St(4uHlE&s!|DH<>QNy>zL%XI#rd`LJD? zhIV%m3TLn#|?UHGUyiH)UCqLxTeYF>Ab zA=Q?{6PMt$dHL#?y(r|z+{5wT(q)xqE}MphD~!E+JFzA{YA4oe2|q2BYKBD7*y;q5 zLXLU26YJm;vlxxP*eBO(2_=_F)x1}s&@ft?`Ug9p>oTbVmUZefT-e+S*Op1m3KLhE zbb?*)V76g*^I^aE8Y(WA`bHDC8EJ{zi~(_*F(ADg20tjle@Z~QFML=G`>!N14^AwX z=9p~IbcNI|0*i-96~)wT=#%8zi9f{;;LqU0__N~(aZyPBhQu$hgG&;Rz?l_NV1b*; zvvcqSF>ooM7GQ7(z6GgO0n$C;`zPQg#&D@2Xr`aJ@9e zbOUnMOCjE*b0B$Re~=^|2cJxQV+l0QltQYaM~+DqMfc9=o?XJ9Wa^xgM~{2qBhNng z(#UTQN^f8vO@hk~V9Txf-l zPPQhG6o*nw=;V%+yFlJ373)U)f5M5WKfX3+0RGrS{JHcEA$X)F&Yggd(k7Beq_4u< zOJnzxB$9CgAzq6yvGGj&ahXS6dI-HXNr9>VD({kk1Co%o3j;E6z<>-KFdzd549LI% z12S;HfQ%b3APpJ@WZZxO88=`+#tj&daRUZq+e;!IP#+NCplVB?AWx z$iM*uGH}3v3>+|css!(8FmBueK^#LHmIf^$db1Rg+5j7kY0DOP4M`f4kUV-^(%6)d zBa}DLa_y$++4~ zht*~}sy5TgZ%(CyYO_dcy_t@v&2&I*7Vpp}q{f@+Xxc2Er2k2EH`AfCS;V@A|7H41 z#?fZ#7n8(j-bsrfF^H};j>vxy+wo5^q16cGaWmd>Co9sN6uzC za5hu#&`hhXnU0#xbkJ<3W9BqEWHwV5&P)f)W^oBcBbC!k>th-nE1T(1*-S^uW^qj_ zO@2jx$vD|8l3}u$j*`uEkZh(k%}nc+nN}sUNCwDeIzBej;jx*Hj?L6*Gt;55nU0Lj zw5phC?J(0}v6+sF&D8wOXz@6eV5YWi79UbjV%TOnAU0F8HdCukqeh)ZZ90vbbQ-nj zG-}Xk)Sk`MoYSZ^r%_{0qqdwzO*xHPavB`~r%^jLli_cRd}(y}n?{W|joNS;HDNQg z;52H$X>{P5HcqUAAJb}s+fA}DoQAbivEGUciY)E;xd=pT#fD`S^w}yEcYlL+T~XWt zQ?^Q-SmY)jskTk(%ThA7Nki-JWsx;Iq~)F# zf|m4;85mX2w!-UOQf-xRD^%Yt#jwbj-BL{!*|}S4z#@6OrCKafWslU2Mbh?2?OEjE z9;qXXMD3MYvdEmh9NLAwQbU&FxsNG%J5<@n*x3%Fw3OGdc%Kxd(!7RW_A!9h;Jcq` z;WhNwFU7LgHt-SaevYR40jXhtB9PZaUI#zpPwOxFpou?zvcmV8w=X0-_x3KJ3hgzV zIKa%~HGDb1<=EmNE9PrhagZ6#Yq)=qY4#$ToRU~o9#G>eq ziQ!&$MIIc3QHAe3=y_Obrj|7iHXUYml?VSEW>%U9Essc@*=t!xq&OCNaYSmzB29mg zTB{aEns~9vB+P2`BuGCcg+XHLCwSw5J>!=@a3J-MavX z$2fos$GBny9GB{`*SZ{MH6jl-9G6`0z?HaqGqDB#s6KdkV^BVN^t55M%Qg{PQEz?JMAq*R@~cz>W{e7|2)jN>_9pfm^tdbyWwe(rOT$?t<`-#%Dsc+b;UNP3gg=VJ ze|y9v{+Q%5ki?0^M?I1vApLZi@+#6}sCR|IK89Uaq+u*2stJ z`&AmjQoj7k#Pt{^T;o!tYs{1$L+|TM-jCtJbuOjOZ&Hd{Nhs(4y+zJP|7|Z=+&fmV zJMhzQOrLik{Dw3_6)o}p#1bFz&G{dRXd@x#h7_stcn6B#WE!~xOKvhA?|}O)X(W4X z+AUW6JMfNA8FpJrVXxi4Ee&Ro*1vNpM}L<@wJ4OMCk2FjVxxkBsv}Pij4HL_1hl@x zs^AIOc1IehLY{!acUi4F0n_g?QJnz!F3ao$^u5O%k`r*|9;-GdAnXq*k)bX6gMi0e{weiU>l7_WP6I@*hcn1Zomv~i3jK+c zGn~Xpof>@~>r}+vz>4Ju#fi&cY9;GQduQgi$S({ou9@(KRSW zzE3dZDXW#A;E$)0$k5t8<5EsNW3}=V)O^kX?0C-Fx(vAdoEdBe)U~i?JOjYOOf3UU zRwls=5UorL8F1Gs4N$c}#!%w5fhY)Z5ahf;EhHAJSb??X8L-R7Wfmwgv+#X z_Geam&O*5_tQS5DE51lWR3%aj_alh0@t9qS?~XGiZdzVW9;hJhd|!Y za4&lswFyeO$+H>A_ipk`7OCzo+oiq<_PEQFSV}|zE@fWE$$Dk$5>0NLIR4dpy#`*1QFW_rr@!Ads#;VIku zifoAS;vyToT?_aW^ln)n~>ceqx-$(AI3Xc|UULNwF z@0DG6?OrqCt$-fBvVCe`1+4Rx?IZgYVDpvjW1kh!z)!YMU0j0RezJY+a|zb?$@XFK zC9wL*_95IQsO`^1X86nYf$Sx?=r7wxIG3PQ0L%0e3<;3!CtCoVx; zVY!8>A+q^I6g*t8uke5lh4HGk%!V~R?521L9v5bupIK3aadZaS6k#Pl0~tja`Wd)e zM6RvMk4(miKZhcE-AXQMW7@kiMiuAk7St*#+sFR5U}8}wm|Jk9D1*GUqL^$S?A?NP z#aOX!0Th#)sU;yZe&WzL1V4@63@9g8^G+HyYS<+EDC-tfEY1;*F0R4D55-v(xCI4E z$g%2V0EHCVB4ojM7g!%F2dy|%+Z*;gsErr(+l#Qe1XqNIC1m>q$}I>jDK}Ql@)n3C znVxRJ;gZ~IA4@W^-hvjTm{@PY!cttyol+c=6$3emjOQcg0y*e{r8(Z>OLG8gOUq4o z!MP8@QVtyqGXv#n@F=^k8$8S48~XPrMN(5BNW6z{Ps)Uo@WIE_*bkc z_)6EI9Lnh+xge9lwIEg}Zb3*Hu5iQ3$Q^j0XN^Xn&@nEM6fOrr;_|3sa7v7FV~xfw z2nd$#GflT3C787nx8TQMxhu=EObDylw;(k{?!)I2ITv%en5N|t;iik z6Q9;Z737$hQ&#TA1Ln?0ihT>VcbRAKi)AiW$vVE5F7Mv_E$Ep>QTJ(Qe$Ys}!_6m7xGe#9_J`EKr zFrH4smtGZvJZ8 zL6&nCw5TZC2SZt~t0K!e3tTF(ekcq2RATLR7M!TWj35gFD$7Guy=TF!%Cdb%A`9{= z%l6rYEa+K<%ja|z**=WVf*Mt2`z%Tpd{>p(Y8J>5V z>K1UR&b`*PI_rllu(LW7o@GTiE2ss!hBNE1z~*r6E%+y#18W^2+ns5$6HqMThD(iG z++a_*TnGB>Z;HoI6?IzReFR6>Dv~uC7Jx|B@mSz#BrB{1>eP_!)6f=JRD*l%K@GW` z+Gx;>t=^dNdLKw688<2%o4<&?wWZ0seK2{ouPdZhz)GA`Ha5_w|F}VelD}bZ!S6L$ z#kD|WElx;gKJvI0$3;YKt{Bs6a{za0bET~uC3jToCgmogEON8BoGbWLLT*N#ZBiU^ zuEe>)!hW%w!2Uog)rc%mvks@+MRhn${Z&Wq#Y>`lRRq6-*AF*9N#yi-?yIR_T{LTf zEbuv6wl7XtpnqN2K80q13w4?CS)fKeIoWS{3Hznzc5SY&#})S9ddyL>K)3qLs4Z}! zKC3SlDB6Id8P$MO?avLk0tGf?_1*$04LQ?0-jFj&&lpY-y<<2ScY3mz8u6vF{@ zXv7*O3oL8I0sPg7wRsk(-k7t&)W)pqw7^e|Io<-AFc-%H2~AkjXo0OwI1WDYueFTj z@>v?odVUN15zC>4HRa4_Qd5r63w)$lGuG%>V0bf5);~4lI4Bt>+oxeIFfooZt7~zr zHCYNTwUnjMqB&E^Quwa9+(T_Vao+*%b;Olh(Fa%cl|kuBToF*~`En@Pg1Ju1p;rqg z@a3?sg3PcDaPE#)vZGqRmQJdaD#TuYsEgk`n`F13_9sqbzf z@7DeS6C2}fl)~6ZoT5<~dk(R!SSHV5T`MN6=kUH26XSD;Z_S+c=dhzS)6jEx+nTBP zIW%m;B=-RNv|-if0i12as_FwM-Ii6k2QaNI>o6X`!?sK*51>IjW9I=Z=OZuTSw1=7 z)s7iv4)kls&~o5ZJ2nW(fwJvo`$TmPEN;(gT@G0INYf6CgB;kCut# zmIHe`vclznXD7Ld+OFjg=?nj%xSxM=g^ccUNtn^SbC9a;99Z9p2|ow^>%@#R2ikY$ z%9Poe%lJcQF0Za#hIN$(s1`!$ zN*71E_NDTx7E&${qe`Q81OD#H+Ls#;*Nqv)4Or8Sb*DGr2_FgXE=N>T0LTU!@dR$4 z;jHyU7{fnKlG}&nhs48DQSeQW3&OQR-2xylqML^*r{i#~JCnw72A5H(G}8+lQinOl3ZHN6k8w-2Mc4cGcGR&GOuzRWOhLuy~vpWKGqeVG(* zLs&o7lHG=>{p60Sc*wZ|F@8K|d}E@W{jHN2`w~g6GD%Zcm?~olViM$rD);oQ{Aoz_ zrx{)hkb@zyNALU)G`){~B29ub39Lnwz?8_ik)T^5>susPo5dRn#2K^`ZIr5f)@SRz?$-C-heztXF<{+Xqj}mk+mW_jwvuK1KrYK616f6r;K)F( zKpzLPHdcbTWVsFx_|0AfOxg!|-Ox%RKJ>=xjulgr;7T%c{3Y-m#0jDsANg(&$M1td ztS^?J;$TktqXsjZdkc#Pvp)YV+#k#;-dhMC!j$wDrt^_2Ls&81LeUhCCM88KueL{I zSDd&6_r!7SMXSpgRSNYA4x}*2yn=sHSZ1%Fg~&x#h>Z1D@K9u)!z5FbJ$?nreB_5=tn9DAZ8)o9ub}U6R>fYyEm!%r(Y}muBbdiB{ceN@V_EOG5vq)1P3T6L zJ&x&WBitRwjCLbb9nYoA9MAM?h0O7+LAJuX@vLN4=sba0ixsv{VEI_VWg_dztdKB~ z12{O5S+W&AO=RO{EA*el90MyHpTsyg2!BkHqt&+TAe5ZU%=#baJS!A+pI?~%BzeD;grd5F5vsl{<@L`r*MOE=i zsQN8?Z5OopmUSe%V9mF3Q#I#ZB<~%)?N8g+B{C;zte~H!L|0zxp<5*;3ruh-0{XVlCXeKO}lcv{JY=1qf6Jy04L> zx?o&OrP~sf)QcoFHMAU`O!x9B$>gA{xEA;JX~fsb2>>OP910M-U|dUGmBUi$wzsp7 z_|%21un-C@+k1wzkdh{QrYg_rUa4r@gr;HAtx`%V-ES0&Tc@;Cy4^@gW!sIkRKM0N z$DM@RKk)p3mg;dFca12tM;egiYk1U6OMZTVCDUy;LolwT(p@(S@neWE%f;N4$Q@{h z5w$pUKgBvcrKZu*?G(zZbmKuc++Lxj(tQU?D%*FUr3&3}p-4%k>*LG1^0ah$TuGH_ zaYArOTqCAS&Pp;}G5!x1qqS83wG8?!1kYo|*#t2dQHw(tuQuK1>FC;(g1Ul;@D#3U zX{ZZ6GE}-O^yxo7^^_M*)+)4gS!X%MHCno=qom%V#o2@lK3X!JV^)$+lZ;E^oU@i% zI-V*14fxJy#mR!|7*UHuC-K_n@^p)FFr>0XXGmV7oHbNBL89cjoa8weT|X@~t{uxW zlcbUf4=t6>cPO-5XmJMM1c;VQr#O^ka?n~_iKe5a#^RnLm8}OW7O>Lb7#SmKX>Jg* zEjS|9$S!Fdu|chtO2@QHmd6P#j%hhsI>J;^?ITPsm5vXU)IGE`Za84np!@bl_g6`# z7v>L!MR~3A`7w;=Cm+6+Xe!&27&F%zSPQmAc$Yp05aPFuLGc>Kq%( zllq_W7}rv%`>D{rq{Tu1lS`)Fqmuk1f!>UMrAGWnW9us9U&h=qJyENT1o2e1$=6U(=7EMEzZVMd@^;C6yj}! z_$WF}8gxtSH&p2LaBUGQ&Ruwc5!Kj!Cv?-%2hix6;qe-k4oK=jJaeO^&el*@lGL_% z{zgmf-I>wSF8`rJD(&$VeqYeypAIw27AOigmdj-ek|^>rvm<<7F1N;WeXUl=Ju%q00{OiN zCXfeUkPLEf49u?ysY7R$ec+D@py6&%dEk$PbD-|A3L>MvPr1ZiOZ5 z(N|MF6iE8rD*!&Nm&+C+PmqltI~IbD8|45z9VdIkqi6WD=&n~G2$p1=D0=SYC5YQ$ ze5M>?ItTTi$$@aN=!<|A-^-pbH%~4OzLUKR;Kd>Eccxt1gE%?}c?FdRW%kKM@wKWh z%P@8F2Dyh9b%P4a$Rhqg(k8hXJwP=qseke?{66n%h{!@cyoN@~Ff zo&v1LAdoUt#0vq)56aAaVA9wm_xWCoH1w!Ih zJiidQRrbNxs&1ukuh=RN$C&Fj%<>wH+9r>{;L$cTp=&UDhg{lAd{h{-BT(X7ADFpC z#{0bH`IASmZo6Er08RPU-vs~J`~u~DF#bQAE!V>U zGpYcgJFtS#+{!}V9dZEv$1FwDA?UkPF1KQ*T)QASlZyHY>jW|XN7q{iMv*-K-vmn* z0>M4FOOV6e4|f6y8l1)5S=`}*77jsrGDEkg?6`)Ng5&ls- zFlQp^-boDLq2XC~;;={3h@IZH5O;TC;zUxpUEVN=Wk!78g&7-3g-?5P($w9UM3HoB zx3`Z=d*jYr$p_E2-b$60y6o}RLsjf)`1HpfZxj4K&t4qhNW3>f-=g2^t!bJ}s*Waa zYNt*~`*z_g%G&#o6Ok0M563-{j_&jJgQ$NN$Eanbw=Vu4e%70V&O{=>k>s=A+X>== zMpO5D8{_{;fA{92_y@er@c%ZydkfOU1I#ypFF5F}3|!?P7O6-|b`E~*GpNEjOvenn zy~QcNp2U~ZKKG65j-+1a@LPk?hj@@%&UtfD$F^2V6KAdGDm0*DpZ=Zk3uRJTv+ZH5 zMUk}Suy+7NpYw=N%_H6h`2W`P7{Gxe-bVPp|55K?KaSSfWKKWp~^0|xPkkrf$f>nY3|PL0g;{1n?peq^N7r@iUHkt9_ikRQ2- zPJ1){H%YFY_6DLJNum=G`H`R6o$)5a|B)oc{+l0%&v0i*jg0i>j5i(BkRLhl9&c|J z{2xi8J41eygFsH`L`OR4_#+dvKoXRMKmw$r&%d*~$by1ENPxl+IN&-%aICe!L9GZ8 zbe>B%o|RC-p{xdhqnMX6Uhro8&!G&xfO9$@MV*Z}fW^t@BKwM?n1d=@^kxUgp{)6z zqj>frQks{})RguT&cfc*mT%mqO{wA~?@xY9_3Rqn--l-RPKP%{U-IUK?(R!)Y$^4< z?9G@Vplj!W194%Hb-=)|{sTLA!ZQ4?CKWGx{h?d;GL{E!(iLxWx_#MOId7bN?Ugx@|e{kKAKfHtdb$9N_5m>e(v3KxV90}=Gpx3R3m(&^g_^W5?FOu~Hxg`*Gr zp|Ca##t&*NO|Ab2a!AUE=K56LzX1EJmF*NzEw`L-JdjJ7h)ie=}xq>+yb6gE}>mka#cl3Lko__Z(@wq+UW9dSmkF^})ppTUa0{!D{nLbuEpIuZuuGPq;e;E&7 z>Nca9ajj;&HHJGdQCte^l|7IW#96f)A2 z_*R8P`qmb#w!;X2DT$-d{$ci{bj8=IiE$pHEeWipP_LWNS_1JRp|uiXimw#`k>Agn z4{_8Fn~xr%mM&`{#2Xhkn3V`4Iz$B%vpAQSRXX@v!?B0Q1AnWQOW!j?wWE}-b@RIzeXIgTKO=Bf+X^3XOHKT87;Lul^m)6<@ zQ6-(V5yG3!+77WIJ;Qn#tZgWL&0uYY*qG5;mxPT@t%v(-_(R#sT0z?MqqJ5tdf3oP z2(^!yaLB$=M4M4ims_CscCB(^>ol*Ou(NZ&(*3#V`hBa-0|hG(_PQqt(xIiV1o z)tUnFD62IOVqi9FE`(opYZ1h%>1)7!e|OGzsVT2+umUUKKPWwNz_)oK+Wbg=p(m%_-rQ#7v#(&-cxD2n7fMQ4j* zo}Hqu#n9C$`cw>EouX+!S>(?*RFD3GgK_j1TA9qkDl#*_A5|=3)uO{Wu!@|b1H~~F zPEm^zh}J2JEx|U%mqcJrQL0j0T2~4KJVoV7TN$w3NpNYaz0W<`TN*ib&-huWxyiBq zoxAq$JYWDe;F#xLK?Tad7pYY)VY@(d?euy&wSwxYEgBDSKn!=Lm1#6}G1#70_?7DEcJYBiuDRjo|aJEi3Z zy+)O-4G^CzBS(+pVL2q&aSE<#{R;85sCy0soO zZw>1xM05@72*moD)+vZSKU?P^%GI*2K_sosDwk_pXHdeqL5p^Et>siMjUe>ct zLTs+jr9KU;11J?}XhlLiZ^)&HM%F=;+BUZGLcp0Ew4t%p790DxnpkyQ`nEP48`GRx zH?g{bo@!zZO~E(2$2>*=^dFoGyHn#9R&y%Q)bgioO|3*wJkZn{0a23Fa;3ZilgYZAm6BO0`{CZhC5OKTiNix9SQJ%pRL3}x{kl&yrd zvc_a*kNCGE`VTxx(yLFW&OO`V62I@Dfw=78@sy$>5k-BI^dB%VNB_=!`}D`{kOkDB zwN*Z`zCn+1Zb25&)ji%cbEER%RXtFq%x$bf$b0<8q_x!@8yz)oWA)0&_wzS>L;&<3 zbeHgd_8zpcDq$z2z_wQDMEcG?%pSxfs&WI9C|P?;-vBvBTiU|dIZD^g>I^a3h-dAr zjwsb?Z}o)O-QMa75g2B5ftV1+buYuL4k*>_fP;Y_ofr|=5wjP+Vd-d9^*KgEJ6eTY z`bz_Je7`wu>1fph{oK)N0@0w8)eK^FC#x33>rR+XiacH`HD&5-HSoDXD@Nc`_qfhh zo&f#yI!wGa6RRF2?{3wkZ=I3eH^{e()ykhAZ+}w&UsSv)fS1cy4e3x9%Z1uAU956R zxOQSS)Zz~{9%%*Aww_i|YSYyUfKIQjRwrZORCVZ_s!o;q!$QGsmOpCCbhE-BmUOc^ z`P^90-RfvmSJZ~;irN%42&#v>TgjnwrMuRl5^luj1}$=1?I1q7u|V9Q&>o1^4LZ~V z(YisodorBd69K(JR!{DtQ7BJqo zb?@1!e`hRLH>gcNwtc1_5&%Ef>Cdh$>2LK%Dd_+#7dL450IMIw>jBmv(_zR6bQm&% z#!N+o$Mms^(Y8UBiz*DVl2ZH8CF3LAZqVII90Rb{Z%8>MZ7t)US4 zhFET6@%Ri_JU+uj*&3pwykICtu=`N<=*mzm5I3msFpm7ZVI0VRhH*ez4CjFC9gf7l zL4hNzPMJ9q_-7FM4?$iiQ84c`f`^&fPQsAHdjox>1WeN&lD z*Yf#`@_VcbF8#|07#|o+eLYqxLo?6{4~DXe)FdlA*(#7of9nS4mIf!HfT>m!IucSPMO^Hgmw5`V z=b~xR6r=}!>o67Jh^9ePVJn)vQ;{Cg)P9;Z5aPx(1SgtmOlP=nI&0>iVGZ-ww#|gWAy-<2T6G4uqF0-t@5VvMogCQFH!tl^9)<9#2e~a)c zDMd}Q+W2+p*(VGuX*8`0XCKnewuYh6?Ah#}YYvOCbJ#@e9PXv<@Km6aKAXQn4A%rioTrTHl4$-unaC8u^g*Y+5orO4s zL{r{HxYCKH9gA@N8cmfJbI*~Bapa<@GyR$&6+8T(aM z&m??6?svhrm-s`E2Vp@dvc@W#sCS=s9S3#7C-`Vuu^Q7Zn*7$V{gG=hZKLVs8n)PU zEv8L09azgS&#xTGMZa>Ve(P8aS%))GH0?Fw{W@z9O1*yLvHtlR*X3T%rWdcrDL9(a zZQ#&{Z?LkWguEQ(GnWc)w3-CyZ+wxNm0R#tmYW)H#6@w|1zy}v7;Gh>D~;;q!a_5b zzHY=(n@dAC;S7z^CM&nGkd10=wu11&!GW8t0s-@lwFbsoX)5}nUMkAkU{`YdD6)R4 zxY+71db8CK+GVy_wIRlDu^K`Au?0h(Pvy7bTKN$LZ?($%@JIPHw0^6V#ihSl*6Rjd z)wvam!#XOu&1#THKQs^8xkVzfj$w&ubiYAL+?K;xF18kKldYo<+u$TCXQRs7(a}qq zz1^zr(%&_sVV@TCa61n3ORBd60enfvci=F;q!K%^AiSjQJF#-Sq%^y*-o2!eyR2*w zXrGDp@3LC^J%ADSsayCR%(Iv2sN`;|s7oW*9p8fb?nZzgkYz;AJy>WSklJI7_vdE& z@s*u>|08O=-^xst0~;r!<-4r{w7h5IOh(~q6cnyTQRSUhdJ5lTRiTFC8>fMdzWdAPeMUjVb?4zjo5ger`T6zR&8b!WG;Yt*ZKZ-ny zqW4EJ4Wg*qF>d$d7&mBh91CU?d5^P|E+-J|DEi|BW-WdJaMH>N0e`d5s*|{OxlZp- zTD1c7H~R4XqRF6EbNemNOpQ)kg(#{<^JK`x>$K?Wq~)gMI`6<{lVxe!V+)@7k?HADr)5skhHT3OZ|5OLWkvJx4D2JVh?W zzH6S6mY%or(dDyNVrbnvi)na}>i>>F9;8dZBT5IU?m3M8ARRept%c}(9*fgKiaw7! z5^Odt1zy0l*&OP7!Kx52$8_=8c+!@}jtIs#OLJQK(j!zuEAS%Lqd7F~B8<+VZx_)a znqI<`U<;{e`6XE6Z(u6~Y%|spx8!LXY^)u)WF@9FzvHCixs1>1+i1aMwD?5Pm#vZk z`k4eoB8Agpd$*8`l&Bcy_|Yp?a$3bfIQzV#u%}j_>7_j0 zU3>7URWzM`3I$zEH3ujme;UKbuqBk>89rycp=QslA};+f3Y2EIq?ymGI-s|o;Ue-4 zm3hu$@pBx9H}vi~PN;9F<)0Yv8`@(;suvj88|w1{E7u#kVMMu?xL$lii(gvZ{P{tb z>wjW2*Z-t`(fEAcIvQ8wZ>USO)gc4d7Jr3W{Ra_C(4%wzFgW;zoe{jk=`?r-RyMBBJ3ZIPQ z$@+9~ckVc_T_=2+>Zo@~o#$p{x6f)C`HxlFrJv`4dfX5?^bd~uYRdK=>-TD!_8!aK zYWnsbmtU)?_XnIKR@40tT&njG{=A}DAFYZ3`iUR3PZ`1sUVDm2(knN`enR$dd(=B! zT=y%g_z5SSR}}dPr-xS*^cmNBuW0ROEJ3d*%NO+WispVnQoW*&UvM6LMI*mjLo#W* z?x~S@c1Zt0zW5Fp)CA4Hkl07nglOWUf+5!X zsFo0MGfIFtXiK(y2 z^(vk!fGK^4PQ+7fpqMSb3WFFQU$yhs`tH%`@Z{0xbd=4d>QlJ{DkW+gCQxpO{Rz|n zh@gZlRwY!OQ1bOvJs<}7s@@P!d>Q`ir@EuG-H%IYT&yzArE&nmwaj$Vr7HW}q6CRl z1($ww3d0y0LUj|V7NDyWsq7G^6RBE0L;;CaX_tP03OeILs8M2sgJ^wX7+6TJ62rhk zQ#mz+iukKkhT<*H{;Imq7Fy%4io5hPRA@dsgdY2=R-hGk%mjlq~)dy=d2F8$OrtnLb-&&d(6 z{nRyu>I-o@1)|USmYQ0oRE1pn!DuKR3ZYpk;o?L3C#4z!(K{6m%tLyT3ZeN(b<(M# zsSE3`sfGse`v1{1I~zjXQ>#E|OiryzLL5%58bBmTqeehXO`|441f*31Att0n4t}I9 z8B_-PJFQBK|0hX@3}o{aAf}{K#UNlK8{JQ*a%qJ$st6TJk5p!B4d`TgRRsTs$#PUA zgDQ&u!)|$6oTSfRRaHqi4G7@FGPhit2FpO+GL}ynN?E!e{g11 z00IpI=}2Z(5dTN(L4Ln#M{*tXrSM5(GSY-BDxbebhX?i!-rx6sS|73~ zx8Hr;u*X?ny1H;oW!jJx2TCI}3<{;FtVoFaR5TlUV8y6ozO?<$n5=Xun;L_fhS}9t zi0|3ebcpFW5aaSxbjE>HRB`9nd@kNf_9 z-S?$q&&M^R>-kiOK`V5(f8k)|qQ<=)&}K%=}X&gPAW$qgK*@z ziR+aw6)rfrHti~`Y8$i({f;fB3Q&Jg_p*xO;lXf@Z;8#KlxITYSS~(fa0o0Vn(e$`^K43jv7}~l_+ls^|NU@@e6G! zgJo`E2^DObs&BsZPYE^C)cgC;w32GBDIAJNugc=sgqBjFhUD_41Eo|KQ!p-y8au|PCjWA$2$e3YN|}1&Q)${#R+TWsIOaA5_|&SL+U$E? zhp|@%3Mj7{x#q{Szd53ICMVLZ#0QIe=ic{`Ns*SPHIfLK)*)hfFP$gB*=p@85mX#fQ zZ8FfP$|}%R+kQ~7ENwsawhH#l`N82PbiRrz`U8cLZU5QZ{V!yQZpYNcudqqQ1&Yk7}xBhV02h zWq($yjg4GI{ICn)?7CE>ma1k@IyiA<+MMjPtd=Tbnv^d=f7DV{Ord8P%2XTkoIUPT z#*f;ki78CGYO9}2{pWJz(^{pW(jTxqB&(we8_mDU`O)L_F@e;n4g&hG0HkcHQt5&E z)6rTg0llcBvY0kkD)~`Z`gysjcwNU8yqdU2U1zw%tJ3#I7@VrBN}Cq*tNT&JxOo|< zc0CnjdP!D;M%Tj>{l5`jP+yfaIwo$dOu>Y#jVYLDm8A*|R2^eNLUy--%4v{e7lHg8is4)hvtCg0XRfYDQ0* zs2nbRR)lu%R+O|U7HU38-u@YBqEDjZn<8@Az2

(zxmS9$TQP+>W>0L_Y@yLFy7nKBPs($J6J8{jtM8~q=jsY(VP$;wQ|n!eAJJ%v?H`31PebS za~>{0IYQL{Lq4^kY;9F2ZOxAK-xRXnkJ!rX>?$2SN)eNAL4xJU?UQ(%o>ae;>S)>_ zrS`VMFDcoq$)9?r;CSAzwJLAO%pR1q9X?0o`JbCveh3zu_|W5D!J@`(kXKw|#y!In zjJwlK!8lZsqT8y>Klaqi_nA((fy-#j09BB-v{SiUnjl~&TIsdFogXU{9^gk`>f`m( zBigIlrcHD&YBUft`mgq?tWkQ_+m8x0j!8%L!?5UZyU;#NjMtgF#N?uLZpYU0amH58 z9yo1si=YYgaJUMhwLLJ^nXEvw*dZ}_D6psc*`U<3{OHK0i0m}0C$fySN=%`vJyjc1 z*gO?Kf>t>xq?amZS5KoQy__*WpH9Dw!~{;;Th%fKXU^~=&#$X;<6C3LktDMys<#?q znwJTuwtbNN+||xmbafOC{i8mro@qYu7fhT+tMgNvzN&>mMZ^7QOuN;^$m**?OuL@T zs6js!W(pnWXn!-()qc2OWV1)+`BC!qt20v3{;G;W9~S!2#b>KC(SrV}he4f|;hCH{ zF*T{-09-?ILzC$pO}%7wj)C}$#`PwvE17yp=&b`)MS~=viw;r+43adSIY^~2R*=TO z4pO;H0cm_~kSc8o<{(x#1!QpR!B|?kXOqD}bbqiaVhl?f*BGLL43acnH^eb-(l`%& z8sZ#3lVX)=na+Q%znrGxd^^VI!O-l9F3T;EcvroJ0I-gvw%w$xA0=IVA(B??_ydaRZZ= zRZSm~lHW%<^US1V0SX=E5R;cdv~QGim`rk3HZ~+LtBuCT8SX>!a{Fj3v5b(H)@WST zaY3@Mqeo>nNV0IP$C)pZh2_Sm#=eX7dKaDEgh@Ivs6i=BM~_;3s*bb%tU0Ish40}`~|BA z*Gn)OhT{VjBMHXia9n>gl3>)B?SxE%;WI}K{V^CjOcRO2fVrxhK@x}B^HjwjS~&2x#vd#ziz8YvzMsJ2EBc( zFLJlHq7h4RUy6+^j6zbKi>Xajmf_^X=oPdcUx+C{=a;Fe2E~5~M#x=`c_Rl#`oEiUyK$>7WUid14G zgAZ7zQX20t_$1FGZ65#uM+)w|q4mY6m0))hvU=pJyRoQ~uCuzsxEc3(CRFF3O zrs^9K?=@Z7kGnHL>v65eIs+{VUyrQg!m(JobU@Xl(Hn3{!Xz>l-`r!}Nw*OR#w6W4 ziaMwo(Cv+Cus@Sz?~pBxgK7Iod@|ayNx6;UtoM{3ByiNUX>QjC9BcJ1{ z6McWVCjq&3sO5(HgKyoTz8Lpf`?%uF2yH=qPGFJso=~+Y)h;!`n8T0FR_s#GP2qZ6 z>U&Cs(d*snkRcfo?A^9UCGjz4N5ywh4Ni1td#cm}hG`<96B zKclJ}B@^+QRQD_{=2+=EhrO5YUcGKkOi0OpS9!DP0%k^%w!CDz1`fgxe7c9}p9MQ= zp}(sM=BCz;bS?@=@wyq6J*RR7JU1;+-y{83crS1x@#}0K8AcsL&>jW z4)wW&vnlJ0O-n1T-RFME(g=5mlM79+rzlG6fe57*Gf!weC{rDAx?v8kh?H)$_?gmyUHr6x? zt+=O3(Da+Ci6OIdQnGKjVoP>QRW%)6%#IFIQCK^C%hB(a8sNt*Lvy$&tkZ!SRP?rk zt^hUed!Q!0y^U)&)+(Hnjy=FPJ0tJl)(VrUu>TN8ec)YH?*B2MzwY8Hm6eUd-F&a= zf!{2oeQoXgUKf6yW84h7uhRZsH#^@7gsVYn1j}Xltd@ezmqmY?QP82ha zFOI@zKqd!@xhUDyN15nzl+!G@95s5TiqWLUxFThxC#77pE&ri%l?QtX(sh3Fb zdC{u!fBFu5g^$QiXANFq9r>ZN{B-4&`sqJCR*J!~`Ju;||BuePyv8DZSr7DXFcQ7d zv)YuytMUbCgn>qxq^M1eE!>6hcvT*wyrsE|j^sU>pKg2654XRDr>A38o}})F!LB&` zE>L%TXtBwB3JdhVdpV_4!T;FG5sT}PA8hq8Uo+0>;i9F(j~1lAVpTSm{+bbv{nM5L z-{1qvzrTo_`36_hKYS6HQ(uPo)6zF8Ii-AyZwR^WT?f5O?6F1^`4%@N8JREcW|_jY z9<=>$RfRgd!(9Zf78j1a!^g{i8|m>ka+i^5H{X}jvCKFs{0Y}VQ~ps|U7En@lfG3?7bRo3Izwy?5{ZXN8jV@&ecW7nJIGt?175JY{5`4xN5kGWN zf(CxZ9SbJX(~-}rvmZ~zzvj58eTl~vsQVXHz@-t!TfQAF`=Z+aI9bb5#jm&o;WnoC zp{8Kgz7fXS{%{vVrr64Y?~iV<)ox>V+;Ra?p$H}Pnzcr)umQWsl6`g z=N;X8za><6)Ik4XHQ1!}^$u~+@7Fky#}IBXKziTgYtKe)TW9 zc_bk8JA=mpTHvd8Xgp=$(VpuKen6g!O4axbUI=KOkU_M7a6bky0(Q6=}#6Stq z8vvn~HySL}-RhSC>-qOilPj9s!_GYb?;XG){OFY2(~@)b7XhJ0|GR)m*yjfZ;x=(C z9!$v~fq*8aiJuKH|E?SIq39wyFE5LR& zg8<{I#~mod_BE>j+t(ZdY*%w@ut$4VF%3JC&jB2;0#3=P4$|P7)~}h4^@}>7n@6wu zKRHEry0lzhQUEq1(jzS+09z4hP+ov-vXTJXMpXf}jT#z6YA<|RvW;2*9z&8FQrA)8 zanyH8?pKYuK_dYxi!*2{Abm*&!2*6S!yrV!&e9B83wWvl=3hG@DNUOW0*)EbS-_t1 zY^0ljI0p0(u*HDh0{T|wCjA6NRb()b0nb0Z9TH+XL{u6WFkC=4V`P+oCa~V%@8sk1V(-lP}H=UBOu0r`2r@@=OzmUT&c%kiGa~Y zW4VCI4Ot^X0}m&})doz~h>FLktP}9WWWWXi1r69N;I0AN1h`C2?G(_ZDfhBRz`3SA z9zEVjA)T7B%0U6xdr4~?5m2x>gX0388*oZM?O@h8D`2w$=LKL(CT;W*fSv#LjJPT) z_JsIDfIS6n39zTYT>?xoG*i+!G z0DB7jEx?`v9|YJ_;Bymw{l^(#Pl0cuVow1dY$0Pb>?sgmfIS6#1=v#{kpO!NBoSaw zfn)-jdQ8Tr6k<<-Gy?35PcOjE_)G%qjL#y#&iL#C?2OMPz)twQO+C)=?2IoUDt5*P z39vK1r~o_Tiwm$bzLWqvBK%Np}r+kEhZD zO#b(D2z$}nDY^R$W-s~*C_aQie*v=$7%1S90fPmU9Li0G3V30_a0a~oR~g1CBSmGb z0iy*(8!$#d7VM0L_>2=U%zz03^xj#}m?R+ENCr~`q?=&Y|7k)Vf}qU|0kbDEm?a?V zR0iP!;!R^PN5CEf<_TCggEbZim^PEaLJd5894gFWvRG7tuqhWDSt>wp#09WifZnwm zAVPx}eNmw|>IPWj06vtzIwg07d0hRQfC39N@VGY!Im^VoNkC`fHd_RYT*_dZfE~*i z>=1BjIfGpSvPCf1BOujk2Kx-~!1K^GO!kY)p0x}P3Rv<(;Q%p zn-1VkZ|jo&A+bB|zWCa}Jq_?*&@*QKJ#+{+h;mA9_aV0TM8NoC44w&y!MLlD-8Y-(BUeB4+6GbWAI5p z-s=p$2sr)+1J5@hzBie~!Ol*`^BuPs#1-)2K7;rI&OKm|P(UN|q0~?Uph+a$~ZoPiyklE)pEm`!$eh&xLP23-X_H=w(KRVi7c zhk$me81xdbIW>bm0z7FL^b?REEd$R0A=3>RBp^w8Rv99ocLoN-1mw=dV1x#Tb$s;e z6%e1%4&cF#aZ2v=IknY;XVvbdytZzctlc1e~tU`r8D|sKH=|fUz|h>@q-~ ze=q;cWRIvs*JiL!z{5HW_6yKE;bCA01zc{-;IM#*CJc@W$kUX;aRHk(!2CO@$!tAX z{elfxJ>vi#?C(y=ou~y@pBK<2l)*&--#ak4EMRO$23G|X>%`!?13d04hTL$7dw3UC zxg}s-R|aOhL+R}Enahd{`+yT3AM^8J$n7Z6b#Sh03Ll}r{q37 zk*kvk7&?PNfPha1Bp0x8CTpY=P_O*2LUn)aL;BC zDB#f?23Z7z&t;HJK)Lx0asYVDV8LYk(7W9j2@V~_g^RJXcxIr1G|Jy zu|^dExqf3%O~CW@3~D&Q<4%E158>C(4#5V93~CGLy_rE>0lRiEs4pP%P6iDHOfjIb zfH=EYqp1MjeGEL!HCdwrRP!E_mJZ->ggPa6-9ud6TEN*;4B85)bDBYW0iO-%AYjoM z*61Xlj^`|sEyd=WR-yG%EM%hkb{cBuL5#l?@2`DHvxJxN`MUl>>zK} zV1bT$H@x-<8rvMeQQzT|+-Kf$^)3c{|E28*CVNCh??4F)`vlk~4``q_pmZPikEb;b zJAnH*>Xh7%zp#Ph0&2!*{gVPN8sIrCq*(%1IV<3v0p|pK@nww*0`B@TxFle(i@_BE zX%aEGCSZmEf7k%`U*jfbm7AgxWx#C#_F(U6pm)J^>sM!C^bZ}tqmOb*?)?E={X{_a z)C`^p_?m^mpFIEAFzO@ zBOvnw2A+9Bo<3xeKFQYU1x zM^yG2uus4xU)I_a#I4odfV%9h+V2D41;{rVClQ20cMDGKOn4T7}HGsic z0UMGrI49st3I-Phd`ijSl7L)k7+evsFg=57JpVWVb2BjcLsZgbVsKNy!K@5!3n-GE z!Ce6>ax%CtAVY2j4+W?^45A$1aZkz55cM zxMdl<7O7Y!50DB z>oWLe1DyYAG-MJ7+f$lZ<=>n^TmjizFo-XpN(h650_KM@@Dq@sHG@O~wzXm4FCcGQ z4Lt6oLRNNSm1F`6cV>`6z+nSY38>$NHPQ&soA2V_r4!JjD}xLIJ{ge70Db>$YByHN zEGiAVGsr67f&tkDv~aUVP67K3$SokS2W#XNKz$hG7f`kz06za06mq{ms{{%7G=M=7 z0p|xYC?=rrUM%Yrm=0Qb?vDY;K9C!q~ ztzTmc{jLt+>h4a-T>=l2pt^?uTfeskdiP;|(=9am*}!8SWgZ~)CGcqk^@9Z5JHcRx zfV!s{3=`1icLpN_B)G_6lz<7>8F&Qf_wAyWaV_-q-vjLzHZ;~`qE^v>2R7L$xv$>k z>Zt-|+-ERdz%sOgftdpIUdI5x2+(^Q1I!k1<#Bxe{4-Zb8T{-PD)R-{ZY|UR&GB}M zXRNWr0qo~8r{vCvAj7~40a>u~A3%hFAjM#{0eb#dz%u|)St}~_-Y{4vAp9+Z^#ZnI zV^uWSD4_n|3^oh!8n9JB$A4I3yMPxOVE*qE68AH!>=y9hD}%iPM)~k_@R0&8$7OIp zz>4?`4ha~6*SNyfBLV`FFgV75=l_lXCMQH?cM1ll1hh`W;EaI4bPRqMU>}zY8X()u zyP47NWe4zqy6TkN7XsOU=em$8S(w}qus$n;TLK2lv_oAX-P7Sv{X)uS=z7~V84q!jOJ0!c>ZV5T6L63i)DW<2F@v84WLd_bwgWuwb1RwDb%=Xv z1cUklYOP|>P=N1h28{(IT*IKLfaqTtG#7CHHwG;P=TG1vO2Ej?4B7}d zxs^dX0ZX5B;xjx`1TNvTg>kYfL$x#AEoM6Bi!%f0Y zG8iiwMNTsqFTm$4gNXw48|GnjiUzpc!uoUM9Fyq|VZUZNCAVE2t^v-9<~{SUFxLUB zKi?_22VZ7$B%sy}28#qdGhm4Udj9ph$tuf4#rF<_6#`z|We_2t+kFPB1;l&6V6A{u zPZ_Keu+4z=0xCR%2F|}5h3KutF}BSDcD`h=Re;`E92(mNWIfMdmj)3!KJ{Z5>~#Rg zC(r%uVK{!;^7+Q)HYqjP;Yq8-5cF;2h!;{|Tl3VLPt(6A;~nK_UU}?hO0|Y#hKKsesp`7$g%AJ%vFE z4PI$4(wi@@Q-|pFM-z5Ct<<*)=LYEo+*!aNqkx~6G6)nUdFERK4VZ-KproH>H^}% zGN|bhvi%*CS_1ODXHZALt&a@qX@HNq@<>5L2e4a>b?J_-&ia-0n>m21gPoE)LmWgB z>t9PD=M!^mLj{DSVbEHD-aj6Pqpg6QnHaPeusRom4gyN$VbDoH_52LFFyPN0iwiR8 zCMrIK7`O#=4r0(#!05sZdJ9NZltEtsD=RSQFQ7yv1_K4?_~_sN4bcQ2f3Y)ubygYf z0FKy5r{um}gR4giu=U4kfIA*|^tmx>OmF}jnBFSxQSx!p{#QN`?TIExhD^0{f!#z)cWPjn!7~^1Cj|i zWx7Zy!0ywNMu^=_dI5GfnFQF~WD#I@lU;z_O)d?7)q};m2J~R_I)Jkyzf*GO@|gNU zn&6Hazhgi*DB=KaP|PX0-ACA72?2Q3fYvW9AkGN}UTNr36a-Bkn5w|s5bQ@3c?HhO8`;o;Wr z%%kh83GOQMO9iym0S@4!FvuynlRxH8hYG-^{#t*80Bq^6!Ds>4&|ibG0`UF-0FQfu z5WGG>t4tPPcQZ|Z-OWq^b~oVy>~7|2z{hDE_Lhdx1sZ(OLo4LVV37e>e|T(5q`u1s z_F}mJyevRlh!CJ(6#%eCz{D>M)(OB%0<^{k0scPR>1F|kup0(6wt0l)GJfq8U^}`; zfbChN0Nb;J0&LHY2(UdnF2MHelmk3&+qJU}aoet)7hrpKNrUq`guODb^H&|f5xnk{ z+;~ZV9@|X;ulyO@5pX04gZrWS^B0?p4q);~RPdGnZRCl7gy|SO7tqFNycA%&6{Ep( z?I&Ihplw*9VLS3hz!8t}!kGTqJXO6*x2Y%y*C-VUJqjpqQ4 zPXedp#_IrdwVwtawh)w?Nn%k+pNBzG0ecKcE&!X`Ya^)yU~78~(h4YFf?t!UBdHP)q>!yw^=i0C-Hq zk{Rbqi;5k>asuoSRTN-{sEPnPMAZe@A^KT>9iln{%9rr4C-pVq#q#ft3>t|FVx)a- zDjL1JFbEb6J47J@?1;1$U`M2#06QWbTIu}f46sAeS*sk;Nww5Oq?-dchuludsqUo# zuXEGPI@i|$tl!@$x$zPJJ&ZvD@CpD8JVS-pXS5Ll@B#p>GFpJWmW~xLqY-ON5b$?n z29pH@7`LVg(0l#E=u8`6{I=)eqGIfdIdr3>GofaqQfE(*ZL=33(lfXA4`zUG=- z7ZvPkuE9+KSq!)%;NuY1xG!MuKn9NlR2szKi2ya2!E*s`hM4*HQV4c9*Zsx_I5m`k zC7|3e25$slcXQq3oq(_r4BiU}F-AWLz|Q8n$yc6#9MdGmkvQ1?+C*fW0r3Q+9m8!B z3OHkoxCCG;bZymN!18en0t5t2V30z<3Xf@%S_n2r*GAF_C^3aWMgg0rGRQ2T#54xk z1U#S4Ag2Iqkgkp95s<|6lE1aie-1#Ia8@ZKDm#rz5dqjCT^spH0QN`MprnAFCNawh z=s1Tp$_v1j>AFcJ0Uqp_u1QrP*e_j!8UpNeuO+}v@VWx*1aBa~PVmM8?EG#fz|QX$ z9wByuhYGM0yo~_+aJCmNd&df}lhrdph@G611z_ub?ff(Wc5coTU?1Ob0d{WA6=3J) z0s(ezF0ujEe>*vsii(|_D+JiNxk`YYn`;Hwx%ry_J2y89uyb>Z0F#Oy_jVz6D((_s zr{Z1>7VDKabPGphzXN#XJ?NC&saJCK5doVFI4+=xF>p$N$2NIZ6Fi-xH}7X7=S9Uf za!G(~yzy*`e21Qgi8;68xISiolWTIG?bV5@o!o(RB3 z^%^`EfNknEcqssz)N2qUAk$F>mVhoN7`zei@q}4r-wDZonpNHlcxu2W0obNqck@*M zHtW|Q4t5;>S2*Gcumg}#fE@r=8-4x7A+!VFFDiBb0tDCrNFl%uKxzSY0MZGt1CUXG z9e~UNK6*?@vI(&RkW+vifII^10OS{72cVD!A9OzWzvPG%aRBE-F{k7{a*L}=XyD-n z3(qqtEh^ZfUdObY0PIk&K}7+3jgcw>^alOVs4f6o@@w$30PIPxK^+0uk)A())E9yc z>9tBD0oaaSgQfzo8NCL<0=^g!BETMfYXSCn+X=9T+X291B4&@bv#8kP?Iyq;Zw~?X zczX-5$JG!=FkbEZ5CN|qoBSUx#2)V`0rq&u2(ZUHUISh*?j_()xsx2gM|+A> za@LdS0^+@9FJ>{|`;P-HCbLE5SS*8i0wN6{0qL;8K8CVbfZlN*V3~kf?-{HVFv)<` z0`#8y`u^9iLi9H90P6){^LGt43CL~+yHx--+}9dA1YoCq4R#CAo9zSa6VS|n0~&ZZ zgxBM;%3)E-V7fUb0NcK6BPRuvSShr=2Nn?M^!?7+tpU-06Xw50e0a1HQ1|{zljOiXn+HFLL_%ePIW2` zo^$?Vhk6~4v`k=u8>Dwi&TXVj0;(ou{VW0s1~AAj0DJ3ei@5}hO3fgzfKO={cnSy^ zYuW?}Xm8vqDqw>F#Rb@oml9xmR#t%RSp@;MXO(S$^PlZnHBqr$t0}T`9Aw)*o2H)xuLNvNpIHWu0l&>QN*WP1VFOJ9SI z0z0Uq1YK0<8Q`fG4i59MYdwmL|I_Zs{R$xde$Ekaq8Mw;7l1AEwZ(-3 zg3Fotw?qgw%-1T*1vDtfAVR=yyF(4`^q7G0wHcfgfX(yy{BuUg zl18j@PJrGzAAMXDfX(_fxFW#r=DGm8o0|f3H)wK4fZfY|4Lm#)yPHRvT-Ia5R{6Tk z69@3vo;f8qHpkc1F9cjO`v2M(Uu(P;4cnp;U~G8YZ-v-K{?>rM7Q&|V+QgY#U^hvj0q0j4lV7PF zz<#E6N^alY>_r9v1qUz)1n?LOMU925qJpjPwdXkmR36D7w*YKWuQl=su(Q0N0Nbs? z8t}w8J%gJR6OG7WX8x5BVs}$ofZa_wF@k;Yb-xuIz=N&ql-%~@t0utiw59-i`Krx; z&wtnqUz@BaDvM_`XeeO0>9mP}7z3IMu-$4Yz&6@SfNiv`0Btk?{e}sNnL`u8VvBq5 zW0^Q@aM@=Be%_%=zZtQ?h_^=EHR6g9dyKed1b&O6+u=tAS}ZjJzje^17$XiCvDpax zwnf+dp@RZ>(ul`K+%{sD5r>R8Yy^Ihq8ofQVzv=pBTgA{&xqqjtTAGv5etksXT)~= zC`4Ps4`H;pVZ>1*{xV{f5z$7>HDbOI`e!_7r+=;kp?`D(@xTcE6B3lJ8!^v_gGS6T z0#Cksw9Y3}ylI4f3>;8DcMG8(orQQ~gnsT5CH)*FgnkqfLO;(4p&wI((2o{E=qCmt z^n-v9`nfxZ-A3pK%}`na;epgoa6#NMf{a*bgnkkTb^3W8h(|`~2We2!56nR5hg%@@ z6Dkn;p$Z87L;{5Vx*kG*Cl8^&?}pId4MXTJBirDi5dEbLibssl->{&hzbJsv_e&x4 z9U%yP`v5|Jj)u@5Cm{A3p}&PhNnhYV=o1};UhyIHIuD^2S_r+4LFi?o%{My8Kfdr1b z5fG&*7Wfu-RFEPNq^RI3vZxg6E=4AplFXP)zPH>P$^LWBbKi6BsqcADx%c;+HgRW( zZIX0Wj4<1#NL$3~W?O=I*=+Ok+uQw~dtRweQc0HVx8v@|IMHmjg>v**vF*n?zW^9w zZ`~awHhgrNF)gLEcxgQZ?d%dHUdXcr_`TCbR(JIvCGu_;sjy+p_qxg^O{u4-d%B3j zN00e4zqh*tiRYKv!la+Y{$;iS;^?2a?%F4m&;c#B7GvLr?IecZB&h{7@xo2p{Y3FH zo4=mYYs;W)`|pmF68N$9h+VY47A`T#xAm+0{b)~YpAYpg5tDBl;RiomQu64SLtn*exgawi6i;YUFSr5zU@B0bDH#mn5f!@`+eH^Sf)byr|y0nAWo|`f4>u5 zWOYG}R518ilS*5Rw)}MqsxeK747eqoKJO`bkSf6#qV(A%@!auIsyChxD(#E@` zgG68>{q4`4vg8c9Du{WwxNTVR^8w>4VOfW^i6W=QnirqjMUa zbLbpJ=VNq+V`LYiE9ks|&Lwniqmz!IHbe)|*@n(gl-Ut|g-#nf*U{N)UJLFXgg4Of z$B6GCT7%Bt(CI)Y6$73{v=g20(0Ll2ZW!Q3^bI=E__!I76`go|`~;B!QBQR0@bNWt z65%mZ4MyQ{e2zi%5~4LBtY2K)V@Y9NexbRdUR`0figH_)Bz-Tg zR@g>Jr$p~cTe7rO9I3RyUFj)z{C!|n5|3BfQeh5wsnRwQj5>r3>W;HfZJY>Ra3`)O zPfE3L?cHDQ#Deupwb+unAC@#6lWBi8U5mba$MfYLmnh;!YC0g+{P8Uf9wO z#6y%{M3cofxI4~MwQwIh+@J?haJqsh@z?HP6qhKivc*YGvA)Wd&>g2M$aMCTpT>5_ zIjeS%$Y_WAyE>|Dv3+rVUCr|=csRd;*Cs|Sx6KT|`E@l+U4_svVx-xY7N!;hoMoXI zw=<;7Y>OUtpFXbiC|Gew3a4T4a2oD>A!wN`Rs{a|X0IeIIcx)ngtIevSb6ZU)}5~; zUv9UQ1Rl5(q;L@Pa2o!FIj4?tf~;LP<(lmZ;+1qhUzF2Zhzv?N%4rR`;OWky5L9Y z|Dr@l4GB?FL@!D-N>UaY8Zx7#eg@2JW7AOdmu_rIK>vk}O(W3%Xk*iG^ncsfl!$&{ zUDH_fr`I)&M!&kQX+#!o4AeI#fMnky>vi%gYfV<9-jmE7{mHwGoq2b$hg*Yn;$>I`M553m`* z8_7Z{@=x}~h~mAS&EqlM8#|jvq93!1^LcPra{`r6ncPjO=>`b}KiQj0w5vINEtTMC zH|2W>p)OS5z9_y}>KV8wict~V5XI;lxEhL4+zuV7a2FKI?!YBbjAG&TCq}(a=x7Vv z_r$Wue`&~K&Dh;Mvfm_X!C3izs8i4qQ>DpRvCLFjXkK9~C@$6%@FDpXDxsPQcRbN$ zP!($N<$La_gq9hX-p_ja)8@}s#Zy8RaxEtGAS6_1TAX4umYYk&J)Yjrun*yG3^yoA*o~d} z!tgWZ7w45|{g`Y}#u;iv(AeO?0o;uf3`!PAewTv>#j#|%L79hX1n6b2FjbkU-1{;) z-*cJvVVJKw(>`QjGpe@R1`eTT{?O5M16+bcvYoy<`Vel1V%g!II=bekqa1%7y#qHu zsm<1v_uHq?U^?`aeG2B-{**lf{V6N$_ZCq**UPU%Sp%`GDaOJQ(-I^0oz`D($nWVD zfgUI{7jp-Ib=fEHhY){$&1f#`4ETrq5d`$s0+yL7mT8@KZ6$YtcO`d9zg65>6Ia=3 z6y|CE`c?L1EaIV6_MsC$&4pbHqJ&CHUknV;1NE|q_|=?2=4#H^ zs6AJ&=3akewS5p~^x10GircI0G}sf?aDn7Cc51ulwCDHN*oPs3!aeF}xL1O&wfGO* z7QyJ@RXREaH#xBE7F^K4r~jr?bGo2+2i(X^e-K^&q6=x zggq1ef)iYa+7os%n(u?(i~8-V5--(=>Zkj~lPPaM!77z}(mn)V%sI)=)hF#_Q4XE7 zlQp%Uw38K%ZM2VBO0D~hM6Aw((tFP%OX`7Cog$ouqbRpcV!02_jQGrny z+?>GZbSK&bmnWziD48nQtVHR> z8hHSc!2=w%8g5EpbP}#eP!C!^w%b=__oNpdme+`~sg5|25#s2@_OxKCgY4+msSfJO zOH&;*;5}0vWC-H29Ml>!vK%xQt;llRi>>#5mSYt9KW90H#eawyZ}}9mBa{Kx9uTsq zDTgI8U9;lGS(i<7jOfSHV4hr7BQn}zhf>d+$#sxgd2=22bJrb|&w&L$ni1PyYuX^G=76;fHpm8f3ln2d!wy3Uc#jrY8~8yfFEu|Fw3T1?1s zk`WyHJlCQ4c}Mn8YM67fU7HskhdT)P5`bE`IDpYbxG_MzZvF4`jxT#-@*fK>@9)Af zip#q|ejLi1@k>ICnD#1^_Y#(OvKL+>v<^u3)l1frR~=iZvHP5HOvHp{o^g=QmYi|W zfNnVBpz(I>jDsf6|7d>TSqE9|w6l(3_kMzDCqx=F7W^6@hG#zf^U*r0jnR-r_4*sI z1J3Uslx970*3pZs>RFeAY+XQ$V-UAffm{vk6eF&G?xdU^Z*iny314Y(jOG~M$n6j# zR_yYrhJaG`W?K1f#$Ry$I#3&JTc6e`pm3r(Ic{50xWRNEI zafXDqW0n)9LGpzB=OMBxeVm8Mn)J?g4&e-z%4;BlRI&f&kWg_b+vzVBWjjMzEvw}> zYQ*~wCk-IA+?MT}gN19#c2cXw<~S$d^THe__2SDp&QyFpqWQKQXBy?9ye%n*v1Q`3 zlEOviJZI?84OqO_9)&^?dfBX_qj?&#sH=fey;5ulxg8^}%@`VDeP^EYFpb4Ri<9jC zW(#L{%HkZxm8p_nq;4y<-J))bt8&tSc(BSjA`Z`7)yGys`h;EvGI2%$YYXXPu9e!RF4J}gYwjwJ`M(HObMISFfCy2nXIqyBz|JnIwyrdgH%B-84r)|+2A zpSzc9r^t^%?S>1}11Sk2ttusey8Rs=7Y&ZvnxEq9BBN65>l%lZe#_T21AV8jYbyGa zy1A$^R&{e_jKZ^Q^}=b$iIC4(9eoZ&(JbrxrH)cBAhO=+=9(KakgAm?kAV_}DkV$I zg|jV{rIyN++>*jVb1totMQ)^PGHa?VFQ^emzfFsyBA<(NP2(ypk(ZJ}><=6n!+n(* z<)ZoX#VFSh9#GH7&qBjKG5)u{;;SfE$XYyjSLXtiGt)1B-HGM^n={MmfTWp`rxUdS zD>KWc0Jk!uU7ctT&?~d-Ca@?o$_BP%LKe043Yw+b_}oIX*!6$6`iS#B>4DbjXqQSF ze`~xeF^*bfmi!l}P++#Xw4}V!T%H1JTmZCI967;7N}oN!MM}SXf{U!?R`A0&W2JTg zmon2Z+kr$`-E6%y!SyR`Y>vvVDD1rNWY+-nJ7gD44RJHspEA>x;E&%R)XCj_fM(fR zFw?bj5w~%?yb6jGDdrac7DdfJcCU+86sEl{T12ni%LRLVuPZDWzg(yjfpeJIiX-B6 zbR9^BNoG;k1^b|pF8guJfPcQ@dM2?FAt^%LQW05iA9STty%Mgt26C@2l$SuS2YomxLbIStKGtBW%LuUoichBXigbR}cC6QeN=?U)7jffp?YBS|D6yv}lp9hMrM%^lK-YUZBf7B|3V! z43V{CS4+PjtZRR3OEjx~CK$_lap51UXml>Jw#4(Q&n&B2SG(b>A(IRR0T_XuvwXn79Q%yw~BR5&Y1j{F=Ypw5O*%<69IXHT`hLi6Nb4zy}Z zuCe$I7|fBcHAMz!x|JjU71DYA$Jv9UN!Ol}4?~<@xg|v~>6wkC)H>qMf!4_BG|s~$ zWx77&&jy>y1d7h%Ix;uvXgQpJacCTTVr8@yKJu#nvCjFR_1P(0kAbwRjEkQeO(y&g zM{5!Xd?B|&!Qyk~(#m{}vz1Ky3TG=BrmfD_L2OK>O3EVC^l))rxgC*1g)~V@sb0vN zmm$j^P|qeDOjK%_yp?b}Fa)CRYRtaviyFY8i zU|g7qYvuE!may87mmflX%`dJ@FDW)JE71&~JWYNWSz+s7P9O&;45Ub zdc2PMKZwX$eagLvTIt$F_n<^7YK$BUmG5KBEvd){qf}(BEYHu?8X!R)0EJ61KEeYo z>sxmMDU3V=*CAwqz6M%CW-N5fMr5t|)~)slqof05xu(7XKVksUpt{f6?N@hGD2|O* zw|fvLG!yr*lu#m&3o;8~kr9z~g2(;PK#ny)o&;qKgbz=!oHSOz0kpX|mk%Ge#dxB4 z#1zVP5UEFzskAg7{tSRF7hlGBB1mcF1M+pOB`nNKx+VaJem^U|XcU6+EVj^;YwnT( zELVC+%0S&h^vQ#=UBs4m19KrGZ-I^?OLX)rkQ8!g_hrCNs9v-d#CpCj!^%%z@9E!< z+UI`S%lPLO=9e0AwT55SAVT$ePb5bC`+5&8oKCOz(73;`-a`xRfDN7@G9}es4$6zp?x%|EGcCm z74e524=0VZZt#%xxW2&?&sOvWN!frehKSdHeLRd0GwUVgb(96tN)&5jtSBw)Tw=T_ zDW79-uL{dzT$VgydO{4 zzs^HudR-mo{I=$wtK*XWx6VTwl%RUg08%C8XM^H`R7h!00&yfWOvV9YB%^>AbhHRK zB3brN;D%&08b~1-eFSWfj1B?~B%_PK|H#M+#E*=|0pla1wZ8z>Bf}lQ@yI9_$Q>Ca zys4x39Xj&ats@r@IC4Dm+ns2yjy3~TBZppjUq>GRIU~zzft3-^L!kCA0v{s_8-a+C zQ9ckbGI|b}7a45_%0)(pfoqXb7LY8ex2%>;9uG~-WgmG4v%M^kYoHH<{%s^JIQWr= zCbTObaUc8v@v=zauXmpL4F$SICSFVjo<&BRj_YXU2_4MPNU zTb@Kt{1@3%Bd*3QPNHVT3_-EMt#L0hD@{2TxW;IQEj%S+@XF*x99-=MD=~EM{4)X>`fyojSfaajNRaPBT%>>~?D9cW1ZLR`v7Q?X&^zKBql-3@P*qN!f@7KbZDHr7&yLR>x>6)ok%5 zN!bYzz>2B|a-dMZS(naf_dCiZxSx(lLqwVRsW4tEzbwBa4z2DWv++rgmva3f$V;X1 z26<_d*gx1y8|4|nUecTu!Cum{Et-EUnBTh|?4|Fk?ZI9$Gw~tbzV}h7b0no2OC4Z@ zFMP(5Dsy>ZXMvy5X1$(9vnAKKB%kN%!VpfgHpELC%@0Go6H!}TAzu1Ck{rt6GeWg8 zg?gzaw}*P~!+8G=^^(SP599db!@NTRsVwaVWh!n52N;Fv*Y*f8>HBu=^UtO*FO9N8 z5Es+YJ!KK1+49>|}+Gy06iZ&+~|^kB567so{Q@ zLZ?fyBH>a|JWHxbLnB4zz#Dvy=C_3_G;)iVHYJa3@eZQZjWP!QlfcIGtIDsim%u%r?`^)59RFVT`XU{LA;@J=mVh5WV8?XG8u)! z|Er89{X<7@!cUs&4Qtsp@95>&jeGibPqka5Dx!l_?4gJb z`kJ>=^Y=$|kP2Oi=%5W|WMs!wOz(-vjeK>7vWbyMwvjU$*4atX)-zs44RA{0P0LeO~9E+$fCADGH~L0 zY+Y4!;rgv%e3XQPy7(XcN{LZi@dB}y7iMphYW zP;%hchO|M;!^M%cw<9ogX0(LEvY|3s!s()6XS9UVN5hxV5}s)`bnhpPn2UdOt227{ z(AYU|0=FjfbOuN1C_Pq37l1~SL(c$zCZji!b#xjCGu3||e72wTAeypxFUYy?pTlVSkDTxAedCI9<2UOior>I+ctlRDzNPcfPo{Z1}(HvCUtrg=pva{GUf#hS=4QR#XM>U zi@Ez&CmtCcAW5}jc bzk+>!4mczkeFfx^ge+=(9cE~;EKd1<1M6%y diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index a6a9867c6906509b5561ca468df56d21da2f69ab..d707c15546e6eb37e8518349de76ca2dce0bf17e 100644 GIT binary patch delta 64 zcmcb1mg(AArVTBOhABx#=0&+FM*2y{25BjYX2~YTsTN787AZz)24)84mWHMl=Ba6^ U#)d}8M#hOLCZ?OWGAb?w0MpqN(f|Me delta 64 zcmcb1mg(AArVTBOhM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* U=1ImzrWVP`1{RyQGAb?w0LCK}W&i*H diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index b70c8c754b96b99abf094563524505c9f27fc76b..e19b7e5094af06f6b96a29917283005dc7b32757 100644 GIT binary patch delta 63 zcmV~$yA{A72mrvxL_zRF#u35FG+D_7G7O!|REzJ!r T&6A9cOf8a=4J;O4Vax#lz8(}% diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 1b1f01adb..98abd1f6f 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:34.527671Z", - "iopub.status.busy": "2024-07-30T16:31:34.527492Z", - "iopub.status.idle": "2024-07-30T16:31:36.140632Z", - "shell.execute_reply": "2024-07-30T16:31:36.140024Z" + "iopub.execute_input": "2024-08-02T23:17:23.433118Z", + "iopub.status.busy": "2024-08-02T23:17:23.432923Z", + "iopub.status.idle": "2024-08-02T23:17:24.941638Z", + "shell.execute_reply": "2024-08-02T23:17:24.941075Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:36.143586Z", - "iopub.status.busy": "2024-07-30T16:31:36.143047Z", - "iopub.status.idle": "2024-07-30T16:31:36.178768Z", - "shell.execute_reply": "2024-07-30T16:31:36.178228Z" + "iopub.execute_input": "2024-08-02T23:17:24.944158Z", + "iopub.status.busy": "2024-08-02T23:17:24.943875Z", + "iopub.status.idle": "2024-08-02T23:17:24.963528Z", + "shell.execute_reply": "2024-08-02T23:17:24.962963Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:36.181589Z", - "iopub.status.busy": "2024-07-30T16:31:36.181045Z", - "iopub.status.idle": "2024-07-30T16:31:36.338074Z", - "shell.execute_reply": "2024-07-30T16:31:36.337466Z" + "iopub.execute_input": "2024-08-02T23:17:24.966010Z", + "iopub.status.busy": "2024-08-02T23:17:24.965604Z", + "iopub.status.idle": "2024-08-02T23:17:25.079442Z", + "shell.execute_reply": "2024-08-02T23:17:25.078863Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:36.372204Z", - "iopub.status.busy": "2024-07-30T16:31:36.371964Z", - "iopub.status.idle": "2024-07-30T16:31:36.377781Z", - "shell.execute_reply": "2024-07-30T16:31:36.377262Z" + "iopub.execute_input": "2024-08-02T23:17:25.111044Z", + "iopub.status.busy": "2024-08-02T23:17:25.110645Z", + "iopub.status.idle": "2024-08-02T23:17:25.114497Z", + "shell.execute_reply": "2024-08-02T23:17:25.114027Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:36.380079Z", - "iopub.status.busy": "2024-07-30T16:31:36.379702Z", - "iopub.status.idle": "2024-07-30T16:31:36.389163Z", - "shell.execute_reply": "2024-07-30T16:31:36.388645Z" + "iopub.execute_input": "2024-08-02T23:17:25.116536Z", + "iopub.status.busy": "2024-08-02T23:17:25.116200Z", + "iopub.status.idle": "2024-08-02T23:17:25.124454Z", + "shell.execute_reply": "2024-08-02T23:17:25.123892Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:36.391552Z", - "iopub.status.busy": "2024-07-30T16:31:36.391341Z", - "iopub.status.idle": "2024-07-30T16:31:36.394409Z", - "shell.execute_reply": "2024-07-30T16:31:36.393862Z" + "iopub.execute_input": "2024-08-02T23:17:25.126998Z", + "iopub.status.busy": "2024-08-02T23:17:25.126543Z", + "iopub.status.idle": "2024-08-02T23:17:25.129409Z", + "shell.execute_reply": "2024-08-02T23:17:25.128804Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:36.396451Z", - "iopub.status.busy": "2024-07-30T16:31:36.396262Z", - "iopub.status.idle": "2024-07-30T16:31:36.936436Z", - "shell.execute_reply": "2024-07-30T16:31:36.935844Z" + "iopub.execute_input": "2024-08-02T23:17:25.131344Z", + "iopub.status.busy": "2024-08-02T23:17:25.131035Z", + "iopub.status.idle": "2024-08-02T23:17:25.655338Z", + "shell.execute_reply": "2024-08-02T23:17:25.654793Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:36.939261Z", - "iopub.status.busy": "2024-07-30T16:31:36.938884Z", - "iopub.status.idle": "2024-07-30T16:31:39.269788Z", - "shell.execute_reply": "2024-07-30T16:31:39.269009Z" + "iopub.execute_input": "2024-08-02T23:17:25.657837Z", + "iopub.status.busy": "2024-08-02T23:17:25.657465Z", + "iopub.status.idle": "2024-08-02T23:17:27.751426Z", + "shell.execute_reply": "2024-08-02T23:17:27.750727Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:39.273002Z", - "iopub.status.busy": "2024-07-30T16:31:39.272142Z", - "iopub.status.idle": "2024-07-30T16:31:39.283199Z", - "shell.execute_reply": "2024-07-30T16:31:39.282635Z" + "iopub.execute_input": "2024-08-02T23:17:27.754463Z", + "iopub.status.busy": "2024-08-02T23:17:27.753684Z", + "iopub.status.idle": "2024-08-02T23:17:27.764911Z", + "shell.execute_reply": "2024-08-02T23:17:27.764361Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:39.285386Z", - "iopub.status.busy": "2024-07-30T16:31:39.285054Z", - "iopub.status.idle": "2024-07-30T16:31:39.289139Z", - "shell.execute_reply": "2024-07-30T16:31:39.288681Z" + "iopub.execute_input": "2024-08-02T23:17:27.767199Z", + "iopub.status.busy": "2024-08-02T23:17:27.766875Z", + "iopub.status.idle": "2024-08-02T23:17:27.770951Z", + "shell.execute_reply": "2024-08-02T23:17:27.770498Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:39.291246Z", - "iopub.status.busy": "2024-07-30T16:31:39.290919Z", - "iopub.status.idle": "2024-07-30T16:31:39.298453Z", - "shell.execute_reply": "2024-07-30T16:31:39.297891Z" + "iopub.execute_input": "2024-08-02T23:17:27.772966Z", + "iopub.status.busy": "2024-08-02T23:17:27.772625Z", + "iopub.status.idle": "2024-08-02T23:17:27.779796Z", + "shell.execute_reply": "2024-08-02T23:17:27.779212Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:39.301188Z", - "iopub.status.busy": "2024-07-30T16:31:39.300801Z", - "iopub.status.idle": "2024-07-30T16:31:39.419299Z", - "shell.execute_reply": "2024-07-30T16:31:39.418728Z" + "iopub.execute_input": "2024-08-02T23:17:27.781951Z", + "iopub.status.busy": "2024-08-02T23:17:27.781645Z", + "iopub.status.idle": "2024-08-02T23:17:27.895282Z", + "shell.execute_reply": "2024-08-02T23:17:27.894690Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:39.421608Z", - "iopub.status.busy": "2024-07-30T16:31:39.421234Z", - "iopub.status.idle": "2024-07-30T16:31:39.424361Z", - "shell.execute_reply": "2024-07-30T16:31:39.423765Z" + "iopub.execute_input": "2024-08-02T23:17:27.897585Z", + "iopub.status.busy": "2024-08-02T23:17:27.897260Z", + "iopub.status.idle": "2024-08-02T23:17:27.899963Z", + "shell.execute_reply": "2024-08-02T23:17:27.899515Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:39.426671Z", - "iopub.status.busy": "2024-07-30T16:31:39.426252Z", - "iopub.status.idle": "2024-07-30T16:31:41.720026Z", - "shell.execute_reply": "2024-07-30T16:31:41.719145Z" + "iopub.execute_input": "2024-08-02T23:17:27.902092Z", + "iopub.status.busy": "2024-08-02T23:17:27.901699Z", + "iopub.status.idle": "2024-08-02T23:17:30.041948Z", + "shell.execute_reply": "2024-08-02T23:17:30.041308Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:41.723999Z", - "iopub.status.busy": "2024-07-30T16:31:41.722968Z", - "iopub.status.idle": "2024-07-30T16:31:41.736024Z", - "shell.execute_reply": "2024-07-30T16:31:41.735553Z" + "iopub.execute_input": "2024-08-02T23:17:30.045213Z", + "iopub.status.busy": "2024-08-02T23:17:30.044360Z", + "iopub.status.idle": "2024-08-02T23:17:30.055915Z", + "shell.execute_reply": "2024-08-02T23:17:30.055449Z" } }, "outputs": [ @@ -766,15 +766,30 @@ "We can see that the test set accuracy slightly improved as a result of the data cleaning. Note that this will not always be the case, especially when we evaluate on test data that are themselves noisy. The best practice is to run cleanlab to identify potential label issues and then manually review them, before blindly trusting any accuracy metrics. In particular, the most effort should be made to ensure high-quality test data, which is supposed to reflect the expected performance of our model during deployment." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] + }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:41.738164Z", - "iopub.status.busy": "2024-07-30T16:31:41.737959Z", - "iopub.status.idle": "2024-07-30T16:31:41.800777Z", - "shell.execute_reply": "2024-07-30T16:31:41.800288Z" + "iopub.execute_input": "2024-08-02T23:17:30.057830Z", + "iopub.status.busy": "2024-08-02T23:17:30.057653Z", + "iopub.status.idle": "2024-08-02T23:17:30.088205Z", + "shell.execute_reply": "2024-08-02T23:17:30.087743Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index 0ca024c1d..a81564d50 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:45.538656Z", - "iopub.status.busy": "2024-07-30T16:31:45.538493Z", - "iopub.status.idle": "2024-07-30T16:31:49.398554Z", - "shell.execute_reply": "2024-07-30T16:31:49.397834Z" + "iopub.execute_input": "2024-08-02T23:17:33.437374Z", + "iopub.status.busy": "2024-08-02T23:17:33.437203Z", + "iopub.status.idle": "2024-08-02T23:17:37.042923Z", + "shell.execute_reply": "2024-08-02T23:17:37.042233Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.401469Z", - "iopub.status.busy": "2024-07-30T16:31:49.401084Z", - "iopub.status.idle": "2024-07-30T16:31:49.404559Z", - "shell.execute_reply": "2024-07-30T16:31:49.404113Z" + "iopub.execute_input": "2024-08-02T23:17:37.045817Z", + "iopub.status.busy": "2024-08-02T23:17:37.045322Z", + "iopub.status.idle": "2024-08-02T23:17:37.049160Z", + "shell.execute_reply": "2024-08-02T23:17:37.048563Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.406866Z", - "iopub.status.busy": "2024-07-30T16:31:49.406454Z", - "iopub.status.idle": "2024-07-30T16:31:49.409954Z", - "shell.execute_reply": "2024-07-30T16:31:49.409295Z" + "iopub.execute_input": "2024-08-02T23:17:37.051274Z", + "iopub.status.busy": "2024-08-02T23:17:37.051087Z", + "iopub.status.idle": "2024-08-02T23:17:37.054580Z", + "shell.execute_reply": "2024-08-02T23:17:37.054080Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.412895Z", - "iopub.status.busy": "2024-07-30T16:31:49.412480Z", - "iopub.status.idle": "2024-07-30T16:31:49.471562Z", - "shell.execute_reply": "2024-07-30T16:31:49.470965Z" + "iopub.execute_input": "2024-08-02T23:17:37.056632Z", + "iopub.status.busy": "2024-08-02T23:17:37.056445Z", + "iopub.status.idle": "2024-08-02T23:17:37.094103Z", + "shell.execute_reply": "2024-08-02T23:17:37.093554Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.473824Z", - "iopub.status.busy": "2024-07-30T16:31:49.473632Z", - "iopub.status.idle": "2024-07-30T16:31:49.477513Z", - "shell.execute_reply": "2024-07-30T16:31:49.477050Z" + "iopub.execute_input": "2024-08-02T23:17:37.096154Z", + "iopub.status.busy": "2024-08-02T23:17:37.095963Z", + "iopub.status.idle": "2024-08-02T23:17:37.099840Z", + "shell.execute_reply": "2024-08-02T23:17:37.099374Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.479493Z", - "iopub.status.busy": "2024-07-30T16:31:49.479316Z", - "iopub.status.idle": "2024-07-30T16:31:49.482910Z", - "shell.execute_reply": "2024-07-30T16:31:49.482450Z" + "iopub.execute_input": "2024-08-02T23:17:37.101701Z", + "iopub.status.busy": "2024-08-02T23:17:37.101517Z", + "iopub.status.idle": "2024-08-02T23:17:37.104926Z", + "shell.execute_reply": "2024-08-02T23:17:37.104415Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'visa_or_mastercard', 'cancel_transfer', 'apple_pay_or_google_pay', 'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'change_pin'}\n" + "Classes: {'apple_pay_or_google_pay', 'cancel_transfer', 'change_pin', 'card_about_to_expire', 'beneficiary_not_allowed', 'visa_or_mastercard', 'getting_spare_card', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_payment_fee_charged'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.484867Z", - "iopub.status.busy": "2024-07-30T16:31:49.484521Z", - "iopub.status.idle": "2024-07-30T16:31:49.487821Z", - "shell.execute_reply": "2024-07-30T16:31:49.487340Z" + "iopub.execute_input": "2024-08-02T23:17:37.107157Z", + "iopub.status.busy": "2024-08-02T23:17:37.106820Z", + "iopub.status.idle": "2024-08-02T23:17:37.110074Z", + "shell.execute_reply": "2024-08-02T23:17:37.109475Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.489683Z", - "iopub.status.busy": "2024-07-30T16:31:49.489500Z", - "iopub.status.idle": "2024-07-30T16:31:49.492910Z", - "shell.execute_reply": "2024-07-30T16:31:49.492341Z" + "iopub.execute_input": "2024-08-02T23:17:37.112222Z", + "iopub.status.busy": "2024-08-02T23:17:37.111870Z", + "iopub.status.idle": "2024-08-02T23:17:37.115305Z", + "shell.execute_reply": "2024-08-02T23:17:37.114842Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.495136Z", - "iopub.status.busy": "2024-07-30T16:31:49.494608Z", - "iopub.status.idle": "2024-07-30T16:31:53.944545Z", - "shell.execute_reply": "2024-07-30T16:31:53.943984Z" + "iopub.execute_input": "2024-08-02T23:17:37.117435Z", + "iopub.status.busy": "2024-08-02T23:17:37.117091Z", + "iopub.status.idle": "2024-08-02T23:17:41.492569Z", + "shell.execute_reply": "2024-08-02T23:17:41.492001Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "97c7a5a1b558446099d39e138e95bd3c", + "model_id": "79ca72fe19f9461bbd6eac4989f0d0e5", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "91c91931728e42119a5ed1a8e771a320", + "model_id": "19931fa885eb4bfe9823463770d72209", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a58243eb6a194ea7957507b4c0fcd20c", + "model_id": "41323f0f880b493180c67d1f67ae6818", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f47d961a8a6443fdb97fc093198a3a37", + "model_id": "c5358d2af5f4413db78296cb4e822b6d", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cd86dc9f79bf4ea6b32ccf1b10684fdd", + "model_id": "f95fa2a0418543fea006ef9489d34baf", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3f07a08b8ebf486cbecde146931b6ae3", + "model_id": "3dcc386a355446078b0260d76f1f460b", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d9438aa4de0a49669ef6cc3e242dea8a", + "model_id": "48f13ab0fd1e4de9a23d90349ff0827c", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:53.947400Z", - "iopub.status.busy": "2024-07-30T16:31:53.946989Z", - "iopub.status.idle": "2024-07-30T16:31:53.949968Z", - "shell.execute_reply": "2024-07-30T16:31:53.949474Z" + "iopub.execute_input": "2024-08-02T23:17:41.495465Z", + "iopub.status.busy": "2024-08-02T23:17:41.495109Z", + "iopub.status.idle": "2024-08-02T23:17:41.498080Z", + "shell.execute_reply": "2024-08-02T23:17:41.497515Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:53.952023Z", - "iopub.status.busy": "2024-07-30T16:31:53.951691Z", - "iopub.status.idle": "2024-07-30T16:31:53.954244Z", - "shell.execute_reply": "2024-07-30T16:31:53.953779Z" + "iopub.execute_input": "2024-08-02T23:17:41.500217Z", + "iopub.status.busy": "2024-08-02T23:17:41.499902Z", + "iopub.status.idle": "2024-08-02T23:17:41.502619Z", + "shell.execute_reply": "2024-08-02T23:17:41.502156Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:53.956328Z", - "iopub.status.busy": "2024-07-30T16:31:53.955997Z", - "iopub.status.idle": "2024-07-30T16:31:56.844109Z", - "shell.execute_reply": "2024-07-30T16:31:56.843384Z" + "iopub.execute_input": "2024-08-02T23:17:41.504428Z", + "iopub.status.busy": "2024-08-02T23:17:41.504253Z", + "iopub.status.idle": "2024-08-02T23:17:44.256566Z", + "shell.execute_reply": "2024-08-02T23:17:44.255764Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:56.847565Z", - "iopub.status.busy": "2024-07-30T16:31:56.846661Z", - "iopub.status.idle": "2024-07-30T16:31:56.854826Z", - "shell.execute_reply": "2024-07-30T16:31:56.854335Z" + "iopub.execute_input": "2024-08-02T23:17:44.259923Z", + "iopub.status.busy": "2024-08-02T23:17:44.259087Z", + "iopub.status.idle": "2024-08-02T23:17:44.267224Z", + "shell.execute_reply": "2024-08-02T23:17:44.266727Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:56.856986Z", - "iopub.status.busy": "2024-07-30T16:31:56.856636Z", - "iopub.status.idle": "2024-07-30T16:31:56.860988Z", - "shell.execute_reply": "2024-07-30T16:31:56.860503Z" + "iopub.execute_input": "2024-08-02T23:17:44.269594Z", + "iopub.status.busy": "2024-08-02T23:17:44.268945Z", + "iopub.status.idle": "2024-08-02T23:17:44.273323Z", + "shell.execute_reply": "2024-08-02T23:17:44.272797Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:56.863129Z", - "iopub.status.busy": "2024-07-30T16:31:56.862787Z", - "iopub.status.idle": "2024-07-30T16:31:56.866220Z", - "shell.execute_reply": "2024-07-30T16:31:56.865721Z" + "iopub.execute_input": "2024-08-02T23:17:44.275271Z", + "iopub.status.busy": "2024-08-02T23:17:44.275085Z", + "iopub.status.idle": "2024-08-02T23:17:44.278514Z", + "shell.execute_reply": "2024-08-02T23:17:44.278038Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:56.868248Z", - "iopub.status.busy": "2024-07-30T16:31:56.867919Z", - "iopub.status.idle": "2024-07-30T16:31:56.871062Z", - "shell.execute_reply": "2024-07-30T16:31:56.870497Z" + "iopub.execute_input": "2024-08-02T23:17:44.280425Z", + "iopub.status.busy": "2024-08-02T23:17:44.280248Z", + "iopub.status.idle": "2024-08-02T23:17:44.283388Z", + "shell.execute_reply": "2024-08-02T23:17:44.282925Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:56.873122Z", - "iopub.status.busy": "2024-07-30T16:31:56.872946Z", - "iopub.status.idle": "2024-07-30T16:31:56.880133Z", - "shell.execute_reply": "2024-07-30T16:31:56.879673Z" + "iopub.execute_input": "2024-08-02T23:17:44.285353Z", + "iopub.status.busy": "2024-08-02T23:17:44.284986Z", + "iopub.status.idle": "2024-08-02T23:17:44.291834Z", + "shell.execute_reply": "2024-08-02T23:17:44.291282Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:56.882358Z", - "iopub.status.busy": "2024-07-30T16:31:56.881972Z", - "iopub.status.idle": "2024-07-30T16:31:57.113724Z", - "shell.execute_reply": "2024-07-30T16:31:57.113137Z" + "iopub.execute_input": "2024-08-02T23:17:44.294132Z", + "iopub.status.busy": "2024-08-02T23:17:44.293791Z", + "iopub.status.idle": "2024-08-02T23:17:44.521530Z", + "shell.execute_reply": "2024-08-02T23:17:44.520927Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:57.116220Z", - "iopub.status.busy": "2024-07-30T16:31:57.115868Z", - "iopub.status.idle": "2024-07-30T16:31:57.325117Z", - "shell.execute_reply": "2024-07-30T16:31:57.324552Z" + "iopub.execute_input": "2024-08-02T23:17:44.524094Z", + "iopub.status.busy": "2024-08-02T23:17:44.523689Z", + "iopub.status.idle": "2024-08-02T23:17:44.700348Z", + "shell.execute_reply": "2024-08-02T23:17:44.699773Z" }, "scrolled": true }, @@ -1053,15 +1053,30 @@ "We can see that the test set accuracy slightly improved as a result of the data cleaning. Note that this will not always be the case, especially when we are evaluating on test data that are themselves noisy. The best practice is to run cleanlab to identify potential label issues and then manually review them, before blindly trusting any accuracy metrics. In particular, the most effort should be made to ensure high-quality test data, which is supposed to reflect the expected performance of our model during deployment.\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] + }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:57.328218Z", - "iopub.status.busy": "2024-07-30T16:31:57.327844Z", - "iopub.status.idle": "2024-07-30T16:31:57.332176Z", - "shell.execute_reply": "2024-07-30T16:31:57.331645Z" + "iopub.execute_input": "2024-08-02T23:17:44.703922Z", + "iopub.status.busy": "2024-08-02T23:17:44.702968Z", + "iopub.status.idle": "2024-08-02T23:17:44.707974Z", + "shell.execute_reply": "2024-08-02T23:17:44.707467Z" }, "nbsphinx": "hidden" }, @@ -1105,86 +1120,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0243ca7793174c8d987c19c51daa3a90": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "05556e121c214fd9a3ccf7b3e260d069": { + "00b3fc965ace45049424fb49eba903d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b562a3e54de946de8de1969318bc9932", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5899664489c24407968ee1c33db9b3ed", + "layout": "IPY_MODEL_26c36a7800b64d168039eac3e45c9ac2", + "placeholder": "​", + "style": "IPY_MODEL_25947bd3be8c437080a8ae5d2281bab7", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": "pytorch_model.bin: 100%" } }, - "09d6edb40022407d9d74e5d3f54b74a7": { + "0100fb360a27418bb18af6913b9ca65d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1199,33 +1158,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_92f1ff004b1f40519e67fbe042500034", + "layout": "IPY_MODEL_7d7037c1fbe045e5973787251a6a6227", "placeholder": "​", - "style": "IPY_MODEL_4084d229b3ea480b905a4c74c66cf73d", + "style": "IPY_MODEL_cf1f4d20a9d74334b6e45089bc689b1e", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": " 2.21k/2.21k [00:00<00:00, 387kB/s]" } }, - "0b13ec61dc594dfda9fb9ff4a3ffa610": { + "019e85d71a7d4470b20615c82d18731d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "0b36279738da476c8b898b110b96cb68": { + "0aca0dce93c34498b434f71953c7af79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1278,25 +1235,7 @@ "width": null } }, - "0d2e898cf98f4ff0bf943ff097e1df72": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "16f0cb3955fd4bc4ad142727ace2acb7": { + "107bf3554d0a492c84e7f8b1871ca51b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1311,41 +1250,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d2f0816714c7481ea3ba31bd7408fe93", + "layout": "IPY_MODEL_8cd322aa3cdf4c2e8a035c51a8784b7b", "placeholder": "​", - "style": "IPY_MODEL_f9e39c8f34f044faabfd9b2d9c388e8e", + "style": "IPY_MODEL_ee837da33ca6482daecb6cc7bb8552e6", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": " 48.0/48.0 [00:00<00:00, 9.17kB/s]" } }, - "19de02d763694c5da9f2eb73acc8c2d8": { + "110998629dbb4b208e73d47bf58de355": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f492c8a7a79d41b082fc05a8a4fa2314", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d6a96c30e59a4ad1801f48d9410f7122", + "layout": "IPY_MODEL_155a504134db4f7cb08da33c50bbcb20", + "placeholder": "​", + "style": "IPY_MODEL_70366cece2914512b1c2b2143f43b503", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": "tokenizer.json: 100%" } }, - "1f441a285fe8463eb8d4917032d171f6": { + "12bb52e641db44648cbe891fdb932ff7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1363,30 +1299,7 @@ "text_color": null } }, - "24871bcd90cc412a87f3523b51b28390": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bb8179f5ad91428198964675263f3c98", - "placeholder": "​", - "style": "IPY_MODEL_6a5bc0b6202c42d4becd870c3fc89c4a", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "2cd2c3cd9a904a8393460eb703c6bfe3": { + "155a504134db4f7cb08da33c50bbcb20": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1439,7 +1352,7 @@ "width": null } }, - "2d0af3b45858495695ecd11901488921": { + "157404421a494ce7a67f430989da1c82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1492,33 +1405,84 @@ "width": null } }, - "2e1b0d7a21034fc5824ae939b257969c": { + "19931fa885eb4bfe9823463770d72209": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2fd8b281b8a747ff8f3a6b5dd31fa793", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_55672ddc10b54cec865a6468894f8351", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4546c18600d0496ea6cbc9f8f5831e45", + "IPY_MODEL_e243840c5ab643799fff8fc0b99c895a", + "IPY_MODEL_0100fb360a27418bb18af6913b9ca65d" + ], + "layout": "IPY_MODEL_de23c2221f294627b5bf466382b61dff", "tabbable": null, - "tooltip": null, - "value": 466062.0 + "tooltip": null + } + }, + "21e3dddbfa94452b9ac53bb847706c42": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2f7d28a055234c1d9dec696453f0b0d8": { + "25947bd3be8c437080a8ae5d2281bab7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1536,7 +1500,7 @@ "text_color": null } }, - "2fd8b281b8a747ff8f3a6b5dd31fa793": { + "26c36a7800b64d168039eac3e45c9ac2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1589,23 +1553,7 @@ "width": null } }, - "317e39ae55e344a2b95726702a28d6e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "318a21d452c84bceac013df1bdff9465": { + "2a62efa4ac0b4a71bdcd653a27c8aaa2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1658,7 +1606,7 @@ "width": null } }, - "3c44f2615b974d98a8796c59d501f913": { + "2fa864a54c3e4560b5074dce5fff7580": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1673,57 +1621,61 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_46885cc820904880a25c68c839f552a7", + "layout": "IPY_MODEL_157404421a494ce7a67f430989da1c82", "placeholder": "​", - "style": "IPY_MODEL_54eaf3ed21294c3ca4cc75eea7eeaf3c", + "style": "IPY_MODEL_4340edf5a20f4f8ab38475dc8c2b7e83", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 9.54MB/s]" + "value": " 665/665 [00:00<00:00, 135kB/s]" } }, - "3f07a08b8ebf486cbecde146931b6ae3": { + "330abcbacade4416996e77330f6c1d24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_564246d366604d34ab1d16ad529ba126", - "IPY_MODEL_05556e121c214fd9a3ccf7b3e260d069", - "IPY_MODEL_4cee3f6cf3334eca8b80cf3b48dcb2c9" - ], - "layout": "IPY_MODEL_318a21d452c84bceac013df1bdff9465", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fd22a9571a294002baa926714a442d12", + "placeholder": "​", + "style": "IPY_MODEL_67cdded3e11549e99de756a182e12bc1", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 5.48MB/s]" } }, - "4084d229b3ea480b905a4c74c66cf73d": { + "39e900d03806496d9c99a7ae184fdf8f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b90285e7befb48db88850278d4304fd0", + "placeholder": "​", + "style": "IPY_MODEL_89cd948eecda46b18b6d0f8a18b5c5d2", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 13.0MB/s]" } }, - "45c8dc232e4c422a8454eafb546ca6d8": { + "3d77a293b1c5401e9a13b51ee90fec1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1738,144 +1690,99 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7de6fba59ec94a1aa5df391d3b952eea", + "layout": "IPY_MODEL_6928da7dd853474eb8801471d9d20d94", "placeholder": "​", - "style": "IPY_MODEL_f16d80c7cb544353a5e1babe95cc1a97", + "style": "IPY_MODEL_d55c849378c54f23a5b49a5fb9777654", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 28.7MB/s]" + "value": " 54.2M/54.2M [00:00<00:00, 130MB/s]" } }, - "46885cc820904880a25c68c839f552a7": { - "model_module": "@jupyter-widgets/base", + "3dcc386a355446078b0260d76f1f460b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_746f1ffec44346a08e11d72bf194e1a9", + "IPY_MODEL_5fdfe72cdf0b4230b8e0c03a8417db9a", + "IPY_MODEL_107bf3554d0a492c84e7f8b1871ca51b" + ], + "layout": "IPY_MODEL_5819281c23e04a3e82d138bcef6b731f", + "tabbable": null, + "tooltip": null } }, - "4a10916e9e8e41ad8ad3c7000d4222bd": { - "model_module": "@jupyter-widgets/base", + "3f280135a5354b9c9745f8243f7aacfa": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4cee3f6cf3334eca8b80cf3b48dcb2c9": { + "41323f0f880b493180c67d1f67ae6818": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ef05813c951740c2a35d4b744ebef5a6", - "placeholder": "​", - "style": "IPY_MODEL_6059268df3744b559c76372905e85f89", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e85e6838b3e46c284da9cfce9840515", + "IPY_MODEL_7476603e2afd47d7adb45667410a81a1", + "IPY_MODEL_2fa864a54c3e4560b5074dce5fff7580" + ], + "layout": "IPY_MODEL_828a08d1a3e243e7b0ebe3e3f594765a", "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.35kB/s]" + "tooltip": null } }, - "4dc231bcb3b84bae9ceb7afa763c8645": { + "4340edf5a20f4f8ab38475dc8c2b7e83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4546c18600d0496ea6cbc9f8f5831e45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1890,38 +1797,55 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4a10916e9e8e41ad8ad3c7000d4222bd", + "layout": "IPY_MODEL_e61f8cef8f3c4b64a89831c5e3090a02", "placeholder": "​", - "style": "IPY_MODEL_cf8ed7281baa435093a60e267938b36c", + "style": "IPY_MODEL_f037dad91c8344b5a3944409dafedc83", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 125kB/s]" + "value": "README.md: 100%" } }, - "4e75d528fab848b998f06bb5793338b2": { + "461d3d7cfa194e24b0b433dacbd1b768": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "48f13ab0fd1e4de9a23d90349ff0827c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0243ca7793174c8d987c19c51daa3a90", - "placeholder": "​", - "style": "IPY_MODEL_0b13ec61dc594dfda9fb9ff4a3ffa610", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cea8c4bad6e642a4ae37f539b55258c6", + "IPY_MODEL_d610ba808b77410588da789369677dfe", + "IPY_MODEL_330abcbacade4416996e77330f6c1d24" + ], + "layout": "IPY_MODEL_cb9ece536faa43b9ac00844cff125fb2", "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 413kB/s]" + "tooltip": null } }, - "52be430244ac43218140c7633e6f1dfa": { + "4917b4bdda8949d59debb808346551eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1936,15 +1860,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2d0af3b45858495695ecd11901488921", + "layout": "IPY_MODEL_953512f4a5194aa7ba11b02f82829d98", "placeholder": "​", - "style": "IPY_MODEL_0d2e898cf98f4ff0bf943ff097e1df72", + "style": "IPY_MODEL_92268d0885fe46278fd9858b0a9409be", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 68.8kB/s]" + "value": ".gitattributes: 100%" } }, - "534c2062a82441dcbe8775003ff3ab5f": { + "5819281c23e04a3e82d138bcef6b731f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1997,25 +1921,7 @@ "width": null } }, - "54eaf3ed21294c3ca4cc75eea7eeaf3c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "55672ddc10b54cec865a6468894f8351": { + "5ab23e5c8c3d4ad881325a53c1fab2bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2031,62 +1937,51 @@ "description_width": "" } }, - "55a0b5fabd584495be04d9dc3cb4051e": { + "5fdfe72cdf0b4230b8e0c03a8417db9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "564246d366604d34ab1d16ad529ba126": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0b36279738da476c8b898b110b96cb68", - "placeholder": "​", - "style": "IPY_MODEL_2f7d28a055234c1d9dec696453f0b0d8", + "layout": "IPY_MODEL_de9ef4edb15f4844995353aa29730052", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e4ed003a00984824a6a76dd7f26b8d19", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": 48.0 } }, - "5899664489c24407968ee1c33db9b3ed": { + "67cdded3e11549e99de756a182e12bc1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5a71b8cd70d84f7ba31770899fe09c9b": { + "6928da7dd853474eb8801471d9d20d94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2139,7 +2034,7 @@ "width": null } }, - "6059268df3744b559c76372905e85f89": { + "70366cece2914512b1c2b2143f43b503": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2157,25 +2052,30 @@ "text_color": null } }, - "6a5bc0b6202c42d4becd870c3fc89c4a": { + "746f1ffec44346a08e11d72bf194e1a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a09069a5c6784ff4a6fc1d0200c912ba", + "placeholder": "​", + "style": "IPY_MODEL_b884d5e519124006bad3e25b7dba9370", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "6c5f50cde5734e65ae80022e95c8a7d2": { + "7476603e2afd47d7adb45667410a81a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2191,17 +2091,200 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b969c4646a1f4296a60d5269570d7812", - "max": 231508.0, + "layout": "IPY_MODEL_834cd3cb87cb421f997b0231ef6ed9fb", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_55a0b5fabd584495be04d9dc3cb4051e", + "style": "IPY_MODEL_019e85d71a7d4470b20615c82d18731d", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": 665.0 + } + }, + "79ca72fe19f9461bbd6eac4989f0d0e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4917b4bdda8949d59debb808346551eb", + "IPY_MODEL_d3751c0c966e428d917cb8c515093971", + "IPY_MODEL_f5b455d725ec4cabb55353c7f1e0a1e6" + ], + "layout": "IPY_MODEL_0aca0dce93c34498b434f71953c7af79", + "tabbable": null, + "tooltip": null + } + }, + "7d7037c1fbe045e5973787251a6a6227": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "828a08d1a3e243e7b0ebe3e3f594765a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "834cd3cb87cb421f997b0231ef6ed9fb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6d71c0eb8f1045b997085b72f441bf64": { + "89cd948eecda46b18b6d0f8a18b5c5d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2219,33 +2302,7 @@ "text_color": null } }, - "753e8b7795c943afa31e39370262dac0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_948f678b67764226a70290363bc21f69", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_317e39ae55e344a2b95726702a28d6e6", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "7de6fba59ec94a1aa5df391d3b952eea": { + "8cd322aa3cdf4c2e8a035c51a8784b7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2298,7 +2355,7 @@ "width": null } }, - "80b423d8da65443590ae4c634d0b83a7": { + "8e85e6838b3e46c284da9cfce9840515": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2313,15 +2370,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_534c2062a82441dcbe8775003ff3ab5f", + "layout": "IPY_MODEL_efa72deff06c4a40a14b3c6a129562e0", "placeholder": "​", - "style": "IPY_MODEL_1f441a285fe8463eb8d4917032d171f6", + "style": "IPY_MODEL_12bb52e641db44648cbe891fdb932ff7", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" + "value": "config.json: 100%" } }, - "8da99fc57db34318a69f0a2f7aa23f9e": { + "8eaf7f7ef5084839870fca73115e8b92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2374,31 +2431,25 @@ "width": null } }, - "91c91931728e42119a5ed1a8e771a320": { + "92268d0885fe46278fd9858b0a9409be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fc3db8eb310345b3b1c927bd575ab50e", - "IPY_MODEL_cf7840537df1484d8fb3ea86b9dee4a6", - "IPY_MODEL_4e75d528fab848b998f06bb5793338b2" - ], - "layout": "IPY_MODEL_97a2c254de1b4787a362825c816f4b69", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "92f1ff004b1f40519e67fbe042500034": { + "953512f4a5194aa7ba11b02f82829d98": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2451,7 +2502,23 @@ "width": null } }, - "948f678b67764226a70290363bc21f69": { + "9ce2a27e1f6a44dda4aa7f1350d99e23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a04eb2a3161a423fa45a690ecfb0db64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2504,33 +2571,7 @@ "width": null } }, - "94a5cc6c053e4ead8726e97f9ce65217": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d6c44d17bd624eb985c735cf50307d2b", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e50c4161bc6e46ceb2c825d8a4f8cb98", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "97a2c254de1b4787a362825c816f4b69": { + "a09069a5c6784ff4a6fc1d0200c912ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2583,31 +2624,7 @@ "width": null } }, - "97c7a5a1b558446099d39e138e95bd3c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16f0cb3955fd4bc4ad142727ace2acb7", - "IPY_MODEL_94a5cc6c053e4ead8726e97f9ce65217", - "IPY_MODEL_52be430244ac43218140c7633e6f1dfa" - ], - "layout": "IPY_MODEL_f57043327c7a43d580fbd77e72e74801", - "tabbable": null, - "tooltip": null - } - }, - "9e52acaf4e244873ab2a7f8db7a56f87": { + "a359dcf4a2e24056b90df34499bb6c1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2660,31 +2677,25 @@ "width": null } }, - "a58243eb6a194ea7957507b4c0fcd20c": { + "b884d5e519124006bad3e25b7dba9370": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_24871bcd90cc412a87f3523b51b28390", - "IPY_MODEL_19de02d763694c5da9f2eb73acc8c2d8", - "IPY_MODEL_4dc231bcb3b84bae9ceb7afa763c8645" - ], - "layout": "IPY_MODEL_badf4422987648d180ccbecfa7665702", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b562a3e54de946de8de1969318bc9932": { + "b90285e7befb48db88850278d4304fd0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2737,7 +2748,7 @@ "width": null } }, - "b969c4646a1f4296a60d5269570d7812": { + "c3c4f83d199041848bc14699273a6582": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2790,7 +2801,31 @@ "width": null } }, - "badf4422987648d180ccbecfa7665702": { + "c5358d2af5f4413db78296cb4e822b6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_00b3fc965ace45049424fb49eba903d3", + "IPY_MODEL_dc2130e2f8c246a6add362a3d24c0bca", + "IPY_MODEL_3d77a293b1c5401e9a13b51ee90fec1e" + ], + "layout": "IPY_MODEL_a04eb2a3161a423fa45a690ecfb0db64", + "tabbable": null, + "tooltip": null + } + }, + "cb59bdf9e30245ccac60b1a082c76470": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2843,7 +2878,7 @@ "width": null } }, - "bb8179f5ad91428198964675263f3c98": { + "cb9ece536faa43b9ac00844cff125fb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2896,7 +2931,7 @@ "width": null } }, - "c394f7a4870a4f5f8de748644e8df357": { + "ccc099e5560140f78c079b4e796e1f16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2914,31 +2949,92 @@ "text_color": null } }, - "cd86dc9f79bf4ea6b32ccf1b10684fdd": { + "cea8c4bad6e642a4ae37f539b55258c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_09d6edb40022407d9d74e5d3f54b74a7", - "IPY_MODEL_2e1b0d7a21034fc5824ae939b257969c", - "IPY_MODEL_3c44f2615b974d98a8796c59d501f913" - ], - "layout": "IPY_MODEL_ee3043f31e4f41de93cd71ed1d3aaceb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ead09590d1484e47a2e6236591cce4fc", + "placeholder": "​", + "style": "IPY_MODEL_ccc099e5560140f78c079b4e796e1f16", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "cf1f4d20a9d74334b6e45089bc689b1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d3751c0c966e428d917cb8c515093971": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a359dcf4a2e24056b90df34499bb6c1c", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_df94b95e62304decbf62a90025f02516", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "d55c849378c54f23a5b49a5fb9777654": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cf7840537df1484d8fb3ea86b9dee4a6": { + "d610ba808b77410588da789369677dfe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2954,35 +3050,43 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d4bfc6c1d28d468a844bbd112010b800", - "max": 2211.0, + "layout": "IPY_MODEL_8eaf7f7ef5084839870fca73115e8b92", + "max": 231508.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_debd8d9478f64845b7f4de702d42849e", + "style": "IPY_MODEL_461d3d7cfa194e24b0b433dacbd1b768", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": 231508.0 } }, - "cf8ed7281baa435093a60e267938b36c": { + "dc2130e2f8c246a6add362a3d24c0bca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ec20ad631a00444bbe3f32833bf83dc8", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ff310b8c1a574ff6af2c52581c6b20f1", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 } }, - "d2f0816714c7481ea3ba31bd7408fe93": { + "de23c2221f294627b5bf466382b61dff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3035,7 +3139,7 @@ "width": null } }, - "d4bfc6c1d28d468a844bbd112010b800": { + "de9ef4edb15f4844995353aa29730052": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3088,7 +3192,49 @@ "width": null } }, - "d6a96c30e59a4ad1801f48d9410f7122": { + "df94b95e62304decbf62a90025f02516": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e243840c5ab643799fff8fc0b99c895a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cb59bdf9e30245ccac60b1a082c76470", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5ab23e5c8c3d4ad881325a53c1fab2bd", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "e4ed003a00984824a6a76dd7f26b8d19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3104,7 +3250,33 @@ "description_width": "" } }, - "d6c44d17bd624eb985c735cf50307d2b": { + "e56c074b43db4299a289b48b848b8805": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21e3dddbfa94452b9ac53bb847706c42", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9ce2a27e1f6a44dda4aa7f1350d99e23", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "e61f8cef8f3c4b64a89831c5e3090a02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3157,47 +3329,7 @@ "width": null } }, - "d9438aa4de0a49669ef6cc3e242dea8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_80b423d8da65443590ae4c634d0b83a7", - "IPY_MODEL_6c5f50cde5734e65ae80022e95c8a7d2", - "IPY_MODEL_45c8dc232e4c422a8454eafb546ca6d8" - ], - "layout": "IPY_MODEL_8da99fc57db34318a69f0a2f7aa23f9e", - "tabbable": null, - "tooltip": null - } - }, - "debd8d9478f64845b7f4de702d42849e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "df19c92cc2b34e7ca61218f410745348": { + "ead09590d1484e47a2e6236591cce4fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3250,23 +3382,7 @@ "width": null } }, - "e50c4161bc6e46ceb2c825d8a4f8cb98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ee3043f31e4f41de93cd71ed1d3aaceb": { + "ec20ad631a00444bbe3f32833bf83dc8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3319,30 +3435,25 @@ "width": null } }, - "eebcc942ebba414e8985c53b0046690f": { + "ee837da33ca6482daecb6cc7bb8552e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2cd2c3cd9a904a8393460eb703c6bfe3", - "placeholder": "​", - "style": "IPY_MODEL_6d71c0eb8f1045b997085b72f441bf64", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ef05813c951740c2a35d4b744ebef5a6": { + "efa72deff06c4a40a14b3c6a129562e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3395,7 +3506,7 @@ "width": null } }, - "f16d80c7cb544353a5e1babe95cc1a97": { + "f037dad91c8344b5a3944409dafedc83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3413,7 +3524,7 @@ "text_color": null } }, - "f44abb2240724661a8f28fabeb7e6152": { + "f5b455d725ec4cabb55353c7f1e0a1e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3428,15 +3539,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_df19c92cc2b34e7ca61218f410745348", + "layout": "IPY_MODEL_2a62efa4ac0b4a71bdcd653a27c8aaa2", "placeholder": "​", - "style": "IPY_MODEL_fe392344d7834620bada4587f2dbf065", + "style": "IPY_MODEL_3f280135a5354b9c9745f8243f7aacfa", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 237MB/s]" + "value": " 391/391 [00:00<00:00, 65.2kB/s]" } }, - "f47d961a8a6443fdb97fc093198a3a37": { + "f95fa2a0418543fea006ef9489d34baf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3451,69 +3562,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_eebcc942ebba414e8985c53b0046690f", - "IPY_MODEL_753e8b7795c943afa31e39370262dac0", - "IPY_MODEL_f44abb2240724661a8f28fabeb7e6152" + "IPY_MODEL_110998629dbb4b208e73d47bf58de355", + "IPY_MODEL_e56c074b43db4299a289b48b848b8805", + "IPY_MODEL_39e900d03806496d9c99a7ae184fdf8f" ], - "layout": "IPY_MODEL_9e52acaf4e244873ab2a7f8db7a56f87", + "layout": "IPY_MODEL_c3c4f83d199041848bc14699273a6582", "tabbable": null, "tooltip": null } }, - "f492c8a7a79d41b082fc05a8a4fa2314": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f57043327c7a43d580fbd77e72e74801": { + "fd22a9571a294002baa926714a442d12": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3566,63 +3624,20 @@ "width": null } }, - "f9e39c8f34f044faabfd9b2d9c388e8e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fc3db8eb310345b3b1c927bd575ab50e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5a71b8cd70d84f7ba31770899fe09c9b", - "placeholder": "​", - "style": "IPY_MODEL_c394f7a4870a4f5f8de748644e8df357", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "fe392344d7834620bada4587f2dbf065": { + "ff310b8c1a574ff6af2c52581c6b20f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index a2d329ad2..a38491bc9 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:01.430387Z", - "iopub.status.busy": "2024-07-30T16:32:01.430194Z", - "iopub.status.idle": "2024-07-30T16:32:07.507356Z", - "shell.execute_reply": "2024-07-30T16:32:07.506775Z" + "iopub.execute_input": "2024-08-02T23:17:48.674521Z", + "iopub.status.busy": "2024-08-02T23:17:48.674006Z", + "iopub.status.idle": "2024-08-02T23:17:54.489657Z", + "shell.execute_reply": "2024-08-02T23:17:54.489092Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:07.510541Z", - "iopub.status.busy": "2024-07-30T16:32:07.509839Z", - "iopub.status.idle": "2024-07-30T16:32:07.513583Z", - "shell.execute_reply": "2024-07-30T16:32:07.513077Z" + "iopub.execute_input": "2024-08-02T23:17:54.492364Z", + "iopub.status.busy": "2024-08-02T23:17:54.491862Z", + "iopub.status.idle": "2024-08-02T23:17:54.495158Z", + "shell.execute_reply": "2024-08-02T23:17:54.494599Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:07.515817Z", - "iopub.status.busy": "2024-07-30T16:32:07.515454Z", - "iopub.status.idle": "2024-07-30T16:32:07.520703Z", - "shell.execute_reply": "2024-07-30T16:32:07.520274Z" + "iopub.execute_input": "2024-08-02T23:17:54.497251Z", + "iopub.status.busy": "2024-08-02T23:17:54.496901Z", + "iopub.status.idle": "2024-08-02T23:17:54.501477Z", + "shell.execute_reply": "2024-08-02T23:17:54.501011Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:07.522733Z", - "iopub.status.busy": "2024-07-30T16:32:07.522401Z", - "iopub.status.idle": "2024-07-30T16:32:09.284078Z", - "shell.execute_reply": "2024-07-30T16:32:09.283231Z" + "iopub.execute_input": "2024-08-02T23:17:54.503439Z", + "iopub.status.busy": "2024-08-02T23:17:54.503137Z", + "iopub.status.idle": "2024-08-02T23:17:56.103711Z", + "shell.execute_reply": "2024-08-02T23:17:56.103032Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:09.287053Z", - "iopub.status.busy": "2024-07-30T16:32:09.286654Z", - "iopub.status.idle": "2024-07-30T16:32:09.297621Z", - "shell.execute_reply": "2024-07-30T16:32:09.297169Z" + "iopub.execute_input": "2024-08-02T23:17:56.106386Z", + "iopub.status.busy": "2024-08-02T23:17:56.106173Z", + "iopub.status.idle": "2024-08-02T23:17:56.117184Z", + "shell.execute_reply": "2024-08-02T23:17:56.116749Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:09.299786Z", - "iopub.status.busy": "2024-07-30T16:32:09.299427Z", - "iopub.status.idle": "2024-07-30T16:32:09.304872Z", - "shell.execute_reply": "2024-07-30T16:32:09.304392Z" + "iopub.execute_input": "2024-08-02T23:17:56.119274Z", + "iopub.status.busy": "2024-08-02T23:17:56.118919Z", + "iopub.status.idle": "2024-08-02T23:17:56.124342Z", + "shell.execute_reply": "2024-08-02T23:17:56.123884Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:09.307010Z", - "iopub.status.busy": "2024-07-30T16:32:09.306676Z", - "iopub.status.idle": "2024-07-30T16:32:09.814179Z", - "shell.execute_reply": "2024-07-30T16:32:09.813575Z" + "iopub.execute_input": "2024-08-02T23:17:56.126193Z", + "iopub.status.busy": "2024-08-02T23:17:56.126017Z", + "iopub.status.idle": "2024-08-02T23:17:56.587440Z", + "shell.execute_reply": "2024-08-02T23:17:56.586822Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:09.816449Z", - "iopub.status.busy": "2024-07-30T16:32:09.816091Z", - "iopub.status.idle": "2024-07-30T16:32:11.566172Z", - "shell.execute_reply": "2024-07-30T16:32:11.565639Z" + "iopub.execute_input": "2024-08-02T23:17:56.589528Z", + "iopub.status.busy": "2024-08-02T23:17:56.589339Z", + "iopub.status.idle": "2024-08-02T23:17:57.247247Z", + "shell.execute_reply": "2024-08-02T23:17:57.246625Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:11.568615Z", - "iopub.status.busy": "2024-07-30T16:32:11.568320Z", - "iopub.status.idle": "2024-07-30T16:32:11.586724Z", - "shell.execute_reply": "2024-07-30T16:32:11.586277Z" + "iopub.execute_input": "2024-08-02T23:17:57.249823Z", + "iopub.status.busy": "2024-08-02T23:17:57.249401Z", + "iopub.status.idle": "2024-08-02T23:17:57.268344Z", + "shell.execute_reply": "2024-08-02T23:17:57.267769Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:11.588741Z", - "iopub.status.busy": "2024-07-30T16:32:11.588441Z", - "iopub.status.idle": "2024-07-30T16:32:11.591552Z", - "shell.execute_reply": "2024-07-30T16:32:11.591039Z" + "iopub.execute_input": "2024-08-02T23:17:57.270433Z", + "iopub.status.busy": "2024-08-02T23:17:57.270112Z", + "iopub.status.idle": "2024-08-02T23:17:57.273390Z", + "shell.execute_reply": "2024-08-02T23:17:57.272811Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:11.593585Z", - "iopub.status.busy": "2024-07-30T16:32:11.593193Z", - "iopub.status.idle": "2024-07-30T16:32:26.818572Z", - "shell.execute_reply": "2024-07-30T16:32:26.817879Z" + "iopub.execute_input": "2024-08-02T23:17:57.275541Z", + "iopub.status.busy": "2024-08-02T23:17:57.275202Z", + "iopub.status.idle": "2024-08-02T23:18:11.647525Z", + "shell.execute_reply": "2024-08-02T23:18:11.646907Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:26.821335Z", - "iopub.status.busy": "2024-07-30T16:32:26.821126Z", - "iopub.status.idle": "2024-07-30T16:32:26.825126Z", - "shell.execute_reply": "2024-07-30T16:32:26.824635Z" + "iopub.execute_input": "2024-08-02T23:18:11.650258Z", + "iopub.status.busy": "2024-08-02T23:18:11.649858Z", + "iopub.status.idle": "2024-08-02T23:18:11.653962Z", + "shell.execute_reply": "2024-08-02T23:18:11.653485Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:26.827091Z", - "iopub.status.busy": "2024-07-30T16:32:26.826917Z", - "iopub.status.idle": "2024-07-30T16:32:27.596925Z", - "shell.execute_reply": "2024-07-30T16:32:27.596317Z" + "iopub.execute_input": "2024-08-02T23:18:11.656092Z", + "iopub.status.busy": "2024-08-02T23:18:11.655746Z", + "iopub.status.idle": "2024-08-02T23:18:12.346371Z", + "shell.execute_reply": "2024-08-02T23:18:12.345770Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.600680Z", - "iopub.status.busy": "2024-07-30T16:32:27.599702Z", - "iopub.status.idle": "2024-07-30T16:32:27.606621Z", - "shell.execute_reply": "2024-07-30T16:32:27.606103Z" + "iopub.execute_input": "2024-08-02T23:18:12.349358Z", + "iopub.status.busy": "2024-08-02T23:18:12.348955Z", + "iopub.status.idle": "2024-08-02T23:18:12.353747Z", + "shell.execute_reply": "2024-08-02T23:18:12.353244Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.610268Z", - "iopub.status.busy": "2024-07-30T16:32:27.609309Z", - "iopub.status.idle": "2024-07-30T16:32:27.732351Z", - "shell.execute_reply": "2024-07-30T16:32:27.731717Z" + "iopub.execute_input": "2024-08-02T23:18:12.356979Z", + "iopub.status.busy": "2024-08-02T23:18:12.356030Z", + "iopub.status.idle": "2024-08-02T23:18:12.482133Z", + "shell.execute_reply": "2024-08-02T23:18:12.481542Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.734791Z", - "iopub.status.busy": "2024-07-30T16:32:27.734594Z", - "iopub.status.idle": "2024-07-30T16:32:27.747001Z", - "shell.execute_reply": "2024-07-30T16:32:27.746549Z" + "iopub.execute_input": "2024-08-02T23:18:12.484630Z", + "iopub.status.busy": "2024-08-02T23:18:12.484204Z", + "iopub.status.idle": "2024-08-02T23:18:12.496863Z", + "shell.execute_reply": "2024-08-02T23:18:12.496354Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.749097Z", - "iopub.status.busy": "2024-07-30T16:32:27.748752Z", - "iopub.status.idle": "2024-07-30T16:32:27.756559Z", - "shell.execute_reply": "2024-07-30T16:32:27.756099Z" + "iopub.execute_input": "2024-08-02T23:18:12.499067Z", + "iopub.status.busy": "2024-08-02T23:18:12.498707Z", + "iopub.status.idle": "2024-08-02T23:18:12.506542Z", + "shell.execute_reply": "2024-08-02T23:18:12.505969Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.758711Z", - "iopub.status.busy": "2024-07-30T16:32:27.758331Z", - "iopub.status.idle": "2024-07-30T16:32:27.762339Z", - "shell.execute_reply": "2024-07-30T16:32:27.761744Z" + "iopub.execute_input": "2024-08-02T23:18:12.508700Z", + "iopub.status.busy": "2024-08-02T23:18:12.508369Z", + "iopub.status.idle": "2024-08-02T23:18:12.512639Z", + "shell.execute_reply": "2024-08-02T23:18:12.512052Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.764292Z", - "iopub.status.busy": "2024-07-30T16:32:27.764112Z", - "iopub.status.idle": "2024-07-30T16:32:27.769903Z", - "shell.execute_reply": "2024-07-30T16:32:27.769437Z" + "iopub.execute_input": "2024-08-02T23:18:12.514776Z", + "iopub.status.busy": "2024-08-02T23:18:12.514446Z", + "iopub.status.idle": "2024-08-02T23:18:12.519989Z", + "shell.execute_reply": "2024-08-02T23:18:12.519511Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.772012Z", - "iopub.status.busy": "2024-07-30T16:32:27.771665Z", - "iopub.status.idle": "2024-07-30T16:32:27.883771Z", - "shell.execute_reply": "2024-07-30T16:32:27.883239Z" + "iopub.execute_input": "2024-08-02T23:18:12.522127Z", + "iopub.status.busy": "2024-08-02T23:18:12.521833Z", + "iopub.status.idle": "2024-08-02T23:18:12.636780Z", + "shell.execute_reply": "2024-08-02T23:18:12.636285Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.886039Z", - "iopub.status.busy": "2024-07-30T16:32:27.885669Z", - "iopub.status.idle": "2024-07-30T16:32:27.991085Z", - "shell.execute_reply": "2024-07-30T16:32:27.990488Z" + "iopub.execute_input": "2024-08-02T23:18:12.639030Z", + "iopub.status.busy": "2024-08-02T23:18:12.638677Z", + "iopub.status.idle": "2024-08-02T23:18:12.743096Z", + "shell.execute_reply": "2024-08-02T23:18:12.742528Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.993501Z", - "iopub.status.busy": "2024-07-30T16:32:27.993093Z", - "iopub.status.idle": "2024-07-30T16:32:28.099248Z", - "shell.execute_reply": "2024-07-30T16:32:28.098713Z" + "iopub.execute_input": "2024-08-02T23:18:12.745383Z", + "iopub.status.busy": "2024-08-02T23:18:12.745104Z", + "iopub.status.idle": "2024-08-02T23:18:12.847386Z", + "shell.execute_reply": "2024-08-02T23:18:12.846827Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:28.101776Z", - "iopub.status.busy": "2024-07-30T16:32:28.101402Z", - "iopub.status.idle": "2024-07-30T16:32:28.203687Z", - "shell.execute_reply": "2024-07-30T16:32:28.203188Z" + "iopub.execute_input": "2024-08-02T23:18:12.849504Z", + "iopub.status.busy": "2024-08-02T23:18:12.849206Z", + "iopub.status.idle": "2024-08-02T23:18:12.952607Z", + "shell.execute_reply": "2024-08-02T23:18:12.952134Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:28.205976Z", - "iopub.status.busy": "2024-07-30T16:32:28.205604Z", - "iopub.status.idle": "2024-07-30T16:32:28.209012Z", - "shell.execute_reply": "2024-07-30T16:32:28.208540Z" + "iopub.execute_input": "2024-08-02T23:18:12.954679Z", + "iopub.status.busy": "2024-08-02T23:18:12.954492Z", + "iopub.status.idle": "2024-08-02T23:18:12.957846Z", + "shell.execute_reply": "2024-08-02T23:18:12.957285Z" }, "nbsphinx": "hidden" }, @@ -1392,25 +1392,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0141de0607f0403f827d29243c404408": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0a09ec5bab80464fbc3525d61fd287e8": { + "04b51e05693749aeb05621d97fcf029f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1463,25 +1445,7 @@ "width": null } }, - "0f05b5620d3c4ea8b8c2b62df6fd1976": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "163b36917c2b4640bf87813ecc7aecc9": { + "0af6e38e912e4e7696c879895ead73ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1534,25 +1498,53 @@ "width": null } }, - "19d0ea09fbe34640848d1ec2ad02d65b": { + "0b8a7b3b6ee5417c892f888aed2c46c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0af6e38e912e4e7696c879895ead73ba", + "placeholder": "​", + "style": "IPY_MODEL_5b70a564cba64f818fc84594a587eb9e", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 8.69MB/s]" + } + }, + "0fe4955fa8aa4889804343150c61e988": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_de133982735a41f1b2bb1771b50f404e", + "placeholder": "​", + "style": "IPY_MODEL_d1438b14e23f4c1cbf2ac85de27d74be", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" } }, - "1ca803e568a640c2aa768e33ebf24164": { + "1081f158626c4bd986a2b119ba054279": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1567,15 +1559,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b018e0e6db134be6ba16634195b51282", + "layout": "IPY_MODEL_6ddf33ac4ebc43cfa567fcefd0626ba8", "placeholder": "​", - "style": "IPY_MODEL_6b0531130fa84e98afcd52b0fc37a26a", + "style": "IPY_MODEL_7c620aaffd7143e6b805e8e8b02ab235", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 438kB/s]" + "value": " 3.20k/3.20k [00:00<00:00, 641kB/s]" } }, - "1cf489240a5147e7be36c2ebd34e4991": { + "1235443842474ac2af74fcc60dedf59f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1628,92 +1620,107 @@ "width": null } }, - "2133a9fb59af4c94a6d3bf96899e9fa0": { - "model_module": "@jupyter-widgets/controls", + "14ac5a469f7f41afa43b884004caf79e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "24117d460fe04c2595c8a3df89e4dc71": { + "2422bd8870424c8392da7f8a920235ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9087116450574f6e82ab1912c77b4c08", - "placeholder": "​", - "style": "IPY_MODEL_0f05b5620d3c4ea8b8c2b62df6fd1976", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fea4cf7165444869979d549b005095cc", + "IPY_MODEL_d88f123c3e794cb7ac5236590223be39", + "IPY_MODEL_82e64b0358904df0ad449bb7fa0c747c" + ], + "layout": "IPY_MODEL_9571f4e98bf54fd78c3359bad88e0b76", "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 49.6MB/s]" - } - }, - "245870b17e934b70a9d46ac916c5ab49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "2afe02bb7907473397517feb001d0bc7": { + "2afebb9f5c2a40798fa8de31d3504e27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a0f3a3764e7a4f70a89147d24e41d44a", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_798e65658ced4c4ba43c73541fcaf498", + "layout": "IPY_MODEL_33bfd15669b64cab85f828d42950b216", + "placeholder": "​", + "style": "IPY_MODEL_7d314129939640c8b51ad478f689286c", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": " 15.9M/15.9M [00:00<00:00, 287MB/s]" } }, - "2e035e4e57004636a79bb03dccd33238": { + "33bfd15669b64cab85f828d42950b216": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1766,23 +1773,7 @@ "width": null } }, - "2eb75fcccd564c998153fe7eb21cc15f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "35b6e4408720413d9e978a6f60746c55": { + "3492c9d1fa35491a923143cf1df93ca7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1835,65 +1826,69 @@ "width": null } }, - "35fc2caf823447f2b6a4e5ac4e1060cc": { + "35b668e874e745ea9a3d001d763a34de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a6e2619a05cf4c6892ae13e2c851eb0e", - "IPY_MODEL_ef4ce1e627f64413bff7de5ef03c1544", - "IPY_MODEL_dce5f0e1a3174c649eb53b9cab013b58" - ], - "layout": "IPY_MODEL_9dc82a7b78864ce18d1e3cff48063e14", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4e7a3765a82041cc9826e87725016075": { + "374d67cdaeed454d9e2992e61e32c31f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "520e56fda33e4c98b222ee893d4a3946": { + "3d27bfb7f57e4dc79619a5707f7ddcf9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1235443842474ac2af74fcc60dedf59f", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bd04c1d7b69a4c45b2d3ac8f3d573216", + "tabbable": null, + "tooltip": null, + "value": 3201.0 } }, - "563342ed4a724e169020735f2e098785": { + "3dac7c5a8ffc4ea097dc482323647da1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1946,7 +1941,7 @@ "width": null } }, - "5915bf142f9949d0b62f3936280ff677": { + "3dc6dc4c8ee749f99cdbaa3046d05c41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1961,16 +1956,42 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ffa1c84fb874460b957924837b893cd2", - "IPY_MODEL_9401b730a9fa4869b1a2ed1a91ae3804", - "IPY_MODEL_24117d460fe04c2595c8a3df89e4dc71" + "IPY_MODEL_6bf39fbe1b3b405c956853bfa57d3e0d", + "IPY_MODEL_acf2f07ea10941cd9ec5d62bdafcc6bf", + "IPY_MODEL_0b8a7b3b6ee5417c892f888aed2c46c1" ], - "layout": "IPY_MODEL_d0912c4ce6314fffb1eec46e7902061a", + "layout": "IPY_MODEL_48bb90edac5840838e6781305996eb88", "tabbable": null, "tooltip": null } }, - "6696954ac6cc4663830ff71533e2274a": { + "46283f3f1072446e9392aa753ed72001": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c004d92694948eaa3070c1f020855bb", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6224edf4a9784a1aa68fbcb02bd584ba", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "48bb90edac5840838e6781305996eb88": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2023,33 +2044,30 @@ "width": null } }, - "6724f0872c634ed28a8ddf5141b6cf52": { + "490bb59350404c9684dfa7c949b9c1a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1cf489240a5147e7be36c2ebd34e4991", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ae2362edc22d424a8ca4ef7ba7dc22f0", + "layout": "IPY_MODEL_3492c9d1fa35491a923143cf1df93ca7", + "placeholder": "​", + "style": "IPY_MODEL_9130709158614a41880b9ac947428efb", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": "hyperparams.yaml: 100%" } }, - "6b0531130fa84e98afcd52b0fc37a26a": { + "5b70a564cba64f818fc84594a587eb9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2067,54 +2085,7 @@ "text_color": null } }, - "6cedc3a0e8f548a1ad9c3884bd4addbc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d2e5a2475afa46a89c0cfc93e8649905", - "IPY_MODEL_2afe02bb7907473397517feb001d0bc7", - "IPY_MODEL_1ca803e568a640c2aa768e33ebf24164" - ], - "layout": "IPY_MODEL_9aedd1b5b4a94daa8e57b77e4932c62f", - "tabbable": null, - "tooltip": null - } - }, - "6e641d93e8364bb38c2649d5e9409472": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0a09ec5bab80464fbc3525d61fd287e8", - "placeholder": "​", - "style": "IPY_MODEL_fac37b2db5114541b4cfa045627b25a9", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "6f35caf701d147819bcff508b0d7b21f": { + "601562e01e804692b184c2717be92daf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2167,23 +2138,7 @@ "width": null } }, - "7130d0c967334fd481dd95531afcbff6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "798e65658ced4c4ba43c73541fcaf498": { + "6224edf4a9784a1aa68fbcb02bd584ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2199,7 +2154,7 @@ "description_width": "" } }, - "7f9cdd5eb8e645049e955cd7017ad172": { + "645ffbe17cfe424c9f465f082b449bff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2214,16 +2169,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a86987978bf2456880b33e417bfcc80e", - "IPY_MODEL_94b5339e1e5d462ca9a8ed81c2cbc6d2", - "IPY_MODEL_d6b535061cda444d9943ac6bb614b319" + "IPY_MODEL_0fe4955fa8aa4889804343150c61e988", + "IPY_MODEL_46283f3f1072446e9392aa753ed72001", + "IPY_MODEL_2afebb9f5c2a40798fa8de31d3504e27" ], - "layout": "IPY_MODEL_a609aacd3b83432398f55caed51374bc", + "layout": "IPY_MODEL_dd7018aff5e0482b91ced761e14f80b5", "tabbable": null, "tooltip": null } }, - "8203d92bb037499eb58f4a94cf43af20": { + "64a0e3cb40fc483c927e5e386ab6e959": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6bb18fe4d9854bb69159e1375b3f480c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2276,7 +2247,7 @@ "width": null } }, - "8f877b024aaa4832a870ddeafa209522": { + "6bf39fbe1b3b405c956853bfa57d3e0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2291,15 +2262,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6696954ac6cc4663830ff71533e2274a", + "layout": "IPY_MODEL_3dac7c5a8ffc4ea097dc482323647da1", "placeholder": "​", - "style": "IPY_MODEL_245870b17e934b70a9d46ac916c5ab49", + "style": "IPY_MODEL_35b668e874e745ea9a3d001d763a34de", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 850kB/s]" + "value": "label_encoder.txt: 100%" } }, - "9087116450574f6e82ab1912c77b4c08": { + "6ddf33ac4ebc43cfa567fcefd0626ba8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2352,59 +2323,89 @@ "width": null } }, - "9401b730a9fa4869b1a2ed1a91ae3804": { + "7c620aaffd7143e6b805e8e8b02ab235": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7d314129939640c8b51ad478f689286c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "82e64b0358904df0ad449bb7fa0c747c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fd8d727262ef4b3c8a26a144efa6a319", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7130d0c967334fd481dd95531afcbff6", + "layout": "IPY_MODEL_f2ea5afd653441569057ee994c9313e2", + "placeholder": "​", + "style": "IPY_MODEL_dac48308de9e4707be50211040572ebe", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": " 16.9M/16.9M [00:00<00:00, 228MB/s]" } }, - "94b5339e1e5d462ca9a8ed81c2cbc6d2": { + "85a30b51702a4eb69d40916fbc0c5b40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_163b36917c2b4640bf87813ecc7aecc9", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2eb75fcccd564c998153fe7eb21cc15f", + "layout": "IPY_MODEL_601562e01e804692b184c2717be92daf", + "placeholder": "​", + "style": "IPY_MODEL_95346db719ca429cb9e0f6ff686100cc", "tabbable": null, "tooltip": null, - "value": 16887676.0 + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "9aedd1b5b4a94daa8e57b77e4932c62f": { + "8c004d92694948eaa3070c1f020855bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2457,113 +2458,43 @@ "width": null } }, - "9dc82a7b78864ce18d1e3cff48063e14": { - "model_module": "@jupyter-widgets/base", + "9130709158614a41880b9ac947428efb": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a0f3a3764e7a4f70a89147d24e41d44a": { - "model_module": "@jupyter-widgets/base", + "95346db719ca429cb9e0f6ff686100cc": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a609aacd3b83432398f55caed51374bc": { + "9571f4e98bf54fd78c3359bad88e0b76": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2616,69 +2547,25 @@ "width": null } }, - "a6e2619a05cf4c6892ae13e2c851eb0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_35b6e4408720413d9e978a6f60746c55", - "placeholder": "​", - "style": "IPY_MODEL_0141de0607f0403f827d29243c404408", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "a86987978bf2456880b33e417bfcc80e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bc3fca0de1e34fe0841a520f49a44fcb", - "placeholder": "​", - "style": "IPY_MODEL_520e56fda33e4c98b222ee893d4a3946", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "ae2362edc22d424a8ca4ef7ba7dc22f0": { + "96a31338010a4a23b6cf6ff1d9666843": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b018e0e6db134be6ba16634195b51282": { + "a2e8879121d74da0b690ccff49a0a192": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2731,25 +2618,23 @@ "width": null } }, - "bba811cedf5144c1a2c8e84f62b80614": { + "a5f7441b8a44463289a97f849d9e8e3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "bc3fca0de1e34fe0841a520f49a44fcb": { + "ac49a619bb0b461c862e263c4c88219f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2802,7 +2687,33 @@ "width": null } }, - "d0912c4ce6314fffb1eec46e7902061a": { + "acf2f07ea10941cd9ec5d62bdafcc6bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ac49a619bb0b461c862e263c4c88219f", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_64a0e3cb40fc483c927e5e386ab6e959", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "b08c8e4da852497b9a878140b6d78652": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2855,30 +2766,47 @@ "width": null } }, - "d2e5a2475afa46a89c0cfc93e8649905": { + "bd04c1d7b69a4c45b2d3ac8f3d573216": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bd10a9902e924023930c441cf5585ae2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e22da2b2272b421bbef0df76cace290f", - "placeholder": "​", - "style": "IPY_MODEL_19d0ea09fbe34640848d1ec2ad02d65b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_490bb59350404c9684dfa7c949b9c1a2", + "IPY_MODEL_ea0c1a6ac4bd48aba8026d3f21161ca0", + "IPY_MODEL_d1a93f95aa6b42708b8e52908306da94" + ], + "layout": "IPY_MODEL_b08c8e4da852497b9a878140b6d78652", "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" + "tooltip": null } }, - "d4103846b2bc4a4a8e12430befda4a7d": { + "d1438b14e23f4c1cbf2ac85de27d74be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2896,77 +2824,74 @@ "text_color": null } }, - "d5272de0323e4c94ba3b04a6b32e6aa7": { + "d1a93f95aa6b42708b8e52908306da94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6e641d93e8364bb38c2649d5e9409472", - "IPY_MODEL_6724f0872c634ed28a8ddf5141b6cf52", - "IPY_MODEL_8f877b024aaa4832a870ddeafa209522" - ], - "layout": "IPY_MODEL_6f35caf701d147819bcff508b0d7b21f", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6bb18fe4d9854bb69159e1375b3f480c", + "placeholder": "​", + "style": "IPY_MODEL_96a31338010a4a23b6cf6ff1d9666843", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 495kB/s]" } }, - "d6b535061cda444d9943ac6bb614b319": { + "d88f123c3e794cb7ac5236590223be39": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_563342ed4a724e169020735f2e098785", - "placeholder": "​", - "style": "IPY_MODEL_2133a9fb59af4c94a6d3bf96899e9fa0", + "layout": "IPY_MODEL_04b51e05693749aeb05621d97fcf029f", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e2ec81d1d5104bc185527a345fdadff8", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 39.7MB/s]" + "value": 16887676.0 } }, - "dce5f0e1a3174c649eb53b9cab013b58": { + "dac48308de9e4707be50211040572ebe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8203d92bb037499eb58f4a94cf43af20", - "placeholder": "​", - "style": "IPY_MODEL_bba811cedf5144c1a2c8e84f62b80614", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 5.64MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e22da2b2272b421bbef0df76cace290f": { + "dd7018aff5e0482b91ced761e14f80b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3019,7 +2944,7 @@ "width": null } }, - "ecf9dd73dda64d359b746655a5a60031": { + "de133982735a41f1b2bb1771b50f404e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3072,7 +2997,23 @@ "width": null } }, - "ef4ce1e627f64413bff7de5ef03c1544": { + "e2ec81d1d5104bc185527a345fdadff8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ea0c1a6ac4bd48aba8026d3f21161ca0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3088,35 +3029,94 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ecf9dd73dda64d359b746655a5a60031", - "max": 128619.0, + "layout": "IPY_MODEL_a2e8879121d74da0b690ccff49a0a192", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4e7a3765a82041cc9826e87725016075", + "style": "IPY_MODEL_a5f7441b8a44463289a97f849d9e8e3a", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": 2041.0 } }, - "fac37b2db5114541b4cfa045627b25a9": { + "eabc29af158e4aec82b97132e4d0ea48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_85a30b51702a4eb69d40916fbc0c5b40", + "IPY_MODEL_3d27bfb7f57e4dc79619a5707f7ddcf9", + "IPY_MODEL_1081f158626c4bd986a2b119ba054279" + ], + "layout": "IPY_MODEL_f9f701eb08cf48589e014ae1a7198068", + "tabbable": null, + "tooltip": null + } + }, + "f2ea5afd653441569057ee994c9313e2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fd8d727262ef4b3c8a26a144efa6a319": { + "f9f701eb08cf48589e014ae1a7198068": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3169,7 +3169,7 @@ "width": null } }, - "ffa1c84fb874460b957924837b893cd2": { + "fea4cf7165444869979d549b005095cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3184,12 +3184,12 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2e035e4e57004636a79bb03dccd33238", + "layout": "IPY_MODEL_14ac5a469f7f41afa43b884004caf79e", "placeholder": "​", - "style": "IPY_MODEL_d4103846b2bc4a4a8e12430befda4a7d", + "style": "IPY_MODEL_374d67cdaeed454d9e2992e61e32c31f", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": "embedding_model.ckpt: 100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 899e02b72..282b62c0d 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:32.656232Z", - "iopub.status.busy": "2024-07-30T16:32:32.656056Z", - "iopub.status.idle": "2024-07-30T16:32:34.118637Z", - "shell.execute_reply": "2024-07-30T16:32:34.117917Z" + "iopub.execute_input": "2024-08-02T23:18:16.484336Z", + "iopub.status.busy": "2024-08-02T23:18:16.484165Z", + "iopub.status.idle": "2024-08-02T23:18:17.882451Z", + "shell.execute_reply": "2024-08-02T23:18:17.881898Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.121608Z", - "iopub.status.busy": "2024-07-30T16:32:34.121097Z", - "iopub.status.idle": "2024-07-30T16:32:34.124191Z", - "shell.execute_reply": "2024-07-30T16:32:34.123735Z" + "iopub.execute_input": "2024-08-02T23:18:17.885156Z", + "iopub.status.busy": "2024-08-02T23:18:17.884677Z", + "iopub.status.idle": "2024-08-02T23:18:17.887758Z", + "shell.execute_reply": "2024-08-02T23:18:17.887295Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.126267Z", - "iopub.status.busy": "2024-07-30T16:32:34.126096Z", - "iopub.status.idle": "2024-07-30T16:32:34.134798Z", - "shell.execute_reply": "2024-07-30T16:32:34.134311Z" + "iopub.execute_input": "2024-08-02T23:18:17.889898Z", + "iopub.status.busy": "2024-08-02T23:18:17.889563Z", + "iopub.status.idle": "2024-08-02T23:18:17.898213Z", + "shell.execute_reply": "2024-08-02T23:18:17.897752Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.136971Z", - "iopub.status.busy": "2024-07-30T16:32:34.136634Z", - "iopub.status.idle": "2024-07-30T16:32:34.141247Z", - "shell.execute_reply": "2024-07-30T16:32:34.140806Z" + "iopub.execute_input": "2024-08-02T23:18:17.900225Z", + "iopub.status.busy": "2024-08-02T23:18:17.899877Z", + "iopub.status.idle": "2024-08-02T23:18:17.904388Z", + "shell.execute_reply": "2024-08-02T23:18:17.903975Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.143531Z", - "iopub.status.busy": "2024-07-30T16:32:34.143189Z", - "iopub.status.idle": "2024-07-30T16:32:34.151658Z", - "shell.execute_reply": "2024-07-30T16:32:34.151032Z" + "iopub.execute_input": "2024-08-02T23:18:17.906648Z", + "iopub.status.busy": "2024-08-02T23:18:17.906301Z", + "iopub.status.idle": "2024-08-02T23:18:17.914041Z", + "shell.execute_reply": "2024-08-02T23:18:17.913599Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.153882Z", - "iopub.status.busy": "2024-07-30T16:32:34.153554Z", - "iopub.status.idle": "2024-07-30T16:32:34.532146Z", - "shell.execute_reply": "2024-07-30T16:32:34.531569Z" + "iopub.execute_input": "2024-08-02T23:18:17.916042Z", + "iopub.status.busy": "2024-08-02T23:18:17.915708Z", + "iopub.status.idle": "2024-08-02T23:18:18.290994Z", + "shell.execute_reply": "2024-08-02T23:18:18.290406Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.534572Z", - "iopub.status.busy": "2024-07-30T16:32:34.534215Z", - "iopub.status.idle": "2024-07-30T16:32:34.557586Z", - "shell.execute_reply": "2024-07-30T16:32:34.557126Z" + "iopub.execute_input": "2024-08-02T23:18:18.293440Z", + "iopub.status.busy": "2024-08-02T23:18:18.293099Z", + "iopub.status.idle": "2024-08-02T23:18:18.316530Z", + "shell.execute_reply": "2024-08-02T23:18:18.316064Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.559946Z", - "iopub.status.busy": "2024-07-30T16:32:34.559562Z", - "iopub.status.idle": "2024-07-30T16:32:34.574011Z", - "shell.execute_reply": "2024-07-30T16:32:34.573551Z" + "iopub.execute_input": "2024-08-02T23:18:18.318822Z", + "iopub.status.busy": "2024-08-02T23:18:18.318462Z", + "iopub.status.idle": "2024-08-02T23:18:18.330408Z", + "shell.execute_reply": "2024-08-02T23:18:18.329985Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.576252Z", - "iopub.status.busy": "2024-07-30T16:32:34.575906Z", - "iopub.status.idle": "2024-07-30T16:32:36.755631Z", - "shell.execute_reply": "2024-07-30T16:32:36.755030Z" + "iopub.execute_input": "2024-08-02T23:18:18.332448Z", + "iopub.status.busy": "2024-08-02T23:18:18.332268Z", + "iopub.status.idle": "2024-08-02T23:18:20.394207Z", + "shell.execute_reply": "2024-08-02T23:18:20.393609Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:36.758222Z", - "iopub.status.busy": "2024-07-30T16:32:36.757670Z", - "iopub.status.idle": "2024-07-30T16:32:36.781789Z", - "shell.execute_reply": "2024-07-30T16:32:36.781269Z" + "iopub.execute_input": "2024-08-02T23:18:20.396426Z", + "iopub.status.busy": "2024-08-02T23:18:20.396134Z", + "iopub.status.idle": "2024-08-02T23:18:20.417515Z", + "shell.execute_reply": "2024-08-02T23:18:20.417003Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:36.783987Z", - "iopub.status.busy": "2024-07-30T16:32:36.783638Z", - "iopub.status.idle": "2024-07-30T16:32:36.801674Z", - "shell.execute_reply": "2024-07-30T16:32:36.801212Z" + "iopub.execute_input": "2024-08-02T23:18:20.419770Z", + "iopub.status.busy": "2024-08-02T23:18:20.419428Z", + "iopub.status.idle": "2024-08-02T23:18:20.437088Z", + "shell.execute_reply": "2024-08-02T23:18:20.436543Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:36.803794Z", - "iopub.status.busy": "2024-07-30T16:32:36.803471Z", - "iopub.status.idle": "2024-07-30T16:32:36.818094Z", - "shell.execute_reply": "2024-07-30T16:32:36.817505Z" + "iopub.execute_input": "2024-08-02T23:18:20.439218Z", + "iopub.status.busy": "2024-08-02T23:18:20.438862Z", + "iopub.status.idle": "2024-08-02T23:18:20.452660Z", + "shell.execute_reply": "2024-08-02T23:18:20.452182Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:36.820298Z", - "iopub.status.busy": "2024-07-30T16:32:36.819881Z", - "iopub.status.idle": "2024-07-30T16:32:36.842978Z", - "shell.execute_reply": "2024-07-30T16:32:36.842357Z" + "iopub.execute_input": "2024-08-02T23:18:20.454825Z", + "iopub.status.busy": "2024-08-02T23:18:20.454481Z", + "iopub.status.idle": "2024-08-02T23:18:20.475692Z", + "shell.execute_reply": "2024-08-02T23:18:20.475081Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "724816767a8e4540b761b5447f273b35", + "model_id": "1e77cf448c8b460fae551999784047a8", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:36.845323Z", - "iopub.status.busy": "2024-07-30T16:32:36.844892Z", - "iopub.status.idle": "2024-07-30T16:32:36.859999Z", - "shell.execute_reply": "2024-07-30T16:32:36.859413Z" + "iopub.execute_input": "2024-08-02T23:18:20.477885Z", + "iopub.status.busy": "2024-08-02T23:18:20.477483Z", + "iopub.status.idle": "2024-08-02T23:18:20.492323Z", + "shell.execute_reply": "2024-08-02T23:18:20.491752Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:36.862276Z", - "iopub.status.busy": "2024-07-30T16:32:36.861910Z", - "iopub.status.idle": "2024-07-30T16:32:36.868061Z", - "shell.execute_reply": "2024-07-30T16:32:36.867583Z" + "iopub.execute_input": "2024-08-02T23:18:20.494620Z", + "iopub.status.busy": "2024-08-02T23:18:20.494299Z", + "iopub.status.idle": "2024-08-02T23:18:20.500213Z", + "shell.execute_reply": "2024-08-02T23:18:20.499712Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:36.870048Z", - "iopub.status.busy": "2024-07-30T16:32:36.869719Z", - "iopub.status.idle": "2024-07-30T16:32:36.889337Z", - "shell.execute_reply": "2024-07-30T16:32:36.888743Z" + "iopub.execute_input": "2024-08-02T23:18:20.502287Z", + "iopub.status.busy": "2024-08-02T23:18:20.501963Z", + "iopub.status.idle": "2024-08-02T23:18:20.520731Z", + "shell.execute_reply": "2024-08-02T23:18:20.520197Z" } }, "outputs": [ @@ -1447,30 +1447,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "24e5bfd20a30498b87f31ca923bcaee0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c9a94c2705dc4c6888c5b9bcb593ec3b", - "placeholder": "​", - "style": "IPY_MODEL_e1d8b31237d943e5a791e20c8cb36100", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 9927.17 examples/s]" - } - }, - "71845e53cfb34c7390d3c257eefae520": { + "0c1a082463244b57b51d61d7f6c72e71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1523,7 +1500,7 @@ "width": null } }, - "724816767a8e4540b761b5447f273b35": { + "1e77cf448c8b460fae551999784047a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1538,16 +1515,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d477eb478231404692d7fabdeafcfa6e", - "IPY_MODEL_fa38f1de6f7849ee9f7cd7ad7a504555", - "IPY_MODEL_24e5bfd20a30498b87f31ca923bcaee0" + "IPY_MODEL_c9798d892bbb4b4495225f4e0b80e70c", + "IPY_MODEL_a744c826589e4e2d9f2285146f0341d8", + "IPY_MODEL_b4e9ca667f8b4ad98d99a1c1d4cad9ed" ], - "layout": "IPY_MODEL_fe623ece577749be8a8ce449c28b2074", + "layout": "IPY_MODEL_5707965d1e434f65bdddd79f785196a3", "tabbable": null, "tooltip": null } }, - "a8759625ec944bbbac04db9cec87a317": { + "3e3e5258de4f42cb8228d1fc6798c2f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "527cb92bada44744a7822b43b03ee159": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1600,7 +1595,23 @@ "width": null } }, - "c9a94c2705dc4c6888c5b9bcb593ec3b": { + "52f1b8f2c74a4bb6a99bf9934c7b2337": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5707965d1e434f65bdddd79f785196a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1653,108 +1664,56 @@ "width": null } }, - "d477eb478231404692d7fabdeafcfa6e": { + "a744c826589e4e2d9f2285146f0341d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_71845e53cfb34c7390d3c257eefae520", - "placeholder": "​", - "style": "IPY_MODEL_f9c800ac49fd453fbbdcc88f12d35194", + "layout": "IPY_MODEL_c73f2f5e1ae54b468441d578f7c2ba01", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_52f1b8f2c74a4bb6a99bf9934c7b2337", "tabbable": null, "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "e1d8b31237d943e5a791e20c8cb36100": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ee9027d19159444e8d46c66083251836": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f9c800ac49fd453fbbdcc88f12d35194": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 132.0 } }, - "fa38f1de6f7849ee9f7cd7ad7a504555": { + "b4e9ca667f8b4ad98d99a1c1d4cad9ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8759625ec944bbbac04db9cec87a317", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ee9027d19159444e8d46c66083251836", + "layout": "IPY_MODEL_0c1a082463244b57b51d61d7f6c72e71", + "placeholder": "​", + "style": "IPY_MODEL_3e3e5258de4f42cb8228d1fc6798c2f3", "tabbable": null, "tooltip": null, - "value": 132.0 + "value": " 132/132 [00:00<00:00, 11675.41 examples/s]" } }, - "fe623ece577749be8a8ce449c28b2074": { + "c73f2f5e1ae54b468441d578f7c2ba01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1806,6 +1765,47 @@ "visibility": null, "width": null } + }, + "c9798d892bbb4b4495225f4e0b80e70c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_527cb92bada44744a7822b43b03ee159", + "placeholder": "​", + "style": "IPY_MODEL_e0e9fbdf6956499f98167164d76e9bb4", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "e0e9fbdf6956499f98167164d76e9bb4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index dd27cd645..94e8a87f7 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:39.968392Z", - "iopub.status.busy": "2024-07-30T16:32:39.968219Z", - "iopub.status.idle": "2024-07-30T16:32:41.428731Z", - "shell.execute_reply": "2024-07-30T16:32:41.428142Z" + "iopub.execute_input": "2024-08-02T23:18:23.440181Z", + "iopub.status.busy": "2024-08-02T23:18:23.440011Z", + "iopub.status.idle": "2024-08-02T23:18:24.873718Z", + "shell.execute_reply": "2024-08-02T23:18:24.873164Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.431407Z", - "iopub.status.busy": "2024-07-30T16:32:41.430932Z", - "iopub.status.idle": "2024-07-30T16:32:41.433897Z", - "shell.execute_reply": "2024-07-30T16:32:41.433429Z" + "iopub.execute_input": "2024-08-02T23:18:24.876197Z", + "iopub.status.busy": "2024-08-02T23:18:24.875898Z", + "iopub.status.idle": "2024-08-02T23:18:24.879459Z", + "shell.execute_reply": "2024-08-02T23:18:24.879019Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.436056Z", - "iopub.status.busy": "2024-07-30T16:32:41.435693Z", - "iopub.status.idle": "2024-07-30T16:32:41.444683Z", - "shell.execute_reply": "2024-07-30T16:32:41.444228Z" + "iopub.execute_input": "2024-08-02T23:18:24.881728Z", + "iopub.status.busy": "2024-08-02T23:18:24.881284Z", + "iopub.status.idle": "2024-08-02T23:18:24.890527Z", + "shell.execute_reply": "2024-08-02T23:18:24.890092Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.446855Z", - "iopub.status.busy": "2024-07-30T16:32:41.446459Z", - "iopub.status.idle": "2024-07-30T16:32:41.451834Z", - "shell.execute_reply": "2024-07-30T16:32:41.451242Z" + "iopub.execute_input": "2024-08-02T23:18:24.892364Z", + "iopub.status.busy": "2024-08-02T23:18:24.892191Z", + "iopub.status.idle": "2024-08-02T23:18:24.897249Z", + "shell.execute_reply": "2024-08-02T23:18:24.896624Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.454128Z", - "iopub.status.busy": "2024-07-30T16:32:41.453789Z", - "iopub.status.idle": "2024-07-30T16:32:41.461841Z", - "shell.execute_reply": "2024-07-30T16:32:41.461254Z" + "iopub.execute_input": "2024-08-02T23:18:24.899657Z", + "iopub.status.busy": "2024-08-02T23:18:24.899315Z", + "iopub.status.idle": "2024-08-02T23:18:24.907713Z", + "shell.execute_reply": "2024-08-02T23:18:24.907270Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.463879Z", - "iopub.status.busy": "2024-07-30T16:32:41.463564Z", - "iopub.status.idle": "2024-07-30T16:32:41.841201Z", - "shell.execute_reply": "2024-07-30T16:32:41.840606Z" + "iopub.execute_input": "2024-08-02T23:18:24.909718Z", + "iopub.status.busy": "2024-08-02T23:18:24.909392Z", + "iopub.status.idle": "2024-08-02T23:18:25.284990Z", + "shell.execute_reply": "2024-08-02T23:18:25.284340Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.843720Z", - "iopub.status.busy": "2024-07-30T16:32:41.843358Z", - "iopub.status.idle": "2024-07-30T16:32:41.846353Z", - "shell.execute_reply": "2024-07-30T16:32:41.845761Z" + "iopub.execute_input": "2024-08-02T23:18:25.287244Z", + "iopub.status.busy": "2024-08-02T23:18:25.286882Z", + "iopub.status.idle": "2024-08-02T23:18:25.289594Z", + "shell.execute_reply": "2024-08-02T23:18:25.289144Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.848467Z", - "iopub.status.busy": "2024-07-30T16:32:41.848142Z", - "iopub.status.idle": "2024-07-30T16:32:41.882970Z", - "shell.execute_reply": "2024-07-30T16:32:41.882316Z" + "iopub.execute_input": "2024-08-02T23:18:25.291654Z", + "iopub.status.busy": "2024-08-02T23:18:25.291314Z", + "iopub.status.idle": "2024-08-02T23:18:25.325141Z", + "shell.execute_reply": "2024-08-02T23:18:25.324531Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.885593Z", - "iopub.status.busy": "2024-07-30T16:32:41.885224Z", - "iopub.status.idle": "2024-07-30T16:32:44.166781Z", - "shell.execute_reply": "2024-07-30T16:32:44.166160Z" + "iopub.execute_input": "2024-08-02T23:18:25.327400Z", + "iopub.status.busy": "2024-08-02T23:18:25.327081Z", + "iopub.status.idle": "2024-08-02T23:18:27.419844Z", + "shell.execute_reply": "2024-08-02T23:18:27.419221Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.169594Z", - "iopub.status.busy": "2024-07-30T16:32:44.168967Z", - "iopub.status.idle": "2024-07-30T16:32:44.189239Z", - "shell.execute_reply": "2024-07-30T16:32:44.188670Z" + "iopub.execute_input": "2024-08-02T23:18:27.422496Z", + "iopub.status.busy": "2024-08-02T23:18:27.421968Z", + "iopub.status.idle": "2024-08-02T23:18:27.440757Z", + "shell.execute_reply": "2024-08-02T23:18:27.440302Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.191720Z", - "iopub.status.busy": "2024-07-30T16:32:44.191313Z", - "iopub.status.idle": "2024-07-30T16:32:44.198409Z", - "shell.execute_reply": "2024-07-30T16:32:44.197866Z" + "iopub.execute_input": "2024-08-02T23:18:27.442868Z", + "iopub.status.busy": "2024-08-02T23:18:27.442525Z", + "iopub.status.idle": "2024-08-02T23:18:27.449073Z", + "shell.execute_reply": "2024-08-02T23:18:27.448585Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.200671Z", - "iopub.status.busy": "2024-07-30T16:32:44.200330Z", - "iopub.status.idle": "2024-07-30T16:32:44.206405Z", - "shell.execute_reply": "2024-07-30T16:32:44.205886Z" + "iopub.execute_input": "2024-08-02T23:18:27.451087Z", + "iopub.status.busy": "2024-08-02T23:18:27.450752Z", + "iopub.status.idle": "2024-08-02T23:18:27.456602Z", + "shell.execute_reply": "2024-08-02T23:18:27.456121Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.208540Z", - "iopub.status.busy": "2024-07-30T16:32:44.208187Z", - "iopub.status.idle": "2024-07-30T16:32:44.218769Z", - "shell.execute_reply": "2024-07-30T16:32:44.218292Z" + "iopub.execute_input": "2024-08-02T23:18:27.458665Z", + "iopub.status.busy": "2024-08-02T23:18:27.458311Z", + "iopub.status.idle": "2024-08-02T23:18:27.470031Z", + "shell.execute_reply": "2024-08-02T23:18:27.469562Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.221000Z", - "iopub.status.busy": "2024-07-30T16:32:44.220629Z", - "iopub.status.idle": "2024-07-30T16:32:44.230293Z", - "shell.execute_reply": "2024-07-30T16:32:44.229490Z" + "iopub.execute_input": "2024-08-02T23:18:27.472056Z", + "iopub.status.busy": "2024-08-02T23:18:27.471719Z", + "iopub.status.idle": "2024-08-02T23:18:27.480622Z", + "shell.execute_reply": "2024-08-02T23:18:27.480154Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.232925Z", - "iopub.status.busy": "2024-07-30T16:32:44.232545Z", - "iopub.status.idle": "2024-07-30T16:32:44.240606Z", - "shell.execute_reply": "2024-07-30T16:32:44.239954Z" + "iopub.execute_input": "2024-08-02T23:18:27.482811Z", + "iopub.status.busy": "2024-08-02T23:18:27.482463Z", + "iopub.status.idle": "2024-08-02T23:18:27.489531Z", + "shell.execute_reply": "2024-08-02T23:18:27.489014Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.242998Z", - "iopub.status.busy": "2024-07-30T16:32:44.242622Z", - "iopub.status.idle": "2024-07-30T16:32:44.252782Z", - "shell.execute_reply": "2024-07-30T16:32:44.252133Z" + "iopub.execute_input": "2024-08-02T23:18:27.491621Z", + "iopub.status.busy": "2024-08-02T23:18:27.491282Z", + "iopub.status.idle": "2024-08-02T23:18:27.500416Z", + "shell.execute_reply": "2024-08-02T23:18:27.499840Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.255163Z", - "iopub.status.busy": "2024-07-30T16:32:44.254809Z", - "iopub.status.idle": "2024-07-30T16:32:44.273057Z", - "shell.execute_reply": "2024-07-30T16:32:44.272419Z" + "iopub.execute_input": "2024-08-02T23:18:27.502452Z", + "iopub.status.busy": "2024-08-02T23:18:27.502275Z", + "iopub.status.idle": "2024-08-02T23:18:27.517561Z", + "shell.execute_reply": "2024-08-02T23:18:27.517118Z" }, "nbsphinx": "hidden" }, @@ -1615,6 +1615,21 @@ "assert jaccard_similarity(predicted_outlier_issues_indices, outlier_issue_indices) > 0.9\n", "assert jaccard_similarity(predicted_duplicate_issues_indices, duplicate_issue_indices) > 0.9" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] } ], "metadata": { diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index 4228b95b6..b6b82bece 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:47.382198Z", - "iopub.status.busy": "2024-07-30T16:32:47.381761Z", - "iopub.status.idle": "2024-07-30T16:32:50.574056Z", - "shell.execute_reply": "2024-07-30T16:32:50.573420Z" + "iopub.execute_input": "2024-08-02T23:18:30.187968Z", + "iopub.status.busy": "2024-08-02T23:18:30.187540Z", + "iopub.status.idle": "2024-08-02T23:18:33.174744Z", + "shell.execute_reply": "2024-08-02T23:18:33.174187Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:50.576906Z", - "iopub.status.busy": "2024-07-30T16:32:50.576348Z", - "iopub.status.idle": "2024-07-30T16:32:50.580381Z", - "shell.execute_reply": "2024-07-30T16:32:50.579783Z" + "iopub.execute_input": "2024-08-02T23:18:33.177406Z", + "iopub.status.busy": "2024-08-02T23:18:33.176910Z", + "iopub.status.idle": "2024-08-02T23:18:33.180538Z", + "shell.execute_reply": "2024-08-02T23:18:33.180061Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:50.582599Z", - "iopub.status.busy": "2024-07-30T16:32:50.582229Z", - "iopub.status.idle": "2024-07-30T16:33:02.303436Z", - "shell.execute_reply": "2024-07-30T16:33:02.302939Z" + "iopub.execute_input": "2024-08-02T23:18:33.182529Z", + "iopub.status.busy": "2024-08-02T23:18:33.182219Z", + "iopub.status.idle": "2024-08-02T23:18:44.664109Z", + "shell.execute_reply": "2024-08-02T23:18:44.663641Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7cd770708ca5498492377d6a0fd76616", + "model_id": "a83344ed6e98426eabf329c5f44403a3", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c4fa7fdeeb9446ddbf6516f8963fa52e", + "model_id": "eeb48354781f459d926f56b9d9f2d412", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6e2987ba28d48c28d884b33288562df", + "model_id": "53411696bfa143a2bdec30cc846c6549", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "29ade62a53ac448198f24b5900001b05", + "model_id": "c17e6593dbb94d3a9ee695742a582d56", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "926846a8c6954c46acf37f4dd63e7eb9", + "model_id": "a26294fe97dc43f9be84fc17b73f9563", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6aaa8d39274f4cfea54a66eb8516a06f", + "model_id": "dac75bdcb107415d915bb9ad97029fe4", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "96697881a93440babad369ae2e2fd4b8", + "model_id": "73b0c33bd83f44ad9d81965657542e7d", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "efe64e5c44d94c6bb0bed3ad6e844c33", + "model_id": "ecb36eb02e7843c881d512c1e1980bfc", "version_major": 2, "version_minor": 0 }, @@ -302,10 +302,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:02.305705Z", - "iopub.status.busy": "2024-07-30T16:33:02.305351Z", - "iopub.status.idle": "2024-07-30T16:33:02.309197Z", - "shell.execute_reply": "2024-07-30T16:33:02.308695Z" + "iopub.execute_input": "2024-08-02T23:18:44.666249Z", + "iopub.status.busy": "2024-08-02T23:18:44.666064Z", + "iopub.status.idle": "2024-08-02T23:18:44.669866Z", + "shell.execute_reply": "2024-08-02T23:18:44.669332Z" } }, "outputs": [ @@ -330,17 +330,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:02.311412Z", - "iopub.status.busy": "2024-07-30T16:33:02.311066Z", - "iopub.status.idle": "2024-07-30T16:33:14.158148Z", - "shell.execute_reply": "2024-07-30T16:33:14.157496Z" + "iopub.execute_input": "2024-08-02T23:18:44.671881Z", + "iopub.status.busy": "2024-08-02T23:18:44.671547Z", + "iopub.status.idle": "2024-08-02T23:18:56.267751Z", + "shell.execute_reply": "2024-08-02T23:18:56.267200Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c48d73b75d8543b7900f7e3a24c14ff0", + "model_id": "82fd82af78b445e7b64eeceba4a9b1cc", "version_major": 2, "version_minor": 0 }, @@ -378,10 +378,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:14.161054Z", - "iopub.status.busy": "2024-07-30T16:33:14.160637Z", - "iopub.status.idle": "2024-07-30T16:33:33.040556Z", - "shell.execute_reply": "2024-07-30T16:33:33.039889Z" + "iopub.execute_input": "2024-08-02T23:18:56.270597Z", + "iopub.status.busy": "2024-08-02T23:18:56.270197Z", + "iopub.status.idle": "2024-08-02T23:19:15.145228Z", + "shell.execute_reply": "2024-08-02T23:19:15.144654Z" } }, "outputs": [], @@ -414,10 +414,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:33.043526Z", - "iopub.status.busy": "2024-07-30T16:33:33.043163Z", - "iopub.status.idle": "2024-07-30T16:33:33.048147Z", - "shell.execute_reply": "2024-07-30T16:33:33.047576Z" + "iopub.execute_input": "2024-08-02T23:19:15.147853Z", + "iopub.status.busy": "2024-08-02T23:19:15.147474Z", + "iopub.status.idle": "2024-08-02T23:19:15.153225Z", + "shell.execute_reply": "2024-08-02T23:19:15.152782Z" } }, "outputs": [], @@ -455,10 +455,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:33.050340Z", - "iopub.status.busy": "2024-07-30T16:33:33.049814Z", - "iopub.status.idle": "2024-07-30T16:33:33.054210Z", - "shell.execute_reply": "2024-07-30T16:33:33.053653Z" + "iopub.execute_input": "2024-08-02T23:19:15.155015Z", + "iopub.status.busy": "2024-08-02T23:19:15.154828Z", + "iopub.status.idle": "2024-08-02T23:19:15.159184Z", + "shell.execute_reply": "2024-08-02T23:19:15.158778Z" }, "nbsphinx": "hidden" }, @@ -595,10 +595,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:33.056104Z", - "iopub.status.busy": "2024-07-30T16:33:33.055933Z", - "iopub.status.idle": "2024-07-30T16:33:33.065120Z", - "shell.execute_reply": "2024-07-30T16:33:33.064640Z" + "iopub.execute_input": "2024-08-02T23:19:15.161173Z", + "iopub.status.busy": "2024-08-02T23:19:15.160982Z", + "iopub.status.idle": "2024-08-02T23:19:15.169844Z", + "shell.execute_reply": "2024-08-02T23:19:15.169391Z" }, "nbsphinx": "hidden" }, @@ -723,10 +723,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:33.067246Z", - "iopub.status.busy": "2024-07-30T16:33:33.066927Z", - "iopub.status.idle": "2024-07-30T16:33:33.096315Z", - "shell.execute_reply": "2024-07-30T16:33:33.095690Z" + "iopub.execute_input": "2024-08-02T23:19:15.171692Z", + "iopub.status.busy": "2024-08-02T23:19:15.171519Z", + "iopub.status.idle": "2024-08-02T23:19:15.197718Z", + "shell.execute_reply": "2024-08-02T23:19:15.197156Z" } }, "outputs": [], @@ -763,10 +763,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:33.098981Z", - "iopub.status.busy": "2024-07-30T16:33:33.098550Z", - "iopub.status.idle": "2024-07-30T16:34:08.613598Z", - "shell.execute_reply": "2024-07-30T16:34:08.612987Z" + "iopub.execute_input": "2024-08-02T23:19:15.200155Z", + "iopub.status.busy": "2024-08-02T23:19:15.199758Z", + "iopub.status.idle": "2024-08-02T23:19:48.490207Z", + "shell.execute_reply": "2024-08-02T23:19:48.489541Z" } }, "outputs": [ @@ -782,21 +782,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.221\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.940\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.922\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.696\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4800d17f20734ee3900349a11b2585dc", + "model_id": "dcb047742e7c4146a32757077d93eb95", "version_major": 2, "version_minor": 0 }, @@ -817,7 +817,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "21d92163462b4f67a981a814fcb48508", + "model_id": "64bb6421005c4259bdb6379773d89e83", "version_major": 2, "version_minor": 0 }, @@ -840,21 +840,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.233\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.990\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.913\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.598\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8af1aec52aef434b81a22b708073556f", + "model_id": "7b496615a26e4658af3e583f61bcdef9", "version_major": 2, "version_minor": 0 }, @@ -875,7 +875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "19a5e3a37b304b559df2c5101035122f", + "model_id": "cf7cc11f28ea46039cc95c145d1ce401", "version_major": 2, "version_minor": 0 }, @@ -898,21 +898,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.455\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.891\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 5.031\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.595\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a2738be416ce480c95fff046962f1137", + "model_id": "4a80db32ba09418496242d3395cc72bf", "version_major": 2, "version_minor": 0 }, @@ -933,7 +933,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6c2f40cf42cc413e8b1040c82a085028", + "model_id": "9e16783844c34794a2677bfd495b5109", "version_major": 2, "version_minor": 0 }, @@ -1012,10 +1012,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:34:08.616395Z", - "iopub.status.busy": "2024-07-30T16:34:08.615872Z", - "iopub.status.idle": "2024-07-30T16:34:08.631241Z", - "shell.execute_reply": "2024-07-30T16:34:08.630690Z" + "iopub.execute_input": "2024-08-02T23:19:48.492853Z", + "iopub.status.busy": "2024-08-02T23:19:48.492428Z", + "iopub.status.idle": "2024-08-02T23:19:48.507600Z", + "shell.execute_reply": "2024-08-02T23:19:48.507055Z" } }, "outputs": [], @@ -1040,10 +1040,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:34:08.633394Z", - "iopub.status.busy": "2024-07-30T16:34:08.633052Z", - "iopub.status.idle": "2024-07-30T16:34:09.125544Z", - "shell.execute_reply": "2024-07-30T16:34:09.124944Z" + "iopub.execute_input": "2024-08-02T23:19:48.509976Z", + "iopub.status.busy": "2024-08-02T23:19:48.509546Z", + "iopub.status.idle": "2024-08-02T23:19:48.985893Z", + "shell.execute_reply": "2024-08-02T23:19:48.985338Z" } }, "outputs": [], @@ -1063,10 +1063,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:34:09.128240Z", - "iopub.status.busy": "2024-07-30T16:34:09.127855Z", - "iopub.status.idle": "2024-07-30T16:35:49.585066Z", - "shell.execute_reply": "2024-07-30T16:35:49.584319Z" + "iopub.execute_input": "2024-08-02T23:19:48.988296Z", + "iopub.status.busy": "2024-08-02T23:19:48.987937Z", + "iopub.status.idle": "2024-08-02T23:21:27.529258Z", + "shell.execute_reply": "2024-08-02T23:21:27.528524Z" } }, "outputs": [ @@ -1105,7 +1105,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1e7ed9a8db3f47d499c32f8ab98695a3", + "model_id": "65b0b32c141e4ddeb98d61670fbf32bf", "version_major": 2, "version_minor": 0 }, @@ -1150,10 +1150,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:49.587886Z", - "iopub.status.busy": "2024-07-30T16:35:49.587314Z", - "iopub.status.idle": "2024-07-30T16:35:50.063963Z", - "shell.execute_reply": "2024-07-30T16:35:50.063372Z" + "iopub.execute_input": "2024-08-02T23:21:27.531774Z", + "iopub.status.busy": "2024-08-02T23:21:27.531386Z", + "iopub.status.idle": "2024-08-02T23:21:27.988639Z", + "shell.execute_reply": "2024-08-02T23:21:27.987974Z" } }, "outputs": [ @@ -1299,10 +1299,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:50.066551Z", - "iopub.status.busy": "2024-07-30T16:35:50.065928Z", - "iopub.status.idle": "2024-07-30T16:35:50.128967Z", - "shell.execute_reply": "2024-07-30T16:35:50.128437Z" + "iopub.execute_input": "2024-08-02T23:21:27.999558Z", + "iopub.status.busy": "2024-08-02T23:21:27.999325Z", + "iopub.status.idle": "2024-08-02T23:21:28.049571Z", + "shell.execute_reply": "2024-08-02T23:21:28.048979Z" } }, "outputs": [ @@ -1406,10 +1406,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:50.131433Z", - "iopub.status.busy": "2024-07-30T16:35:50.130978Z", - "iopub.status.idle": "2024-07-30T16:35:50.141475Z", - "shell.execute_reply": "2024-07-30T16:35:50.140991Z" + "iopub.execute_input": "2024-08-02T23:21:28.051857Z", + "iopub.status.busy": "2024-08-02T23:21:28.051505Z", + "iopub.status.idle": "2024-08-02T23:21:28.060658Z", + "shell.execute_reply": "2024-08-02T23:21:28.060215Z" } }, "outputs": [ @@ -1539,10 +1539,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:50.143638Z", - "iopub.status.busy": "2024-07-30T16:35:50.143453Z", - "iopub.status.idle": "2024-07-30T16:35:50.148446Z", - "shell.execute_reply": "2024-07-30T16:35:50.147959Z" + "iopub.execute_input": "2024-08-02T23:21:28.062728Z", + "iopub.status.busy": "2024-08-02T23:21:28.062400Z", + "iopub.status.idle": "2024-08-02T23:21:28.066951Z", + "shell.execute_reply": "2024-08-02T23:21:28.066486Z" }, "nbsphinx": "hidden" }, @@ -1588,10 +1588,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:50.150589Z", - "iopub.status.busy": "2024-07-30T16:35:50.150254Z", - "iopub.status.idle": "2024-07-30T16:35:50.655702Z", - "shell.execute_reply": "2024-07-30T16:35:50.655117Z" + "iopub.execute_input": "2024-08-02T23:21:28.069039Z", + "iopub.status.busy": "2024-08-02T23:21:28.068692Z", + "iopub.status.idle": "2024-08-02T23:21:28.571892Z", + "shell.execute_reply": "2024-08-02T23:21:28.571292Z" } }, "outputs": [ @@ -1626,10 +1626,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:50.658180Z", - "iopub.status.busy": "2024-07-30T16:35:50.657804Z", - "iopub.status.idle": "2024-07-30T16:35:50.666671Z", - "shell.execute_reply": "2024-07-30T16:35:50.666179Z" + "iopub.execute_input": "2024-08-02T23:21:28.574424Z", + "iopub.status.busy": "2024-08-02T23:21:28.574048Z", + "iopub.status.idle": "2024-08-02T23:21:28.582821Z", + "shell.execute_reply": "2024-08-02T23:21:28.582318Z" } }, "outputs": [ @@ -1796,10 +1796,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:50.668871Z", - "iopub.status.busy": "2024-07-30T16:35:50.668531Z", - "iopub.status.idle": "2024-07-30T16:35:50.675953Z", - "shell.execute_reply": "2024-07-30T16:35:50.675476Z" + "iopub.execute_input": "2024-08-02T23:21:28.585102Z", + "iopub.status.busy": "2024-08-02T23:21:28.584720Z", + "iopub.status.idle": "2024-08-02T23:21:28.592253Z", + "shell.execute_reply": "2024-08-02T23:21:28.591755Z" }, "nbsphinx": "hidden" }, @@ -1875,10 +1875,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:50.677971Z", - "iopub.status.busy": "2024-07-30T16:35:50.677635Z", - "iopub.status.idle": "2024-07-30T16:35:51.461209Z", - "shell.execute_reply": "2024-07-30T16:35:51.460595Z" + "iopub.execute_input": "2024-08-02T23:21:28.594385Z", + "iopub.status.busy": "2024-08-02T23:21:28.593990Z", + "iopub.status.idle": "2024-08-02T23:21:29.355028Z", + "shell.execute_reply": "2024-08-02T23:21:29.354474Z" } }, "outputs": [ @@ -1915,10 +1915,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:51.463335Z", - "iopub.status.busy": "2024-07-30T16:35:51.463157Z", - "iopub.status.idle": "2024-07-30T16:35:51.478468Z", - "shell.execute_reply": "2024-07-30T16:35:51.477939Z" + "iopub.execute_input": "2024-08-02T23:21:29.357774Z", + "iopub.status.busy": "2024-08-02T23:21:29.357407Z", + "iopub.status.idle": "2024-08-02T23:21:29.372810Z", + "shell.execute_reply": "2024-08-02T23:21:29.372351Z" } }, "outputs": [ @@ -2075,10 +2075,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:51.480643Z", - "iopub.status.busy": "2024-07-30T16:35:51.480298Z", - "iopub.status.idle": "2024-07-30T16:35:51.486080Z", - "shell.execute_reply": "2024-07-30T16:35:51.485499Z" + "iopub.execute_input": "2024-08-02T23:21:29.375092Z", + "iopub.status.busy": "2024-08-02T23:21:29.374753Z", + "iopub.status.idle": "2024-08-02T23:21:29.380139Z", + "shell.execute_reply": "2024-08-02T23:21:29.379692Z" }, "nbsphinx": "hidden" }, @@ -2123,10 +2123,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:51.488104Z", - "iopub.status.busy": "2024-07-30T16:35:51.487778Z", - "iopub.status.idle": "2024-07-30T16:35:51.924919Z", - "shell.execute_reply": "2024-07-30T16:35:51.924107Z" + "iopub.execute_input": "2024-08-02T23:21:29.382139Z", + "iopub.status.busy": "2024-08-02T23:21:29.381799Z", + "iopub.status.idle": "2024-08-02T23:21:29.845557Z", + "shell.execute_reply": "2024-08-02T23:21:29.844919Z" } }, "outputs": [ @@ -2208,10 +2208,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:51.927416Z", - "iopub.status.busy": "2024-07-30T16:35:51.927225Z", - "iopub.status.idle": "2024-07-30T16:35:51.936102Z", - "shell.execute_reply": "2024-07-30T16:35:51.935657Z" + "iopub.execute_input": "2024-08-02T23:21:29.848126Z", + "iopub.status.busy": "2024-08-02T23:21:29.847912Z", + "iopub.status.idle": "2024-08-02T23:21:29.857322Z", + "shell.execute_reply": "2024-08-02T23:21:29.856727Z" } }, "outputs": [ @@ -2236,47 +2236,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2339,10 +2339,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:51.938423Z", - "iopub.status.busy": "2024-07-30T16:35:51.938102Z", - "iopub.status.idle": "2024-07-30T16:35:51.942887Z", - "shell.execute_reply": "2024-07-30T16:35:51.942471Z" + "iopub.execute_input": "2024-08-02T23:21:29.863079Z", + "iopub.status.busy": "2024-08-02T23:21:29.862689Z", + "iopub.status.idle": "2024-08-02T23:21:29.868549Z", + "shell.execute_reply": "2024-08-02T23:21:29.868014Z" }, "nbsphinx": "hidden" }, @@ -2379,10 +2379,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:51.944959Z", - "iopub.status.busy": "2024-07-30T16:35:51.944785Z", - "iopub.status.idle": "2024-07-30T16:35:52.122597Z", - "shell.execute_reply": "2024-07-30T16:35:52.121954Z" + "iopub.execute_input": "2024-08-02T23:21:29.870918Z", + "iopub.status.busy": "2024-08-02T23:21:29.870547Z", + "iopub.status.idle": "2024-08-02T23:21:30.077571Z", + "shell.execute_reply": "2024-08-02T23:21:30.076922Z" } }, "outputs": [ @@ -2424,10 +2424,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:52.124950Z", - "iopub.status.busy": "2024-07-30T16:35:52.124756Z", - "iopub.status.idle": "2024-07-30T16:35:52.135215Z", - "shell.execute_reply": "2024-07-30T16:35:52.134594Z" + "iopub.execute_input": "2024-08-02T23:21:30.080367Z", + "iopub.status.busy": "2024-08-02T23:21:30.079898Z", + "iopub.status.idle": "2024-08-02T23:21:30.089071Z", + "shell.execute_reply": "2024-08-02T23:21:30.088586Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:52.137816Z", - "iopub.status.busy": "2024-07-30T16:35:52.137602Z", - "iopub.status.idle": "2024-07-30T16:35:52.311705Z", - "shell.execute_reply": "2024-07-30T16:35:52.311080Z" + "iopub.execute_input": "2024-08-02T23:21:30.091316Z", + "iopub.status.busy": "2024-08-02T23:21:30.090937Z", + "iopub.status.idle": "2024-08-02T23:21:30.294894Z", + "shell.execute_reply": "2024-08-02T23:21:30.294300Z" } }, "outputs": [ @@ -2556,10 +2556,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:52.314392Z", - "iopub.status.busy": "2024-07-30T16:35:52.313905Z", - "iopub.status.idle": "2024-07-30T16:35:52.318429Z", - "shell.execute_reply": "2024-07-30T16:35:52.317890Z" + "iopub.execute_input": "2024-08-02T23:21:30.297271Z", + "iopub.status.busy": "2024-08-02T23:21:30.296882Z", + "iopub.status.idle": "2024-08-02T23:21:30.301477Z", + "shell.execute_reply": "2024-08-02T23:21:30.300986Z" }, "nbsphinx": "hidden" }, @@ -2596,7 +2596,41 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0013256c6393414d897e747fbb692b2e": { + "008cc90d3b174aecbf9dba417deead0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0321558e1f2248a4a77dc93038d153fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "04b1be295a6d4f059ade3404a98a6f40": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2649,88 +2683,7 @@ "width": null } }, - "004fcea71628418685555fb760dec429": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6826340ac4a7479cb63a98919d60e1b5", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dcd9b7afd17f44798d2064cf5a3862de", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "0119a979303348feaf5374a2e7f3b418": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7d9dcc168074809a9f461109ae607c0", - "placeholder": "​", - "style": "IPY_MODEL_e4613e030b794d219b1926a1e5b67f63", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" - } - }, - "01972cf3b8f94fab866c986e21f7f91f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "035a0174785c4ed3bb69dcff3281ef55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "06d84d61f0474ccabad6fb12d0aa215b": { + "053d6bcb7ffe4ee1aff83f2ff8289f7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2783,25 +2736,30 @@ "width": null } }, - "08618be7a9234af1a5348de326d6418b": { + "0701220c8d274ebf82856fa715f93e3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_70f89b2903d04a85b5e26fe705654626", + "placeholder": "​", + "style": "IPY_MODEL_1ec29b995d864c5487b2b5aebaaae290", + "tabbable": null, + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 93.6MB/s]" } }, - "0af0baad7c99404cbce2f5872c14531d": { + "0a065988806d4c61b5a9536feff6aa88": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2854,53 +2812,7 @@ "width": null } }, - "0b1ef64e0ea844c4a0efed4b089ecc5e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3123f857e00343f4bd9235d4bafc70bf", - "placeholder": "​", - "style": "IPY_MODEL_166f4e2b87384d8f94272fd75e017ce1", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "0ca0287b646c497e8e812ef207ee400f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a502ea89a10b4d3f8b810850b097c4c8", - "placeholder": "​", - "style": "IPY_MODEL_106a78e01b744c7e853e027a36ffe806", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1209.26it/s]" - } - }, - "0ccaafe3fa3d4248819d0a351c6afed7": { + "0bb0c6cd74714525bd07e548e7d6972a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2915,56 +2827,55 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_60e6b313ac404eb49b45082ef785605e", + "layout": "IPY_MODEL_ff995d6039774b1795125f0d38e2290c", "placeholder": "​", - "style": "IPY_MODEL_60cd2aa7a8ab4eadbcc00cf551cf13f2", + "style": "IPY_MODEL_117dc79c92dd4e5bbc59ed4371305ed9", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 4/4 [00:00<00:00, 1193.34it/s]" } }, - "0db4b028aefb4687827337f7e184db65": { + "0c527e0277824068b5b3b0c56c2cb88c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "0f32fa1658214a03a0e7b355268571f9": { + "0d396d9bc1ba4ca7a76e9acf1bac3183": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c9c9176e7a0b4f09b751df8cc4e0666a", - "placeholder": "​", - "style": "IPY_MODEL_480213636d724918930198d0a10688df", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cd7691b2898c48ccbcce3c047dbbbad9", + "IPY_MODEL_df18ff2baa2146ce9fdced9dc9025023", + "IPY_MODEL_0bb0c6cd74714525bd07e548e7d6972a" + ], + "layout": "IPY_MODEL_2b8380dc5d3f41fc8df372a9a0270fef", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "0f477d12bbbc409caed9b4d8a9bcc695": { + "0ea3cf33c1cb4c2797daeaac23d505c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3017,48 +2928,7 @@ "width": null } }, - "106a78e01b744c7e853e027a36ffe806": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "116f6fc2329645d68a83663b5feb94ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_67da9cc8d08944909f459041ea4e201e", - "placeholder": "​", - "style": "IPY_MODEL_be62105b70444309b42629557d23dd31", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "15aa61db4cc44bdc991db5521f2fa425": { + "0ebef90cea924ea28f7f9ad9dd121bd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3111,7 +2981,7 @@ "width": null } }, - "166f4e2b87384d8f94272fd75e017ce1": { + "11546f58aa7a4de882081abc528f2d15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3129,59 +2999,59 @@ "text_color": null } }, - "16ff670713eb4f70a0cc1728a34d5452": { + "117dc79c92dd4e5bbc59ed4371305ed9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0f477d12bbbc409caed9b4d8a9bcc695", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5d8bc20fd5c14f0b8fe44ed387e39400", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "184ad9317d854ba1a1ced110910cca10": { + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "157495f23b85447197472c8583f986a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d8be42381424e8386712e589902ea33", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6d3edf2e39d944c09f3fbef854866461", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1913f376829b4276979eb954c5abffac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "194f679dc6e14a978e8925bb038e3793": { + "1978db485a5e4e26988896e2745d50c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3234,57 +3104,64 @@ "width": null } }, - "19a5e3a37b304b559df2c5101035122f": { + "1c793150c7994b6796a456cc47656766": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_798557df3a2647b7986d02dc545587b8", - "IPY_MODEL_1ebb404b2871496886508c42693e8007", - "IPY_MODEL_4247f90a7e514d59a156a29ddfc979bc" - ], - "layout": "IPY_MODEL_7b0284c026ce41ef999e0bad78664f3a", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1d157e6477da483192d99d6ea6dc4738": { + "1ec29b995d864c5487b2b5aebaaae290": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1f7594d56c6047069a31bad06b2c4451": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_50def53d0bfc4f10b462dc84ac9d3884", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1ee495dc542a4878b7b0589a8865264f", + "layout": "IPY_MODEL_53090a2f661b425db670dc4fbf0fb529", + "placeholder": "​", + "style": "IPY_MODEL_11546f58aa7a4de882081abc528f2d15", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": " 60000/60000 [00:11<00:00, 7589.51 examples/s]" } }, - "1e1a87a8a45e4b57adf13faea5793824": { + "21f17e330fed45f991ac662863ad20c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3337,31 +3214,60 @@ "width": null } }, - "1e7ed9a8db3f47d499c32f8ab98695a3": { - "model_module": "@jupyter-widgets/controls", + "23d5b82109144ee7a24d9a0260581d3c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0f32fa1658214a03a0e7b355268571f9", - "IPY_MODEL_fabe89de1f3f41f493f2490c661f6d02", - "IPY_MODEL_5868a22f8e0e413da7cdf7bc7c8f6baf" - ], - "layout": "IPY_MODEL_82a91f795cc0496d884607edf4c43169", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1ebb404b2871496886508c42693e8007": { + "2429a33f84414829b992fe114424e50a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3377,51 +3283,51 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4718f5d7ff96463c8fc9e38bcb1d4f84", - "max": 40.0, + "layout": "IPY_MODEL_42284f1f76a24124b649b9ff215d227d", + "max": 4833.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_57c02383588c4f38bf7a1f4d6e862131", + "style": "IPY_MODEL_99be84fae9814898a5ec9de62f8bec71", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 4833.0 } }, - "1ee495dc542a4878b7b0589a8865264f": { + "2474303c0dd8433ea96f93d2d05be693": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1ff7f1a37c2a45dcb7598e70cf6710d0": { + "249d7227afe34c96a6dce625c53740e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "213272b1b45445c7b3f2b35602fa31b9": { + "28277410e85e4932820b42630bb0f742": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3474,7 +3380,7 @@ "width": null } }, - "21c7629462754933abb55f66fa8af51e": { + "2b8380dc5d3f41fc8df372a9a0270fef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3527,31 +3433,7 @@ "width": null } }, - "21d92163462b4f67a981a814fcb48508": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_365106e243354786ba305456bcfe36bb", - "IPY_MODEL_50051443ed9e43948d3f683823437ef4", - "IPY_MODEL_97665d87bb634843b13c86ccc743aab1" - ], - "layout": "IPY_MODEL_d9fce56a4501415dbadef0b6597c3c59", - "tabbable": null, - "tooltip": null - } - }, - "2276743b098540579a44bab387084257": { + "2bcb588ce9b74e8b8db00043d6cc39b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3604,7 +3486,33 @@ "width": null } }, - "22a0669e75de415dac70a25c5054d25b": { + "2cd1ee001cd24600a736d0c202a6dedf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aabe4cad481c40eca44a9026dcd4e8a5", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_be6f840505a94e42aa9f3efb5f70e58d", + "tabbable": null, + "tooltip": null, + "value": 8845.0 + } + }, + "2f629df02c234703812e8fe02b33e502": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3657,7 +3565,25 @@ "width": null } }, - "22b2d39a70b04bfeb7943490bd911b90": { + "2f74bc0d09e84164ae62a6edfda0b203": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2f8ded1032fd45c7a199a5a235b7da6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3710,7 +3636,33 @@ "width": null } }, - "23c83cfb62484a5aa0c6f3daa481f042": { + "309aab0ce99e45c8b890fac8e63f3ad6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fd69a19b7d0147feafb879a2901669a3", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d81d84df0bb349ecb366777bc7e66581", + "tabbable": null, + "tooltip": null, + "value": 29515.0 + } + }, + "32eff9a51cbd4c00939014db4c00497d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3763,39 +3715,83 @@ "width": null } }, - "24bcebdd6f9f41bb84c60f2b915efbc6": { - "model_module": "@jupyter-widgets/controls", + "340aeb36bd33457c890c7f97b3f4f1c6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "24daedc2073f4af4960d8c11c761dfdc": { + "3421965f67c4426d8b36dfd785b1bf63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3a4f6479c26141e29383509674559040", + "placeholder": "​", + "style": "IPY_MODEL_7f48e8ee87fa452a840ce03364d7ae54", + "tabbable": null, + "tooltip": null, + "value": "Downloading builder script: 100%" } }, - "274b94c3c9414616afaa8d88d50ed39a": { + "34bde769bffd43eaa0c93ba34df78a86": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3848,25 +3844,7 @@ "width": null } }, - "28a88184c039419c865f50a0132f936e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "29ad3993f94346419af35928193d2eb8": { + "3a4f6479c26141e29383509674559040": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3919,31 +3897,25 @@ "width": null } }, - "29ade62a53ac448198f24b5900001b05": { + "3f532199bde345fe8e1b171972211f76": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2e2c7cda7d9b4df4a04a6753ab931f09", - "IPY_MODEL_4ba04e6400bf4886bd6115b9e964954f", - "IPY_MODEL_585a8b54491d4c409958f8e777013c6d" - ], - "layout": "IPY_MODEL_274b94c3c9414616afaa8d88d50ed39a", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2ab5cadb30864d4bb423984588e08dc5": { + "4065de6c5bb94dee80e0ff790f27c88e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3996,7 +3968,7 @@ "width": null } }, - "2c4d2a0d6acb4e3890230f3c2c9bfe68": { + "42284f1f76a24124b649b9ff215d227d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4049,43 +4021,33 @@ "width": null } }, - "2d6fb7b4b561449a9dee9ff41aedb47f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2e0328d5e45b46aab2d236490c3e32c0": { + "4444efe112e1446388019b313627e918": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1978db485a5e4e26988896e2745d50c3", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_249d7227afe34c96a6dce625c53740e4", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 } }, - "2e2c7cda7d9b4df4a04a6753ab931f09": { + "46a13fa57d7241ffbd2a05fc67f50cba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4100,15 +4062,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_554c4f5cf7704bc59bac43290853c47f", + "layout": "IPY_MODEL_a1229e9727404c84a102b26059b3598b", "placeholder": "​", - "style": "IPY_MODEL_ca407d230f484390a47362031adf31b7", + "style": "IPY_MODEL_593bc84ba0924c62a14d3481b292fbcc", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": "Generating test split: 100%" } }, - "2ea002ba5ef6449d8d22840ba751df3c": { + "46c3e557ebb340229dcc748eb3ffa273": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4161,7 +4123,30 @@ "width": null } }, - "303be7344e754dc0b81cc4362585ad42": { + "47d79aa7c6b647af82a8011a03ee9998": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23d5b82109144ee7a24d9a0260581d3c", + "placeholder": "​", + "style": "IPY_MODEL_9052c83436cd4f74b13f470536ddc112", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "483d2c174d96425e9d925b22417ae036": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4179,7 +4164,7 @@ "text_color": null } }, - "3123f857e00343f4bd9235d4bafc70bf": { + "49235cb19b1240da96da6be6a4be548f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4232,7 +4217,31 @@ "width": null } }, - "35038d2d13684a2a91ad7feed779f096": { + "4a80db32ba09418496242d3395cc72bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fa1d6736721d4514a810de77663bcbda", + "IPY_MODEL_8dbd6e10d3cd4aa294b3af287468dfc3", + "IPY_MODEL_e23f8197e5884501a75740e26d8e9e87" + ], + "layout": "IPY_MODEL_9670764c21d1488a967b28bb0319e34a", + "tabbable": null, + "tooltip": null + } + }, + "4c0da95bd9e34405968a7b43a426f555": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4250,30 +4259,43 @@ "text_color": null } }, - "365106e243354786ba305456bcfe36bb": { + "4d03223657ec491b9af44b05ebc67510": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c47e19aac35c46eb9cad874bb2fde728", - "placeholder": "​", - "style": "IPY_MODEL_35038d2d13684a2a91ad7feed779f096", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4eb4586518fc4f2db7cfe1874cd78764": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3704b910152b45dc924bb624c0ee95f3": { + "4f6264d4caa6476b9b98871af8645888": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4288,15 +4310,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_605c839bcc484635bec417281648e724", + "layout": "IPY_MODEL_f849b0a54a9341d48816de434459861d", "placeholder": "​", - "style": "IPY_MODEL_0db4b028aefb4687827337f7e184db65", + "style": "IPY_MODEL_4d03223657ec491b9af44b05ebc67510", "tabbable": null, "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 594kB/s]" + "value": "Downloading readme: 100%" } }, - "3b6ea79aef284f04a18098981d12f5e7": { + "53090a2f661b425db670dc4fbf0fb529": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4349,7 +4371,31 @@ "width": null } }, - "418123f93e554dba92a9656f5d7cee79": { + "53411696bfa143a2bdec30cc846c6549": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e903c2673aea40ff8165eb514306d801", + "IPY_MODEL_4444efe112e1446388019b313627e918", + "IPY_MODEL_e968873bf55440c7a5c3dc2d54a2fffa" + ], + "layout": "IPY_MODEL_d1af880c7c064b3f92991455aee3c3cb", + "tabbable": null, + "tooltip": null + } + }, + "5359ad8c54da428fb5c392d67cc59a1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4402,7 +4448,7 @@ "width": null } }, - "4247f90a7e514d59a156a29ddfc979bc": { + "53bb398dca5c4c19a62d3c24d56b8d70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4417,50 +4463,24 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9eaf779387934026b193e48e9bb55a86", + "layout": "IPY_MODEL_fe373b9b0fd449b5b8ebf17e3268d1d4", "placeholder": "​", - "style": "IPY_MODEL_2e0328d5e45b46aab2d236490c3e32c0", + "style": "IPY_MODEL_2474303c0dd8433ea96f93d2d05be693", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.22it/s]" + "value": "100%" } }, - "43ffe5059e7e475ebc29e46493f6aaa2": { - "model_module": "@jupyter-widgets/controls", + "565a741194564417aaf7b1fd21fa7b10": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b578fa4f2c45411b949fd41b642899ec", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_54d3aef6e7d041718cf3822974717221", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "465e03a22e1f4b66b9a21c2e90039525": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -4504,7 +4524,162 @@ "width": null } }, - "46b2604d41d1439898a0f49c0ba53f78": { + "569f9006d69f4caca7b18ca08202ca8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "58488a758cc84ed19cb308e894b44ff6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "593bc84ba0924c62a14d3481b292fbcc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "59ead770817a49939e6e42fb179cb880": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4065de6c5bb94dee80e0ff790f27c88e", + "placeholder": "​", + "style": "IPY_MODEL_ddaad249589d406f800a55cd3d9d30cc", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:07<00:00, 8706.05 examples/s]" + } + }, + "5a47d7b41af140cc813fd5444cda9c01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5aa1569ac03d4c3d83ff4ee430d4e730": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_04b1be295a6d4f059ade3404a98a6f40", + "placeholder": "​", + "style": "IPY_MODEL_fbcb15dedf2043518d6d958db3a9251d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.85it/s]" + } + }, + "5c2b62f749034df5b665e30f802f6fdb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9b4711a3e0f2449ea9ebcdbe67e8b922", + "placeholder": "​", + "style": "IPY_MODEL_f9f44c7999cb4bd5a40d1e6c0568d6c0", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:38<00:00, 1477.75it/s]" + } + }, + "5eacf99f8bf24aaab277af5019922414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "62a442f149b247ff8ccd9a45e243f04a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4520,17 +4695,56 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_884c1f18b9ab4af49db7098fea18ef3d", - "max": 26421880.0, + "layout": "IPY_MODEL_e4f46e4b6dea45b08c00df4c858c2e01", + "max": 10000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9078ad04df284aceade5e9637028e264", + "style": "IPY_MODEL_008cc90d3b174aecbf9dba417deead0b", "tabbable": null, "tooltip": null, - "value": 26421880.0 + "value": 10000.0 + } + }, + "62d3e6c861184243978b09cbb9180e98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "632e91a3058a43858c9cfc7dd4ab8224": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_32eff9a51cbd4c00939014db4c00497d", + "placeholder": "​", + "style": "IPY_MODEL_569f9006d69f4caca7b18ca08202ca8e", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "4718f5d7ff96463c8fc9e38bcb1d4f84": { + "646419f558064e69b0146dce4f2437ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4583,7 +4797,7 @@ "width": null } }, - "4800d17f20734ee3900349a11b2585dc": { + "64bb6421005c4259bdb6379773d89e83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4598,34 +4812,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0ccaafe3fa3d4248819d0a351c6afed7", - "IPY_MODEL_cc7c41fca7e14c8384b2ce49dac60516", - "IPY_MODEL_83644b7829034008a0cf8f0a63589d9c" + "IPY_MODEL_848f6f62abc74abcad6e8f9cc4aad7db", + "IPY_MODEL_d53d95a4952b45b89e345becafffa918", + "IPY_MODEL_a26b139422c8486baaa60664a664d5e4" ], - "layout": "IPY_MODEL_06d84d61f0474ccabad6fb12d0aa215b", + "layout": "IPY_MODEL_b9c5d366f68b4024bdb2f77fd2dc0a97", "tabbable": null, "tooltip": null } }, - "480213636d724918930198d0a10688df": { + "65b0b32c141e4ddeb98d61670fbf32bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_53bb398dca5c4c19a62d3c24d56b8d70", + "IPY_MODEL_b14c7f719b46408680d1288c61b48ef1", + "IPY_MODEL_5c2b62f749034df5b665e30f802f6fdb" + ], + "layout": "IPY_MODEL_e6baa32cd3bf48bbb3299eee55d39a07", + "tabbable": null, + "tooltip": null } }, - "4a320115b97a42bd89dd7903073750fa": { + "6681c5297f7d41d7909cbc433cc45ecb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4678,7 +4898,46 @@ "width": null } }, - "4a6f02046de3424183282c1ef1a1321c": { + "683ba6147ad748d5b77a49528a104a66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6681c5297f7d41d7909cbc433cc45ecb", + "placeholder": "​", + "style": "IPY_MODEL_483d2c174d96425e9d925b22417ae036", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "68e2162e5d5141faaace8be366af170d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6a3142644e9e40a8b2c8234302707a6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4731,67 +4990,113 @@ "width": null } }, - "4ba04e6400bf4886bd6115b9e964954f": { - "model_module": "@jupyter-widgets/controls", + "6c8a531245aa4bcb90add7c381690871": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21c7629462754933abb55f66fa8af51e", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_035a0174785c4ed3bb69dcff3281ef55", - "tabbable": null, - "tooltip": null, - "value": 29515.0 - } - }, - "4be2bfe6a47d40969d0226111c98ad2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "4c1a2e32c7124951b219b1f250f77e8e": { - "model_module": "@jupyter-widgets/controls", + "6df5ef22733c45bbbc3872d42e61b702": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "4f219139576c49c8b25a132eec1c1644": { + "70f89b2903d04a85b5e26fe705654626": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4844,33 +5149,30 @@ "width": null } }, - "50051443ed9e43948d3f683823437ef4": { + "71528aa09ab0432cb160e3e3b4a6acc0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_886c2364549848efa14fa9cf9f8ebde8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4c1a2e32c7124951b219b1f250f77e8e", + "layout": "IPY_MODEL_d5fb1eccbd4a473bb932d6e2dc592e7b", + "placeholder": "​", + "style": "IPY_MODEL_3f532199bde345fe8e1b171972211f76", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "50def53d0bfc4f10b462dc84ac9d3884": { + "7377f7ae31a3483faa06d57b36f0ee22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4923,23 +5225,49 @@ "width": null } }, - "54d3aef6e7d041718cf3822974717221": { + "73b0c33bd83f44ad9d81965657542e7d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b9fbad1ce5524fb5a7338c17c549a664", + "IPY_MODEL_e77e939384cd44dda51896a914105412", + "IPY_MODEL_59ead770817a49939e6e42fb179cb880" + ], + "layout": "IPY_MODEL_e88d7ccca07b4801921e8888e04413a8", + "tabbable": null, + "tooltip": null + } + }, + "765027b1c316405aa103d28e364ef2f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "54f8cf66c9fb4adfb6053467fa1dd06a": { + "77e7a0f9b870494bb4c571576cd3e4a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4992,7 +5320,7 @@ "width": null } }, - "554c4f5cf7704bc59bac43290853c47f": { + "7a100ccc67564d02b628a843ff1d910a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5045,101 +5373,144 @@ "width": null } }, - "56e6cb6825cc46a2918ad113792fcfad": { + "7b496615a26e4658af3e583f61bcdef9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_418123f93e554dba92a9656f5d7cee79", - "placeholder": "​", - "style": "IPY_MODEL_973ecb943cf94facbeaff08a43b11a14", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_905df8c243b24fca9a8ee8739822c89e", + "IPY_MODEL_eaf9477f9f65458fbc77305c13d9490e", + "IPY_MODEL_9bccc67055a14409b7a9511bfea69006" + ], + "layout": "IPY_MODEL_6c8a531245aa4bcb90add7c381690871", "tabbable": null, - "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 791kB/s]" + "tooltip": null } }, - "57c02383588c4f38bf7a1f4d6e862131": { - "model_module": "@jupyter-widgets/controls", + "7cc1a2ab2a22477e9711561211e13f21": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "57f0147d0b40481487ead645778ad6f0": { + "7f48e8ee87fa452a840ce03364d7ae54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "57fdb406a0104c008712f455671416ae": { + "7fad793d634f473d8744175a5f3f9d4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "585a8b54491d4c409958f8e777013c6d": { + "82fd82af78b445e7b64eeceba4a9b1cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_70fd4c0942f949219503830958a45c03", - "placeholder": "​", - "style": "IPY_MODEL_a5bb522450e449f9b7e10fcb83ff9537", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e848681b5d894f569bed4b32add7e687", + "IPY_MODEL_d7e915eeaf6a4364a2594d8c712ea0fc", + "IPY_MODEL_1f7594d56c6047069a31bad06b2c4451" + ], + "layout": "IPY_MODEL_2bcb588ce9b74e8b8db00043d6cc39b4", "tabbable": null, - "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.31MB/s]" + "tooltip": null } }, - "5868a22f8e0e413da7cdf7bc7c8f6baf": { + "848f6f62abc74abcad6e8f9cc4aad7db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5154,15 +5525,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_804696d71f5c428aa77920387c9f13ab", + "layout": "IPY_MODEL_2f629df02c234703812e8fe02b33e502", "placeholder": "​", - "style": "IPY_MODEL_80dbd77206334fa4a9255057329a0f43", + "style": "IPY_MODEL_ca10f77b43a24fe6aa44d88c348f21ff", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:39<00:00, 1541.50it/s]" + "value": "100%" + } + }, + "8cbb314c9a5c481abea7647e5b1a6591": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5a01deaf41c841cab934b678df22a7e6": { + "8dbd6e10d3cd4aa294b3af287468dfc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5178,33 +5565,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_54f8cf66c9fb4adfb6053467fa1dd06a", - "max": 4833.0, + "layout": "IPY_MODEL_bd1004389ba34632a152035fce23cc0e", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c5138f4ab850429ba23c48fd5efae242", + "style": "IPY_MODEL_5eacf99f8bf24aaab277af5019922414", "tabbable": null, "tooltip": null, - "value": 4833.0 - } - }, - "5d8bc20fd5c14f0b8fe44ed387e39400": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 40.0 } }, - "605c839bcc484635bec417281648e724": { + "8e57a6b9a8a646ca8412bbe009b0f38d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5257,7 +5628,66 @@ "width": null } }, - "60cd2aa7a8ab4eadbcc00cf551cf13f2": { + "8ee5f8a57b194864b742d798195824a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9052c83436cd4f74b13f470536ddc112": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "905df8c243b24fca9a8ee8739822c89e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21f17e330fed45f991ac662863ad20c9", + "placeholder": "​", + "style": "IPY_MODEL_4eb4586518fc4f2db7cfe1874cd78764", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "93810fa8e7464aabacc9c1e1529a1762": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5275,7 +5705,7 @@ "text_color": null } }, - "60e6b313ac404eb49b45082ef785605e": { + "9670764c21d1488a967b28bb0319e34a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5328,7 +5758,7 @@ "width": null } }, - "610a71ef770945809dc9f2e4b94664af": { + "99be84fae9814898a5ec9de62f8bec71": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5344,43 +5774,7 @@ "description_width": "" } }, - "61751669aa9c4b51923ed3a7deea7f56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "61d0c2efb0824d70ac0138f650ac65ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6443147e64204784b6b79779c4b0ece4": { + "9b101dc9f09a48478490bc2e1af6d6f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5433,30 +5827,7 @@ "width": null } }, - "6538276c3913471e82d12b7dfb5e849f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d68dfef9ba6d482e8e9c7a037d2c1ef7", - "placeholder": "​", - "style": "IPY_MODEL_ab22b295e4a042c898986f757b7461df", - "tabbable": null, - "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 71.3MB/s]" - } - }, - "66018dbdfa8e4496b534e3d80379136d": { + "9b4711a3e0f2449ea9ebcdbe67e8b922": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5509,7 +5880,54 @@ "width": null } }, - "67da9cc8d08944909f459041ea4e201e": { + "9bccc67055a14409b7a9511bfea69006": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7377f7ae31a3483faa06d57b36f0ee22", + "placeholder": "​", + "style": "IPY_MODEL_b67912d222c045e49bd4d157bb5d6807", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.69it/s]" + } + }, + "9e16783844c34794a2677bfd495b5109": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_683ba6147ad748d5b77a49528a104a66", + "IPY_MODEL_cd403484b0244f29813a01bd629db4a7", + "IPY_MODEL_dd86764aad08416fbaa3d7ad13f99a88" + ], + "layout": "IPY_MODEL_34bde769bffd43eaa0c93ba34df78a86", + "tabbable": null, + "tooltip": null + } + }, + "a03ad15668694b9d87adfc57c4b57c28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5562,30 +5980,7 @@ "width": null } }, - "67df8310ec724197b5a903618210990a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2ab5cadb30864d4bb423984588e08dc5", - "placeholder": "​", - "style": "IPY_MODEL_1ff7f1a37c2a45dcb7598e70cf6710d0", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 51.58it/s]" - } - }, - "6826340ac4a7479cb63a98919d60e1b5": { + "a1229e9727404c84a102b26059b3598b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5638,7 +6033,7 @@ "width": null } }, - "6aaa8d39274f4cfea54a66eb8516a06f": { + "a26294fe97dc43f9be84fc17b73f9563": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5653,16 +6048,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f6229a7aab1d42ca8805f534935617d9", - "IPY_MODEL_f4570a2a6a834672b816a3c3c92674d9", - "IPY_MODEL_56e6cb6825cc46a2918ad113792fcfad" + "IPY_MODEL_47d79aa7c6b647af82a8011a03ee9998", + "IPY_MODEL_c7c395ea8e2445e087e498d7bd31932c", + "IPY_MODEL_0701220c8d274ebf82856fa715f93e3a" ], - "layout": "IPY_MODEL_2276743b098540579a44bab387084257", + "layout": "IPY_MODEL_9b101dc9f09a48478490bc2e1af6d6f0", "tabbable": null, "tooltip": null } }, - "6b304bb9a46443e0bf010d5cb11b422e": { + "a26b139422c8486baaa60664a664d5e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5677,55 +6072,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2c4d2a0d6acb4e3890230f3c2c9bfe68", + "layout": "IPY_MODEL_b75eaab370104141b4c6f5177d957c68", "placeholder": "​", - "style": "IPY_MODEL_61d0c2efb0824d70ac0138f650ac65ef", + "style": "IPY_MODEL_0321558e1f2248a4a77dc93038d153fc", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "6c2f40cf42cc413e8b1040c82a085028": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d8e2ad07a3434005b3e28de5674a34fc", - "IPY_MODEL_43ffe5059e7e475ebc29e46493f6aaa2", - "IPY_MODEL_82514eeb7db2422c95cbe913e49e59dd" - ], - "layout": "IPY_MODEL_4f219139576c49c8b25a132eec1c1644", - "tabbable": null, - "tooltip": null + "value": " 40/40 [00:00<00:00, 56.57it/s]" } }, - "6d3edf2e39d944c09f3fbef854866461": { + "a3df89cbf92b494d911d0d2d692a1723": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "70c567e5ed4d420aa7f58a9bfe7d98f6": { + "a7bf6d664d954ce8948920cffe990bbf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5778,60 +6151,70 @@ "width": null } }, - "70fd4c0942f949219503830958a45c03": { - "model_module": "@jupyter-widgets/base", + "a83344ed6e98426eabf329c5f44403a3": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3421965f67c4426d8b36dfd785b1bf63", + "IPY_MODEL_2429a33f84414829b992fe114424e50a", + "IPY_MODEL_c39181f43eb4427fa7305f7626562a9e" + ], + "layout": "IPY_MODEL_46c3e557ebb340229dcc748eb3ffa273", + "tabbable": null, + "tooltip": null + } + }, + "aa70208a7f7e4688a3dbd3a195d3bb6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "aab1796fdd9140d38b9ef03a593cae1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a03ad15668694b9d87adfc57c4b57c28", + "placeholder": "​", + "style": "IPY_MODEL_1913f376829b4276979eb954c5abffac", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "728c63d0a7f54119aa080aaa6102d38f": { + "aabe4cad481c40eca44a9026dcd4e8a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5884,25 +6267,7 @@ "width": null } }, - "74c23aa172ae42798ea320ca991b942f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "78e8cecb5a6641d5a9de69eb25af212d": { + "b14c7f719b46408680d1288c61b48ef1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5918,66 +6283,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_66018dbdfa8e4496b534e3d80379136d", - "max": 4422102.0, + "layout": "IPY_MODEL_6df5ef22733c45bbbc3872d42e61b702", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_610a71ef770945809dc9f2e4b94664af", - "tabbable": null, - "tooltip": null, - "value": 4422102.0 - } - }, - "798557df3a2647b7986d02dc545587b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c64517cd44d84c8293b4115971217abf", - "placeholder": "​", - "style": "IPY_MODEL_f36e7eec2ef6494ea5dfe75f34bb946e", + "style": "IPY_MODEL_aa70208a7f7e4688a3dbd3a195d3bb6f", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 60000.0 } }, - "7a2680bb83ca418e9bc7dd0bd7182858": { + "b192f59c91d14025ba0b2492bd27b4a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0af0baad7c99404cbce2f5872c14531d", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_57fdb406a0104c008712f455671416ae", - "tabbable": null, - "tooltip": null, - "value": 4.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7b0284c026ce41ef999e0bad78664f3a": { + "b346b1a4bc794cbb81454c9a608dea82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6030,54 +6364,7 @@ "width": null } }, - "7cd770708ca5498492377d6a0fd76616": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0119a979303348feaf5374a2e7f3b418", - "IPY_MODEL_5a01deaf41c841cab934b678df22a7e6", - "IPY_MODEL_3704b910152b45dc924bb624c0ee95f3" - ], - "layout": "IPY_MODEL_465e03a22e1f4b66b9a21c2e90039525", - "tabbable": null, - "tooltip": null - } - }, - "7d944b6142fa4b42a31040ba023cc921": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8839fda3f07946ab99f1eff02138bef9", - "placeholder": "​", - "style": "IPY_MODEL_4be2bfe6a47d40969d0226111c98ad2c", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8586.20 examples/s]" - } - }, - "7de7c4771e83468099e7dd5e21e3dc6d": { + "b3d44f799ab541ef96f5f023f78baae3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6130,30 +6417,7 @@ "width": null } }, - "7f7fd12e202d45a4909d8a8ceaeebfa9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3b6ea79aef284f04a18098981d12f5e7", - "placeholder": "​", - "style": "IPY_MODEL_eebb5bc624d34a7bb328172559a2334c", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8543.66 examples/s]" - } - }, - "804696d71f5c428aa77920387c9f13ab": { + "b56d36b83e774481a77150666ea3584b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6206,66 +6470,7 @@ "width": null } }, - "806b07de0bfe4dc2b704114688fd1694": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "80dbd77206334fa4a9255057329a0f43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "82514eeb7db2422c95cbe913e49e59dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6443147e64204784b6b79779c4b0ece4", - "placeholder": "​", - "style": "IPY_MODEL_8a1fee4cdac341fd9b445fbcbffb8655", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.37it/s]" - } - }, - "82a91f795cc0496d884607edf4c43169": { + "b660a71a145f42419f3c4ef895d68c8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6318,32 +6523,27 @@ "width": null } }, - "83644b7829034008a0cf8f0a63589d9c": { + "b67912d222c045e49bd4d157bb5d6807": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7de7c4771e83468099e7dd5e21e3dc6d", - "placeholder": "​", - "style": "IPY_MODEL_08618be7a9234af1a5348de326d6418b", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 52.85it/s]" - } - }, - "83dffa805ce741a0bea9dd9b781586ec": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b75eaab370104141b4c6f5177d957c68": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", @@ -6394,48 +6594,7 @@ "width": null } }, - "840737321da24bfe8003332a0accc1cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8555634c504d4027997abd8cfba7db7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9413cabdaf84f7c8e9a6c68232b43ae", - "placeholder": "​", - "style": "IPY_MODEL_c72bb5b65a6a48329cdc5dd5ef15e73d", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6952.76 examples/s]" - } - }, - "8839fda3f07946ab99f1eff02138bef9": { + "b9c5d366f68b4024bdb2f77fd2dc0a97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6488,7 +6647,90 @@ "width": null } }, - "884c1f18b9ab4af49db7098fea18ef3d": { + "b9fbad1ce5524fb5a7338c17c549a664": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c6fd7d44b29c4392a0758d28e120776b", + "placeholder": "​", + "style": "IPY_MODEL_ef3ba07b09534776bbd3029f5c272231", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "ba3b082a992647dbb72c0b369efcbecb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bbc24a37bd0042a3aa87d5b284707374": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bcf1e75b26a44b04823d7396d1d00242": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c20a82c4225c41a4867ac2ea3ae9b918", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_df9bbb3e076949908562f9325c764c06", + "tabbable": null, + "tooltip": null, + "value": 5148.0 + } + }, + "bd1004389ba34632a152035fce23cc0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6541,7 +6783,7 @@ "width": null } }, - "886c2364549848efa14fa9cf9f8ebde8": { + "be3b4e290d69438b918302b1ef5e92ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6594,49 +6836,23 @@ "width": null } }, - "8a1fee4cdac341fd9b445fbcbffb8655": { + "be6f840505a94e42aa9f3efb5f70e58d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8af1aec52aef434b81a22b708073556f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0b1ef64e0ea844c4a0efed4b089ecc5e", - "IPY_MODEL_aa62616f2a584678acaa6072d7e59db6", - "IPY_MODEL_67df8310ec724197b5a903618210990a" - ], - "layout": "IPY_MODEL_4a320115b97a42bd89dd7903073750fa", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "9078ad04df284aceade5e9637028e264": { + "bf5b3034d49b4c31b7b06806f6ba4d3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6652,31 +6868,7 @@ "description_width": "" } }, - "926846a8c6954c46acf37f4dd63e7eb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_116f6fc2329645d68a83663b5feb94ce", - "IPY_MODEL_78e8cecb5a6641d5a9de69eb25af212d", - "IPY_MODEL_6538276c3913471e82d12b7dfb5e849f" - ], - "layout": "IPY_MODEL_22b2d39a70b04bfeb7943490bd911b90", - "tabbable": null, - "tooltip": null - } - }, - "92906e8f1e224908beeb119e4f788514": { + "c1543a92e1184183af0cbfede9db7a15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6691,15 +6883,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_83dffa805ce741a0bea9dd9b781586ec", + "layout": "IPY_MODEL_28277410e85e4932820b42630bb0f742", "placeholder": "​", - "style": "IPY_MODEL_faaac1dac8fa4eccb56fbb10b45393c3", + "style": "IPY_MODEL_8ee5f8a57b194864b742d798195824a9", "tabbable": null, "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 111MB/s]" + "value": " 40/40 [00:00<00:00, 61.63it/s]" } }, - "96697881a93440babad369ae2e2fd4b8": { + "c17e6593dbb94d3a9ee695742a582d56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6714,34 +6906,92 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c8b3aec713be46d29ce76b2b35b3db44", - "IPY_MODEL_1d157e6477da483192d99d6ea6dc4738", - "IPY_MODEL_7d944b6142fa4b42a31040ba023cc921" + "IPY_MODEL_632e91a3058a43858c9cfc7dd4ab8224", + "IPY_MODEL_309aab0ce99e45c8b890fac8e63f3ad6", + "IPY_MODEL_daa103757a3a448f8cc15cde815426a1" ], - "layout": "IPY_MODEL_9e2827b7c35b4ceea2534454dcbc9f13", + "layout": "IPY_MODEL_c666720b6dc149eea49a691afd01db73", "tabbable": null, "tooltip": null } }, - "973ecb943cf94facbeaff08a43b11a14": { + "c20a82c4225c41a4867ac2ea3ae9b918": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c39181f43eb4427fa7305f7626562a9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_340aeb36bd33457c890c7f97b3f4f1c6", + "placeholder": "​", + "style": "IPY_MODEL_93810fa8e7464aabacc9c1e1529a1762", + "tabbable": null, + "tooltip": null, + "value": " 4.83k/4.83k [00:00<00:00, 597kB/s]" } }, - "97665d87bb634843b13c86ccc743aab1": { + "c4fb2348b5aa4992be3e594f1866e0df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6756,15 +7006,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0013256c6393414d897e747fbb692b2e", + "layout": "IPY_MODEL_5359ad8c54da428fb5c392d67cc59a1b", "placeholder": "​", - "style": "IPY_MODEL_303be7344e754dc0b81cc4362585ad42", + "style": "IPY_MODEL_765027b1c316405aa103d28e364ef2f0", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.52it/s]" + "value": " 10000/10000 [00:01<00:00, 8728.63 examples/s]" } }, - "9776abbe72d44baf86b75b8e6e2ec747": { + "c53e32e7109e4cfda8681ea4531b22ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6779,38 +7029,66 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4a6f02046de3424183282c1ef1a1321c", + "layout": "IPY_MODEL_053d6bcb7ffe4ee1aff83f2ff8289f7b", "placeholder": "​", - "style": "IPY_MODEL_806b07de0bfe4dc2b704114688fd1694", + "style": "IPY_MODEL_d26f4deb7d5d4b65affd35aad5f80d52", "tabbable": null, "tooltip": null, "value": "100%" } }, - "97cb96d8ca67417bb98eb22b83b67f3d": { + "c5712c9babdf4f0badd7ccb49b423629": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9d8be42381424e8386712e589902ea33": { - "model_module": "@jupyter-widgets/base", + "c5bbff9c879b4d0caa3c9cb4c424ef87": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f6111de8eda2417e962ee868c39a3fa8", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8cbb314c9a5c481abea7647e5b1a6591", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "c666720b6dc149eea49a691afd01db73": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -6856,7 +7134,7 @@ "width": null } }, - "9e2827b7c35b4ceea2534454dcbc9f13": { + "c6fd7d44b29c4392a0758d28e120776b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6909,7 +7187,33 @@ "width": null } }, - "9e819f5dcbd74990a4ed32e6c6f49d6e": { + "c7c395ea8e2445e087e498d7bd31932c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a7bf6d664d954ce8948920cffe990bbf", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_68e2162e5d5141faaace8be366af170d", + "tabbable": null, + "tooltip": null, + "value": 4422102.0 + } + }, + "ca10f77b43a24fe6aa44d88c348f21ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6927,60 +7231,56 @@ "text_color": null } }, - "9eaf779387934026b193e48e9bb55a86": { - "model_module": "@jupyter-widgets/base", + "cd403484b0244f29813a01bd629db4a7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0ebef90cea924ea28f7f9ad9dd121bd1", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c527e0277824068b5b3b0c56c2cb88c", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "cd7691b2898c48ccbcce3c047dbbbad9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6a3142644e9e40a8b2c8234302707a6b", + "placeholder": "​", + "style": "IPY_MODEL_5a47d7b41af140cc813fd5444cda9c01", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "a13807ee4fd84d609c078799a117b6c5": { + "cd87f818728744bdb00fbec6bc1c99c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7033,7 +7333,7 @@ "width": null } }, - "a2738be416ce480c95fff046962f1137": { + "cf7cc11f28ea46039cc95c145d1ce401": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7048,16 +7348,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9776abbe72d44baf86b75b8e6e2ec747", - "IPY_MODEL_184ad9317d854ba1a1ced110910cca10", - "IPY_MODEL_d5b6ab4287134b9b8225c58b595314d0" + "IPY_MODEL_c53e32e7109e4cfda8681ea4531b22ec", + "IPY_MODEL_c5bbff9c879b4d0caa3c9cb4c424ef87", + "IPY_MODEL_c1543a92e1184183af0cbfede9db7a15" ], - "layout": "IPY_MODEL_2ea002ba5ef6449d8d22840ba751df3c", + "layout": "IPY_MODEL_49235cb19b1240da96da6be6a4be548f", "tabbable": null, "tooltip": null } }, - "a28b02ad590c40019d88dd42a2c3e05a": { + "d1af880c7c064b3f92991455aee3c3cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7110,7 +7410,25 @@ "width": null } }, - "a502ea89a10b4d3f8b810850b097c4c8": { + "d26f4deb7d5d4b65affd35aad5f80d52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d3d431ac20a14bea9e787f3af6b32050": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7163,49 +7481,59 @@ "width": null } }, - "a5bb522450e449f9b7e10fcb83ff9537": { + "d42a8be16f744606b9f3e9bf355c8f95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b56d36b83e774481a77150666ea3584b", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bf5b3034d49b4c31b7b06806f6ba4d3d", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "a6e2987ba28d48c28d884b33288562df": { + "d53d95a4952b45b89e345becafffa918": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ac29494915a144d3970c7c69d41b68c3", - "IPY_MODEL_46b2604d41d1439898a0f49c0ba53f78", - "IPY_MODEL_92906e8f1e224908beeb119e4f788514" - ], - "layout": "IPY_MODEL_a28b02ad590c40019d88dd42a2c3e05a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b346b1a4bc794cbb81454c9a608dea82", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_58488a758cc84ed19cb308e894b44ff6", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "a9da43a6101a4854b4273cf805b61e2f": { + "d5fb1eccbd4a473bb932d6e2dc592e7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7258,25 +7586,7 @@ "width": null } }, - "aa4c4e45414a4a46a86dfc2a94bebb72": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "aa62616f2a584678acaa6072d7e59db6": { + "d7e915eeaf6a4364a2594d8c712ea0fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7292,35 +7602,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_15aa61db4cc44bdc991db5521f2fa425", - "max": 40.0, + "layout": "IPY_MODEL_646419f558064e69b0146dce4f2437ab", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_24bcebdd6f9f41bb84c60f2b915efbc6", + "style": "IPY_MODEL_1c793150c7994b6796a456cc47656766", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 60000.0 } }, - "ab22b295e4a042c898986f757b7461df": { + "d81d84df0bb349ecb366777bc7e66581": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "ac29494915a144d3970c7c69d41b68c3": { + "d997612f502a40a2990904da9ebae4b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7335,68 +7643,86 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_213272b1b45445c7b3f2b35602fa31b9", + "layout": "IPY_MODEL_b3d44f799ab541ef96f5f023f78baae3", "placeholder": "​", - "style": "IPY_MODEL_61751669aa9c4b51923ed3a7deea7f56", + "style": "IPY_MODEL_e7b50e39e7524f8fbeafa251e647f16a", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 5.15k/5.15k [00:00<00:00, 840kB/s]" } }, - "b578fa4f2c45411b949fd41b642899ec": { - "model_module": "@jupyter-widgets/base", + "daa103757a3a448f8cc15cde815426a1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2f8ded1032fd45c7a199a5a235b7da6a", + "placeholder": "​", + "style": "IPY_MODEL_b192f59c91d14025ba0b2492bd27b4a9", + "tabbable": null, + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.50MB/s]" } }, - "bc3ee82f278d4b7facddd3df9e43d736": { + "dac75bdcb107415d915bb9ad97029fe4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aab1796fdd9140d38b9ef03a593cae1d", + "IPY_MODEL_bcf1e75b26a44b04823d7396d1d00242", + "IPY_MODEL_d997612f502a40a2990904da9ebae4b7" + ], + "layout": "IPY_MODEL_fcab7035ec76447187b2c1f08507f4b3", + "tabbable": null, + "tooltip": null + } + }, + "dcb047742e7c4146a32757077d93eb95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_71528aa09ab0432cb160e3e3b4a6acc0", + "IPY_MODEL_d42a8be16f744606b9f3e9bf355c8f95", + "IPY_MODEL_5aa1569ac03d4c3d83ff4ee430d4e730" + ], + "layout": "IPY_MODEL_565a741194564417aaf7b1fd21fa7b10", + "tabbable": null, + "tooltip": null + } + }, + "dd86764aad08416fbaa3d7ad13f99a88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7411,15 +7737,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29ad3993f94346419af35928193d2eb8", + "layout": "IPY_MODEL_cd87f818728744bdb00fbec6bc1c99c8", "placeholder": "​", - "style": "IPY_MODEL_9e819f5dcbd74990a4ed32e6c6f49d6e", + "style": "IPY_MODEL_ba3b082a992647dbb72c0b369efcbecb", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 40/40 [00:00<00:00, 63.66it/s]" } }, - "be62105b70444309b42629557d23dd31": { + "ddaad249589d406f800a55cd3d9d30cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7437,7 +7763,7 @@ "text_color": null } }, - "c15afcf9ca54456fadfde7d364d41e12": { + "de1e258e43d7442b9cd0940a7c14f8fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7455,108 +7781,33 @@ "text_color": null } }, - "c47e19aac35c46eb9cad874bb2fde728": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c48d73b75d8543b7900f7e3a24c14ff0": { + "df18ff2baa2146ce9fdced9dc9025023": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bc3ee82f278d4b7facddd3df9e43d736", - "IPY_MODEL_004fcea71628418685555fb760dec429", - "IPY_MODEL_8555634c504d4027997abd8cfba7db7f" - ], - "layout": "IPY_MODEL_f3268349f66e4fca99547204d4fed8cf", - "tabbable": null, - "tooltip": null - } - }, - "c4fa7fdeeb9446ddbf6516f8963fa52e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6b304bb9a46443e0bf010d5cb11b422e", - "IPY_MODEL_cc170bcc85274d65b3c110def1444c5a", - "IPY_MODEL_e4168627ec534009a964921f659ea6bb" - ], - "layout": "IPY_MODEL_fd82af84285840158e600b4d0204c84e", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eafe7f20472c4c3e82c44253748fa8df", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bbc24a37bd0042a3aa87d5b284707374", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 4.0 } }, - "c5138f4ab850429ba23c48fd5efae242": { + "df9bbb3e076949908562f9325c764c06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -7572,7 +7823,7 @@ "description_width": "" } }, - "c5cd2207d2c8442b87534fd93bb1dd5e": { + "e23f8197e5884501a75740e26d8e9e87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7587,15 +7838,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1e1a87a8a45e4b57adf13faea5793824", + "layout": "IPY_MODEL_0ea3cf33c1cb4c2797daeaac23d505c4", "placeholder": "​", - "style": "IPY_MODEL_caba801044f146d4838a5424c49f290c", + "style": "IPY_MODEL_4c0da95bd9e34405968a7b43a426f555", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": " 40/40 [00:00<00:00, 59.76it/s]" } }, - "c64517cd44d84c8293b4115971217abf": { + "e4f46e4b6dea45b08c00df4c858c2e01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7648,25 +7899,7 @@ "width": null } }, - "c72bb5b65a6a48329cdc5dd5ef15e73d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c72eded270c04594b9cd5ab865ec18ee": { + "e6baa32cd3bf48bbb3299eee55d39a07": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7719,101 +7952,33 @@ "width": null } }, - "c8b3aec713be46d29ce76b2b35b3db44": { + "e77e939384cd44dda51896a914105412": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_194f679dc6e14a978e8925bb038e3793", - "placeholder": "​", - "style": "IPY_MODEL_28a88184c039419c865f50a0132f936e", + "layout": "IPY_MODEL_7cc1a2ab2a22477e9711561211e13f21", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_157495f23b85447197472c8583f986a4", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "c9c9176e7a0b4f09b751df8cc4e0666a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ca407d230f484390a47362031adf31b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 60000.0 } }, - "caba801044f146d4838a5424c49f290c": { + "e7b50e39e7524f8fbeafa251e647f16a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7831,112 +7996,30 @@ "text_color": null } }, - "cc170bcc85274d65b3c110def1444c5a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e5b12b259dcd4360b125dc57fbb0fca2", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_24daedc2073f4af4960d8c11c761dfdc", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "cc7c41fca7e14c8384b2ce49dac60516": { + "e848681b5d894f569bed4b32add7e687": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_728c63d0a7f54119aa080aaa6102d38f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_97cb96d8ca67417bb98eb22b83b67f3d", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "cf74cfcebf544df0b3274fc9e22c1e9c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3d431ac20a14bea9e787f3af6b32050", + "placeholder": "​", + "style": "IPY_MODEL_7fad793d634f473d8744175a5f3f9d4c", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" } }, - "d1dd8bf5204a4dccaa8161ea728fbc07": { + "e88d7ccca07b4801921e8888e04413a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7989,7 +8072,7 @@ "width": null } }, - "d5b6ab4287134b9b8225c58b595314d0": { + "e903c2673aea40ff8165eb514306d801": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8004,15 +8087,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_22a0669e75de415dac70a25c5054d25b", + "layout": "IPY_MODEL_77e7a0f9b870494bb4c571576cd3e4a8", "placeholder": "​", - "style": "IPY_MODEL_aa4c4e45414a4a46a86dfc2a94bebb72", + "style": "IPY_MODEL_2f74bc0d09e84164ae62a6edfda0b203", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.87it/s]" + "value": "Downloading data: 100%" } }, - "d677f0e9aa7d41e8851465e678a739d6": { + "e968873bf55440c7a5c3dc2d54a2fffa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8027,15 +8110,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a9da43a6101a4854b4273cf805b61e2f", + "layout": "IPY_MODEL_b660a71a145f42419f3c4ef895d68c8d", "placeholder": "​", - "style": "IPY_MODEL_74c23aa172ae42798ea320ca991b942f", + "style": "IPY_MODEL_de1e258e43d7442b9cd0940a7c14f8fd", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 26.4M/26.4M [00:00<00:00, 100MB/s]" + } + }, + "eaf9477f9f65458fbc77305c13d9490e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7a100ccc67564d02b628a843ff1d910a", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_62d3e6c861184243978b09cbb9180e98", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "d68dfef9ba6d482e8e9c7a037d2c1ef7": { + "eafe7f20472c4c3e82c44253748fa8df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8088,30 +8197,73 @@ "width": null } }, - "d8e2ad07a3434005b3e28de5674a34fc": { + "ecb36eb02e7843c881d512c1e1980bfc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_23c83cfb62484a5aa0c6f3daa481f042", - "placeholder": "​", - "style": "IPY_MODEL_2d6fb7b4b561449a9dee9ff41aedb47f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_46a13fa57d7241ffbd2a05fc67f50cba", + "IPY_MODEL_62a442f149b247ff8ccd9a45e243f04a", + "IPY_MODEL_c4fb2348b5aa4992be3e594f1866e0df" + ], + "layout": "IPY_MODEL_f5af569c389d402cafb9e02f3dd484b3", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null + } + }, + "eeb48354781f459d926f56b9d9f2d412": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4f6264d4caa6476b9b98871af8645888", + "IPY_MODEL_2cd1ee001cd24600a736d0c202a6dedf", + "IPY_MODEL_fd39e14b3b5d47f1a9c764d7f867f328" + ], + "layout": "IPY_MODEL_be3b4e290d69438b918302b1ef5e92ff", + "tabbable": null, + "tooltip": null + } + }, + "ef3ba07b09534776bbd3029f5c272231": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d9413cabdaf84f7c8e9a6c68232b43ae": { + "f5af569c389d402cafb9e02f3dd484b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8164,7 +8316,7 @@ "width": null } }, - "d9fce56a4501415dbadef0b6597c3c59": { + "f6111de8eda2417e962ee868c39a3fa8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8217,23 +8369,7 @@ "width": null } }, - "dcd9b7afd17f44798d2064cf5a3862de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e1158e5544334ef2b34dff2aa52d6bf0": { + "f849b0a54a9341d48816de434459861d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8286,31 +8422,25 @@ "width": null } }, - "e1894c9537a6499eb9bfed91c77fb518": { + "f9f44c7999cb4bd5a40d1e6c0568d6c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c5cd2207d2c8442b87534fd93bb1dd5e", - "IPY_MODEL_7a2680bb83ca418e9bc7dd0bd7182858", - "IPY_MODEL_0ca0287b646c497e8e812ef207ee400f" - ], - "layout": "IPY_MODEL_70c567e5ed4d420aa7f58a9bfe7d98f6", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e4168627ec534009a964921f659ea6bb": { + "fa1d6736721d4514a810de77663bcbda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8325,15 +8455,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e1158e5544334ef2b34dff2aa52d6bf0", + "layout": "IPY_MODEL_0a065988806d4c61b5a9536feff6aa88", "placeholder": "​", - "style": "IPY_MODEL_840737321da24bfe8003332a0accc1cb", + "style": "IPY_MODEL_a3df89cbf92b494d911d0d2d692a1723", "tabbable": null, "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.41MB/s]" + "value": "100%" } }, - "e4613e030b794d219b1926a1e5b67f63": { + "fbcb15dedf2043518d6d958db3a9251d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8351,7 +8481,7 @@ "text_color": null } }, - "e5b12b259dcd4360b125dc57fbb0fca2": { + "fcab7035ec76447187b2c1f08507f4b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8404,49 +8534,30 @@ "width": null } }, - "eebb5bc624d34a7bb328172559a2334c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "efe64e5c44d94c6bb0bed3ad6e844c33": { + "fd39e14b3b5d47f1a9c764d7f867f328": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d677f0e9aa7d41e8851465e678a739d6", - "IPY_MODEL_16ff670713eb4f70a0cc1728a34d5452", - "IPY_MODEL_7f7fd12e202d45a4909d8a8ceaeebfa9" - ], - "layout": "IPY_MODEL_cf74cfcebf544df0b3274fc9e22c1e9c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e57a6b9a8a646ca8412bbe009b0f38d", + "placeholder": "​", + "style": "IPY_MODEL_c5712c9babdf4f0badd7ccb49b423629", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 8.85k/8.85k [00:00<00:00, 1.49MB/s]" } }, - "f3268349f66e4fca99547204d4fed8cf": { + "fd69a19b7d0147feafb879a2901669a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8499,74 +8610,7 @@ "width": null } }, - "f36e7eec2ef6494ea5dfe75f34bb946e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f4570a2a6a834672b816a3c3c92674d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d1dd8bf5204a4dccaa8161ea728fbc07", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_57f0147d0b40481487ead645778ad6f0", - "tabbable": null, - "tooltip": null, - "value": 5148.0 - } - }, - "f6229a7aab1d42ca8805f534935617d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a13807ee4fd84d609c078799a117b6c5", - "placeholder": "​", - "style": "IPY_MODEL_c15afcf9ca54456fadfde7d364d41e12", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "f7d9dcc168074809a9f461109ae607c0": { + "fe373b9b0fd449b5b8ebf17e3268d1d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8619,51 +8663,7 @@ "width": null } }, - "faaac1dac8fa4eccb56fbb10b45393c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fabe89de1f3f41f493f2490c661f6d02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c72eded270c04594b9cd5ab865ec18ee", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_01972cf3b8f94fab866c986e21f7f91f", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "fd82af84285840158e600b4d0204c84e": { + "ff995d6039774b1795125f0d38e2290c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index a6ed7ee61..fa39299c4 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:56.051172Z", - "iopub.status.busy": "2024-07-30T16:35:56.050992Z", - "iopub.status.idle": "2024-07-30T16:35:57.510285Z", - "shell.execute_reply": "2024-07-30T16:35:57.509737Z" + "iopub.execute_input": "2024-08-02T23:21:34.625401Z", + "iopub.status.busy": "2024-08-02T23:21:34.625214Z", + "iopub.status.idle": "2024-08-02T23:21:36.031325Z", + "shell.execute_reply": "2024-08-02T23:21:36.030762Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:57.512868Z", - "iopub.status.busy": "2024-07-30T16:35:57.512386Z", - "iopub.status.idle": "2024-07-30T16:35:57.530631Z", - "shell.execute_reply": "2024-07-30T16:35:57.530189Z" + "iopub.execute_input": "2024-08-02T23:21:36.033876Z", + "iopub.status.busy": "2024-08-02T23:21:36.033576Z", + "iopub.status.idle": "2024-08-02T23:21:36.052522Z", + "shell.execute_reply": "2024-08-02T23:21:36.052073Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:57.532740Z", - "iopub.status.busy": "2024-07-30T16:35:57.532388Z", - "iopub.status.idle": "2024-07-30T16:35:57.570290Z", - "shell.execute_reply": "2024-07-30T16:35:57.569781Z" + "iopub.execute_input": "2024-08-02T23:21:36.054768Z", + "iopub.status.busy": "2024-08-02T23:21:36.054504Z", + "iopub.status.idle": "2024-08-02T23:21:36.078555Z", + "shell.execute_reply": "2024-08-02T23:21:36.078092Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:57.572398Z", - "iopub.status.busy": "2024-07-30T16:35:57.572060Z", - "iopub.status.idle": "2024-07-30T16:35:57.575328Z", - "shell.execute_reply": "2024-07-30T16:35:57.574903Z" + "iopub.execute_input": "2024-08-02T23:21:36.080474Z", + "iopub.status.busy": "2024-08-02T23:21:36.080294Z", + "iopub.status.idle": "2024-08-02T23:21:36.083816Z", + "shell.execute_reply": "2024-08-02T23:21:36.083361Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:57.577365Z", - "iopub.status.busy": "2024-07-30T16:35:57.576966Z", - "iopub.status.idle": "2024-07-30T16:35:57.584694Z", - "shell.execute_reply": "2024-07-30T16:35:57.584132Z" + "iopub.execute_input": "2024-08-02T23:21:36.085725Z", + "iopub.status.busy": "2024-08-02T23:21:36.085553Z", + "iopub.status.idle": "2024-08-02T23:21:36.092911Z", + "shell.execute_reply": "2024-08-02T23:21:36.092464Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:57.586954Z", - "iopub.status.busy": "2024-07-30T16:35:57.586638Z", - "iopub.status.idle": "2024-07-30T16:35:57.589280Z", - "shell.execute_reply": "2024-07-30T16:35:57.588805Z" + "iopub.execute_input": "2024-08-02T23:21:36.094839Z", + "iopub.status.busy": "2024-08-02T23:21:36.094665Z", + "iopub.status.idle": "2024-08-02T23:21:36.097347Z", + "shell.execute_reply": "2024-08-02T23:21:36.096835Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:57.591284Z", - "iopub.status.busy": "2024-07-30T16:35:57.590950Z", - "iopub.status.idle": "2024-07-30T16:36:00.688049Z", - "shell.execute_reply": "2024-07-30T16:36:00.687486Z" + "iopub.execute_input": "2024-08-02T23:21:36.099385Z", + "iopub.status.busy": "2024-08-02T23:21:36.099048Z", + "iopub.status.idle": "2024-08-02T23:21:39.178225Z", + "shell.execute_reply": "2024-08-02T23:21:39.177680Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:00.690868Z", - "iopub.status.busy": "2024-07-30T16:36:00.690451Z", - "iopub.status.idle": "2024-07-30T16:36:00.700262Z", - "shell.execute_reply": "2024-07-30T16:36:00.699795Z" + "iopub.execute_input": "2024-08-02T23:21:39.181086Z", + "iopub.status.busy": "2024-08-02T23:21:39.180688Z", + "iopub.status.idle": "2024-08-02T23:21:39.190195Z", + "shell.execute_reply": "2024-08-02T23:21:39.189607Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:00.702232Z", - "iopub.status.busy": "2024-07-30T16:36:00.702054Z", - "iopub.status.idle": "2024-07-30T16:36:02.934148Z", - "shell.execute_reply": "2024-07-30T16:36:02.933492Z" + "iopub.execute_input": "2024-08-02T23:21:39.192491Z", + "iopub.status.busy": "2024-08-02T23:21:39.192157Z", + "iopub.status.idle": "2024-08-02T23:21:41.385468Z", + "shell.execute_reply": "2024-08-02T23:21:41.384800Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:02.936729Z", - "iopub.status.busy": "2024-07-30T16:36:02.936205Z", - "iopub.status.idle": "2024-07-30T16:36:02.954952Z", - "shell.execute_reply": "2024-07-30T16:36:02.954378Z" + "iopub.execute_input": "2024-08-02T23:21:41.388190Z", + "iopub.status.busy": "2024-08-02T23:21:41.387567Z", + "iopub.status.idle": "2024-08-02T23:21:41.406849Z", + "shell.execute_reply": "2024-08-02T23:21:41.406379Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:02.957056Z", - "iopub.status.busy": "2024-07-30T16:36:02.956878Z", - "iopub.status.idle": "2024-07-30T16:36:02.964858Z", - "shell.execute_reply": "2024-07-30T16:36:02.964382Z" + "iopub.execute_input": "2024-08-02T23:21:41.408952Z", + "iopub.status.busy": "2024-08-02T23:21:41.408765Z", + "iopub.status.idle": "2024-08-02T23:21:41.417080Z", + "shell.execute_reply": "2024-08-02T23:21:41.416607Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:02.966898Z", - "iopub.status.busy": "2024-07-30T16:36:02.966576Z", - "iopub.status.idle": "2024-07-30T16:36:02.975334Z", - "shell.execute_reply": "2024-07-30T16:36:02.974877Z" + "iopub.execute_input": "2024-08-02T23:21:41.419162Z", + "iopub.status.busy": "2024-08-02T23:21:41.418912Z", + "iopub.status.idle": "2024-08-02T23:21:41.428332Z", + "shell.execute_reply": "2024-08-02T23:21:41.427869Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:02.977396Z", - "iopub.status.busy": "2024-07-30T16:36:02.977076Z", - "iopub.status.idle": "2024-07-30T16:36:02.984945Z", - "shell.execute_reply": "2024-07-30T16:36:02.984391Z" + "iopub.execute_input": "2024-08-02T23:21:41.430451Z", + "iopub.status.busy": "2024-08-02T23:21:41.430111Z", + "iopub.status.idle": "2024-08-02T23:21:41.437844Z", + "shell.execute_reply": "2024-08-02T23:21:41.437283Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:02.987002Z", - "iopub.status.busy": "2024-07-30T16:36:02.986692Z", - "iopub.status.idle": "2024-07-30T16:36:02.995395Z", - "shell.execute_reply": "2024-07-30T16:36:02.994843Z" + "iopub.execute_input": "2024-08-02T23:21:41.439955Z", + "iopub.status.busy": "2024-08-02T23:21:41.439619Z", + "iopub.status.idle": "2024-08-02T23:21:41.448535Z", + "shell.execute_reply": "2024-08-02T23:21:41.447977Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:02.997442Z", - "iopub.status.busy": "2024-07-30T16:36:02.997120Z", - "iopub.status.idle": "2024-07-30T16:36:03.004551Z", - "shell.execute_reply": "2024-07-30T16:36:03.004009Z" + "iopub.execute_input": "2024-08-02T23:21:41.450685Z", + "iopub.status.busy": "2024-08-02T23:21:41.450360Z", + "iopub.status.idle": "2024-08-02T23:21:41.457701Z", + "shell.execute_reply": "2024-08-02T23:21:41.457210Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:03.006659Z", - "iopub.status.busy": "2024-07-30T16:36:03.006343Z", - "iopub.status.idle": "2024-07-30T16:36:03.014117Z", - "shell.execute_reply": "2024-07-30T16:36:03.013629Z" + "iopub.execute_input": "2024-08-02T23:21:41.459831Z", + "iopub.status.busy": "2024-08-02T23:21:41.459473Z", + "iopub.status.idle": "2024-08-02T23:21:41.466693Z", + "shell.execute_reply": "2024-08-02T23:21:41.466243Z" } }, "outputs": [ @@ -1290,9 +1290,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Easy Mode \n", + "## Spending too much time on data quality?\n", "\n", - "Cleanlab is most effective when you run this code with a good ML model. Try to produce the best ML model you can for your data (instead of the basic model from this tutorial). If you don't know the best ML model for your data, try [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) which will automatically produce one for you. Super easy to use, [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points -- all powered by a system that automatically trains/deploys the best ML model for your data. [Try it for free!](https://cleanlab.ai/signup/)" + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" ] }, { @@ -1300,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:03.016347Z", - "iopub.status.busy": "2024-07-30T16:36:03.016027Z", - "iopub.status.idle": "2024-07-30T16:36:03.024539Z", - "shell.execute_reply": "2024-07-30T16:36:03.023965Z" + "iopub.execute_input": "2024-08-02T23:21:41.468785Z", + "iopub.status.busy": "2024-08-02T23:21:41.468507Z", + "iopub.status.idle": "2024-08-02T23:21:41.477200Z", + "shell.execute_reply": "2024-08-02T23:21:41.476679Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index b380e2cea..ae24736d8 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:05.906897Z", - "iopub.status.busy": "2024-07-30T16:36:05.906716Z", - "iopub.status.idle": "2024-07-30T16:36:09.210694Z", - "shell.execute_reply": "2024-07-30T16:36:09.210137Z" + "iopub.execute_input": "2024-08-02T23:21:44.540425Z", + "iopub.status.busy": "2024-08-02T23:21:44.540253Z", + "iopub.status.idle": "2024-08-02T23:21:47.824794Z", + "shell.execute_reply": "2024-08-02T23:21:47.824202Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:09.213471Z", - "iopub.status.busy": "2024-07-30T16:36:09.212961Z", - "iopub.status.idle": "2024-07-30T16:36:09.216206Z", - "shell.execute_reply": "2024-07-30T16:36:09.215755Z" + "iopub.execute_input": "2024-08-02T23:21:47.827543Z", + "iopub.status.busy": "2024-08-02T23:21:47.827067Z", + "iopub.status.idle": "2024-08-02T23:21:47.830552Z", + "shell.execute_reply": "2024-08-02T23:21:47.829969Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:09.218344Z", - "iopub.status.busy": "2024-07-30T16:36:09.217971Z", - "iopub.status.idle": "2024-07-30T16:36:09.221010Z", - "shell.execute_reply": "2024-07-30T16:36:09.220555Z" + "iopub.execute_input": "2024-08-02T23:21:47.832743Z", + "iopub.status.busy": "2024-08-02T23:21:47.832414Z", + "iopub.status.idle": "2024-08-02T23:21:47.835675Z", + "shell.execute_reply": "2024-08-02T23:21:47.835102Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:09.223151Z", - "iopub.status.busy": "2024-07-30T16:36:09.222813Z", - "iopub.status.idle": "2024-07-30T16:36:09.264547Z", - "shell.execute_reply": "2024-07-30T16:36:09.263969Z" + "iopub.execute_input": "2024-08-02T23:21:47.837826Z", + "iopub.status.busy": "2024-08-02T23:21:47.837474Z", + "iopub.status.idle": "2024-08-02T23:21:47.861187Z", + "shell.execute_reply": "2024-08-02T23:21:47.860585Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:09.266828Z", - "iopub.status.busy": "2024-07-30T16:36:09.266456Z", - "iopub.status.idle": "2024-07-30T16:36:09.270175Z", - "shell.execute_reply": "2024-07-30T16:36:09.269659Z" + "iopub.execute_input": "2024-08-02T23:21:47.863473Z", + "iopub.status.busy": "2024-08-02T23:21:47.863101Z", + "iopub.status.idle": "2024-08-02T23:21:47.867008Z", + "shell.execute_reply": "2024-08-02T23:21:47.866495Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin'}\n" + "Classes: {'supported_cards_and_currencies', 'beneficiary_not_allowed', 'getting_spare_card', 'cancel_transfer', 'card_payment_fee_charged', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'change_pin', 'card_about_to_expire'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:09.272350Z", - "iopub.status.busy": "2024-07-30T16:36:09.271989Z", - "iopub.status.idle": "2024-07-30T16:36:09.275119Z", - "shell.execute_reply": "2024-07-30T16:36:09.274559Z" + "iopub.execute_input": "2024-08-02T23:21:47.869127Z", + "iopub.status.busy": "2024-08-02T23:21:47.868786Z", + "iopub.status.idle": "2024-08-02T23:21:47.872006Z", + "shell.execute_reply": "2024-08-02T23:21:47.871455Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:09.277262Z", - "iopub.status.busy": "2024-07-30T16:36:09.276911Z", - "iopub.status.idle": "2024-07-30T16:36:13.012240Z", - "shell.execute_reply": "2024-07-30T16:36:13.011588Z" + "iopub.execute_input": "2024-08-02T23:21:47.874101Z", + "iopub.status.busy": "2024-08-02T23:21:47.873920Z", + "iopub.status.idle": "2024-08-02T23:21:51.371823Z", + "shell.execute_reply": "2024-08-02T23:21:51.371151Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:13.015209Z", - "iopub.status.busy": "2024-07-30T16:36:13.014850Z", - "iopub.status.idle": "2024-07-30T16:36:13.913858Z", - "shell.execute_reply": "2024-07-30T16:36:13.913251Z" + "iopub.execute_input": "2024-08-02T23:21:51.374609Z", + "iopub.status.busy": "2024-08-02T23:21:51.374204Z", + "iopub.status.idle": "2024-08-02T23:21:52.273008Z", + "shell.execute_reply": "2024-08-02T23:21:52.272406Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:13.917763Z", - "iopub.status.busy": "2024-07-30T16:36:13.916780Z", - "iopub.status.idle": "2024-07-30T16:36:13.920912Z", - "shell.execute_reply": "2024-07-30T16:36:13.920410Z" + "iopub.execute_input": "2024-08-02T23:21:52.276055Z", + "iopub.status.busy": "2024-08-02T23:21:52.275635Z", + "iopub.status.idle": "2024-08-02T23:21:52.278641Z", + "shell.execute_reply": "2024-08-02T23:21:52.278123Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:13.924505Z", - "iopub.status.busy": "2024-07-30T16:36:13.923570Z", - "iopub.status.idle": "2024-07-30T16:36:16.057240Z", - "shell.execute_reply": "2024-07-30T16:36:16.056500Z" + "iopub.execute_input": "2024-08-02T23:21:52.281114Z", + "iopub.status.busy": "2024-08-02T23:21:52.280693Z", + "iopub.status.idle": "2024-08-02T23:21:54.282307Z", + "shell.execute_reply": "2024-08-02T23:21:54.281655Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.060459Z", - "iopub.status.busy": "2024-07-30T16:36:16.059879Z", - "iopub.status.idle": "2024-07-30T16:36:16.084329Z", - "shell.execute_reply": "2024-07-30T16:36:16.083774Z" + "iopub.execute_input": "2024-08-02T23:21:54.285687Z", + "iopub.status.busy": "2024-08-02T23:21:54.284976Z", + "iopub.status.idle": "2024-08-02T23:21:54.309240Z", + "shell.execute_reply": "2024-08-02T23:21:54.308666Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.087159Z", - "iopub.status.busy": "2024-07-30T16:36:16.086783Z", - "iopub.status.idle": "2024-07-30T16:36:16.096644Z", - "shell.execute_reply": "2024-07-30T16:36:16.096072Z" + "iopub.execute_input": "2024-08-02T23:21:54.311719Z", + "iopub.status.busy": "2024-08-02T23:21:54.311308Z", + "iopub.status.idle": "2024-08-02T23:21:54.321181Z", + "shell.execute_reply": "2024-08-02T23:21:54.320680Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.098946Z", - "iopub.status.busy": "2024-07-30T16:36:16.098549Z", - "iopub.status.idle": "2024-07-30T16:36:16.103008Z", - "shell.execute_reply": "2024-07-30T16:36:16.102445Z" + "iopub.execute_input": "2024-08-02T23:21:54.323214Z", + "iopub.status.busy": "2024-08-02T23:21:54.322881Z", + "iopub.status.idle": "2024-08-02T23:21:54.327193Z", + "shell.execute_reply": "2024-08-02T23:21:54.326638Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.105150Z", - "iopub.status.busy": "2024-07-30T16:36:16.104822Z", - "iopub.status.idle": "2024-07-30T16:36:16.111211Z", - "shell.execute_reply": "2024-07-30T16:36:16.110658Z" + "iopub.execute_input": "2024-08-02T23:21:54.329227Z", + "iopub.status.busy": "2024-08-02T23:21:54.328892Z", + "iopub.status.idle": "2024-08-02T23:21:54.335223Z", + "shell.execute_reply": "2024-08-02T23:21:54.334737Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.113187Z", - "iopub.status.busy": "2024-07-30T16:36:16.112885Z", - "iopub.status.idle": "2024-07-30T16:36:16.119267Z", - "shell.execute_reply": "2024-07-30T16:36:16.118719Z" + "iopub.execute_input": "2024-08-02T23:21:54.337162Z", + "iopub.status.busy": "2024-08-02T23:21:54.336976Z", + "iopub.status.idle": "2024-08-02T23:21:54.343438Z", + "shell.execute_reply": "2024-08-02T23:21:54.342965Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.121235Z", - "iopub.status.busy": "2024-07-30T16:36:16.120924Z", - "iopub.status.idle": "2024-07-30T16:36:16.126639Z", - "shell.execute_reply": "2024-07-30T16:36:16.126077Z" + "iopub.execute_input": "2024-08-02T23:21:54.345616Z", + "iopub.status.busy": "2024-08-02T23:21:54.345242Z", + "iopub.status.idle": "2024-08-02T23:21:54.351019Z", + "shell.execute_reply": "2024-08-02T23:21:54.350470Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.128700Z", - "iopub.status.busy": "2024-07-30T16:36:16.128385Z", - "iopub.status.idle": "2024-07-30T16:36:16.136815Z", - "shell.execute_reply": "2024-07-30T16:36:16.136243Z" + "iopub.execute_input": "2024-08-02T23:21:54.353129Z", + "iopub.status.busy": "2024-08-02T23:21:54.352774Z", + "iopub.status.idle": "2024-08-02T23:21:54.361472Z", + "shell.execute_reply": "2024-08-02T23:21:54.360992Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.138817Z", - "iopub.status.busy": "2024-07-30T16:36:16.138521Z", - "iopub.status.idle": "2024-07-30T16:36:16.143841Z", - "shell.execute_reply": "2024-07-30T16:36:16.143287Z" + "iopub.execute_input": "2024-08-02T23:21:54.363537Z", + "iopub.status.busy": "2024-08-02T23:21:54.363200Z", + "iopub.status.idle": "2024-08-02T23:21:54.368517Z", + "shell.execute_reply": "2024-08-02T23:21:54.367955Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.145732Z", - "iopub.status.busy": "2024-07-30T16:36:16.145554Z", - "iopub.status.idle": "2024-07-30T16:36:16.150879Z", - "shell.execute_reply": "2024-07-30T16:36:16.150344Z" + "iopub.execute_input": "2024-08-02T23:21:54.370813Z", + "iopub.status.busy": "2024-08-02T23:21:54.370341Z", + "iopub.status.idle": "2024-08-02T23:21:54.376019Z", + "shell.execute_reply": "2024-08-02T23:21:54.375442Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.152863Z", - "iopub.status.busy": "2024-07-30T16:36:16.152548Z", - "iopub.status.idle": "2024-07-30T16:36:16.156185Z", - "shell.execute_reply": "2024-07-30T16:36:16.155650Z" + "iopub.execute_input": "2024-08-02T23:21:54.378125Z", + "iopub.status.busy": "2024-08-02T23:21:54.377805Z", + "iopub.status.idle": "2024-08-02T23:21:54.381485Z", + "shell.execute_reply": "2024-08-02T23:21:54.380895Z" } }, "outputs": [ @@ -1433,9 +1433,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Easy Mode \n", + "## Spending too much time on data quality?\n", "\n", - "Cleanlab is most effective when you run this code with a good ML model. Try to produce the best ML model you can for your data (instead of the basic model from this tutorial). If you don't know the best ML model for your data, try [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) which will automatically produce one for you. Super easy to use, [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points -- all powered by a system that automatically trains/deploys the best ML model for your data. [Try it for free!](https://cleanlab.ai/signup/)" + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" ] }, { @@ -1443,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.158400Z", - "iopub.status.busy": "2024-07-30T16:36:16.158078Z", - "iopub.status.idle": "2024-07-30T16:36:16.163394Z", - "shell.execute_reply": "2024-07-30T16:36:16.162837Z" + "iopub.execute_input": "2024-08-02T23:21:54.383731Z", + "iopub.status.busy": "2024-08-02T23:21:54.383385Z", + "iopub.status.idle": "2024-08-02T23:21:54.388743Z", + "shell.execute_reply": "2024-08-02T23:21:54.388162Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index d6d1d2769..b1d172e95 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:19.928818Z", - "iopub.status.busy": "2024-07-30T16:36:19.928315Z", - "iopub.status.idle": "2024-07-30T16:36:20.362342Z", - "shell.execute_reply": "2024-07-30T16:36:20.361793Z" + "iopub.execute_input": "2024-08-02T23:21:58.540122Z", + "iopub.status.busy": "2024-08-02T23:21:58.539942Z", + "iopub.status.idle": "2024-08-02T23:21:58.972460Z", + "shell.execute_reply": "2024-08-02T23:21:58.971845Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:20.365042Z", - "iopub.status.busy": "2024-07-30T16:36:20.364603Z", - "iopub.status.idle": "2024-07-30T16:36:20.497373Z", - "shell.execute_reply": "2024-07-30T16:36:20.496781Z" + "iopub.execute_input": "2024-08-02T23:21:58.975240Z", + "iopub.status.busy": "2024-08-02T23:21:58.974829Z", + "iopub.status.idle": "2024-08-02T23:21:59.105776Z", + "shell.execute_reply": "2024-08-02T23:21:59.105181Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:20.499582Z", - "iopub.status.busy": "2024-07-30T16:36:20.499349Z", - "iopub.status.idle": "2024-07-30T16:36:20.524504Z", - "shell.execute_reply": "2024-07-30T16:36:20.523915Z" + "iopub.execute_input": "2024-08-02T23:21:59.108029Z", + "iopub.status.busy": "2024-08-02T23:21:59.107636Z", + "iopub.status.idle": "2024-08-02T23:21:59.130897Z", + "shell.execute_reply": "2024-08-02T23:21:59.130271Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:20.527274Z", - "iopub.status.busy": "2024-07-30T16:36:20.527018Z", - "iopub.status.idle": "2024-07-30T16:36:23.840701Z", - "shell.execute_reply": "2024-07-30T16:36:23.840107Z" + "iopub.execute_input": "2024-08-02T23:21:59.133602Z", + "iopub.status.busy": "2024-08-02T23:21:59.133095Z", + "iopub.status.idle": "2024-08-02T23:22:02.346575Z", + "shell.execute_reply": "2024-08-02T23:22:02.345989Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:23.843646Z", - "iopub.status.busy": "2024-07-30T16:36:23.843036Z", - "iopub.status.idle": "2024-07-30T16:36:32.528462Z", - "shell.execute_reply": "2024-07-30T16:36:32.527887Z" + "iopub.execute_input": "2024-08-02T23:22:02.349075Z", + "iopub.status.busy": "2024-08-02T23:22:02.348695Z", + "iopub.status.idle": "2024-08-02T23:22:10.790575Z", + "shell.execute_reply": "2024-08-02T23:22:10.790056Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:32.530759Z", - "iopub.status.busy": "2024-07-30T16:36:32.530398Z", - "iopub.status.idle": "2024-07-30T16:36:32.692452Z", - "shell.execute_reply": "2024-07-30T16:36:32.691890Z" + "iopub.execute_input": "2024-08-02T23:22:10.792934Z", + "iopub.status.busy": "2024-08-02T23:22:10.792557Z", + "iopub.status.idle": "2024-08-02T23:22:10.956046Z", + "shell.execute_reply": "2024-08-02T23:22:10.955515Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:32.695108Z", - "iopub.status.busy": "2024-07-30T16:36:32.694738Z", - "iopub.status.idle": "2024-07-30T16:36:34.079949Z", - "shell.execute_reply": "2024-07-30T16:36:34.079473Z" + "iopub.execute_input": "2024-08-02T23:22:10.958582Z", + "iopub.status.busy": "2024-08-02T23:22:10.958202Z", + "iopub.status.idle": "2024-08-02T23:22:12.292827Z", + "shell.execute_reply": "2024-08-02T23:22:12.292255Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.082291Z", - "iopub.status.busy": "2024-07-30T16:36:34.081898Z", - "iopub.status.idle": "2024-07-30T16:36:34.326676Z", - "shell.execute_reply": "2024-07-30T16:36:34.326094Z" + "iopub.execute_input": "2024-08-02T23:22:12.295279Z", + "iopub.status.busy": "2024-08-02T23:22:12.294790Z", + "iopub.status.idle": "2024-08-02T23:22:12.622073Z", + "shell.execute_reply": "2024-08-02T23:22:12.621483Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.329162Z", - "iopub.status.busy": "2024-07-30T16:36:34.328791Z", - "iopub.status.idle": "2024-07-30T16:36:34.342431Z", - "shell.execute_reply": "2024-07-30T16:36:34.341938Z" + "iopub.execute_input": "2024-08-02T23:22:12.624778Z", + "iopub.status.busy": "2024-08-02T23:22:12.624229Z", + "iopub.status.idle": "2024-08-02T23:22:12.637797Z", + "shell.execute_reply": "2024-08-02T23:22:12.637348Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.344554Z", - "iopub.status.busy": "2024-07-30T16:36:34.344214Z", - "iopub.status.idle": "2024-07-30T16:36:34.363020Z", - "shell.execute_reply": "2024-07-30T16:36:34.362540Z" + "iopub.execute_input": "2024-08-02T23:22:12.640065Z", + "iopub.status.busy": "2024-08-02T23:22:12.639723Z", + "iopub.status.idle": "2024-08-02T23:22:12.658542Z", + "shell.execute_reply": "2024-08-02T23:22:12.658085Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.365426Z", - "iopub.status.busy": "2024-07-30T16:36:34.365076Z", - "iopub.status.idle": "2024-07-30T16:36:34.596927Z", - "shell.execute_reply": "2024-07-30T16:36:34.596358Z" + "iopub.execute_input": "2024-08-02T23:22:12.660724Z", + "iopub.status.busy": "2024-08-02T23:22:12.660375Z", + "iopub.status.idle": "2024-08-02T23:22:12.877581Z", + "shell.execute_reply": "2024-08-02T23:22:12.877013Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.599630Z", - "iopub.status.busy": "2024-07-30T16:36:34.599295Z", - "iopub.status.idle": "2024-07-30T16:36:34.619495Z", - "shell.execute_reply": "2024-07-30T16:36:34.618989Z" + "iopub.execute_input": "2024-08-02T23:22:12.880604Z", + "iopub.status.busy": "2024-08-02T23:22:12.880140Z", + "iopub.status.idle": "2024-08-02T23:22:12.899913Z", + "shell.execute_reply": "2024-08-02T23:22:12.899342Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.621703Z", - "iopub.status.busy": "2024-07-30T16:36:34.621342Z", - "iopub.status.idle": "2024-07-30T16:36:34.761643Z", - "shell.execute_reply": "2024-07-30T16:36:34.761053Z" + "iopub.execute_input": "2024-08-02T23:22:12.902002Z", + "iopub.status.busy": "2024-08-02T23:22:12.901825Z", + "iopub.status.idle": "2024-08-02T23:22:13.071307Z", + "shell.execute_reply": "2024-08-02T23:22:13.070655Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.763998Z", - "iopub.status.busy": "2024-07-30T16:36:34.763799Z", - "iopub.status.idle": "2024-07-30T16:36:34.774206Z", - "shell.execute_reply": "2024-07-30T16:36:34.773713Z" + "iopub.execute_input": "2024-08-02T23:22:13.073549Z", + "iopub.status.busy": "2024-08-02T23:22:13.073366Z", + "iopub.status.idle": "2024-08-02T23:22:13.083592Z", + "shell.execute_reply": "2024-08-02T23:22:13.083032Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.776254Z", - "iopub.status.busy": "2024-07-30T16:36:34.776071Z", - "iopub.status.idle": "2024-07-30T16:36:34.785886Z", - "shell.execute_reply": "2024-07-30T16:36:34.785435Z" + "iopub.execute_input": "2024-08-02T23:22:13.085738Z", + "iopub.status.busy": "2024-08-02T23:22:13.085397Z", + "iopub.status.idle": "2024-08-02T23:22:13.094677Z", + "shell.execute_reply": "2024-08-02T23:22:13.094210Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.787902Z", - "iopub.status.busy": "2024-07-30T16:36:34.787724Z", - "iopub.status.idle": "2024-07-30T16:36:34.815725Z", - "shell.execute_reply": "2024-07-30T16:36:34.815298Z" + "iopub.execute_input": "2024-08-02T23:22:13.096577Z", + "iopub.status.busy": "2024-08-02T23:22:13.096407Z", + "iopub.status.idle": "2024-08-02T23:22:13.122565Z", + "shell.execute_reply": "2024-08-02T23:22:13.122066Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.817795Z", - "iopub.status.busy": "2024-07-30T16:36:34.817615Z", - "iopub.status.idle": "2024-07-30T16:36:34.820486Z", - "shell.execute_reply": "2024-07-30T16:36:34.820013Z" + "iopub.execute_input": "2024-08-02T23:22:13.124990Z", + "iopub.status.busy": "2024-08-02T23:22:13.124635Z", + "iopub.status.idle": "2024-08-02T23:22:13.127488Z", + "shell.execute_reply": "2024-08-02T23:22:13.127033Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.822391Z", - "iopub.status.busy": "2024-07-30T16:36:34.822219Z", - "iopub.status.idle": "2024-07-30T16:36:34.841825Z", - "shell.execute_reply": "2024-07-30T16:36:34.841320Z" + "iopub.execute_input": "2024-08-02T23:22:13.129612Z", + "iopub.status.busy": "2024-08-02T23:22:13.129258Z", + "iopub.status.idle": "2024-08-02T23:22:13.149348Z", + "shell.execute_reply": "2024-08-02T23:22:13.148753Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.843927Z", - "iopub.status.busy": "2024-07-30T16:36:34.843742Z", - "iopub.status.idle": "2024-07-30T16:36:34.848323Z", - "shell.execute_reply": "2024-07-30T16:36:34.847833Z" + "iopub.execute_input": "2024-08-02T23:22:13.151509Z", + "iopub.status.busy": "2024-08-02T23:22:13.151173Z", + "iopub.status.idle": "2024-08-02T23:22:13.155595Z", + "shell.execute_reply": "2024-08-02T23:22:13.155039Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.850257Z", - "iopub.status.busy": "2024-07-30T16:36:34.850081Z", - "iopub.status.idle": "2024-07-30T16:36:34.879946Z", - "shell.execute_reply": "2024-07-30T16:36:34.879477Z" + "iopub.execute_input": "2024-08-02T23:22:13.157749Z", + "iopub.status.busy": "2024-08-02T23:22:13.157403Z", + "iopub.status.idle": "2024-08-02T23:22:13.186218Z", + "shell.execute_reply": "2024-08-02T23:22:13.185603Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.881917Z", - "iopub.status.busy": "2024-07-30T16:36:34.881737Z", - "iopub.status.idle": "2024-07-30T16:36:35.259340Z", - "shell.execute_reply": "2024-07-30T16:36:35.258831Z" + "iopub.execute_input": "2024-08-02T23:22:13.188598Z", + "iopub.status.busy": "2024-08-02T23:22:13.188252Z", + "iopub.status.idle": "2024-08-02T23:22:13.558273Z", + "shell.execute_reply": "2024-08-02T23:22:13.557664Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.261459Z", - "iopub.status.busy": "2024-07-30T16:36:35.261275Z", - "iopub.status.idle": "2024-07-30T16:36:35.264720Z", - "shell.execute_reply": "2024-07-30T16:36:35.264247Z" + "iopub.execute_input": "2024-08-02T23:22:13.560412Z", + "iopub.status.busy": "2024-08-02T23:22:13.560221Z", + "iopub.status.idle": "2024-08-02T23:22:13.563654Z", + "shell.execute_reply": "2024-08-02T23:22:13.563075Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.266610Z", - "iopub.status.busy": "2024-07-30T16:36:35.266439Z", - "iopub.status.idle": "2024-07-30T16:36:35.280154Z", - "shell.execute_reply": "2024-07-30T16:36:35.279707Z" + "iopub.execute_input": "2024-08-02T23:22:13.565843Z", + "iopub.status.busy": "2024-08-02T23:22:13.565488Z", + "iopub.status.idle": "2024-08-02T23:22:13.578636Z", + "shell.execute_reply": "2024-08-02T23:22:13.578130Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.282287Z", - "iopub.status.busy": "2024-07-30T16:36:35.281841Z", - "iopub.status.idle": "2024-07-30T16:36:35.296091Z", - "shell.execute_reply": "2024-07-30T16:36:35.295529Z" + "iopub.execute_input": "2024-08-02T23:22:13.580749Z", + "iopub.status.busy": "2024-08-02T23:22:13.580400Z", + "iopub.status.idle": "2024-08-02T23:22:13.593962Z", + "shell.execute_reply": "2024-08-02T23:22:13.593384Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.298365Z", - "iopub.status.busy": "2024-07-30T16:36:35.297955Z", - "iopub.status.idle": "2024-07-30T16:36:35.308443Z", - "shell.execute_reply": "2024-07-30T16:36:35.307980Z" + "iopub.execute_input": "2024-08-02T23:22:13.596098Z", + "iopub.status.busy": "2024-08-02T23:22:13.595769Z", + "iopub.status.idle": "2024-08-02T23:22:13.606627Z", + "shell.execute_reply": "2024-08-02T23:22:13.606051Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.310642Z", - "iopub.status.busy": "2024-07-30T16:36:35.310307Z", - "iopub.status.idle": "2024-07-30T16:36:35.319369Z", - "shell.execute_reply": "2024-07-30T16:36:35.318850Z" + "iopub.execute_input": "2024-08-02T23:22:13.608671Z", + "iopub.status.busy": "2024-08-02T23:22:13.608346Z", + "iopub.status.idle": "2024-08-02T23:22:13.617864Z", + "shell.execute_reply": "2024-08-02T23:22:13.617309Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.321481Z", - "iopub.status.busy": "2024-07-30T16:36:35.321145Z", - "iopub.status.idle": "2024-07-30T16:36:35.324693Z", - "shell.execute_reply": "2024-07-30T16:36:35.324231Z" + "iopub.execute_input": "2024-08-02T23:22:13.619896Z", + "iopub.status.busy": "2024-08-02T23:22:13.619554Z", + "iopub.status.idle": "2024-08-02T23:22:13.623041Z", + "shell.execute_reply": "2024-08-02T23:22:13.622595Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.326670Z", - "iopub.status.busy": "2024-07-30T16:36:35.326496Z", - "iopub.status.idle": "2024-07-30T16:36:35.379645Z", - "shell.execute_reply": "2024-07-30T16:36:35.379123Z" + "iopub.execute_input": "2024-08-02T23:22:13.624963Z", + "iopub.status.busy": "2024-08-02T23:22:13.624789Z", + "iopub.status.idle": "2024-08-02T23:22:13.676686Z", + "shell.execute_reply": "2024-08-02T23:22:13.676151Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.382058Z", - "iopub.status.busy": "2024-07-30T16:36:35.381569Z", - "iopub.status.idle": "2024-07-30T16:36:35.388152Z", - "shell.execute_reply": "2024-07-30T16:36:35.387714Z" + "iopub.execute_input": "2024-08-02T23:22:13.679035Z", + "iopub.status.busy": "2024-08-02T23:22:13.678697Z", + "iopub.status.idle": "2024-08-02T23:22:13.685822Z", + "shell.execute_reply": "2024-08-02T23:22:13.685355Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.390322Z", - "iopub.status.busy": "2024-07-30T16:36:35.389885Z", - "iopub.status.idle": "2024-07-30T16:36:35.401052Z", - "shell.execute_reply": "2024-07-30T16:36:35.400566Z" + "iopub.execute_input": "2024-08-02T23:22:13.688074Z", + "iopub.status.busy": "2024-08-02T23:22:13.687619Z", + "iopub.status.idle": "2024-08-02T23:22:13.699375Z", + "shell.execute_reply": "2024-08-02T23:22:13.698786Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.402986Z", - "iopub.status.busy": "2024-07-30T16:36:35.402810Z", - "iopub.status.idle": "2024-07-30T16:36:35.583541Z", - "shell.execute_reply": "2024-07-30T16:36:35.582923Z" + "iopub.execute_input": "2024-08-02T23:22:13.701685Z", + "iopub.status.busy": "2024-08-02T23:22:13.701265Z", + "iopub.status.idle": "2024-08-02T23:22:13.918661Z", + "shell.execute_reply": "2024-08-02T23:22:13.918038Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.586049Z", - "iopub.status.busy": "2024-07-30T16:36:35.585823Z", - "iopub.status.idle": "2024-07-30T16:36:35.594126Z", - "shell.execute_reply": "2024-07-30T16:36:35.593611Z" + "iopub.execute_input": "2024-08-02T23:22:13.920933Z", + "iopub.status.busy": "2024-08-02T23:22:13.920727Z", + "iopub.status.idle": "2024-08-02T23:22:13.928739Z", + "shell.execute_reply": "2024-08-02T23:22:13.928289Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.596219Z", - "iopub.status.busy": "2024-07-30T16:36:35.596032Z", - "iopub.status.idle": "2024-07-30T16:36:36.032446Z", - "shell.execute_reply": "2024-07-30T16:36:36.031724Z" + "iopub.execute_input": "2024-08-02T23:22:13.930887Z", + "iopub.status.busy": "2024-08-02T23:22:13.930700Z", + "iopub.status.idle": "2024-08-02T23:22:14.283492Z", + "shell.execute_reply": "2024-08-02T23:22:14.282648Z" } }, "outputs": [ @@ -3767,32 +3767,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-30 16:36:35-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.108.153, 185.199.110.153, ...\r\n", + "--2024-08-02 23:22:13-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 986707 (964K) [application/zip]\r\n", "Saving to: ‘CIFAR-10-subset.zip’\r\n", "\r\n", "\r", - "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.03s \r\n", + "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.007s \r\n", "\r\n", - "2024-07-30 16:36:35 (36.4 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-08-02 23:22:14 (131 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3808,10 +3794,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:36.035427Z", - "iopub.status.busy": "2024-07-30T16:36:36.035017Z", - "iopub.status.idle": "2024-07-30T16:36:38.005904Z", - "shell.execute_reply": "2024-07-30T16:36:38.005342Z" + "iopub.execute_input": "2024-08-02T23:22:14.286320Z", + "iopub.status.busy": "2024-08-02T23:22:14.285986Z", + "iopub.status.idle": "2024-08-02T23:22:16.250080Z", + "shell.execute_reply": "2024-08-02T23:22:16.249517Z" } }, "outputs": [], @@ -3857,10 +3843,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:38.008499Z", - "iopub.status.busy": "2024-07-30T16:36:38.008189Z", - "iopub.status.idle": "2024-07-30T16:36:38.487271Z", - "shell.execute_reply": "2024-07-30T16:36:38.486659Z" + "iopub.execute_input": "2024-08-02T23:22:16.252933Z", + "iopub.status.busy": "2024-08-02T23:22:16.252320Z", + "iopub.status.idle": "2024-08-02T23:22:16.733355Z", + "shell.execute_reply": "2024-08-02T23:22:16.732689Z" } }, "outputs": [ @@ -3875,7 +3861,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2ed4efbeb1874db0a5e2316cc6fdcc53", + "model_id": "71a4c08b9dfc456aa328fdeec90efbf7", "version_major": 2, "version_minor": 0 }, @@ -3957,10 +3943,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:38.491380Z", - "iopub.status.busy": "2024-07-30T16:36:38.490234Z", - "iopub.status.idle": "2024-07-30T16:36:38.508457Z", - "shell.execute_reply": "2024-07-30T16:36:38.507923Z" + "iopub.execute_input": "2024-08-02T23:22:16.737440Z", + "iopub.status.busy": "2024-08-02T23:22:16.736282Z", + "iopub.status.idle": "2024-08-02T23:22:16.754516Z", + "shell.execute_reply": "2024-08-02T23:22:16.754000Z" } }, "outputs": [ @@ -4079,35 +4065,35 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 0\n", - " True\n", " 0.237196\n", + " True\n", " \n", " \n", " 1\n", - " True\n", " 0.197229\n", + " True\n", " \n", " \n", " 2\n", - " True\n", " 0.254188\n", + " True\n", " \n", " \n", " 3\n", - " True\n", " 0.229170\n", + " True\n", " \n", " \n", " 4\n", - " True\n", " 0.208907\n", + " True\n", " \n", " \n", " ...\n", @@ -4116,28 +4102,28 @@ " \n", " \n", " 195\n", - " False\n", " 0.793840\n", + " False\n", " \n", " \n", " 196\n", - " False\n", " 1.000000\n", + " False\n", " \n", " \n", " 197\n", - " False\n", " 0.971560\n", + " False\n", " \n", " \n", " 198\n", - " False\n", " 0.862236\n", + " False\n", " \n", " \n", " 199\n", - " False\n", " 0.973533\n", + " False\n", " \n", " \n", "\n", @@ -4145,18 +4131,18 @@ "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "0 True 0.237196\n", - "1 True 0.197229\n", - "2 True 0.254188\n", - "3 True 0.229170\n", - "4 True 0.208907\n", - ".. ... ...\n", - "195 False 0.793840\n", - "196 False 1.000000\n", - "197 False 0.971560\n", - "198 False 0.862236\n", - "199 False 0.973533\n", + " dark_score is_dark_issue\n", + "0 0.237196 True\n", + "1 0.197229 True\n", + "2 0.254188 True\n", + "3 0.229170 True\n", + "4 0.208907 True\n", + ".. ... ...\n", + "195 0.793840 False\n", + "196 1.000000 False\n", + "197 0.971560 False\n", + "198 0.862236 False\n", + "199 0.973533 False\n", "\n", "[200 rows x 2 columns]" ] @@ -4218,10 +4204,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:38.512133Z", - "iopub.status.busy": "2024-07-30T16:36:38.511200Z", - "iopub.status.idle": "2024-07-30T16:36:39.047457Z", - "shell.execute_reply": "2024-07-30T16:36:39.046797Z" + "iopub.execute_input": "2024-08-02T23:22:16.758210Z", + "iopub.status.busy": "2024-08-02T23:22:16.757276Z", + "iopub.status.idle": "2024-08-02T23:22:17.281248Z", + "shell.execute_reply": "2024-08-02T23:22:17.280570Z" } }, "outputs": [ @@ -4236,7 +4222,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5704008e778b464799f617edec73de43", + "model_id": "b82f72b4461f4f2997fbc7789387a332", "version_major": 2, "version_minor": 0 }, @@ -4364,35 +4350,35 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 0\n", - " False\n", " 0.797509\n", + " False\n", " \n", " \n", " 1\n", - " False\n", " 0.663760\n", + " False\n", " \n", " \n", " 2\n", - " False\n", " 0.849826\n", + " False\n", " \n", " \n", " 3\n", - " False\n", " 0.773951\n", + " False\n", " \n", " \n", " 4\n", - " False\n", " 0.699518\n", + " False\n", " \n", " \n", " ...\n", @@ -4401,28 +4387,28 @@ " \n", " \n", " 195\n", - " False\n", " 0.793840\n", + " False\n", " \n", " \n", " 196\n", - " False\n", " 1.000000\n", + " False\n", " \n", " \n", " 197\n", - " False\n", " 0.971560\n", + " False\n", " \n", " \n", " 198\n", - " False\n", " 0.862236\n", + " False\n", " \n", " \n", " 199\n", - " False\n", " 0.973533\n", + " False\n", " \n", " \n", "\n", @@ -4430,18 +4416,18 @@ "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "0 False 0.797509\n", - "1 False 0.663760\n", - "2 False 0.849826\n", - "3 False 0.773951\n", - "4 False 0.699518\n", - ".. ... ...\n", - "195 False 0.793840\n", - "196 False 1.000000\n", - "197 False 0.971560\n", - "198 False 0.862236\n", - "199 False 0.973533\n", + " dark_score is_dark_issue\n", + "0 0.797509 False\n", + "1 0.663760 False\n", + "2 0.849826 False\n", + "3 0.773951 False\n", + "4 0.699518 False\n", + ".. ... ...\n", + "195 0.793840 False\n", + "196 1.000000 False\n", + "197 0.971560 False\n", + "198 0.862236 False\n", + "199 0.973533 False\n", "\n", "[200 rows x 2 columns]" ] @@ -4504,7 +4490,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a74b29d3db14bd1b43bfa76b01669f5": { + "01182168d2124815b12e86a72a612467": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4557,25 +4543,60 @@ "width": null } }, - "0d5b18ce4d00414fa7849f07f919f0c2": { - "model_module": "@jupyter-widgets/controls", + "1b236bb92bf644779da7e7d8d3323694": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "23ab6deed4f548d781711f2b69e1626d": { + "1e44ea22efa84d32896d5d2aaf090bee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4590,39 +4611,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b7913d94eed4408cb306a3e2b47761cb", + "layout": "IPY_MODEL_01182168d2124815b12e86a72a612467", "placeholder": "​", - "style": "IPY_MODEL_872924f1144146c999720f92d3ee8e2b", + "style": "IPY_MODEL_c3884d048fe24b41af28a41df38517ea", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "2ed4efbeb1874db0a5e2316cc6fdcc53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d4d36e246db746c4acbc8f4787f82381", - "IPY_MODEL_357fb341466f4d6da6ea707fd3c1d55b", - "IPY_MODEL_5360fa3a0eed4207b44167db7bcfd0fa" - ], - "layout": "IPY_MODEL_f59fcaa8e8d04931980396c1bdc42425", - "tabbable": null, - "tooltip": null + "value": " 200/200 [00:00<00:00, 695.70it/s]" } }, - "357fb341466f4d6da6ea707fd3c1d55b": { + "1ef0da0c5da94764a858d4f7717ac7db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4638,17 +4635,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2cb72313c294a56bc0221871a2d5717", + "layout": "IPY_MODEL_5d68d107670743d6808663bdacce92b7", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_df924bb590a44f27a4f68916d0e77c53", + "style": "IPY_MODEL_8e87443447a246eabdd50fb1695f3b9f", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "489ca8ef4e094a6182021355bf8ff0e0": { + "357d1581f03e4afb9d2b6424633f3260": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4663,62 +4660,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a74b29d3db14bd1b43bfa76b01669f5", + "layout": "IPY_MODEL_52b0ba4251cb408ea152d6a5ee00545b", "placeholder": "​", - "style": "IPY_MODEL_a8c94e907c12444e8d0364601f96e159", + "style": "IPY_MODEL_8134f8b658d5423c98b7ffe9394d17d6", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 703.72it/s]" - } - }, - "5360fa3a0eed4207b44167db7bcfd0fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_845e948b5a894d6e94a4e04bf148519c", - "placeholder": "​", - "style": "IPY_MODEL_0d5b18ce4d00414fa7849f07f919f0c2", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 768.56it/s]" + "value": "100%" } }, - "5704008e778b464799f617edec73de43": { + "4222b0643f044a5f9e8426072332e919": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_23ab6deed4f548d781711f2b69e1626d", - "IPY_MODEL_91b05b3271df489f93fcfc926fa4996d", - "IPY_MODEL_489ca8ef4e094a6182021355bf8ff0e0" - ], - "layout": "IPY_MODEL_bd875ac3a62042068a132488eecbb1c4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5bed25780c8d4b9c990b530de43dde8e": { + "52b0ba4251cb408ea152d6a5ee00545b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4771,41 +4739,30 @@ "width": null } }, - "72b98c9996864aa9abad1934ce4b27c3": { + "57d7b16caadb49deb6a43c6fd109390e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7b2d92c1f6624498af65bda8fd36806a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d97ac03902bf40949b08b5f65f538140", + "placeholder": "​", + "style": "IPY_MODEL_8cc79c564011405db4fbff7e4aeb5efa", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "845e948b5a894d6e94a4e04bf148519c": { + "5d68d107670743d6808663bdacce92b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4858,7 +4815,31 @@ "width": null } }, - "872924f1144146c999720f92d3ee8e2b": { + "71a4c08b9dfc456aa328fdeec90efbf7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_57d7b16caadb49deb6a43c6fd109390e", + "IPY_MODEL_1ef0da0c5da94764a858d4f7717ac7db", + "IPY_MODEL_1e44ea22efa84d32896d5d2aaf090bee" + ], + "layout": "IPY_MODEL_d48001ab3b6148e6a9e0fa4aceed791e", + "tabbable": null, + "tooltip": null + } + }, + "8134f8b658d5423c98b7ffe9394d17d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4876,7 +4857,41 @@ "text_color": null } }, - "91b05b3271df489f93fcfc926fa4996d": { + "8cc79c564011405db4fbff7e4aeb5efa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8e87443447a246eabdd50fb1695f3b9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9d4fe395ec3244c093bada5689a24f41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4892,17 +4907,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5bed25780c8d4b9c990b530de43dde8e", + "layout": "IPY_MODEL_1b236bb92bf644779da7e7d8d3323694", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7b2d92c1f6624498af65bda8fd36806a", + "style": "IPY_MODEL_c5b4b4b00b804232a9ff311ead8306fc", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "9ab790ab579f415bbc804c1f992660a0": { + "b82f72b4461f4f2997fbc7789387a332": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_357d1581f03e4afb9d2b6424633f3260", + "IPY_MODEL_9d4fe395ec3244c093bada5689a24f41", + "IPY_MODEL_e66b4a469d0d4eadb2566c3d7c697ecd" + ], + "layout": "IPY_MODEL_c060ef50017c47518d8868c12ea382d9", + "tabbable": null, + "tooltip": null + } + }, + "c060ef50017c47518d8868c12ea382d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4955,7 +4994,7 @@ "width": null } }, - "a8c94e907c12444e8d0364601f96e159": { + "c3884d048fe24b41af28a41df38517ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4973,7 +5012,7 @@ "text_color": null } }, - "b7913d94eed4408cb306a3e2b47761cb": { + "c38bfaecbf7147b693a82b0b3e772612": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5026,83 +5065,7 @@ "width": null } }, - "bd875ac3a62042068a132488eecbb1c4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d4d36e246db746c4acbc8f4787f82381": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9ab790ab579f415bbc804c1f992660a0", - "placeholder": "​", - "style": "IPY_MODEL_72b98c9996864aa9abad1934ce4b27c3", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "df924bb590a44f27a4f68916d0e77c53": { + "c5b4b4b00b804232a9ff311ead8306fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5118,7 +5081,7 @@ "description_width": "" } }, - "f2cb72313c294a56bc0221871a2d5717": { + "d48001ab3b6148e6a9e0fa4aceed791e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5171,7 +5134,7 @@ "width": null } }, - "f59fcaa8e8d04931980396c1bdc42425": { + "d97ac03902bf40949b08b5f65f538140": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5223,6 +5186,29 @@ "visibility": null, "width": null } + }, + "e66b4a469d0d4eadb2566c3d7c697ecd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c38bfaecbf7147b693a82b0b3e772612", + "placeholder": "​", + "style": "IPY_MODEL_4222b0643f044a5f9e8426072332e919", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 689.10it/s]" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index b41d28ba4..464e6d818 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:43.263935Z", - "iopub.status.busy": "2024-07-30T16:36:43.263754Z", - "iopub.status.idle": "2024-07-30T16:36:44.677036Z", - "shell.execute_reply": "2024-07-30T16:36:44.676454Z" + "iopub.execute_input": "2024-08-02T23:22:21.207713Z", + "iopub.status.busy": "2024-08-02T23:22:21.207533Z", + "iopub.status.idle": "2024-08-02T23:22:22.617403Z", + "shell.execute_reply": "2024-08-02T23:22:22.616703Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:44.679704Z", - "iopub.status.busy": "2024-07-30T16:36:44.679219Z", - "iopub.status.idle": "2024-07-30T16:36:44.681960Z", - "shell.execute_reply": "2024-07-30T16:36:44.681516Z" + "iopub.execute_input": "2024-08-02T23:22:22.619987Z", + "iopub.status.busy": "2024-08-02T23:22:22.619693Z", + "iopub.status.idle": "2024-08-02T23:22:22.622687Z", + "shell.execute_reply": "2024-08-02T23:22:22.622224Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:44.684134Z", - "iopub.status.busy": "2024-07-30T16:36:44.683779Z", - "iopub.status.idle": "2024-07-30T16:36:44.695519Z", - "shell.execute_reply": "2024-07-30T16:36:44.695059Z" + "iopub.execute_input": "2024-08-02T23:22:22.624727Z", + "iopub.status.busy": "2024-08-02T23:22:22.624552Z", + "iopub.status.idle": "2024-08-02T23:22:22.636926Z", + "shell.execute_reply": "2024-08-02T23:22:22.636449Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:44.697494Z", - "iopub.status.busy": "2024-07-30T16:36:44.697321Z", - "iopub.status.idle": "2024-07-30T16:36:50.818481Z", - "shell.execute_reply": "2024-07-30T16:36:50.817920Z" + "iopub.execute_input": "2024-08-02T23:22:22.638863Z", + "iopub.status.busy": "2024-08-02T23:22:22.638690Z", + "iopub.status.idle": "2024-08-02T23:22:26.870323Z", + "shell.execute_reply": "2024-08-02T23:22:26.869834Z" }, "id": "dhTHOg8Pyv5G" }, @@ -3081,6 +3081,21 @@ " # run 1 line of code to evaluate the health of your dataset\n", " _ = cleanlab.dataset.health_summary(labels, pred_probs, class_names=class_names)" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] } ], "metadata": { diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 0e282dd07..85b88d83d 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:53.364898Z", - "iopub.status.busy": "2024-07-30T16:36:53.364365Z", - "iopub.status.idle": "2024-07-30T16:36:54.816084Z", - "shell.execute_reply": "2024-07-30T16:36:54.815502Z" + "iopub.execute_input": "2024-08-02T23:22:29.317927Z", + "iopub.status.busy": "2024-08-02T23:22:29.317762Z", + "iopub.status.idle": "2024-08-02T23:22:30.709755Z", + "shell.execute_reply": "2024-08-02T23:22:30.709204Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:54.819086Z", - "iopub.status.busy": "2024-07-30T16:36:54.818586Z", - "iopub.status.idle": "2024-07-30T16:36:54.821882Z", - "shell.execute_reply": "2024-07-30T16:36:54.821439Z" + "iopub.execute_input": "2024-08-02T23:22:30.712568Z", + "iopub.status.busy": "2024-08-02T23:22:30.712110Z", + "iopub.status.idle": "2024-08-02T23:22:30.715506Z", + "shell.execute_reply": "2024-08-02T23:22:30.715053Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:54.824015Z", - "iopub.status.busy": "2024-07-30T16:36:54.823672Z", - "iopub.status.idle": "2024-07-30T16:36:58.536010Z", - "shell.execute_reply": "2024-07-30T16:36:58.535180Z" + "iopub.execute_input": "2024-08-02T23:22:30.717656Z", + "iopub.status.busy": "2024-08-02T23:22:30.717203Z", + "iopub.status.idle": "2024-08-02T23:22:34.286623Z", + "shell.execute_reply": "2024-08-02T23:22:34.285962Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.539755Z", - "iopub.status.busy": "2024-07-30T16:36:58.538755Z", - "iopub.status.idle": "2024-07-30T16:36:58.591095Z", - "shell.execute_reply": "2024-07-30T16:36:58.590433Z" + "iopub.execute_input": "2024-08-02T23:22:34.290077Z", + "iopub.status.busy": "2024-08-02T23:22:34.289157Z", + "iopub.status.idle": "2024-08-02T23:22:34.334428Z", + "shell.execute_reply": "2024-08-02T23:22:34.333773Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.593884Z", - "iopub.status.busy": "2024-07-30T16:36:58.593478Z", - "iopub.status.idle": "2024-07-30T16:36:58.639623Z", - "shell.execute_reply": "2024-07-30T16:36:58.638845Z" + "iopub.execute_input": "2024-08-02T23:22:34.337263Z", + "iopub.status.busy": "2024-08-02T23:22:34.336802Z", + "iopub.status.idle": "2024-08-02T23:22:34.379369Z", + "shell.execute_reply": "2024-08-02T23:22:34.378671Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.642513Z", - "iopub.status.busy": "2024-07-30T16:36:58.642101Z", - "iopub.status.idle": "2024-07-30T16:36:58.645752Z", - "shell.execute_reply": "2024-07-30T16:36:58.645291Z" + "iopub.execute_input": "2024-08-02T23:22:34.382130Z", + "iopub.status.busy": "2024-08-02T23:22:34.381755Z", + "iopub.status.idle": "2024-08-02T23:22:34.384963Z", + "shell.execute_reply": "2024-08-02T23:22:34.384470Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.647868Z", - "iopub.status.busy": "2024-07-30T16:36:58.647530Z", - "iopub.status.idle": "2024-07-30T16:36:58.650324Z", - "shell.execute_reply": "2024-07-30T16:36:58.649625Z" + "iopub.execute_input": "2024-08-02T23:22:34.387036Z", + "iopub.status.busy": "2024-08-02T23:22:34.386739Z", + "iopub.status.idle": "2024-08-02T23:22:34.389652Z", + "shell.execute_reply": "2024-08-02T23:22:34.388895Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.652675Z", - "iopub.status.busy": "2024-07-30T16:36:58.652185Z", - "iopub.status.idle": "2024-07-30T16:36:58.676038Z", - "shell.execute_reply": "2024-07-30T16:36:58.675495Z" + "iopub.execute_input": "2024-08-02T23:22:34.391832Z", + "iopub.status.busy": "2024-08-02T23:22:34.391513Z", + "iopub.status.idle": "2024-08-02T23:22:34.417865Z", + "shell.execute_reply": "2024-08-02T23:22:34.417276Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "57581a07cda143f5ae3947a8ceb2effa", + "model_id": "994bb101c48240bd91ac23c6d451faea", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8036196b7e194ee38336f33c15df9344", + "model_id": "75f8dda3bfd7411ab998335d777d0d77", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.681445Z", - "iopub.status.busy": "2024-07-30T16:36:58.681234Z", - "iopub.status.idle": "2024-07-30T16:36:58.688163Z", - "shell.execute_reply": "2024-07-30T16:36:58.687730Z" + "iopub.execute_input": "2024-08-02T23:22:34.423377Z", + "iopub.status.busy": "2024-08-02T23:22:34.423067Z", + "iopub.status.idle": "2024-08-02T23:22:34.429876Z", + "shell.execute_reply": "2024-08-02T23:22:34.429438Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.690192Z", - "iopub.status.busy": "2024-07-30T16:36:58.689845Z", - "iopub.status.idle": "2024-07-30T16:36:58.693407Z", - "shell.execute_reply": "2024-07-30T16:36:58.692931Z" + "iopub.execute_input": "2024-08-02T23:22:34.431811Z", + "iopub.status.busy": "2024-08-02T23:22:34.431637Z", + "iopub.status.idle": "2024-08-02T23:22:34.435115Z", + "shell.execute_reply": "2024-08-02T23:22:34.434650Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.695508Z", - "iopub.status.busy": "2024-07-30T16:36:58.695194Z", - "iopub.status.idle": "2024-07-30T16:36:58.701664Z", - "shell.execute_reply": "2024-07-30T16:36:58.701093Z" + "iopub.execute_input": "2024-08-02T23:22:34.437011Z", + "iopub.status.busy": "2024-08-02T23:22:34.436832Z", + "iopub.status.idle": "2024-08-02T23:22:34.443057Z", + "shell.execute_reply": "2024-08-02T23:22:34.442613Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.703807Z", - "iopub.status.busy": "2024-07-30T16:36:58.703473Z", - "iopub.status.idle": "2024-07-30T16:36:58.753286Z", - "shell.execute_reply": "2024-07-30T16:36:58.752623Z" + "iopub.execute_input": "2024-08-02T23:22:34.444958Z", + "iopub.status.busy": "2024-08-02T23:22:34.444777Z", + "iopub.status.idle": "2024-08-02T23:22:34.488386Z", + "shell.execute_reply": "2024-08-02T23:22:34.487771Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.756242Z", - "iopub.status.busy": "2024-07-30T16:36:58.755751Z", - "iopub.status.idle": "2024-07-30T16:36:58.810969Z", - "shell.execute_reply": "2024-07-30T16:36:58.810185Z" + "iopub.execute_input": "2024-08-02T23:22:34.491204Z", + "iopub.status.busy": "2024-08-02T23:22:34.490718Z", + "iopub.status.idle": "2024-08-02T23:22:34.533900Z", + "shell.execute_reply": "2024-08-02T23:22:34.533124Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.813764Z", - "iopub.status.busy": "2024-07-30T16:36:58.813494Z", - "iopub.status.idle": "2024-07-30T16:36:58.954189Z", - "shell.execute_reply": "2024-07-30T16:36:58.953479Z" + "iopub.execute_input": "2024-08-02T23:22:34.536698Z", + "iopub.status.busy": "2024-08-02T23:22:34.536347Z", + "iopub.status.idle": "2024-08-02T23:22:34.667900Z", + "shell.execute_reply": "2024-08-02T23:22:34.667248Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.956979Z", - "iopub.status.busy": "2024-07-30T16:36:58.956298Z", - "iopub.status.idle": "2024-07-30T16:37:02.028094Z", - "shell.execute_reply": "2024-07-30T16:37:02.027507Z" + "iopub.execute_input": "2024-08-02T23:22:34.670834Z", + "iopub.status.busy": "2024-08-02T23:22:34.670036Z", + "iopub.status.idle": "2024-08-02T23:22:37.696516Z", + "shell.execute_reply": "2024-08-02T23:22:37.695903Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:02.030600Z", - "iopub.status.busy": "2024-07-30T16:37:02.030207Z", - "iopub.status.idle": "2024-07-30T16:37:02.089072Z", - "shell.execute_reply": "2024-07-30T16:37:02.088458Z" + "iopub.execute_input": "2024-08-02T23:22:37.698762Z", + "iopub.status.busy": "2024-08-02T23:22:37.698568Z", + "iopub.status.idle": "2024-08-02T23:22:37.757100Z", + "shell.execute_reply": "2024-08-02T23:22:37.756458Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:02.091254Z", - "iopub.status.busy": "2024-07-30T16:37:02.091064Z", - "iopub.status.idle": "2024-07-30T16:37:02.134008Z", - "shell.execute_reply": "2024-07-30T16:37:02.133534Z" + "iopub.execute_input": "2024-08-02T23:22:37.759462Z", + "iopub.status.busy": "2024-08-02T23:22:37.759110Z", + "iopub.status.idle": "2024-08-02T23:22:37.799895Z", + "shell.execute_reply": "2024-08-02T23:22:37.799350Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "984213fa", + "id": "12afe868", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "2618e545", + "id": "8634f5cf", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "1e0becd2", + "id": "a6f1d693", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "cba58da6", + "id": "2d3fc7a8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:02.136245Z", - "iopub.status.busy": "2024-07-30T16:37:02.136064Z", - "iopub.status.idle": "2024-07-30T16:37:02.143652Z", - "shell.execute_reply": "2024-07-30T16:37:02.143210Z" + "iopub.execute_input": "2024-08-02T23:22:37.802141Z", + "iopub.status.busy": "2024-08-02T23:22:37.801810Z", + "iopub.status.idle": "2024-08-02T23:22:37.809564Z", + "shell.execute_reply": "2024-08-02T23:22:37.808972Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "fea318fb", + "id": "1fd92d80", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "6afc3734", + "id": "c2a27eb0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:02.145731Z", - "iopub.status.busy": "2024-07-30T16:37:02.145388Z", - "iopub.status.idle": "2024-07-30T16:37:02.165432Z", - "shell.execute_reply": "2024-07-30T16:37:02.164935Z" + "iopub.execute_input": "2024-08-02T23:22:37.811723Z", + "iopub.status.busy": "2024-08-02T23:22:37.811326Z", + "iopub.status.idle": "2024-08-02T23:22:37.831346Z", + "shell.execute_reply": "2024-08-02T23:22:37.830864Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "b8513ca9", + "id": "4c46c839", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:02.167476Z", - "iopub.status.busy": "2024-07-30T16:37:02.167285Z", - "iopub.status.idle": "2024-07-30T16:37:02.170854Z", - "shell.execute_reply": "2024-07-30T16:37:02.170369Z" + "iopub.execute_input": "2024-08-02T23:22:37.833309Z", + "iopub.status.busy": "2024-08-02T23:22:37.833133Z", + "iopub.status.idle": "2024-08-02T23:22:37.836625Z", + "shell.execute_reply": "2024-08-02T23:22:37.836148Z" } }, "outputs": [ @@ -1622,7 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0b139128833c45f089e40c4755cc2721": { + "016d6023fefc4422a008bb5081a8cb41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1640,7 +1640,7 @@ "text_color": null } }, - "2cc4889e619f4d3e9043341064b11c7c": { + "120dbf402c2e413e80f26076fd4182f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1656,40 +1656,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_52bb780bf78947d192b9701de2336602", + "layout": "IPY_MODEL_8a61bc1d6f25492fab2693086b16af60", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9a7b7b5c4aa8470db022c5fd5f7f5217", + "style": "IPY_MODEL_66eaf3b501134447b36b9e1bbc71f764", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "3fad135171fd4a1783040cd5e00be0a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf526f5c8d204d9dabafe472f6d5a633", - "placeholder": "​", - "style": "IPY_MODEL_cab24e4c26614d0496ef8c4fa57cb547", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1028368.56it/s]" - } - }, - "52bb780bf78947d192b9701de2336602": { + "1e531205987048c482bafb4fc142f9ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1742,31 +1719,53 @@ "width": null } }, - "57581a07cda143f5ae3947a8ceb2effa": { + "1f75e27885a84d0aa3e9f0392195004a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a8254c641447480aa7f722801a84cae4", - "IPY_MODEL_2cc4889e619f4d3e9043341064b11c7c", - "IPY_MODEL_3fad135171fd4a1783040cd5e00be0a8" - ], - "layout": "IPY_MODEL_7b88ca779115406292c37cba27c25c20", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_30473e6af23a49de9549b975a2e1d540", + "placeholder": "​", + "style": "IPY_MODEL_37668698005b4c13a561e7bc3ca3818d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1212296.66it/s]" + } + }, + "2d90afb6224e48d5bbd2a1387ca9658d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c44ab595018a49b38ee8fd4915c20b40", + "placeholder": "​", + "style": "IPY_MODEL_345f3d85cfeb456d8e302d63a6cf9438", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } }, - "617558923b2244798dd8e64734279f0c": { + "2fb957039f8d43f48316d9a200cc8c15": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1819,30 +1818,7 @@ "width": null } }, - "6fa5f4c53bb04dfe94f30f73c931e9ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8c5f02c3ba3b4e35a7fb7b38460ea0c9", - "placeholder": "​", - "style": "IPY_MODEL_f809c3480764400ea9f63b20e3e395c1", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "7b88ca779115406292c37cba27c25c20": { + "30473e6af23a49de9549b975a2e1d540": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1895,47 +1871,7 @@ "width": null } }, - "8036196b7e194ee38336f33c15df9344": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6fa5f4c53bb04dfe94f30f73c931e9ce", - "IPY_MODEL_acbe71dfaa064b86ac9d438d3f49c584", - "IPY_MODEL_ad2efaf794734426b265156be3d7a946" - ], - "layout": "IPY_MODEL_e9893acd97ab48599094be49c014c0aa", - "tabbable": null, - "tooltip": null - } - }, - "815bf26fdf864b97a1dcad97921e8ca0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "884f09022ec44bdc8c0f021616c3bac7": { + "331ba3fe0de8492abb1454dc664d44d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1988,7 +1924,43 @@ "width": null } }, - "8c5f02c3ba3b4e35a7fb7b38460ea0c9": { + "345f3d85cfeb456d8e302d63a6cf9438": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "37668698005b4c13a561e7bc3ca3818d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3a146402b7784c78a6df6bb61dfcaa46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2041,7 +2013,30 @@ "width": null } }, - "9a7b7b5c4aa8470db022c5fd5f7f5217": { + "4340971679c04328844d58d0f3db5f63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_afefcabecb3244f098765e9f8f2b38ce", + "placeholder": "​", + "style": "IPY_MODEL_73045b1bb48f4666a6e7652a51cc7938", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "66eaf3b501134447b36b9e1bbc71f764": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2057,7 +2052,25 @@ "description_width": "" } }, - "a8254c641447480aa7f722801a84cae4": { + "73045b1bb48f4666a6e7652a51cc7938": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "736c03db0bc94503b72e649f95847c0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2072,64 +2085,55 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_617558923b2244798dd8e64734279f0c", + "layout": "IPY_MODEL_331ba3fe0de8492abb1454dc664d44d8", "placeholder": "​", - "style": "IPY_MODEL_0b139128833c45f089e40c4755cc2721", + "style": "IPY_MODEL_016d6023fefc4422a008bb5081a8cb41", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "value": " 10000/? [00:00<00:00, 1026455.88it/s]" } }, - "acbe71dfaa064b86ac9d438d3f49c584": { + "75f8dda3bfd7411ab998335d777d0d77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ea2d8ca3aa264b30ab6829a95956260e", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_815bf26fdf864b97a1dcad97921e8ca0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2d90afb6224e48d5bbd2a1387ca9658d", + "IPY_MODEL_120dbf402c2e413e80f26076fd4182f8", + "IPY_MODEL_1f75e27885a84d0aa3e9f0392195004a" + ], + "layout": "IPY_MODEL_3a146402b7784c78a6df6bb61dfcaa46", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "ad2efaf794734426b265156be3d7a946": { + "831e08b227234d0295aa11cd11e50c69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_884f09022ec44bdc8c0f021616c3bac7", - "placeholder": "​", - "style": "IPY_MODEL_d8abcd65840740c1ab4448e80f8d6650", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1696313.19it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "bf526f5c8d204d9dabafe472f6d5a633": { + "8a61bc1d6f25492fab2693086b16af60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2182,43 +2186,31 @@ "width": null } }, - "cab24e4c26614d0496ef8c4fa57cb547": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d8abcd65840740c1ab4448e80f8d6650": { + "994bb101c48240bd91ac23c6d451faea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4340971679c04328844d58d0f3db5f63", + "IPY_MODEL_ed2821f3d3e94d1e9d296ee878800951", + "IPY_MODEL_736c03db0bc94503b72e649f95847c0c" + ], + "layout": "IPY_MODEL_2fb957039f8d43f48316d9a200cc8c15", + "tabbable": null, + "tooltip": null } }, - "e9893acd97ab48599094be49c014c0aa": { + "afefcabecb3244f098765e9f8f2b38ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2271,7 +2263,7 @@ "width": null } }, - "ea2d8ca3aa264b30ab6829a95956260e": { + "c44ab595018a49b38ee8fd4915c20b40": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2324,22 +2316,30 @@ "width": null } }, - "f809c3480764400ea9f63b20e3e395c1": { + "ed2821f3d3e94d1e9d296ee878800951": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1e531205987048c482bafb4fc142f9ba", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_831e08b227234d0295aa11cd11e50c69", + "tabbable": null, + "tooltip": null, + "value": 50.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index 839c45673..9ec229e44 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:06.847486Z", - "iopub.status.busy": "2024-07-30T16:37:06.846996Z", - "iopub.status.idle": "2024-07-30T16:37:08.300373Z", - "shell.execute_reply": "2024-07-30T16:37:08.299802Z" + "iopub.execute_input": "2024-08-02T23:22:41.243159Z", + "iopub.status.busy": "2024-08-02T23:22:41.242848Z", + "iopub.status.idle": "2024-08-02T23:22:42.677514Z", + "shell.execute_reply": "2024-08-02T23:22:42.676864Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.303031Z", - "iopub.status.busy": "2024-07-30T16:37:08.302535Z", - "iopub.status.idle": "2024-07-30T16:37:08.306381Z", - "shell.execute_reply": "2024-07-30T16:37:08.305889Z" + "iopub.execute_input": "2024-08-02T23:22:42.680254Z", + "iopub.status.busy": "2024-08-02T23:22:42.679911Z", + "iopub.status.idle": "2024-08-02T23:22:42.683720Z", + "shell.execute_reply": "2024-08-02T23:22:42.683171Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.308567Z", - "iopub.status.busy": "2024-07-30T16:37:08.308093Z", - "iopub.status.idle": "2024-07-30T16:37:08.564617Z", - "shell.execute_reply": "2024-07-30T16:37:08.564044Z" + "iopub.execute_input": "2024-08-02T23:22:42.685860Z", + "iopub.status.busy": "2024-08-02T23:22:42.685596Z", + "iopub.status.idle": "2024-08-02T23:22:42.951861Z", + "shell.execute_reply": "2024-08-02T23:22:42.951252Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.567009Z", - "iopub.status.busy": "2024-07-30T16:37:08.566570Z", - "iopub.status.idle": "2024-07-30T16:37:08.572786Z", - "shell.execute_reply": "2024-07-30T16:37:08.572249Z" + "iopub.execute_input": "2024-08-02T23:22:42.954216Z", + "iopub.status.busy": "2024-08-02T23:22:42.953791Z", + "iopub.status.idle": "2024-08-02T23:22:42.959699Z", + "shell.execute_reply": "2024-08-02T23:22:42.959165Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.575053Z", - "iopub.status.busy": "2024-07-30T16:37:08.574648Z", - "iopub.status.idle": "2024-07-30T16:37:08.581553Z", - "shell.execute_reply": "2024-07-30T16:37:08.580995Z" + "iopub.execute_input": "2024-08-02T23:22:42.961766Z", + "iopub.status.busy": "2024-08-02T23:22:42.961424Z", + "iopub.status.idle": "2024-08-02T23:22:42.968221Z", + "shell.execute_reply": "2024-08-02T23:22:42.967660Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.583694Z", - "iopub.status.busy": "2024-07-30T16:37:08.583295Z", - "iopub.status.idle": "2024-07-30T16:37:08.588214Z", - "shell.execute_reply": "2024-07-30T16:37:08.587641Z" + "iopub.execute_input": "2024-08-02T23:22:42.970573Z", + "iopub.status.busy": "2024-08-02T23:22:42.970111Z", + "iopub.status.idle": "2024-08-02T23:22:42.975154Z", + "shell.execute_reply": "2024-08-02T23:22:42.974573Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.590172Z", - "iopub.status.busy": "2024-07-30T16:37:08.589849Z", - "iopub.status.idle": "2024-07-30T16:37:08.595724Z", - "shell.execute_reply": "2024-07-30T16:37:08.595139Z" + "iopub.execute_input": "2024-08-02T23:22:42.977356Z", + "iopub.status.busy": "2024-08-02T23:22:42.976989Z", + "iopub.status.idle": "2024-08-02T23:22:42.982565Z", + "shell.execute_reply": "2024-08-02T23:22:42.982093Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.597670Z", - "iopub.status.busy": "2024-07-30T16:37:08.597361Z", - "iopub.status.idle": "2024-07-30T16:37:08.601523Z", - "shell.execute_reply": "2024-07-30T16:37:08.600966Z" + "iopub.execute_input": "2024-08-02T23:22:42.984641Z", + "iopub.status.busy": "2024-08-02T23:22:42.984213Z", + "iopub.status.idle": "2024-08-02T23:22:42.988345Z", + "shell.execute_reply": "2024-08-02T23:22:42.987921Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.603521Z", - "iopub.status.busy": "2024-07-30T16:37:08.603187Z", - "iopub.status.idle": "2024-07-30T16:37:08.669967Z", - "shell.execute_reply": "2024-07-30T16:37:08.669384Z" + "iopub.execute_input": "2024-08-02T23:22:42.990465Z", + "iopub.status.busy": "2024-08-02T23:22:42.990022Z", + "iopub.status.idle": "2024-08-02T23:22:43.055914Z", + "shell.execute_reply": "2024-08-02T23:22:43.055064Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.672642Z", - "iopub.status.busy": "2024-07-30T16:37:08.672054Z", - "iopub.status.idle": "2024-07-30T16:37:08.683309Z", - "shell.execute_reply": "2024-07-30T16:37:08.682790Z" + "iopub.execute_input": "2024-08-02T23:22:43.059448Z", + "iopub.status.busy": "2024-08-02T23:22:43.058515Z", + "iopub.status.idle": "2024-08-02T23:22:43.071379Z", + "shell.execute_reply": "2024-08-02T23:22:43.070858Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.685772Z", - "iopub.status.busy": "2024-07-30T16:37:08.685236Z", - "iopub.status.idle": "2024-07-30T16:37:08.705410Z", - "shell.execute_reply": "2024-07-30T16:37:08.704880Z" + "iopub.execute_input": "2024-08-02T23:22:43.075030Z", + "iopub.status.busy": "2024-08-02T23:22:43.074109Z", + "iopub.status.idle": "2024-08-02T23:22:43.095778Z", + "shell.execute_reply": "2024-08-02T23:22:43.095284Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.707757Z", - "iopub.status.busy": "2024-07-30T16:37:08.707363Z", - "iopub.status.idle": "2024-07-30T16:37:08.711693Z", - "shell.execute_reply": "2024-07-30T16:37:08.711182Z" + "iopub.execute_input": "2024-08-02T23:22:43.099248Z", + "iopub.status.busy": "2024-08-02T23:22:43.098329Z", + "iopub.status.idle": "2024-08-02T23:22:43.104218Z", + "shell.execute_reply": "2024-08-02T23:22:43.103727Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.714035Z", - "iopub.status.busy": "2024-07-30T16:37:08.713629Z", - "iopub.status.idle": "2024-07-30T16:37:08.718166Z", - "shell.execute_reply": "2024-07-30T16:37:08.717631Z" + "iopub.execute_input": "2024-08-02T23:22:43.107706Z", + "iopub.status.busy": "2024-08-02T23:22:43.106779Z", + "iopub.status.idle": "2024-08-02T23:22:43.112886Z", + "shell.execute_reply": "2024-08-02T23:22:43.112392Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.720507Z", - "iopub.status.busy": "2024-07-30T16:37:08.720111Z", - "iopub.status.idle": "2024-07-30T16:37:08.731439Z", - "shell.execute_reply": "2024-07-30T16:37:08.730910Z" + "iopub.execute_input": "2024-08-02T23:22:43.116202Z", + "iopub.status.busy": "2024-08-02T23:22:43.115450Z", + "iopub.status.idle": "2024-08-02T23:22:43.125506Z", + "shell.execute_reply": "2024-08-02T23:22:43.125084Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.733378Z", - "iopub.status.busy": "2024-07-30T16:37:08.733061Z", - "iopub.status.idle": "2024-07-30T16:37:08.737822Z", - "shell.execute_reply": "2024-07-30T16:37:08.737271Z" + "iopub.execute_input": "2024-08-02T23:22:43.127473Z", + "iopub.status.busy": "2024-08-02T23:22:43.127141Z", + "iopub.status.idle": "2024-08-02T23:22:43.131395Z", + "shell.execute_reply": "2024-08-02T23:22:43.130979Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.739993Z", - "iopub.status.busy": "2024-07-30T16:37:08.739678Z", - "iopub.status.idle": "2024-07-30T16:37:08.850454Z", - "shell.execute_reply": "2024-07-30T16:37:08.849916Z" + "iopub.execute_input": "2024-08-02T23:22:43.133376Z", + "iopub.status.busy": "2024-08-02T23:22:43.133027Z", + "iopub.status.idle": "2024-08-02T23:22:43.247301Z", + "shell.execute_reply": "2024-08-02T23:22:43.246697Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.852557Z", - "iopub.status.busy": "2024-07-30T16:37:08.852223Z", - "iopub.status.idle": "2024-07-30T16:37:08.858285Z", - "shell.execute_reply": "2024-07-30T16:37:08.857774Z" + "iopub.execute_input": "2024-08-02T23:22:43.249758Z", + "iopub.status.busy": "2024-08-02T23:22:43.249222Z", + "iopub.status.idle": "2024-08-02T23:22:43.255494Z", + "shell.execute_reply": "2024-08-02T23:22:43.255010Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.860639Z", - "iopub.status.busy": "2024-07-30T16:37:08.860116Z", - "iopub.status.idle": "2024-07-30T16:37:11.081523Z", - "shell.execute_reply": "2024-07-30T16:37:11.080894Z" + "iopub.execute_input": "2024-08-02T23:22:43.257796Z", + "iopub.status.busy": "2024-08-02T23:22:43.257451Z", + "iopub.status.idle": "2024-08-02T23:22:45.391725Z", + "shell.execute_reply": "2024-08-02T23:22:45.391106Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.085782Z", - "iopub.status.busy": "2024-07-30T16:37:11.084683Z", - "iopub.status.idle": "2024-07-30T16:37:11.100012Z", - "shell.execute_reply": "2024-07-30T16:37:11.099506Z" + "iopub.execute_input": "2024-08-02T23:22:45.394492Z", + "iopub.status.busy": "2024-08-02T23:22:45.394017Z", + "iopub.status.idle": "2024-08-02T23:22:45.407717Z", + "shell.execute_reply": "2024-08-02T23:22:45.407211Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.103570Z", - "iopub.status.busy": "2024-07-30T16:37:11.102644Z", - "iopub.status.idle": "2024-07-30T16:37:11.106644Z", - "shell.execute_reply": "2024-07-30T16:37:11.106149Z" + "iopub.execute_input": "2024-08-02T23:22:45.409965Z", + "iopub.status.busy": "2024-08-02T23:22:45.409683Z", + "iopub.status.idle": "2024-08-02T23:22:45.412502Z", + "shell.execute_reply": "2024-08-02T23:22:45.411936Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.110093Z", - "iopub.status.busy": "2024-07-30T16:37:11.109154Z", - "iopub.status.idle": "2024-07-30T16:37:11.114773Z", - "shell.execute_reply": "2024-07-30T16:37:11.114272Z" + "iopub.execute_input": "2024-08-02T23:22:45.414713Z", + "iopub.status.busy": "2024-08-02T23:22:45.414480Z", + "iopub.status.idle": "2024-08-02T23:22:45.419479Z", + "shell.execute_reply": "2024-08-02T23:22:45.418922Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.118266Z", - "iopub.status.busy": "2024-07-30T16:37:11.117324Z", - "iopub.status.idle": "2024-07-30T16:37:11.149228Z", - "shell.execute_reply": "2024-07-30T16:37:11.148699Z" + "iopub.execute_input": "2024-08-02T23:22:45.421657Z", + "iopub.status.busy": "2024-08-02T23:22:45.421424Z", + "iopub.status.idle": "2024-08-02T23:22:45.459617Z", + "shell.execute_reply": "2024-08-02T23:22:45.459124Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.152348Z", - "iopub.status.busy": "2024-07-30T16:37:11.151900Z", - "iopub.status.idle": "2024-07-30T16:37:11.662729Z", - "shell.execute_reply": "2024-07-30T16:37:11.662153Z" + "iopub.execute_input": "2024-08-02T23:22:45.461965Z", + "iopub.status.busy": "2024-08-02T23:22:45.461590Z", + "iopub.status.idle": "2024-08-02T23:22:46.004492Z", + "shell.execute_reply": "2024-08-02T23:22:46.003940Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.665547Z", - "iopub.status.busy": "2024-07-30T16:37:11.665125Z", - "iopub.status.idle": "2024-07-30T16:37:11.811588Z", - "shell.execute_reply": "2024-07-30T16:37:11.810893Z" + "iopub.execute_input": "2024-08-02T23:22:46.007832Z", + "iopub.status.busy": "2024-08-02T23:22:46.006922Z", + "iopub.status.idle": "2024-08-02T23:22:46.139183Z", + "shell.execute_reply": "2024-08-02T23:22:46.138499Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.814740Z", - "iopub.status.busy": "2024-07-30T16:37:11.814355Z", - "iopub.status.idle": "2024-07-30T16:37:11.821641Z", - "shell.execute_reply": "2024-07-30T16:37:11.821112Z" + "iopub.execute_input": "2024-08-02T23:22:46.142862Z", + "iopub.status.busy": "2024-08-02T23:22:46.141903Z", + "iopub.status.idle": "2024-08-02T23:22:46.150567Z", + "shell.execute_reply": "2024-08-02T23:22:46.150071Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.825192Z", - "iopub.status.busy": "2024-07-30T16:37:11.824261Z", - "iopub.status.idle": "2024-07-30T16:37:11.832276Z", - "shell.execute_reply": "2024-07-30T16:37:11.831780Z" + "iopub.execute_input": "2024-08-02T23:22:46.154019Z", + "iopub.status.busy": "2024-08-02T23:22:46.153094Z", + "iopub.status.idle": "2024-08-02T23:22:46.160946Z", + "shell.execute_reply": "2024-08-02T23:22:46.160456Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.835774Z", - "iopub.status.busy": "2024-07-30T16:37:11.834852Z", - "iopub.status.idle": "2024-07-30T16:37:11.842134Z", - "shell.execute_reply": "2024-07-30T16:37:11.841617Z" + "iopub.execute_input": "2024-08-02T23:22:46.164386Z", + "iopub.status.busy": "2024-08-02T23:22:46.163465Z", + "iopub.status.idle": "2024-08-02T23:22:46.170712Z", + "shell.execute_reply": "2024-08-02T23:22:46.170223Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.845557Z", - "iopub.status.busy": "2024-07-30T16:37:11.844646Z", - "iopub.status.idle": "2024-07-30T16:37:11.849988Z", - "shell.execute_reply": "2024-07-30T16:37:11.849571Z" + "iopub.execute_input": "2024-08-02T23:22:46.174165Z", + "iopub.status.busy": "2024-08-02T23:22:46.173238Z", + "iopub.status.idle": "2024-08-02T23:22:46.179291Z", + "shell.execute_reply": "2024-08-02T23:22:46.178762Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.852085Z", - "iopub.status.busy": "2024-07-30T16:37:11.851735Z", - "iopub.status.idle": "2024-07-30T16:37:11.856242Z", - "shell.execute_reply": "2024-07-30T16:37:11.855836Z" + "iopub.execute_input": "2024-08-02T23:22:46.181687Z", + "iopub.status.busy": "2024-08-02T23:22:46.181513Z", + "iopub.status.idle": "2024-08-02T23:22:46.186322Z", + "shell.execute_reply": "2024-08-02T23:22:46.185868Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.858461Z", - "iopub.status.busy": "2024-07-30T16:37:11.858025Z", - "iopub.status.idle": "2024-07-30T16:37:11.938221Z", - "shell.execute_reply": "2024-07-30T16:37:11.937709Z" + "iopub.execute_input": "2024-08-02T23:22:46.188278Z", + "iopub.status.busy": "2024-08-02T23:22:46.188100Z", + "iopub.status.idle": "2024-08-02T23:22:46.265593Z", + "shell.execute_reply": "2024-08-02T23:22:46.264934Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.940497Z", - "iopub.status.busy": "2024-07-30T16:37:11.940305Z", - "iopub.status.idle": "2024-07-30T16:37:11.950235Z", - "shell.execute_reply": "2024-07-30T16:37:11.949598Z" + "iopub.execute_input": "2024-08-02T23:22:46.268378Z", + "iopub.status.busy": "2024-08-02T23:22:46.267931Z", + "iopub.status.idle": "2024-08-02T23:22:46.277696Z", + "shell.execute_reply": "2024-08-02T23:22:46.277149Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.952707Z", - "iopub.status.busy": "2024-07-30T16:37:11.952413Z", - "iopub.status.idle": "2024-07-30T16:37:11.955525Z", - "shell.execute_reply": "2024-07-30T16:37:11.954939Z" + "iopub.execute_input": "2024-08-02T23:22:46.280290Z", + "iopub.status.busy": "2024-08-02T23:22:46.279817Z", + "iopub.status.idle": "2024-08-02T23:22:46.282856Z", + "shell.execute_reply": "2024-08-02T23:22:46.282369Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.957491Z", - "iopub.status.busy": "2024-07-30T16:37:11.957322Z", - "iopub.status.idle": "2024-07-30T16:37:11.968955Z", - "shell.execute_reply": "2024-07-30T16:37:11.968450Z" + "iopub.execute_input": "2024-08-02T23:22:46.285113Z", + "iopub.status.busy": "2024-08-02T23:22:46.284905Z", + "iopub.status.idle": "2024-08-02T23:22:46.295023Z", + "shell.execute_reply": "2024-08-02T23:22:46.294587Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.971083Z", - "iopub.status.busy": "2024-07-30T16:37:11.970902Z", - "iopub.status.idle": "2024-07-30T16:37:11.977806Z", - "shell.execute_reply": "2024-07-30T16:37:11.977330Z" + "iopub.execute_input": "2024-08-02T23:22:46.297195Z", + "iopub.status.busy": "2024-08-02T23:22:46.297014Z", + "iopub.status.idle": "2024-08-02T23:22:46.303290Z", + "shell.execute_reply": "2024-08-02T23:22:46.302794Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.979672Z", - "iopub.status.busy": "2024-07-30T16:37:11.979501Z", - "iopub.status.idle": "2024-07-30T16:37:11.982695Z", - "shell.execute_reply": "2024-07-30T16:37:11.982238Z" + "iopub.execute_input": "2024-08-02T23:22:46.305390Z", + "iopub.status.busy": "2024-08-02T23:22:46.305229Z", + "iopub.status.idle": "2024-08-02T23:22:46.308203Z", + "shell.execute_reply": "2024-08-02T23:22:46.307753Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.984563Z", - "iopub.status.busy": "2024-07-30T16:37:11.984385Z", - "iopub.status.idle": "2024-07-30T16:37:16.038898Z", - "shell.execute_reply": "2024-07-30T16:37:16.038334Z" + "iopub.execute_input": "2024-08-02T23:22:46.310173Z", + "iopub.status.busy": "2024-08-02T23:22:46.310013Z", + "iopub.status.idle": "2024-08-02T23:22:50.335807Z", + "shell.execute_reply": "2024-08-02T23:22:50.335295Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:16.041419Z", - "iopub.status.busy": "2024-07-30T16:37:16.041044Z", - "iopub.status.idle": "2024-07-30T16:37:16.044136Z", - "shell.execute_reply": "2024-07-30T16:37:16.043742Z" + "iopub.execute_input": "2024-08-02T23:22:50.339016Z", + "iopub.status.busy": "2024-08-02T23:22:50.338110Z", + "iopub.status.idle": "2024-08-02T23:22:50.342873Z", + "shell.execute_reply": "2024-08-02T23:22:50.342277Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:16.046136Z", - "iopub.status.busy": "2024-07-30T16:37:16.045835Z", - "iopub.status.idle": "2024-07-30T16:37:16.048832Z", - "shell.execute_reply": "2024-07-30T16:37:16.048207Z" + "iopub.execute_input": "2024-08-02T23:22:50.345292Z", + "iopub.status.busy": "2024-08-02T23:22:50.344858Z", + "iopub.status.idle": "2024-08-02T23:22:50.347667Z", + "shell.execute_reply": "2024-08-02T23:22:50.347208Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 63d074d15..dbe76443f 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:19.514665Z", - "iopub.status.busy": "2024-07-30T16:37:19.514193Z", - "iopub.status.idle": "2024-07-30T16:37:20.970203Z", - "shell.execute_reply": "2024-07-30T16:37:20.969599Z" + "iopub.execute_input": "2024-08-02T23:22:53.660990Z", + "iopub.status.busy": "2024-08-02T23:22:53.660815Z", + "iopub.status.idle": "2024-08-02T23:22:55.078462Z", + "shell.execute_reply": "2024-08-02T23:22:55.077902Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:20.972868Z", - "iopub.status.busy": "2024-07-30T16:37:20.972378Z", - "iopub.status.idle": "2024-07-30T16:37:20.975839Z", - "shell.execute_reply": "2024-07-30T16:37:20.975373Z" + "iopub.execute_input": "2024-08-02T23:22:55.080870Z", + "iopub.status.busy": "2024-08-02T23:22:55.080574Z", + "iopub.status.idle": "2024-08-02T23:22:55.084143Z", + "shell.execute_reply": "2024-08-02T23:22:55.083572Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:20.977983Z", - "iopub.status.busy": "2024-07-30T16:37:20.977647Z", - "iopub.status.idle": "2024-07-30T16:37:20.988855Z", - "shell.execute_reply": "2024-07-30T16:37:20.988422Z" + "iopub.execute_input": "2024-08-02T23:22:55.086422Z", + "iopub.status.busy": "2024-08-02T23:22:55.086068Z", + "iopub.status.idle": "2024-08-02T23:22:55.097345Z", + "shell.execute_reply": "2024-08-02T23:22:55.096867Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:20.990750Z", - "iopub.status.busy": "2024-07-30T16:37:20.990413Z", - "iopub.status.idle": "2024-07-30T16:37:21.236239Z", - "shell.execute_reply": "2024-07-30T16:37:21.235736Z" + "iopub.execute_input": "2024-08-02T23:22:55.099137Z", + "iopub.status.busy": "2024-08-02T23:22:55.098958Z", + "iopub.status.idle": "2024-08-02T23:22:55.335579Z", + "shell.execute_reply": "2024-08-02T23:22:55.334975Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:21.238707Z", - "iopub.status.busy": "2024-07-30T16:37:21.238345Z", - "iopub.status.idle": "2024-07-30T16:37:21.264617Z", - "shell.execute_reply": "2024-07-30T16:37:21.264131Z" + "iopub.execute_input": "2024-08-02T23:22:55.337901Z", + "iopub.status.busy": "2024-08-02T23:22:55.337546Z", + "iopub.status.idle": "2024-08-02T23:22:55.363253Z", + "shell.execute_reply": "2024-08-02T23:22:55.362813Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:21.266767Z", - "iopub.status.busy": "2024-07-30T16:37:21.266578Z", - "iopub.status.idle": "2024-07-30T16:37:23.611867Z", - "shell.execute_reply": "2024-07-30T16:37:23.611160Z" + "iopub.execute_input": "2024-08-02T23:22:55.365173Z", + "iopub.status.busy": "2024-08-02T23:22:55.364984Z", + "iopub.status.idle": "2024-08-02T23:22:57.475466Z", + "shell.execute_reply": "2024-08-02T23:22:57.474804Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:23.614599Z", - "iopub.status.busy": "2024-07-30T16:37:23.614210Z", - "iopub.status.idle": "2024-07-30T16:37:23.634028Z", - "shell.execute_reply": "2024-07-30T16:37:23.633465Z" + "iopub.execute_input": "2024-08-02T23:22:57.477895Z", + "iopub.status.busy": "2024-08-02T23:22:57.477563Z", + "iopub.status.idle": "2024-08-02T23:22:57.495457Z", + "shell.execute_reply": "2024-08-02T23:22:57.494985Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:23.636438Z", - "iopub.status.busy": "2024-07-30T16:37:23.635973Z", - "iopub.status.idle": "2024-07-30T16:37:25.305599Z", - "shell.execute_reply": "2024-07-30T16:37:25.304862Z" + "iopub.execute_input": "2024-08-02T23:22:57.497360Z", + "iopub.status.busy": "2024-08-02T23:22:57.497175Z", + "iopub.status.idle": "2024-08-02T23:22:59.083356Z", + "shell.execute_reply": "2024-08-02T23:22:59.082741Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.308828Z", - "iopub.status.busy": "2024-07-30T16:37:25.307885Z", - "iopub.status.idle": "2024-07-30T16:37:25.322222Z", - "shell.execute_reply": "2024-07-30T16:37:25.321727Z" + "iopub.execute_input": "2024-08-02T23:22:59.086101Z", + "iopub.status.busy": "2024-08-02T23:22:59.085430Z", + "iopub.status.idle": "2024-08-02T23:22:59.099257Z", + "shell.execute_reply": "2024-08-02T23:22:59.098675Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.324721Z", - "iopub.status.busy": "2024-07-30T16:37:25.324152Z", - "iopub.status.idle": "2024-07-30T16:37:25.419049Z", - "shell.execute_reply": "2024-07-30T16:37:25.418364Z" + "iopub.execute_input": "2024-08-02T23:22:59.101459Z", + "iopub.status.busy": "2024-08-02T23:22:59.101073Z", + "iopub.status.idle": "2024-08-02T23:22:59.182514Z", + "shell.execute_reply": "2024-08-02T23:22:59.181863Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.421430Z", - "iopub.status.busy": "2024-07-30T16:37:25.421173Z", - "iopub.status.idle": "2024-07-30T16:37:25.644270Z", - "shell.execute_reply": "2024-07-30T16:37:25.643645Z" + "iopub.execute_input": "2024-08-02T23:22:59.185181Z", + "iopub.status.busy": "2024-08-02T23:22:59.184699Z", + "iopub.status.idle": "2024-08-02T23:22:59.399591Z", + "shell.execute_reply": "2024-08-02T23:22:59.399127Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.646795Z", - "iopub.status.busy": "2024-07-30T16:37:25.646428Z", - "iopub.status.idle": "2024-07-30T16:37:25.665764Z", - "shell.execute_reply": "2024-07-30T16:37:25.665270Z" + "iopub.execute_input": "2024-08-02T23:22:59.401855Z", + "iopub.status.busy": "2024-08-02T23:22:59.401500Z", + "iopub.status.idle": "2024-08-02T23:22:59.418383Z", + "shell.execute_reply": "2024-08-02T23:22:59.417944Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.667885Z", - "iopub.status.busy": "2024-07-30T16:37:25.667692Z", - "iopub.status.idle": "2024-07-30T16:37:25.678270Z", - "shell.execute_reply": "2024-07-30T16:37:25.677775Z" + "iopub.execute_input": "2024-08-02T23:22:59.420363Z", + "iopub.status.busy": "2024-08-02T23:22:59.420024Z", + "iopub.status.idle": "2024-08-02T23:22:59.429357Z", + "shell.execute_reply": "2024-08-02T23:22:59.428784Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.680557Z", - "iopub.status.busy": "2024-07-30T16:37:25.680215Z", - "iopub.status.idle": "2024-07-30T16:37:25.783566Z", - "shell.execute_reply": "2024-07-30T16:37:25.782891Z" + "iopub.execute_input": "2024-08-02T23:22:59.431554Z", + "iopub.status.busy": "2024-08-02T23:22:59.431121Z", + "iopub.status.idle": "2024-08-02T23:22:59.523557Z", + "shell.execute_reply": "2024-08-02T23:22:59.522973Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.786394Z", - "iopub.status.busy": "2024-07-30T16:37:25.785963Z", - "iopub.status.idle": "2024-07-30T16:37:25.944890Z", - "shell.execute_reply": "2024-07-30T16:37:25.944224Z" + "iopub.execute_input": "2024-08-02T23:22:59.525876Z", + "iopub.status.busy": "2024-08-02T23:22:59.525646Z", + "iopub.status.idle": "2024-08-02T23:22:59.668775Z", + "shell.execute_reply": "2024-08-02T23:22:59.668197Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.947223Z", - "iopub.status.busy": "2024-07-30T16:37:25.947014Z", - "iopub.status.idle": "2024-07-30T16:37:25.951228Z", - "shell.execute_reply": "2024-07-30T16:37:25.950663Z" + "iopub.execute_input": "2024-08-02T23:22:59.671509Z", + "iopub.status.busy": "2024-08-02T23:22:59.671116Z", + "iopub.status.idle": "2024-08-02T23:22:59.675170Z", + "shell.execute_reply": "2024-08-02T23:22:59.674673Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.953418Z", - "iopub.status.busy": "2024-07-30T16:37:25.953075Z", - "iopub.status.idle": "2024-07-30T16:37:25.957102Z", - "shell.execute_reply": "2024-07-30T16:37:25.956520Z" + "iopub.execute_input": "2024-08-02T23:22:59.677097Z", + "iopub.status.busy": "2024-08-02T23:22:59.676885Z", + "iopub.status.idle": "2024-08-02T23:22:59.680782Z", + "shell.execute_reply": "2024-08-02T23:22:59.680214Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.959055Z", - "iopub.status.busy": "2024-07-30T16:37:25.958872Z", - "iopub.status.idle": "2024-07-30T16:37:25.996394Z", - "shell.execute_reply": "2024-07-30T16:37:25.995898Z" + "iopub.execute_input": "2024-08-02T23:22:59.682941Z", + "iopub.status.busy": "2024-08-02T23:22:59.682612Z", + "iopub.status.idle": "2024-08-02T23:22:59.719665Z", + "shell.execute_reply": "2024-08-02T23:22:59.719195Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.998305Z", - "iopub.status.busy": "2024-07-30T16:37:25.998128Z", - "iopub.status.idle": "2024-07-30T16:37:26.039427Z", - "shell.execute_reply": "2024-07-30T16:37:26.038868Z" + "iopub.execute_input": "2024-08-02T23:22:59.721625Z", + "iopub.status.busy": "2024-08-02T23:22:59.721448Z", + "iopub.status.idle": "2024-08-02T23:22:59.762453Z", + "shell.execute_reply": "2024-08-02T23:22:59.761973Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:26.041607Z", - "iopub.status.busy": "2024-07-30T16:37:26.041417Z", - "iopub.status.idle": "2024-07-30T16:37:26.162225Z", - "shell.execute_reply": "2024-07-30T16:37:26.161548Z" + "iopub.execute_input": "2024-08-02T23:22:59.764348Z", + "iopub.status.busy": "2024-08-02T23:22:59.764176Z", + "iopub.status.idle": "2024-08-02T23:22:59.883238Z", + "shell.execute_reply": "2024-08-02T23:22:59.882497Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:26.165084Z", - "iopub.status.busy": "2024-07-30T16:37:26.164618Z", - "iopub.status.idle": "2024-07-30T16:37:26.285845Z", - "shell.execute_reply": "2024-07-30T16:37:26.285184Z" + "iopub.execute_input": "2024-08-02T23:22:59.885892Z", + "iopub.status.busy": "2024-08-02T23:22:59.885655Z", + "iopub.status.idle": "2024-08-02T23:22:59.991995Z", + "shell.execute_reply": "2024-08-02T23:22:59.991397Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:26.288464Z", - "iopub.status.busy": "2024-07-30T16:37:26.288093Z", - "iopub.status.idle": "2024-07-30T16:37:26.502063Z", - "shell.execute_reply": "2024-07-30T16:37:26.501416Z" + "iopub.execute_input": "2024-08-02T23:22:59.994517Z", + "iopub.status.busy": "2024-08-02T23:22:59.994166Z", + "iopub.status.idle": "2024-08-02T23:23:00.206479Z", + "shell.execute_reply": "2024-08-02T23:23:00.205902Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:26.504441Z", - "iopub.status.busy": "2024-07-30T16:37:26.503981Z", - "iopub.status.idle": "2024-07-30T16:37:26.744760Z", - "shell.execute_reply": "2024-07-30T16:37:26.744174Z" + "iopub.execute_input": "2024-08-02T23:23:00.208774Z", + "iopub.status.busy": "2024-08-02T23:23:00.208393Z", + "iopub.status.idle": "2024-08-02T23:23:00.425932Z", + "shell.execute_reply": "2024-08-02T23:23:00.425360Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:26.747291Z", - "iopub.status.busy": "2024-07-30T16:37:26.746891Z", - "iopub.status.idle": "2024-07-30T16:37:26.752870Z", - "shell.execute_reply": "2024-07-30T16:37:26.752415Z" + "iopub.execute_input": "2024-08-02T23:23:00.428347Z", + "iopub.status.busy": "2024-08-02T23:23:00.427962Z", + "iopub.status.idle": "2024-08-02T23:23:00.434288Z", + "shell.execute_reply": "2024-08-02T23:23:00.433838Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:26.754943Z", - "iopub.status.busy": "2024-07-30T16:37:26.754598Z", - "iopub.status.idle": "2024-07-30T16:37:26.972039Z", - "shell.execute_reply": "2024-07-30T16:37:26.971400Z" + "iopub.execute_input": "2024-08-02T23:23:00.436322Z", + "iopub.status.busy": "2024-08-02T23:23:00.435908Z", + "iopub.status.idle": "2024-08-02T23:23:00.651939Z", + "shell.execute_reply": "2024-08-02T23:23:00.651371Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:26.974261Z", - "iopub.status.busy": "2024-07-30T16:37:26.974064Z", - "iopub.status.idle": "2024-07-30T16:37:28.066231Z", - "shell.execute_reply": "2024-07-30T16:37:28.065649Z" + "iopub.execute_input": "2024-08-02T23:23:00.654276Z", + "iopub.status.busy": "2024-08-02T23:23:00.653821Z", + "iopub.status.idle": "2024-08-02T23:23:01.699320Z", + "shell.execute_reply": "2024-08-02T23:23:01.698766Z" }, "id": "wL3ngCnuLEWd" }, @@ -2381,6 +2381,21 @@ "source": [ "While ensembling different models' label quality scores (`label_quality_scores_best`) will often be superior to getting label quality scores from a single ensemble predictor (`label_quality_scores_better`), both approaches produce significantly better label quality scores than just using the predictions from a single model." ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] } ], "metadata": { diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index fd2c70404..f2e838faf 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:32.718320Z", - "iopub.status.busy": "2024-07-30T16:37:32.718143Z", - "iopub.status.idle": "2024-07-30T16:37:34.160547Z", - "shell.execute_reply": "2024-07-30T16:37:34.159900Z" + "iopub.execute_input": "2024-08-02T23:23:05.094466Z", + "iopub.status.busy": "2024-08-02T23:23:05.094291Z", + "iopub.status.idle": "2024-08-02T23:23:06.519188Z", + "shell.execute_reply": "2024-08-02T23:23:06.518592Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.163333Z", - "iopub.status.busy": "2024-07-30T16:37:34.163023Z", - "iopub.status.idle": "2024-07-30T16:37:34.166128Z", - "shell.execute_reply": "2024-07-30T16:37:34.165659Z" + "iopub.execute_input": "2024-08-02T23:23:06.521921Z", + "iopub.status.busy": "2024-08-02T23:23:06.521450Z", + "iopub.status.idle": "2024-08-02T23:23:06.524559Z", + "shell.execute_reply": "2024-08-02T23:23:06.524087Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.168192Z", - "iopub.status.busy": "2024-07-30T16:37:34.168013Z", - "iopub.status.idle": "2024-07-30T16:37:34.175994Z", - "shell.execute_reply": "2024-07-30T16:37:34.175519Z" + "iopub.execute_input": "2024-08-02T23:23:06.526668Z", + "iopub.status.busy": "2024-08-02T23:23:06.526334Z", + "iopub.status.idle": "2024-08-02T23:23:06.534155Z", + "shell.execute_reply": "2024-08-02T23:23:06.533679Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.178122Z", - "iopub.status.busy": "2024-07-30T16:37:34.177688Z", - "iopub.status.idle": "2024-07-30T16:37:34.225806Z", - "shell.execute_reply": "2024-07-30T16:37:34.225161Z" + "iopub.execute_input": "2024-08-02T23:23:06.536079Z", + "iopub.status.busy": "2024-08-02T23:23:06.535779Z", + "iopub.status.idle": "2024-08-02T23:23:06.582288Z", + "shell.execute_reply": "2024-08-02T23:23:06.581795Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.228546Z", - "iopub.status.busy": "2024-07-30T16:37:34.228175Z", - "iopub.status.idle": "2024-07-30T16:37:34.246251Z", - "shell.execute_reply": "2024-07-30T16:37:34.245703Z" + "iopub.execute_input": "2024-08-02T23:23:06.584696Z", + "iopub.status.busy": "2024-08-02T23:23:06.584134Z", + "iopub.status.idle": "2024-08-02T23:23:06.601445Z", + "shell.execute_reply": "2024-08-02T23:23:06.600877Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.248429Z", - "iopub.status.busy": "2024-07-30T16:37:34.248067Z", - "iopub.status.idle": "2024-07-30T16:37:34.251958Z", - "shell.execute_reply": "2024-07-30T16:37:34.251523Z" + "iopub.execute_input": "2024-08-02T23:23:06.603369Z", + "iopub.status.busy": "2024-08-02T23:23:06.603188Z", + "iopub.status.idle": "2024-08-02T23:23:06.607249Z", + "shell.execute_reply": "2024-08-02T23:23:06.606678Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.254230Z", - "iopub.status.busy": "2024-07-30T16:37:34.253755Z", - "iopub.status.idle": "2024-07-30T16:37:34.270486Z", - "shell.execute_reply": "2024-07-30T16:37:34.269879Z" + "iopub.execute_input": "2024-08-02T23:23:06.609439Z", + "iopub.status.busy": "2024-08-02T23:23:06.608988Z", + "iopub.status.idle": "2024-08-02T23:23:06.625441Z", + "shell.execute_reply": "2024-08-02T23:23:06.624820Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.272682Z", - "iopub.status.busy": "2024-07-30T16:37:34.272503Z", - "iopub.status.idle": "2024-07-30T16:37:34.299362Z", - "shell.execute_reply": "2024-07-30T16:37:34.298706Z" + "iopub.execute_input": "2024-08-02T23:23:06.627733Z", + "iopub.status.busy": "2024-08-02T23:23:06.627381Z", + "iopub.status.idle": "2024-08-02T23:23:06.653432Z", + "shell.execute_reply": "2024-08-02T23:23:06.652979Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.302325Z", - "iopub.status.busy": "2024-07-30T16:37:34.301951Z", - "iopub.status.idle": "2024-07-30T16:37:36.536542Z", - "shell.execute_reply": "2024-07-30T16:37:36.535928Z" + "iopub.execute_input": "2024-08-02T23:23:06.655520Z", + "iopub.status.busy": "2024-08-02T23:23:06.655195Z", + "iopub.status.idle": "2024-08-02T23:23:08.797131Z", + "shell.execute_reply": "2024-08-02T23:23:08.796420Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.540387Z", - "iopub.status.busy": "2024-07-30T16:37:36.538845Z", - "iopub.status.idle": "2024-07-30T16:37:36.547424Z", - "shell.execute_reply": "2024-07-30T16:37:36.546819Z" + "iopub.execute_input": "2024-08-02T23:23:08.800999Z", + "iopub.status.busy": "2024-08-02T23:23:08.799464Z", + "iopub.status.idle": "2024-08-02T23:23:08.807486Z", + "shell.execute_reply": "2024-08-02T23:23:08.807012Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.549619Z", - "iopub.status.busy": "2024-07-30T16:37:36.549270Z", - "iopub.status.idle": "2024-07-30T16:37:36.562222Z", - "shell.execute_reply": "2024-07-30T16:37:36.561697Z" + "iopub.execute_input": "2024-08-02T23:23:08.809557Z", + "iopub.status.busy": "2024-08-02T23:23:08.809274Z", + "iopub.status.idle": "2024-08-02T23:23:08.821755Z", + "shell.execute_reply": "2024-08-02T23:23:08.821200Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.564431Z", - "iopub.status.busy": "2024-07-30T16:37:36.564072Z", - "iopub.status.idle": "2024-07-30T16:37:36.570665Z", - "shell.execute_reply": "2024-07-30T16:37:36.570168Z" + "iopub.execute_input": "2024-08-02T23:23:08.823744Z", + "iopub.status.busy": "2024-08-02T23:23:08.823567Z", + "iopub.status.idle": "2024-08-02T23:23:08.829911Z", + "shell.execute_reply": "2024-08-02T23:23:08.829473Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.572817Z", - "iopub.status.busy": "2024-07-30T16:37:36.572406Z", - "iopub.status.idle": "2024-07-30T16:37:36.575372Z", - "shell.execute_reply": "2024-07-30T16:37:36.574796Z" + "iopub.execute_input": "2024-08-02T23:23:08.831814Z", + "iopub.status.busy": "2024-08-02T23:23:08.831639Z", + "iopub.status.idle": "2024-08-02T23:23:08.834249Z", + "shell.execute_reply": "2024-08-02T23:23:08.833780Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.577427Z", - "iopub.status.busy": "2024-07-30T16:37:36.577104Z", - "iopub.status.idle": "2024-07-30T16:37:36.580747Z", - "shell.execute_reply": "2024-07-30T16:37:36.580200Z" + "iopub.execute_input": "2024-08-02T23:23:08.836353Z", + "iopub.status.busy": "2024-08-02T23:23:08.836022Z", + "iopub.status.idle": "2024-08-02T23:23:08.839391Z", + "shell.execute_reply": "2024-08-02T23:23:08.838879Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.582932Z", - "iopub.status.busy": "2024-07-30T16:37:36.582604Z", - "iopub.status.idle": "2024-07-30T16:37:36.585678Z", - "shell.execute_reply": "2024-07-30T16:37:36.585251Z" + "iopub.execute_input": "2024-08-02T23:23:08.841450Z", + "iopub.status.busy": "2024-08-02T23:23:08.841177Z", + "iopub.status.idle": "2024-08-02T23:23:08.843918Z", + "shell.execute_reply": "2024-08-02T23:23:08.843357Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.587663Z", - "iopub.status.busy": "2024-07-30T16:37:36.587336Z", - "iopub.status.idle": "2024-07-30T16:37:36.591506Z", - "shell.execute_reply": "2024-07-30T16:37:36.590945Z" + "iopub.execute_input": "2024-08-02T23:23:08.845923Z", + "iopub.status.busy": "2024-08-02T23:23:08.845589Z", + "iopub.status.idle": "2024-08-02T23:23:08.849887Z", + "shell.execute_reply": "2024-08-02T23:23:08.849429Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.593587Z", - "iopub.status.busy": "2024-07-30T16:37:36.593411Z", - "iopub.status.idle": "2024-07-30T16:37:36.622081Z", - "shell.execute_reply": "2024-07-30T16:37:36.621614Z" + "iopub.execute_input": "2024-08-02T23:23:08.852036Z", + "iopub.status.busy": "2024-08-02T23:23:08.851589Z", + "iopub.status.idle": "2024-08-02T23:23:08.880616Z", + "shell.execute_reply": "2024-08-02T23:23:08.879983Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.624325Z", - "iopub.status.busy": "2024-07-30T16:37:36.623993Z", - "iopub.status.idle": "2024-07-30T16:37:36.628891Z", - "shell.execute_reply": "2024-07-30T16:37:36.628307Z" + "iopub.execute_input": "2024-08-02T23:23:08.883256Z", + "iopub.status.busy": "2024-08-02T23:23:08.882881Z", + "iopub.status.idle": "2024-08-02T23:23:08.887623Z", + "shell.execute_reply": "2024-08-02T23:23:08.887175Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 85921d220..607a1ea32 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:39.759530Z", - "iopub.status.busy": "2024-07-30T16:37:39.759170Z", - "iopub.status.idle": "2024-07-30T16:37:41.225938Z", - "shell.execute_reply": "2024-07-30T16:37:41.225361Z" + "iopub.execute_input": "2024-08-02T23:23:11.947982Z", + "iopub.status.busy": "2024-08-02T23:23:11.947507Z", + "iopub.status.idle": "2024-08-02T23:23:13.351095Z", + "shell.execute_reply": "2024-08-02T23:23:13.350543Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:41.228688Z", - "iopub.status.busy": "2024-07-30T16:37:41.228204Z", - "iopub.status.idle": "2024-07-30T16:37:41.249656Z", - "shell.execute_reply": "2024-07-30T16:37:41.249163Z" + "iopub.execute_input": "2024-08-02T23:23:13.353619Z", + "iopub.status.busy": "2024-08-02T23:23:13.353223Z", + "iopub.status.idle": "2024-08-02T23:23:13.373148Z", + "shell.execute_reply": "2024-08-02T23:23:13.372529Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:41.252375Z", - "iopub.status.busy": "2024-07-30T16:37:41.251838Z", - "iopub.status.idle": "2024-07-30T16:37:41.265158Z", - "shell.execute_reply": "2024-07-30T16:37:41.264726Z" + "iopub.execute_input": "2024-08-02T23:23:13.375624Z", + "iopub.status.busy": "2024-08-02T23:23:13.375180Z", + "iopub.status.idle": "2024-08-02T23:23:13.388068Z", + "shell.execute_reply": "2024-08-02T23:23:13.387585Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:41.267369Z", - "iopub.status.busy": "2024-07-30T16:37:41.266961Z", - "iopub.status.idle": "2024-07-30T16:37:43.948010Z", - "shell.execute_reply": "2024-07-30T16:37:43.947423Z" + "iopub.execute_input": "2024-08-02T23:23:13.390138Z", + "iopub.status.busy": "2024-08-02T23:23:13.389833Z", + "iopub.status.idle": "2024-08-02T23:23:16.059034Z", + "shell.execute_reply": "2024-08-02T23:23:16.058466Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:43.950421Z", - "iopub.status.busy": "2024-07-30T16:37:43.950035Z", - "iopub.status.idle": "2024-07-30T16:37:45.317858Z", - "shell.execute_reply": "2024-07-30T16:37:45.317234Z" + "iopub.execute_input": "2024-08-02T23:23:16.061219Z", + "iopub.status.busy": "2024-08-02T23:23:16.060988Z", + "iopub.status.idle": "2024-08-02T23:23:17.421704Z", + "shell.execute_reply": "2024-08-02T23:23:17.421064Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:45.320689Z", - "iopub.status.busy": "2024-07-30T16:37:45.320261Z", - "iopub.status.idle": "2024-07-30T16:37:45.325116Z", - "shell.execute_reply": "2024-07-30T16:37:45.324609Z" + "iopub.execute_input": "2024-08-02T23:23:17.424281Z", + "iopub.status.busy": "2024-08-02T23:23:17.423964Z", + "iopub.status.idle": "2024-08-02T23:23:17.428263Z", + "shell.execute_reply": "2024-08-02T23:23:17.427671Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:45.327504Z", - "iopub.status.busy": "2024-07-30T16:37:45.327099Z", - "iopub.status.idle": "2024-07-30T16:37:47.549771Z", - "shell.execute_reply": "2024-07-30T16:37:47.549091Z" + "iopub.execute_input": "2024-08-02T23:23:17.430557Z", + "iopub.status.busy": "2024-08-02T23:23:17.430085Z", + "iopub.status.idle": "2024-08-02T23:23:19.529227Z", + "shell.execute_reply": "2024-08-02T23:23:19.528576Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:47.552479Z", - "iopub.status.busy": "2024-07-30T16:37:47.551972Z", - "iopub.status.idle": "2024-07-30T16:37:47.560612Z", - "shell.execute_reply": "2024-07-30T16:37:47.560120Z" + "iopub.execute_input": "2024-08-02T23:23:19.531878Z", + "iopub.status.busy": "2024-08-02T23:23:19.531352Z", + "iopub.status.idle": "2024-08-02T23:23:19.539973Z", + "shell.execute_reply": "2024-08-02T23:23:19.539495Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:47.562648Z", - "iopub.status.busy": "2024-07-30T16:37:47.562368Z", - "iopub.status.idle": "2024-07-30T16:37:50.183671Z", - "shell.execute_reply": "2024-07-30T16:37:50.183000Z" + "iopub.execute_input": "2024-08-02T23:23:19.541992Z", + "iopub.status.busy": "2024-08-02T23:23:19.541709Z", + "iopub.status.idle": "2024-08-02T23:23:22.157011Z", + "shell.execute_reply": "2024-08-02T23:23:22.156381Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:50.186114Z", - "iopub.status.busy": "2024-07-30T16:37:50.185699Z", - "iopub.status.idle": "2024-07-30T16:37:50.189636Z", - "shell.execute_reply": "2024-07-30T16:37:50.189140Z" + "iopub.execute_input": "2024-08-02T23:23:22.159325Z", + "iopub.status.busy": "2024-08-02T23:23:22.159129Z", + "iopub.status.idle": "2024-08-02T23:23:22.162534Z", + "shell.execute_reply": "2024-08-02T23:23:22.162022Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:50.191867Z", - "iopub.status.busy": "2024-07-30T16:37:50.191497Z", - "iopub.status.idle": "2024-07-30T16:37:50.195269Z", - "shell.execute_reply": "2024-07-30T16:37:50.194765Z" + "iopub.execute_input": "2024-08-02T23:23:22.164526Z", + "iopub.status.busy": "2024-08-02T23:23:22.164350Z", + "iopub.status.idle": "2024-08-02T23:23:22.167796Z", + "shell.execute_reply": "2024-08-02T23:23:22.167349Z" } }, "outputs": [], @@ -746,16 +746,33 @@ "To see cleanlab applied to a real image tagging dataset, check out our [example](https://github.com/cleanlab/examples) notebook [\"Find Label Errors in Multi-Label Classification Data (CelebA Image Tagging)\"](https://github.com/cleanlab/examples/blob/master/multilabel_classification/image_tagging.ipynb). That example also demonstrates how to use a state-of-the-art Pytorch neural network for multi-label classification with image data." ] }, + { + "cell_type": "markdown", + "id": "f1bd9f83", + "metadata": {}, + "source": [ + "\n", + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] + }, { "cell_type": "code", "execution_count": 12, "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:50.197502Z", - "iopub.status.busy": "2024-07-30T16:37:50.197113Z", - "iopub.status.idle": "2024-07-30T16:37:50.200387Z", - "shell.execute_reply": "2024-07-30T16:37:50.199867Z" + "iopub.execute_input": "2024-08-02T23:23:22.169928Z", + "iopub.status.busy": "2024-08-02T23:23:22.169595Z", + "iopub.status.idle": "2024-08-02T23:23:22.173262Z", + "shell.execute_reply": "2024-08-02T23:23:22.172813Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index b908d214b..82a016874 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:52.967876Z", - "iopub.status.busy": "2024-07-30T16:37:52.967697Z", - "iopub.status.idle": "2024-07-30T16:37:54.423334Z", - "shell.execute_reply": "2024-07-30T16:37:54.422716Z" + "iopub.execute_input": "2024-08-02T23:23:24.740098Z", + "iopub.status.busy": "2024-08-02T23:23:24.739916Z", + "iopub.status.idle": "2024-08-02T23:23:26.153388Z", + "shell.execute_reply": "2024-08-02T23:23:26.152727Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:54.426120Z", - "iopub.status.busy": "2024-07-30T16:37:54.425563Z", - "iopub.status.idle": "2024-07-30T16:37:55.812519Z", - "shell.execute_reply": "2024-07-30T16:37:55.811700Z" + "iopub.execute_input": "2024-08-02T23:23:26.155926Z", + "iopub.status.busy": "2024-08-02T23:23:26.155520Z", + "iopub.status.idle": "2024-08-02T23:23:27.265000Z", + "shell.execute_reply": "2024-08-02T23:23:27.264184Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:55.815457Z", - "iopub.status.busy": "2024-07-30T16:37:55.815048Z", - "iopub.status.idle": "2024-07-30T16:37:55.818533Z", - "shell.execute_reply": "2024-07-30T16:37:55.817973Z" + "iopub.execute_input": "2024-08-02T23:23:27.267778Z", + "iopub.status.busy": "2024-08-02T23:23:27.267566Z", + "iopub.status.idle": "2024-08-02T23:23:27.271124Z", + "shell.execute_reply": "2024-08-02T23:23:27.270533Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:55.820681Z", - "iopub.status.busy": "2024-07-30T16:37:55.820334Z", - "iopub.status.idle": "2024-07-30T16:37:55.827147Z", - "shell.execute_reply": "2024-07-30T16:37:55.826691Z" + "iopub.execute_input": "2024-08-02T23:23:27.273453Z", + "iopub.status.busy": "2024-08-02T23:23:27.272991Z", + "iopub.status.idle": "2024-08-02T23:23:27.280260Z", + "shell.execute_reply": "2024-08-02T23:23:27.279681Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:55.829268Z", - "iopub.status.busy": "2024-07-30T16:37:55.828920Z", - "iopub.status.idle": "2024-07-30T16:37:56.150888Z", - "shell.execute_reply": "2024-07-30T16:37:56.150240Z" + "iopub.execute_input": "2024-08-02T23:23:27.282555Z", + "iopub.status.busy": "2024-08-02T23:23:27.282222Z", + "iopub.status.idle": "2024-08-02T23:23:27.602378Z", + "shell.execute_reply": "2024-08-02T23:23:27.601767Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:56.154023Z", - "iopub.status.busy": "2024-07-30T16:37:56.153563Z", - "iopub.status.idle": "2024-07-30T16:37:56.159171Z", - "shell.execute_reply": "2024-07-30T16:37:56.158713Z" + "iopub.execute_input": "2024-08-02T23:23:27.605245Z", + "iopub.status.busy": "2024-08-02T23:23:27.605028Z", + "iopub.status.idle": "2024-08-02T23:23:27.610491Z", + "shell.execute_reply": "2024-08-02T23:23:27.610005Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:56.161294Z", - "iopub.status.busy": "2024-07-30T16:37:56.160941Z", - "iopub.status.idle": "2024-07-30T16:37:56.164954Z", - "shell.execute_reply": "2024-07-30T16:37:56.164403Z" + "iopub.execute_input": "2024-08-02T23:23:27.612710Z", + "iopub.status.busy": "2024-08-02T23:23:27.612291Z", + "iopub.status.idle": "2024-08-02T23:23:27.616428Z", + "shell.execute_reply": "2024-08-02T23:23:27.615974Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:56.166946Z", - "iopub.status.busy": "2024-07-30T16:37:56.166762Z", - "iopub.status.idle": "2024-07-30T16:37:57.061837Z", - "shell.execute_reply": "2024-07-30T16:37:57.061214Z" + "iopub.execute_input": "2024-08-02T23:23:27.618678Z", + "iopub.status.busy": "2024-08-02T23:23:27.618223Z", + "iopub.status.idle": "2024-08-02T23:23:28.510375Z", + "shell.execute_reply": "2024-08-02T23:23:28.509695Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:57.064231Z", - "iopub.status.busy": "2024-07-30T16:37:57.064020Z", - "iopub.status.idle": "2024-07-30T16:37:57.269680Z", - "shell.execute_reply": "2024-07-30T16:37:57.269071Z" + "iopub.execute_input": "2024-08-02T23:23:28.512934Z", + "iopub.status.busy": "2024-08-02T23:23:28.512566Z", + "iopub.status.idle": "2024-08-02T23:23:28.729976Z", + "shell.execute_reply": "2024-08-02T23:23:28.729360Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:57.271779Z", - "iopub.status.busy": "2024-07-30T16:37:57.271589Z", - "iopub.status.idle": "2024-07-30T16:37:57.276069Z", - "shell.execute_reply": "2024-07-30T16:37:57.275620Z" + "iopub.execute_input": "2024-08-02T23:23:28.732357Z", + "iopub.status.busy": "2024-08-02T23:23:28.731916Z", + "iopub.status.idle": "2024-08-02T23:23:28.736334Z", + "shell.execute_reply": "2024-08-02T23:23:28.735894Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:57.277956Z", - "iopub.status.busy": "2024-07-30T16:37:57.277779Z", - "iopub.status.idle": "2024-07-30T16:37:57.741717Z", - "shell.execute_reply": "2024-07-30T16:37:57.741080Z" + "iopub.execute_input": "2024-08-02T23:23:28.738485Z", + "iopub.status.busy": "2024-08-02T23:23:28.738171Z", + "iopub.status.idle": "2024-08-02T23:23:29.208640Z", + "shell.execute_reply": "2024-08-02T23:23:29.207936Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:57.744943Z", - "iopub.status.busy": "2024-07-30T16:37:57.744706Z", - "iopub.status.idle": "2024-07-30T16:37:58.080727Z", - "shell.execute_reply": "2024-07-30T16:37:58.080133Z" + "iopub.execute_input": "2024-08-02T23:23:29.211755Z", + "iopub.status.busy": "2024-08-02T23:23:29.211376Z", + "iopub.status.idle": "2024-08-02T23:23:29.548019Z", + "shell.execute_reply": "2024-08-02T23:23:29.547410Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:58.083717Z", - "iopub.status.busy": "2024-07-30T16:37:58.083475Z", - "iopub.status.idle": "2024-07-30T16:37:58.448789Z", - "shell.execute_reply": "2024-07-30T16:37:58.448130Z" + "iopub.execute_input": "2024-08-02T23:23:29.550940Z", + "iopub.status.busy": "2024-08-02T23:23:29.550736Z", + "iopub.status.idle": "2024-08-02T23:23:29.920855Z", + "shell.execute_reply": "2024-08-02T23:23:29.920218Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:58.451979Z", - "iopub.status.busy": "2024-07-30T16:37:58.451737Z", - "iopub.status.idle": "2024-07-30T16:37:58.897902Z", - "shell.execute_reply": "2024-07-30T16:37:58.897266Z" + "iopub.execute_input": "2024-08-02T23:23:29.924419Z", + "iopub.status.busy": "2024-08-02T23:23:29.923997Z", + "iopub.status.idle": "2024-08-02T23:23:30.376104Z", + "shell.execute_reply": "2024-08-02T23:23:30.375480Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:58.902565Z", - "iopub.status.busy": "2024-07-30T16:37:58.902206Z", - "iopub.status.idle": "2024-07-30T16:37:59.331261Z", - "shell.execute_reply": "2024-07-30T16:37:59.330642Z" + "iopub.execute_input": "2024-08-02T23:23:30.380802Z", + "iopub.status.busy": "2024-08-02T23:23:30.380407Z", + "iopub.status.idle": "2024-08-02T23:23:30.837108Z", + "shell.execute_reply": "2024-08-02T23:23:30.836487Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:59.334413Z", - "iopub.status.busy": "2024-07-30T16:37:59.334051Z", - "iopub.status.idle": "2024-07-30T16:37:59.529024Z", - "shell.execute_reply": "2024-07-30T16:37:59.528352Z" + "iopub.execute_input": "2024-08-02T23:23:30.840640Z", + "iopub.status.busy": "2024-08-02T23:23:30.840263Z", + "iopub.status.idle": "2024-08-02T23:23:31.057636Z", + "shell.execute_reply": "2024-08-02T23:23:31.057057Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:59.531621Z", - "iopub.status.busy": "2024-07-30T16:37:59.531147Z", - "iopub.status.idle": "2024-07-30T16:37:59.713867Z", - "shell.execute_reply": "2024-07-30T16:37:59.713268Z" + "iopub.execute_input": "2024-08-02T23:23:31.059925Z", + "iopub.status.busy": "2024-08-02T23:23:31.059721Z", + "iopub.status.idle": "2024-08-02T23:23:31.259783Z", + "shell.execute_reply": "2024-08-02T23:23:31.259243Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:59.716604Z", - "iopub.status.busy": "2024-07-30T16:37:59.716372Z", - "iopub.status.idle": "2024-07-30T16:37:59.719701Z", - "shell.execute_reply": "2024-07-30T16:37:59.719240Z" + "iopub.execute_input": "2024-08-02T23:23:31.262327Z", + "iopub.status.busy": "2024-08-02T23:23:31.262133Z", + "iopub.status.idle": "2024-08-02T23:23:31.265004Z", + "shell.execute_reply": "2024-08-02T23:23:31.264548Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:59.721469Z", - "iopub.status.busy": "2024-07-30T16:37:59.721297Z", - "iopub.status.idle": "2024-07-30T16:38:00.653952Z", - "shell.execute_reply": "2024-07-30T16:38:00.653313Z" + "iopub.execute_input": "2024-08-02T23:23:31.267241Z", + "iopub.status.busy": "2024-08-02T23:23:31.266775Z", + "iopub.status.idle": "2024-08-02T23:23:32.193701Z", + "shell.execute_reply": "2024-08-02T23:23:32.193146Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:00.656659Z", - "iopub.status.busy": "2024-07-30T16:38:00.656200Z", - "iopub.status.idle": "2024-07-30T16:38:00.806657Z", - "shell.execute_reply": "2024-07-30T16:38:00.806013Z" + "iopub.execute_input": "2024-08-02T23:23:32.196208Z", + "iopub.status.busy": "2024-08-02T23:23:32.196016Z", + "iopub.status.idle": "2024-08-02T23:23:32.322609Z", + "shell.execute_reply": "2024-08-02T23:23:32.322075Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:00.809105Z", - "iopub.status.busy": "2024-07-30T16:38:00.808873Z", - "iopub.status.idle": "2024-07-30T16:38:01.017879Z", - "shell.execute_reply": "2024-07-30T16:38:01.017223Z" + "iopub.execute_input": "2024-08-02T23:23:32.324841Z", + "iopub.status.busy": "2024-08-02T23:23:32.324492Z", + "iopub.status.idle": "2024-08-02T23:23:32.514569Z", + "shell.execute_reply": "2024-08-02T23:23:32.514058Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:01.020087Z", - "iopub.status.busy": "2024-07-30T16:38:01.019752Z", - "iopub.status.idle": "2024-07-30T16:38:01.734744Z", - "shell.execute_reply": "2024-07-30T16:38:01.734246Z" + "iopub.execute_input": "2024-08-02T23:23:32.516894Z", + "iopub.status.busy": "2024-08-02T23:23:32.516525Z", + "iopub.status.idle": "2024-08-02T23:23:33.194488Z", + "shell.execute_reply": "2024-08-02T23:23:33.193856Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:01.737160Z", - "iopub.status.busy": "2024-07-30T16:38:01.736731Z", - "iopub.status.idle": "2024-07-30T16:38:01.740592Z", - "shell.execute_reply": "2024-07-30T16:38:01.740039Z" + "iopub.execute_input": "2024-08-02T23:23:33.196816Z", + "iopub.status.busy": "2024-08-02T23:23:33.196477Z", + "iopub.status.idle": "2024-08-02T23:23:33.200251Z", + "shell.execute_reply": "2024-08-02T23:23:33.199677Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 3df92007c..3ad8a9b33 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:03.978289Z", - "iopub.status.busy": "2024-07-30T16:38:03.977787Z", - "iopub.status.idle": "2024-07-30T16:38:07.296478Z", - "shell.execute_reply": "2024-07-30T16:38:07.295899Z" + "iopub.execute_input": "2024-08-02T23:23:35.415873Z", + "iopub.status.busy": "2024-08-02T23:23:35.415697Z", + "iopub.status.idle": "2024-08-02T23:23:38.626597Z", + "shell.execute_reply": "2024-08-02T23:23:38.626029Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:07.299136Z", - "iopub.status.busy": "2024-07-30T16:38:07.298701Z", - "iopub.status.idle": "2024-07-30T16:38:07.318355Z", - "shell.execute_reply": "2024-07-30T16:38:07.317750Z" + "iopub.execute_input": "2024-08-02T23:23:38.629407Z", + "iopub.status.busy": "2024-08-02T23:23:38.628808Z", + "iopub.status.idle": "2024-08-02T23:23:38.648318Z", + "shell.execute_reply": "2024-08-02T23:23:38.647845Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:07.320466Z", - "iopub.status.busy": "2024-07-30T16:38:07.320062Z", - "iopub.status.idle": "2024-07-30T16:38:07.324323Z", - "shell.execute_reply": "2024-07-30T16:38:07.323777Z" + "iopub.execute_input": "2024-08-02T23:23:38.650609Z", + "iopub.status.busy": "2024-08-02T23:23:38.650204Z", + "iopub.status.idle": "2024-08-02T23:23:38.654348Z", + "shell.execute_reply": "2024-08-02T23:23:38.653801Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:07.326455Z", - "iopub.status.busy": "2024-07-30T16:38:07.325959Z", - "iopub.status.idle": "2024-07-30T16:38:11.831429Z", - "shell.execute_reply": "2024-07-30T16:38:11.830839Z" + "iopub.execute_input": "2024-08-02T23:23:38.656499Z", + "iopub.status.busy": "2024-08-02T23:23:38.656188Z", + "iopub.status.idle": "2024-08-02T23:23:43.176479Z", + "shell.execute_reply": "2024-08-02T23:23:43.175945Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 917504/170498071 [00:00<00:20, 8226376.49it/s]" + " 1%| | 1703936/170498071 [00:00<00:10, 16570351.12it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 10846208/170498071 [00:00<00:02, 59307309.31it/s]" + " 8%|▊ | 13139968/170498071 [00:00<00:02, 73382685.55it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 22511616/170498071 [00:00<00:01, 84811001.30it/s]" + " 14%|█▎ | 23134208/170498071 [00:00<00:01, 85416938.17it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 34209792/170498071 [00:00<00:01, 97255735.33it/s]" + " 19%|█▉ | 33193984/170498071 [00:00<00:01, 91344444.59it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 45875200/170498071 [00:00<00:01, 104168464.41it/s]" + " 26%|██▌ | 44728320/170498071 [00:00<00:01, 99919094.88it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 57573376/170498071 [00:00<00:01, 108391005.55it/s]" + " 32%|███▏ | 54788096/170498071 [00:00<00:01, 100132338.36it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 69271552/170498071 [00:00<00:00, 111144409.19it/s]" + " 38%|███▊ | 64847872/170498071 [00:00<00:01, 100262039.06it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 80936960/170498071 [00:00<00:00, 112866681.19it/s]" + " 45%|████▍ | 76316672/170498071 [00:00<00:00, 104840140.37it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 92635136/170498071 [00:00<00:00, 114109378.79it/s]" + " 51%|█████ | 86835200/170498071 [00:00<00:00, 104704399.11it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 104300544/170498071 [00:01<00:00, 114843936.89it/s]" + " 58%|█████▊ | 98369536/170498071 [00:01<00:00, 107943288.17it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 115933184/170498071 [00:01<00:00, 115260750.98it/s]" + " 65%|██████▍ | 110100480/170498071 [00:01<00:00, 110768998.54it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 127631360/170498071 [00:01<00:00, 115738038.46it/s]" + " 71%|███████▏ | 121634816/170498071 [00:01<00:00, 112151957.27it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 139296768/170498071 [00:01<00:00, 115934009.59it/s]" + " 78%|███████▊ | 133169152/170498071 [00:01<00:00, 113008402.64it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 150994944/170498071 [00:01<00:00, 116207199.22it/s]" + " 85%|████████▍ | 144703488/170498071 [00:01<00:00, 113634335.19it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 162627584/170498071 [00:01<00:00, 116186659.71it/s]" + " 92%|█████████▏| 156172288/170498071 [00:01<00:00, 113937851.78it/s]" ] }, { @@ -372,7 +372,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 107805868.41it/s]" + " 98%|█████████▊| 167706624/170498071 [00:01<00:00, 114298938.25it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:01<00:00, 104612399.87it/s]" ] }, { @@ -490,10 +498,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:11.833918Z", - "iopub.status.busy": "2024-07-30T16:38:11.833462Z", - "iopub.status.idle": "2024-07-30T16:38:11.838434Z", - "shell.execute_reply": "2024-07-30T16:38:11.837866Z" + "iopub.execute_input": "2024-08-02T23:23:43.178843Z", + "iopub.status.busy": "2024-08-02T23:23:43.178435Z", + "iopub.status.idle": "2024-08-02T23:23:43.183358Z", + "shell.execute_reply": "2024-08-02T23:23:43.182774Z" }, "nbsphinx": "hidden" }, @@ -544,10 +552,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:11.840562Z", - "iopub.status.busy": "2024-07-30T16:38:11.840251Z", - "iopub.status.idle": "2024-07-30T16:38:12.371586Z", - "shell.execute_reply": "2024-07-30T16:38:12.371033Z" + "iopub.execute_input": "2024-08-02T23:23:43.185454Z", + "iopub.status.busy": "2024-08-02T23:23:43.185025Z", + "iopub.status.idle": "2024-08-02T23:23:43.734027Z", + "shell.execute_reply": "2024-08-02T23:23:43.733470Z" } }, "outputs": [ @@ -580,10 +588,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:12.373894Z", - "iopub.status.busy": "2024-07-30T16:38:12.373541Z", - "iopub.status.idle": "2024-07-30T16:38:12.887091Z", - "shell.execute_reply": "2024-07-30T16:38:12.886524Z" + "iopub.execute_input": "2024-08-02T23:23:43.736253Z", + "iopub.status.busy": "2024-08-02T23:23:43.735930Z", + "iopub.status.idle": "2024-08-02T23:23:44.250070Z", + "shell.execute_reply": "2024-08-02T23:23:44.249455Z" } }, "outputs": [ @@ -621,10 +629,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:12.889299Z", - "iopub.status.busy": "2024-07-30T16:38:12.888937Z", - "iopub.status.idle": "2024-07-30T16:38:12.892536Z", - "shell.execute_reply": "2024-07-30T16:38:12.892076Z" + "iopub.execute_input": "2024-08-02T23:23:44.252258Z", + "iopub.status.busy": "2024-08-02T23:23:44.252058Z", + "iopub.status.idle": "2024-08-02T23:23:44.255571Z", + "shell.execute_reply": "2024-08-02T23:23:44.255129Z" } }, "outputs": [], @@ -647,17 +655,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:12.894534Z", - "iopub.status.busy": "2024-07-30T16:38:12.894200Z", - "iopub.status.idle": "2024-07-30T16:38:25.488449Z", - "shell.execute_reply": "2024-07-30T16:38:25.487794Z" + "iopub.execute_input": "2024-08-02T23:23:44.257605Z", + "iopub.status.busy": "2024-08-02T23:23:44.257264Z", + "iopub.status.idle": "2024-08-02T23:23:56.709113Z", + "shell.execute_reply": "2024-08-02T23:23:56.708472Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "23a512869c5e4f05a2356b8f464b1bcc", + "model_id": "d7f8f03577d54c03b0ecc33be697a44d", "version_major": 2, "version_minor": 0 }, @@ -716,10 +724,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:25.490754Z", - "iopub.status.busy": "2024-07-30T16:38:25.490545Z", - "iopub.status.idle": "2024-07-30T16:38:27.681301Z", - "shell.execute_reply": "2024-07-30T16:38:27.680552Z" + "iopub.execute_input": "2024-08-02T23:23:56.711676Z", + "iopub.status.busy": "2024-08-02T23:23:56.711249Z", + "iopub.status.idle": "2024-08-02T23:23:58.847600Z", + "shell.execute_reply": "2024-08-02T23:23:58.846962Z" } }, "outputs": [ @@ -763,10 +771,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:27.684463Z", - "iopub.status.busy": "2024-07-30T16:38:27.683946Z", - "iopub.status.idle": "2024-07-30T16:38:27.951193Z", - "shell.execute_reply": "2024-07-30T16:38:27.950604Z" + "iopub.execute_input": "2024-08-02T23:23:58.850292Z", + "iopub.status.busy": "2024-08-02T23:23:58.849815Z", + "iopub.status.idle": "2024-08-02T23:23:59.089528Z", + "shell.execute_reply": "2024-08-02T23:23:59.088872Z" } }, "outputs": [ @@ -802,10 +810,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:27.953780Z", - "iopub.status.busy": "2024-07-30T16:38:27.953567Z", - "iopub.status.idle": "2024-07-30T16:38:28.631392Z", - "shell.execute_reply": "2024-07-30T16:38:28.630768Z" + "iopub.execute_input": "2024-08-02T23:23:59.092082Z", + "iopub.status.busy": "2024-08-02T23:23:59.091879Z", + "iopub.status.idle": "2024-08-02T23:23:59.733692Z", + "shell.execute_reply": "2024-08-02T23:23:59.733029Z" } }, "outputs": [ @@ -855,10 +863,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:28.634456Z", - "iopub.status.busy": "2024-07-30T16:38:28.633952Z", - "iopub.status.idle": "2024-07-30T16:38:28.975662Z", - "shell.execute_reply": "2024-07-30T16:38:28.975098Z" + "iopub.execute_input": "2024-08-02T23:23:59.736298Z", + "iopub.status.busy": "2024-08-02T23:23:59.736091Z", + "iopub.status.idle": "2024-08-02T23:24:00.029276Z", + "shell.execute_reply": "2024-08-02T23:24:00.028640Z" } }, "outputs": [ @@ -906,10 +914,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:28.978011Z", - "iopub.status.busy": "2024-07-30T16:38:28.977574Z", - "iopub.status.idle": "2024-07-30T16:38:29.207618Z", - "shell.execute_reply": "2024-07-30T16:38:29.206996Z" + "iopub.execute_input": "2024-08-02T23:24:00.031475Z", + "iopub.status.busy": "2024-08-02T23:24:00.031284Z", + "iopub.status.idle": "2024-08-02T23:24:00.284506Z", + "shell.execute_reply": "2024-08-02T23:24:00.283911Z" } }, "outputs": [ @@ -965,10 +973,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:29.209892Z", - "iopub.status.busy": "2024-07-30T16:38:29.209709Z", - "iopub.status.idle": "2024-07-30T16:38:29.298647Z", - "shell.execute_reply": "2024-07-30T16:38:29.297971Z" + "iopub.execute_input": "2024-08-02T23:24:00.287194Z", + "iopub.status.busy": "2024-08-02T23:24:00.286847Z", + "iopub.status.idle": "2024-08-02T23:24:00.366770Z", + "shell.execute_reply": "2024-08-02T23:24:00.366293Z" } }, "outputs": [], @@ -989,10 +997,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:29.301052Z", - "iopub.status.busy": "2024-07-30T16:38:29.300869Z", - "iopub.status.idle": "2024-07-30T16:38:39.931040Z", - "shell.execute_reply": "2024-07-30T16:38:39.930336Z" + "iopub.execute_input": "2024-08-02T23:24:00.369143Z", + "iopub.status.busy": "2024-08-02T23:24:00.368939Z", + "iopub.status.idle": "2024-08-02T23:24:10.565474Z", + "shell.execute_reply": "2024-08-02T23:24:10.564795Z" } }, "outputs": [ @@ -1029,10 +1037,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:39.933469Z", - "iopub.status.busy": "2024-07-30T16:38:39.933256Z", - "iopub.status.idle": "2024-07-30T16:38:42.292073Z", - "shell.execute_reply": "2024-07-30T16:38:42.291503Z" + "iopub.execute_input": "2024-08-02T23:24:10.568135Z", + "iopub.status.busy": "2024-08-02T23:24:10.567718Z", + "iopub.status.idle": "2024-08-02T23:24:12.819254Z", + "shell.execute_reply": "2024-08-02T23:24:12.818651Z" } }, "outputs": [ @@ -1063,10 +1071,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:42.295015Z", - "iopub.status.busy": "2024-07-30T16:38:42.294328Z", - "iopub.status.idle": "2024-07-30T16:38:42.501084Z", - "shell.execute_reply": "2024-07-30T16:38:42.500563Z" + "iopub.execute_input": "2024-08-02T23:24:12.822039Z", + "iopub.status.busy": "2024-08-02T23:24:12.821413Z", + "iopub.status.idle": "2024-08-02T23:24:13.027440Z", + "shell.execute_reply": "2024-08-02T23:24:13.026901Z" } }, "outputs": [], @@ -1080,10 +1088,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:42.503445Z", - "iopub.status.busy": "2024-07-30T16:38:42.503259Z", - "iopub.status.idle": "2024-07-30T16:38:42.506470Z", - "shell.execute_reply": "2024-07-30T16:38:42.506025Z" + "iopub.execute_input": "2024-08-02T23:24:13.029812Z", + "iopub.status.busy": "2024-08-02T23:24:13.029518Z", + "iopub.status.idle": "2024-08-02T23:24:13.032865Z", + "shell.execute_reply": "2024-08-02T23:24:13.032400Z" } }, "outputs": [], @@ -1099,16 +1107,32 @@ "Detecting outliers based on feature embeddings can be done for arbitrary unlabeled datasets, but requires a meaningful numerical representation of the data. Detecting outliers based on predicted probabilities applies mainly for labeled classification datasets, but can be done with any effective classifier. The effectiveness of the latter approach depends on: how much auxiliary information captured in the feature values is lost in the predicted probabilities (determined by the particular set of labels in the classification task), the accuracy of our classifier, and how properly its predictions reflect epistemic uncertainty. Read more about it [here](https://pub.towardsai.net/a-simple-adjustment-improves-out-of-distribution-detection-for-any-classifier-5e96bbb2d627)." ] }, + { + "cell_type": "markdown", + "id": "03a5c870", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] + }, { "cell_type": "code", "execution_count": 20, "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:42.508323Z", - "iopub.status.busy": "2024-07-30T16:38:42.508151Z", - "iopub.status.idle": "2024-07-30T16:38:42.517729Z", - "shell.execute_reply": "2024-07-30T16:38:42.517288Z" + "iopub.execute_input": "2024-08-02T23:24:13.034934Z", + "iopub.status.busy": "2024-08-02T23:24:13.034594Z", + "iopub.status.idle": "2024-08-02T23:24:13.043213Z", + "shell.execute_reply": "2024-08-02T23:24:13.042768Z" }, "nbsphinx": "hidden" }, @@ -1153,31 +1177,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "23a512869c5e4f05a2356b8f464b1bcc": { + "310b96bf6543469cabf0f55665ff25f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_58618ff0d8be415dbaa56326b7b1db8c", - "IPY_MODEL_633d743f49c44f93be1bfe7c09cb76e5", - "IPY_MODEL_313c673f5ae140548d908be43be34294" - ], - "layout": "IPY_MODEL_f1fa8803defc478f8f1a9688f96d5a79", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3094116b83c34a98b8ed5ce27da55168": { + "330e053db6fe416e9722e5a98ab8d4ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1230,7 +1248,7 @@ "width": null } }, - "313c673f5ae140548d908be43be34294": { + "3408c76adf1949bfa8f227a1dca82da4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1245,38 +1263,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_afe5f4fb71e54d6b97c4b44ecea40c54", + "layout": "IPY_MODEL_330e053db6fe416e9722e5a98ab8d4ab", "placeholder": "​", - "style": "IPY_MODEL_59856c986feb4d3abc586fed584de5c0", + "style": "IPY_MODEL_9a1cc697a447421590eefe450375da25", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 274MB/s]" + "value": "model.safetensors: 100%" } }, - "58618ff0d8be415dbaa56326b7b1db8c": { + "68e47a1386df476da98d7f630d7b8d6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3094116b83c34a98b8ed5ce27da55168", - "placeholder": "​", - "style": "IPY_MODEL_7105d5b497e34139b8cba14426fdd044", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "59856c986feb4d3abc586fed584de5c0": { + "9a1cc697a447421590eefe450375da25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1294,7 +1305,7 @@ "text_color": null } }, - "633d743f49c44f93be1bfe7c09cb76e5": { + "9e08204f4c2845e1821cce00ebace48b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1310,17 +1321,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6eb5b857715449aaa4e92a9a9560a833", + "layout": "IPY_MODEL_e30e1ae7872c46d180e55263ed029b6a", "max": 102469840.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_dae8ad4cd0df4444bf5ff766e8012dc4", + "style": "IPY_MODEL_68e47a1386df476da98d7f630d7b8d6c", "tabbable": null, "tooltip": null, "value": 102469840.0 } }, - "6eb5b857715449aaa4e92a9a9560a833": { + "a17403bdb20c4c13949ca9635c43e46e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b6fd529321ad458292f2208a4d6fc71d", + "placeholder": "​", + "style": "IPY_MODEL_310b96bf6543469cabf0f55665ff25f5", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 297MB/s]" + } + }, + "a828ae2c754b4b3ba7b44cc7fe06cf4f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1373,25 +1407,7 @@ "width": null } }, - "7105d5b497e34139b8cba14426fdd044": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "afe5f4fb71e54d6b97c4b44ecea40c54": { + "b6fd529321ad458292f2208a4d6fc71d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1444,23 +1460,31 @@ "width": null } }, - "dae8ad4cd0df4444bf5ff766e8012dc4": { + "d7f8f03577d54c03b0ecc33be697a44d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3408c76adf1949bfa8f227a1dca82da4", + "IPY_MODEL_9e08204f4c2845e1821cce00ebace48b", + "IPY_MODEL_a17403bdb20c4c13949ca9635c43e46e" + ], + "layout": "IPY_MODEL_a828ae2c754b4b3ba7b44cc7fe06cf4f", + "tabbable": null, + "tooltip": null } }, - "f1fa8803defc478f8f1a9688f96d5a79": { + "e30e1ae7872c46d180e55263ed029b6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 7c5c07d39..099430c03 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:46.925237Z", - "iopub.status.busy": "2024-07-30T16:38:46.925067Z", - "iopub.status.idle": "2024-07-30T16:38:48.345531Z", - "shell.execute_reply": "2024-07-30T16:38:48.344960Z" + "iopub.execute_input": "2024-08-02T23:24:17.404200Z", + "iopub.status.busy": "2024-08-02T23:24:17.404031Z", + "iopub.status.idle": "2024-08-02T23:24:18.819393Z", + "shell.execute_reply": "2024-08-02T23:24:18.818751Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.348157Z", - "iopub.status.busy": "2024-07-30T16:38:48.347674Z", - "iopub.status.idle": "2024-07-30T16:38:48.365919Z", - "shell.execute_reply": "2024-07-30T16:38:48.365467Z" + "iopub.execute_input": "2024-08-02T23:24:18.822083Z", + "iopub.status.busy": "2024-08-02T23:24:18.821615Z", + "iopub.status.idle": "2024-08-02T23:24:18.839962Z", + "shell.execute_reply": "2024-08-02T23:24:18.839405Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.368246Z", - "iopub.status.busy": "2024-07-30T16:38:48.367803Z", - "iopub.status.idle": "2024-07-30T16:38:48.370780Z", - "shell.execute_reply": "2024-07-30T16:38:48.370332Z" + "iopub.execute_input": "2024-08-02T23:24:18.842424Z", + "iopub.status.busy": "2024-08-02T23:24:18.842013Z", + "iopub.status.idle": "2024-08-02T23:24:18.844900Z", + "shell.execute_reply": "2024-08-02T23:24:18.844448Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.372766Z", - "iopub.status.busy": "2024-07-30T16:38:48.372450Z", - "iopub.status.idle": "2024-07-30T16:38:48.468454Z", - "shell.execute_reply": "2024-07-30T16:38:48.467839Z" + "iopub.execute_input": "2024-08-02T23:24:18.846982Z", + "iopub.status.busy": "2024-08-02T23:24:18.846651Z", + "iopub.status.idle": "2024-08-02T23:24:18.905648Z", + "shell.execute_reply": "2024-08-02T23:24:18.905180Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.471122Z", - "iopub.status.busy": "2024-07-30T16:38:48.470653Z", - "iopub.status.idle": "2024-07-30T16:38:48.475521Z", - "shell.execute_reply": "2024-07-30T16:38:48.475049Z" + "iopub.execute_input": "2024-08-02T23:24:18.907939Z", + "iopub.status.busy": "2024-08-02T23:24:18.907494Z", + "iopub.status.idle": "2024-08-02T23:24:18.911937Z", + "shell.execute_reply": "2024-08-02T23:24:18.911430Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.477468Z", - "iopub.status.busy": "2024-07-30T16:38:48.477131Z", - "iopub.status.idle": "2024-07-30T16:38:48.720327Z", - "shell.execute_reply": "2024-07-30T16:38:48.719696Z" + "iopub.execute_input": "2024-08-02T23:24:18.913935Z", + "iopub.status.busy": "2024-08-02T23:24:18.913612Z", + "iopub.status.idle": "2024-08-02T23:24:19.156090Z", + "shell.execute_reply": "2024-08-02T23:24:19.155477Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.722633Z", - "iopub.status.busy": "2024-07-30T16:38:48.722278Z", - "iopub.status.idle": "2024-07-30T16:38:48.726622Z", - "shell.execute_reply": "2024-07-30T16:38:48.726163Z" + "iopub.execute_input": "2024-08-02T23:24:19.158339Z", + "iopub.status.busy": "2024-08-02T23:24:19.158149Z", + "iopub.status.idle": "2024-08-02T23:24:19.162504Z", + "shell.execute_reply": "2024-08-02T23:24:19.162045Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.728701Z", - "iopub.status.busy": "2024-07-30T16:38:48.728352Z", - "iopub.status.idle": "2024-07-30T16:38:48.734485Z", - "shell.execute_reply": "2024-07-30T16:38:48.734046Z" + "iopub.execute_input": "2024-08-02T23:24:19.164445Z", + "iopub.status.busy": "2024-08-02T23:24:19.164256Z", + "iopub.status.idle": "2024-08-02T23:24:19.170243Z", + "shell.execute_reply": "2024-08-02T23:24:19.169792Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.736597Z", - "iopub.status.busy": "2024-07-30T16:38:48.736263Z", - "iopub.status.idle": "2024-07-30T16:38:48.738985Z", - "shell.execute_reply": "2024-07-30T16:38:48.738429Z" + "iopub.execute_input": "2024-08-02T23:24:19.172217Z", + "iopub.status.busy": "2024-08-02T23:24:19.172043Z", + "iopub.status.idle": "2024-08-02T23:24:19.174763Z", + "shell.execute_reply": "2024-08-02T23:24:19.174300Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.741068Z", - "iopub.status.busy": "2024-07-30T16:38:48.740746Z", - "iopub.status.idle": "2024-07-30T16:38:57.890643Z", - "shell.execute_reply": "2024-07-30T16:38:57.890064Z" + "iopub.execute_input": "2024-08-02T23:24:19.176599Z", + "iopub.status.busy": "2024-08-02T23:24:19.176431Z", + "iopub.status.idle": "2024-08-02T23:24:28.206119Z", + "shell.execute_reply": "2024-08-02T23:24:28.205469Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:57.893640Z", - "iopub.status.busy": "2024-07-30T16:38:57.893011Z", - "iopub.status.idle": "2024-07-30T16:38:57.900759Z", - "shell.execute_reply": "2024-07-30T16:38:57.900288Z" + "iopub.execute_input": "2024-08-02T23:24:28.209000Z", + "iopub.status.busy": "2024-08-02T23:24:28.208362Z", + "iopub.status.idle": "2024-08-02T23:24:28.215857Z", + "shell.execute_reply": "2024-08-02T23:24:28.215396Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:57.903196Z", - "iopub.status.busy": "2024-07-30T16:38:57.902725Z", - "iopub.status.idle": "2024-07-30T16:38:57.906622Z", - "shell.execute_reply": "2024-07-30T16:38:57.906179Z" + "iopub.execute_input": "2024-08-02T23:24:28.217833Z", + "iopub.status.busy": "2024-08-02T23:24:28.217557Z", + "iopub.status.idle": "2024-08-02T23:24:28.221146Z", + "shell.execute_reply": "2024-08-02T23:24:28.220682Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:57.908608Z", - "iopub.status.busy": "2024-07-30T16:38:57.908262Z", - "iopub.status.idle": "2024-07-30T16:38:57.911716Z", - "shell.execute_reply": "2024-07-30T16:38:57.911253Z" + "iopub.execute_input": "2024-08-02T23:24:28.223157Z", + "iopub.status.busy": "2024-08-02T23:24:28.222839Z", + "iopub.status.idle": "2024-08-02T23:24:28.226202Z", + "shell.execute_reply": "2024-08-02T23:24:28.225642Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:57.913595Z", - "iopub.status.busy": "2024-07-30T16:38:57.913317Z", - "iopub.status.idle": "2024-07-30T16:38:57.916287Z", - "shell.execute_reply": "2024-07-30T16:38:57.915835Z" + "iopub.execute_input": "2024-08-02T23:24:28.228136Z", + "iopub.status.busy": "2024-08-02T23:24:28.227911Z", + "iopub.status.idle": "2024-08-02T23:24:28.230792Z", + "shell.execute_reply": "2024-08-02T23:24:28.230325Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:57.918353Z", - "iopub.status.busy": "2024-07-30T16:38:57.918022Z", - "iopub.status.idle": "2024-07-30T16:38:57.925798Z", - "shell.execute_reply": "2024-07-30T16:38:57.925354Z" + "iopub.execute_input": "2024-08-02T23:24:28.232772Z", + "iopub.status.busy": "2024-08-02T23:24:28.232437Z", + "iopub.status.idle": "2024-08-02T23:24:28.240280Z", + "shell.execute_reply": "2024-08-02T23:24:28.239831Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:57.927921Z", - "iopub.status.busy": "2024-07-30T16:38:57.927572Z", - "iopub.status.idle": "2024-07-30T16:38:57.930349Z", - "shell.execute_reply": "2024-07-30T16:38:57.929874Z" + "iopub.execute_input": "2024-08-02T23:24:28.242339Z", + "iopub.status.busy": "2024-08-02T23:24:28.241943Z", + "iopub.status.idle": "2024-08-02T23:24:28.244706Z", + "shell.execute_reply": "2024-08-02T23:24:28.244158Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:57.932400Z", - "iopub.status.busy": "2024-07-30T16:38:57.932062Z", - "iopub.status.idle": "2024-07-30T16:38:58.059365Z", - "shell.execute_reply": "2024-07-30T16:38:58.058741Z" + "iopub.execute_input": "2024-08-02T23:24:28.246759Z", + "iopub.status.busy": "2024-08-02T23:24:28.246451Z", + "iopub.status.idle": "2024-08-02T23:24:28.374401Z", + "shell.execute_reply": "2024-08-02T23:24:28.373775Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:58.061937Z", - "iopub.status.busy": "2024-07-30T16:38:58.061368Z", - "iopub.status.idle": "2024-07-30T16:38:58.173574Z", - "shell.execute_reply": "2024-07-30T16:38:58.172969Z" + "iopub.execute_input": "2024-08-02T23:24:28.376853Z", + "iopub.status.busy": "2024-08-02T23:24:28.376504Z", + "iopub.status.idle": "2024-08-02T23:24:28.483607Z", + "shell.execute_reply": "2024-08-02T23:24:28.483029Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:58.176096Z", - "iopub.status.busy": "2024-07-30T16:38:58.175756Z", - "iopub.status.idle": "2024-07-30T16:38:58.686374Z", - "shell.execute_reply": "2024-07-30T16:38:58.685762Z" + "iopub.execute_input": "2024-08-02T23:24:28.486071Z", + "iopub.status.busy": "2024-08-02T23:24:28.485733Z", + "iopub.status.idle": "2024-08-02T23:24:28.990646Z", + "shell.execute_reply": "2024-08-02T23:24:28.990027Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:58.689154Z", - "iopub.status.busy": "2024-07-30T16:38:58.688791Z", - "iopub.status.idle": "2024-07-30T16:38:58.788057Z", - "shell.execute_reply": "2024-07-30T16:38:58.787414Z" + "iopub.execute_input": "2024-08-02T23:24:28.993111Z", + "iopub.status.busy": "2024-08-02T23:24:28.992883Z", + "iopub.status.idle": "2024-08-02T23:24:29.089656Z", + "shell.execute_reply": "2024-08-02T23:24:29.088990Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:58.790444Z", - "iopub.status.busy": "2024-07-30T16:38:58.790105Z", - "iopub.status.idle": "2024-07-30T16:38:58.799165Z", - "shell.execute_reply": "2024-07-30T16:38:58.798679Z" + "iopub.execute_input": "2024-08-02T23:24:29.093755Z", + "iopub.status.busy": "2024-08-02T23:24:29.093401Z", + "iopub.status.idle": "2024-08-02T23:24:29.103300Z", + "shell.execute_reply": "2024-08-02T23:24:29.102788Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:58.801513Z", - "iopub.status.busy": "2024-07-30T16:38:58.801103Z", - "iopub.status.idle": "2024-07-30T16:38:58.804084Z", - "shell.execute_reply": "2024-07-30T16:38:58.803524Z" + "iopub.execute_input": "2024-08-02T23:24:29.105807Z", + "iopub.status.busy": "2024-08-02T23:24:29.105420Z", + "iopub.status.idle": "2024-08-02T23:24:29.108643Z", + "shell.execute_reply": "2024-08-02T23:24:29.108081Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:58.806513Z", - "iopub.status.busy": "2024-07-30T16:38:58.805981Z", - "iopub.status.idle": "2024-07-30T16:39:04.543731Z", - "shell.execute_reply": "2024-07-30T16:39:04.543118Z" + "iopub.execute_input": "2024-08-02T23:24:29.110806Z", + "iopub.status.busy": "2024-08-02T23:24:29.110492Z", + "iopub.status.idle": "2024-08-02T23:24:34.719376Z", + "shell.execute_reply": "2024-08-02T23:24:34.718784Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:39:04.546340Z", - "iopub.status.busy": "2024-07-30T16:39:04.545828Z", - "iopub.status.idle": "2024-07-30T16:39:04.554540Z", - "shell.execute_reply": "2024-07-30T16:39:04.553952Z" + "iopub.execute_input": "2024-08-02T23:24:34.721958Z", + "iopub.status.busy": "2024-08-02T23:24:34.721544Z", + "iopub.status.idle": "2024-08-02T23:24:34.730054Z", + "shell.execute_reply": "2024-08-02T23:24:34.729479Z" } }, "outputs": [ @@ -1370,16 +1370,32 @@ "**Summary:** To detect many types of issues in your regression dataset, we recommend using `Datalab` with provided `features` plus the best regression model you know for your data. If your goal is to train a robust regression model with noisy data rather than detect data/label issues, then use `CleanLearning`. Alternatively, if you don't have a sklearn-compatible regression model or already have pre-computed predictions from the model you'd like to rely on, you can pass these predictions into `Datalab` directly to find issues based on them instead of providing a regression model." ] }, + { + "cell_type": "markdown", + "id": "8a7a5387", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] + }, { "cell_type": "code", "execution_count": 25, "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:39:04.556793Z", - "iopub.status.busy": "2024-07-30T16:39:04.556293Z", - "iopub.status.idle": "2024-07-30T16:39:04.620999Z", - "shell.execute_reply": "2024-07-30T16:39:04.620353Z" + "iopub.execute_input": "2024-08-02T23:24:34.732147Z", + "iopub.status.busy": "2024-08-02T23:24:34.731881Z", + "iopub.status.idle": "2024-08-02T23:24:34.800226Z", + "shell.execute_reply": "2024-08-02T23:24:34.799721Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index ddf315699..96da6f24e 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:39:08.949260Z", - "iopub.status.busy": "2024-07-30T16:39:08.949088Z", - "iopub.status.idle": "2024-07-30T16:39:10.916447Z", - "shell.execute_reply": "2024-07-30T16:39:10.915748Z" + "iopub.execute_input": "2024-08-02T23:24:38.145016Z", + "iopub.status.busy": "2024-08-02T23:24:38.144603Z", + "iopub.status.idle": "2024-08-02T23:24:40.117038Z", + "shell.execute_reply": "2024-08-02T23:24:40.116342Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:39:10.918962Z", - "iopub.status.busy": "2024-07-30T16:39:10.918773Z", - "iopub.status.idle": "2024-07-30T16:40:31.011988Z", - "shell.execute_reply": "2024-07-30T16:40:31.011219Z" + "iopub.execute_input": "2024-08-02T23:24:40.119515Z", + "iopub.status.busy": "2024-08-02T23:24:40.119338Z", + "iopub.status.idle": "2024-08-02T23:25:35.352783Z", + "shell.execute_reply": "2024-08-02T23:25:35.352105Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:40:31.014861Z", - "iopub.status.busy": "2024-07-30T16:40:31.014482Z", - "iopub.status.idle": "2024-07-30T16:40:32.523099Z", - "shell.execute_reply": "2024-07-30T16:40:32.522526Z" + "iopub.execute_input": "2024-08-02T23:25:35.355348Z", + "iopub.status.busy": "2024-08-02T23:25:35.354967Z", + "iopub.status.idle": "2024-08-02T23:25:36.767542Z", + "shell.execute_reply": "2024-08-02T23:25:36.766894Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:40:32.525566Z", - "iopub.status.busy": "2024-07-30T16:40:32.525262Z", - "iopub.status.idle": "2024-07-30T16:40:32.528712Z", - "shell.execute_reply": "2024-07-30T16:40:32.528246Z" + "iopub.execute_input": "2024-08-02T23:25:36.770200Z", + "iopub.status.busy": "2024-08-02T23:25:36.769889Z", + "iopub.status.idle": "2024-08-02T23:25:36.773141Z", + "shell.execute_reply": "2024-08-02T23:25:36.772658Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:40:32.530916Z", - "iopub.status.busy": "2024-07-30T16:40:32.530497Z", - "iopub.status.idle": "2024-07-30T16:40:32.534386Z", - "shell.execute_reply": "2024-07-30T16:40:32.533915Z" + "iopub.execute_input": "2024-08-02T23:25:36.775177Z", + "iopub.status.busy": "2024-08-02T23:25:36.774994Z", + "iopub.status.idle": "2024-08-02T23:25:36.779004Z", + "shell.execute_reply": "2024-08-02T23:25:36.778469Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:40:32.536602Z", - "iopub.status.busy": "2024-07-30T16:40:32.536175Z", - "iopub.status.idle": "2024-07-30T16:40:32.539968Z", - "shell.execute_reply": "2024-07-30T16:40:32.539531Z" + "iopub.execute_input": "2024-08-02T23:25:36.781185Z", + "iopub.status.busy": "2024-08-02T23:25:36.780850Z", + "iopub.status.idle": "2024-08-02T23:25:36.784519Z", + "shell.execute_reply": "2024-08-02T23:25:36.783988Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:40:32.542052Z", - "iopub.status.busy": "2024-07-30T16:40:32.541706Z", - "iopub.status.idle": "2024-07-30T16:40:32.544446Z", - "shell.execute_reply": "2024-07-30T16:40:32.544021Z" + "iopub.execute_input": "2024-08-02T23:25:36.786657Z", + "iopub.status.busy": "2024-08-02T23:25:36.786198Z", + "iopub.status.idle": "2024-08-02T23:25:36.789074Z", + "shell.execute_reply": "2024-08-02T23:25:36.788604Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:40:32.546293Z", - "iopub.status.busy": "2024-07-30T16:40:32.546119Z", - "iopub.status.idle": "2024-07-30T16:41:10.690446Z", - "shell.execute_reply": "2024-07-30T16:41:10.689776Z" + "iopub.execute_input": "2024-08-02T23:25:36.790984Z", + "iopub.status.busy": "2024-08-02T23:25:36.790806Z", + "iopub.status.idle": "2024-08-02T23:26:14.726533Z", + "shell.execute_reply": "2024-08-02T23:26:14.725867Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3c621015e28040a280bd1034a80975dc", + "model_id": "a46521e429c5421aaf0cd8ac6b2244a7", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0f880a204f2942c89dcc00391ef9c5e7", + "model_id": "bbb9477350a14f3eb3d95cb40f0405ee", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:41:10.693189Z", - "iopub.status.busy": "2024-07-30T16:41:10.692781Z", - "iopub.status.idle": "2024-07-30T16:41:11.146443Z", - "shell.execute_reply": "2024-07-30T16:41:11.145848Z" + "iopub.execute_input": "2024-08-02T23:26:14.729149Z", + "iopub.status.busy": "2024-08-02T23:26:14.728917Z", + "iopub.status.idle": "2024-08-02T23:26:15.176544Z", + "shell.execute_reply": "2024-08-02T23:26:15.175972Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:41:11.148909Z", - "iopub.status.busy": "2024-07-30T16:41:11.148535Z", - "iopub.status.idle": "2024-07-30T16:41:14.025111Z", - "shell.execute_reply": "2024-07-30T16:41:14.024529Z" + "iopub.execute_input": "2024-08-02T23:26:15.179034Z", + "iopub.status.busy": "2024-08-02T23:26:15.178572Z", + "iopub.status.idle": "2024-08-02T23:26:18.201528Z", + "shell.execute_reply": "2024-08-02T23:26:18.200962Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:41:14.027425Z", - "iopub.status.busy": "2024-07-30T16:41:14.027043Z", - "iopub.status.idle": "2024-07-30T16:41:46.636156Z", - "shell.execute_reply": "2024-07-30T16:41:46.635613Z" + "iopub.execute_input": "2024-08-02T23:26:18.203662Z", + "iopub.status.busy": "2024-08-02T23:26:18.203342Z", + "iopub.status.idle": "2024-08-02T23:26:51.154916Z", + "shell.execute_reply": "2024-08-02T23:26:51.154351Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8aadf42791a644d7aa84ea5ea93db52a", + "model_id": "f3b32f3f5845468683f887844415e033", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:41:46.638629Z", - "iopub.status.busy": "2024-07-30T16:41:46.638229Z", - "iopub.status.idle": "2024-07-30T16:42:01.915473Z", - "shell.execute_reply": "2024-07-30T16:42:01.914892Z" + "iopub.execute_input": "2024-08-02T23:26:51.157228Z", + "iopub.status.busy": "2024-08-02T23:26:51.156852Z", + "iopub.status.idle": "2024-08-02T23:27:07.219946Z", + "shell.execute_reply": "2024-08-02T23:27:07.219346Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:01.918239Z", - "iopub.status.busy": "2024-07-30T16:42:01.917804Z", - "iopub.status.idle": "2024-07-30T16:42:05.845501Z", - "shell.execute_reply": "2024-07-30T16:42:05.844878Z" + "iopub.execute_input": "2024-08-02T23:27:07.222424Z", + "iopub.status.busy": "2024-08-02T23:27:07.222222Z", + "iopub.status.idle": "2024-08-02T23:27:11.056697Z", + "shell.execute_reply": "2024-08-02T23:27:11.056169Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:05.847761Z", - "iopub.status.busy": "2024-07-30T16:42:05.847553Z", - "iopub.status.idle": "2024-07-30T16:42:07.336104Z", - "shell.execute_reply": "2024-07-30T16:42:07.335452Z" + "iopub.execute_input": "2024-08-02T23:27:11.058995Z", + "iopub.status.busy": "2024-08-02T23:27:11.058647Z", + "iopub.status.idle": "2024-08-02T23:27:12.531333Z", + "shell.execute_reply": "2024-08-02T23:27:12.530664Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bd34f6363dd94413a10ce5318e70a5ff", + "model_id": "9bb1a488410b4c71b46e7d6fe2110805", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:07.338634Z", - "iopub.status.busy": "2024-07-30T16:42:07.338421Z", - "iopub.status.idle": "2024-07-30T16:42:07.369072Z", - "shell.execute_reply": "2024-07-30T16:42:07.368500Z" + "iopub.execute_input": "2024-08-02T23:27:12.533874Z", + "iopub.status.busy": "2024-08-02T23:27:12.533692Z", + "iopub.status.idle": "2024-08-02T23:27:12.563135Z", + "shell.execute_reply": "2024-08-02T23:27:12.562506Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:07.371445Z", - "iopub.status.busy": "2024-07-30T16:42:07.371243Z", - "iopub.status.idle": "2024-07-30T16:42:13.423924Z", - "shell.execute_reply": "2024-07-30T16:42:13.423326Z" + "iopub.execute_input": "2024-08-02T23:27:12.565470Z", + "iopub.status.busy": "2024-08-02T23:27:12.565273Z", + "iopub.status.idle": "2024-08-02T23:27:18.578408Z", + "shell.execute_reply": "2024-08-02T23:27:18.577817Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:13.426357Z", - "iopub.status.busy": "2024-07-30T16:42:13.425904Z", - "iopub.status.idle": "2024-07-30T16:42:13.482723Z", - "shell.execute_reply": "2024-07-30T16:42:13.482084Z" + "iopub.execute_input": "2024-08-02T23:27:18.580517Z", + "iopub.status.busy": "2024-08-02T23:27:18.580333Z", + "iopub.status.idle": "2024-08-02T23:27:18.636626Z", + "shell.execute_reply": "2024-08-02T23:27:18.636118Z" }, "nbsphinx": "hidden" }, @@ -1038,31 +1038,67 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0f880a204f2942c89dcc00391ef9c5e7": { + "21e58677d88d492fb2d3aba2c5f2bedf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e636b5573aab44bba46435bd71934d2c", - "IPY_MODEL_665af0e8c3f645a59c02f43043fdff51", - "IPY_MODEL_2e5a8275ab144dd1837b3acb899ba516" - ], - "layout": "IPY_MODEL_806c92b800564387bef7dd39a678fbdd", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_afeee618b0094f9ea19362a3de535dc2", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d08bb5b16f2643578ff29afdd913ef94", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 30.0 + } + }, + "22075318aed543b9bfb43b16a95303f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "281547375fa944f7974709643e5fb848": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "15b6c6e4483e414bbffdca6b1332ba45": { + "28953d553d724f8fb807adf8da9c8f13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1115,53 +1151,23 @@ "width": null } }, - "2e5a8275ab144dd1837b3acb899ba516": { + "2d0007b4d7ae42ab94dfb5894ddd6171": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7ee856f3b3b6489cadb00bc56b8cfbfd", - "placeholder": "​", - "style": "IPY_MODEL_7759184621734da7ad7af7156fef025c", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.14it/s]" - } - }, - "3959826deb41466c9cff772fbcdc14cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f0d230f541b948e9a2051618e62f2712", - "placeholder": "​", - "style": "IPY_MODEL_7b240753a02c4bcf9fe60a2a6583280e", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3a237c75a8f54cf38e283f9c7d217f3a": { + "2d004fb51ea84ad7844737c34b40be1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1214,31 +1220,25 @@ "width": null } }, - "3c621015e28040a280bd1034a80975dc": { + "309f96a402de4ae5be877a191b9896d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bb262a4cefe2454ea0bfaf1857eaaaa0", - "IPY_MODEL_e298261bfee74f53a9d4ee7608c7dbba", - "IPY_MODEL_5d9c48453ded44f187c73beb3ab94bef" - ], - "layout": "IPY_MODEL_aace38a5bc714ce49401be885a999f66", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4289a1e8279c46b0b291b9d03ed580e4": { + "362ee5f9191f4ff7adb03b8894bf98d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1291,79 +1291,7 @@ "width": null } }, - "53ec7ed5cdda45ee9abaa821657d4972": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d3f1e045fd804f4a9b2bc2eab9679b2a", - "placeholder": "​", - "style": "IPY_MODEL_dd16bea5c99646b898f24b1cf3d54721", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154765.99it/s]" - } - }, - "5d9c48453ded44f187c73beb3ab94bef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c103e73e53c7487084bdb73546e2c3f9", - "placeholder": "​", - "style": "IPY_MODEL_c3ac3d6d5373421680b5cdfd9f305953", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 809.67it/s]" - } - }, - "665af0e8c3f645a59c02f43043fdff51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b6e50060b45f4c09ba567bff5d89bbd4", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f1789c1a5e684dd89f01bb738355ab84", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "6d36dca0c74f4a7d8aaeeab44134b5ec": { + "3c3c9c08c38849c39c8943d355eba381": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1416,74 +1344,7 @@ "width": null } }, - "6f0287eca6f748f48079369ebec0af00": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_916b2b82c5da485e96eb7becee3ab269", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_86ce7a15782f4be0bdcea8d3e956fdd3", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "7759184621734da7ad7af7156fef025c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7ab2dd5b34e14de4aee5ee3ca7cd1e03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6d36dca0c74f4a7d8aaeeab44134b5ec", - "placeholder": "​", - "style": "IPY_MODEL_842810ddd25f4f9a91f6c1488c693fed", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "7b240753a02c4bcf9fe60a2a6583280e": { + "524457c7a59549e1b409234f113d2cfd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1501,7 +1362,7 @@ "text_color": null } }, - "7ee856f3b3b6489cadb00bc56b8cfbfd": { + "57630448ea2b4b93abd191d9fd1fe3a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1554,7 +1415,25 @@ "width": null } }, - "806c92b800564387bef7dd39a678fbdd": { + "6040edde46224192af178b86ce4b7a79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "684aa9b13bc44cec85847572a5e75869": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1607,81 +1486,30 @@ "width": null } }, - "842810ddd25f4f9a91f6c1488c693fed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "86ce7a15782f4be0bdcea8d3e956fdd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8aadf42791a644d7aa84ea5ea93db52a": { + "7cc646d98b194f65a1612c842760c2cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3959826deb41466c9cff772fbcdc14cd", - "IPY_MODEL_ec065695ccda4be494a55a12d2a2a747", - "IPY_MODEL_53ec7ed5cdda45ee9abaa821657d4972" - ], - "layout": "IPY_MODEL_a779351ef43a464290826c053fbba728", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_57630448ea2b4b93abd191d9fd1fe3a3", + "placeholder": "​", + "style": "IPY_MODEL_a8176cf060c346a599ee8e8232fe75e6", "tabbable": null, - "tooltip": null - } - }, - "8b0bd8d97261484186cbbc3b754ec950": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "8fcef29a8bc14e859cd9c969f9e518fc": { + "82a6739654d547a38131b44cb4f14f1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1734,7 +1562,7 @@ "width": null } }, - "916b2b82c5da485e96eb7becee3ab269": { + "8a67dfb3d92040968bf1e325fa69d96b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1787,7 +1615,125 @@ "width": null } }, - "984b4a402c5e4260b8d9a0f92ba2547b": { + "8ad2397c67af4e0e8358d65f0d4a9f0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3c3c9c08c38849c39c8943d355eba381", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_22075318aed543b9bfb43b16a95303f2", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "8b07a341c396471fb626d09ef8a77a8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ae7e0cea590b4d938850df01ecc5a759", + "placeholder": "​", + "style": "IPY_MODEL_a34e3e3218784a3a90e45a039e566415", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 20.53it/s]" + } + }, + "8bd11d48b4334ccf98051fa8e2aedab0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_684aa9b13bc44cec85847572a5e75869", + "placeholder": "​", + "style": "IPY_MODEL_d3c57ae8f5e14b428ef91851eea86ab6", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "8bede4f01da546d8a48dd2b51d7493cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_362ee5f9191f4ff7adb03b8894bf98d0", + "placeholder": "​", + "style": "IPY_MODEL_e08552147cbe434cb955ff1254f70e47", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 152460.81it/s]" + } + }, + "94851a2fb10f4fffa7d57d65f37f9531": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_28953d553d724f8fb807adf8da9c8f13", + "placeholder": "​", + "style": "IPY_MODEL_6040edde46224192af178b86ce4b7a79", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 662.99it/s]" + } + }, + "9547cf6347094ad7934750a14799ce11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1840,30 +1786,47 @@ "width": null } }, - "a4dcefed1766446b8c69b4d02fab4125": { + "9a6edbb09f2247bc9a41314dd7656693": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9bb1a488410b4c71b46e7d6fe2110805": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8fcef29a8bc14e859cd9c969f9e518fc", - "placeholder": "​", - "style": "IPY_MODEL_c2a8b93dbec1492481abde0df026087e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb2b7b30cf9e4608b1096e58f87d8e69", + "IPY_MODEL_a60d519967ad48d09abf2f3a7286348b", + "IPY_MODEL_8b07a341c396471fb626d09ef8a77a8f" + ], + "layout": "IPY_MODEL_c1a36213baf8452a882ac1f99ee438ce", "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.41it/s]" + "tooltip": null } }, - "a779351ef43a464290826c053fbba728": { + "a194ec35e7874997a9a9bba5bb2c8bff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1916,7 +1879,93 @@ "width": null } }, - "aace38a5bc714ce49401be885a999f66": { + "a34e3e3218784a3a90e45a039e566415": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a46521e429c5421aaf0cd8ac6b2244a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e0c3975abf814cf990e03d7a488ed220", + "IPY_MODEL_21e58677d88d492fb2d3aba2c5f2bedf", + "IPY_MODEL_94851a2fb10f4fffa7d57d65f37f9531" + ], + "layout": "IPY_MODEL_9547cf6347094ad7934750a14799ce11", + "tabbable": null, + "tooltip": null + } + }, + "a60d519967ad48d09abf2f3a7286348b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_82a6739654d547a38131b44cb4f14f1a", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9a6edbb09f2247bc9a41314dd7656693", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "a8176cf060c346a599ee8e8232fe75e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ae7e0cea590b4d938850df01ecc5a759": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1969,7 +2018,7 @@ "width": null } }, - "b2fe9990927042c6bb636763d7937e0e": { + "afeee618b0094f9ea19362a3de535dc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2022,7 +2071,31 @@ "width": null } }, - "b6e50060b45f4c09ba567bff5d89bbd4": { + "bbb9477350a14f3eb3d95cb40f0405ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7cc646d98b194f65a1612c842760c2cb", + "IPY_MODEL_e121b2c4aabb4b759f8ee18e52fa2e61", + "IPY_MODEL_e6165397fe314a8d8a6d9140ec0cd5b9" + ], + "layout": "IPY_MODEL_2d004fb51ea84ad7844737c34b40be1d", + "tabbable": null, + "tooltip": null + } + }, + "c1a36213baf8452a882ac1f99ee438ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2075,7 +2148,7 @@ "width": null } }, - "bb262a4cefe2454ea0bfaf1857eaaaa0": { + "cb2b7b30cf9e4608b1096e58f87d8e69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2090,39 +2163,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_984b4a402c5e4260b8d9a0f92ba2547b", + "layout": "IPY_MODEL_8a67dfb3d92040968bf1e325fa69d96b", "placeholder": "​", - "style": "IPY_MODEL_fbd95489418e417688ccd6e6da39d464", + "style": "IPY_MODEL_281547375fa944f7974709643e5fb848", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "bd34f6363dd94413a10ce5318e70a5ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7ab2dd5b34e14de4aee5ee3ca7cd1e03", - "IPY_MODEL_6f0287eca6f748f48079369ebec0af00", - "IPY_MODEL_a4dcefed1766446b8c69b4d02fab4125" - ], - "layout": "IPY_MODEL_3a237c75a8f54cf38e283f9c7d217f3a", - "tabbable": null, - "tooltip": null + "value": "images processed using softmin: 100%" } }, - "c103e73e53c7487084bdb73546e2c3f9": { + "cb9709c9a8b4477ca5d5915db9905530": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2175,43 +2224,7 @@ "width": null } }, - "c2a8b93dbec1492481abde0df026087e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c3ac3d6d5373421680b5cdfd9f305953": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c59fdcdcb4d04accba7ce0c3d58c5eb0": { + "d08bb5b16f2643578ff29afdd913ef94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2227,7 +2240,7 @@ "description_width": "" } }, - "d3f1e045fd804f4a9b2bc2eab9679b2a": { + "d2196adeaa7148fa9a0c5deceac6eadc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2280,7 +2293,7 @@ "width": null } }, - "d4d10f8bafa946de89419591759057de": { + "d3c57ae8f5e14b428ef91851eea86ab6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2298,7 +2311,7 @@ "text_color": null } }, - "dd16bea5c99646b898f24b1cf3d54721": { + "e08552147cbe434cb955ff1254f70e47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2316,7 +2329,30 @@ "text_color": null } }, - "e298261bfee74f53a9d4ee7608c7dbba": { + "e0c3975abf814cf990e03d7a488ed220": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d2196adeaa7148fa9a0c5deceac6eadc", + "placeholder": "​", + "style": "IPY_MODEL_309f96a402de4ae5be877a191b9896d3", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "e121b2c4aabb4b759f8ee18e52fa2e61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2332,17 +2368,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_15b6c6e4483e414bbffdca6b1332ba45", + "layout": "IPY_MODEL_ff1b34f5107b4252ad231c68ed67ab7c", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8b0bd8d97261484186cbbc3b754ec950", + "style": "IPY_MODEL_2d0007b4d7ae42ab94dfb5894ddd6171", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "e636b5573aab44bba46435bd71934d2c": { + "e6165397fe314a8d8a6d9140ec0cd5b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2357,41 +2393,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4289a1e8279c46b0b291b9d03ed580e4", + "layout": "IPY_MODEL_cb9709c9a8b4477ca5d5915db9905530", "placeholder": "​", - "style": "IPY_MODEL_d4d10f8bafa946de89419591759057de", + "style": "IPY_MODEL_524457c7a59549e1b409234f113d2cfd", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": " 30/30 [00:25<00:00,  1.15it/s]" } }, - "ec065695ccda4be494a55a12d2a2a747": { + "f3b32f3f5845468683f887844415e033": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b2fe9990927042c6bb636763d7937e0e", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c59fdcdcb4d04accba7ce0c3d58c5eb0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8bd11d48b4334ccf98051fa8e2aedab0", + "IPY_MODEL_8ad2397c67af4e0e8358d65f0d4a9f0a", + "IPY_MODEL_8bede4f01da546d8a48dd2b51d7493cc" + ], + "layout": "IPY_MODEL_a194ec35e7874997a9a9bba5bb2c8bff", "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "tooltip": null } }, - "f0d230f541b948e9a2051618e62f2712": { + "ff1b34f5107b4252ad231c68ed67ab7c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2443,40 +2477,6 @@ "visibility": null, "width": null } - }, - "f1789c1a5e684dd89f01bb738355ab84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fbd95489418e417688ccd6e6da39d464": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 6a696df89..7588e441c 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:16.108435Z", - "iopub.status.busy": "2024-07-30T16:42:16.108277Z", - "iopub.status.idle": "2024-07-30T16:42:17.473595Z", - "shell.execute_reply": "2024-07-30T16:42:17.472949Z" + "iopub.execute_input": "2024-08-02T23:27:21.097374Z", + "iopub.status.busy": "2024-08-02T23:27:21.097213Z", + "iopub.status.idle": "2024-08-02T23:27:22.032475Z", + "shell.execute_reply": "2024-08-02T23:27:22.031763Z" } }, "outputs": [ @@ -86,22 +86,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-30 16:42:16-- https://data.deepai.org/conll2003.zip\r\n", - "Resolving data.deepai.org (data.deepai.org)... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "185.93.1.250, 2400:52e0:1a00::1070:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n" + "--2024-08-02 23:27:21-- https://data.deepai.org/conll2003.zip\r\n", + "Resolving data.deepai.org (data.deepai.org)... 185.93.1.246, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.246|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -124,7 +118,7 @@ "\r", "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-07-30 16:42:16 (6.62 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-08-02 23:27:21 (6.78 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -144,9 +138,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-30 16:42:16-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.138.89, 52.217.134.249, 52.216.41.17, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.138.89|:443... connected.\r\n", + "--2024-08-02 23:27:21-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.226.169, 54.231.137.105, 54.231.202.161, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.226.169|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -169,7 +163,7 @@ "\r", "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-07-30 16:42:17 (125 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-08-02 23:27:21 (135 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -186,10 +180,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:17.476282Z", - "iopub.status.busy": "2024-07-30T16:42:17.475905Z", - "iopub.status.idle": "2024-07-30T16:42:18.926532Z", - "shell.execute_reply": "2024-07-30T16:42:18.925850Z" + "iopub.execute_input": "2024-08-02T23:27:22.035122Z", + "iopub.status.busy": "2024-08-02T23:27:22.034920Z", + "iopub.status.idle": "2024-08-02T23:27:23.618049Z", + "shell.execute_reply": "2024-08-02T23:27:23.617396Z" }, "nbsphinx": "hidden" }, @@ -200,7 +194,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -226,10 +220,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:18.929007Z", - "iopub.status.busy": "2024-07-30T16:42:18.928712Z", - "iopub.status.idle": "2024-07-30T16:42:18.932103Z", - "shell.execute_reply": "2024-07-30T16:42:18.931658Z" + "iopub.execute_input": "2024-08-02T23:27:23.620722Z", + "iopub.status.busy": "2024-08-02T23:27:23.620416Z", + "iopub.status.idle": "2024-08-02T23:27:23.624004Z", + "shell.execute_reply": "2024-08-02T23:27:23.623532Z" } }, "outputs": [], @@ -279,10 +273,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:18.934243Z", - "iopub.status.busy": "2024-07-30T16:42:18.933903Z", - "iopub.status.idle": "2024-07-30T16:42:18.937344Z", - "shell.execute_reply": "2024-07-30T16:42:18.936919Z" + "iopub.execute_input": "2024-08-02T23:27:23.626173Z", + "iopub.status.busy": "2024-08-02T23:27:23.625726Z", + "iopub.status.idle": "2024-08-02T23:27:23.628865Z", + "shell.execute_reply": "2024-08-02T23:27:23.628333Z" }, "nbsphinx": "hidden" }, @@ -300,10 +294,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:18.939414Z", - "iopub.status.busy": "2024-07-30T16:42:18.939071Z", - "iopub.status.idle": "2024-07-30T16:42:28.307360Z", - "shell.execute_reply": "2024-07-30T16:42:28.306819Z" + "iopub.execute_input": "2024-08-02T23:27:23.631121Z", + "iopub.status.busy": "2024-08-02T23:27:23.630720Z", + "iopub.status.idle": "2024-08-02T23:27:32.801377Z", + "shell.execute_reply": "2024-08-02T23:27:32.800697Z" } }, "outputs": [], @@ -377,10 +371,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:28.310072Z", - "iopub.status.busy": "2024-07-30T16:42:28.309609Z", - "iopub.status.idle": "2024-07-30T16:42:28.315308Z", - "shell.execute_reply": "2024-07-30T16:42:28.314851Z" + "iopub.execute_input": "2024-08-02T23:27:32.803844Z", + "iopub.status.busy": "2024-08-02T23:27:32.803644Z", + "iopub.status.idle": "2024-08-02T23:27:32.809441Z", + "shell.execute_reply": "2024-08-02T23:27:32.808867Z" }, "nbsphinx": "hidden" }, @@ -420,10 +414,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:28.317438Z", - "iopub.status.busy": "2024-07-30T16:42:28.317037Z", - "iopub.status.idle": "2024-07-30T16:42:28.691191Z", - "shell.execute_reply": "2024-07-30T16:42:28.690527Z" + "iopub.execute_input": "2024-08-02T23:27:32.811534Z", + "iopub.status.busy": "2024-08-02T23:27:32.811201Z", + "iopub.status.idle": "2024-08-02T23:27:33.180182Z", + "shell.execute_reply": "2024-08-02T23:27:33.179511Z" } }, "outputs": [], @@ -460,10 +454,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:28.693775Z", - "iopub.status.busy": "2024-07-30T16:42:28.693565Z", - "iopub.status.idle": "2024-07-30T16:42:28.698316Z", - "shell.execute_reply": "2024-07-30T16:42:28.697696Z" + "iopub.execute_input": "2024-08-02T23:27:33.182638Z", + "iopub.status.busy": "2024-08-02T23:27:33.182437Z", + "iopub.status.idle": "2024-08-02T23:27:33.187039Z", + "shell.execute_reply": "2024-08-02T23:27:33.186557Z" } }, "outputs": [ @@ -535,10 +529,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:28.700484Z", - "iopub.status.busy": "2024-07-30T16:42:28.700147Z", - "iopub.status.idle": "2024-07-30T16:42:31.466890Z", - "shell.execute_reply": "2024-07-30T16:42:31.466180Z" + "iopub.execute_input": "2024-08-02T23:27:33.189240Z", + "iopub.status.busy": "2024-08-02T23:27:33.188864Z", + "iopub.status.idle": "2024-08-02T23:27:35.925225Z", + "shell.execute_reply": "2024-08-02T23:27:35.924446Z" } }, "outputs": [], @@ -560,10 +554,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:31.470029Z", - "iopub.status.busy": "2024-07-30T16:42:31.469337Z", - "iopub.status.idle": "2024-07-30T16:42:31.473767Z", - "shell.execute_reply": "2024-07-30T16:42:31.473222Z" + "iopub.execute_input": "2024-08-02T23:27:35.928379Z", + "iopub.status.busy": "2024-08-02T23:27:35.927716Z", + "iopub.status.idle": "2024-08-02T23:27:35.931918Z", + "shell.execute_reply": "2024-08-02T23:27:35.931392Z" } }, "outputs": [ @@ -599,10 +593,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:31.476028Z", - "iopub.status.busy": "2024-07-30T16:42:31.475684Z", - "iopub.status.idle": "2024-07-30T16:42:31.481390Z", - "shell.execute_reply": "2024-07-30T16:42:31.480918Z" + "iopub.execute_input": "2024-08-02T23:27:35.933833Z", + "iopub.status.busy": "2024-08-02T23:27:35.933656Z", + "iopub.status.idle": "2024-08-02T23:27:35.939473Z", + "shell.execute_reply": "2024-08-02T23:27:35.939001Z" } }, "outputs": [ @@ -780,10 +774,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:31.483594Z", - "iopub.status.busy": "2024-07-30T16:42:31.483253Z", - "iopub.status.idle": "2024-07-30T16:42:31.509722Z", - "shell.execute_reply": "2024-07-30T16:42:31.509269Z" + "iopub.execute_input": "2024-08-02T23:27:35.941428Z", + "iopub.status.busy": "2024-08-02T23:27:35.941253Z", + "iopub.status.idle": "2024-08-02T23:27:35.967430Z", + "shell.execute_reply": "2024-08-02T23:27:35.966843Z" } }, "outputs": [ @@ -885,10 +879,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:31.511897Z", - "iopub.status.busy": "2024-07-30T16:42:31.511537Z", - "iopub.status.idle": "2024-07-30T16:42:31.516114Z", - "shell.execute_reply": "2024-07-30T16:42:31.515643Z" + "iopub.execute_input": "2024-08-02T23:27:35.969458Z", + "iopub.status.busy": "2024-08-02T23:27:35.969278Z", + "iopub.status.idle": "2024-08-02T23:27:35.973349Z", + "shell.execute_reply": "2024-08-02T23:27:35.972803Z" } }, "outputs": [ @@ -962,10 +956,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:31.518017Z", - "iopub.status.busy": "2024-07-30T16:42:31.517821Z", - "iopub.status.idle": "2024-07-30T16:42:33.009420Z", - "shell.execute_reply": "2024-07-30T16:42:33.008849Z" + "iopub.execute_input": "2024-08-02T23:27:35.975297Z", + "iopub.status.busy": "2024-08-02T23:27:35.975119Z", + "iopub.status.idle": "2024-08-02T23:27:37.460630Z", + "shell.execute_reply": "2024-08-02T23:27:37.460082Z" } }, "outputs": [ @@ -1137,10 +1131,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:33.011845Z", - "iopub.status.busy": "2024-07-30T16:42:33.011502Z", - "iopub.status.idle": "2024-07-30T16:42:33.015539Z", - "shell.execute_reply": "2024-07-30T16:42:33.015098Z" + "iopub.execute_input": "2024-08-02T23:27:37.462970Z", + "iopub.status.busy": "2024-08-02T23:27:37.462558Z", + "iopub.status.idle": "2024-08-02T23:27:37.466740Z", + "shell.execute_reply": "2024-08-02T23:27:37.466280Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 9219fc870adc613c0eb3145e78c816516f8e783f..fe60664b14a45bdd1d1b3608ce45d059090fa04e 100644 GIT binary patch delta 62 zcmX>tep-A(E~8;el972)ZiS7Vv33B=6Q^|TmWrw5|01? delta 62 zcmX>tep-A(E~8;)RkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} Rv5~1oa?9LhH#+);h zC6M6~9*C2eFk`$t)e9#2M*0^>G`{iV0~mM^Ba&)Nc+$j}_??-(Wvy+6=sui1=giD^ zzRU0X&Uf#-#KYeb9Tz&@z4ynBj&Hh#lwxkwF_c`UIGimhctp+*ld&QhQ*x#3NOtta zp~BcGDUso!oSYlRO1?1vXV=j?L6F}v z;eU9DMT)4DAq&)!nB_V$K{l38;xa*`R3b8`r-@!cGB%MzPPx<}h|#i1OBA*^ntUCR zGd6KJWdvbUiC18eXL8J`Wey@+cNtRQnJ!LK2nV4=iOr>qxr9a1iv-E8Q6vtt43e(d z|JXWOD^caZQm1z@(d74LcOSmh-qtp)Vt)U^2Mo=s6*Nmw(WN>^CtlGB zHg#M?Q`}Xkg?6i)+iX0Ok*g2Vm}ZK)Rn7=VB$=4pp|S*UC^dM-ucT3{p3#vIW*O_ih~t{f1Cjt}dbSqfD$oe)Wy_&lH5e*67HB4@tC0rubIV3n z2@v2MFp-D?08W5K0N8f)s^ywsIpBm0OCdVQpj;SN*MBflSS6lrGqEd7ZLn4~_%y`` zBW7TS$N0&X;|Rn-E;YgG5|&9CotSni2;?ss1>x|UbKqPsgOL7+(? zBxmc{cu-9p1U4?$Q*qxDB2Y`0bz53O)O7qM!Dur0bzP^ouJtW7^mne9xzJU2sFwh9 zVGx+H-hTnzzYx?J{09UZs_c)xj0;oj3auBCqwbBKCR%Hjt*P?ckfOaO4B8cV=Q_Qb zCWp6yoc|Q?Mfvu4<^KYFQNF!@2Y8bYmteAg**vJlX7z?RW18fCUWe_#>gq#aY~x~# z{T-*C<^*fbpP=6wgd#h2xuwYV)X{lnw+)ei+P`N&R7v6t?5%0J*rQlDp!`+v<=s?} z$#3)~ue1nnT$lsrM&vA!Nj|IK9L^WU3OHYsbE6}O{*j-myU@hUPCsu3EaR?(8WCw<*1O+TGQLZ;NtsRJwE{=Lcj1> zGD1J$IyCfWmNs<>OW&$lmRZ8o(C>yGM4@mq5C+YU-@Y%@euA3Bpg?K2MYWClo_9n< zzpYl^V7;Ckz1kAv20%~k&e(Ni;zb>jM-52cZV}Ms_c6D~IOVRmPL3-C?p-RT%?#X1 zr_u5Zp=C+&B2<>}-%8x~1f*<>aO>{wj&RrRfNN`NaSV`)5QQ(b}6OM4edh$lc?$G{PY?!bI&8 z{qp9Su+d~o(3DG}DVIc3E?K4&^;`9(9IMa4QCr0)Y=wP%q+Rf})0cqud;ZNIwkCRx zf{y;v#BnSqn0T;Z{@MdS(WCXjZsY(KJiqX4a(TO>FIZ4m*uE;ec7A4IynRAT3enqZ zx-D%^==xnIHVCiSQTimc?AqXqpZg~xDOX)}Gx$fF6As<4eI&HIu?mKd#q3xDhEK%o eb_WcfirMe0VYn`4s0)VA#Oz4#eCIER+W!Ir%dW}* delta 211 zcmaFyo%!x9X4VGQsX=cyvL5F&%&bZ_F-a;n)lW<@G%!vzFtRW-w=_3SOG`9Pu`ses zF-uIgG&i&~Pck+#wMb4ju-N>UGv?;zqL0$dOg%iC`@gJU7Vi-%E=?*f$t)=?$;{7- z&r8frEuK<4WpdLGHKqif&8vP`F$$OVaDv23Dht4J8d(WElU08y+LmTW)=tsLI?uzv tkl~Sa0Z3(SWC9WwL994tAaM!Ay1@!0E`wM<*nq?p5KDn`^W diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index 4f285469e0bd7c10cf944175f41bc275fefd1c96..eb1ab05b1aee0e95e220fd01c50245937b5051f1 100644 GIT binary patch delta 16807 zcmeHOYmgk(b*5*e=z)0|u>ylNjZ7pVw7Y%#-tN9v!C*OwD_~1O0jCHcOZTanWp`(_ zGXoMOc_f5M;jCRH&*Bbtz)*zXR9p!}e*#)*SRPt+8rP0i&=iYPf`OZ1tIj8%P2QPf=$qS$PgLTBHFqxe);kcrKGcwkU zTCOZNp$p<55hUV?b(WG)hg2FCo&Jw?uO0gG9p1*yZAZ6u)*riQ%?^LdN2vIT^z2RE zh7aU#2j4vL^SCTNy1nz*(M{rm?L2$(iq5MiNoUssBRz%d4{Ys3Cok_DI~o0m zKRNyQ1HZl9PlT39=qwRVu$U-iVkBg|1utKA`r2pCt?`KvlsL(G zWEE4+3La7x(e`N zqt418h%HW$3qzTbE*GxoqSL|47p$!qttpQsjUvY26pYHv`XmIQ`GV z-S;o7(h2zge&QQ!QQfo3$zH*Qb3Wo689DE~>UGs}bzAk?>h|5oR<~63?rVEjt)BbJryIEx z)mp=^L#EM2y)~0iwW^5CSTGP|D)@ZbBBVS!vU$>@| zoo&>o?ASp0_a)=q??%Y?A>*3|zJDa$d!xtN?bSH_!Kn`)_U$it=bd+3RW@He{z${W zw|d0C*ZQhen{4_Aesa>v=}D>lTbnIYtNYhio6VWV&hc^G|Bo?Q8&{L{gX0-KMm5fM zwx&n%=f|jyV|sQ{_*YGGt;=*;qBX>f4qO@ zwQ2td?48@8VVgUA5(I~RCmT&Wn_F_K4qHpDTeDbo^2nIKRL*=$*#r$A0Hb*kaJ**YZ4FgL&%fZwdo_;m*WG@Ag)s5OA!E@%XJZSg-* zZ%spU7|Nfj8#{?LYRyc!1^IX60#|K&a;A}eo2mLH()tSDQz-|81?19r*K)<8YydwO8jT-3A{W>6x~&)VA|)LSzcQ*m?1? zjrPX(Y4Cw-T(ra!bB3WsekF(2tpjKc zE&!r7yd9$63ZC#aA%c&~24ZYud@2vG<8~0) z$EPMo@5L`i2Vaaf@*FTWGktKqk3T!*WOJu~Th->FZ+6<>b(23+o3Y5H2+mo|&)qLu zV`+Sz@0_~t!|k~;R+yiQ-rEv$<<@L%es14;*7S~nV#{edKerxa!qgDtZ37f$&bx7b z;?EH?8VEfTf0PA}9)bBnX2WmygGuMagWLEoz9U{%T|YjvfRNsY1x);Xj*0f}hnD<$ z-Q31TOEsFcW-Chz`;A5ZtYvS9?f=5qm|u(^zYrzuBAC3JvwI&XspL>wzkYoV^@%^m zxehQs@ghEC`1x25KNH`>=N=ex!%X}IJ|CN(cm@9~vDC=KzvIgVgLO_-Hhg@}FLJke zS*?KWUcE017!&_CyaG(VXQXrXhabIoK&<+Ue<>Y%*t^{a?H5KnCPN#tAc~a;jH8SR zp;WAi?w;LQnqE~gC@qwTY#h=6tX?Y@hf)MV7&-hUseI1ckiJ+ejil{wc-{0ssq~z0 zXc7?}Xc5Pjh1>{|XvK9zqCikYiuBZFrAxbKCQ9G)3dKnO>rroyUm!)CUfnK@r(b!@ zTVD~VwnzxQA|jZSh*pH4uyH&@)n!Eb(%*O+e&<>5u2q}DFyXIGE6j=Qigr&P#5xm&`3gQm`RI-MbH#=VIrk=UGf@q zsJKY6C_*V5SQV8*g|cet}jZePUPXT3@S3C}7yqAY_r& zQlq>^!sMY&VwMD5X-f4~S4kC88)>eoVbXApHbiDwjn;-r5BwE;Y_X$N;JK8uKu1!= zj3xrf*l`EQ2%))%QkZ{3&(A6aBBYaNyjy&%^Ue~4%Jkgq{IlNqn`}%R*B0AR&9FP% zgHxg-s3-#2J@JpFnN<}R(8NgizlOgs6-g=>gL4__tkFC@R4Hxf&fHx7hPNqV2s%6t z(EefI6KL5fEwFloRV~Zyo*rLaUX>mnDXr_?@|5?e=Pxfq5N3!amE~oiJ)irZ?|2`o zBqqVdIBsPF7THK7G~w_XB4hYQn4bG;9y;z^Rnb|C#DoYHCSeqP7X-Q};6mvbFQgYc zDgkOkr)V6&ZPBh#ig4*-K`1;`#xM^rZ+MGR1wtgb8*W-&fb?%aQzq#x?b6zG-OJvV zG0Kx6Pc$~9It)YNLNwpPL`4eyo|tkpqlj^?A6p9gWhoqX!4;RcUbNV`3Q#K-UtMsB zX2BJU)XH740w8Kbk&cj(7>+=Q1la)?bFnqTbmMR~4ZUzNV{D)L;xzI_M0@9(_zXfvUM z3Z{jIwq}wckTXSfEJ-LLv@t_Z99=%fHQL~UIHLp&olCv((&gzhQ{@Z0 z$ls566%M`8P9mxdKHj#1S7~%?AoD!jAko=H90&84^a>Oymr9v!BBE%IPs>JrA3u4A^Ah)48 zj2IO$4Xq*s-zZ2Jl2L?!nM6G3XYrzqdnvGB-#ntk>ER!G*X*Ftkl%rUAmke&ff&pq zfIF)!wbVrdK#ID%s%1d0ps$?smwpB;u+jI0cW_hA^71RNnk+Q@_cF5Qbk~qt;0Pgem_}Fy_DxNmI*0u5 zz<-w>^NK{t;ae$^B=f_EA1!aL!~)zM0nqS>vV>WMc?e+%F#?$nOj^EC%9u3Lp@|S1 zF)2wv@|nX#4TMw3$SHw#0g#O=K|`rY5*Z4rKoeL%Fd;xD1c$aFK*yYPpZK;18d|U` z>-k{8j;u#Re{)@V>ka^8_nR~ngA=QO3=$){V9Fy|Bx4a+?NngEvfe0N*3+qAAd@HW zz8@CYiZ1r70<11ce+7qT2Y$GzK(S{pENw~Kw7l96iKWIE!ZT#gykG=Qm zz9K2o?`$pY^$Uc^L+yB4+g7>&NdsINQ!&c0w?lSEsFjrJC{Rixa`f{d7+xG}3*`i1 zC=>z4P=y2)69X879wp6_Mum_-2p*$qRHy*MfZGJbJW=4J#?t8RQ(=J^c`Eb^gy?h9 z{iIa!QI?0u$ceJ>er|A#JPJ^(8YD#KOkXXZ3vDn1v{u7VF^DGSiWp!@yoofTO!vf@ ztj0rVLhWt>%7Yj*+n{0;5>rjWu@=~NFAr7!nA%c7cVKBtW}7I+t8sbW{V!^NUpKm4FzCTF0zW z1XEz1wOO(n9F;tZj39^xUT1Mh5Kv@E@GTVbNM%WEOya^=fjZ=*duj5EU^<(G+BozI z(56w`1{!N{MiS7xq2yO7kRtuq&80nlfefNo1-^1~X zvZwlz60k^s^iQ%1uwei6CD7CK#al~TDjc;z7)nWTm`sNjgpI;~h~&^uCH?BaTAtOl z2rd$YIy4e(u~_Q_K{Nu_PSH;p=F}JwB4}h&b`yZnhDen*aU4#X5REp~podhjx$0%U zg3aU1?UM9sd&<|0i!m}>_klwpqa)r?l(!(ESv3Qmk0L%+C~Eq3pIN+8K;6Lfy4bLl#mE_1&M+0;YJjLbgP}r5En89 zccRottqf5~oO9HrzGq^PRf&F}O0u#q;u&M&g2p0F65~=d5eFTZ0x8l%pDF*GUmyeT z`QGhQNO)G7Kt$-;62ueBK&`SSZ5*N70?O#}25x=TCasahY=okRu)u+#;r1uodXk{Y zLcpe%V6~#H1VM#|#;6%XBz;R07g2$pAxOCH_X>;l?m<;AzjxlX4bnaLls@D;5Me1I z6x`@Zpu4Q36k(hYRJIH-?VHGt6K#w|^nmHWg$25?Nral0hZf-m95PRH6-on%q>qlH zvAE?1`6aeVf^Qv~OeV~j>*d3Zq@vw>>J)9B+2+piXpHe8zNwV}*@$TDqy)nN*$Mzc zrZF}{3tcT>Z~2>Nx);9=e%~%IPQ2LX3b1JxUtMr!Y{BP>G|GH#OM3U=a#VWwi|K0* zmR4pBE3<}`S;Nr$Yq8_4%o^T0?O2&LtjrpQZs1*+HLT1U`a{2!S;O#*V`bJbJV9BR zHT3S;DeCaA%o?e(P`Oxv;IgIqC8Sk>vvDMwVBjtZB zmG*D!9y?n8dij$R>o?+&kL(eT#@q)NJuH(wYnVU1Q~a<;zDOgz{&;yyiEd2I@$z@q zd=g8}UDr(49w}efp12OX%xxJ6y}X|Dt+{pC=FKBBxd7WHD1QCW#Fxt1YyHCP_4}7* zuh||Ce!sw$o{Gse4B znTrH}kmiSHXT4|6dp_RheV+HZ^Shte{Nx8Wpa1hs^uR+w2>;7+my49}M3|x4YM!&> z(J&j83szIBJ!jH{K+J`I-}K5a4f*kQ_&NN0*YP`t_3@j2>pj)=!(Tss$MD<7e`xqu z$JucC_~zk_C*J-)8u#P}UhMvLFD7{5cI<3-bg%8MmWK5s@{Pf*h4c&ijvjVvM{+uhKMtQgbMtWN%(h`X zbK}rI^5#wBwUwm}kDpQh+c_>g^~i-gTC0P0(orv^5ke7bBe#iildSZShv924JlsEs zytMVg?dLCD)mj=XwVY~Zl3!5G>ak#~s(>)%6Z4)9wAs#jD#8 zjf%l$ZGFb-6mmL*Og$yah#cd1y1qdd$V=B<-DIL2G2SH1WK{4e#6*R{(y;f$$20N1 zL1kfE{^6FZ+h_$h&WV_a6ILmkvI>DGCRj|^{dl_GL1nt@{^?CO)#pF>c~Vv9x_5q} zdUq2Q03NCKQ8AIcH8N-}LzaXS9a;Cx{(9*PU#Q-@&?HHMpo;pSl29Re77UZoIFU{8 zwxi#wm%4xZ?Rwkj1D~pnRjn0HhM)qGJmEN_(M%=WkPS&mM)hd%uEDESGdsTTmOoS7 z+xEmZ-D_X1c6ERJnd+J*vP=wBnu?%>p~-RYaO_bFVsf(G;-z|N^zygsJqyb=aT`qL zA`>C9b3RAwS+s#0lg#Lu7whM%WvVg>o?9t%6g~(PLcuiCE+pncclw&ajiW91C_nH@BhosjOcpRd{`5|_Cb(g4aO^DK-PiBJc7N_|^{1;=GM@w|Ob8bQXVg$Zf>xX-l`+g4RZ@p?NV-o5*0_T6*e+kWz=_Vp#?#?gJJwSDi-?(8-7wx(xG z-JKt;Z|k1EbMSqQ@ELfZk(nrzaVXH<<3<^w#2Z4&-f^MHM*}cxla(++dYu7$O;{8R zdC)z3%LbS=A!{RmF!LqwB3M^RAT#*~EX79TG8{_*;2xY^kY=sx;lwY!b8X0}oE?!f_(t+>H*@ z21%m>g;+8HS>q{BLD3kb6){I=v$r`5SA>wFWV(Ejw2YFO?7R`iTR@U1?ZevhiiDqqBwrPXHn6rLrQ(k^?Mx&0Pp4usEi_ z3C?;K(0%8%>RvGK>;<5NlJ4V|Kxy6=)t#k_7TjYXZ>$nZOQv|{z*%A5F-Nz`Ngs$; zjIaQ4Ad2t+<^s>bSa8=QQCkKeg2$sJ0hG?1(EuUiUQ*8tN7mneq56}m?TKq9KY;nMgs5|hB&Gl* z#*is z%mT|tMG;GUx&zK;ZVddzw@|fLlHc3&rj?mhk*yCD3 z`@&8z_T}pbJ60Ii_gs;UHc5zWhqesr)u8Bl<}_3Uz%Erb=p`-!Wlc{%I0aeX?QDdN z?#aoGqkB$l9iR2=s9fuW&l;AaL0yK_a$4w|(XpU8l`(RPDl_S5CM}wjO0yUP^rRFa zp#(~_#tQ8MdNeLaPk(>?RMj%50usTeMP=nsdU8}wj@AcCMcFV#Sx;Er{j;p^Z+b!& z^-H=BtNOauvP{vK5aB_zL{giS&OQ;rBp85?X?YEINFZWSPK$~~N8l}}yR>paDM$-m zIAUwJ`*YRe=;=SIo~&8|6Dmb72pQ*TwCMDbj66%>wQ#y{8Kh-T@CgU>#E#wWAFJqii|So1&B-$f|d!c2mXP!3&hY~qWjJa zSb}#UpguvxP$kkv2{~eEDLpq#+snSNlPyTJ+Oxt=AoloO^=&J5MT&J8ONpa3%P6@5 zB_kpupzJB^p2!`V-79Lo>G42DxT2@3lRfvc5jTA~xp6d~eQF$3)^_KvskgR0oAT>m z=A~ker=pszP!XL;qJRUZ#s_Qpgvc9-_C}#`ft*4qBDgJ+5)B-UOG(+WgjpvWTOxsw zggOjbgo$Jwho=O)6k3Kv0-hXGTGJD}a}U(_wmq@qgwek9K)tCU5J{{!wFZSnoc{VXOzaoVWDNTWg-QK!y)*^L%s#LT6RSL1G;f}W>hs5zdaEr zaC?5w;I>_6g|F9*$SYLfC?t9n_(}=#hH|i|j~NyYD0u9IG(9e1DG*yn=l`^Nv^v>y zGvC#D^(E#;#PuE7W$_5rHG5lE0Jn@(L{9>Kav%g|6%;_%ThX! z89HisMFKWhAq?aw3Mxvz?9ShESwN0WN4SX+)+O9lsd2TSzXW52F}UBQBa9QpGI2v@ zho{}w9;)Bj7yi=A746>tt6(?itH1~<2-pVV%QuW(zM=kP)q?v3!&8>%l!U!4EpZ7f$VG%(#3#gtCao{RzP4n9)(fqNSq^# zsUUTPI4)VLYzB41m4YddC%)RGiu5_@QyJNJKN|tmlbCGd=$>OUQ@CB<%-+=4th=@Q z>$A0~?&vn1s~?#A{d2#6?)Og~Ky8HF-0%OM&l~1`|J?82_!MUD_s{+QSPVh`~7pj|GOSD%>Dkk-(Q|z&;9ziA1zyEtZYnc1}s>gkw`~6qG z{W$mgXFhJ2`~7pj|G)Wq{r^Y5U%%nk&YnJd;_Uuyt8d>nr1$^m)%TouJ$`w0OSkx; z!Ithv&Q%{7J@cW#H|zR0wvC?n@ZeK}>mPgLkz@YI(E~@19X)VxZQq*v#dHKybY~tP zytxkBx=%ko_|jGH-S)cIJ@(e4-JR#Ex4L7GZ7QRVzW>m8@~ diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index 0a8e0702a258a870ec4165c2c196f2753cd28e1a..508bb24367d0d53cb8b541640ecb59e5c7c4ab06 100644 GIT binary patch delta 8979 zcmeHMOQ>CE8TGjLwOm__p*OJz-hCRY78;ZP@%@iaaG+R0NljuYC?>@JNknR_qO(#& zq4+=%Q#K+M1BIZ255$2M{rcw9 z*Ec8l{pQ*A&F1p`lVfo|4&74kB6>Db-3GM3CHvH=3Z* zr|s74=F9D$C)2Pxw(7rlzCAe_xBuG<%?GBMSS8M~25pFCV5KGLRAsKLQ*g5noov6* zPFZT<#Ly-yDUkGDL=K6`k@BU+*|o2>znOHzB1Xg72ojXoddf98e2gQby4j_>@Tt+5 z{lS}!=te^J*PduU+1VJSuZ1#uLlHxehKtnBL|w^?{ImX~?9`{vJ#z9R51%+Uf=IFd(<6$_y5%FtlC%x z{XhQFJUW`dt1mR7|Mp*-109wpnLw7St0Y4Wq@(vFuq~lF?k}C#!7D1x)}TSt|d^aPFe$Y@s`JkuWTr#G5=W~X%f>|{C;zbr62 z7P~)vv3;zosss~iwnhVQ7?Loq6h=!Kn^ta9V3)yaSRkJZ7jnYIVgz^%Bw?H?aj5#f z*{fHZ%ahKdM2bQi&jREjz{RL0x(a%9CwFlToc@GTwkC(<5uIRIAyqEu6|B9~mvV*f6*+ZpJE41#@uMKV!k z9g?p)8>f}*Ps{!5r?YagVx)iz<>c5(4hFEOF6UJDt{=8^WdhGU4xx*y_bM1`SAH5dzOEHw+OYz#9H--UMSl2syv3JgQqi;Z3wI1e9@Z$yI!Ci(4TTX8^*)F zJ@Z_9xEraehdR7xp?5w(2r?@R!$iIW;L5=jLhA%HEykr8vq}*bkl-Ud1qrL-0XB>? zX5$HSUpPv#%Im7D6i&f;76vng;EXQWDIxlUAKZ16V}bjB9%&z)j>R2_<9Pp_cee++ z3=^i=D+dB3;3_H@HRohBqQV;9*10YNlRio+3XUzw6srPxm|T>Dv)-o-0!ELGslkUp z-UAY(NlPOVRFVBK`1|^wywq$i#cm{trPz%mFxLjrf8%I7?X-?HgF!4u3&D=wRIhvn zMHms6Ob1hT29yXFEg{&NEs5m84iGZu!62;Q-sUQHn?j~w))FIE1CAv;M?7lGc#Y)2 zNuv|9pZ~u3HH`D>_;w+7ZgucEf4KglY2SNHdACRLa>n*~5QQm%hOLqbP(g1cRrr0g z13wt68jExZ^MK-UC2Oj{7Y3<@-$JrmOUF4fGQVHKMi49ae|oHGyMi}X*RJ4gOu?lb zphq!^NO*UF4vVrnLD#*KyN=UR5Jjg*q7Kd`v2w)}4bF_%Gc%X4J&qGUw&J1bN|1tK z&0*$}$rk$>204xMmfgGax*JKM|J=jv>FG!Yyx7IfkG5~yhWT+YoxUPhczSjjIV%mz zOD=~QXy8KIX%q1bD&A3XWJ=(mvk*{qtKp>c9*c%|Pt`mCAZj$gBsSI?AQKv%brE?7 ztgGY7rPW*=ce#DHKG7bTicl?jT=3{F$kMV+c!7IHw%KXW-u$WBndk(B5XL@O;1ISvxWk~XZ!G`&$g{q&tZyvyBj@_Yf)nS+Q+9o0S#{xA-&oc+ma$vM`o^;O4~6xO m<-Z+x);E?rZ%6AJ%lgK$zOk&j0sfzFEN=GfJsZDx>wf^8>Wh3&y zf@C1o>cN5HM2ZNZf_T7cjpN#ZgCGtpX(uJbL1vDue)mt`Ehc*|_rZIE!?}0uwb%N7 z)_QN;IQHio$6opEj{NdB6H)wz+2bsQE<$#k3F#TCbj(FNhiX&s!Au9hf-%pxW?^1IW! zlb#!KhvzPLXJ@Vv_spg41HxyQCNf;izZ9Llh3jw#aXCq&G6z!kj(A#-7hD7R>iO)XSgz1+)Waxrl5wk z6h=#_MP*MVc&;fM6-7?8w#bv6^+oFvt0HN~S6-jutwzk@ z$i1m-Mx3W$ha=zWo;;=fS3b4(^^3bNyl|@D4P0`T(L~}vnb{ZPqH~3UR>`VWVJx~U zX%@v-L!Kq)khJ#{GjYywIPv}N(cc_A@ZHJPR$X=x^Ru7-!lh@=e)_3rF11>6^X2NhMFVUVSxhFY5(nIA_A;pylg(<5vcFGSafds9o1X6* zVHbJq4cFhC9-hUdfq0P-R}*mVNwQG_6u?9^jeyRTuE!H}Tg{9fLmnQ0RHgW!QAZuf zuKJR_4Ib>}=Y5Fo^dinbAYH^AcrpC(>F%-NXMdXRj5nX@elqDB!Q&ETt>6ok4Od_4 zPWHxXO$v<04tytV5K4g6swx5p^JZC=<4S7HU<(t#btw?rtYZzB6Ea zMp&6L?t^j&q&e9bt)!@BSkXl*?lO@Fhh;HOpIOzMUKQ z^&hA;(n|ZFmMZz6NU(v96$g&D2_2p_6fFd~qE0SKTa-RQF-Q^n#8j$_?Bn1@tV2UgQiOgA?d3mpUcy%SNo5+HZ* zAOV~PBO`4x9BG||2Wz@0P%UQiS}{J9bAdD~5sX?S0U>L|T!E_*awTLpyN`d;8?jHx zY}LRMjFQagFE2w(wHo20$hdL2RI(m2>{KoS2%Iw@43mxm!~t7YEcADUtyWn!(bDR} z&9_^(wZ_)*2WK>#duRH@T*MCaHT&$47jRQSXUWe!h9uyIEzj9)VHIcaBUz+i;r*y) z@-k--i7|GB7DQNG=*}zw(N$z{8#0?tJfBffv}i{;}>b zgjQ%%2qr`TTiUV&fLaPwZ$urGDwwx5lUi}gQx!oaf+% z@4ekUu}9&w-6vjI%+F7$SS_j68f7Wqje=1^K~&dtVS+TVN>Ua23NMd*st%xY4|cI` z4X##QHsR80#m%?jn;&>#YjDjPDGj$@ot|8xtE3uob~{V-DAKT#w1!tJ^6;gnx^sOq z@B&^BeWv^1%tTuVbCsJPQD+znhtZ?rcmzgY*{YdADK4wKEQi8NOw#-l%nAkQLuDKW>){Q)KLS@H$sU=?H>E^x^ivz&^l zqDauDLqhOgFpe=K#uTQb8Ik*IlV-@Jl*LBKCEgBS=pNrQr!DQnTgVBlfkDh;oJFV1 z$6yUPBOFy19CjhkAB7{vSivZeCUO=00k32jd?JM%ZXW19yd26JReFz8Y&GX5;2Ia^ z*MRF=IW3)Hz0~<5zZl=Q___Sh#g{H0y|CSfZ1*ACeaL)8w+X%NK4fzZv)zYm_aXP+ zTD?c*w)>F#En>F&knKKXyARp!L+-PK+3rL7-Ny1@yAQ$tK$~lceT)3o$hlfKZucSo Wb04$ahx}jfL)`e|hY$Sv;J*Q3x!k1y diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 6c7d62556e0c77b87cab37d679aba0600521f528..b44a9968703281733898d453430cae901cfe966e 100644 GIT binary patch delta 1979 zcmeHIJ!@4#5cTd0sL4YGB`Fkg4M7M5vmdiNyIlfW1QNB>Lc)F`f(n9#MGPqZ17Qn6 zu(DK(aH|NGHlk@Fd4(jT3Ta~e0qzSCw8^!x%T&AU?4EOG=CHfV-M!`RyDukMa2y}r z3w+86nu1jxMAR+Kzr>#(PX2P%ou|j zD4^B(@kaHuHLE$lSzVeqH9k-s>&N1YJHvOs=hxfST=Q~>JYT6UMu11hg}^+sNzUfcA7nVc?R1*{ z>O*Z2z-z9gHW4BZCULGM1C^*KD0=@=b7qfxt6F*Fjj!a|KhWrrsr+P>43<>%&J+#7 z0u&+^HRle5qasEoO<&l9fl(Swav>=r6&RC@W(t{tfGQg2pign6nO`Gs3PpoP2VLGQ z2M)kU&Sio~ou(0~Z%Xb;)e4+<*9jeshXd#79(hz#&n(p(l;8kPqLVBr7BDG~JmT-> zh$y1uQili$xOYXU4lH?9_Jd%5>RK1Q}zQX90ZK#c&{^4S8Qg-45I% zG{4#+6DL@ytGo;>f8HV^wZ!59B?F5fASvlW2{Z}Ico=2H!PK={p;Y`_UfL$zX1&{4 ztd`nZG&Wg}&EB}RFn|5Z)wzYX`TRS(t#V_xC-dr0GTbUI&-BQ6rl&iYr+3KlBPSj? S@yLmX{}lhziA{0h$Dv=4Q%0Qt delta 2017 zcmeH{y=zu66vn-I3*y^S1*IK2^!kEAvDkc^wvEfKemi*8+Xi))`tlwgHHgWe|4zylf)GyrCa zDkxpuT`L~7s_L=z;`GFDZ=g7|eeS=wHL~!vdh@NAtzQkYC(FfHb@CmXDZNGQjMRx- zV>kp)9Aa>k$f8#QtMlvZcztY(-54lSa$I5*PUuDq$wn|_47Ux0u*&Re&wOCdi?RW= zS;S;AT5wHeMvCa0t2t<`ceK^}J{zgGR@mF3-N@QUcKIJHtg@-jMbk{VOWK55DKl4VDhb5G!M1g&xik;paxGAb<`Y->lW>0fNPUhH&U7G(s)6acMM z0yr2aBW53B@|m(Xscs6Ei*^s2Ul<>6dA&Nf%5InByaSTRbtE8TttA~?prD;fq{3dD zB%%#UNQKdXO4_3nNpi9jlo5OfeIJg5q(hF9d&R-oU@+2c<#*ZcC8!Q$gBG>xihnK z?m6fGJLjJJ-?cpWqvgwQTeF%nIO^HjU|Pv#bPbQFLpd_0kTGpg&x~Y74`qkPMu|>x z*+F$Mhqa;MSDMJW{cPJaWOO9zl%GI#j3d zh@+D)AaW^BJWd%w*wNxU2*=@=7pUtDpuFWXWWYO1?4}V8Mu`^3N*VJBi>xaIslKfc zkGVEURf2ycAJ1>Z$w%;UHQ`>ecs(~zM8%e7)(isRWby8+$z6964GmKU=JyugVQ9{n zM{@)zKD9V1J-;Q?Rb@=m6X#}TkSs$s5%#%jW09@Ag}Lr}HZX&9 z>S!z1`ujz?b$Y44f8|=~Tx+7UFo3d|%q65_#)%iHVY{FgR#o2vE7p7pJ!28p@lZsz3QL)jixeY_n2kLi z^P{?+Cm02@)PWE^9jhdT&P{pq2<#s=IM1{3bXqNkohs*dGNpp+kohZ4B#5R@30T98s0a(MINbn;IIb?%bd@oH^s;s1mt{=TfuKZ+yjP z#8X{x(cvl8wWDG#h$fcCj1kV#cGU2yMV_`Tc@DmmD^)MEsM)3R&TJck-#E7TIGQp@ z)Qda^9XpQlG*94wf^J#uxx&WUh8d@*YoXXO*;xo0!B7|s|2IoPqwmo$nBG{xb>cl; ziSJNU&GVj8(@=&lOg#4l0G)i|*B#=19#$H~d?66@kArQ( zVAkD0{E-n>TIrFxrCi7I{T}IR;+T05EC<~cFCQLQ=m)K0Lq4C6HtjWY9i>vAB;&}; z8@{mb*87?=)>ZcaC+!CwfTjBDF TSV`O9@~K$i1^U}#e7vQ delta 224 zcmezLnd8+pjty5h4Ku5fO-z!?P4yE~3=ND^4U8-d%`MH1)6x=+Q!I=uQ_K>REzJ!r z&6A9cOf8a=4J?{jxwf-%FBthJ(!VC-<9$D9b zRMtgCAaNbU>Rh_#CiNZbOko^Sw(+aQ)FKajWsVlfGBpKHMs$_M}l C7C>$Q diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index 12600e683c5df5078daac27d75c93cb79ec6d2dd..73f6f644774930db0f1b4497936ac493f8ed15d8 100644 GIT binary patch delta 33068 zcmeI5Ypi9*Rp)i?v)yTr?WDVHC+TyJo#6PU$?*fg~^w{F!_})T_)?O><7NTR&R=h z$aN?yT_hKit5p`IuwEKxQ%;3cl`2B5&BedH>~n9N23HhXr@BnuX;r2WbD?}?vesG@ zp*a7{+dn)Rc;@0=u0AqNDQZ_3ZJo^8_}Z&7n=Ll0ey@3{KNw30TJ#us&rUe`tNDV5$>t%7l?Hs$$q zPkeYX@XW`!vs!7I`}B7 z?xThtx~P8i+uyUPcf1x&c*E%U`S-tY-8y&T{J9sdJO6uM4KM$#BhBNl7+rS$lh5xS zeCF!&zx=gVEIwj<{*S-*GyUHlH_yFwblH!7<1+^z+k1)Yo9AyCz54uXUU2`$_b;A% z;dj=ioUqWAyOwOFr7lCEtg*t{+7~H$)1C9cLl>|8$DL!-Qb%@CNg+(7mGQBTWnsOw zMeTfY?dAKS!G~s-t&hTX`?`L|0 zg;IX!Yc4|LbL`Phx4-2+cu-TdTDqs#U`tK0K8 z-ZXm4&{Kh0&WCrLoV`Yjt~@sNNtV_XPV1`B)@u&X+L&wYO*B$;2RHQ4?5nqp9Zu5Hfkf9>a=<7>bB+}azvNB*h(V$8ud)?ZJBRo?GDP8l4|GReTKhFC1{=c=) zH&1F_z`xd)jpETS5f9<|+^-0*hd+_9Yx9@%O zy;ptWx2D~H-{SjteE&T@^5kPrKJw&yPrmODZ)l$Iqqod%dw%W5-#*bw0RUyTWl+Fd zO@8*#=d3_tZU3F&tfsKjH+9j8gvpHy^g43c(q9{sT+mKB2(36|T zXLr1HbT~RyGWu0s5Oq4N~vp@V_n_nJH2h4&}uGtXN0kgWfz*CJF zZ(Y^wJh}OLY>SYv7s*E2*vffP+3aluBWGDPyLYjXi<2pw6gjwLb*V#$ffV0jUc*sH zTh1Q3ZR_dLq$<2@s~S)ni(&D$5Qc+SAZ-J5+ zHM@^*o@nlPX8qXgiVGW$j2<00r{a1nzx|H8?|bLFzw>Rk-#2hY!@;Kqwk=(M@9F06 zZ`?RJ8CY5)e{=iWnsX0tZB96%q$|o-Co3&d6)1YV;C@xLPA<$o{nhrK##G`(!Uz+* zPSkqA0|Rs9%mip~hHJL|R@E{kA!Jo6;GN)9%UV=Qs8H6aZa)3leSaG;Ynqe4gue}# zty_P4)6LFlvm@q5%1invf?*9*ye!H|ENcpK;CLyQLx`?Lp;SR(mn!Wg{K=$`B0$qJ8Tn*uIP1rGdiR)*}#HZ9Md-ELiPz;-=%y~&W-U9NNId0+h1&8sIa z85^(|9Hz^P03lV3>@myCgF{atA$X;L7HMPY>*y+w(sz zZtu!+bLQg4O=Ib;tKoPI>5F|RxmC`WNs%LJ($nbAH&3)t_1=wBzP4n*0NbQ1U*b&_ zxz1Fku=s43C7$~2^^cDxkW3mauW7NFNKy1+dAJpteaUUCQgXUKP!c{r={i zQ>A-t>$wXy_766%m{^-^5b!w83hk+{b$ca^EvvdnI&`*K&pjKbvemH?wV=}0l03m` zLYYWsK}6Mj<3$$UWxeD@K?=1+pkfp`YeGszRaDJYUm*#1S$%*SY-7uTBsg$v@}OG{T-rk}+rNi7 z>^b3NXnk+JxN$R~umqU+Xlo$}g(+mNuMY$zS@N9)2!I5vovw+hKn0&#(vD)<#tJSJ zPGo^MDagocAUN-nHkFIuq#P=j$|A!McQC1Qz5%mEbL|V8cT5M&&hh4(nqPZi^Vp+mn&P>Iz*?M2cN`G=O}GDV19932P~(3+Vhf^ zM-^sYx9bmXjH4t?7+-l=OAwraIf(=;=xqff)m*4Iu3cojIs`rovM_* zWwf(VMKVO>Oh9hSC|Ot`6=z9<%<2?biZdmZoirJCzUZoLqQx(bUfXMZUeFEM1tz=Z zyWX&M!;UX@%B7@6KLjVLd?psds?mDkUR9u>(B6RD)!pO%)>HG`C)! zzKdBMbh3eMyOhobR@Sg3i<*v#D>y}41Bj?4+fdrT77+RprON^Yc8R?Pu94G{ut0EJ zkRwwZ7k`n0pc1nSuZKuE6{{>09X29mTO+}x0Cfsq*0L6&dHSQ9Cl{DY%+JsuvZQYSFmgs3#AuVdeF00{&eJ|j;l5WWMbr-hwKxI*D zLIIg98c3ncTbL|V(Khz*rw(k4>F*hlsL-rYEr5)GlAw%CM2IXKQr`j{k8AI3DM^7; z*Z@xOn}A!Y>B+{Bbo1ahH?N&d-?#pAqiO87Ty$Bj-!i#xDXaa<`WxN|C9uS&)lfp?qy=yg=2t z-GJ?7FnR0yx29C|#ZIB`|ABobQ$_lGqOMF0#E_X3Oe};)1(J~K(*jkoZbG(?l|(oI z>JJu;N+7gD(iXId4l|hp$K?+>RR2vq#Cs0x;eOVe4lJ!>QYLL%Ij9g-Pzr$nk`hVY zkV?Wl7g=@iesR!fRlLcnh>lxoVL@7drM95}c7(V&<=&Agsr@8+ZjQUGX?s##!OsNJ zh7`o_=Gl+#JKw+y$mZLh-MV868PaEaL8koavs=f2)NuP)1*Rd6@hS*wKvphEh2CM| zfq!se>)wsm7L+|U3Qv*FcOv+=RlS%>!5Pgi{Qf#HlQs$tMw8vNDFpyW+t5*9faoYa z%5Kr~D?4a-?tUrv87=1SCz_`|vLz>4l!nes)hcpyO{+sBcpOV*tY{>-*_r!VmYvNF zkjCCPU-LJzgFQABXa%tjq0(~x#xFx{t#Hy(IB`A+VS>u7dsor94w8z0UjO`P+;6(s z{k;u2XqoJ7n`eGx>&7iB${k^v=YM4D>Pd1`8dXKrOz3MlHYNFzb4k!^DlTzdK$8Kn zP)84S32)$-4i$3)*Yi-q8`w6nm++^n6qz^EhZgQYMLn@&vHcmgy8$RCfx2n9yBl?HH7S z7m&@*{xlvpU^~v~%Ue(Z39)D)1d13>0HKHxEJwo|D1fg(B2>^sIFR~$5qYB3Ybagu z?hr1t^2u<}5^-^9#ogPV9gWLC914a^3742N1Vy0XMW+GmR>h^1F&VPo`ribs+G}|Z zIdQ+Mns67_8N^;@L#A=~ry3|XbNvCV(E&^n=VJ7v*1 zVKxClq_2v3(15$jKzX5ZK?>(s_TY4{#IAYp_CvK^|4|+4$PHZBLr)LvSZ;mrAO3jj z>T&XHpao>BE*c4er*Yj2Z^4y#BiseIl8X`n zbbMCZ7)zyV9{MIVVOJgv*e0Ao`i=W-H`5DSs(JkE#tmZw&qg_x(alkf8l;65bcVZR z1XHFFPjAf|J8j(x|40$&pnw9|(ZRtw833Pnsj6i|`*p7ii7=u)3XZGopeVBXfF!j&tb=WX{u8r@5NGdI&4+lFf$iHTGeMlaOViD#Z`-`( zR9Pd3a0NLSI#~t_%_X39Az6&mOKvx&*Moq(pnVK8K~#-EwGwaTT65w}_{athHSgWk z)Pk^_vV<(8eNNYx9=k_i2M}`EcXy#ne$n*WkIn9{Z@hEbZ@O48n$K))ADPq!0F@}o zp!RVquv$TWNQ#=mqqbdI(4@$wK#GE5mTsiU$X6tZ9UQHI+u6=8d~E$`$XOI0+-g`j z_#%{pQI>ETZCf;yp=z!?v%Y8@44R%NhykO`*(X4@_0iSPV_-# z-jm#rm?MHBnvGQI1&F?;CIVVVr0kF^OWnFjoBaqIp&|uxbgd*jL-$e!QzF`8fizo{ z%2f2*7R~ORr0ssw%iX#M&F1wxa>tpaDi3xxAa9qRu-yi|fFL}|Tq_uIezORW0~+b> z7Ikp5|BNbe$ldy{r#blaz~1e{&B?&3mS{~{Z)Jqer0eE&6(iCw2tMi;L92+q)w~?* zASXWPTp(h#BM!8Ys0<2$(u%|f0hha6$IYX>fJyL1MKCP7Z!R?Yv5=t*_juBU!}Z%% zKla4tyC(fc=ebTa({tOGjS-Z1x{2-N2%#MDl1eTEU19-*63Z*80AQI;V>`9MtV9Xa zA{{#kXV3l--qu>qL=-Au6ioaQ@LfU%$(^#w!mNB{1BD6+sn0BB@--W3+-om4 zk6p3-=1H_PUP3IO`~})NvK;lQk*yFPW|ozeBBF!Z zEm}aa*Q0}!r$^$UtvNJDctmbPOeJ8@E;0+5L&vKO*k2H{{ibs>FYT`U#f|HC${k~u zJdGAUR7%N?GH@YKA~FlaA>e9tC4!$l_SdZ_YG8!mC49=jA;p6ZG;lc&^&AHFPVZND z152}Abw|5Zz~!|{DE6LvSrW{dV#!&;nu{3}SGxhI)2ZwcR-sl0Zz5-bhQKos@`&WS zTd<%~LiVr|*=Jfzh63Ytcs}0x=U2Yq&O*Ckwm~&^7^bAwM5Et-| zUKEX1`jyI+aQn2Y8u|3TtdzDDFISQjGH6ZFi>=Vo05PG$9Hh&V9Fy)|O?k?ysZ`;J zQE0U?&ceI)`YsfVT|>Fweh0>;1EzK7cd)}YqYMQn69A|v18sbR4ztW6B|0K4Bh`h# z7U4^Ua8|*vqAwy}Ydp?I@G$se2Kps%zy`LbEKq&W%0yLW10*Se(nLpEh?)FQ8#o5c z&I1QM@qUYTse3SYItn?z;_MQKHzpkR%%n6|esO!z zzI))!n;#lI+J98(px;sX^xf1$PY>*0iQi3|f4Fhu#B^YJvU5DfYNVtNNOh}$2H?^K zPgF60>cDX?1=fkf(O~IGfOPrVq9H-(YM5wpWNG}Y(?GYp8!U8%s3qdbNEi!59K`EZ z1D#z%C|fiTCPTKL`}K`?O$V$(ine|?$CR|X>ym?n$3foKc3?ACR`DwxfP4T`*7Tn# ze~@+{NQ~f|jMR>M04#;qHl1pCjNUCFcd+!`(X1jCYsQ!b4 znT|Z5NI`!>P6u4K!4u(Q$PhtxK9ATRxyjS%Ay3Sn@tpGlc;e z(`8n4MFX7zbf@4AN^yD{Z3_WSL;q}6=b|09>_4k?s5l$ArH2Z?fvq$9$!=g#xh>^x z9-}g%54vd#sn>^Gg}sIuSiyl1fIaAX50N;G{GKo#5rYHj2u z8D$u_k(9WP$|j*8dl3f^{Six1uMl+v@TR2GAg!9w3nDu(EeuImAXY+4jT9%Kvacz5 z%M$uA)=RYIRP@_kAhH3oo&FM+d&QVSy2?dSp=Z-{GMEuY0SY;U@&?$j;1^IRa8qf( zwa6W|5_Kh&5N?HY!ig=jCmbf?QBQbm<>G>honDMU_fk80oXcd;MD*Kk&fK*r$Ni?8 zb9ZgtbJ~_m4#wyQA`8~iYSk!C_%oeQ0tjj)-hKh8hGqbP`v(}4ffG8!Klb0u>QIkv zV9WMf^!v%7;Nd1TPGFdDL&z#)FGUxaRlsSLWzdc zd0#Du3qm6;9y-eW41#&Po|Y*Cp(VKoSr4o|3LRL zAC`D}bgI{M^U!r0YC2#uF2TupLPH0(>~94tO6UzhKk&-L4nft~hWHw_4Z(1CX=bT^ zQnu~=A8@*XgF2+5Bnk9g(L=dyVEZnO7!0hBIZ;LoCX9#~`ZkJwFSinz1$f%>(<4+O zJuqK-sbCmGK?~UDz&(Lu4pXM<1M381biK45m95*Rn^wb~`O z$=y{n@`>e-I{NV7~lt+8a2! zL(JvCeLXadFtCwvA6@pZOxWhrzq|dO=1Y%le$Q&Obv4?$8f`r|eSHX;LU8m=1g}P0 z2gXagzEuaGhh|Jyqphpa)_OJCx*Ba=jka!}PwV~BcrPjbR->(}(bnb3T8OK5Aapg_ zI{yJ21CyYO8KBi@>uR)hMmM6>r1Xx`u0~r|qpk3NtI^igXzOaU^=0O-SEH?~(bm;y z>uR)>VUqsw(j|?`WMFo%>kBUQnEkW0tI^igXzR=Tu>93%>wK_sHQKu9qOV3<|BZp# z)oAPT%5>xW3=^?m;Wn8 C&AL1Q delta 33104 zcmeI5f2?I!b>DU8y?5UXF&b>_v4QaJwE_PekN2;$e_$uYN%#W>v?xgtlaaWAsCcX@ZIy^7sA`p_tuj*)sR_kkw-BjT zm45a;_s!h*Y@e+tRjRgkEaRCsd+vJs$6D+A{jRl!FaP@N%fCMR{Fjc&cYUxirv97N zT`@_aTcNyk!RfAxI(Ze6jZJVexLT{qH;wS;zkcjj?wq?OIVYU(O{`4tCMfM3i$#~5 zwbGuw@TR|ATy*|^pN`HO(?!>%wylFPHl@0=m9(7?R(G*d?ee2ai_SlC?`w|Eqit32 zu8ztl;~W0hdsAzzysxZE-SVSKi_X_?zW(T3g_v5aVx=Po8Ze3gV4_!0)NNLg8_~sMm#RJEV&TWj*CmobC zooTw3^N-fHwdc^Hu)`ipi_Sln_KwbjwZVBWW6;KkI@U318)B&*|JQDrTzB?8&)&EdlsbFn*&EM(#azI0&8^=Ci#&F@-$z~0$E_~t(v{oTF(;u|K%KJm;i9ay#h4cyc}eaGaLXJ7TK zfBtWuKlALrJTf<4h$LO7gwv*NH7B4=h*H+LV3nGD0<*%Rv+@%s&Y$|uE3TR=nSzp5 z8>?#5Sr-Er?m5b)Hog+WC6^X0j%`ii?hXg4bsuk;yu3g2(#Z||hmKEPvK6FWo$GD= ziQ^MrTD3gmKRLAOHLH)wr`z^-Up4vOkp;s6_s_j_@=J$S9r%`plP-QwcPzeeeDV*E z%zf-+Y@15OwlkXNFQZa5A&zUPDje&~V;`9n)-0}l`Q&w1&1HxcPgWB(1wo?Hk`Sss(j{}y$UTapY_p`%d>vL-yPm@|Iu3~m-thwC3p1y;I_%J z%bzkF^_{mZkNU-ztPcAdw=WO-dDfPP{KHp_T=_2VSbX+mKG&$6_H}EdZCYM!6RHk3 zHa1w*NvYk^p-YPvQ;`qWHmWnC>5OU`BX#R*DfqQlQSg@4@R&=B7T>sM@`#&Df^Q1M z(pq=MB@;rURp(-&%W zx5=sgo{LAW>)VS*uIaD8f!}@Zh9j@&&*ZOt@$%Px=i-q&`>QS;SmG`nd3pb@zINbi zfA-?;d}KRWX0k<%%@|EC^&xOwmU+xh%m4?np4 z<+~n!_yg@rwDHEz`5{gzL9SBy=c^w-@_rU@Sx)3HQwikA=ziF7A2y z$lrg{US&Gpbk;VZt4&N@ZAArOa$S@uiN!O|?YwV$MgrHqGZCaMj0%tp4Gis4)pkH; z)8G5x&b5or{EMxRO=eXTGPSWYvhn;&N&!z;=Yat#y0(`OZ?p88>F-bGvS5dhhnEhYb|&bWrg>rj*IVNklNTe7}`qFUoyr}|63z>%N% z@vWcOo{LnQ8Uz4%tBv)}gF0YYu9e=T+E$CF&Tf5qGSdz~7C>SZXc#OVAa%8cTZpy= znDp%XhQ<8dTmN`6FBmt&mP&SqExqg~x2OG|{qWXpC(TcN-(3&C-LFxX>0wx=eKX0@!F(<)$m}G(N^#) z?xb=Z1hQ-50+-^gDwATHnoNgqzs>|Jl5eDJoRz6d{ZqSx<9&Rx*GMOLExv*sCtKB; zWg@kmG|QDUBowpTD%YVHsZbxGPnJ;ftH8@igSv9Fmt9=kki%vJH z2{r6@@!_v!=i}QJTys|o&)%GfjmV+JR{V@7(O>3Lq$7PYm>T8 zMRb{D>uwcHyy0q`hD5^B*(dx}Bf3PkLm+DUtN;1-4U0#w-TfyM;tqkyDhJQfM&#&Z z(T*g04{fydf~8-c%nN3RXtFnMwm)YT>N13|T9N1};vT(^;Bw2#&~(RSuua$N5>JhYE&&WEF`QNNi3t z4$+Ri)z&xbxuIlw$PISfw7u+YH}83kUqw&8Yn_o1`7DN%LhU?HluhsMTsI`TS%?1D z;AxHTqG_9^Mw+Oh!JGn|sTndia$*pOZ=GzFGC{zv=AY zUza}UMTK{IC@U6@&t#wb<=O5D#EsFN#lh#u>dx}G2z;pJTE`ku2)xOS1F7T?bmoXd z;6`VhM@Z$30!&DZU59)v+pek>lT+KDn#@ccg+Xp5Y<0$aTPNUMRR{djATSTvV*r;0 zyKVo9XLs%^+RfnduKqWk-MMN;CLlCcO^5hz>ZSq(H%9Z;d<7VGgY6|Cn>CTFkaGG1 zyP;u5wxun9$*ntpu9Xo(f5* z^x7_FXtUARgrXq%U?Tz_)d5pEDybXW6IicZyzl9p)yGYvux7AaFumH#(&HZe639}o zdmQ+Oa!R9{U?foAM*KHdLlPSyvJDf}=H#}-Um`kOikk^&PXaFsooe%mS!?0~{PpR{ z%=y+gE%BA|3fZk9Ah$NOz}46(sfPO;{H$O$^`E?U`u3R|wb~6F?)BGAUplick*yk^ zgr_DJ1Qd?YX=F>pS7H?}_G;==QdFdG&@C?)KuD0Os_bv%BB_Sc z&%U!_Z+o#uYUg`zv+t`06oClaxysd!*PBECD^>u~RvKz&8_j(hF43z5g>Z28ids_` zBGAA|3-;a0%|=b96(nA|*&A<}-g3&xQ+f?g=I{TJQzsu=`KxE6er&B!DP;7ayDv^D6~)5Zk`+IrP5u{nXjcf1_im|d#sXc+SY|(3p0xQ z1T`Kh+o1B^fHWz`kn}VFG0FwV@JVv5ZEXYURTbKcjVeg)DOYQPV*hcK%sxIPnH9_q zURJPbhJ6gl?9aAtxs!0cCX^^V-ti5>Qz|1W2OS0l)!I{?Gpbs9XnW(8@BU?<+r4fv zKfUwO$?4KH9dw`4t30^6aC}#?+W5v?|HM5zx9`OcHWj(X5b&O+Zm7>!-VsH?{BrTc zXJKr6v{2w%v;a^MYlQGlQYxcv=_Hgp_VC($b<#x|5=0G#0i!|s(AOL?XPun%(BgH< zCdN&tzW=f5Tjn^~nC&)aHaC+kb!P|SHH7)Pa`=vu);DU~EV1LOM~(Jq zJ+gmIGrbK^C{!Cg!67RLy7PpnTz}+!y2dn%C%%y{gu5U@(=6i9o?Ht;rn|;PZM&?H zT;`pKBBF`#YT}Hs?2x4`o{ZYE3`jz(<+PIN{?b>rJ2lP)U2gCOPw3= zB}A5l=4(e^5U&DGRw-*%FcMv)a?mx}qgbWUA5x&L3biZ2nDn~06>OXSd!Cy9&}`i5 z5=P$D|Hr3tP9wlu2fDSbH0b!etDqn>5S^AtzM?p2=JWue3L!ch85+L(4kZ%O0y6?L z<3`!pe68t@a8gssw@C$r3Zx(OmRjTd>w-eT?26tL%(g>D_{`5v<=j&P=u*_309;vE zVL;a)X`#X(Y;sIjqEkrZHzTnP6DX6h*(4>+Yg2o;XnA~9{v@aSEGfEL1 z1W*>LIZfyvx@~*Eq*1ckKlaI8SumP|hU+i<{Pfl-G7hEg{^_5eUOx-10>sv?;q(m2 zIVvI-Dpn%4v$xg76gsblm$P!P@!K&6vs2+o9&)hp6H_t+$8Z0^^u)ZdE4@r+GkPst zhU|5nIdX%tpGkj?E=_KbTcH%XziJeJs%yFHOVsF-CTk+#MqVi)@iJbVL2!8Gf|uFS z-~@COSzqOOp;cF=TGi#2#Wu8vQRDqDe`(Nb2z#jE_R z9PkR*$3sIdUF!LRD&h=OEJnV+*s?14Hflu(3jwlVR!axzKUw0aXb~=X&k!ACyIfVF zj2N8`X@PKwR9>*%^*{96Q#l*Ay5cza+SUD=KRcbxbWMB$Ws!qCr*DvkfnGF@ad905 ziY0UVy>rtCNCN01bwdR$X%k&dnVEQ@kimVDw!%~M$3)Et|PK! z7xxiy!R$cTh<~Fd2bcTNbJ^vLK4tCTa!6KmOE#DTxhGx}+A%$FyxB}f!%##TwlvY#s?j%%ffoS2n1Mf4e{+8iWL3m^pr)KYDZ~~8m-zV zX(h8cqun>B`Zs2Gi62)fEqC1N5TH4*Y-E`bJ6#3dT+m6i^SswJW!tw1x$LnX~+v^78NXls}z%hem zlN%@KNd!9Qw17h7*A8J1notMJ$slvn&`{HIh^`2OAp*MY3m2!K0dOIS8_8j!I8&L_ zG_oriC`mO9oe6TihooS+>o5K0_FL!UMm2TxTv?l+**&%=S_+yncfM0;s0|64MqwBU zl?iOG-l-MPFOn0Cj#_t2v{16T2br4)2tV9AnqQ_B4Egq6KkBM0#Nxgy}Xd z$S0&SBGH)HL4Rb`s9Dv2`1tPYXO#CiK9>bT;sn_%Kwa=5C6R-heIZzQOChwSCt8uc zX#WL<`P6dVXj76ayHdDDH3c`)RuX8&hF*g*I^T&%SBej4Iy51$g@V~MNT?;VkKMoX zqj%w6zFOmCg7<F!aQ z3~+721S|lJ4f@=~pFsFaE7X{ zqFICZOJy)>0Rpx)Vj9Z0<(U5 zFl&cgw)8TcMRAV=lc#8CAfqs&bOqo;$fsztmX=|X;6p?N&%gqY8H`DP2?K3(=}9#7 zp4YeE$3&}I+cEMa&;gP6C|fbz#D`L_qbK8l_E`7^x*e2iq$nM>e=%!D6l%A%lEt`=(R!ROQ$F%w+nzY+rD^DzGbEFN}QY z+)zfiUUi0ykLIk4`h|Nrq%;=Z<)M65IIx)W*&9zGgcLTls#R0H^tm`gBLTuMaW1n_ z1TA{|z|HGQBUP*heaZthJfb9PIu~gf&Es{HfO{&v`|Vf~atvszk&`9$?<_?!qe)?y zvJh=~19KnpS;0P%-fwRI;B3^gmTQjIkd|?i1idB-0F-DE=4P25WjrGuaI{WahHu*3 z1Br4Bc&sQCyQ-s0I@jP=k|P8(7qdG$WRXuPta^*2m-W_)>PI~U*MZ#>Y_EK*V748S z8jXm+1WFS83#qbnMr#I_D3cKXq94TXnWA%-`BF+5NO%;Tr~+qTLW7ge$YbSWfL+(Y zKZ$dsM??`xPGPDxan~-?E7Vx9Xa^rFSR8!pWxs}xY33f+d< zO-(Gf3b&xGJi&+?!hsl7ke1G$Wqmg|hmZ~|Ly*g<5U}W~nr2vre*s%7MpiJpY7Hz{ zq_{@v+M^wqE=;^U@dzteY%cOwNEcv2;KV>*VkDR1Qh>?GKePZ?Tm{f;Y66>E=adPF z1mc+k9bqHXUgb}t0gHkZzP7mfi@WrUF>f(uw*TtqsV@|)t|P^ze~DAxt@#%ZNeD&1 zYmR0RbkI8fhKJF3O7vR4oWhu64$muk_T;y>KQuW#eoKd3XZ(FiaS&k^&QFld=KZ(n z<=-o8@3P3aM^QI7r84W9Z!inmlx=eJEVmTGS`#Y+H?-h#T##~JCy9`ecrGwN9#D^m zD$FoS17z!39tkg}H6Ssn0x&fKEj$fzWnJALH%}w$GNFxH&aRYI5Rl`sJyJ3%ex44& z@qxnv`A{bwi_au{aqlpkkXg86_JrOJEzk<6phY*i~}52*aoJVF~5qEv?Q zgD^Sd<8j;VYIde%cdaSpebvruPwI8Aju7Nx+3UE+Z%`Xf%pt*$K$dt{ZX0j-t2{cJ`ZqjC z`}vUC3Rc@e(JxqCD^l+@p$UxdBEnH?N6;V-5jFX%Mj%%fp)Swf?J>wkvDa#w;41VY zF_FgK$bs~Q-a%3RN`K&-X&VTtv=uZ4R;D3l3h;_(-Mnk z-m`OIvPTt#Sum6=dW|K41}xnX6k6MpqsC^AGNP_xFdJ-}5tf z3-Nj(PCoDfC8(tmzfVQCJg+Tl*ARL7Q|Q)4%E`E5XpkG9mtS1Gf9ums zs1@$$pp%WiO>xM{D6@~9;=ZPTVpiDDAcg$a@9et%OCR3(@y&?nW<+!|BKm^U%!gEx z&4}p1=~UqHW<+#0KC8JI5mkqj$<2u93k|1kMnpFwq9cF7-)2N~Ga@=Rp1K(k-HeFN z3bUGv&4}n`M09^dbu%KmK3jW5JK2ngZbn2mBcdrB5-JOW%Li9)Mnu=fQ5qSjcAGa~we^Shf7(V+!- zGa~weS7Vv33B=1GiGxdB_H5}p76 delta 62 zcmZ23wOndLBBNnuRkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} Rv5~1oaMw4r62B`6f0KdQsC{3R#c#Cdtha=FKlxLTKhNDWE4-3@Zo@jVai>j8 znVMsWSr#%pNkxnr1X(7MF~exThjq#(wgzhDNTAmH%YOg0;N@U4XoJN+sLLKpc4oFi z_hem3iTbcwrnaf=YRAy^3Qtr?d;Z08|H!Z#I-*h+S>RU8wLC{6$i~u(c#I&TC`4lP z0MRFqgiYj-{T_7)a_N{!6$(=f4Lyy>L7O;?x&&cU&W|9XjL9&gmf4AH-E)x&&vd?; zOc)p?az0$@x*l;u>mostXNbgcErZ0P`0v<9aXC)josYS1&I&!*sl6+^ey=D>c5#k( zpBG9>cBzOOoe+Red6k9@hyrbu6Nt z%#*1Vt(XB3bx_ywOpXAMNMDMinIjQleavzwQwjs>1^Tp~mOTV~nFQb0S#K;IaV zft+m+5RlP|p0GR^&tUieZN&YXjd1iIGy8_<=h>{6N)+bZn99csr8F!6q2`_&dn8{u9# zCw7sAAHYKPc(Nn&9xxX9v3osm_22Wb7!H|yW%^%vSPX|jzCZpQ4@FrFHEpVDE=B}# zM54@B0uPBr37kFM6zqXjUBBtuHZ?<*~5B;&A zQq&f3SiRYX+(Omb(jpPgbjx7m+pQkuO~cCd^@X!0b8~_9`C8v{sHw)MQh}F9QpK-*aas{4&p>fj_cDq_+=rPZU^Ukw^o- z22M|zLTMx}9NWIIHPE{2OG;dh)I-pjJF&|vLE&aThEqIyaoxsELw_yMc%GmYn-g|{ znf#zY$zTyB0yi364WJ}d`)gcJbQxtHuc)Ikfuo1=ZZQPs<8ib!L}+PLG9fFs&){+r zcsHm#$WOqUnwpSztre0Rfv&Z~fJ5|X9wIFb<2(_eI$95mCj+ey{uap9s67Ld1=X_8 zHZ(luqowv-fYtSI&1)VBOUaI63!y~0WA(z8OeEEu^_oggB4sr>|h+G#jh zwX3|huN0b}dGGiNXs+?z<#K3#;XPIX&9A)IUj@x?ymvpWqFv{`S79aX2J}j`lhZdZ I3(pIG0}HKK&;S4c delta 2297 zcmcgtO>7%Q6!s)-;!q?U4oyR-G`SGF_%BI|ov1AeEmA9y69@&Qkc@X{J-b=&Y<6aA z8L8S-fWTm&D3(@5Lb&RQ3u;wCZitjBQaK=g1cd{a_QZ)(xl|zDtYhM)6+fk_596oV zdEYnh=bQKbr~Ti2+<*SFfpPO?ZU6pK^+1m3O$#FYL7(WVOH zQ-#vx#DSuw<%<`89a#VEp))_kqTk6T+im?E58wL|9scBZq<Uq_Fo2A(FOhG)4> zo2-An$p#x;JFhiQHBUB^;CL>vdN!X9PhUbif>t6HV~?|5mSicmZ}vu?Ut%=XKDl#F z?~TQd*pxUnDPdFK3KtSn!=RcpPf%QC)WJ3GW6yW6WN<(OZd^4b!vvQ(*YWH#;G|PK zi=XpqSaR%oT=z8!$0;t+0Ps3TA|#DC*x;VBJ**Q+aME;yq(sNuXgd*MYHd(#c)Zdk zmcHbkN$gY>A2%W-ojYR^FFCxr$<uc7rm;>X|A8$P6A zS6Asd0p4&5puGT#3h^YaP)VXPk`ni!cL?MbV7AKZa?=6mOa?=evCFH}1LRT-8c5Wj z@T$Js^8@7~&=onIx;C$gJJmPn?x8GRRNZIFDF22>=_o$Pq;$n}E~jm#ElbRtFw2hb z<_<3|EJO-Qf`op#D**)mRsr2zsibs|1TX_opnz*DXZ}$GT@q++JrWnf%oVgZG&YbH z-uwdX3(sFc@$lvbnw`4rNagAl-|A1(t<_~DP}SP)k`5kp2XH2ubaa*c+7n&#FXI8e9d zd(_(6q1JDAs&%^g)gBLC>A-Za0nE2I8Ch zaQDugx#ymr@0@!sc#%J5B5%JR>5?%^lI%{jbahMJJy`Bdz58S2{G-9^7llpUHaX#4kdSv)YW9ARZuef6H+cu;J>CcMt=`A5 z{+T?oybt#(mxH1Ag*NY%Y@64SU4NS)5q)f&+1PLtVsGt4TZ5!4Y-r)LqtwA;cpSp!E1x!3!WWok+(i<5ksa%7BSOAIag8JMRB;g_}{y zw$ev+#hFK(PzjYf$OM&Qj_KMGK^B%KaF!sVC`4lPDADss!UnR*5trHoIW%ifg~Ad; z_uq%eF^kxYIs{=uEv9Pf<{c&0Eoe3sB7SaFk+%k(0wVD{&&3w#``tvD8=z^+v%GiKD}#b{X}GRST@--9EKrABcFil5~w#;VeVGVm`oC5{`g`V6<24SbY}IDl2lZ z6>$0=0uDh_1%fKCl>%AcR?S5#=c4TC8%w}cZ8=qmcm2KPx9W6pjmntiq!S5gK9S;> zCVW@jsv1@CC^l9DR|Qm)H+{Nyw02QhXsl3h+fEA-4eIEfn7+=pj^?1u z`<`D>>wLJ9PNTB*HlB=Up%}Os*MUpk1XT?dmkMUC;+O<>9KxJLsSj9K&grp9*cmH3 zFy@4nC~g_q1_Zw})>#^jsw6BFwtA+Bht8Ncci%1aWf91%;j}-Tqbb6P(H0D z;Bq{UmL>=-%}F5y<)6K`9OqpRC!6@S*U-=q!mhmwjxAHJy$25=LAy!>X&=Et35PH= z+8jJj`PwD;TNJCP_6;mnLgo!`TC=-|mdZFEtF6$pOjebL#0-Qt_IjoQ!L3*2fa`1USwUHj73hFhHAx4XnGVnZ}&9TBex-NEl8 z;>-at3ZC9l*6iPn@!ev?z&XP5R+u{NS_AApqwN>@cXqW!3(%YMv-j&8`S7#6D>>lXqAMEeZG~A;ObPuY1SQ+f^ z8tl*XbnhBal+J-Km!bKGqTxAQr56aPVd zd3}oewI8{Yt*_4##&jz?IpsOnC6iMMcGWYqg`dnm9lUr&YU7i}reM;S>Kf&K0Q}+>7_{c3r2sFS{7S2$iJt8i@kD7 zM|2z9I$1hViqi(8GsbbLvzUxUB6KIMqH)?mcT6l-`x#0) z%1Rp!t5uQ6m`Si@;tbL~l(#*Gh^7&R>BkA0ro=)8+efZ%Ax1$#fv{*=XB1(SwQUtm z8~`Jgm?`vzTR_Z4j%%yFLO`9M3@L)Yic087!4}eNSI90>F~caXTOK1=MYdKp!k(^_ zog&S(^X0(IXSSc(z|2-7`&fg~AO? z6Jc(Qr)6AY4AQ5;saJ z#9}VoVRRfa!|cvLLr5hI@b$vXYIV=^iHG8O+Xc)D4#&@sV0orU;oE+K7bH)YK6hSF(e z1-2B{)1IESd?!6}Y-%cOoH%sO(*2RYxK8%3Wu$1MheiHT9|8Ms&dmKM|5xdcN~^PB zBo=(rBsT@m49ZGywNKs=TppAU9T|aH0pnrI>|W^n2WyjmiYC7;#!@_tSFFT4JS#;a z!1+hqQ^g89P}o$Dyr+tHHr4;@shczWL7S?BtmS8AVup-K-J^bE-S^pOK&Z_tEgF2h zTdtR#+Z?DFseBRP!{#l~nc3!l>EDu1+o=T$POv9fz9z-1r5gB~jGc)O58t)!YHIup zq1(hpY&u#hFUn-NIx%gA-PtN$hT~lETmEPkrX~k{%q93Fd4-t7pvG<0EN@WAz7T? zKQ7LoTAb&Dk6x8qi^Bf2Pn(2leFH4({YDHP#sc(&(IBMPz|`0#q-$VqGzw`RTo_G4 y`XdU*lR`SX5sqdd)oq5OMM$@{!qF-ufs8-9QL}Ak*^ErNL=*WfzHmU^BmE7LT!zj7 diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index 70eeecacd6550441ba2da173fefd5ca14d6abd7c..f8b7fd61cbc7271874d1c9691dbf2a76a4228fc0 100644 GIT binary patch delta 14490 zcmeHOeT-Dq70)d94X~>q?IIsWc7Un~%j~`P-S_T$3j)hG^0A99pW-g>Q~4a&1y&Ro zR>dz6t4qAK71XrsWx?#wVawvo0Z zv&nAmJ@$yu%MC1_hSFwhD0sP6d8sPhwEdtG~CW1AOrt?xDBq2ZN}4zG;J?+W?dD>b|l{bXp;!PKCw zZHW%t>Lpg=+SthE)_fT$BBMoQdJ!2bA~SMj$wUV!LabzYz(fZvf>W{roL&T{WCb{u z#`W#?Se&{E;a<{pvHvdASP&O0*Jd!87m*dB`d%w^YU;qE=pJcR5s@U6CFxc zfHTs*72uSt0B07#DOs`r$cq4#tN>>f!6{h*&MtyeGQcIXX-QOG7PyiT7N{gDX$p}_ zScoikE+p?@Rzg*fOOHk#f3c$>#m*)pETqpr9nsQ)W@xJBy5_sp;%Ez+pz`pG7IeEB z%xOh))!_M7)Tjo3Yefsy;LvDvw;Bu>gO;elnlWgm8q9N0vl{fTMVr-NxC=|GT{KZi z4rB-CvxDcy!qUm?AQndxD|;RZ;$R25UL@nFMrn8{jwY$W{XSZx1{3Olr6vGXPJkw> zrRy+iP=hl8nxO{!Fq*0c4}<_d5~A@+av=opqw{2p5BN`-< zI?}|hd%?Z~_o5j+)>F~hkhWe&w zpX(-|(F(SA0tEK{4Z!%;24Jk(2pSqU0^|OTkSHya&@{Du{3eKIauevm4RB=Fb%5k} z18CmgfyVb3%mrc6U_4nyyz)LstJ?d3>ilG&dgnegt!I-ZB8$^rPJt6@*$g&bGZkph zZU)-DQ-Su}RB$LhEjJRDI7Bk4G%@-CWGH{$ng+D5JOCcHPKP3^-vWv|w*b|zvXU(` zfa=5ypt^P@*foD9IMlEWo;tg?p&3=(wMB5+qd{Wbb{U2X+fYoIQIkZ|^Dr_w0kbO! zt`EB%O;_NHNi<&#=5L25+=biGl)UZI(=5ey@O0m7u&1*#>rN*)xMdES(i3tb&If3) zc(GF&xaC10?>867KYb9$8y*7kvvc!zA0*k`XCDIY-SdEZ{lmb0_~A^HpWOj^XYGIz z`l1meCwBnT^G(3?eiNFa9RKMf@Q_ZSHCurWb5H!EO5WwHt1)7~j zp!wBBp!umMA>}442Jq0`p!qk80dsISXkNPnG{3q8z&oEp&0^M4baO$o)!mZiG^XVy zG_ks{jVRJW73+42H9L8|4zxO#b~@!IG}{H1n@~}1LNo1cxe1jYIm=CGxe2AB+=R-v zMdc>+YHmVPvI%{oqOVD*p%dRFV&OArTF&$b&!D%fx>xZ8;T)*AQ9Rd$n)9Rs{#;Qb z2JJz~oUJeHL9}O@`okXd$joc4v6#lFUQcN~(M9Jcs9g*@h5A$x%ZL-(juULBVyDo^ z$c>n{S5{I?*;t&riN!_{orvWhq6V?y12p98)Oh+*Wedd6(`e+SHa49`_$%00FMj_g zG*BE|)vLGI{xPzy3_<6mYKw=pA|lRxgoc%lttFO!f~voMwW%$CMXLtKIB}SVE!Xx# zj~S-p=+p}RAni@-FSclBm>vq%E8+P94^&yI$PXSByQbRg0=Qy(Ws&3$$-^ z9e$!(j3E`Hg|QH3pO1-*7CW-D!&uIK2eYo7{%CR2q6|<@hKQy`TB{gyR7z^Q2BsAa z73b6ITU!Qq9qa6$k-RL|#mdFGpo?kIk+f*cX4u#Cx)gQDA6*xo9Vn{)(d!0r+Y)W0 znA8&Kozj}MWs$4WiIj9AQIYhWwpFd|UZO3C#a6Vps_BaM_KiU$j;Svkr#dILnVG4d z&24g-WS5D}DYXliX?B?!j96CTvJT5;T<#?txRg+7XWiSeWn*5rU7VUvFBn|7}{wGgo4rqZ#FB%g0~3=C53Ci}Iu6N``l^xZrC8 z$}zsOF+R5`QkmKtYTvJoxfTsMbr~~B$U4fU12wlU-Bo*{O$ z%JE5GkeRRi)>w6HeZ`O7)V@=jPNLFn+rOPhLob&{S7WzT4$|d5X>sxK32k|~(z11y z^C2|T;FLpCG&HI&S@m0OQ=b~cH!YuFZgR|-E+^QM7nSQfo)_5E{qcKR0>!Mr;*9Bx zafdQ9a9rOvaOe`#HbULCLlJpT`)2BkNOWhUh6Ew@9qbvtV>50t$1*IRg`5-ac-$Aq zXGg13%RkiKjg;aRdq+hZOLKo#AFUJPZjDyPd|Ogr-Nw`n8Mc}2%J+3fXd0oRTZG}1 zG;=Mgu{@94o?$Xfq|oqPCg0zMJYY`X8bK(?3~Ax9zi2;<#0>6p>89s65@q{=YdTE# z%uq(mmOMe~ox13eNJ(PxQhgN1O7J>DdV)oqMk{NiWfmp!WGJD`B8E$7V3`i5jwuDE zI+Yqvw=CvkW`zM|E+bAzEr$_5)GdSXAlDBPFcvtJ2B9Oj$Tyd^=^H+EoDkdC4T9A0 zyP`+s*?lQ1&$v;7R=Kexof>hDS8S+jzk9^it+lZcKC>_;j;p&SVOC%|c7Q{NIbIO> z@-Lx-%;A)LfhuIgtHrCIYuBVE-5A{(NtQaI5t4gW(~{P?jZ>%1X)TeRZXx>1!#3jX zS~21y?fO_L=h8>}Es>lY)oO?<->SK;tgX@d^`2^`>CxG7c0T-rJc!C+%SW>*mW2+i03kF1r9N&Z#qU0U~Dk)^v%(Msi&gR zWvGVeEVNuxJ_`)#k7rvh55qtf5%UT6&GfMj65Ic-^-I-NMW2hrba}4w&*Mpmby=99 zeCZJ0q0Z}AEYUx zR7y>zhnO+P2<^aP(kf2nDF!yNFYzZZO_w>$w0-Q$Qk4H0V3?+-``j~a9(X?ZQ;I(0 zPf2#^k1Rne{ky5067=Lh9R#5v%aD7F%TF1;Wto;IpDm7VQQrpNN__}T`<7RNrOqn9 zsO%C6n~yFPx9$=w-;yr&Tl`Kdwb(Xhf=#$EwNmJ6%We>(M?_PeM@l-*>p9_ zF?C|`7{+k^e7eYT99kB^k<@z0@oRB5qloU82OTy7O zF1Lp<`*=LU*_=Ate>bX1S{I|Q&)~A2LY9OR?j_-bED0yvOTh7U5yB*(@Hqk4+$v;A zI5o~K2`6MpI4uQE$RbHVJq1w6l5j=}oRB5q%oI2w16-s#Es4m>Br09PB$Y%YO)^pl zlaZ<7LJ|Vg1iOM<9vUA0RG}fMV$&r|HlG+BR#%5AC9&tCHTH0JxDHJfdH78oxb2uG)+hj zbPq0e4|Y$6S7*8h;bJr`)O#eb_Et24MT${@(6FxxdzKG6K)eW1BY2Jo{oD$DKhjjgUiBUwa2 z65D=1_;=ubRN3pj%-YK1-Ye)9VPje&C~9j2s~wGCbtMI>bxmlF0KeJ<;B!sDxnwzj zPpiP^&~o6jQUh?i2AVHusJxG_2cP1;R_mx#=zdxUBh4#d-oX`Mq|QL)y$mS3kE4QNw!ab`6@PnuJ<*9Y? zTs0LH3D};gu&^7~g2ngNg2jRBKtt6!u(*F6BuZTwnklAFSr4ljSr2+}IfQITD@cx( zgXaCMXiBfcIwO=jjHmMz4?PHJHR(Yxb#XeFI{6@)**nQ#fhBR4Gay2B8^FiwD!}Zy z4PbUp1(>~10fdTY_FV~s9VA_-r{wUGaAWOZQ;w%xfz9p8wC+GD*?lk6ENE& zKz-~TXqEtf9YHl>P_qS2xXwG!jD+c&X}5_jz;y3i@TaYy#xM?dGA2c6~pWh0`%O3&b=jJEQZYSNd&piURcPs$gs~-j1Z#~+z%FjOrdgnX_ zTj-lAkeqo8EbXoaOQ);R3_<+okHaAysX=pvs_sqzmp%!aFWw27KX?)} zKYbTyK7JQ~UwsNRuc`&jhigIe-tU9vs)YcaxD7O)T?m>xwt?o&i$L>{MF4(jJ7~5R zgXT9DgXW!2L&{BE0^rd*K=X+ufN9?WnpZ9b&2KCP@V1?(md#m)Zcb{pdRnqRjcKL{ zZGIrRjY!c#rRsK4H9HBt4zxO#cRHCSw7Uz;G@&fhgm$&JnI@E9IWtXYrU}I?(}eP_ zIMamo=O#49o6uufxw`9{D#nV-7Cnb%_IdpAbLjnnJ#X<;W*x{H!(ND@+63v)&$9~H z$XzJXXX?wlklgziJGBcvKKpuovVy}zD^>Upze|6CTC%XgPM$_1V>f?{#stPFEuoN% zWjYxrK*JLht(dZgv#6Y{{Rrh>14W-*u45q^{TaHk$D>7`p`!o5qf++UKcYO=zC3#X z+wv(guBqO(%eD0^8RJXV$u4|?#-?93gEf4ChF>dXu}yzL%SVM}&!wJkdp0q2>e|>+ zJy{`|<7mF?II6-LqSDs1sMvlaEt<_S`=zK~tcUOg;*FaB~AJ91bWEM9gV z<}b^>%pS#FTOti+6G_%+R(+%!_OH0?Cu>j+JJFPt$EGcn#<8-xz<`)kE8P?Lf8-eB z99LuwYiy}^tu@Q*8(Uh|dEsz;96j-N9@~2=kQ2hi@gSO7h_Gi*1@icFJc6>0*Q8k#IC+=ZxhDlaGgUQrc=ePm1d?3w!mgV^9-NrU@6jREXT zowP5nvE?2Sj(ZZ~@xj|8u1P!w_Qa#OIC}PjvC)QKj15oM4V!9IH%(t7y61Y1uDBkBVwDaR%i1L! zz2)+Qyq3LqlotVB4vJXySJ}LX9F+#K_dNb6ip8{Jyf9q9AiJom*6cjSYt1%SU`Mfy zhxp6RNpR7r@&A9=meO#WniTlJ=YP!P2ym;Llz=?7Olrt|*m zVDMrC!T9!y&3B)L&OSXZHC*AW{?4bDD`FCqP}LBL~}7OPw|UW;P=w7*f)XTw!m0L z)qPu`gld{kUCp&L&(g8(yNW|xm37Pw=EWM$N*@N&*=Bnt1gp}UzEm14VYl5H424b0 z*13nas+&F~s%<+4rVjB6SF}upIv%xU-BH-d zlHf?T(0xNz3=-oL4h7PhXZuQnIK6ew z2eV>17%DKR>Y3EARm(8>O7gKqJxpz%P(vjqBbCA7v7N!--6)J*m0xN(0~cey^uDF@ zdg1d`Hwpja$jO|>s)~mBSJ5o&@jJ1Mb(>P6>71bL_%3FbCI|Cb2M*@O_I@et353(Q z;&gFK>jmewl<1mKtZI#GOIq$NeE8u>;X+?EeaEs4&u}p{6@CT6im5rob{#5HS%tWz zy}k1=3}>ZSGbt14#BtG{~Qs&*p!>g(rQh4)Tkg`Y?x z!s*B{z9u)Z$n>BTR&CFfRo%dj;Zob=DT-}X!SQC#bv?uD&R<)0O_}Glrpc6d1(vU= zwrd%DhiL}Zte(xdJy1YwtnzOd>csV_Vfv=xJHErWgKtru|85tQ@5bK+3ep&7dnW`J z6zEsC%`V21H@+DQ_*Nu}YtndrQEWK2!d+85*`~U#5hr$ZZg3SEtIPag@d@GC$9ERr zle&!gS>q}m=PNS~8XoKTlk{33EGw3+xp8g2N)1=%U#BF*mu=1Th$d?;Y{E2V?XE;M zu5Q zKYTQgsO;HMJw$jM9G>ew-^zSLYsBCm9}-1XZQt;H>|r2+(-;;+(%M~J5FF3&t-*mT zd|R-He?*}a>vEs1XS;^3T8?6AGUmsCW>`d#sbP4YW81``kaFp68S&#KVe6%fR^nzd z)1+x4I^6>HY`t{ky0+dQ+@Q|hF9NRErM|pS=#eEnAodr?kU)l{KDlS0XK=W8+t479 zNujq->?>fYf7?q}Q?Fi4HNdwKzD;viQ_1$`#t&}HWirXRA4`p!)=GOUVo21OLd-Og z?urUxR42$Zkc1gV2VJaDR@@ON&EtWR@jDj#{>#A&!O@^oX;X!C>2k+bPuU6MiF6{N zY*m_+PGyVIHRfkrK{>D`dUJ{Y-aaSvM4=8c!LO`iy0%D=g~jLa6hTCmiOA?7q7{*d z4P=vpF0~1A=#)Wa3bz;<+l9zsi`a}h1YtvpuBh%2gJDKZqZ?V8>mUW5X?!(_FfdA_ zC|>F~E^$KZ0zsmy3&eIzo#f&K+^vt^Vw}8JAFD~XDv92$bnSKpT)Nh=ru6BurQX=70aihD2hog4vbh?>cB&DWYkD1eaM)92%omk~!;n=)<66x~6xZGvYU!x%l-56rZXDFYLX0XJD90g;b_c_3~xdct%K zh#dGrx+xJ2Y*5C7tN7m?I;?m^vmAbxhgyZN9PlBE5k`)VZ5Ht;nzqfE2fNgOsAVjY z9Gcu~7ZKQ>w+cMr7fwQQAq+w`gy43<)@=(*yY80S232Z~rAz5cYsij!EO)$D?ysvx z%}TFuQRplk_;2DS4Tn4r#toM0X1uynu|9aR_|0T`y!|bu*|3vfrFhBI~ zXs*d$1mNg~1p$w1a9^|&YD|1mA?xY*VFc8Q`GA_2oz~jzbJOlPf4Q)4?2S4BZLLtU ze7gmShtufccCLWLZXb;uo$pa(8mRp`J$veO!>IRGo#pD$*nXriOr*Zy;h}-Se$p=r z1pyDs@?fE#43Hr*C`w17l~Vo^s>5L!l!A&|XTm!pBPh;*ji+-{Aa$Z)DaMfTr z(KGdmp69UxitFU{P;9HWbuBv$GqbVoXPxjs$XUiz3xdxG*4PNztB_C!Z38{}6tbvA z;H(9uj?@^Gm)ocp>!9@QrnR2m1Qr5++ufP)n_Qa){`dls-agQ0;=uBEh&1q9pxKZp zC_ZsOKm3Lrf%+>5h{L7m2d*ShgL8rx^t-aM%$|C)VNK~;TkG)H+jWJmB9z>ow<^#? z7ZptYEMxLc-RzXV(s2ccQRecKVnQNtq*6YtrQl*NhZd#?EzAmUrE=o!Q@EH6-U}=1 zcn8wb(h>r%UV`k#q^m!{1*hndh$8hDxQ>tr%cK4V*GB{OclfKTSDV_LsVN(;)r!Y` zw9u{#u(BQ+;|=4XkSwV+QSP!z4J${y`o{MZG`>Vx$s6QV<3Y8n&O#TSyS}N}4BYXT z--M8X^@!|+GY}eaW?#IK+}zlonf>@i@*7X>2E+d5*vC7E6}Wziug8j3xMru?53^^~ zWpDt`sAt3915mM<(CUn(^b delta 209 zcmdnlFEZzo@P<8{hM85#CMHScruvB~h6cu|21XW!=9cEhX=#bZDHcYSDQ1bumga_* z=1ImzrWVP`1{Te4IoscIG6FFZ5HoLo%gLg|&cym+yPzP;_Iuku|7H2f#56%*>pRvJ z%+nXLuu4pS#KNk|lp-*lla=*MU}+C$USe))No7H5@s!#r8d)g<3=ExFyi6c+8JLU# qiIiqYf@CiP*%=;LSAbMjIU|s`3StQW)n#1+u~sr|Phn#XWds0yD?v*D diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index d8b03574a82b4236cdf154443f2af2516df4401e..4686a50304e3225641bedae11ed9d6fb2732a10f 100644 GIT binary patch delta 3884 zcmeHJJ&Rpc6y+UKBrx#-*1lKH%w0J% z_x0uhm7{jAzmoMzG_vM^2~43_DC;UwIn+UXl?%V@@0_iab1<=H2TFzLJsD%Ob1qB%ZhUh7{WeHm zSXjS(akzbP^yLp@RV-7M){~P!6NWL=2sJ6t)yMwYXJUSM^>gvkzC%V8Nl|O34P>dk z4MC}t6+a;p_Tgtn-u*(H9*s-Zq*XQ96c1SypS8zQ$Pr2DZGUWyp}&47ej0U+`k}x3 zwpi_G@7lg!JSV6NwbT@1NzrJ4D!C`L#aF628cL;qeoZ_ybRUQp_l=#AV55o=r~)De zEDYAcs+62JeYh?j?XTYw_YL2l5@$yp7?9p6bUsNing}3U%95LmwxXH5{mAg?M`Cl- z=JDiBA-e_xn)I~NpI#SnY>bM*)FN{s@H+4|frXq9Av2E&+4(>Fk_t0Q&ET2?usan)yzy>Mdn=u=NWd!n(iYBzfC@yWDwe7V20B_8gYZL!9OAKRV)1ynJq zj8$9KxQ3|F8%Y=yhKh3M1Q1K8hE-L{0Dy}Iqc6P7$*JnFf9;!lR%CDISV3|s6;K>m zvTBYitQi#PI$fQq6`KsUt=OmyQ!DcBg=jr9qyV1X$L{BnoRUe)2)nv5VA(}vQ!NoJ zW-3PNjD|C|dib{$b@q}o3blp;lx>Vz2W7~m;E_GK(~3%vtrRZ8+1|G?&_{H4w2Av@Yx7SnP5>B7n4cBkfJD|mxf^2cFH5#4OdD$ypJvR}o8ob;mFAE>g1Ez#CMZDOo#-4v za=ak9VvMLV=WOU7_)RQKW2bp^CYsC-TR(~qM{6zpc6+U{!1NFF-eU~+oVj;vfRo7_ p?r(i7PR&l_>_pB^_q;LPox|6|1K^a`~%3+T*UwY delta 3852 zcmeHJzl)tk6y*(DB#@9IyV~vhcG1e1otb-Q<_;D%S_rPuQeuen6H` zVF{lKu}RoMi5en)q%a})55!n#DOhL|Y||LL@9h#cDRx?mSHJt_o^$U#=X}>M9Jqer z!1r7G)v417F}`b7LRJ!r)TEquP-}op+GiV*cgnj6+E7Z8Ht!u;x^{2>J70{AGo*ra zDF=m6O(@{e1xh9AQtRd?m)2V~*H$k7wXY)yR(Ts;Q65VH0LKNsglW1SKb`NC)`W++}F04ixQDwSLxZgc5BKZ)N*Z29TU z{&z~+X*DqG8>23eHkd3behf*5;HuM_q~ZajP;fGw$A`~87F(lk@7^-?&)yNL)ptT; zr9ZbWVi$R)wwgp)OUyop7-~VMtIZ}@fbGRFo8xoi6r#q0Nn5KhOZ2u>N?3z&DH@z? zW?}elLwr3NL*@GgqnxT4gK`9tnP*d^j75h2{2yYzU;RZK9FBb;E{@tTn3n7s0H*6% z>2KT-Pb&gTM~yx8_R3o)md~6y(k;74l!9|!DTC5#uM;rtpk2}?=^^|n-k56%WVm%+ zd^K8YZETtQz3}p@Cs&U>_xy_|8)upxu5OHumQNh%uig}obqzvtvgIe9oN_NgXC@CJ zXx0YE5G|WY@Wvaftt`8@Ov=Q{H<2rGt#?7?6tZ_-tHN*eJf|J~bs@##RIVXRBu5i( z$_SL9qECjVhkJNOfK3Q2z?a5*_nuOsj@S+)Z!ZRjSirDe*fD^RnFN{qE;d~y=@YQ3 zoJExUyRVjYD+{nYnzSRqMaxHAF&T)FWl)R93bHy#9#rxDtEGWHOJgFe(zD%_Ne1LZNit7mm7Q=++s?Nw#Y`clYGjf@jhOiY^@x!M`I7=f4xh?#+yWjiAmYxoiXs#q7} delta 84 zcmca{N9@KOu?-hE4Ku5fO-z!?P4yE~3=ND^4U8-d%`MH1)6x=+Q!I=uQ_K>REzJ!r j&6A9cOf8a=4J?`&x!M`I7=f4xh?#+yWjiAmYxoiXlrk50 diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 514f91221da596571c8a9026cdb2a46e5b683bf8..ed79ea4d23c97c2b34a067f8eb26488d23b5299e 100644 GIT binary patch delta 3396 zcmc(iU2M}<6o8YMQTjJ%DgA*qxv3DerAgYfO-m{5%HR0im|%i2y7tDtj%{K)*w?g~ zr~;Z8o94Gz^2W>Hfrq`Iy;T#MwxLPv2~CSo?zK3o@V$vq1YQJ%frdZ zwSDgS`F!rl%`a+i{8;<>*Ok3OGCpXiLOho2>k$Q<;QRZ?P?8J@aj_@SGq|&NU}%tt zq^~#5$NR9*Kk(js<<QJc>v?T|RBL+X^e zj@4INN$G57;ii}DYj2vK6OwEq9bAf-x@GVLWiWpZrwAgVNO&q=An7dPv4#wC-jWT1 zOgW{=q6|wE9XpE1OokX#HVML-Q1}JWXcW_&tZUsUleSDG!L>BoO&}DE5}^>PY?>A^ zJ?lw=cuP$Z!_-w0EyeyqKAu~RlP}=oV!qb~-OINF{S^(>ko-q&`8R}(-S_-H-$@D6 zhnGGv(X^CB(*z|gIZe^j-Za5l8Yj^SY6-HAM)FhPhFmhOr(%qN2oLEqWIlrB*yz;c zB#J~Jw+LHQS24?7CXK168!7;VL|GH=T<_{)$rt6BuC6=Ri&>R5l!c0VnKlXSM!h{f zGf2cHC5BfkRflR~p0^CJnvP|oXsKhxEuq$FfWWXcMhd_xze|MtuVICu}VY(ochOM@sO??}}Jk~YC@$|6~Cw%hYgBI%6D7Fk$} z+!TYmAY+74m#Jcd7FgnS!(hCEU0H(=Ma+{ZnmTD@5!m-qJi@Yh=Q^Yg{3ayqQPu&k zSmW}AauzGx5X|4$+_G_O`Pz;CYwb!PuV0edGSjWWeD9W?O;6n+P1~IejJK9G?pV@x zi2!a5L7xxa>pFWYdUz?n5-4T+LP)izT05)D*eQ8iQKYHt?%tp~Zw9*E$ttcQSK9M* z2q1r6;Qk|TWz8}F_)P8pjb3y`^vaS~pr8W;^b zo-TZKInw3Gy5H=Arqoz$O7pRe!}TK>1gA?%+uhEZ3^CeAOCBtDsbCBsdnf2(^}b?{N6QC?SLJT%Q5>zXlaLOU~Ks@KW9b#GZsN2cM) z2)mIjL`<){Ml)Kf3c+U>r|B>{DG{&l7#bQsgfeo5z_|o%aG|*}8%rBuAxBNKu6#ex zoC7-!CeuoqRHhbd!jl4lqe*6}lXn&h zelHqDE0cm&#v)hF#j<%?IZZEuMUb7`RaI3_L#SMBWx;-=vu^^NfxG3ENy|k+SnuJDhFB5J@@@D{mp^;>baUj zT#WPoJ~wid`;0rH++tZ^QJZ%C698#gB_<5CtBBt-V!D65&TR|a4bE*n&UIIeD_?<8 zdt1rLXUFAOb|u@8W;5QV9m?IH%b((|<~%bWT2c#SN*N46bq*>+@TL3$XP>f@X)^&3 z!%S;l17a7`K3WT6glXSafY{BnpVomGWm;Voh%u)1)_{10Y1+#m#+i0&J%~L_`*}kS zUS(Q;6NrOM`>q+pA*Ri?fH=&wKQ@Cn!nEJE zfH=yuPg_A8W7kk+qHsMCsG%9*%?#dai-ygUX%KHzu eyAR&xs@Li845KzbuC%%}XSu$B8gj?aa>74kB!Ly2c5!%|Fei*dIn zAozoRacM~sV*yVvHX=oXej(_Oh#p@c8g&QutK31AWArM=&i=4cNFO8QWm31!lR?5b z^{EANMJ&grv>Hh(vZ5;TT52&RCFALGp{$LDiIc54^hlTt7(3Nt4mV0}{eSDCHHY>b zCkI6}VJnnfROSta#5AQa=qCeNL1kIUD#}_1NurMGAt}_O5weDQZ-A_$IvODxD4`j$ ziAuFX(x~e;h=TfPhp4<^*+5@AfLr)kF+nmYa~C9w`ZYsxD6a*QM?F~~+o*yKvV;2W z!6)jg7qW{wwL^-i34Lyv>@n;GukBUXp}KB*#_NnsybOEGmzbG8EksFE!x`KrT#5eD RIJIksl!)vJuiaA;`vVI_dkO#m diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 80928ee85635c2baf06a12cb0396a4fb1a5eabf5..c851e0b22dbcfe8f0f398371d0f1b83305ab43e1 100644 GIT binary patch delta 62 zcmaDW@m69(AfsVQl972)ZiS7Vv33B<|fA1TmX3N6I%cP delta 62 zcmaDW@m69(AfsVsRkDdmQn{&qVv3=GajJolg`v5nxp7)rqH&6ak!6ZmVzQ;Vp{03} Rv5~1oaGjf@jhOiY{Ka<;$aWZeFilc|#r0HIeHG5`Po delta 72 zcmeyif#cf-jtzS_4Ku5fO-z!?P4yE~3=ND^4U8-d%`MH1)6x=+Q!I=uQ_K>REzJ!r c&6A9cOf8a=4J?}9a<;$aWZeFilc|#r0FXf!#sB~S diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 8beb9bc8c14492c388d1d1b2e4c53685fc3c502b..703f2473eca510f8710fb257a2d9cc0945d9fea7 100644 GIT binary patch delta 3385 zcmchZU2GIp6vwx_P`d3BSMpb1Kem{{7oGk11on6J*g zLsr!Zi;6BXW zxifR_Ip_bo=bk_QO8gzHX`WkqzA4spwfV>7s94Mm*}9m^7V~|Qi1!Nvc~U5nf|!%~ z_V*19_YW3^h(z-JIU$$F;=o{5GzFTareh1lpGovC47bK_`W+W`ihGV(#1IvugqUd} z-4SHO6rCW`Kq6)s%{W+7Sou&OubT|yjozx?eIQM9x^mW(p+;8)D@S0x}q8u3{Sdkfk{k$?#0$tBHhxQ6g5N zRVZ}`4Xqam5*)oqY-;Kx6NUd+KB}v6@-ci|O8IYL%KJV}x$|*QAj*4vx=&nhip3^m z%x=tGplDVuqgjHAj-oL%{eniYq2VGr#vD;G(E*t;i;iToLiIrgE7_uEma?3Yv;f() z6(J3i2dAf|P&y5%N7!Me?qZ%>OT$buZ54m&ZJQ$wb`=AnmasrFXnMjfBe1`$3OwQ0 zE1j(Y`w75$=^q6W#J7YtG7lqN z&#Ku99C?pgfNy~4MW`e|^G5F(bYsr1;r0O9xG%|SHCk-*=iHq=ZFK}jA*`!1S?78( z<&Sml_2)`0ZnWfy4%j$P6xwB(by@lUf_7PENB$eMbvX<3{`khZAPBi!o87Lna7yvlV_vZ(s0xslp!+p8I!hi^qIbq;z zXj_#Nu~^N6&lMd`zmX9X#cJc(ObJStQ*HsaP5kSb3|g5Qv?3zzDj9iFh;)RUwYIk254d^+GR@(6t^$vG9PTS5gz8k)Qs02- z2D#c*o2yjmCa=Unsx8lZXr)aSV7UW&+0MzZP+0XA!d}Tg`s`?9tNIPJszlz(8`|xY z!BQ8ThORlyyXG|Sn$xC{4m+Y+*No*Iu+%R830-BQ9eU>{E^LcmjQhj4zfGQ3TVvsG z;nwYw@%Rs^g`;=ANW7xH%M-#AK)p@>Ldn27p>W)-A{C(#>TkHaJ3gOU7`ppi)0p}p znDll>?mj%i!10oNIaap9CA-!6l)v^~-VLq1=g8Y3W$K3Ypwf%#Q}Cw-aC)j6`REha zaq1>MdcPSioB60G370K=l!Tzwr}^juK5FNq6rB3%Rz5n#N89*__qL9=UNTK)n2b!> NM1t5CF5eq#`UhsIqEi3> delta 270 zcmexAh2_O}X0`^_sds-fY-BsbX`5MIOEPQItaw^f-j zfQjiJ_x4gI#ud!sJwnB$NyR0ZC8Z^q`FZhqiMgr8Q);J7&tPLzW4gq>eF7WfZbsqK z9!`)Gjf@jhOiY_Ua<+fuWZeFdlWB=00D2S`)Bpeg delta 72 zcmbPwoMY;7jtvJm4Ku5fO-z!?P4yE~3=ND^4U8-d%`MH1)6x=+Q!I=uQ_K>REzJ!r c&6A9cOf8a=4J?{Ja<+fuWZeFdlWB=00BHUfXaE2J diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 412d44680902edff31c9d21b03b850a4c35e4b3b..7827726b9b22d3bfdcbd39d97c8db00f4dc18a61 100644 GIT binary patch delta 5704 zcmeHLZEPGz8TOnLr*R6!A0&h%^~6Mp6MVkC{a!b9(l11CtR}4^j2g$8-JSLB^=|ii zyBo*Q=;ENNb$beJ?#K#$AQ#k7wNL^P_+M$F3ZbgXhg3vWegF|aPz$0$LMn==c<1hX zcX2+>Z3Mq^KUOnyGtc|=%scPQw_j`f_gihJPp?dxIl(YI#M>EgrMdb;J&EOkxCoy39X;Y?`QIB+r)doDIfK=2bGNjt&xj*`7% zykvJ2mOTHd(oE?{sn1@WdaSc}=~#b$7@A|9EiLw!?N+lw#YULXY0mdD zbYQ{$PpzZ36eVv_$GXp*vd@cif4n1quC>AOjs6}xk6KzrZ4z8Q`aK^{+0%H6Vm)-y z0Y3OZni4lnbo^)#nvRFJ+d+`^2NMaS`o{oq5_;O3OfZ(j4eACt$B4t=(7}lb9FK$V zF$n`NlPAo%*)$0(FP8z9VasvNb939avFKRN;ceT_%~jp*xOf^uUJiv%gMOUkxWm{Y zen4~OU}iiBH!+Mb2dL@k0lZkxvPg)tLDE2yTD_OkRwbG<_g8eZ?O3NjGo zY-jQ8<6Da#Pk%oDn?>ODqptT!QPTv&;;E#`k|;=$&Z!0^swO5?Nh7@YWLa41gSM8I zno2J@88`itZ@-r4so#UMi)Y(6 z>@2i0{-pi{{R$b%0jdTp^%odk6tUH*|FA$+>dT9*#g3lt`wO_)W-Af92g=)x<1Bro zt~4S*=*K#vOJ73wer{3q`nzcLJ!lM5ful)66;JH|kr5g}9Bw8t+BW^#6$o&a_y!XhFe%uTGQVHb^MG|#U7j&ZNqG%Y3MLF59M2p$w zE$eA=Q)K#fM-%(eozZ&_qK#2@6urv2KhFy{kCfO8I_%o>jfs(mAAD%{L^Fb3J-e9~ zd&m2uUsz~0Ze}EN&Zg*ZN0AcY188qk?%&>ex3?bK^tZR(jS|==-+DV^8@g%*?jNqM zV5q%@J^8F1FV)|P;_$8%XYWdJ_O2B7+<5uLp!Tjr>~(PRZeUCNB|b&f4(p=wP*-f^ zjrqP~2)D+puKBM$gOg2;^uV)dD4*g%KwAA##)~Nu+(YR z8ta_@=d)-A#op;+4{^&MW7X{ZsR9@jyWCYoTyM1FBwB?oMZ+hN7_B>wdeMbw=s5Z! zx){xzKxXXY`ob&GhsV*sVt01e*Ii-jB=k`<{5)E}{sM>u0ZfsGm%jd3sHduETe_JV zZA^_#-O;)i&~IZ>9WDlAyFm}Y+jZiGc+WK8?WyC9bVqB8=i1(`o gyy-gLq3$2A`z}JUryKAN)$nFcqV?dZADl$=zl2sscmMzZ delta 2605 zcmeHI-D_M$6yI|IVc17EBw&SZj%OKHY3h+8RTt zl9bj55mS=7!D+FLX^Ny&(Lj*(twwwh5sGg<)N20#DL(k1pg1?1Hk+sWrT6CHw+dcEr_5bjuF9_ zan7-30cV_%$mcW+Ywa2iH+6GOxx!NU%3${hLyU=|NK+pLN@DB0^0ilw!UxbDg`tXZ zXfShP8WswTgwe6|nG|uP?a_U(-TpHMoweQp_!d$tu(=79(nmuc*)%5hXY$Q5Zxb7DzeZss`5iHrZ!hfn4p#ewc%_I;=kletH?V$!)bu zlTa*hqlv*r#7GmYBEe#b1;$!xj(th+8au)$i6om6Rr{V38sqq2~pR+5C^QT#71@(AhnP>z0^8x)1!~axWBJ=Y^XRf(NicIWH_aM zsI-wdriL2CSwyK}ks>^1Yc$hFqu!X)r=hKObr>e#L|P|{F8A(%{RjK^KD+DrgDLl! zZ1hgku{hLYJq4YGG;-F7@_FiTBob_n=jM3U@A!s~&*pe0znlMaJP+8t(~$E9I;ty& zO4Wal-?R0bY`L@2wk?w>KUTJ#J7KxjI|C19y>lJ4Jyp1zwP4|1+h^fnZ=|C(Y@r=M z+jq{w)A{kK+$bN>Zyi6P$7UyHcT`3??B8dht50`iGVhO(|7(((IPs66^OZZn>FQZQE+)b8r&8=6v<1Q$5WGT!~(->tmPO%jc`$7ww5T zXa&y>orjmYGI^Jxa~1DMWXn6srShZw%P=k~V6UAA<@K(|>9OVl{OLW_5T+*ygS|@0 zuFOFfWbBPOxF6P_FRwydk`e~<_RJ^ny=NM*gLkl3=U1`U=hv|(*Rhj%JADy;^rjoI zlXtKy3-!DU>)0#n*v0(fnM(lP*A3XkRcv>q#30mk*HGQ`$JkZ9 z$N_sj7}umPrrWDo_2SiVHt{d`3yl5%6TPa5Z*}(!U+cIF2j|e;HC^@g^FHrW&s$%8 zCVlfz%G}R<+57hQnF(oBt&L4OraD%tRmyc0-%-XZWU5A{)UkT`PI+>AbYg0f)JbJ@ zOc|?Sb$sG*SNeG}c&BfG+*)rCOVz9$#BCdyu0j#lOoD6+shDH*p^FWT@4ph#&drdP z{l}jFY4}Na5aub;bE)7LblamN@Z6WWbcx=eY5D>krb8?9ZjH{4#1k`j3-EG-Y7AL6 zCpFvNMJh3Ei*W~Y!Vm_C`)Kt|WZEh*U;yAWW!Kn84aZhpg}|MtTQI1xB3d8{b{RpO z!vDmnd$wa@3ntlhv}h1)8MuZNN8_4;4TzxPm2ua$|4C~-(JyBvi^*dfTZmQLbk4@C+fEEe z)TV%7w1+JYA8#0#!%I^v#|np{K}vP)qjjCNbC8rw)E$DV@KGq5x2JK6mTcDo>>98fRgo35 z+Z({*X&54G-67-#nx&jK*i5OUBt{H%+grGs=Gj8kL>Id!#i8f?EaV!yt6unHF3y&3ug z;8k*S3&||n>@o;K7P~COv=XDPNHiXuFURPHwU4fhMTSeAxtpx z`!NFI4hK3U^s4BCq6jxx(rjgDwz6opvS_xlZOOvW<)rDviQNy`Ogx^v7O+H+2;;_o&72O42M5yPG@k_8^MqBBL#g|JX3L5 z6_+>Q;`&!CY!bfTAWZadT`YT`vp}j2JRdFiJevH#rQIU69K8wAMymPlIFM-aQ6T-* z)ZtsztR&@w#=`Ji{;1c}j^sSix1n)EG(f0$RA`YVv{#20ll=soX461$P7Dch{EJUJL!pBHM6f-tS;=zEDU=hee1?oLdLnnz_YX9V5?g zN7^x7Uu;jTIGa_{@!3q!TK>Ojtu|@RJ(5;|Pwc8kQ>)AHx*e;K;n~wC@w?%4X)$m@ wbIT-*;T_QYW~iSnzzOjN4;NN4A0&7OuSBwZABMr#*<3KbSW0Em0a={>2Rv2!r~m)} delta 220 zcmZ3qfN@?sBWnZe)XB~pSxp%YGpmwKOp?k?^%GMJ4UAI_j4TYzEzOP7(h`kREQ~Bu z%o39=%?&NhlZ=f_Es~QBEH-B|-Z!5dP0lMm?QTF$S9IWJx5?=H^Wh&E)tG2zFq3X#ZB6|-CCF1Tn>T|$cl zNgmZ1I`OPdu&HAS9bukAEwoQ%%yy^KX}S6!g=t#StwNe(BFe;M4wXfioH=p)I1)uj zKEfWeo-{DeuB~I1w;Tg7LwRZ{tINZ~ygYe&dU$wsx%}h1LZUc|#xj}HD34u6oUnR^ z1@*^WdXUrM27zxWcc0u)~dDjd(`=m5d=^;$`*1S6~$EQd1Ha8cf|z!8pF4K2W( zSw$OJc_=z#0ES2uKyDVy15&%tbCzd9qyP{yEQRP`gfbq?5-=LFGa5Rq65V$BB#&$j zt}0ijC`K5$26kA5H`#I=&NP^%rUX&vu}o6v#8GDnf&G?Q=Lue2hGaqmimnYm@NOXUD#N>>ox7h!;y$T)HYIqr|#Ci zg>L}ln;;XibkBBGc`|JJ*t=nLPq+^n`ecY;tx%h*Uq+`XB1^@ zDx1sYrX(y)D4B67lN-zCCnrd5Qrer{J8>plNjo2nMC$&0L=8Cjrl(OYbO$e{3Ls*h zueew zRY@ptj)`VpKsL1roRT2H6`2K1Lh5~=`{w(>OoFb!^?|PEUDD$}ZA6Ez*ij)t7Qcy4d)l>?t&kb51l42tzEt1ww z&K?Ak?YxKR>FK!}acvfoTspk4?db|P+KX^sfgmhQwNTniFx^zCgjV1Ms5UlmUBJ|86@0ms3 zGmDlfhRsmDXU6Jdu+%pGiQ8tI9eP(@*(z-9xE@{kxh(wE(Q&13<;F$fREzJ!r z&6A9cOf8a=4JmnIdLWR{ec zWaj6^=OyN*7Eh_2GX3!yMm476BHOvwGMX|9m-cXiWJ)Rvz_J=y$3><$u47cREzOXu zouZLtCd$B&;gMwyq_T3DfP@8zCCLmVEJ3VwY(T;a#M0ye64oGA6W{jt>li~B0UiNH A&;S4c diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index c4cf972425ad6734b24269de63ccc7c244fafcbe..798f8a1406871690426d93bccd43a3fecb998a9b 100644 GIT binary patch delta 7647 zcmeHMO^an$73FDZx=do!R8>d2?tQn*?kIF8b-vF&h_;9h0!cI(bdV4_`+SiMG-*E~ z8MHwiNF1euL}wh$jdd=zmT;uKZi?#F^RA_WqZ?GO%%0$zoJU)+otbMasmKtr}MpR*hEoJe*=Be5B%lp5&G*lh6s=8V-);MycE0HH-jI>2) zy?j{n6dtxaJ2mc~{rM1Llx&EM6wxFvqjAM&SBsKTkg&@qHc!o;_=k(#J7)*3r4%PA z3K2{Vg=NrAvChS6o0FPd75y_?y`UIvl&&ggwDnZ03S4szQkNRWH@Eto@$k8BZ+6#b z`|nQ%w8WD0J`-gVRE;WYj;xZcDwbTwH=ph9o((_f-kvnyV4ObCKQzs)H@MP?S03xO zhpc39oC~v;hAIaZ$>x#@hN5szGo=3Z)}TeGIA?^)#c;70ZSPUMjDdp7dc6K(cY5~f zWBqR?LlH>_Z#hIs1=_!&+#YE3Otkp9OhOA_CMT%-_ zt?aYK5ZS7IMY8cBb$(gC{Ny<9}Z6c85lRa>V7FJHNP#T4mIxS}A-q$|}xE%j7U+ z&U5su*`2B^#QX$C5Sx#&uyT!-@R75VesN_t(fHh?mr6#J40DVa1{*4sBB@waSrs=! zyZ<>ETDcc692%(?#n52A)4~`ktdKDP`WeW|p=Jrn;ML4dnWT4V&L>G5$2NpgsF1?W zEZ&y!r5C$)0bsI*Uy*r%l5I zoBa>DbmPBY?)DaAdP0GV%Q<&$fjOOY3Q17X zVAX&{p8zDCwY4R(ruF@URqw5q#3fs!V~924LpsLN6uPR}@H+W5vdi)J_x6ttt;FNm&-GvI9eT+jN*$9isU(8z@YXA~KoiaW_FDJs z)->y6u{NmMBGGO|pl=B}C>RCDaUF96)XHoy`C6L<-h;l7m8mFP0LK;WO;1ki#@Ch1DDSrM%b~vyr0m4~B-cO) zv0+NmXbvHN@K7qyZEPcUHN{%ztL2%kX-h)hioaIZjw7lytGAqP+~6F4`L*u!v{Bj` z<&k3Nb#T@IQyzem8ru_%#PY-sujEZ&S8|LHZMaDvv5*Z8g7Cbv&IP@K9y^h(3<1!? z;ARn^*&x8#D}utHxDLHm<|W~^636g4J2lA*O}?Ne0I!+ZgE5Oq+$5+|XmD?wG45oq3BYP4x1`FQmT0N6~u znAhJu+Fu&DcqrZiE`!I&0ejJk4A_*EEJHplic0J^thIe&;@`*D#kP1K!w> zTw%!+6NVs3DEfl!L8+`tYxt*mX}dRdCOGfpUb%1_MXez{e!6vc?{VI=QQIhg-JKr~ zQ}4$gz1=<1v|StHw=sSv*v^gd`(X3DF@784w=sSnWYLe)+Q#^uXgfE?Z)5x#-yLj> d-^Tcz=sGvX@BMEX8s_N#-uTU6{Qh+N{{Y=BvTy(Z delta 7630 zcmeHMONgXb6{d7F(bZ$5u`^Z8eQvn8*5BN4^t%t6Rf=pvMtj-9SG=;te5!afAM8@3JGf$hT1z&;H7 z2<)S zk5>5Pa*ScXZFkT6=eiq{rsrYy;Pm09vWYWi|tO}G$Es79j5V3|Ty>TVrN6c~d zwMo{tm(v_Ft%#sdC zXPb?7nv}HYev@*|T(vN4hSyI`x96|?zWdo^W-=$#&FEY*5yEiE=~$u;ktvq>wLf&f zo6H)1hc|!J$+p+aog5yx(%mBg!uzee^3{W{Jazu+)&2f_2&rfvOiWH9v&1B1EZ&>I z%+=aenVP6Z>bHmMf9~#>-#k0LI(ea0tMl;v;GL`?-fMx0-bQbR%>1{8RhG zpW<|P)(CEpKkhDESfnA^VuV1KlBtvg$6%}j@J#j`W2U2SmCkdL;0x<1<8Kw&LK}E( zOo*PAn44K^LKVfMF)W#2I0;or3(_^?&iPxD>EF=K4WA3N&FaZ6$3Eqrl;zj^283!ZUo}Ri=ys=eB9W8hvg&c*5$=K*qjl(Zr>~`k;Bi)mydWUCA zPmmj6Ee99C=G963bE!g^bUYeWOh9%}Bnj5f(rf5sNYV3HYH3%|ob0^jWi(C4i)b!h z>2`;|>`u?_(=ohxVG}se3t^B??_#MgXU)Mn4@%0bMr*0r7~2}&TIE_tP@_TR`sr5k zM!fy=rEa%x1ve_g$5((;wSZv+D<>f8Hb(TDgNQoTu86YALoy8U%PCS86jF-8r6NGF z7;#LAw?r-pYb+aRM*w$%#R32+RaQX-M{YPKaQx-tErs`q=bqliq@Vy(<`6D~6>?ULfO^ z3vLz=MsXaDttTv0aC-6!hU*w`UVft6n%S%^hGl^v4ejeP3Ruv-<6KVBl=<~%MnHO~ zmJ~T>1+}jnSXK*kVfM7FYstryW9E>EoK4hJB;`W54{fXyh$sUq%ZYB$z%A#)vv_6O z_o9D){`mCb%vX%Mii3}M98{4LMn<+=xfto|Dww2jVBB5`PO%~{L(D~F)Br=iTVt0% zs2l>sppETklvK+jwW^97NoAJo(sH~Er0Mqvh-ZesJ~`dKkK{27>Yy~{U5GNs6TIQE zE@FztN&+>n`iN*6Tho9UdFR&D`OV1-C)Y}^!(|(1N!>mUoUk#eJi#F{)U4z zb;GxAbdNQ+u9XyS_Px!%S2z3KJ2&OczPH);Hv8V&*7J4o+U$G(d(+(Pdz*c4v+r&8 ez2%n-n|<${i{@tE`!B2V|GDqYvG4u%_WuCX9Ms4F diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 3cb1eec45e3c2015e98a36775377145e7b9de3f9..0d1dc91330984689dc6df964645a6b359f1fca81 100644 GIT binary patch delta 1298 zcmZ4fglp#$E|vz?sr(yRj&K^LBpI0(<)#?vCm9>0r6igqn;55BB&AxU7^NAQ8JJrd znp&8rrllGi8YLSUC#IN~ZvM&n+f?3~m4U&gpeWUjOIO#(z{o_`z(Uu+NWsY1%E;Wx z$Z+z3fY8ZnT=~RJ%ybltObiUHOpQ_vtPB%@EGr9h!^sYTwoE2wlLg%#3ZrOL&@j_8 zx0rm;@h2~e_~gc5*U14M$vQ?xW_pHZmO2WiCVEE3hI)p^=6Z$(rf@#cF+h1k9R)o- zy~(j5QS49+K&!kbw|mYJL@`!D!_av02N#cF<{!t&rC!;LlO{j(GDi!>0|6O?;-o(C zCDC!RPMyg3n7qR;g$<&1vZDVdEU~aZG+_GrR3`Qz=j`>8>cGrEQ8sW4zejYCQzaV| zO@8CAjwKR4xL7Do$zYG2k|7u|tbDckSc21h&Z$kzj0_+!Iq|;%8(Nwt85@~eBqtkKZ2rml+f?3ym4U&gpeWUjOIO#(z{o_`z+BhZK*7+=%EZXZ z&}_1{cj)Bxu6z=v2098xCI$vprbej-R)&c{mX)D_xxr+I7+WS&gUR(V+b93`WSe}! zO+^^R1O*KW<~}Om@NNK NvDKY%t2@)DjR053Lzw^o diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index 28232a59a..b7ee747de 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -458,6 +458,21 @@ "We can see that the test set accuracy slightly improved as a result of the data cleaning. Note that this will not always be the case, especially when we evaluate on test data that are themselves noisy. The best practice is to run cleanlab to identify potential label issues and then manually review them, before blindly trusting any accuracy metrics. In particular, the most effort should be made to ensure high-quality test data, which is supposed to reflect the expected performance of our model during deployment." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index fcc9d1478..9a288faaa 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -535,6 +535,21 @@ "We can see that the test set accuracy slightly improved as a result of the data cleaning. Note that this will not always be the case, especially when we are evaluating on test data that are themselves noisy. The best practice is to run cleanlab to identify potential label issues and then manually review them, before blindly trusting any accuracy metrics. In particular, the most effort should be made to ensure high-quality test data, which is supposed to reflect the expected performance of our model during deployment.\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index 39ad45277..4a9fccb8a 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index aab33d6e3..d8e45a8ea 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 64e8b75c3..a4dcaa31e 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -808,6 +808,21 @@ "assert jaccard_similarity(predicted_outlier_issues_indices, outlier_issue_indices) > 0.9\n", "assert jaccard_similarity(predicted_duplicate_issues_indices, duplicate_issue_indices) > 0.9" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] } ], "metadata": { diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 9132d3724..199d71b39 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -478,9 +478,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Easy Mode \n", + "## Spending too much time on data quality?\n", "\n", - "Cleanlab is most effective when you run this code with a good ML model. Try to produce the best ML model you can for your data (instead of the basic model from this tutorial). If you don't know the best ML model for your data, try [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) which will automatically produce one for you. Super easy to use, [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points -- all powered by a system that automatically trains/deploys the best ML model for your data. [Try it for free!](https://cleanlab.ai/signup/)" + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" ] }, { diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 84937486a..b60b202be 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -545,9 +545,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Easy Mode \n", + "## Spending too much time on data quality?\n", "\n", - "Cleanlab is most effective when you run this code with a good ML model. Try to produce the best ML model you can for your data (instead of the basic model from this tutorial). If you don't know the best ML model for your data, try [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) which will automatically produce one for you. Super easy to use, [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points -- all powered by a system that automatically trains/deploys the best ML model for your data. [Try it for free!](https://cleanlab.ai/signup/)" + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" ] }, { diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 1d2cfdc12..c0cf2cafe 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -282,6 +282,21 @@ " # run 1 line of code to evaluate the health of your dataset\n", " _ = cleanlab.dataset.health_summary(labels, pred_probs, class_names=class_names)" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] } ], "metadata": { diff --git a/master/_sources/tutorials/improving_ml_performance.ipynb b/master/_sources/tutorials/improving_ml_performance.ipynb index 438ca9320..5e5d96fb7 100644 --- a/master/_sources/tutorials/improving_ml_performance.ipynb +++ b/master/_sources/tutorials/improving_ml_performance.ipynb @@ -67,7 +67,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index feb419f3f..276b2d857 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -1125,6 +1125,21 @@ "source": [ "While ensembling different models' label quality scores (`label_quality_scores_best`) will often be superior to getting label quality scores from a single ensemble predictor (`label_quality_scores_better`), both approaches produce significantly better label quality scores than just using the predictions from a single model." ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] } ], "metadata": { diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index cda239e55..d279ee9b0 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index bb30f1dc1..a352c03e2 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -601,6 +601,23 @@ "To see cleanlab applied to a real image tagging dataset, check out our [example](https://github.com/cleanlab/examples) notebook [\"Find Label Errors in Multi-Label Classification Data (CelebA Image Tagging)\"](https://github.com/cleanlab/examples/blob/master/multilabel_classification/image_tagging.ipynb). That example also demonstrates how to use a state-of-the-art Pytorch neural network for multi-label classification with image data." ] }, + { + "cell_type": "markdown", + "id": "f1bd9f83", + "metadata": {}, + "source": [ + "\n", + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index bcff2400f..2e48dac87 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index a2fa23c15..bf2f1265b 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -667,6 +667,22 @@ "Detecting outliers based on feature embeddings can be done for arbitrary unlabeled datasets, but requires a meaningful numerical representation of the data. Detecting outliers based on predicted probabilities applies mainly for labeled classification datasets, but can be done with any effective classifier. The effectiveness of the latter approach depends on: how much auxiliary information captured in the feature values is lost in the predicted probabilities (determined by the particular set of labels in the classification task), the accuracy of our classifier, and how properly its predictions reflect epistemic uncertainty. Read more about it [here](https://pub.towardsai.net/a-simple-adjustment-improves-out-of-distribution-detection-for-any-classifier-5e96bbb2d627)." ] }, + { + "cell_type": "markdown", + "id": "03a5c870", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/master/_sources/tutorials/pred_probs_cross_val.rst b/master/_sources/tutorials/pred_probs_cross_val.rst index f5e7f9573..278befc59 100644 --- a/master/_sources/tutorials/pred_probs_cross_val.rst +++ b/master/_sources/tutorials/pred_probs_cross_val.rst @@ -58,3 +58,13 @@ Here is pseudocode for manually implementing K-fold cross-validation with K = 3: out_of_sample_pred_probs_for_B, out_of_sample_pred_probs_for_C, ]) + + +Spending too much time on data quality? +---- +This notebook demonstrates a toy ML model to quickly produce pred_probs. Because the performance of Cleanlab critically depends on the quality of your ML model, you should try to use a better ML model than the one demonstrated here. +If you are unsure how to produce a better ML model for your data, or want a platform to actually fix your issues automatically, use Cleanlab Studio which will automatically produce the best model for your dataset via cutting-edge AutoML with Foundation models. +`Try Cleanlab Studio for free! `_ + +.. image:: https://raw.githubusercontent.com/cleanlab/assets/master/cleanlab/ml-with-cleanlab-studio.png + :alt: The modern AI pipeline automated with Cleanlab Studio \ No newline at end of file diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 29bd5bde2..104969f7a 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -701,6 +701,22 @@ "**Summary:** To detect many types of issues in your regression dataset, we recommend using `Datalab` with provided `features` plus the best regression model you know for your data. If your goal is to train a robust regression model with noisy data rather than detect data/label issues, then use `CleanLearning`. Alternatively, if you don't have a sklearn-compatible regression model or already have pre-computed predictions from the model you'd like to rely on, you can pass these predictions into `Datalab` directly to find issues based on them instead of providing a regression model." ] }, + { + "cell_type": "markdown", + "id": "8a7a5387", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

\n", + " \"The\n", + "

" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 64d2a9d9e..3bc1dd5cf 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 16a5dc3ee..9e499cdb0 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/objects.inv b/master/objects.inv index 5d4ef7f2df33692e369facb40470ff0096a7c288..a67bbb38d12c0e56cbe03943162cd728006f67ec 100644 GIT binary patch literal 38671 zcmV*8Kykk#AX9K?X>NERX>N99Zgg*Qc_4OWa&u{KZXhxWBOp+6Z)#;@bUGkoY-M3? zY++&wBOq2~a&u{KZaN?eBOp|0Wgv28ZDDC{WMy(7Z)PBLXlZjGW@&6?AZc?TV{dJ6 za%FRKWn>_Ab7^j8AbMcHB6UE_&Zj!96}_wLPn-YRh(2jn|sf%OlAy zt(GN^WtVsF8#Xf&sbq;sW)Y-p_0_z?x!QN<>O9DKlzEba06-FCf+T*K>HX7XB@yvO z1pWd6Ah1kPoTc&NWP!5fW*ZmxNp=_P9$##(XPlB@ghl+GC?>hH*p!^ zY8#b#v<0cwRkoxOKG%}VNFe%U8<$1$Em{{j5u%8f=m1hYMuY&Rcpm7E-U*H#;xt*! z0}U-8-=>ezD!~MPQ4s@NM~gU3ag=1F4g4)yB$+ciEYld{WSuNW8hy9Sa4YYXJA>b^ zP+VlZx6<#TurkKV98V%*j|95Lf)5+DTD}?=kls?$rq0+nP zfI)c1tGJA#BCpDNWcGlwi;H;cMT=d5R>`vT$eIo6J^*n1fFiu(!?JVk%e?Tzm{cff z_fdiVAWgIM1>vvF0C#E~TNUyuD+dN%_%t%!($7mWH!bKqxy-Y5vO-xI{hlX`r)-K4 zxXRe&+g;^~8L>*Tm53IBo3ng~pmVf6!-hZOMLHVl`A?RNT_~TD|FLEwxFkz!t#*&J z2D&_%gXhwC1f~b!sNP{VXq!~IDG=V|>B>;vj5yc*c~XZ9o%@K3SdI8l-7>>{x>t_= zi8t{sMUT;amJNv}W536j{C8M5`0vDei5FAjRToy}c5>cw-E$PBOjWqCAw0_BEvr`2 z=60wkAKfsg&f%DEWzHH}c#^GiFML5_SW=R8!lO3;=O)?2SXczQt;yQdj=A;??SZ`q zWB4+1N>;Sd3a#TRts7zaxO3l7D9$b?Zr373UV-v><(g-Kc6m{{<_e1hTb{%bLPZv* zQ*#I_r8=3^<>?QKtltM}RWmja{n4!uVm^rFU0P|jDEtdZ(yMh7N!@NQH`ky!$OhOjk4{<_1r^pY^d*ae1 zXVgUQZPhaOZ!iICCad{sVJ-8StTt0y6IYjNt|F(<^cZU@7<4WhNVQ7pAeum(Eb}x) z%X%rzLUYMBzC(53MQxn(BnVwnZR3o{QyfGZT*f6?8WUBAjGFargE~D`?Sq=3sRzQ{LqoMT4u^WM&r%RR_bG4vNFX^2t(_rdNoY6w zt^SMJ>wP<2tG0|W5q-#Za(?ml&F8C6(WhTOUflkAb9Jsh9v(>I#ywK^3JxUc3gKmu z?CN%U)K)bePi7ZX&rLa$kdzFTf8U9y>{!h`di*}*#YZpZHon(gJse01L8+T1m2I9#K+IIsV*_KLcKIhM$QXW>^q z7yg7_39Y>dzv5Z>4xUA`_Za37(B4m&K}vk2!rA)-e&x%^m#8TiVN@QgC2f2bzmnN{ zDt@JN=AW30nQRy2bG9^dO&V%r*QDh@_Z%y*J6Mrg(o+*-!4CWwW2w{R)VWPcHkZ+?!}Nlejmb zY^QH;f;pSG?IcX=W3$?mHl;M4tQj>u>uNhw3xYV1z|kBaih2?Or5{iP*g` zmJ_affm}_jmXhIQyGxUGf>zOeo^JEIyvQFSyiJOX{I}$Je3fnmJCdtP&7uoHXg*>9b!W!Pe#O_cS7gM@JajYkEhq72r<1Xc}pTM0$Tfq#pmDZv4@oT4wbN2j~-TV%jM}|g?F`Db)!YJj+bT5 z`{4B2ikCKBKhqdg1_j~6Nfh@|C+D~$g zNLm6)qr572RjK-nS%*fWL3Qcg!(TV_54Bac1lAC*UWF+RpbmlScZJo44Tr!Fahj}R z;>s@mwPcUVS?-eTpifU8^E&hqKpRRG<9@C~Gd>_xoTd@2l)dMR&3G1Zc3*24Egm`V zKPuujlm?=rZ>07T@c!a~W4U69AK~@cZ^Kn0mOWV}>$r%PS*F0ZDXYu-C*x zSLA#0DOw?1CRseXr|klX%nHy@1_nD92=Qta@k;QAvD>AO{@5?pX&#r)fAWY>t=Bw( zs2>1Y%edOX@q#QVy|$_4CP`NX$~sx>(Jn5R zn~}|87eMHN&kSDFK;OzDhBaK_4}%UH9@*!`*SJ{e10<`zC_=zGmyJ#S)Bp@t8@L>d zKez&Fk~RB3)#rz^He^qeZ;DhXFa- zKd?LzYi$av23uQ#c=dZlCMi;^fHo8rd_?+~1v zo!)F1#!dWRs2tus|doY{EZ90JsQtAdQdE}>Sk7xL(c{ZuarbH&fvH3W(vASrB_d=K`}WX=mb~e zxS$g}t;2(E5EYLSIswx-Sm*{%`JjRmIHN;{ZjjZFO1QyOK9J}JPH7*)4V2npMJHIw zM;G0oX&+>C0;_ne(G8Z)Ax9^Osz)B(fGHn zq=VljCH9AmcX1|3>oIY>Lqer^$U{cCO7Jd?ABD4SlR6FxpohG7VrfqB_O#*t`8r23 zuqOcI70SL1R~!GXY$B1L5~HZXaOOHL?zZtadV;NjEG*GBCWGQPD;T~rNYh(aYAe##VcaTHeF-hEawq%%{MKq+X6i;EfCC z>oQsvaEV5B#C3vC=i~((o+-(?j<`AT$Sonq&@joAy;jHSU?$_YDtm8wtZ7j%vQX*f zVtLg*-l2JOcUPdhc<3I{6q-KF#8Dv+fX#ad3~hK%-xW4ZCQfgf+%^^I&9Z&4le3%a zx0mM^*Jl^emy64Hzka$nk1no1eZ2Yb_t`Z+xxV@M{>|0p{~|KHfAjI(<@Nj`++JM0 zjasA3FTgwvUIsgn*VQBRM7CFt$YVKRJ;IJ;hV_Ozo-fuF?EB`I8Ah`{*i4;g4>so0 z2bvj|Ua6%wnTFy@{)9o_c6mm;$|O#sZT>(bJCHB-4ypM%=EziQ>eSZB=2t@UU~Q+% zP7s}do-15Y*+<`Cu!h(U-;KA1QC_18#r1sGHUdQ&>?UXTthLr-d(euQMs)W1)6LtrYW-ToR0I2X^Mx!yKVN_HjI%<^ zWQCeHC|gsiRg^Ixs+PoWBZYlJViXUiF4$+xO6xQXPSF{C)fEx(3@CcX3P5FkkNVr;N}l8}p@IoV zh?jYq7i2;qMKguTWJ(Nee71*tKmq6(mV=>h+0!Wp07k_fQe1612Pd$kXF=DxN0}#h zC@|5dpol{6p~Xl&A>xCuGn+7{?Q)e>OA9f=n@lP@zIzJ^@vuX#kjT#&L$Z8=2Z$g! z2ITOGA6@ZPJ5Zy^6&KM1UH7@+2lvgl;FRvFX#Ly~PiReKN~@jya_xpMnZcGQD!=Ar z8Y9bHT)%Vagfr|?DsD?Ev81OK6O0vJkkV(Y6ERU{T4l)}6>`frA+=9xDlgV){&ngU zr9NvoVd<7DSk{Ljb_EPC{9KUUnHCNHzr*P5fv+!l@gEgEx$ls1fwuWWZDAUBY0eBf zV4hd(bR$Lu4Y3!bRhM}gr@jC%OKfD%8E@mFjOwGl&}Y_gEyfY^Y5`Y2{%7>)lwbXR zt}})%2Y7mq06dY1rvG!pw94?NTCY>&ZP=u)6FUft-E)k{!Y6e;@9}-5!L#uVqqd-e z11uEg2h?aN4g~+27x&X*_t8{gvOJ^LYuJ%IZ!qk*ovX9D&aYj7M+ z5NXGDDm9}W_tAuVPFRm6*s}w`UM(X$UF(kZEu@X32Ns+*z?QB1Rw(fH)f5E?FYR%k zzmG;KpkV)ovTB}t=iw!TY^Th~FxxG+%wf4lyw04s6l8MwN_Th0ojDoQ7zQ-Mm~bIW zp5_&e@wmP_gowDPXv=eZxq|8*;8DA+;2Ot^V%zxlya23+yyQ9b?br(!87A(I4i=yE zKZXd$-&!BWn|y_R5)tCHTL`MQ1;_72Dhi`1g-}B6d3Qfz)K9`o#2I@R-j6W-x8wzi zi3jD~$}@KBb{J{uKJFBr`b}Lm84SSp`a}dtI!EJQPGx}xplf!ZF)=!&(>?L2B8Cfm z8@mrkk}rOTV*)EwqUG>N-!C;a!1v3K_MJWEQ(b0&yLwL=&Fd>W zbJeZ@xz~Zbn)e~W70vhI0%Yto9UP4tTyC`ArxqG*$rBnyoa9GK zsq;HIgD+P+Kq(zZj~0=8zHwd~nr;yFin$FGoiK^UI99WYmUugndM-)aT~_FS+- zRYp9Zmd}JU)a9n{9ms$>2pHYbB$2~WI=!xh(I zHePjm9JMQN0Biz9JzS*Ce>85>;Winwk@2lJ%d~5Cc;zRBQOh7}gTOCTi77xWAY^xM z=>NQ)YhXPA**x|o-6{(_=!kUQ6=_e4m!L(wg8iK!4we-z z^DV2xZJfn-WcG5P#LL&=8wwG|A%h5MvwqJZx;ngk9lYrYB$g&B;4&`CAYV7)y#CjJ z4d6A#3VKYrK><4u14VubcKNPK<09b4N=B;%Rxpf~>2V84VZIIa^C14V`rqZ=Dyx z78ct@z95xP*eo|mhJvPmnRcg4yUuzwBv>I}g$yfv&#=NKr1+&3mTK7zIQB*5>g&AWFf%}0TXJOVt#3bmuRmlx@d)$ zT`REm0$l2LAExMm=m^6Xot63DRt@_lGeQkn>mPO?=>RK0?zQum%mzk+izavlCZJq` z$Gj>6c;7sLQrV0i{;&V{S=Yp;!Be)7cm{2h zc6Y{{4-PN^z${l+7W97jn_fR~IE)iX!bXztEeu}Flzi}pc?>4$x;4UB27gmI#)tNf zlEGVh6}uLE5j=(UFtuMy)Fl;>Kzi86fQAsr7)e&Y=vxfg41>iZ@%Y$9d@e+NgqSw} z6IKH}RT6#3Ciurcn)M)U5%ey+j2wJ@tZtdofy}_i;(LQz7aJE;m43_ z5^_z##Ut@_nI^oZxF&3bIAL|jGzqCD;e;MxO#WXeXz@j2C@5J?Lwh=Wg$#)5!+rwHK9>ggBap*M&!XV1Sb5M`#2PYw#Xks1`=|RumSnf5s!H_ z3c~&A$0o+HK-qG$jf;C?9Ud4hzzL8BL?nel{6PGDl6M{IY8sXRm5Nj>&%_SFCy=XW6T<f z9V*1L!+27Qb2p%Ip`vhB*tLEFYh3~-n(gm@xKN66)hO#kmEMVH=SubX8&SDZ)YI6A zb;m~RbZp!|3+_X~E`lN5xVrsiP45J$x>gg6h8He0?mn^#qTku#2mUD|ebS5KFUhie zL1P&8Z!;m z$^49ZL01dihI#6fXlY~CqI%?`U$w+xFV36G!|BIAYe^);_LeqP+~cEGOiR+;BW>AT z4lI!EsF^Aw*fP-7yT{PssH4K%f>uRQ@iuxHHJi@*^*G2#v7CyqdpqU2Lhdn`_%0P{ z&+C9M)1t`9`u+tC6|f_%VtRu%p`QCVWirnbl*;|#k-mHbx&ahO+q)_AIbrK~&;P!?|o`>v7P9lkn+ zZS|pH=+UvrOdpZ2PGMVpU~o>db?#J|hN*H%Cu-1pLiKep=lXQG>ytRs5c^RLYv^R% z>NYVRKc!%%jKEf-tgSN6yN_DeanWu3bs5d>;>;wBrsGeWh;7tc6m`c6`r$HEN80# zy+7+xe9BO%)P(4=WtQPWW{TDD(u!RoXP01kljqlR6_#%!#B@b>1~1dY@qoX>HLjbl z8M|hSgZiSat~^ibJHY(9_;Q1m_jW?cS-#;vGJ%6L_)%ZlMU0cBLs9qn{RjMFC*+b> z61%mRf6eMUKho>j+A>eFci%`7xQGH*>H$`~X^t&*8DV@WeCk{##|HAlJ78P1N}8k% zPFl|(+e_htU0d1}2zERZoRrAc*j-*9#J}_fgUgll!l~NeIwjj4JGkOPFQJ}KjI{M} zRQiq~;ScGES6F$h9U!Np?Yrh%aK^p`m*?0(k|*t_kber36}A;{h^?mFQ@4R+rKx@D zpdS68z`tBo9%H*^Ng{^st*IPf6geH8S{8KN(#E*KJc$8b}a3Y_^1Z;5r zG+qmXVmx7a1Cs566er$I=qAgMoa-4)sCHTZ%CihP5PIwonz_*RAv6euH@`;x<7OH{ zTMZqff;$~chE;%qVYAKSsI5quLhBBGYxb9nTZ)W%NY9(0Qq}p>6<*{o(w&^AOUdLDG^8QqV8*!d~t%=JiLoG|E3l z^+zL3x_RE5HvD1My)<%`&AmR&!4ghDntGwmt<@Okeo=p=87VHvSD|g0D07!Qpp4}Q zuohk9MgPrqXH3LORzF#b13YZSfJa!|H`M{Qm-NXO7fqA_undEBFvgYGeXf_CUwK@_ zOz4ht=GNeYtb5L%t>NiA@HA_j#u|Q9^gWK3?5+7SpIpa}35r8Mj`kqq1V??(H8FLf z2#6QYZ-_6Ez2|z^h%O{8av`zEF2UkaI79iQ8Ce|&D&|-cc2|tf&`dT)Fv?bOg#}cU6QLQO>d}%LQ=L zvB!AJSD!Jinf!3&i2YZ!S_sHISxC}nle~rT3p^~1-p>Lj` zl{#Rb@E!Y`y-I>s6Xz9s1;vmo;l-h$>zG)XK zocGTs*G1?L^nbL`rZG|$f6wtUAX{OBh1=do9_{M(RqfB z-cdxqr;m_3vg?MDD^ODv?Qjz1i-wN+D-DcwInV?IGwAxYIMiQTz}mKG{K&GVmP#TF2g1(|^Y*ixQJi(T3h`lCjlR^$&WsI9sr{9EZt zz@U7JK;R8t4y0Y0An>X6$udtg53lA@%!KLCNW*C|RVn=&L?c0z(lJ|aepgv^Tf9C5ubN3t5J~KmqfoF9#C{D{wq;e9>p;7jbtvUEL)B$`N z8(+q!4+CR4%cDP+QDlh5lsX1cT4&o%#9APVYwdNsEc4<~XIWp9&?PiRb&{!i+k^nqGZB}8fpcsN8U@3EYY z=_mZ6gE-k_c~SZY`?s->s#w%Jd&{u&Njz(>@z#t}ON_roqebr9Lf}p|8$c#AuoHU? zOW~54mMz&uCfi=r;iA{?`Jk)!x|uqk>BrBsWKx|@WzUy2e~Ia`ohfN58LT~qf_wv|)Z+b#vsCkDp2B_$C`h2FK!#xiVTIJ@P)r zilMti(LH)R`r2tF^$l=@^@NYTda$QjIkHJ*8{cc6A~-;mbj0+^{kW<}=^4R8R?N_& zgl_mAS7jW3H}Td(jw97K6L3K_@)33{9Kyk@c8XG3^=Dmcn9$obfFEMty!=+2|f4FYyrY>&tO zwh=ntm0%E;)8~CO)q#(*7O;EcAH{(0Al~NB@@7#sO~%Ji3zC;Ij;=CfGJ58J3{_(l z@$^?4x^Yfrmd9Z8V;zrt3`IvY3OR~j`m?`z)Y5>tX^rTe*Kb90Vr^q^gMef6NTqqy zvt_{!-PeB_3ZdNCS}K}UsQJ@A?Ag`GKp>j7s(EqMDDJ7k>=-QUAoA(a+-9LqZO%tg z5!S&^pY>o8{nTZA6t!R-|MXc4CIL`g#z#>L$2l0eAB2u(@Ue}8dNsR#7*vz*5mkX@ zAk=?7=tn|Lm>*A#;3KUF?7{xWG5FhuLwy?GC?2ZK`6w#FChX?33N+(x8a$7}>_^-5 zy|nscYVdA?Z$7KQIQnM9-Lz6PBVY}&6MGwjn?$~}vv)|ygw7)F8E8-T{)C`L}hQ0df@j03>R&5Kdc|Fw@fwSsHn z(^mt5h))6F!hBXNrDeyXkS*-&_4$W#39a7+R2(#V^ z5Bk`6Xb!C_5y?HvL)f}2L9~mDc#BHoeJh71AC}A;=R;J$QA~DDCb>gRZniN_mv+<- zY)-Q}oJ}o5na&NXAHP)OcQ6y<P;T;5X zXQ>6VIIjuwBdZ_lknlX!V-hVk;C*D3V;xwYr*ceU&IY`Xta6ThMDsF|9pMOO8~2;3 zHuOV+`mB$#W-OzJb5@UjV9}8OF;)~l`uf3ss^!=w7W+u%Jau9e%uqzJre9tB)LK_iz)Nou_7u!?vaXmUX2WTv*19^P0r%l(-$pyvH&wI2sQQI1bpx)EwJWKX#_V?4Y)_jEea%uzvJQ znd2c%jgQ8{*p*=qHNe_OrrcW9C<3L%?m!l{i7mOct!4~qiqV1Wc|?uXT{}H&6Lk~c zacf)SIF35YIjoJ7?JiB$30g(>dAiN-@*;nT@HQzj^4}8S`9}r?k(_fhGPPzric#8| z(+pNS0#&6J$Mh&Qi+quP>7%N*86bfFaS-vUW!3|~CjVm=>ylB=Z7LTLE;n{FjBQP_ zn%$!I5iLgsHHu|Tahlzn_7N;c<}`|3O>vstoQLn{4*K^&`n7e0%9Z^LVp9{04rEK) zh?G-<8pNVhxE;o{_y{bDT^Mry0n$Ol$&nS!Voj5*X1AzSgvpUDbz@5-OlG&=Q8Y$3 z?eI`d&`|`*kuA+*M@sArtPB6JwF%{+x7^RGGEHpK|JMv?sDb}s1g~79H4Xo-eb_-% zL0gI&_Ftp;!w8Rqnb1Kv!nHlk;u5M14`=BWTE|sdM&+hJc$23qd?fZhzj*uR^VO&5 z)2|;dZhyVGI=>D4usx*hEki`kjcyVvQsj3yGh2s_oSWGshNQ^vaArQDvD(=feb}+t zHq_+auKF=2HFk%#v1JI#lcDuvQ5rlCY;t@|md5T3e82(NK4j(Gx<;`pRfY$&G%AZ^ zc`P<&!nk8~IJ@Tg>PUTq^Ft})i-@Oto()lG!fxs8oO zwK`1Atgd+ujFURBt0Ay4#g9>T1sk}b8nB6 zNzOf)ILbY=CFXaZg}6ubH7PgI8pUN*m@Y1)8v2mVJ-? zW~?id{U1|+W2~$1V)*kn>>cZHXS?4tXXWVcL>clw-ior^w3@xP^tZEYK#sQF@b^(& z*kdgn<)mc4eKuni8Evc?BOGIO*=%miSW%kW9tOORv2wnbZsfHG9dYMzv&}MNMHz3v zSfN-}o#qZnUsRWsVk?Sfn7_(asMw)mofq3AyNm9MyxN&>J;>S7{RinM2ZAa$V>yT3 zuk=Uzi0rT(EXDoY{q-IEXcV9|V}JbhW$#$dYfR(7fZ)A=1-BhUMhSH&HReyiU4czxqzxcbXRy<2> zeh;pZ{RY+Hs?un`$^q7QP_0=W^(otB*!Nb?*EiAU>+_3`A1*$=z4`e5^7>tLcJ=x8 z)5XW=@;o>s_;=6}_|=G}`f0s?ccb>r=TBFc#N@TW5%#QdSRJ6^3g~L^@=J^FHl<%Mtzf<>XCeQ2pak|_bfH+)*8lQ)7gy*7)dtXBO z#d$@@QM8W@Z1WXLBjTa$suJs*WatvoGYg%cv_MCiRktkti~V6Ps507n`0IwD8PIq) zLA@(IuPGW-3tIoCfub|pg+iJV`nSkKoF=3=n%OE1tPQaz>%bez%QVIq?z!%Ye1YdM z4xpX^>IZ`QfudT_&SsjExVWpfC@T+RqZZx;lliPR;}|W`S9`1;<}shi<{G;ty6TPL z0}SS~)SP3wL|Of@eT0cet5M6$KE~67*oI?#mv%PO%s$3<^)wvg2bj!fwVB8Gp1ww7 zyqw2;CYy7N@9C;P#!DE?XQ{cz_@1(6WBdRUKUQn6br_`Su`pMA=jMY__8kT484Wb& zSTEI8f3zQGGpFt58}a2j>yG)OT;?>~Oyj;>U#*dUn8lp-nsM}(E37^KkF(LU-Q@kg z4vB@0G=Y>u-E0R?C$P>bcn-&@{lk|3NHy1m=zr9Yo(qypGyhmKS1##VEqY>HZ#UXV zLlMV>$hqEg=&Y@;magU+aLQ@4GRF5h-H?{2oe=(|!g<7+vlAjTTY{rG zDsvykh{~nfZJf)S$^wKog-ccS)2C~zDnMvcI8)VkmA?Oc_34rxe-8ADJJZm2O@6$1 z_wj;^p^5`;TU<#)Gxw8HNjzYTrWUnOg8I+=4>^ObVcG^DIm z3p&*3TUo@gX@m4PBP^rB58W$^HYH{uwW!2%&~(E-sXai=eyC7z58;>p-oJQ;6d(rmV9n-{(g z40RxM2^?zbJ94KPwDS?KE29;{Ws;5E5wTVCQwKwv!lAOcCk@LyP%GwAmk4cl<)b%^ zID4JK4z(-d#8-1BjR%$p~y%W7UspJ(3JJjxR=WG6>tW^uT)99PG-KcMhyHVd< z?neC+6*={PJSo-k*D9^1V6ys)f!IJr{=XVT|AK^EcmpXE8BgDo$V(J2H>B4p-^FMt z*kz37Z#9gedT$HGtKTcKoF>Hz7*3)>)eG)QW(Z_NJB%`uMJzrE<*$IvBkrK`H5 zsjK0ro7pR-sLl99VpUIB6K)456feUkSR@n=1tE~yGCyO_xyJ&YFg zaPvx4K`AZOSN26$f`L{jEl#FFNM^H6R-{l=ZVH4qdAh<84W6v5lyNDCJ61leN$+&a zzRYIFVF_F?@o78yW0K(=T9$b+o55(_*vkgim~uYT(1WA027Vx$4a?)6<;+$V%N^3X z9XZ^wn%SCJwLJn`3R1XYG_xIfG635H6rWzB;3s>*vp50OJqM8!=v!)GU!m#4=`63dS%S-G_echtkUWW)iy6Jbmky>#eL{{7tt)UipgTEG!~#th&*WTy_Pj<*hB4ZbNEzkJ!{#( z=n}ZsILjl|TwE3k*C?9h-K)zVrt++AjiOoJo4Pa%5YMAD$1 z;+A4uD{9`9_N1s*ihWy+rxNZ@k@>QLULt;LD@>;4pC<-aks?OLd*3 z{?^)0r1+mA^JW9}By{#B7)?euLFLN;1`h;S8$#{507YtVhSA8_XK#`5%zaa2-fW=$ z*nqtWMxP#-pz>w_wTr9v$`4*+9ii~1wBKNv`gYkZ}sO5tTi8f>|mV8oA#QI zAlTbr`bh*8QeXB!es{lGWsvILSC_<_-dYbT*lR!ayuvi0FH0ytyI^gEu}2t2X}qbf z{y2lZ@}o~ROi=kUfZh`h);5@Y&|#X;rzJEKb2%}`beb+jYM+MDO4;YcEK|ArlxTgL zMC;KACnlMCLPCkwmq}Egmaw+O$U_rjB);@cW?DHV+AF8T-^$70nF?zIs6AStNbSoo z8qWb(8)W=hfC(yJ2GD-;!rBZf4`3+K`ZdX{VK${_GSrCuT4m1uqVkxA60Kj8=sh~& z$SRW$QK*vpvdzp^F}8<)OPD{{VQm$y=R5S6__x-4i(IuwJ`}0F8%Fo>4|nEKcnU;| z$84t3$=vSVToXy$wfXoro6$oe4h^UJtcU@pnT>a#mZ$Uhh#@!chO~N=#GNg5pC~bB z=-r|-hQHJvGEt=VZkTzarOMBps59_xA;V`-+}TR~Q4|wa{_LmwSc(ISDLkE`M(oQf z_y9XM*lOnn&$Dx*`|ygrRi>X|Q6cqak9i~3#=&a;acb>HT&#_u@}!Frtv8e8v)Ezq z;g?|oe;TVl2;)HS(dS{N$h_G=HJi7+0YQj%~Owy^FLGh^@iAodC-N>Mx8$&%OP|tOs zUK&HaBv3Eap+-~mb&4BGqyeCmh!5}LETW0rl6A7AevxYKKN%^_04VvO2|v(7WTjUL z-lg%QM$YFUxy?aM3H@1RFS-6qhS|rpp!H{-Hb=RBnrjDE8icoJp=-0z@kByoWg&gA z(UD}Gq$MgwhAUox4od9bQtGzm_;0GcN8qo(W3q&ya8ZTfeX+Q>+s5B$f@tzXo<-ZZ zERt_7M4v#gq}NcJXTLzJC_{flcge%xF{nxXWUN#Rs!1&5T3$S|R%{@wjEh1URS~NU za*9`3$t#2Wk(!Aq=cHIpE^dFkV4oDE8z9^p187pbOyT9IUO_sd)W41Lds6?T&bTER zL+B3vRhgt%MSdBX@FrB}g9dEd9_o@OvXb;gi@ey<2jo@}8TgBQ_h>4!9jFblj%E67 zaSYDb5?Ub2Rb9e6195tX7DcSqxH=TPU5US`;YcgCQwVM`S0##)?15BIg3?W2qQB9Tg^fb1u(lUv&EHC3SFVsCUDII%BL-IujSyFG(qGY*% ziZXg2{=kYfK~gz5>J~KC!J!DwIC(c=yBwR>ZUU|yxep61H)weeYk!O~Twxv`plem+ z-%jJ`E|_?+86PQezAmF>0nbn?E}85NHVkde!H216sAd6KK})pVMR*wxKb`K*N^(>i zVlTFV^=sK11zGF$-}6Sn9q{mBu(m$t9LwdXHpE)C8T5o?6z0azgVAz<*mz9$K?-Hh zt3%YfUE@v zB*U{Cr^U7A;N3`fs7#1EFt?3bSX&0(EtJ4*o0-kSF|DY*8zx2B+;(A*HpHH-Qop#p zMA282+-*wrjZ2r7I=i`kdwG6weRdIjxww4y>!*wJ=;Hd*$D0p-4_q_!Y*D(;gUdPR z`4-cP+OuJVjpl7!+zs9*@M59sn~(3`TwVSz(hT0e`S|YgI&j0rv&}F{*HPO?=d{@E z#ns!W?M8tMCT^{TzU}gi3|2{;M%(;>9>RJ+MSSPeP9vaplPQ>n|~l$(1)Y8<9@Ww-GIv zPrvqatmOL|>8<1ksXZH}4v3*SEz^S9k$bic9mT;*n0rv&(|AG>4?NwP7Iq%DUY+O~ zL8Gj?isL&aVsS$aH2`$?MD$L-h&25z7?mxb$qhcS7_>m*U~cj<%Bro_3533!7I4Ot zE=@tcoH7J&>I)EBrCqAYIG&OM-qaKzv`V{F6PGbPo&xuO;ZBt|W%qy#Xp|LK8Kl&= zr1#WSXRk6QWe^}-2uao5_eiCHVin^@*x zT(3I!u}p|G^dI!x_EAjL)`3v#(OXm&$x_RG;v{TcO#iKjFji~4)Cw(=6^iOU!G1N7 z%oxj%&bbLtwM@x><7^fq?4cP`x--Ov{7L3=vN)r;8J1OC;Z{G%nbnZ-0GMUsu;yQ zhnBJ^oP?#EqW@Mz7^@;)sTNYE=U)U=Tgf7h2qQiUS~%RJ2svRo%c6%JKR=wStILF?N{ zES=C{tklQ0A@*%2`fThWjMM=(ru1!|ZM@qJXHWKHnHtlC$h$pIafj57-nq4jfNM(V z+cpG*Oq4KF-lJ?*>vWOLNewJCI6)87*_y@#Qg60~4=O$aEl0fp_}3UGNqy2!q}QTs z#h(dT#bvz96}G|~TuruGrA^dXrpb;c$tmJ;+K-)7WRIa@Ib-1;;kex z7S67U*3YfQ?XgoTWh6F?M`X=i?^>2?d(rn_h6C~K$) zWcg6bOQNEIz)hu)iOjH0*d~~!HJI4QY|r+QISEi}$TDrqo&*ilx@RPriI{-}^s z;d?BVOPZ*Vkd9A!OLxum%Y9%@CsHr&(#{-dIAEV|U8%Tv9m zi53Og<_~p~q-QM0vh%BJGQ?M}xRFMA#hxm_sGwJ7VJo}L%h-V@HO5VR^Vuzq^a|D_B4Vi;i$fYTMJM^U8!+4Lwf~0F~s;Qf3nha2crFZnzzL2 zLIIw5nx60m!+p(*d#ovr34%U}BTchBqt6esl;l1%?IGxsIMS3Q6Bq7yd#P6miW!+x zty#W#fBJI%x&*d5GE2enETv5#E&ckubqc%FD}|?0+Z&#qH0-08ktt|BI61WCbX8Pg zDV-k(A<<*cZFZ6%E z7O*8=&=0DB1N{C5|NDjUdr$c(mUAHb$vP=ri%)rKly#v7#PWABSp{R~+6b)mNnGg0 zU$AtpSj|_nyhD}fp{v-JVw}4Xl?x@Yzcz{W+az|{CULdh#>Jz1#W-Kh@^&g=^hd=q z7CO}Dwq>eQ*p()Z2lm@8V_gDgT6r1gZ>9VV>71$Re%Qa=XKq5|T0`fv!0ix(IjJ+9 zvF8Si4I40a-+obl%7rTflS+O5PY8`)!%S z9)B67d3Fcu)vxrv_Gs{2B8nM%6CyJ$VT6vCW%7U`QliM{HsIJzIvpKHnCp|c)-OUC zM%zV-yeitFSkRiQ-c3iT^!%l+-lGtvgnl%3UFB+6)*Q@@v5kMv3*h{amna$w0_v(R zj#VI#!vq}g1F(K?srw^wyu!vRWP+kk zqNwrcq&BL>&Ci5PuQoh`J@lL&q7C%i3vqsUN(;mavo_zv+2svPx-+pL!j^6Q5&GrWr%DqIPH$;r+xJ8p|M@IjK8a&@%z-d1%4pidnyGEu#qT zijiBZ;kkMPd z5SlTi7enk#aM-^&B$$@;?o9KLU|0eC(^vOs`D>I_Rd4)o!no)S?YtAoG@@9Q5?`A_qj3peoKcFdP_rkzvF)L|Dk6akY+&?;@P}p34 zm$EC%Jtp(sa&7cwhS3KZhTmbBh+PhbD)-mw^cNbJF7w@ZxLmUSmQs&?ofd|^lukUr zWCcm+qp$F!3b;ThD~o*h7_H&lW4zpq9#$NZRg<|5v6`mcz*2plb37I_rrbC`&GIHH zIFejZU>!L#NO}r0=8CKRAy#qB3Skaya zC-m0|-a-ZU2v67-e)&O1h7q1;@a3xJsaVdD3MWyNWZ?Z&3$|>Dd?+PBF{X5-xa#J- zo#G>#^SYGo6fZrgT52d)x>ARR?#N$dUL?z?B2z$7#z{7K)YwkRVKi$FE)9ZqWSM}r zGZ{pVX3fE+LA-bLJrGkums)R88N)H|s31!>PZO3L$cEUZ1x9ab+w0xGsI5%mO2_dW z19l4Tr5I2v?@BcsKalm`E*^Zd&Q3dly*`OE9Y>-@mg;q5NGheBDMea2MAQnnw~zg_ z%|3=9olBKH4mDVRsKL&M8sJFViT8@_q8L+7DZaOO?(x^sZ<3kX8gwe4+AG;#-3~AP zCDD&AnRW-kCo3&KjXuD)HM>|q_Z0e& z7`oi`iYsV0dg^>o>Y)?o9fGNVn4~a&?!NtflJ^twXFZ@EsRHW60J2|Jwml=|IM5DE z#tyj@MgRshHi{~rlhs#o?0l?B=}EQvoSP$5{IUdKd zHRukG^3xQ`2-+0(iq=n!c+s)PT&J+TX8bAj#pCFuJyX^C+_g%pC^y=P#!t!&>!ikX zuM^4MPoDN(#;D|8%mhwbC9;CLUd@zvrf6nl8dm66;s}nZ>N*f=wK(NZjS$hcBKxk4 z`GkH}yFxx8h@6#)bQAvAFpbPF8%3CC$tHfW#nb-aDA|BtI0ZFPZ~A`Xq>vVf#+2?2qU2Ayvc-^psX^r40`Y5-W%MFJcO8 zr|3>kg14kdz>09m34;KN1nl+8R*FrWtw=j&$%ar-$h0BnokPg2l zZSjtz87|{AZHAO# zaryVU8(~sNa4!T5k$Nz<*htvJhOInH!X20fN z$-;vdK=4m^&zs&y`oI32G}OPG{3QVIFxVA{Xz`bm=fjv!c$1HdJ39W*_Vf@JNxUE} zEsM8gFec6Ju3wLX(rGX}V_m5(Nn2uFGRWv-xvb=f`0Fa8mx3q^ohOWho?`Qsf2T6C zz>lJUoBV57<{|$T{#jR6cpCnN{9mZ4kknN8oc!@zRbXAVPTLHhrA-ViBYjVQQ#ELY zzJ`p8GN?#$jlKr_-y&pArn!mSt6-)sLT8S?ZtA z?tD$>xGO%#smb-^`AJw$7;v^AA)Lb%A`Tr~IY{q`E*L7EqS{^dwC4 zctuA$GOI2T8Sls(D)EriBq#i?2Kf=s2|iL=^N#`f$bBY7iC>(A7^RR>EAGYMn8U*c zZk7rt%&RiY*CCF#J2KYrLuiPKwul!=nv{k$M5MTNECun(7|S3I`dKOI!+|k#I)P=- zVHq?mgAPk&o4z~=E8H%&U=pETF!L{EYXLPY5x$=%`H~d^Dby~8$czMqxNll73=}na zb;5mM;y>nO&J$f>HWLo}*J?Tugijg>#9yVwNu@&Zj%&^4*{)};sAsRuQ6C?-LmMy5 zoM~u^wpyP_@b-t&@Vv&OLutr{(s{;V45J^Na&qDgRm)9SCd9QM!crsfF!5hal)qJE zU6&(Gm^fIZTma<)qB0%+>T+W$p>L($dDKtA)eyA#>&uX4a&5c(p3~7v&ssQ!4HkiD$g~`aZPRcMP42ieqc)cW1pWwZ<$9oA8_cCByTr7rUrg>$t z29jw0N@eNuN^|KWlY3QfUk7ja&%xKcxL>FFR}AI`WlM4AMpc?8%K|~X6_LoEKJ0*kXuLGeZ>)8P-X{_AoYnZH-$@&pGXqJ-+cpX=1 z*=)FA7djG@+X6Ge#BfgZB^b9IjPo8wSKAjv zTT;C3pY=edk)dn^d)pw z>hhD794#G)r8N}2Ba?>G#Lw1J?Ml>C?ROS{gjUVJU@N(Hm8)fv+JzTkhgM2NV8(GzH&vbCHIV7yO{BzZIdWwnb!AS^VO=#1G_S7URy&-=qe7Ynq zDZWp3@Dp*liLv7(#m`LjC0J+LSY+inc%w~t2 z7JG~rU|j%~oK>^Xm7rW{ppca;EzTmGv^Z5zaym{|-*)*D@`05vCy4#oz#78XLw(amp0!+QwFZ!^{ydZh$Yzd^sW)+oRY!ysB=Icf%Z^zqg+P;ggokG+wl- zb}7VUkz)8|NZe~FGx#-VejSOn3<_x(gr5@IV=TUgrupgB{2o?xEQozc)8wlLc?4*e zUQ8?IoQ{jA4Dlbv$_LI0X zNeQS@4FMgQI|O3`v#8tD2Bn5BQ(KLbTZdD!lG&QL8oRha;=Bx-xZyqd-*iP>${geH zf!JiFG#m=j6XqWVnE!2nIdKR$i8%GchH=11fy0l&iS759tp& zBAp9V@b7^AdlF2(T|kQ%Z5N0l$+rvWyr8vRU_O%!+!`4b8*Yz;?|b)1#$j|eg#@H4 zk?d+>lc$51e-*tf{nm0NXFz@yT{OiuWaOL)!dUuaqA2{?0eu;6x`g~sMbw9co+HPw zvw4rw#}Iv^!xz77qjCgCBGPXfT%l|LWdl|=sLQh6GIV5STp5fWP(ep_u!WiEeIBi# z>`VPngqm1nzRZhKR}fA`q1nHcz{prb*Khsit=rdrn`TBugCelX%X$r8sSi?#%Y4^1 z5&~v6ll(Ttib_igw2h2Ny_%SFrmit`3yL9B`Q?B;#!s49&(vjweJBa761dWpgnr?{ zHIsPo_5b^So?cg5R3ytE&qyn{gACAQ{k+W6YMbF_larvEO9?X3-Jaf*%WHBCK`N`0 z`v-Cv=eu|y)$F^waUi$iOIWjH?5H|fhr!r~$h48cJ2i{EDsXsL#Ji1_XaE)V6E>9kSlZzYs!g{!|ArV>Ws)k!{K<}1@wkt4wPs837 z=v>hl3C-#5Vs`FkeAeLmax`+MvTrHqB#o_g8lK+l*(fCqtcCP~gL+uacpTB1{Ti9| zroI-%7RID};x5epf{64`;l%{cp@(K$Fl&88*4;5z5JCq@so+A$NV@9T$ zGFhsQZC$B=+q;(AZNshZ*w5k24f{^|eDl5T_=*AxtMR>EE`5QU`B>aD69jJNVsV4a zQed6wLqX!d1G_Pip@50Z_J)-iQ{RBK-Bdy@`+|HBsh_tyokO9Oz5u7~R_1+{sl@<# zQk=GXllRxx;XBIWwB2YVKL+oH*7p*5_|YDg11Q-pNV#l@v}W*q3C~BE*0cBN37^1u zexatA_Q=y}(VNUF3An{AJjZce|)YA!@h@_Q5ht$$Y(tiER4o?4`%M!tY&>P$WTeaY+V#%Eoa8wT^Cf%(vZIc+Z< zw}f=iVuV3M7<`y=-6gs|kjl-A`T$Df=IU$rTZd8O)`I-aCpw}v9;}jtuS2rJH47Z}^` z17}L>^tUck!JxbttK+7aw&U?)o|*B5>CE`TLUXbnP{C zS+0FeBedgeuf5+g-Y*A6++MT4<^Q4xQy8cAux)ighspl`MP-QDJqO#!$!0w8?+F_efQB>x0kNZ1; zyG*TK`GA$z9w%Qp_cvZC_#3a>_!|TY^K3B9xVCs?9l*%_BMfhAhUYCq+8ZvLJ@8we zS*9767LTlJTq?VHKRGx1PYP!L$&K0LL&7EH`L*&)X^_jNyTlRU1js)#gnL zL5&)o2@oGT5Ot&l2Q3k+iGUHYJ|Pmdkr*X?$?9#n5rcoy#<(>rPg^*+>ap9$wPiP3udg#&jTNrLcuIphdFo0Fc&Rhq25Q7~lt? zDK2}m?#N0OjsY*BA~yQABP#PJ4)i3v5J|;9RB-A3=D_r5(N*A)gQ0n`(`o2y2m=$M zZud!6r2eD?R_B(CQj^+>JDNgh(c@YU5xGsy&V&A07jNScsNkde^T#n<4L>eLKL@^&1qY z`tpy){UNcPu?oBWLH?V^J(m7Ir}&fgn-UvZ zjGg3*;YKMGgR_0qyKjogB_;ow6oaTatSY?714CJ|e}*6C`9;!Hetokq*(R`<-lA<@ zJWd~qY$2#Iy^z;RSs=}9fc&D6Glwbk01{^HY|rg9SMWWWXUi{q&i3^GdQcKMFt>Hp^0M2F=ya=HT=u zCSTI{?hdUq>}vzkSd22E+H)pi<7@7qHfOd8lb~iYVFR8pwHqcCRuVt*;}>My+@MTY zQ-DU&bp>ky8Wyq=LAu^xle=I)4iShDY`E${1OO2<5Y*(-RSEM6My!iBd6ll9&r4pW zgd1jbn-+%N67keGYBuAHFSQthB^V*}Kgm;Z&!19Fp11G%)2;+N1Y9>r`6+hw2AlJ@R+v7^8 z0-y@UsRE!1a2`;qVYL#R{r7+U@3QOT(9jzE7bemzQd6bo)D^zZ3B>0md#^O|l62nP zc87oVW-s{|ZPSQP7qH(mzD^vZqKn7N`YW`g5A9d_zAufVo$)86*{b9dAHsuAFoNHb z0kFFYAD40H=@cW`hh9w?dL>0e%u{wYUok7fxRj^tq`o9ELi@8cCBlS^FHYDlG;LFB zG62RrCqA6+O3}8-j!I|UAL&$0R+q%FFj9lSoteSCIAPn;v`Gt;K}}g_W^E}0N~vLt z=JhGIlAtSaLU~757fN3_V{VQ9%7A9 z8RHaAjhCA(oE#^j)=MXI)BH4G8a?Qr2CO8u4{E6%muA_fX|SKW9Vh2*30k@6EkAdA z%OLZgyImyb{tNNzO#8(z?I|`uS)h`J9y)cg99r5Y|71nm zXYS1`@=JUE&6ixiw7bz@I0n&cKs7|rLeL4n7dH_hf)+xf9{!D{o`JRR$jO{>ll>db zG*h$qH=0j||D_>_UeZqJ!t8=gJ+9G2>*a>5Ru(aam^~WLzB;bcnJ;PdGJL`q!*Vdx zV=zq!4~&DF@qXgh2}?JhVa+9crfs;}!0Gf^M-!NOn0l0ER&9J)SaE&mA=3@zvkvm7 z8X0`qkomH6JH$;w2BCJ#yt_>&8j)0LH(2U+#Qy9}oF?Ui(Avs8K;l-Pz!~=Yx*=Kz zvw{m_v-dHN#MCljTo{@?j%sRV8Yf6rut7+C!F$9;s+#<-X6E`b!ITCBk`-(>2JoGY zV$JuC_+&-6D>qU8fC|XzII({2mu62t6Dxjc4%HAF((z?U=G`J$25;z&j@BEea-p8Y zcccz}2)`m4-|HTm?rcJ?bF#96280oUW0!4oiAaf0w6uHj#uW9ehsqcQUlENuK6K7s zceX$&BWS0D5u6Dyx|&egzmrb6+<+s}M$bU6dNLRtC#5E&B868izdNDo`w7_#)!T}RT{!9S_bM20_~oQA~l z|M}#FG&QAW4PDEyz9?f6@&L%$?j;#F;D|;|PS)?I0h#UyximrMUzKd}^#?L^lz+x_ z$fJ8Un|Md;i(&jD1L+nOcl=s9sgnQm^c16boyXhou0SXwf75Cr|9wO$5sLgn*Fqj7 z0Hy(DN=I5?8gQmC?2_@DG7UJ>;9oe)fU^7-+Nl18vHKSVD_WjelpDt5sl@>`U`%X} zHPg)4t#cK|2|q<+_ISNqN#f5n-GM@i{#^Kmp6XF}*?uOku%E^c4%cn#=kvPW#_xHO zk<~?li3p2|%1yLmy&KGh_`^2vFT$cozO~=iX|mfv&BI`gU+Y=)^I>G{rxvVXX;Pr{ovnq%{7yQgyBBcu`UBKu9P8Za48fwGy z*S#kf`AHA5QYLlvxI@BocxGAyM(@eRF^t9uc>cQo_#!`B0%QRtYv0$?(fRbXkhZk; z{pm(JJd;@Diwc)}s}DonPnquB&HFx9e<9M^;FQ^*yQ5Ec^5Ka_M!vTu(Xqt~nJu`> z7EyJhcIyd_PSV&gsjcP6`#cjic_FijGG=3&7c$#$cd^3;_PgK+CXGIm7PIU<4m4$> zm#^h%Zo8-dX}(^1y_WrL)n#73mS@0Kf^01G^0hoMZifrY3fyur=uod-^S~oL!C&vx zQ}>SD*ZnhO70h`Ef6uY{ABILEuxE;}@2_OAjiFw><|}=Ax1c^SK>bd3o%qj?1~KPB zd^!`ch$iQxW2~QE(>6_)q)@K~8N2B!kUl_4{*Tz!$l3w;&;_Jq^=oK2BEpR`5gH@@ z^g1A1*;*T#8gQj6SNa}m7}6zP%QfI!rE7H^gZ_N-JbX&$#b>X>bwzi;H*pa!$=nF; ziRkt{6@9)Rn4kDVxGNGeBExl~qT=Q858=tl$umO(cSL&YSR`SU{5+^p0*VrdC>_W1 zspxh7z&zC-0*XSfN)Z&^n12WWMXv%*!>7y_fg0Gm&H~dN%=C5hp=TDdN51>uZeHoi z@z#MHoq$Bcnq8LfMVsNq_+!(S>46IJH`@rYoPR(sTAd;$ z8Qq~|*C9aWXz>^}yYMF#=5;DY$GSD=065b;dpYF`9gu%IItUBU!ZuzHOLr`+R!3D#TUF~L~J zC>QOoZbWBM$~n)Z#CYqSO$v zvG^~L%Cu%8Gb3h)GHND4%cO6e(YN1(H{Ybst+j8wO}_0Wyy@1Kl`^G5$61z_G5KkH zpS4$(N_tTTZ{Q6nQo9ukv%jfJ1^>w{MQ`~-l#zze*bR*LwZ)p^ld`#Z6mYY{Hbs+7xDqF|~Zm@wRRp$j{^)Kt(ru0!W+9>J^Z!mprcoydcJS|WL93yBj>g#zhuhtj=VA#DHBQ?9^-596_et2q?N}03X9}GuuxrX#h~4ZmwA|Ucffs8g=;o4o%4Q63 zvzm#zDXyhsJzIrm9qeZM3I9{TraMDdEp|OywZ-xL)8D!(XiwtyhkF`Y7I-V8=RXGG zkCT$Hn|Q+Yx07x$x(V@D9oc?W>^Y}(kg{Rc@3WF8v8mw9@9*y7DtL%eGL{Dg#9*&pT{KsY zX)j>?tiSOp%i=X5+2s3vw8O(}HIe^sT$Rbk|Mp;}9s{J~2F!qxl#o+86K{{Fv;g8C zn&=k2>O&_d?pTcF(VkG4V7yhwAU-84P1X6KiGF7zk2_4>a*?k0dblMR}c*WOW|sT5@sTGDVCdn)mwffMG5 z{xP2>J>(n{3{QN)2VB0yxl0~U#)5Vb^WNlT_>|d){PS73NV2$i0oqEcG#q~IgKwuFt7JQ@QuR4~J#oG*Zzml=Kl7!-P|&6O@TI=3zyG}9fNVNE zn%wT{Ny`%UgkqMRWwMTo=YN@s#B^n4$$C0`&U$=U;+{~<+{25=f-5~a`%@rHylWJf za5D#O7ia~&t&Pyt)OBv1QKzP(NPlKD0qRej(3m)npykobr!|i{ozI@T(>29Qi7CLJ zh+uQdg$Z6tOrQ$zQlffGYpOCoN8KQ{7Z@A)9!uz}{M`edHIDUFHKqBxD>og8GZBIh z2mI}W_ZvSrB7Gv)(yk?mL4-}5?ld3Sd$)OZ7w}1$^V-!*Y=_X5YY2~ zb+#-}52}TpfvpKdjoL;VEsGrE=pjzWj)_Ri(}{+q76HH;wyS*0c9jR7Tj6a7c);^Y z$!hOGr6JLHt`@L`T7DGPjVRJXgQTsXBiQ-OWObfl*bHiHZ&Xee{8dR0wZTDO5kKD_Np63)Vq>SqG>VzL}`WipBUaN=(o~uwlQ?Y@*Y6RfM4B*uX zU)2I-Q)i-PFjNS&y;2z}T;fd(zGy*_Y^ddeR)&=*HcJWu>x0r|jhED6>;`a&$j* z-5=;(_`)Wxy!|RS5iXC}kAKa?*uk$54;F_~rUF~Y zR$ZHMKJ{l97U70h{h8gTosdyCY`rg?RmfT*k&sa$-x>DG--dYz`5p4zU=J+wdz5J% zid{(@*GI`Apiph6Qps#|-K)|6DVouf?1*te}UvXG8^?IcQi1FLTj| z7SbV{mhYc!dRjumo*c-BRg(_rv=8;qHL*T4F|0f6ebfk;3_qk*!!hhUE9;OaTr(we z2Ynb)m`%Ut#mdkE`Z!emhAe2w$QrIC6Q^$=Q`CL`IJ>Oy_@VY;jephQzJI`7R(SuI z`-pbioGgWzgF|h}^INb6UK`AyEx%Xe3&ps96|}_yTCAxr)mB=!0NG5fufgpYxB8=O z?*9{+6z))lXqrSa4LxRLp$+bp*~9YBVbEsWNH4gpxi#;}KZgOkL2JG@k9m{teC7=P z@sGOU{No>8DTI5W^)%ZIp28eg|0Xh>y6Jcfmn{Wx=YP9q2)vhda;jOx)hfwHCD==L zIUvzqzDq$uttxaM;hmIZ&!0M0H&00u;abPhUN;dG89d%G_h}MRC~af$Xa}qGIu@@# z!X~R%0NX_OKL{L!QFITHrZ6%d)SI0K4j29%aw`d=`kp*cU{4?$wSQ?~daBkMj&-nM z&1!|}uJb|Q_9wEwsINHRXIXGp#Ji0q1l(cgH?i-pufung1zc9I`CeZK^hXNDZm@$L zJN6p9%049w|8GRvH-Q{87nhqY5-D}rxRqMoMgKo1_bAc zZlF)xdl_y6{JacHsMauLd;9f;m(!E_V2l*IzVXtEm=S+9Nmlh?RTguy74e!dy}Uf< z&&reaYyI?mS43Vcs9&GQ^{ew-#5F1*B1!jYh(prk?_9@tLwEPG1edCV0X?SF9xVsf zJXI@aO*Gn8SsDPKEi98<#yt^i8=1LfQR&cYc3@J(~2b6x-a@ z1Yk#~{uaIeGXST(8Ck=juR-^KMCQBR(bZ-5=<1xOWSKOoCU*JACixj2$*o7^sT%;p zL-WTfYx3m2skspDBUL#6kfi|NyR-2_`B`O9kM6Ji<9u_ zP0cJkW6Y>Q&iN7R_H%G1U{QN?MQQI6^!xc^QywY4jfL|6ktq?#6K=`S1M{jbsmN1EI1>9dMuSLGDrVB**$gvdAX8**)!Sf|5v%f*f-dQYA#xp$JDj{3 z>JcB8njh>wF}UG+?Qx)+iDxgf{47Mbx_v=&<%t<6G>rL1&(xywUlGh> zL9JCr%hpZ&_N19lRQ-!~OsB!fT^X`lN9qM>v7YZE7L1G63aA{z{5_w6d)v^k?w!xT zpKU1{Zw~U)`l6os?S6XIi6IjzQzssMp+T{lLwhlm7PZBU29KP}?b6=-+7R`fahf+b zqrLjI&s)q*T`j;N_Nyr!(+da?u!A{A_M_?@=i`nDCh6C(NI!G2^UfN@86ay^S!-0i z42L|-jMW`?duFcwzS3;N0movM{*_@;EFXBEOqt>OwyG{~E(ByL^u%$)CWnr#9^NmO zRd7(}$l>n-MHL2MI4I)4;!DXyzocZvq3L!y) z=nVYeI5;QThY3?ZI2EWh$PN12cC*tP=(}>IZ6Gk0SJnLb=3>3muT$0~qPNK(9w5>y z(o|n7rl}lFMKli&O53jdI>{SkGz;gFYs`PC-=&{|0zk31StvoKu_2*f*`IkXy&|O{uWp=|I!gbFUt8h#=@9WSO8^|FPQrIfuH~5r3 zgqx&&rG~LH!VP1{jBt~v$9KXs>5YnBBx=s46}?H(dqgSUPA|O;tAo(ydb8f$*86CJ z^Vy*%$M*q;uLK7nQ7nc7JZJCXxv@QbV23Uo!JOLgdVoXk>qKJi;ei(cBIQZs>cSAV z`8k8Xjl@MOGc~|Rq6N90>rI)87~MZ~NCm_1ckC!gZano2AH{qego1(ac-2od7)?WM zeEZg2SiXHbg39=>f+aajsECov?q2tM;Ui%kK|pNnCgmSh$t#$y4qn4sp)LC;fwg?uyf#%yi6180Q7E#;hQPL zPcc7=V}2xW(|U=DqwJ-1CQSHzjpLDvPRw)C#vKnh=n*7`8Q}5_BHD`l->ZAx9Q2ED zgT=towh7a4Cj$HFSNFV02^yN^Nj^)E5O;b~Tc#Ia!oo@&cD$u_B>h~lb}i{r$OYe- z#9^m}I?Wdf#;_iQr|?^bdeA*LeJa!Zw#ww_4mGDZ*tK(UPbTo7s0%IfIpbXi(jdIBL0HDWJBUF=rQKM3dp#e*7d~3*iF#A z9;RQKXKz=}^-e$Yk8uS|wt6JmSg9{J^IK=GgrR*F6y2+{+sd!J;8 z@d6RF^@%cV*Aw=mPuP#X8AB8%4{ulC&evL63vVqN7P_Enwj)R~pM72mikkkso`equ z35>z4jt6~~DV`)w@Qg;3CRh?ym>5TrMN|>-mhy8Sft~WhX+6 zBg+DFF`tbp1f?(u?ve+y)e7mTJV6I`3@vry#!k&K88S)7)8j#GgX@h6UT=&kM8H5H z11C}oe=Q&_%dvK1TJy943(A^Lu=d7c7%X+-9OD%cLEDz^K?1OKBbAX zw4@H)VD*p23SKPcW9e!pX1R~W$GlI(%A;P;Jqo&(GmNMN95m1P+cVa9y8Wo?Iq7x-O=(A3-sg$)RM;?B%ZBu9vixO|&YkO&vDo4N2Ms6_I>m_z2O8>9tnl zKPvAaVQ3W?>z*&+YQ2Lv&UIN=deX0)p#<|*AGDRazun$U0IBcCd3DE=i(J*67Hzr` z{(Ug$z4A856_iQMRn4y)5I=K$GF1E{U;Ng2*xqUD=iZ{j)6>)|1svZ#^31O=JtU09 zwx{(-!UPyO!)9&BU>lQpJ1;jC)*lK}3>r&WIJb2-<+?q2c~X97{wk(^flMgGS^lbp zI4`F4{Bp!s6zO^I=iiZod^xd=-+4r?hGK-Tp7NXJbn_1E`#3|{L_WjidbV3QFU!Fn zN>%7Z_Qx%GQ}lA1uIfARAFRoB5B5JIt*4&k)$|7j5Ct;iv(aw_k%5PY7Y2@uZuZO1 z|Lo?c#e(E{8HL+~=&MA5A zW7{}BTiwjjqY;l9xV)Dx?yH7Sg+0I5x7AA3 zdgsuqdA7dXIcVP09j)~+i>}J=svP}#i&4}Ms;Qnu@P$7d;nidTh_(XK=#F;>^*M8W z3S6NG(Zix;Ye$Ln2y#w{5TZLy~6$##C* z%A%_?@&5PKy4=pUi|TJh4^<_DaZuo>8lmAZ8V5OOp``Ci7XH zAxgX>3Grk((hWN9TzX;)qp>w2}d`J98T$7#d_v|MtsxBiuZ?)C#&^#eyR5={qJN`UC-f#tY&>= z=pdD|cBAw%4~uLHd1pzAl=0jSlEZXn5zL?2+?}B^fV=I?%f$Sd&%MX0Z+4W6bD27C zQUtP(z#IbmNJ6^j012=oaVGz9Zb#>>8U6r58YGANc8D;8XCkCAWKve^6<{C^;7&b_ zjtrmkneG;Y1`Pd};ck&XM!w=0!jZcYQ~o2HuZy!BzTiR{B#HZWh%kc}Tu5Wcf{Wg` z3=t+uh$M>s)FL59hrzY-?QWZ?OL<**7m#1IaNAS}$DPH7+M0(BpIZoTr}eu$ve1%< z!lx!l6InTFAU~%_M|-quD#rgABdLFL+66i<+r5-gLM;x>(*BvEyxvymz`4#KZQB|f z-Ta*(p56_b&4{G@K0#E(zSNToa0Mr{&dy%qwGMtsutqf630KAL=IJ%(cSnAe;8NdC z8}%%e>Yx2w)+ln3nUxrO~`na##$woTJ$LakL znQ+FOW#+eK<;jFYwlsgYT1_0*LN|Hao>vx63_Q0Y$*5DVUV1aXv?h0sCUcdG~p3WHRkP={t&cVw$=9CG&!!+FtW_?e0y6O z!%LDAO^&?LD)yMY zMr|uK)-bV3V+U*7WVW=APinM7dUDgv(~3X`v*e^FTgN6p+PLi@v~`F*3=>RYLpU-+ zR~n%cCX&Mu!ng$+t?|lyUvRmR>E;@PD=;4A$Ep4e?i*LrC4}ltSJz>3-Ew|Sx3VA8 zr)u)!rz`-KI57kr!GKu{TiN4cyEg0>qiW&6mGYsu0+>SkH=17v`NQz~a*&>k=+ zd3!Uj%L}dS0A5!+GYbU1iQd3o?W5DHgl>d94cgcWQBi0RL)8G1Rf{}e}q(C3kzYr($?Mu5lV$a{Q)vD zZL=cq-gU(~`u@9&U`HFN6A9O|u{!Z6y;KRXOsESJbk7SqQH3m7X{^|{nph%WF1MIi zb|tY(6Jdk#wCg)t?rEG5Wka6gdNp~I3t-51NBAJ^`9E;~!{`(YOUjF@6Nix_!x7U& z<|t0Sm`ykDN=!KKla_w0dnxX9>?jn?m6s8h(pc9f63jHkg)RXRFRJ@B!1iziER5-a zK|lM*-QL6J&HQTnQF(B1@Ni(zJ;s~z!z8{+@Kuhl5_}c$Rmk^vAIX3D`F|c3AH2_KtNskj|9Zlp75Lzk7I?CRr-q-I%5+&%zgeqU!--|FNDsx@SsHptqJxM&` zJ)&uX31CJIaL%>_m)NN@^CI~A?os@M;@&|xprPG+6YN+9z)|jqu~0yZYu9BBMCQrx zaD5F2r}}f7FUx7UTLG^53~{Bmkm$iMyAbvNPLr+6^_4(Nv0?V@x_1|n6^rzxdZJhW z1jOD#N(u>}pvEo=02-D9eX&?CEP$a@KG}09Vp2@5pWVTL7*S1Bd(2gA+_+7Wq2&QX zr#WzyA>H6|L@J`$H$DBYjrS~lF5w#(FHPDL@GLwk;$=}oe6!;$-bTdvl`oPuN=&8H zLDJ2yJZTie7C`mW<5rHkg^|fZrMesn3#`hw&ZyCtsvi%w^X2kk9?~m|`NAN%qAhbI zabI8FzXBHO1X!pus!YNxcnB{%0gt4B+`Giy<(U+ahi7#>PT2A)YxY5Cc5tu9hOohp z#zZk&-4C9FSFgjiH)<{lVoUy6K@5;{RPYs-0~jK@fcTEezEV#x%_Lv?Rf#=%$xn-D zi2PF7j>}K0r;q%!VzTA;GQ1wFc1vxvUVbb~G+wS3yX8uoVZ9cWO!|tAO=f!i?|(n| zh8fF(j)rmfuw~{~oLDdlJ0tTeOyk|UBh1UqW?(Hi_b%=Qq--zX*ki-Qow!~mxnlxo zfetkGxR-FYU*QKy_g65zFzIf^);E;#*s=nQuj>2QIi8kpxi%Dho59xOg@pVw+_p=b ziB>>Ht*$JeagJCE(N(%;h1@1TB&b2 zxgI=_XbzronyFq?XUy9*uS-L)Jn{x(Ta@35!Jr9s>IP#7y5_Z;9dDJIIw>6+M~8uK zNAJBkOxx}aPg^B0FTIhIe5&BY6K2TXE7VfQ2LaTDL1HB&-cNzIGffKVGtBWpdcI5r z-L;a&#XkC}T~B3K`3DkRZ>E^c!%BU7N#*z^_|%axRtA%KnqpAM9HNYEOlA@F+_ok# zeOJ>TIy3#BJ^8lO{})$S-hQw{l$C|aO*LI?ZnUQ;f;L9#trn6+o>_;BLg<1{vnZh8=XI9jtt6 z~hmFKES%tD`yLFXyQJ&b8JnZfaq|}nYjMo+INh^^eJVZjzQov4WG{gum>J? z4kcY#EIOoD&^&xL55QD-*fB8d89p5984PbkFl`)z#2$b#eCM#UeUT;305En90}1sp zy9LY`C>FNbGD_(b^dtS`P=ghC4|<254V-<;M>#&)l5>0{3I+0cHb^`gRiaAJ9*`wC zh@do(qS8Pw$7$gMLcYEdQE^J1W!hD<*VK ze-~L-J)YI^72W6DtnbR{C1P!Z)lXq5X7eX4m!8t&elY^i*LTX$1t&1Z(HN&N(N#?M zdA0~BEvU`&NM!=O2Vcyu-8n!gbMxgK=4)9kwT00Q2nJ$<{(jP|Q~<|*Cmhfbtgkp$T%E`Kt*w<|x6!>&u3H(??QAT);Eq?l(k?&2|Tc2@5F?-9^6y^qt zm~h{jtI}K*a&^G)^Of>~>f~hXH5Q*L&d_WPYXCQ`P!DE35{R2OAaDG$H9U5t8PV zM5VoSx|!-<7SrqNYSv>akqJ(VskI?ikj2@wpjw)VvP|sc>>;TeE@^@HK7uXX)GiQh zgq0WovD4<7yJ-NvQ3HV{xyNL%2ug}TyGbB|0uhuI0p~AjOwe_Nn5w--88t)5yJsd+ z%=1BzH3SyW<31WJ&5L;a0Yya=pJy?S$QLs)+oen!rA=95ZIcqGMM1gioAqungUwLC z)r+d>=D=bua3(gkeiV!n_|<*1DtWRB(jZXkQYaB|7ON5e@}PyU;1X?6dR=q>93IoI^ZhguIy~$zPIdV_&j4ib~_hJ_U^k_8_j!?dU*T{15kL}Kl}^0V?+3PPl-%NGZeOYvG}9j zGq6ni-~L*Ddhn-%Kao2nkXzso)_2rr;bHsw&%*=w^`D8>bim1A zBOqAZde69UNm%)WPb5#2h(p0q9LhQ=my1$lonUn;zjPH^c;?WcGo#iU(RN^Et`qaC zIy+S_-LF`B3$KokOkFNCPG9jkr(VG^cTSuwk@D=cd>M$3*TqMk_^*ukK%^uhMI%{F z__MlkZgqFW-r26pynxq?m4y^BP|`$>S{~;9c)o&njXZ+(>OAmrnHp`kYk;7@riMVsn}-5ekc8(=`a zy=*5$9bLslT^Z`iqkfVphLzXrEqb*UQ;hnljEs_^6c{O9J@JzbW2T=9+}D@YY#tOc*>|TDWW5RlCz788{FgmOtv3)6#Sm^6W|fT1h`{t< zTt)*{H2X9bz@i_Lj7-H4&6|sCSjIu;ycbAea-=2@oI8OOtUVu-d@`z$fz_RI<$ygR zLE9m;M>9SfTi`f-aGRE=pMbY%(6)1GIv^W|v)B81Mv?aVK2mWN?!*}?pUbZf1N}613w9d20ZYQUbp(kD zxsSx02vXBdIvIvI4VLrzvRY`ns{#YvrP1^W84nxN;8Js#4F9qbL5M;)uT& zim>8J-?;~Fu%1@cT}ktny~XG*%5?e0buXeNhC0gFMT-nI9;EC-50g_c$5G$?y3yZo zIwq;`KBp0tc#o-6<30XTk@rNY%LnL6MWBU;J=PXcH!(X%L@^P=Il`b2$oRc?Gl7ji z#14mWhI*$}GQ6ACS{nq*7?r5};^5O#FaIwNKC^B;Y4P+7%lc-$Rltj`+P7;A_j$v- zl;)+@8~x8`)*mTDIUeg7jEMRsS5!UHyN}96wf$p_Wj^n2rrYvndV5>Jeb5yY4_#K9 z>#8)x{XVFx>D79=EVX4@tv*1P+XwerZ(QGf(0AN-A1UOF1x$gnV$P7Ve5bWO;H;Rl z`nOL%W!?&T>%Y+}sQ)GY`a}5*59gPk|Cu?UUw-~iZ%DuV{9iaI{XLP@Ulg`pLjQ$m zDkjj@2Xsc-L0lDhEI7$~hhs42#$kDRyM|>ew~R2TJHfmKTk}KuO*s;(FzEK{Z(Wt&`x{vdUm^$l3jS&L)Me#X}xt=6bZ#hZ+-fEJf^w8N}NKTGEYiY3u-hXkx zFSrtFhb}h~tQ?T8t|+2Z#D!4^s*MIqB*gUdf4p?8=uY+=Sy6hgjcto3$&{iq-Nl|e zIb8yMJaGmFiPvWJd|T~%HU0+>#ZfDSLEmBNzr5ex=xx+9_+4s33#Q+Ni!25 zEkJ30`lBe;HnLmEQ4SqS-=%mKBIPa4K8jTQArHiZ7w#tDu!*DlVgN4OO)owBL~e;_ zp*^iI?q)5q?|d?asH>Cluta4YoHS7}AjhZ_H3KrexL$f`oJ|5VndPI5zF59Yf2Y+s zQ;VhLl;6~*WhK(R@|Gm0#W-hA0$AYDLf_Wbq!@F_T zE($KGlus}dBxCrosOTOGN^BM6c5e7IJ1UN}?06kDN7`MGow$77Cg*VX+F`uq-B$+S zcM{mUtImBE9|@1NUs?OscP>vB^K$0Cc5xW4IIkvB*8tqD?og+8=Fz~YzVLrJ3A1@( z1PQhyf-ELH^X+0e=luXku>@FV2ghcW@YwqmV2QQU^xmjZF~Z{JY=<=Vo$8B`*J2m8 zv-Hi!yqob9AWfQ609r#PBt#L;jHwBUxpYf;YQT>5?H-!_j}z9?`fQQNQT` zw2vn6Xo8=FCEXKPwB5ND=bv=LjpT8Q*<^7^0-G%#nkNoI5ogkXsThRD)NX9YIVa8X zJz$dvBipGIJt4lay91CWcx^|nLEZ#{K`uWlHv4+60})Kt27(YUi$E%?ayTi9mIUR! zB@AdQq|NUAmXzUEnMQQ|w}>Y%0$L=M*8=G}-Mu}b=}O&knYH1#^OTX9r;ON24Ba;t zAuyk(<0wzZQAWpMWZPc)5L|lWY>1jZTIH_@$e-$+NM%PaVIRd{%^(f>qs6&sLr-td z3j4lhgIv@u+OCxm2h-?9CwS?69EbHvu{aLQ1I79NeGPP!DI{;uZ)5^dnD;P!kwLo2 z!(s@Upi$>NYq^txZn-&Koyhgd?eM;W=4 zktoI2a}3VYZz)lAU@C;hBr_#n=Sv`@t@W0_sY*|I?<*V8P?pB)6m{YoyUOb3#JyfS z3PcT)@AXOz148?zMIaLdy3%i3fWE-QUU%{%k+$nwH~HxAA5zu|1=6J4GuML6M6IjW z9lQz=JhNWnev5_q%;pO3JMPrBe^yC}*LF7psvs2B5i~~uY+iV-SgNmkic$C**Y-{u zCXLm+zJo6Q9iH9*AuMfv<@Q8yDAfo3_VU->c1`TV7Z2G7_ltVlhhV$;l`F8p>|gIa zpd)`ka*Ff<$jJ$70vC#L>QyEqAEm$n`2vIfDD8i`auaRps~G2DH{Qt`2uh@@u<6Pj zo?Q6Hg3vuK-(+$m(dKpePF<}Rvqq)J0r6WHI61EsQEV20e8U{SPH-fVAf{ziBiLUI zEP#<|GiQv6fmC+RBr(Or-t^#1V%nnf4ykCf6B7>W^l|Cn=(L6a%b6d52h8OFXEH~1 zc51NqESQnz?M8^am4mI*N)f!Ayh=P|G07Vz;p{XR*GX(#4&E+rTzby#wK_F}s~4>> zy{ibw(G2kMFx~vk&AnC)XOK6nfG7b;I-+mdnUYWdN)?9590V1Hp>Ms`+fEK<9!dqc zSPiP)?V|#!dTA-5`X(uhe`o2*f+LvMt6zTp=hlbz!>teg1t0CQ%9ENY`G|aqDd88 Dt$?8v literal 38442 zcmV*FKx)4uAX9K?X>NERX>N99Zgg*Qc_4OWa&u{KZXhxWBOp+6Z)#;@bUGkoY-M3? zY++&wBOq2~a&u{KZaN?eBOp|0Wgv28ZDDC{WMy(7Z)PBLXlZjGW@&6?AZc?TV{dJ6 za%FRKWn>_Ab7^j8AbMkEQYHvTzDDaJCqfkQ5*L!2h7 zd7z;Mu3?DDUOniw1HovMUpwQ!!nIAPS(kCq|tZF47c)Lxik3v z3dKdndn^4e3M*r*%<&{5_DG;>ENHPPqSB*slds%?tjQR{njUEfxI)+uNa=&^9V)$x z4j6=Iyo$>>D)OqVM`jN=ySRwAUbNU1Xq7BWkF43C?gIeF4=BPrJ}f)uzRU|hj7f!( zb{`e!57IPCUl9J<3~;B`u~i|jvT|VHg-;{nE&aSCbJK#(lgm6?Co7bd(eHV}c*>>- zfvb#NzTH)>m=UWaTZw29xH-#*2s%gGGi>-XUZkU;p8sUY*oE>b`5$X0f=jZr)@t`i zYoN=MIe0FOM__soj_Ms|gSJVPn*!lYo~{h#&4_c|pC@&=(7BJeh}DP>)h#pJr+ek- zpLi4RQuG+zXW5WwGWL6X$$y81ga1yfmv}KXUUgwrZYSq0*F8s3%2b6L8^WV3-m+>X zZElB(^3e@*>Ku;wR_3gsg(ulM_rez>h9xCgCp>xsaBh-KjDq-( zForK9r({JNt zIyHx|QmT_lU7r4+$QpjoM6>w@{M zu@2U3Rdz+DjTx$}ftjPq1TgPa)?)duvMU&HJE7S=MK$!asTHF0&R<|=XuO^>mrfMRbH~hv%;%IWqg3DhirVI&ui)0 z%IaQ(1I)gWX9ve~qrxWE2E{3Hqegc6e1Ug5vGPP=2n-FGh0{B*L(y~_Sk{mrI?RVh zg=mRDqA^i*$f#N0G^o>4)jp^hntCAIJv3Bn<8Y`4`z!_FbD#3oj|7sl(ApVNmV|b* z-|D}pz23FcwQ9>46VZokC+8P$UVpm!7=8TZ!^Q0{H&^HC8%8u3CqsMPUUVQXoZsU91)x&`#RoVVJw2ay- zgagU>fQm(qlkzc2(F5N$I*7p4E`{@N$jm>gsm)!ZhQl?Ai}U&~Yp)TGGa6@hh3F zr{Y&SXa0$~n8|iQK4(ia*QB8~c1>CibkFg!{?pbs=}G2VBzxz?w}1}36W=1*x+lKn zv++;7%VzDM%p;+-hcb(p_*kX0_ECHbXfgHs7R_?*_br~Q$=^oKy<-g84nT*Wu@lhw z%X;eHm&uJV4kmqXqPdvvy$NSM(R-83YKr$KmHp)ISvLD=-LHW7_~f#m%DstZGl_c> z%69tpCYZB{+fKr?J~pd8X;Vt$$(m8qv#z!?wIGNC3GAn5$MQIslO0QBI}tk;=T10$ zXE883mZ~ceOQ3-W2Ye)zXydcE7RB08@gk75cj7~;V`)Cteu!gvESwL=l302ij-_$s zW*CaKg&Qr5*4)!*nOHgPl*Ne<_Kt*mksLS-?uD{-4BSg(;{bS&#(JXnC6o1p?ny9wJn~pi(C$UDn26mA zV>#iv7s%DbYAG2`w!1W0CukMj=jk@T%ZvOW!rP?C$bU}v&n_ zybn&Vt$1nE^;3;@^5Np`T;G|H=TSCy*In00708dR6=9sG4e|4>_HOJEK0>Q$KH0O}C9epgs+*l-B^5U0s1 zR(^HU7P)!2@O^<+?~8na=c(g;TzCSs+M=wS&+HN*=525i0p@LZ5&;g-0BOAW01dE< zd!Po`6Jq`b*b`v>2G|o|-Uit2dc5xj<-IpSDf0Y{P%g%-%}_4FtPN2vg72m%EDxu> zIaXN1jpGC#=zmnVNJJDZ_B33mwca&{@&r@H_+GIxpr}Sw(BdCC`{_z(xht|gIlFp& zdwcoj^6d4;%bRQUZljO%?$g!BOS-e;6NRi^KU@%v{OS@#%RDRNB*Rgp*qTg0NY6-0 zwDpRSz%GeTfD~mO`O_Doaani+NN_~^U9yHpANaPI((AECSZyK)zc}qV02eqIjZ8-5 z7x_#R%L{W@GFV%d{rvW|;rnPm!mo3gsRPtLBdr4!s3 zdqut{AEOn*Ws=3Cd)h9L$gBVjWni##fe^1&5w8S)7`t8i=#Twko#t`*{6~)n)q2en zi24DbwT!DB952X{(rcSqZjy9WpvNjVp`?`g3Cnqj7IutZzVP>p|7Nr7;5SCDG-hlA(x%kU;9M%$uoUU*!@&*5*B zxli5^+U`n^79v%hWS-gcqpjW+jc^Lip9)`ndd2@lMNa#)9|#%&T4Y0!T0{1EiDKfH z@&n5gvDT)rYOu8>h*!T?WRfDq3TQ)7!AGQNReGRGXb^g+ydn@EhwdTMhufDM1ePfL z!9mO~iPPktC`yYt0Mi`fsM|XH05yY_L-uTIgI{7@&`{S(p?%B96kEEKlwD2E@D9Pr z+3C%OVSFoK8qiqg**aMfnyB0m-(!=fE0racPm#oO2Nor(w#Oj|-;QH@eTNi=-G$oQ zBRr5a)ecTJ9lQ~fNlYq3L_Oe@?Dm2mLFmr)&?q-KkUA5C{y4w(kdc6_)AGgq(0E6B zLKGK;H$!hTdN<^eH2dX7Vbbc9SDdZ7G)f!c5*Q8saOQ`2Fc4O!FiQK?mXOrm5hgB^ z+JeOrPB@a{9SiO9FGYRC@J<8WfWQf=+NX zjte@$(>grp22t@Sp%XBTgN1JJln*L6fipUE=muH+sDv9lTSV0gVi}c;S5yg*rXFs z#Y2=%u#))(ZT$n5PGHp!4myF;J$&g9bZ-Ab_h6<&P^}}BPH^W(G(N)V7=6~s#q@Zm zA8?IxbB+ZtIr`~Sgo9ba=2)m(N#=C|jE;=DMK(J?>PQC7IP5oh^jj<Gun-+DynXsZPv-36w<2)pT%rz|W1@jX41 zN;>#mQeuC|co%1qv>p@3J0w(!hdgAIs|4@T_)$3PHmT#F0D8!KCzj>}Z%-TUpRaQy z1A78MUZL#UaJBL8$|e%|DKUyF3}>$6;%*y%r6<@b$ifnBV=^dywSwV0gJhkVp+BO# z5s;kkzRuBboz}*b;I&M%{vwx(0hef0M_ecPbWUEt;hB=G>xi2ZkK7V+3=NY^*=u#I4rVfbtFrf|$C?)PA`6vn zE|ypA;~kpUcXtK4i-+zJO`++-OdJ*R0NA{Tz|e;G^j%@oWa9Lu$!$}S-YnY(J2|_# zesg(#aea0XeZIJS`^(3R^XTIG{~i6Kb~lW8cf;%yX=()lbm3{OL25X4z@ZET8809spP+ZSm!ESPP&su9ewg;_aB`nzuzR%Is3J53Mkpue7jIsF zy80OXDhv8fqA9~bq@gUTWf?WU)j>gGpvfw7fL|1dqpuRuM6xBqQ4G)cW~*eW(8v6X zz}}EYUt>~eRqayPK|v8lC5A9n8ZXhjLN?9NGh~54&$eA~lg!a9)&#nO10iJ&0{8+X z4o;CQReLlmt<#-3#V=%O9GzdjySRo2HlnjnA8+2gQR~+trW)9Xo6lqk`sw2^CB@ zLcGk=ydV<_DVixvCR1W)Lq;`*ISC!ArIQgK^Si6uR?m|(2%f|NdEorsAt(<)2;sE}K}38{TjQ+csY^Dk4U zDD_#x2}`$J!LmLKu`6JB;pc+%&a`Oo{~bne4}5*ei~p$T$$f{63$)E2Y75i2OLJz> z0rR|KryDUUXo$Tat-8$1IQ0d9Sz;r5&UhOaWmF&ag+8-}YcY=}xkFmw;X6N;9(qI+%u zkiylC?#rji+(#4cIbl7PV9yQ!d$o-4bgetqw~#iD9$0YN09&^1TcN<)S5p)qytK!C z{yrL|fP(!S%Bp$porjkUvYj#`!)&+QGKb|J@j7$jQjp2z3*FrrcjjbJV;Im3W5R_j zd74)=#^d_#5F+BDqAkzuTvif!ZH^8&CQ@{;G!w_`6{WSF=+I#_(t z{}>`1e`|dhZ}JuPNkoX(ZXu}J79779sVI!56haBL=iU8?Q9lVU5ohdOct67Q-;x(7 zCLWY`E6>=i+hL@s`?ynh>Nj=OWH12V>k|D89PWQy8iWn~N zZR|cENxt|UjtQ(#iI&47eZSPy0N*b^+IRMtPj#6A?&>{d6mcACxGnB69dCkC&drs+ zMZ8M$Wwgk@PBgs{R1G*7@6$ZLhYWc$LEjF1bd9yz6*?lh%IDGzakk4@B&yZQWoN~j` zh~2PDGw#9Auhi!%^WB8UH89~clXU&i-4aD#;P7nOW{-iSpAo#pIUd}YLg=~ybtGnD zp4MY($4khYLwd(uk~vZwqjW9W*Pd%$tWcrkXb*8gcW^XraJkWbpIT_NB~NG+agrY` zrOxl<48C0P0Ht&sku%res`_4?J&<&PG`%qR%H-Kmd znOC>-0nSlL>d)Z0!5Z7Gu}2u))v{-giRT>Q9lt{61z~vZcEDWay)rj2eybS}*mJ=S zRT=SsT0RrbP?wv&cOV1mAYgPylSB?j>BJIK6Q@{qG&C3k|IxTjhudV#M#i_^EYq&l;gz2hMlFM^4FbPVC8hwifRNq2 zk=KE&%9F^`ki%VD%6zI;`4I;S#YOIz}(%sX;!?h?nv#Xp$BLRF43ct5Yve72|l{4alb6(rfRKrA

1+RMoiKU4OxQvT3$k&ZHum19v z0A6FPpvROO6tDv^P~_)em+z`HE&_h6WVBjf1;c2W9=CuL=IgLQ3NJWLNN_?{77F|v za-6Wix!n^pxKI_6XbBe*;4TR1VMM(Oqo#e8dB6hp0jZ?N0EQO~Z20&(pdWZJyK+PK zlOGcFg=zSiqd<@Ugi+JJ$~#SEpf)xT*$gsk93@dCxil19ysg~VCFa`q+mbBEL1W-WOt;Ke$WZGSGObC??qP;W781-5Frk(y=I2&;iT0|Zi&l8q zwE}A|z@={YVTvAzjxc=DS(*QB)v#YOBh-+!{$U4_4zL2`UORuuY+xj~Xo4TW1e8ng zm{&yr@0$m3sWUwKH4c}db02@-+u!jBIs=%7UpaTE(pZ}*(;oX%)1<@csfTJ5Kk=fP9DYyJ#oaCmp_F<5S5xP*@i z*zjdWpm$<}r|duM5W#l=y)yh=uqzTWg2DV$RJ=U?E;utQdKJC_kwQ@< z){ze4=UXBYZ+YK^RHV-m)n5f~+$sKF|M~ws>zep9c*+(M&!COc z?#`I=!2u=!nC0rqg5D2*)9VKghjAiF*hmt-fx(NJk`LZ6kHI8ew?-Jt;BP9&_|V=_ zGI(RJV%LH%f~T+^ruK`8x}+i!NDuoM&=3L{BgyI)eT^ZTVX$~49v{1i&xNRu5Yy&= z!fJr0N}>ABTd_7WrMsKtc`@HXxrn;xVsA zLAXDC-^4f;C|ho}adA(q!vmuQI04dth@>!xABewC@~%T&O=A>`=>d+U@Y1xb<6j3ylrz!4ws#(S)j7R+j~2Gxexhiy95knmjV-fbgCwITLl8|diy zHhpZ*(n9xN5XXmRb<3msXpv<8TarwUYf+A0nH+A}X<2k^!rPO;++cbzBhy}gQ*Ll} zmAu6nbblM=+E#JzTQ^3hj6KM&8#q%c1?cLN$1Dhg+XUF#>X)+KPF+5Y~A3#BMmjj~Qu>79snu2he|5tS=NJ&lc6 zcWlH?$Hx7$;64=WA{f$*tJ`1J^iGhfYc;`Wc;Q0h?jx%p`kgI);GZ(mC%q{Ck}S&? zG=@=MKI4gmCo$AHsTNd{mnSB$mUe)TS}_$#o8;;}TKewK@}YeiFV+@bgS9cGo{Ef; z%+IJ7bhXfJn5RC8mNsTBsz*NhRZAT9;=H*$oPPYXmPA5qZ)sD-Jw9s1v?Sd<(w5!j zzyjHhnyE5^EdyP>dkh_pIx5U9XjK#yZ=;t{v+1l~kAsX9%c%&vw^ObwEsC71?_bbR0Xxz<9;xjWq|QqBw^6RGWqRM}pLi4RQuIh)|5AomXQ^6nT!X$r zyG1nQo?tX;RpGxAl_i#JYK#0a&ai7#$$vEvhk4a!ji(A&%F6QqW$|{f?;6S7;j2^F zRv#LM9vzF!^bz^$6t>j|2InMO=T4Prm@1caq6WPuR9^>ku1|-%K8Z68u^-j2hECS4 zZWH72QwnCv2y8XV+A8C``>1st7v08Rm(lDlPP>YSZlc;n+;k5QT|>27xakt~Igt82 z-uC{cW0i(Lj47R{y~{C9AoG@2y`?DTq}H0lJxQlZ0z;)zwxSnkmlvf|;W;%JZbY1I(|BFE?m;ZzrUj|r=Gan~5yqFor_N<^Y#=|p1GYu0q)FP~ zr1cE4y%av!wWVEwV8=7TNr`NY-R1RO{7YXjxLipuoT?43Q?l)`gDWod66*QHNLwFA zrSBLL{*aD%g_XzJ0dhLpzHPn*XY5;Wd5#SvdD4Cg`KK^hVOs%**lNl>bsI=ln%buh z>d_Ah{2Nyw#AUTg@({(C-FVbQ9$|D=U-rJGUxKF>@N4cdAC-P}bzy{}! z=yW`D`JrO23v^t>4=Rh>Uw;YI#3J%abmcLyrD zY5P*9-CaHNmR}Fv+VjzbzBpho9E4G!yjhdOCx95-0RaEEa3#CsTbY}U721}GGIz-X%2<8? zYtcns^xtfE#zd@S^`o^oz{6Gyc!b4$QypM?NuPXi(L@;l%P?36V_b>d=X%-smB&TQ zgzh+JZVf)jy661a8lJubPqW5ptl>vR-{W}6-kLA-$#wjgpg8p7Xb&<@aMbr)6H_OO zfOzrzhWHZMd#;C#=t9yW7ZQu?5-c8tGn7x7k=22qQoclD_&sWVw-X(zELk~}xx)~I zh00G>c2ZWU!}=GvfqdjIE8+MfOz!0CG9)7MAFQOTvK1DYn5z_TweBr7%%*Xe}S<#tW}y1YEMsC|*0%OPNpaYtm!VW0+a)Mz{0 zYA?XNnYwcU1XkDNpBB~KFmhVgQm(C}wzUlG9aVA5ih5DTm7DKa8h7``9Oit(zc?|f zTOY8??S{XfYTQga?3@~Rh;c_`N2YbtWV_sI$J)5zHupyzMFji&+WV=-A-UehXB`y@ zmvP23^;=7=0MXlSZ36wI2v7WPqMOe}%^2@b-EYBL_-5WgN1$AGS4Ef+mP%iu%(*C^Z_D(RUV`sN8* zsRQ;2-?G2it0ZVO4ytl8M8sm{-wvGt8P4OY7A+ph-aCDWmY%F54g&o_sXd70n|7hX zdH;NJU4;HX|3@2riYeXLRw(020gZc+X3C6TkQ^`XOiATyUWPi3-S-+T?n*-#M9Bgk zQoVc8@D1gELHX+y_n_fPynh1O}Waw^Aadu_Rb20G1mfXtcZe#TcSwbCHlmUOF<|2C{W z=E|uYtL?uH>kq*LWJ;P3rIF|$=qswmRwV+?6Kv^**lV&jDdgZ)&LOyo+Nw*!zm={8 z49cen1m57~K-#4V0-su+Eb}x)%Q_Pp%Qj0dH>hmExH8GO6i&I#Z%i>8!GSH>5yd^r zS!|2TxJ)qdO7Q%~6tEre@MO+?OXTH8OcfT?1Gc)uTcvfeF;JCe`Uw_Iz3MmzXZwnUbcG!P>J))F@`_ z4qP)lD!aE^E*g=?`75C-rdRIARXz3Uta%0Ui0kP5;?3(%S0AH~zkIm3{pIHBJn#>3 zY_-)~EIs0S5~cLX{J84I*g2fFZggBp8|KGVH%C7C_?dK$Z?a)za4hbaE29-vCEgPx#oY2YafOBb!vV@xAsbf&)}ZM@+BWkE?o=o)J7`#SA@4 z=!WlcRmSmm6K_4_C_BdkDi%3T%Eu^04;tw}4p1?BqIyTLs;X|rad&p@@ih*$);Ufs zBEJm_7WA$EG!#O;#WYlqt+n~fL6o=E2?lXFecne?9r!qF0lPQ;Q4IJF;%)vcZx&_KWPA*@AbBa{=qf`dqi6odP&HN& zPk*(c8|PGJc?>o`*73;4P;^A2kfZpeKl__UEe)8P)`;GD{Z=$5);0z=2sk#6RGLRU zTNdolef_7Q5Xz0MrJ_lNnm_Hso?VR$1fprHnip4%;+`tZj={nXBA*`3Z5H~}=6nD;jT@k>R12Qx7~4$ERU20h3CY9E+%XicMNqzbb`Sk@-~=+LH`LC0}6 zhp^+ZG)`CT@_9bKYJac~!%EdN7wuj1gHeQ5k>7C{-a#;T zmRc~2^O`U}vih+O3C~kKCedO8-bYqB)`8`DD#s+|Y{2`-D(BcoG%q9B5sqNCale^r zLq8;_&-y59#xi<1XZ7d@77h6yV@2VkuOIBET8?dEv5#cVQzu42P7~%wRzEiJ(0OV` zGgPX__Q-1E8|Wy$`p9v14>z&dd1}TuY-bo*P9R2RR(ZbPi&PPVHzGGgM=DAPZYZ1Kk?f zBqozo zIUdr~_-HJQT^aUJ1FU^y%B@w6B2a4V4rF1Q*pge@YQ~VJ7#+x-N7Pu|wbR2kQ8)1& zx3)Eo7Z<8V;|1A-oe`HV)$vH6sOtEdH8k(sH?}mwWOn-)A0Y=haE%} zw57OV|22v~jPN*^2_1wZT-(zuE}_csaF$-7bzG%oRBj4{H+j0kM`G{ui#M-7U44u` z{_^4C_LrNh^V`4=+e6ykGDPIu=q9luMSh1fvvugmxtUF3NQ(RpXXYastDTL}haH=3 zLrw1OsvmPwV|Qp9TZW)K8CpLUrNQ&SCdbEQY3$Cx2ONOyLsrhMYZSXuWq3eKqq0br z$6{k9j5}6`vumEOj>M=Si6cITGp9|&)wxAAL$A}U4rkZn8e?4!uLmDl-9%`e+t@f% ztHadH>YC@kIH?1>8UkyFXA5*!AdHhdv(34;$BD*^+h6TudeZ*rP&|>VrKFZQ_x3oM zEc4Fp%3ZYvpkv_*cE7%EFs``q?I5F=!NT{ zs-peDQ5H(aHSwYO!Thlx9i~TE4-WRV=BpI59WP^qW2`Rg4VoEi%Vg`u6yO-^%6gY) z#=0`u|1kwP#=80@hChG9-mwmMw);(UR*wEolp+7)ttiV)tJ!Nye>=+t zJ=W4uPD=LMXERoj(Z-rF!ZB8t&F0386{WfDVZi$sE9YD3MqYc+5qBOp+blCyl<@|P z6^domY3`8pMRi#zwxVc;`KxS&iXAG}d9h8hyXdaStDX7QgPa}Re~^B1AgFRPmUHO+ zN`JJE$PU}VQru77U*E!yMgdwg_Qzje4kEV)t30znt^=%ZpjxdXyoak*lYp;1)HhJ4 z>m()YqGeiP_-|r*rR8u{E74$f#BZXaEkpi?tYQ5f0DGu!pib{l8GXqKP~8^4wVK^m zU~a%~pq9TyFKQ0&=^OEyY&VJySc&@kM%GB*Oodu*C>^?1_4k+Dz~H)`K}`gnCoOkSJ*>h-^0T-^o-LH!0QoqwwfDXInSY^FJhi@R!zvhpxCYT;clna^r7j?of*wa4mV9`l)OuCZI9tKJws zz+gU0%{it^l+_>GN0@lD8nw*qV>~^GZ8*kvX=gLd>|=aaPs1^OfXRGTn|X}y>1#B` z%X!RavN^~2p04_1yoAAgmYREv?1wV4r<_JBV|=gE4QYAW3E^KVoJXuli@^VAqfasY2uu~qxKiLG zik5j+#z}^w$cr{z1YH7$dXgTSlxXWu%@#njyh9}uIFRQ}L(W~NutVKal=)MQG1n;T zOfeb)PS(jX*16uRr{CGt>)YGQHexKvd?eY&=)0)#e&GgW<8>AO!?A1~?g=RmKxGYx&$ z4W+?MxumMt8x*JIM&TaQu&_NA6W>(@1D)bDWw$P(ng?9+GZJ!yokm$z;fpxCuWKS& zJaSHdRB@V=W=0<8s8@VI3t23Qd{Ys3h;+XXp|3ksBoOu{{dJkF<04vS*+`!pAfR2e z`BMp?HL6(Vq%E_AN?&C9f+%xVEaym_%!evx*VlnU8D}cMG8wEA`O&3iuT$8acJXQz zvEJiJKLJ3mxI-OxyY$hQdX%?vNq0&u)@dG>&wuo!SHoVXutV*t^%@n}mvWrDMp<{N z(H@Me9bD+mlG2lkeG~&4hbnK9bXB0tm##H?ox%>a%eTA4+xS^?*C^{ywO!>)Ey7u` zoI`c0RqRV2V69rvokpv?T6k-EoVj{Yhk8}pU9^kKAL&{pU zphJzmmPHJkwuLXfS^&M`?sTLMk0mCB1Rak28H7U!-})}3l_jDUG^p0pDH z^oqOHk+pSP4xfB-p{R&rK;u^BU0lRlRC=x17DJoDt+KdUcwMb`F|;Y%DZ7c&wI>}Z zYt@48G)lbr(utxkow)R+$<(uA-8q88ik?*KqZrV*Q<=4KU;b##U8Af!)gUqDD)Jk3 z>0)S8xK`G4P@)H-PvTl%zpb~6p-tgh*=G9ntFHiKLgY?s@A_(L>O;o@-6b>;-XdP! z!}1{7VnE|TWxg<+rRF@4gW#G~>e^g0p+`o{W9Plkp}d&1Q?XdEx88 zPzOSnz@etTBX^oXJ0J17GFl;ACfV2>5nDAsb}+Ol94ec8(y+_}wPG%HiO_aeK6=xL zv)3u?P`e^dd^JbLTe+lTrG~TBJJG9?N?xI`L+u`SzUDv5TD71%jlO!@jryv%8}-%Y zZqz?fkyHQ2lTs~ztK&o_qI^H`n@8{X;Q3!;Up?lz2L57hCoJCu2hE;VU;g+8|KO-U8%Ls3z|>_ zd`-OEAZWXV7aiqDW@N6kheO>-oF@N7QCfJ`e+bKz(3K6+9OJ0{+l%gf3|#_Ox~e;x zx*CqUnZ06)+Kf*mRu!hodb$RZY=yq6PEf2cotwnpCwV^+f7S!)lB%Gxi<#`v!)QSd zH?LF`l+sdtWnXk97-)sk;$$j>WH#$$MG8gbra*X;rz;%M;K|BL8JBXnW98GD^iH?z z%WQTWmcRuQpSGhvCK=wLWtkVV8I0zQy=-8ODd#f{Jvb_B;0LnVusrTr&TM6|+##*o zk;5IUnXQ>s+as{0AcZSNGux3TgJ6j*4rW|UODG# zL890!p;z^2S}wJGM&^o2@Qf+l8-upg2q*tUo~65tEdpxC@E2V1`&GPQmMZ0{t z!Jf6{AbQ2!>$*;SSL-@auhMnmp*mrCwMAtN?IkMms#M$$u+UiwX+!MCD)byMp1~Fz zNT0;L-f;9?ZS&GXXAYuQ+=s4r5zR8Im@LLhV*$#9$bE8Imhr1N8jS^O`o?|)&B{ukvf_M;gaf*jYHgI^=fZyp=Ncr!^! zxJI)DVESl=bZ*T+7l!l~{{fkOEF&uS2Eh09{}AivKAxZ#Ga*LT7J+(PVTJRK5&g@IZjIA=I7=P^9)|7>$g5_7)k>+&4w$%?9d^ z4cMDt^yz^KDsKi*ySQqv{NOd#5ejcg`wf-~I;h4=yClB!R)5~WTJzDz4#tVRX|MSR zg1rr#+&Nu zk2BaSKl)U|1eGrX=sn?JZG*`N9i|C=T0%21mlJbLr|D9p_GuWclzmRjGL^eeiPon{ zv>uIcVv?yRB$Q}d$Yt(**=sjxPH+M^YU)V>U( z@f?7)LB^j2n4t1y0PQC)tj(bE0EQB+Uz5xlW>b15Lyg$4Rp#t3DvxO>(fT!s-lG$a ztTOo!g(|r(+stegV|)0wg!zLV)>hGazC(|Re{0RR$W?pfLy_9MVRRq=aAzKcr$DrL z%w{T`%$ z-Yq&~_)F~}6Gdw8hM6~7s{GuEIs@+(GJFQbovqX#MKNLJ&wjd(r8uyd!qX{g#J;S8 z53qBCt#)qkJUchK53kr;W%?Nw6;f~Zm^Wf=9IW;qr`CSN#o8DuPr4}4dNWBriya0Z zeiC7pdm{labO4fRYcI@B=+WR(h4- zT^c`Xx;7gfPb5TE7SabB z9ZA+nTB2fPxZ(xqpv3+yrEY7E|EAh|1pW#yfVlishOB^PKxE^;`YZ2_DMmy0m8j8fF{Mu6kd+%6{I6d{o5$NC-qP2j9Zd1 zgzn&9l}U&<%V-i|` z8B@A8gUCBt7x@+tQGti(y^B`BwuupCG{pPN|p<# zD5D4B53EQNB$b1sZb4%m9E#wKlXnxg%dvUwCg9qU`>@b*gO>NO_Qxp073T2)x>iO0 z?KF<=f{7QK@sSee>oQsv@C>!$lF8m+!_d|oe3*)cY8H?cv_#uogqQK~)9LQ4BuBL& z_F@}Yzm~mGkhNa_J#Q4;0S_MrYwKgqv0RR7L#$<+K~G3VVQvgP7%dlwjmLB!q)_&} zIz+A8CH|}oI8@V}a`D|=f$o&Osy+FXKwh^Xdc}R|I+aA$tpx9_mfADCNGk~HmtKKpw6C%Ib&(Tx*8tL_yL2Cbo$+I#} zGCaF+T3l-m-i>sJ%7nNBbK9tewPoPlLJ8cqnb|xX(~8==VN#UMZ5IYYXx_%f-Qax!FBZDK`S9-b)#d*p&EVbZ4{tB812=3u+YF<09kqRQPK(`M zT)m0fZWOp+;?`Q|>n_j8V3ovaw9OyrA*=^f#CJaJGy-Zz?$$PNvV(;sY4|&aaa|~- z8Tc_XmAVX0xw$u_#$j4lb{juHYe4MQDx%?iItpDJZ3BwSiV>9g~?ny7y|2^NTmHKV5x{ehu`ByViD1%vwR-#4-ot zdeym)WkRH(|Dfl#k7BB}4uo2d-lDQdmRjx;Ct>Si`fo*qv0CG$R%n^5P*nE`_N$3x z##n}Q&P{--WlH`VXR{b#56zg;ogp^lPcoO2#Tm`bu&l~_z4l~=UoPMN5}jYZySTo+ zyt$6fK7G7-^CmE)b7z7g|H4xfc-8*H&FARs=F{~@b;bK6sya`PU>40?nYlt!#VF=E zw3J2RBrN3={kI~*SQYV7oyC}mMA{gd@J zu$0t7{k8VQcjSK)I^veo)Ok)#LrUONm5jF9K(=qO69?Z z#|vrcHpy(Ht(Eyb>Sw4@-~1S%rj2~~yS^-vDjXqL=4oD#4Xkrr9QR|v2Q!kXJZdxqzkJEV5>&aF)ZTvI~d zwjm&7qJ)|99%Zvyr;BV(YG9$k33`~$)-)!Ndb2frQ1KCHIqD6-zs5L8>XUvVy%uFF z{!GX!F5_LUuod3mYO>WTZKBRHO?EsNy%kA)r*>Hp>Y;cNrUmjjYlpN*$KUCCydvP%G-S;ieYw9~FIL(WMSup6W$S zv?$Ovf2f-zJ!3hRonKv(A-;OWjWo(D_EZ5z1-&v0TiIn^#tuBGG2Z$lPPD_-*1cN5 zRHLkkB6u4YWmG=`1as9I9!j>>Wr(j{aU+eY1-wBEJnXd)cug0vkk-)>qsvXDkcG@& zqeoW)|Ig?#m@Hu;Dt%-T;!P20S&6;(*XO5J%tZ1k!<%ZoPLU5^e3ZEXjfsLZ2*?gM z**E+SGlep?0!Qm4O`Wf^rx8pENA(@tT7VMjN{zD_+AH9RA;w?%la;1B5bfX7yd_o_ z3h>0!^n^DU?n_?WV@+{P5cEkLX`1C3eSVmwB=@0d4?&;Ak)|w}xNyhYOT9`^%*dQ- z&GOCr)0gwtC9u_zSqhG4DQyC2>DTA2Q`nteDLj?h-thFKVIReeOhN0x$)PQ$tD*`^ z>HI(li5`!froKIN%V)`c1n%iqOh6^xy0Be2#daiJT3 z!P2>6HDAs04ppLuu3}$`aqdP`E|kRn+9cL*lh|pS#MO2i7mw~0<9s#C+o^=n9~H}3 z=un^AmZ?r*SDH8;*l)XxbqSnlFbEc~MVgGiYxe1YL4V}*dw?h!-q|S84 zo*OVWY{1xk19m@0-0m|sAsW-LzfKa_Dr+*zWN+2cc_U|R0n;rgd1G*tt6<;mw`C4{ z{AHBp*&VD`ztH>Iqrr2DC}!+Uh|IKv5jtL$$peZ=i6W!hfMYl5baWhHu214xzX)X* zZ5Ju>s%VR1L2IshHyx$Y^Ow4Mk3yId`q9{Rm8)S{b1*l?HvT;?fb&CMqG&7#sH?h+ zvu62mwe}_p)3!UoXuRDCk6|{qU%ux9?$n$#N=v7yfsuO(v{x~*;wN?SWxn0QY5lff zf^juIx=#x3L;wdod>T$Du|aWKZlVdt&AH`_rYOeo6Uk#a=2sV z)0#z`-Pe2Y(c)1QflnN>8B{?Or`)v7Djn>{gs?N6KAg^w&n~nZO*5R7&NA%Znusc` zf|sT*{#wl~g0xn+7POwtvp01`WC=ccKG%!2#>8;PO4pX^y@(N6Sxg&Dqx($m22W7- zv&44`>51^9EfaRjSO_=5)J|-e3XBX#38~%SUs_lyorjjyd3VVzhH- zGrh4+k(Hhu)dwFSv9OgUP_OUgi{Bw-*9w*7KT4j+5QW?U8R6g7a=(zSyD=t`35q_6 zqQ;|>+Nc&oGt?f@)WkGEz;e>{zA526VV}b0lRof13mr)&CKP#j**r4Hd87@|B9Q5! zDp9nES82YC7WvolX=7LPax@!am$txP;@uop=;N4?xzJqG zcQRLf+Edb_bD=z67_oPD{irR0(57&q>MqYyq3KWuDcKG`$!f0gFp?>ulKy>U9K9e2zVtW(?7a+M!W|_Y-GmEQ4_7r0#4%&jhgNp#_sGX8p3Yj3T%z zMsBT!^8y}-UO*3KN$-=@SM1SJ1AsQf?kvJT@JpTAbF!v6hR}>D-5Fw+=JgA$GmI@m zXvUOY46!%CVgKfkU|Q0@EzNJP3AVlYMOQfOZ9oq@mSE9a^w6o%bTd+ zNODDib>z$-=_$;ZE3&RA?vl*DDNVA}CsES{qjW8{MQcqa80r#CYmpZ#;>0WL(hW&1 zVK7xdCRKmX9SPD6$K+%oxB}fl8gG@&wY{Qj>~4OY;QFNfQ3pUIo5G^^4%9SYMSB{Y z&|fEb3l-cWJYiq>+^p_By0n9`Nvs+;q6 zijQp0>r%Q?y!51Msi9oyN*x-yBY%~7ku0N%OaVn1C)wapV>=~>(X2VRGzi*}WdhpH zWDq%;H3ydl@!rw*Kuif;YQ05e49B>mf-K!UO;~au8)BCh7`>@&uXq2Vwlaw;9mjJF z*eSS|VnD6DE7frPK-Pb|c<{|SJM9Ga`XtVD9EloPs@IJnsg!o66lvuUQ7hoyKK9c# z`xu6FE>-q8)L{Lg20I^WfFo@u-Yd3?VoW)u_}=2V$6rgoNoHzm(5ZlGuVjC9JG}Il zL_fM@+95QFCOA3=x&R$Qt@t_thD?z`T*b7>|z1kQ|Lot z=yKO9uAtrMsq;aphfbV#2&MvJlEVDC`}X%q-cQ7z^?-V$3aAqU$bMPb_KcL{KszuQ zJLFOr0T|HOD5`u;R$s-j^RX(WC)MhYXM0TbRGDTs)~cq@fl7-HoBp-a0;*>u%LPXn&?7K4N z6Z%>03i*T}a#kkNP55KOG%~+z6k(zzoA_zt(pdpo(7H5;vOi~UiZTCAhe}y}rS3iA z_f4p*&R(SzPy2(TWCMQT6x2k$>HCS3LRugiQ@S^Zl0WIn7DN7}29bLUw7woK=Gg>& zG$Se*Q-#|Cpi&l!mg-E5N98czF_>*Xe+H z;a9|A{2Fvh2X$9$g+wua3?aAjpb%||3-Yf3-V6{KfP)>f5swQKCRzAMtQ_vYh$*n0 zqB}ha-jE^zE5aow3<4+;u-7kJDK>GoBJG$Z8$v~q7dRw8h4fv-u*eq`E<=_=I{cE9 zn-E@{eGFxfa|trqaeZ+T{6ZN7j5lKtke>p|AYcsmV>|&c2q=S~ewM4%FWK&j`~kK0 z2_KR;+{W2sn3o$=ge6*T=-b)D+UW53;Uu_Z#anv^q<8?u16n+2i+3c=a2cm*Go%cQ z(=Yg(V6xwuE-Nzrqe_WD@Dqxt8bzTYNy&?T}v{x1|gobHca(o%FV`z8NE z79P9+f`7t$-t<1w|M)l3Q2%=J*8sf3U{@fb#a~aJ4`V*zO+GH}==ek1(?eV&@q)Cp zEZ&mAm^8b)emxFKr@`=yb)~u_ZHaZsAfu1vvXUd>ud9q+3ZgJ{o-h)6ip?AToyy1p zKZ*iw@-JbThx}LgXI)w0Y4}(2f1##AQd8k`^2c*kfpytBZ8Ln9HZin}^d0?8)u0*r z5;88zpd!gN`V#PekASduz*o9JeXH>jSKw0|JlQ7NW z6&>x!thz*Gyd!g{#6wb(obbCEkEQX19}k>b{|6vQiIEQ2`cXQiYM2gc0l1eQUE zWzet;IxLlK`tl^KaJ$%oNrZaA%)gYa1=OrW_#ra*HGX z8t(g*bfAV3p){+wg6QJtKg3g<1Xvk52SAxNt+W!B#osE~RhP3_3MocTkUv*(;jJ{4?u`Cu2xAtKD>2{(t+)q<;EZ$_GJ^7inHJ~lxPBR6#twNPe6;qn>fbM zww-Kuc|p7QR$WAKd>iE`40D~~4>|!W2Ls1;N`ZQuoAPQUlGel7o&zg$T4mTTm|q2p zZ`#GkNRD?1EjJ6=BUm4RK>@{NDop-KMiN?4>LR{i9+rr3OA-Ek9N`6Xx&*pFpyS;Q zMwgl{pmb9Tlg_?Q$}lAii8tWbAD5_4@ZQ+ty@ZHv889v`oNbwDez5SdC7S=B;#&Wp z=~~O=UezOt5Dbqq){L5vKOOftwT2SSXcb1Xmd}e zhPDAo`OmMy`uDIg0W?c$f}wpERrzZ(hp&||ywyq_9;Rnb!so9@izO9B_v?7C3o#i) zmK!rQ-}KpE4zcf)44%IVgp#ah2dt#Aa;L9gvRWqVN9dqgPA1@WT%~0b(8n%xBq+BN zC|y-gUj;2e&=NGe2iRES7ewRuLFgr%DrAYroajq1ZaWy~J&dllFNn6Jc-uegfshwB z*7YTHSI80zix=Wy6F;1`nr)oLcl~37W~#n~-r9wrgZ4WP(be=NbXF)0iyvA#5KC() zdPgP=rHP*{Kib8csoHNX012&{f58?%?ZQyYB()1K_}E&(igEofRk_#xyx_u5Mle(~ zgQahYdfnAR7tXKSH3Q*OuN#iZ+iv~pxfudo&(R2~4C;Tyr!g|0F&`}e)7}&R4hQ*K zIG3=h<7(;PVsl7Xarx(}?er8A*MpM~!kW;g4ehB(R(eDJR`_&DTvB|W?BFNjauZ|6 zNs6DD>PxWBw6Vy_bI4N*fG7Z>fD#2Yk(LF>LUM+2vu_K6YBP9}RjjA+bI(3}i=-Z6 z>g86uCaUXjByKuo4ZdA+u7tt2P3nQDUfQ+YzHT4Afa;{CWMxUCT`XJ|FTlD0EIA8h zp({bT(m)|ASz4S01!-}rpyc$GuD(9Bv1o86W12;!6} z+O>_X0Ed|)VB7#-lKFB(E*93`I~=KQk+;Jfp})7E0^yUE%rsuKs&*;FWRYU{Wk}p> zDKq#rXnq}uw$LQuYR&;GIu_}@q`AsfBOwB`%c;HsBiN0TMER2{|yjR@;E1FYY0*6*$_Z$FAVUX*|;)ez9(t3xn0dWpJCZG36yGPQ*@ zxg|9vE1A;Be7uVbBu-wiIT+rP|4moK@5(U_ABas>N@Io~Jz@TSfcdWj%*m|DNyPaP zHX;K?67)%?G$a$5Rp|J=2MBvn^Z3CusRh8R(~h zz_;3%E9m{xK**aj`e`88tu*iwFQB*&=?^+0oeNa(?|}V#5=Y_;Um^z&o zv|{S!Gs(cw{ZX;u2!HslcbI=1MrY?lK)Mpit|oRuI(YdP(G}5eEmv{|3QEWp- z9*iK2JE!Fd&;711!%dfv|EY-jkkG@t7`FfJQTiC7uXOn0Hy%`uc1T3}O@k|x4WMkm z$_8~=)?0>-VvH+;(E}>z$PTtJ6TQ!)6_kCcv-PWqMdr)AD0KzlR1}*1TM3MeHFS~F zZ{E6n?YC)WR5U08OQEdS@Rj-?mAK4zZ6hIIW;4leQ>>`8q(Ixqh}5fzIcMrDdAFb# zXOy4N-edfv35ZOc7~hAI&?OefaEgu1Uz+(#sf5WNrs-mN?;<};> zW!!|c))rk%BY(aFKJ3wlDjt1T96g`DBZszEKYftDQ*t=`$xhp(3u z*#5q-9?t7aL{>Ve?{?1CJEN~XVNajZx1X>(2lPh*Xu2D6os;>WH2A(8jjyR}!3jD^ zBVe6|r#HtnN=d_CAw8?F9{e&MN7U!2Mqt$mss+)Sof;gysi{RXo0l3`+et|f1R`ch z(>$Nj&CgYltjlK_;t(d6m*-L@{9E0i>9>G=n-EQNvTUT$o++DCtZLI`Tb$0B?-IO3 zX&PrJudr|;cB+B*P+^X{Lm8s^2I3GuW@JJrlcnki)RhXjy=}SOHr(p&_Z$v+uFUWh5`gyx+I25Mn3vk+Q3*Kj$+IqSt#c8|GcYl2yzNIWq+f6(2WAJuptt^p; zpCw^QO_J?`l*^V#Yo6Vg@O*@6J;$D&@M)GOOlgW~k36jwz1g6`Fy-57QO^$Cb@)V? z?rTv`6x?H=#Wb}js;oIn7H4t#h!dZ_pbF*!PF zsp5{AtK9>3^GI-qoflzBgssMucg*hs)=`|#9PqXVJQD$5 zcIO4gg4KH51a>%!pk@(>Ec7kYj;_6iE=wM+X@qv1?X~w?#{1>Kh}&!Sw>(R@l4`Z5 zU8ROz#>>{R1|HnKc-i{Vk+{O z6{>7SMpQOD0oYxUS37JoDvHW{>T!Q7aF?moD<81(+T-L8&i#!a6#R`J-1r*=3iI?M z&A7IBWF5fB{UZ!-Yli17L)sfIoBiZlp30;dmllt#Yg{V3c|STg`;Q7{|Iv-vsz1c_!T^?T2-1F*7 zrN(q1W~H#vHK0YZ?f{V1UWc*F6d2$Kp(!qVvhK)A7LEZgp&~Z=x+5y{ob7rNUWlaP zA1b(X7jj^FwCF03wS8z_>~tEM-hE&~)a^dW>Qqxqpm4B-kgQ&41HbSZVM|sowIzD# z!%0b2KWGc`gPS_}SsVCg(=Cw3(UdO9pv8CYo9Irdji)JHfC2l?l@r|7qI9_h9jkNW zM5#$_#T`u{C6I*^{cen9?K!*JNrk8ZM4{>h42y7KdWEe$A|W3NHT8NgK(%o&2Gt&# zkPnZ6KrBSdFuga|o}iF-&%PbtE$$79({eMti7k|+JJ=KfvT&?wN!lkw=$VH0AjcH! z6Lvq;D$PSryeDrIS+eV(+6f%?RIts=*q2`^FQZ9P#y!dD?P)j}RhN4eBIabWB?c=D z1%3{9`K~z_J2g=CHM-r$xlqQT#Bj}`Ar5L{T6v5Z3j7>!;@Z=iZhn>6lzVUIq`WCB ztUCJ&cX~+J=^Ky!uuRB4kY`B$zhUQ zBu(YlSIm-a0xQui+UCXMv=M&c0GFl!@FEC|K$rU`*jYOY|(F4tkRt#W8B>^yGo&?-yMLG`E)VyYR1@VwOF2`aC0XcO$r zZ||flPdEaaH#8FpZ61khK)mL7i|7_^m7y@t(npq*fmQ)eSIZOGK4l3OSokc@XdybP ziB0^OVI!gT@FCYQSO z%qJMJF5cu-x`IA0d8ZDpI?+8&7oLb-llHgU=4 z$T(~JW*x$;{fcRQKC3c-pnSp0Z=^k{kN% z&(gd36EeOyVOzMgO|8iQ81oF~a5O4K+a{MKoprybQ#Dy#634tEWt~T}r3@&ghB2Dwb=XRRuD}W99bH{Kr7zGtYuBFUmD#+rqmI+OwZm2%v=`MR z0Vin}u$qnF2eAClcq81J>HmY+3iR-P5SxLJK(+P+X>_wD z4LIpuoO8k+KMvSKtPv_>oWhaoa11x29|ugM2mRxKmBjWzE!E@FEZZ~< z_EWdx#EboBWd%9eQV5)gnK)hsS)$^>e$G3x;D5y#`c61T6%e@OyC+5u)?nw{kuF zE6srdYu}M$E#oHpSDNyqX7R5yu?hc6LlC{}k9dX|F!eC?D9x?Dus;v<_wk7sh6<86JtLWx}{HG<*Hg)XX$akgQ;Xkobc4h>cV=`QOaU z^?8CR4G1JF*lrBqI~&EC?;Y{Uif~tMqWl3BkX&$L{oF6j-nJ!H{M?*KAvUDr%aY8y zMY0TD(;XeH7b)dJJ&Er~9efvlK{USCJ#*aIgk0xjWd#igBLrs_+vpOJ5}#;k_vE!H z>RAt!F$%sQ8g+c=9A55hfl@}$P6;D8Pd9bqoRpf7iWFY80Pi@! z)i40137S~izXhD8{fQc*o=5h^wEm+#2XQT`dzA&>6aY~mfUFNX1t45V9B-0?fzq)Ps;(^HJ%bslfSy8@w% z{7tKg{Pz*1L@4qPT?=`T0GI}pDIIBnX~3DnuuH~o$~53igMZ;H1IqGWXruZU#_nGf ztO$cidzhByHg3I=Fi!aK6SFtEsg@kdzTUktYWUc&|qR-w)g?8^P-+VC>}@9ui{vHBi-YlBl}gYH&1-2#V~=otB)Gp}Qd z7cyILUnipKM(v&roH?XHRZ?5akvx+VHhCeli85wmn-?>>@@k`}Y< zWx1TP(aTrz6sX-}^E8($z0}G6w(2r3U&*thDnT|DdihG8G_}KpWsGgP7<8x~Uh#+> zJ^Eg6aTB3)eoOSvkjpOTvF|;{>c1HpiNKyI!oItb!8V5a;T2yZ(?j|7PCKzz&M&e4 z8IteiJo-&%A{GkdoOF!!<15;x=~@ozwIE|RT|Uuw7Rmn++Zu7Yfe&4INtTUv$6v z@siAq;GT$X-&4`&`;PgE--Wv(AtN%}(Hy^s$pFQ%h zy}Nm(E5{oLa&%Vm4QqBqyBDT~d&-YZTc#%w$lq)S!E*iqy>PXI5DFQibM~sx7L}WP zg{AZ6(`R&RkKH2xnWM#H*lb^)SeVzT7#-`@oCDxYH(wZM>5TsL8Qpedw-z|(pyjM* z+!x_faHmO=i3t@vgT~IEz>gukSk)|R;NUZTr}vM#Pd2L>I%=J;#?McLv&=yCfOkSW z>Pc2@yDmrEfe9K!pM_v6Sep= zB*rvEY%KmWB+#sx$jrzeBd?hREt9@=Mqlp|UhR@TnAN`0HTgQ1@G4hZR?3tL9cNiy z#^k5*4a#0wD(OWXyn$DMNbOcEKK;5b75oRc6unyxy9zXf#;z{Bt1Z?PpOnqTyT%ed z=6KjxstzQUw%qlRsRPNTRoOxgYJ;60sX8wpmwZ`g)TGZ+(MD0<6oct&8~+Xm3LnFV zoW~lSycQxe!wX18?^&D|C-fC_juA8%^}RNjS8I#_Fzj9wk(yodrU+C6KlQh#HcfO% zYPJYTD=rh#g_l}pl{__~4JUbj>hmd&>{!Jf*K+OgD~&J;RRVAqtf5WCrBXt}d>125K0(9P}c zl+766W;GLaQ(Q~OdbSGBI@rzh6aI&QO?QT_TI_nZYK!Cfr@wVo(4NHY4;LJ?EbvA~ z&wmWWA15VYSJ;GmV<+8WbQ9ulI-)AL{8dJfU-{0NERqzm{WGsOQh`}B! zx@hj|(q6#&S%2eImOE-fvdOpKXorW{Y9j00xGIwm!|lOLJrqaB4VVEXi3q23Cf**; z1p&n0HPJ14M}|&L+_4zT-aMf&!FZ#NL3~P9nyT|%6A7bNZ|LkNl-5!8g~ca=7XVA`oueSwVU3p$Vpp@)6pYr6FR)^vikt+=(Hnz0GZ*#-kS7bA={j5DKvR+npyr~i@-G>EfNg9xkjkv)n{@drc_%f=-f`vuJ)O8E zausLtMg|nKaYE$!c=0_3r02mR_LYORN8ikK;87vgGp|&6O@TI;DzW?^zfN31v}(Np5;Zl4WVNrncNlXNy`$# zgklz#WwMTo=YO3FSafA&$zVEs&U$=UVwh0O48x1aVh}w!`%@r&a~{Pd-26b>1zJIG zYXey|b)CCq)T!wx(w`Ykfcg_BG$zg?Xn8dAY0aZf7qjQ?bWQP6VhZplBG|)mVS<+u z6Q}~bl&Id)nySo?8#jpU1-VAP#}fJ~PfE|TlCi$3rZj&PS#n=aS(U_TJh^JaBgBbeksKYHe}CJ;4hYd=~R zImXdLoQ@q!kd~(-Hp>A4fH!Ox^Oo&m4m>KsD*<@GBQnWq@7b6k(Rfk~u!UM83)UVf z(nEu!t)L^=`OIXse?DvmHMTb@JK29z(t}=!OK=D&j?$HbikxCdGaM3^_gDHo=zs4> zE#v_l^=^c6?dFGgiwwrv4^1Jd_#6GZ`Y73U&2%2k$YKA zyXNthvCMXRl8JB7wjX)O0HCDn`gR*mWz(;(iTGr#HKzE`ZOe>DF~A&^EJDz3{S9sS z?OEz&`$THz77vx09-33R%GtNY%l1W76|OJa_lv~)IZRu6=uW&fFsjcFC;SY`m-w;u znM5@3n}qtATAB7$BLFvM06(1YH5E`cbtY;CLxoV=E0v+bwSF`xFW#jEe(m_x3&Lv- zbQs;yT#eIV+D^&gUFBP}jY*4Nl7F=26`>slX!oR@KR7GV@ARbEn(l^9g_VJ_LZ|GE z-6*qDc1CVL`r4M65ZNZ=x-YYraH~Y>`U?M-O+pqbF-zILrEe0{`;U-ciQn5%7XM6( zEiWC=(gD14R+kRi()Hz`35BE^ftdHTP$ZZfU-s3KZu`|8ITSnc#Ezd;=U?Ybc9bt? z_g7fLeIfvRIZ|DlaX$5D$btoTS?bU1=HP^kx{=3y>8zrT5{ZPn^ZCxOSN=B4L%7MF z?*@Bdnct&K>%fwfVt7{h2*vxG$WK3_ujMmo^BNY&;T$ul!~Ap2h`ttc&ai?W=AIE1 zZ04Y09lXp%BU(s@a9X~9isNYs4SRARA688|pwm9oKf%HJ(8RFru=i0TU^4uWRt*PE z^Q^3cZE&HE%pLUYIAJ#Zk{2sO3+Ure^&7IFB_j)=mQ0+!flN{N{e!!*!sEwxhc*61 zhx`6fURmM&1HB{KZF91oWDX9sCBMnf8hC9mgSPxmjV~1A{#DQx3uv*XzEoRj-2!AY zwY~|);SET%ml98qP^${vhe;P@(w!-ao`EHc8Vz9$b9*b~S`ZTai!0iy{zTRn^<~ccEDP?6c(>7nfZMwK&guR2b@-ODfNQxm-|Opu{z$>tU0twa$6kY% zcBh2l|BXnyT;9`{ocni(p;GDCp>vs7T|hxAV`b*N1Wn5F#Az&)lWZ5nfZ#mQty{B) z>Q7Jju{EB6s$trFs{Zt(KHDJ0uFv+jB4)&2O_Ei8-jKzdY(=~#OfN6b`ODK}{aU|H z-4&4+3+e}|as4ng7m>c%&QmxNhos3=xQ_9LZjogPE>#BudeWpl9ZcVDXGtkJYuXCl zaMtgxFK<7JN1@&f$kHKb=8)49w*Kaxew!Ap8A1o$QM&Zx3yC%>8_l>??`^&rXHC(S z&odv-!RphKW*#1j#2hXJbSlh;+_>z;lCR1w5X$avUh^aH>|K?wrP$`KCICA^_4m2` zZ=|30W@HVAz6RX`5}EIMrw^Ci(}!~&bY#+~n%Lz#eB@_%N3$N0rw(xs56vH{tjP%a zy5>T-li!<^pY`v6TJnwcx>KQoC0STNsA=#eA6<{^1&C1Z;h%M(ZWz?SIVh0v0YMs_ zCV_3;HS~@1Tg`~p2ZRjSwMc^TTL%L^v5S$XuL9znL(($14hV0cE#owR$4#`&a0+RN zfK_BUL#6duRQNyR-2_|wkH9kM6Ji<9u_P0cJkW6Y>Q z&iN_X_H%G1U{QN?MQM+N_x+IZIJlB%?M6`F7iz=df~dbu$TBE8TaRJlI=Yexc^QywY4l{}xAV5<3vfmGiKSj#cl2R1iC-t4r0T_!87uL0lniTH8139V>Q2Fw z^k%t-&fTh`W+9D3W<&O&8MP9 z?m*fe`}_9KExuq237;vq{{NU|jGI;QNk=$++3_9?!%WaKS;jvL8;@26-a zdpH{iolPPqyTR=mUdfJyNU;++_Q!Ec(~{<_nbA(qM63Oj*I3{VxKH;W_b7RiWBnmn zWRuE1+_Wv-f-f=50g6ns>ecd$y%)tU1U} z>x;VQxBKZ;$A(O(OdWglg$BiH4(-L1ebAoK4#z=%iocM*4+wKzFxM>;bxsDtjAMufiseyTpG+pw=C-acuFnNHBhRZJ$m7}SM z<^iTPXWri?d4r5*;+QPjU+cB>w; z?!difX&S~Fcikzi@7_(IGXArW zB@PlQV&t)V(7WqFLP?Cgvjg3Ogt{0PBPn%`VjG$}gR{F|wLQpDZ6gv61y%o7#DV8# z&s}1}U>FDZl%>p6+*XluF_>9mH#Utr$`Qy&?|{jYU}(PuJhsP^zok9ScuRYn@s{>j zzNLw-uGxo(yi%&w4zuM{^ZAA!;+NyjfyeSOP0Rz(yBSGst_(lL{K${_v3yM%Br3LY zkk*;F!slxokDYg7o{=_gc)&(aAUX5^1Jw&}E3$vD?s;?23*j2m9;NRlOv9ZBY^Pt{ z^Cl%|XqLzMEI~rt=}B#=&fy9RGj-hYmfDf@xL}q}(xs3Ku9?JPr-eGn7Yf?29tBG9 zTgFS!H8(?YaQwCsg6Ikjhd9`|bAC@(;89)|TI4g1t*};`^Lx4v^Ic2xJTp9x98bI) zAKMdQg1bVOg7kRUz2Wh&d&A>B)VioG=5dZb_c%wN`*QNb_REaJ_REaJ_RGX!>s_xf zY2yvJG;Ob!oTUz}ju+cK&fPB)=dQeQQA!z~wPMzE1b>-0f(JFA_{zU?>b(XBw4P6K z(frE4Xs%a^i3hjKul(C(N(d0P>(-U85q#Bo%>sEku2sb!oWTY}V@==hFJlALLO~qh z6{rJn-d^A9Ub1;9OIRDr#osxtLE_BM?e0G~qZD*4-(vh}Weu55E>s(Qxs;Sk>Jfi% zmZT5V^x}_bTn10U4!cr!NBj|O$%e!q(PGSh6%cV*HOlxe8 zXKY8`Od$%Bht(CB^R<@N!CQ-lkp7gna{@^g^Dj$5QPW>Evv6RLz!c1yxYK8u;z{BJ zV>F>O!IZGV#5j^HB46q>A_&Ey^yw2rm;p1JxnxSt`2JuiI}u_WSr+Jv#e7mBD1=FH zmpquQR!Ar12|BQ2XsHu7Hfm1EkV!h89uHz0Ja5eKd1Fc;0tN~hIFUN|YXNCmPPG%$ zoTm*~P}Y2cxi=NVV5$@67_W#3`fm9FB!IhagcI=R1u$9Ld4+MKC3WBivwt#Hu&|hq zrK_2k={^-7vz~~RN4=nT6f`+ac1Sv77*Pp0XrA%aGgW)zOP5;T!MUg|F6tWs+n{xh z*E)XDyd`Kku-VOBbo0mB%UuFIy@oqp*qO3-i3z>M`zk*m7XqE#zl--ipmm!Sl?f-P+lQfIDD$BKXG zi{IG~+dF;xvH9tFH1$jY!?%w-^DA@@31d;!X+DxL0Y=WaUK`WcR%hNW%1wIb8ZCy>dYENGsmp_=lipoy~2q_24Up3|6dDSc~CS0OO&s(2=K@M_pVi~{kgj@~9 z2w&ah*UM`29`5&XhO&qp!{vIuyKz>QN53mop(okDZ^@dXr(3mZ?!bPqCeuCK{}HY{ zHIkRrUl~9Y$dJuOuL>dqgNF|Wj*Kq$%g_Jl=cmPj;Cbnbh1S<`Fdm0MOgd#LwEP&3m`y-gDsW38FyOYGIn@pz1{ceA;2lbBjU{Qdrf7@iLD9% zvO}ms6t-QNeA}u3G`m2lN+VVIr*c_cTtfhr{R-(BQ*Wo4IeIkWQA1CNpfLVPoe~50 zl}qbVGj0^tDNmeGT*rOY5~{H0_xiS8sYdS{dN$A37dr>dn|hoedAd1M|I9a}p}q+5`40+jOm1W}mZ^^DQ^ zOjmZ&4{H#s@Y^D>GNbfk___Xff}GYKw{a@)3s;7Zg*RR^;m{qa>=z*_{&z)d_@zf^ zjGp+{5d;U%#6+5HYpv)(?qD&en%Q=7+sUG@GV%V8)wkivg-i2IHiLLx4!I zrV*#><=x6S;GR;clptmn>6<1a7R(m&CPS2XMH1#4`2x)~D)RFOi zNQ2~X-;NPxbWemd#&pVRy#frx5!|V!(UIYEKGWUJs0KqlX1Ke_ZzDf(jN!;ti7Ee) z&DZ%^j-PNL4U)utJ4Tq%6E37NX2L~ZT*e3!B}5WMf9jABy~E&H`F6L>)TO*CybH*$ zI=F3WgyYU)LuJjN!{-jd+p2k=M;1yFQTWs*X*?@uE#&7E>1d5^O~u$hVl^bh^Kdhb}=F;zfTYqzAw$}98AFpt+Th5 zSk}QW3D$^4JLAO0{XD(mymsVQ2`i_Goj&fHZnBXIayY#oqWl0>YF6D`)#sb4kCiNIxXAA!4E*?joEF7u z2(>HtCB;%W%4{O1o$6t4I%59h^-QtsKka1_snPz@jR-TMIWJmG$tJTb5E%cMO z<%xy;vx~>F-fk8bnGC2f_Yr>XBHh$gYAZ?==4}B#M@V-mkzt{Py6BGI2$oCEj7ity z!#w$WLZDGRe>X_29fKa%a7K!)urfRxKU;&<| z@KI3kc9b}cc7Ri`5e4L8{sEo(Pj9V+W|Xeiah&y4iXU|8S{>upU8lACrOxIwolUiR zKae$4VeMLfa!kUw;jS)Bl#TaXt8lu*;zfCH34ZHfknELc$*j(3cFSdzun4CL^Y%)A z2-+RnYWHrMY*(roS=aIW`?kCcWAtbbIV=>CdxYOciKg4CR0TPb&gF z%#xj+EFJ6oXyL9w=&BGK4C72;T{tpbS6Z$U#*@PlLcay;t?}A?UvRpSYIB9o73h!h zQ>A}{_r_JV1XsOkbrlBJEf-hxD*GvYs%Jla&H_-16GITaV+=tB1eGCpn9I5#XuHWm zwhs-tjwtQJewM{BKn4gnrE~@c?Ezzwx7UlNJlDz&;B|FFqj!hz4FhX{AX>^zVqhyU zpc$0!p+%V84DunN55*%?Y~GrNl1p+dHYR`{1h<&1<+ z;DM6xhe+j(xFM`p`nGpYgi`KMzk^6jTdWAIcYVH&zWpx4+0lCHMBMePuTI=cFO>o; z6Y9b^-SdP_WFbpt8Y}kACYErR%S|Shok{G%c-Wvn?fTB9dz!{Y*^no{UQOP_0vPiB z9zIBW@ps(+&^ra)lJflO#9`#fu*Wo!IgFDp=GEqXi2>(B!qSg)EycBt9EGAi^D_KW zTJzd?f|;T?(Ip__d40bI*dF$Pg*H7f=x3j}*L(Q9SzK;EDIYz0^l+rpJ^GvSU=m*? z_$tR&3BHQ>D&%{#kL17n{J#&25N36dledqf8UUq+q^EJSjt24u2(9E~9c6Dr@0$-I zi4yc4|xVnaeQ~kNj*JV}iR)A|hM_lPG1bQ&cE_nUF z*JPV=eJRjVtebte?%juE#Ug#Jo+=gq0kO9bl0pI~$gzt8fQIEjUo6%O3t%XfPxow! z=oAy{XLm3lMpP5o9&;5N*KQMJXn8=>sSjLcNY}U=k&0;a%|QEWYn`RfC0v2=)T9Fe z&%&c3o)$I4H#^GWZA4sL`XcE|iOG~YO1j0RCyip*0?2-P)X7noFfv)FR2M^GfmQj{ z88sS{_2a>Iv0OgPLwaQ~Um7G=yvrO)+}Bt4uYrX+1{Ug+GLtY1Zo*4Xz(Xk@*DkSk zc`60u=2;z&1Gc=(nnMtp9o*}YA#CuYF;L8A_k(fp@^#qqM$JV*Y|1|?hyikr3cliW z0AoZK5Z_VRSL!K-ndD2qDzU~O`Dqf3kzXp?artTX43VE^Ot$=9gx7=BZmBP=7oW-$ zjTh^i-EyU`VS^@>4El<-O-6eC-~T-Ljv32@j)rl6vt{I0oLJBb+arrh4CCFpBg~7< zW?(Hi_s;JHr0gKz*dxQlow!~kxnlxofetkGXpnHWUg0}Q4_7cfH|c)G*1ss@v1J9A zUe))pb385Ia&0O2Hi9jGFNE+j+_g&^h*m&&?h+U{izOo3*{5F%Dw19(s+jCCcwb zWAFxb;u>QJy5f!N9dDAFG$}p%M$i4+w%%JfOxtb^&pIVAYu?C7CRMQEiCf6t6Vy`2 zfdJ~_K4K*#-p_!yyO|WyWSC=u^h}uws%ssMbA1fcx}M3Z@((1s-c%UN!#aI;M&$w9W!^>d90GtV{nSpx(-^)H&rm5;BLg<1_9eWba!( z%JI<`ImbtWP#~Y@qr{_DC6WZ~fmni#2r>gH$_(UVm!Q~*6ha<~2?z?mg-d`AtI{4; zy)z|#x;-cIt!Ym>Ip@V{O&ky?obFVkv^B>3-;Lx&Cs!sv*bT1q?o0X!5rlrUUrL znvODb$RJcc?_^V4?p7ohCceTNW1JZb8Op+imMG7K;dwV3Eye~B>)D3@nm90OWXrz2d7nJX z`y^S`4Q0OuJxcXF|CNU;DpTI?7VBeXm(p(jCb-3`0mGXS*WM}Nv7N08i(0mPZ z05`2r4`w|Qh?^CV*Z%n$h8<~!>7h9d3v`2{`GVv)9w3L4Jpi%a?(~U`xM6TVq%Pnr zx19g>0fBf?0ungiea(ob*u#-Sk4+Dt`#~gyz-Mr^rLpFOy`0JyL{eHLEC3n_i{vev zhlzQCJ@)~7AvJ0ASyz)kp2=S!2FfB-+Bc``O8;_GU0v1l0bPkquv<*34Kaf(%%;WE z(oB?PVmoIKNnLYE3%vIMZ0Vu)2Ej&Hi2)2deO+@84Zt^gL7+|^&>1X(k|NM<5{RHc z1Z73Q{)=8F=ruxg)n2WPUPH*bXF5{!^P?bW2yQ@6hG?+VFJkxuii#+{$YLCkFLuT3 zmNI=QZOa-fo0K>$3d-GFuXi_d*bMcmzNy=04$S2OXM%N|&6{>a7`8Md%==MoZ+DcO z3XU-A>`UUaM8`uU!lpoG7di!ajbfUJQZLC0wkdV3x2y+bT+<&PYCT{DF7mpi7CTyl24n^_l+TGt-0tk`y-gb3Cv8B6#i|id}BgR7bPe!>aOLyc?G( zI-0W{4|#fe#OjN_;h?|(sJSD^fjMz>NOm5XT;eO zDNj$zSAqEWTzu$>|JsNTL`ou3v|`nSJ*yw)R#!*po$b2J^LNddSx6E6B#q;!e{ZG6gC!-Av(D;rmUlCR1+s16>ILkK-z+&~KJf5%- z&?8%L1BF|ao_c^&w5k8PTL6M#3kztlmF<|Qqp6svD??p*)Q>a8u=0AfMXkQK`|gy2te0Tm zSn`v2|FXuU=>{UA7{cActdhPN5tJVE%V?pBW}n6aSM+0&k*OG>d3}+M$~fwr_Z%rq zh|~;xb7v5NwdXL&kx{Jxtp12AhwBmX*$$CC+V0s{0^8|h+jNY60^O!X+xDrcfNUJh z-r(_!0__bQQt=e-#F-{wNT%JRcTWlrk~}8V5(PV{Aqvh?I~q z$FH6X`bq2+>?HOAmPB*waU@IPx%Ef2rm)637Dx(hEWJXAQ43_OlSd0?tcSe5D$BRc z!O@Z@`fe@=n83-CDBVJ!SmkUb0>>(IABhio~!{HW_gNRGvDY9o@2a;u!{|Pt4^Eo+flhZ8p zWtE{kz~f2X)IZgXlw!T1MmWixYPy^fNIAL+D=0_zG>d%^0U%2Rs0CNbSkz|{Yq4XW zN}?@x@44>W8@C9fxY{54lxJD#l5$|iK6ZtIhh3kcfQ#(wvKC-uZhs9JmJlnln+2G; z%OHMZ$SL?;B*Af0eix%!1Sa*Nx>uT&im>8D-?;~FFrQZST}l0xy~XG%%2fHzRWG6$ zhI+EtMRN?b22xg`!Q=?cY1DT=ZS;2>jY%rJ&uKy>-eW4&c#pqS;GS z>g~TbnC0{Cy4sf4)$MH!??IQ4J9JrZuIkd{_WP)*tIKt@EcMN{UVVfnw~y|%-nhQ| zXlT3dK2gXS^Opi=#hf8x`A%znz*#Y8^>3el&b$@!)_But>K59my^gSaH{m~WEz4#!~1jl=Ttb`8r` zZW*CdcY=8bwC2b3n{p&nVZiODZ=0dqZr@A8v)x8?ZQjB3Szn68x`X`OU!v1A5COkc zN91Lkc#-Ac`eZoLSeDbR!4K=^fCC3%zzzc6w^wccQffS6(S zk5`Try~&;-D+=$mzHRX!nNn1yx7af$r;DGD2hKnv@!70dZ0miW#(xK*IBJEs(D&T* zU)^u7^)~8V_+4m12c+NkwoqZwNizc=Ek0>}_@l_xHnCaBQ4S4CKcsjTBIGU3J_=O) zF*n3R7w#wEpoydVVt_5&PcPm3L~e;-p#yJWT+QCZe(=c@BCSrwV2Q*!*l8kRK+dI7 zqzuTk;(FnwaW)CaWR{O2`eN}i!;MyFOf43cQ=WCODpE;UdJLVZG%Wq*P6-~Ix%ee~ zaQ^zY*^@G6kIkQiV}p1-vGm(xQf%7;7QuRANw&R2+6d7T%ckvR%m%M!XH(aT9mQ_c zD}1`B795l?t_AT6*6V9`k3=2wNU&5-F|Z<|dDrebiGoWio`$Y_4d?Rdb15^Is{ zx-Fw&PezZ9Eu|-?N4Jfy7x&KFMI5eOH%zvCT*?5{P6B85<&n?gBjJbkOB>(0=JI4Q zi!*oG#bK`EyxK@uBXF(yeTll6M?H^*!t3Qkq~?hcM6gZ>Vwf;}cZ=n$<0Bxu5@3`) z9NSsAW9uux>guNHt*A*cxZ?N49%<~F8j3;Jaq;SA>EF-to}N>PFKJEzDh%Dxz)f#% z?s5?MO3#2N23(k3zP;dwI13XMfgm>h{=#u0o!-UMI0mQngoH>jZDJ}tz&{t$0`QWH zEwyxts7{~X=|Q?OoQ^uAOZq5{hu2A)9OH6C4U;3_G}^$P34Rjxb5G#TZtGQ?f6~r1 zkx45Cf)ke{0LjV6zKNqe#F?~kAV$F*b>C*=oRjz7J#dK#gW9PS10l4rx&vq?_-aS4 zMc#N?L9je4Hv5`}0})JE1V;HYi$E%?ayTi9jtJnrB@AdQq|Ns8j+op|nI^QYcZeq~ z?H!UzyL&nh_Fz+EIumwWW_@wodCJJ#Q$}p2gZ?Lh5c$s2ag?XyD5K*ra_k^|2ws)3 zH$=`Ht@76dlu!9Yq_U%@un!ZkW)uYd(E>?yp_6xqUH#bbgs4CL z7Y%140`M(^_KVIxWyJ`0HAhUl-!E?#x3|C)4BySy!whb=Pcf;1?o0!;is{9SjM%j( zqmnW@Bx96J5s(LbA{pK9Mn=Ul{`gPn8XS?dPx9c`E%16l>!Ts}qoHpufHqxjhb_-0 z%r zrRLGFz5I>0T@(9o;UW9r0Z(uH;LWzUbO|h&{hPfTbm%uoc9EU{IYC!#WI)kQJT-QE zZ)IW};UI;ciHk-N#dea#x6JX|1V<7HoJLj+qUpt=@frFxv&WbiNM-v>5>rgeL*bUbMpWz9ytZ)4(U=bn~~@_gXcaLtw4~ zqJ-4wh`#M+N= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "4. (Optional) Compare with a Dataset Without Spurious Correlations": [[95, "4.-(Optional)-Compare-with-a-Dataset-Without-Spurious-Correlations"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 83, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 95, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69, 95], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 95, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83, 95], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 95, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 95, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 95, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94, 95], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 98], "group": [8, 9, 27, 32, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106, 108], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 83, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "exclud": [34, 43, 78, 82, 89, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": 37, "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103, 108], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "Then": [83, 86, 87, 91, 97], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "easier": [83, 95, 99], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106, 108], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "apple_pay_or_google_pai": [87, 94], "change_pin": [87, 94], "card_about_to_expir": [87, 94], "beneficiary_not_allow": [87, 94], "visa_or_mastercard": [87, 94], "getting_spare_card": [87, 94], "lost_or_stolen_phon": [87, 94], "supported_cards_and_curr": [87, 94], "card_payment_fee_charg": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": [87, 108], "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106, 108], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 95, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 95, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103, 108], "039122": 89, "044598": 89, "105": [89, 103, 108], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "901562": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "940": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "696": [91, 98], "493": 91, "060": 91, "990": 91, "330": [91, 98, 103], "505": 91, "598": [91, 98], "476": [91, 98], "340": [91, 98], "891": 91, "328": [91, 103], "310": 91, "595": [91, 98], "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103, 108], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "dive": [94, 95, 98], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356958": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651929": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "199": [95, 98, 103], "111": [95, 101, 106], "153": [95, 98, 103], "110": [95, 103], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": [95, 108], "007": 95, "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "blurry_scor": 95, "correlation_scor": 95, "_correlations_df": 95, "image_issu": 95, "nimag": 95, "light_scor": 95, "015": 95, "odd_aspect_ratio_scor": 95, "odd_size_scor": 95, "grayscale_scor": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "original_data_dir": 95, "original_imag": 95, "original_dataset": 95, "original_lab": 95, "original_scor": 95, "original_issu": 95, "300": [95, 98, 101, 108], "415": 95, "325": 95, "335": 95, "797509": 95, "663760": 95, "849826": 95, "773951": 95, "699518": 95, "balanc": [95, 96], "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "tool": [96, 99, 101], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "978605": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "596": 98, "597": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9786": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "catch": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": [103, 108], "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": [103, 108], "228": 103, "219": 103, "239": 103, "209": 103, "202": [103, 108], "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": [103, 108], "268": 103, "273": 103, "284": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "104612399": 104, "87it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "871": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "inflat": 108, "137": 108, "161": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 83, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "common": [83, 84, 108], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "all": [90, 99], "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "sort": 95, "6": [95, 98, 99], "spuriou": 95, "correl": 95, "run": [95, 97], "analysi": [95, 103], "interpret": 95, "compar": [95, 101], "without": [95, 102], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "4. (Optional) Compare with a Dataset Without Spurious Correlations": [[95, "4.-(Optional)-Compare-with-a-Dataset-Without-Spurious-Correlations"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.html b/master/tutorials/clean_learning/tabular.html index 8219bec1d..27d691acd 100644 --- a/master/tutorials/clean_learning/tabular.html +++ b/master/tutorials/clean_learning/tabular.html @@ -1081,6 +1081,12 @@

5. Train a more robust model from noisy labels3. Select a classification model and compute out-of-sample predicted probabilities
  • 4. Use cleanlab to find label issues
  • 5. Train a more robust model from noisy labels
  • +
  • Spending too much time on data quality?
  • diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 1b1f01adb..98abd1f6f 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:34.527671Z", - "iopub.status.busy": "2024-07-30T16:31:34.527492Z", - "iopub.status.idle": "2024-07-30T16:31:36.140632Z", - "shell.execute_reply": "2024-07-30T16:31:36.140024Z" + "iopub.execute_input": "2024-08-02T23:17:23.433118Z", + "iopub.status.busy": "2024-08-02T23:17:23.432923Z", + "iopub.status.idle": "2024-08-02T23:17:24.941638Z", + "shell.execute_reply": "2024-08-02T23:17:24.941075Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:36.143586Z", - "iopub.status.busy": "2024-07-30T16:31:36.143047Z", - "iopub.status.idle": "2024-07-30T16:31:36.178768Z", - "shell.execute_reply": "2024-07-30T16:31:36.178228Z" + "iopub.execute_input": "2024-08-02T23:17:24.944158Z", + "iopub.status.busy": "2024-08-02T23:17:24.943875Z", + "iopub.status.idle": "2024-08-02T23:17:24.963528Z", + "shell.execute_reply": "2024-08-02T23:17:24.962963Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:36.181589Z", - "iopub.status.busy": "2024-07-30T16:31:36.181045Z", - "iopub.status.idle": "2024-07-30T16:31:36.338074Z", - "shell.execute_reply": "2024-07-30T16:31:36.337466Z" + "iopub.execute_input": "2024-08-02T23:17:24.966010Z", + "iopub.status.busy": "2024-08-02T23:17:24.965604Z", + "iopub.status.idle": "2024-08-02T23:17:25.079442Z", + "shell.execute_reply": "2024-08-02T23:17:25.078863Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:36.372204Z", - "iopub.status.busy": "2024-07-30T16:31:36.371964Z", - "iopub.status.idle": "2024-07-30T16:31:36.377781Z", - "shell.execute_reply": "2024-07-30T16:31:36.377262Z" + "iopub.execute_input": "2024-08-02T23:17:25.111044Z", + "iopub.status.busy": "2024-08-02T23:17:25.110645Z", + "iopub.status.idle": "2024-08-02T23:17:25.114497Z", + "shell.execute_reply": "2024-08-02T23:17:25.114027Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:36.380079Z", - "iopub.status.busy": "2024-07-30T16:31:36.379702Z", - "iopub.status.idle": "2024-07-30T16:31:36.389163Z", - "shell.execute_reply": "2024-07-30T16:31:36.388645Z" + "iopub.execute_input": "2024-08-02T23:17:25.116536Z", + "iopub.status.busy": "2024-08-02T23:17:25.116200Z", + "iopub.status.idle": "2024-08-02T23:17:25.124454Z", + "shell.execute_reply": "2024-08-02T23:17:25.123892Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:36.391552Z", - "iopub.status.busy": "2024-07-30T16:31:36.391341Z", - "iopub.status.idle": "2024-07-30T16:31:36.394409Z", - "shell.execute_reply": "2024-07-30T16:31:36.393862Z" + "iopub.execute_input": "2024-08-02T23:17:25.126998Z", + "iopub.status.busy": "2024-08-02T23:17:25.126543Z", + "iopub.status.idle": "2024-08-02T23:17:25.129409Z", + "shell.execute_reply": "2024-08-02T23:17:25.128804Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:36.396451Z", - "iopub.status.busy": "2024-07-30T16:31:36.396262Z", - "iopub.status.idle": "2024-07-30T16:31:36.936436Z", - "shell.execute_reply": "2024-07-30T16:31:36.935844Z" + "iopub.execute_input": "2024-08-02T23:17:25.131344Z", + "iopub.status.busy": "2024-08-02T23:17:25.131035Z", + "iopub.status.idle": "2024-08-02T23:17:25.655338Z", + "shell.execute_reply": "2024-08-02T23:17:25.654793Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:36.939261Z", - "iopub.status.busy": "2024-07-30T16:31:36.938884Z", - "iopub.status.idle": "2024-07-30T16:31:39.269788Z", - "shell.execute_reply": "2024-07-30T16:31:39.269009Z" + "iopub.execute_input": "2024-08-02T23:17:25.657837Z", + "iopub.status.busy": "2024-08-02T23:17:25.657465Z", + "iopub.status.idle": "2024-08-02T23:17:27.751426Z", + "shell.execute_reply": "2024-08-02T23:17:27.750727Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:39.273002Z", - "iopub.status.busy": "2024-07-30T16:31:39.272142Z", - "iopub.status.idle": "2024-07-30T16:31:39.283199Z", - "shell.execute_reply": "2024-07-30T16:31:39.282635Z" + "iopub.execute_input": "2024-08-02T23:17:27.754463Z", + "iopub.status.busy": "2024-08-02T23:17:27.753684Z", + "iopub.status.idle": "2024-08-02T23:17:27.764911Z", + "shell.execute_reply": "2024-08-02T23:17:27.764361Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:39.285386Z", - "iopub.status.busy": "2024-07-30T16:31:39.285054Z", - "iopub.status.idle": "2024-07-30T16:31:39.289139Z", - "shell.execute_reply": "2024-07-30T16:31:39.288681Z" + "iopub.execute_input": "2024-08-02T23:17:27.767199Z", + "iopub.status.busy": "2024-08-02T23:17:27.766875Z", + "iopub.status.idle": "2024-08-02T23:17:27.770951Z", + "shell.execute_reply": "2024-08-02T23:17:27.770498Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:39.291246Z", - "iopub.status.busy": "2024-07-30T16:31:39.290919Z", - "iopub.status.idle": "2024-07-30T16:31:39.298453Z", - "shell.execute_reply": "2024-07-30T16:31:39.297891Z" + "iopub.execute_input": "2024-08-02T23:17:27.772966Z", + "iopub.status.busy": "2024-08-02T23:17:27.772625Z", + "iopub.status.idle": "2024-08-02T23:17:27.779796Z", + "shell.execute_reply": "2024-08-02T23:17:27.779212Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:39.301188Z", - "iopub.status.busy": "2024-07-30T16:31:39.300801Z", - "iopub.status.idle": "2024-07-30T16:31:39.419299Z", - "shell.execute_reply": "2024-07-30T16:31:39.418728Z" + "iopub.execute_input": "2024-08-02T23:17:27.781951Z", + "iopub.status.busy": "2024-08-02T23:17:27.781645Z", + "iopub.status.idle": "2024-08-02T23:17:27.895282Z", + "shell.execute_reply": "2024-08-02T23:17:27.894690Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:39.421608Z", - "iopub.status.busy": "2024-07-30T16:31:39.421234Z", - "iopub.status.idle": "2024-07-30T16:31:39.424361Z", - "shell.execute_reply": "2024-07-30T16:31:39.423765Z" + "iopub.execute_input": "2024-08-02T23:17:27.897585Z", + "iopub.status.busy": "2024-08-02T23:17:27.897260Z", + "iopub.status.idle": "2024-08-02T23:17:27.899963Z", + "shell.execute_reply": "2024-08-02T23:17:27.899515Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:39.426671Z", - "iopub.status.busy": "2024-07-30T16:31:39.426252Z", - "iopub.status.idle": "2024-07-30T16:31:41.720026Z", - "shell.execute_reply": "2024-07-30T16:31:41.719145Z" + "iopub.execute_input": "2024-08-02T23:17:27.902092Z", + "iopub.status.busy": "2024-08-02T23:17:27.901699Z", + "iopub.status.idle": "2024-08-02T23:17:30.041948Z", + "shell.execute_reply": "2024-08-02T23:17:30.041308Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:41.723999Z", - "iopub.status.busy": "2024-07-30T16:31:41.722968Z", - "iopub.status.idle": "2024-07-30T16:31:41.736024Z", - "shell.execute_reply": "2024-07-30T16:31:41.735553Z" + "iopub.execute_input": "2024-08-02T23:17:30.045213Z", + "iopub.status.busy": "2024-08-02T23:17:30.044360Z", + "iopub.status.idle": "2024-08-02T23:17:30.055915Z", + "shell.execute_reply": "2024-08-02T23:17:30.055449Z" } }, "outputs": [ @@ -766,15 +766,30 @@ "We can see that the test set accuracy slightly improved as a result of the data cleaning. Note that this will not always be the case, especially when we evaluate on test data that are themselves noisy. The best practice is to run cleanlab to identify potential label issues and then manually review them, before blindly trusting any accuracy metrics. In particular, the most effort should be made to ensure high-quality test data, which is supposed to reflect the expected performance of our model during deployment." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

    \n", + " \"The\n", + "

    " + ] + }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:41.738164Z", - "iopub.status.busy": "2024-07-30T16:31:41.737959Z", - "iopub.status.idle": "2024-07-30T16:31:41.800777Z", - "shell.execute_reply": "2024-07-30T16:31:41.800288Z" + "iopub.execute_input": "2024-08-02T23:17:30.057830Z", + "iopub.status.busy": "2024-08-02T23:17:30.057653Z", + "iopub.status.idle": "2024-08-02T23:17:30.088205Z", + "shell.execute_reply": "2024-08-02T23:17:30.087743Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 5f3a2c5ca..82424a63b 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -817,7 +817,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'visa_or_mastercard', 'cancel_transfer', 'apple_pay_or_google_pay', 'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'change_pin'}
    +Classes: {'apple_pay_or_google_pay', 'cancel_transfer', 'change_pin', 'card_about_to_expire', 'beneficiary_not_allowed', 'visa_or_mastercard', 'getting_spare_card', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_payment_fee_charged'}
     

    Let’s print the first example in the train set.

    @@ -880,43 +880,43 @@

    2. Load and format the text dataset
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    @@ -1212,8 +1212,14 @@

    4. Train a more robust model from noisy labels -{"state": {"d6c44d17bd624eb985c735cf50307d2b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e50c4161bc6e46ceb2c825d8a4f8cb98": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "94a5cc6c053e4ead8726e97f9ce65217": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d6c44d17bd624eb985c735cf50307d2b", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e50c4161bc6e46ceb2c825d8a4f8cb98", "tabbable": null, "tooltip": null, "value": 391.0}}, "d2f0816714c7481ea3ba31bd7408fe93": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9e39c8f34f044faabfd9b2d9c388e8e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "16f0cb3955fd4bc4ad142727ace2acb7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d2f0816714c7481ea3ba31bd7408fe93", "placeholder": "\u200b", "style": "IPY_MODEL_f9e39c8f34f044faabfd9b2d9c388e8e", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "2d0af3b45858495695ecd11901488921": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d2e898cf98f4ff0bf943ff097e1df72": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "52be430244ac43218140c7633e6f1dfa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2d0af3b45858495695ecd11901488921", "placeholder": "\u200b", "style": "IPY_MODEL_0d2e898cf98f4ff0bf943ff097e1df72", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200768.8kB/s]"}}, "f57043327c7a43d580fbd77e72e74801": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "97c7a5a1b558446099d39e138e95bd3c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_16f0cb3955fd4bc4ad142727ace2acb7", "IPY_MODEL_94a5cc6c053e4ead8726e97f9ce65217", "IPY_MODEL_52be430244ac43218140c7633e6f1dfa"], "layout": "IPY_MODEL_f57043327c7a43d580fbd77e72e74801", "tabbable": null, "tooltip": null}}, "d4bfc6c1d28d468a844bbd112010b800": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "debd8d9478f64845b7f4de702d42849e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cf7840537df1484d8fb3ea86b9dee4a6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d4bfc6c1d28d468a844bbd112010b800", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_debd8d9478f64845b7f4de702d42849e", "tabbable": null, "tooltip": null, "value": 2211.0}}, "5a71b8cd70d84f7ba31770899fe09c9b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c394f7a4870a4f5f8de748644e8df357": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fc3db8eb310345b3b1c927bd575ab50e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5a71b8cd70d84f7ba31770899fe09c9b", "placeholder": "\u200b", "style": "IPY_MODEL_c394f7a4870a4f5f8de748644e8df357", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "0243ca7793174c8d987c19c51daa3a90": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b13ec61dc594dfda9fb9ff4a3ffa610": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4e75d528fab848b998f06bb5793338b2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0243ca7793174c8d987c19c51daa3a90", "placeholder": "\u200b", "style": "IPY_MODEL_0b13ec61dc594dfda9fb9ff4a3ffa610", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007413kB/s]"}}, "97a2c254de1b4787a362825c816f4b69": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "91c91931728e42119a5ed1a8e771a320": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fc3db8eb310345b3b1c927bd575ab50e", "IPY_MODEL_cf7840537df1484d8fb3ea86b9dee4a6", "IPY_MODEL_4e75d528fab848b998f06bb5793338b2"], "layout": "IPY_MODEL_97a2c254de1b4787a362825c816f4b69", "tabbable": null, "tooltip": null}}, "f492c8a7a79d41b082fc05a8a4fa2314": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d6a96c30e59a4ad1801f48d9410f7122": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "19de02d763694c5da9f2eb73acc8c2d8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f492c8a7a79d41b082fc05a8a4fa2314", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d6a96c30e59a4ad1801f48d9410f7122", "tabbable": null, "tooltip": null, "value": 665.0}}, "bb8179f5ad91428198964675263f3c98": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6a5bc0b6202c42d4becd870c3fc89c4a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "24871bcd90cc412a87f3523b51b28390": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bb8179f5ad91428198964675263f3c98", "placeholder": "\u200b", "style": "IPY_MODEL_6a5bc0b6202c42d4becd870c3fc89c4a", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "4a10916e9e8e41ad8ad3c7000d4222bd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cf8ed7281baa435093a60e267938b36c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4dc231bcb3b84bae9ceb7afa763c8645": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a10916e9e8e41ad8ad3c7000d4222bd", "placeholder": "\u200b", "style": "IPY_MODEL_cf8ed7281baa435093a60e267938b36c", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007125kB/s]"}}, "badf4422987648d180ccbecfa7665702": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a58243eb6a194ea7957507b4c0fcd20c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_24871bcd90cc412a87f3523b51b28390", "IPY_MODEL_19de02d763694c5da9f2eb73acc8c2d8", "IPY_MODEL_4dc231bcb3b84bae9ceb7afa763c8645"], "layout": "IPY_MODEL_badf4422987648d180ccbecfa7665702", "tabbable": null, "tooltip": null}}, "948f678b67764226a70290363bc21f69": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "317e39ae55e344a2b95726702a28d6e6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "753e8b7795c943afa31e39370262dac0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_948f678b67764226a70290363bc21f69", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_317e39ae55e344a2b95726702a28d6e6", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "2cd2c3cd9a904a8393460eb703c6bfe3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d71c0eb8f1045b997085b72f441bf64": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eebcc942ebba414e8985c53b0046690f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2cd2c3cd9a904a8393460eb703c6bfe3", "placeholder": "\u200b", "style": "IPY_MODEL_6d71c0eb8f1045b997085b72f441bf64", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "df19c92cc2b34e7ca61218f410745348": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe392344d7834620bada4587f2dbf065": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f44abb2240724661a8f28fabeb7e6152": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_df19c92cc2b34e7ca61218f410745348", "placeholder": "\u200b", "style": "IPY_MODEL_fe392344d7834620bada4587f2dbf065", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007237MB/s]"}}, "9e52acaf4e244873ab2a7f8db7a56f87": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f47d961a8a6443fdb97fc093198a3a37": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_eebcc942ebba414e8985c53b0046690f", "IPY_MODEL_753e8b7795c943afa31e39370262dac0", "IPY_MODEL_f44abb2240724661a8f28fabeb7e6152"], "layout": "IPY_MODEL_9e52acaf4e244873ab2a7f8db7a56f87", "tabbable": null, "tooltip": null}}, "2fd8b281b8a747ff8f3a6b5dd31fa793": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "55672ddc10b54cec865a6468894f8351": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2e1b0d7a21034fc5824ae939b257969c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2fd8b281b8a747ff8f3a6b5dd31fa793", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_55672ddc10b54cec865a6468894f8351", "tabbable": null, "tooltip": null, "value": 466062.0}}, "92f1ff004b1f40519e67fbe042500034": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4084d229b3ea480b905a4c74c66cf73d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "09d6edb40022407d9d74e5d3f54b74a7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_92f1ff004b1f40519e67fbe042500034", "placeholder": "\u200b", "style": "IPY_MODEL_4084d229b3ea480b905a4c74c66cf73d", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "46885cc820904880a25c68c839f552a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "54eaf3ed21294c3ca4cc75eea7eeaf3c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3c44f2615b974d98a8796c59d501f913": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_46885cc820904880a25c68c839f552a7", "placeholder": "\u200b", "style": "IPY_MODEL_54eaf3ed21294c3ca4cc75eea7eeaf3c", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20079.54MB/s]"}}, "ee3043f31e4f41de93cd71ed1d3aaceb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cd86dc9f79bf4ea6b32ccf1b10684fdd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_09d6edb40022407d9d74e5d3f54b74a7", "IPY_MODEL_2e1b0d7a21034fc5824ae939b257969c", "IPY_MODEL_3c44f2615b974d98a8796c59d501f913"], "layout": "IPY_MODEL_ee3043f31e4f41de93cd71ed1d3aaceb", "tabbable": null, "tooltip": null}}, "b562a3e54de946de8de1969318bc9932": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5899664489c24407968ee1c33db9b3ed": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "05556e121c214fd9a3ccf7b3e260d069": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b562a3e54de946de8de1969318bc9932", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5899664489c24407968ee1c33db9b3ed", "tabbable": null, "tooltip": null, "value": 48.0}}, "0b36279738da476c8b898b110b96cb68": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2f7d28a055234c1d9dec696453f0b0d8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "564246d366604d34ab1d16ad529ba126": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0b36279738da476c8b898b110b96cb68", "placeholder": "\u200b", "style": "IPY_MODEL_2f7d28a055234c1d9dec696453f0b0d8", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "ef05813c951740c2a35d4b744ebef5a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6059268df3744b559c76372905e85f89": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4cee3f6cf3334eca8b80cf3b48dcb2c9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ef05813c951740c2a35d4b744ebef5a6", "placeholder": "\u200b", "style": "IPY_MODEL_6059268df3744b559c76372905e85f89", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.35kB/s]"}}, "318a21d452c84bceac013df1bdff9465": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f07a08b8ebf486cbecde146931b6ae3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_564246d366604d34ab1d16ad529ba126", "IPY_MODEL_05556e121c214fd9a3ccf7b3e260d069", "IPY_MODEL_4cee3f6cf3334eca8b80cf3b48dcb2c9"], "layout": "IPY_MODEL_318a21d452c84bceac013df1bdff9465", "tabbable": null, "tooltip": null}}, "b969c4646a1f4296a60d5269570d7812": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "55a0b5fabd584495be04d9dc3cb4051e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6c5f50cde5734e65ae80022e95c8a7d2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b969c4646a1f4296a60d5269570d7812", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_55a0b5fabd584495be04d9dc3cb4051e", "tabbable": null, "tooltip": null, "value": 231508.0}}, "534c2062a82441dcbe8775003ff3ab5f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1f441a285fe8463eb8d4917032d171f6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "80b423d8da65443590ae4c634d0b83a7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_534c2062a82441dcbe8775003ff3ab5f", "placeholder": "\u200b", "style": "IPY_MODEL_1f441a285fe8463eb8d4917032d171f6", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "7de6fba59ec94a1aa5df391d3b952eea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f16d80c7cb544353a5e1babe95cc1a97": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "45c8dc232e4c422a8454eafb546ca6d8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7de6fba59ec94a1aa5df391d3b952eea", "placeholder": "\u200b", "style": "IPY_MODEL_f16d80c7cb544353a5e1babe95cc1a97", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200728.7MB/s]"}}, "8da99fc57db34318a69f0a2f7aa23f9e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d9438aa4de0a49669ef6cc3e242dea8a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_80b423d8da65443590ae4c634d0b83a7", "IPY_MODEL_6c5f50cde5734e65ae80022e95c8a7d2", "IPY_MODEL_45c8dc232e4c422a8454eafb546ca6d8"], "layout": "IPY_MODEL_8da99fc57db34318a69f0a2f7aa23f9e", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} + +
    +

    Spending too much time on data quality?#

    +

    Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.

    +

    That’s why we built Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

    +

    The modern AI pipeline automated with Cleanlab Studio

    +

    @@ -1297,6 +1303,7 @@

    4. Train a more robust model from noisy labels2. Load and format the text dataset
  • 3. Define a classification model and use cleanlab to find potential label errors
  • 4. Train a more robust model from noisy labels
  • +
  • Spending too much time on data quality?
  • diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 0ca024c1d..a81564d50 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:45.538656Z", - "iopub.status.busy": "2024-07-30T16:31:45.538493Z", - "iopub.status.idle": "2024-07-30T16:31:49.398554Z", - "shell.execute_reply": "2024-07-30T16:31:49.397834Z" + "iopub.execute_input": "2024-08-02T23:17:33.437374Z", + "iopub.status.busy": "2024-08-02T23:17:33.437203Z", + "iopub.status.idle": "2024-08-02T23:17:37.042923Z", + "shell.execute_reply": "2024-08-02T23:17:37.042233Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.401469Z", - "iopub.status.busy": "2024-07-30T16:31:49.401084Z", - "iopub.status.idle": "2024-07-30T16:31:49.404559Z", - "shell.execute_reply": "2024-07-30T16:31:49.404113Z" + "iopub.execute_input": "2024-08-02T23:17:37.045817Z", + "iopub.status.busy": "2024-08-02T23:17:37.045322Z", + "iopub.status.idle": "2024-08-02T23:17:37.049160Z", + "shell.execute_reply": "2024-08-02T23:17:37.048563Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.406866Z", - "iopub.status.busy": "2024-07-30T16:31:49.406454Z", - "iopub.status.idle": "2024-07-30T16:31:49.409954Z", - "shell.execute_reply": "2024-07-30T16:31:49.409295Z" + "iopub.execute_input": "2024-08-02T23:17:37.051274Z", + "iopub.status.busy": "2024-08-02T23:17:37.051087Z", + "iopub.status.idle": "2024-08-02T23:17:37.054580Z", + "shell.execute_reply": "2024-08-02T23:17:37.054080Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.412895Z", - "iopub.status.busy": "2024-07-30T16:31:49.412480Z", - "iopub.status.idle": "2024-07-30T16:31:49.471562Z", - "shell.execute_reply": "2024-07-30T16:31:49.470965Z" + "iopub.execute_input": "2024-08-02T23:17:37.056632Z", + "iopub.status.busy": "2024-08-02T23:17:37.056445Z", + "iopub.status.idle": "2024-08-02T23:17:37.094103Z", + "shell.execute_reply": "2024-08-02T23:17:37.093554Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.473824Z", - "iopub.status.busy": "2024-07-30T16:31:49.473632Z", - "iopub.status.idle": "2024-07-30T16:31:49.477513Z", - "shell.execute_reply": "2024-07-30T16:31:49.477050Z" + "iopub.execute_input": "2024-08-02T23:17:37.096154Z", + "iopub.status.busy": "2024-08-02T23:17:37.095963Z", + "iopub.status.idle": "2024-08-02T23:17:37.099840Z", + "shell.execute_reply": "2024-08-02T23:17:37.099374Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.479493Z", - "iopub.status.busy": "2024-07-30T16:31:49.479316Z", - "iopub.status.idle": "2024-07-30T16:31:49.482910Z", - "shell.execute_reply": "2024-07-30T16:31:49.482450Z" + "iopub.execute_input": "2024-08-02T23:17:37.101701Z", + "iopub.status.busy": "2024-08-02T23:17:37.101517Z", + "iopub.status.idle": "2024-08-02T23:17:37.104926Z", + "shell.execute_reply": "2024-08-02T23:17:37.104415Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'visa_or_mastercard', 'cancel_transfer', 'apple_pay_or_google_pay', 'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'change_pin'}\n" + "Classes: {'apple_pay_or_google_pay', 'cancel_transfer', 'change_pin', 'card_about_to_expire', 'beneficiary_not_allowed', 'visa_or_mastercard', 'getting_spare_card', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_payment_fee_charged'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.484867Z", - "iopub.status.busy": "2024-07-30T16:31:49.484521Z", - "iopub.status.idle": "2024-07-30T16:31:49.487821Z", - "shell.execute_reply": "2024-07-30T16:31:49.487340Z" + "iopub.execute_input": "2024-08-02T23:17:37.107157Z", + "iopub.status.busy": "2024-08-02T23:17:37.106820Z", + "iopub.status.idle": "2024-08-02T23:17:37.110074Z", + "shell.execute_reply": "2024-08-02T23:17:37.109475Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.489683Z", - "iopub.status.busy": "2024-07-30T16:31:49.489500Z", - "iopub.status.idle": "2024-07-30T16:31:49.492910Z", - "shell.execute_reply": "2024-07-30T16:31:49.492341Z" + "iopub.execute_input": "2024-08-02T23:17:37.112222Z", + "iopub.status.busy": "2024-08-02T23:17:37.111870Z", + "iopub.status.idle": "2024-08-02T23:17:37.115305Z", + "shell.execute_reply": "2024-08-02T23:17:37.114842Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:49.495136Z", - "iopub.status.busy": "2024-07-30T16:31:49.494608Z", - "iopub.status.idle": "2024-07-30T16:31:53.944545Z", - "shell.execute_reply": "2024-07-30T16:31:53.943984Z" + "iopub.execute_input": "2024-08-02T23:17:37.117435Z", + "iopub.status.busy": "2024-08-02T23:17:37.117091Z", + "iopub.status.idle": "2024-08-02T23:17:41.492569Z", + "shell.execute_reply": "2024-08-02T23:17:41.492001Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "97c7a5a1b558446099d39e138e95bd3c", + "model_id": "79ca72fe19f9461bbd6eac4989f0d0e5", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "91c91931728e42119a5ed1a8e771a320", + "model_id": "19931fa885eb4bfe9823463770d72209", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a58243eb6a194ea7957507b4c0fcd20c", + "model_id": "41323f0f880b493180c67d1f67ae6818", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f47d961a8a6443fdb97fc093198a3a37", + "model_id": "c5358d2af5f4413db78296cb4e822b6d", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cd86dc9f79bf4ea6b32ccf1b10684fdd", + "model_id": "f95fa2a0418543fea006ef9489d34baf", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3f07a08b8ebf486cbecde146931b6ae3", + "model_id": "3dcc386a355446078b0260d76f1f460b", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d9438aa4de0a49669ef6cc3e242dea8a", + "model_id": "48f13ab0fd1e4de9a23d90349ff0827c", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:53.947400Z", - "iopub.status.busy": "2024-07-30T16:31:53.946989Z", - "iopub.status.idle": "2024-07-30T16:31:53.949968Z", - "shell.execute_reply": "2024-07-30T16:31:53.949474Z" + "iopub.execute_input": "2024-08-02T23:17:41.495465Z", + "iopub.status.busy": "2024-08-02T23:17:41.495109Z", + "iopub.status.idle": "2024-08-02T23:17:41.498080Z", + "shell.execute_reply": "2024-08-02T23:17:41.497515Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:53.952023Z", - "iopub.status.busy": "2024-07-30T16:31:53.951691Z", - "iopub.status.idle": "2024-07-30T16:31:53.954244Z", - "shell.execute_reply": "2024-07-30T16:31:53.953779Z" + "iopub.execute_input": "2024-08-02T23:17:41.500217Z", + "iopub.status.busy": "2024-08-02T23:17:41.499902Z", + "iopub.status.idle": "2024-08-02T23:17:41.502619Z", + "shell.execute_reply": "2024-08-02T23:17:41.502156Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:53.956328Z", - "iopub.status.busy": "2024-07-30T16:31:53.955997Z", - "iopub.status.idle": "2024-07-30T16:31:56.844109Z", - "shell.execute_reply": "2024-07-30T16:31:56.843384Z" + "iopub.execute_input": "2024-08-02T23:17:41.504428Z", + "iopub.status.busy": "2024-08-02T23:17:41.504253Z", + "iopub.status.idle": "2024-08-02T23:17:44.256566Z", + "shell.execute_reply": "2024-08-02T23:17:44.255764Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:56.847565Z", - "iopub.status.busy": "2024-07-30T16:31:56.846661Z", - "iopub.status.idle": "2024-07-30T16:31:56.854826Z", - "shell.execute_reply": "2024-07-30T16:31:56.854335Z" + "iopub.execute_input": "2024-08-02T23:17:44.259923Z", + "iopub.status.busy": "2024-08-02T23:17:44.259087Z", + "iopub.status.idle": "2024-08-02T23:17:44.267224Z", + "shell.execute_reply": "2024-08-02T23:17:44.266727Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:56.856986Z", - "iopub.status.busy": "2024-07-30T16:31:56.856636Z", - "iopub.status.idle": "2024-07-30T16:31:56.860988Z", - "shell.execute_reply": "2024-07-30T16:31:56.860503Z" + "iopub.execute_input": "2024-08-02T23:17:44.269594Z", + "iopub.status.busy": "2024-08-02T23:17:44.268945Z", + "iopub.status.idle": "2024-08-02T23:17:44.273323Z", + "shell.execute_reply": "2024-08-02T23:17:44.272797Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:56.863129Z", - "iopub.status.busy": "2024-07-30T16:31:56.862787Z", - "iopub.status.idle": "2024-07-30T16:31:56.866220Z", - "shell.execute_reply": "2024-07-30T16:31:56.865721Z" + "iopub.execute_input": "2024-08-02T23:17:44.275271Z", + "iopub.status.busy": "2024-08-02T23:17:44.275085Z", + "iopub.status.idle": "2024-08-02T23:17:44.278514Z", + "shell.execute_reply": "2024-08-02T23:17:44.278038Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:56.868248Z", - "iopub.status.busy": "2024-07-30T16:31:56.867919Z", - "iopub.status.idle": "2024-07-30T16:31:56.871062Z", - "shell.execute_reply": "2024-07-30T16:31:56.870497Z" + "iopub.execute_input": "2024-08-02T23:17:44.280425Z", + "iopub.status.busy": "2024-08-02T23:17:44.280248Z", + "iopub.status.idle": "2024-08-02T23:17:44.283388Z", + "shell.execute_reply": "2024-08-02T23:17:44.282925Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:56.873122Z", - "iopub.status.busy": "2024-07-30T16:31:56.872946Z", - "iopub.status.idle": "2024-07-30T16:31:56.880133Z", - "shell.execute_reply": "2024-07-30T16:31:56.879673Z" + "iopub.execute_input": "2024-08-02T23:17:44.285353Z", + "iopub.status.busy": "2024-08-02T23:17:44.284986Z", + "iopub.status.idle": "2024-08-02T23:17:44.291834Z", + "shell.execute_reply": "2024-08-02T23:17:44.291282Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:56.882358Z", - "iopub.status.busy": "2024-07-30T16:31:56.881972Z", - "iopub.status.idle": "2024-07-30T16:31:57.113724Z", - "shell.execute_reply": "2024-07-30T16:31:57.113137Z" + "iopub.execute_input": "2024-08-02T23:17:44.294132Z", + "iopub.status.busy": "2024-08-02T23:17:44.293791Z", + "iopub.status.idle": "2024-08-02T23:17:44.521530Z", + "shell.execute_reply": "2024-08-02T23:17:44.520927Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:57.116220Z", - "iopub.status.busy": "2024-07-30T16:31:57.115868Z", - "iopub.status.idle": "2024-07-30T16:31:57.325117Z", - "shell.execute_reply": "2024-07-30T16:31:57.324552Z" + "iopub.execute_input": "2024-08-02T23:17:44.524094Z", + "iopub.status.busy": "2024-08-02T23:17:44.523689Z", + "iopub.status.idle": "2024-08-02T23:17:44.700348Z", + "shell.execute_reply": "2024-08-02T23:17:44.699773Z" }, "scrolled": true }, @@ -1053,15 +1053,30 @@ "We can see that the test set accuracy slightly improved as a result of the data cleaning. Note that this will not always be the case, especially when we are evaluating on test data that are themselves noisy. The best practice is to run cleanlab to identify potential label issues and then manually review them, before blindly trusting any accuracy metrics. In particular, the most effort should be made to ensure high-quality test data, which is supposed to reflect the expected performance of our model during deployment.\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

    \n", + " \"The\n", + "

    " + ] + }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:31:57.328218Z", - "iopub.status.busy": "2024-07-30T16:31:57.327844Z", - "iopub.status.idle": "2024-07-30T16:31:57.332176Z", - "shell.execute_reply": "2024-07-30T16:31:57.331645Z" + "iopub.execute_input": "2024-08-02T23:17:44.703922Z", + "iopub.status.busy": "2024-08-02T23:17:44.702968Z", + "iopub.status.idle": "2024-08-02T23:17:44.707974Z", + "shell.execute_reply": "2024-08-02T23:17:44.707467Z" }, "nbsphinx": "hidden" }, @@ -1105,86 +1120,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0243ca7793174c8d987c19c51daa3a90": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "05556e121c214fd9a3ccf7b3e260d069": { + "00b3fc965ace45049424fb49eba903d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b562a3e54de946de8de1969318bc9932", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5899664489c24407968ee1c33db9b3ed", + "layout": "IPY_MODEL_26c36a7800b64d168039eac3e45c9ac2", + "placeholder": "​", + "style": "IPY_MODEL_25947bd3be8c437080a8ae5d2281bab7", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": "pytorch_model.bin: 100%" } }, - "09d6edb40022407d9d74e5d3f54b74a7": { + "0100fb360a27418bb18af6913b9ca65d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1199,33 +1158,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_92f1ff004b1f40519e67fbe042500034", + "layout": "IPY_MODEL_7d7037c1fbe045e5973787251a6a6227", "placeholder": "​", - "style": "IPY_MODEL_4084d229b3ea480b905a4c74c66cf73d", + "style": "IPY_MODEL_cf1f4d20a9d74334b6e45089bc689b1e", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": " 2.21k/2.21k [00:00<00:00, 387kB/s]" } }, - "0b13ec61dc594dfda9fb9ff4a3ffa610": { + "019e85d71a7d4470b20615c82d18731d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "0b36279738da476c8b898b110b96cb68": { + "0aca0dce93c34498b434f71953c7af79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1278,25 +1235,7 @@ "width": null } }, - "0d2e898cf98f4ff0bf943ff097e1df72": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "16f0cb3955fd4bc4ad142727ace2acb7": { + "107bf3554d0a492c84e7f8b1871ca51b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1311,41 +1250,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d2f0816714c7481ea3ba31bd7408fe93", + "layout": "IPY_MODEL_8cd322aa3cdf4c2e8a035c51a8784b7b", "placeholder": "​", - "style": "IPY_MODEL_f9e39c8f34f044faabfd9b2d9c388e8e", + "style": "IPY_MODEL_ee837da33ca6482daecb6cc7bb8552e6", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": " 48.0/48.0 [00:00<00:00, 9.17kB/s]" } }, - "19de02d763694c5da9f2eb73acc8c2d8": { + "110998629dbb4b208e73d47bf58de355": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f492c8a7a79d41b082fc05a8a4fa2314", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d6a96c30e59a4ad1801f48d9410f7122", + "layout": "IPY_MODEL_155a504134db4f7cb08da33c50bbcb20", + "placeholder": "​", + "style": "IPY_MODEL_70366cece2914512b1c2b2143f43b503", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": "tokenizer.json: 100%" } }, - "1f441a285fe8463eb8d4917032d171f6": { + "12bb52e641db44648cbe891fdb932ff7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1363,30 +1299,7 @@ "text_color": null } }, - "24871bcd90cc412a87f3523b51b28390": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bb8179f5ad91428198964675263f3c98", - "placeholder": "​", - "style": "IPY_MODEL_6a5bc0b6202c42d4becd870c3fc89c4a", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "2cd2c3cd9a904a8393460eb703c6bfe3": { + "155a504134db4f7cb08da33c50bbcb20": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1439,7 +1352,7 @@ "width": null } }, - "2d0af3b45858495695ecd11901488921": { + "157404421a494ce7a67f430989da1c82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1492,33 +1405,84 @@ "width": null } }, - "2e1b0d7a21034fc5824ae939b257969c": { + "19931fa885eb4bfe9823463770d72209": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2fd8b281b8a747ff8f3a6b5dd31fa793", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_55672ddc10b54cec865a6468894f8351", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4546c18600d0496ea6cbc9f8f5831e45", + "IPY_MODEL_e243840c5ab643799fff8fc0b99c895a", + "IPY_MODEL_0100fb360a27418bb18af6913b9ca65d" + ], + "layout": "IPY_MODEL_de23c2221f294627b5bf466382b61dff", "tabbable": null, - "tooltip": null, - "value": 466062.0 + "tooltip": null + } + }, + "21e3dddbfa94452b9ac53bb847706c42": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2f7d28a055234c1d9dec696453f0b0d8": { + "25947bd3be8c437080a8ae5d2281bab7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1536,7 +1500,7 @@ "text_color": null } }, - "2fd8b281b8a747ff8f3a6b5dd31fa793": { + "26c36a7800b64d168039eac3e45c9ac2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1589,23 +1553,7 @@ "width": null } }, - "317e39ae55e344a2b95726702a28d6e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "318a21d452c84bceac013df1bdff9465": { + "2a62efa4ac0b4a71bdcd653a27c8aaa2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1658,7 +1606,7 @@ "width": null } }, - "3c44f2615b974d98a8796c59d501f913": { + "2fa864a54c3e4560b5074dce5fff7580": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1673,57 +1621,61 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_46885cc820904880a25c68c839f552a7", + "layout": "IPY_MODEL_157404421a494ce7a67f430989da1c82", "placeholder": "​", - "style": "IPY_MODEL_54eaf3ed21294c3ca4cc75eea7eeaf3c", + "style": "IPY_MODEL_4340edf5a20f4f8ab38475dc8c2b7e83", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 9.54MB/s]" + "value": " 665/665 [00:00<00:00, 135kB/s]" } }, - "3f07a08b8ebf486cbecde146931b6ae3": { + "330abcbacade4416996e77330f6c1d24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_564246d366604d34ab1d16ad529ba126", - "IPY_MODEL_05556e121c214fd9a3ccf7b3e260d069", - "IPY_MODEL_4cee3f6cf3334eca8b80cf3b48dcb2c9" - ], - "layout": "IPY_MODEL_318a21d452c84bceac013df1bdff9465", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fd22a9571a294002baa926714a442d12", + "placeholder": "​", + "style": "IPY_MODEL_67cdded3e11549e99de756a182e12bc1", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 5.48MB/s]" } }, - "4084d229b3ea480b905a4c74c66cf73d": { + "39e900d03806496d9c99a7ae184fdf8f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b90285e7befb48db88850278d4304fd0", + "placeholder": "​", + "style": "IPY_MODEL_89cd948eecda46b18b6d0f8a18b5c5d2", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 13.0MB/s]" } }, - "45c8dc232e4c422a8454eafb546ca6d8": { + "3d77a293b1c5401e9a13b51ee90fec1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1738,144 +1690,99 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7de6fba59ec94a1aa5df391d3b952eea", + "layout": "IPY_MODEL_6928da7dd853474eb8801471d9d20d94", "placeholder": "​", - "style": "IPY_MODEL_f16d80c7cb544353a5e1babe95cc1a97", + "style": "IPY_MODEL_d55c849378c54f23a5b49a5fb9777654", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 28.7MB/s]" + "value": " 54.2M/54.2M [00:00<00:00, 130MB/s]" } }, - "46885cc820904880a25c68c839f552a7": { - "model_module": "@jupyter-widgets/base", + "3dcc386a355446078b0260d76f1f460b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_746f1ffec44346a08e11d72bf194e1a9", + "IPY_MODEL_5fdfe72cdf0b4230b8e0c03a8417db9a", + "IPY_MODEL_107bf3554d0a492c84e7f8b1871ca51b" + ], + "layout": "IPY_MODEL_5819281c23e04a3e82d138bcef6b731f", + "tabbable": null, + "tooltip": null } }, - "4a10916e9e8e41ad8ad3c7000d4222bd": { - "model_module": "@jupyter-widgets/base", + "3f280135a5354b9c9745f8243f7aacfa": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4cee3f6cf3334eca8b80cf3b48dcb2c9": { + "41323f0f880b493180c67d1f67ae6818": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ef05813c951740c2a35d4b744ebef5a6", - "placeholder": "​", - "style": "IPY_MODEL_6059268df3744b559c76372905e85f89", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e85e6838b3e46c284da9cfce9840515", + "IPY_MODEL_7476603e2afd47d7adb45667410a81a1", + "IPY_MODEL_2fa864a54c3e4560b5074dce5fff7580" + ], + "layout": "IPY_MODEL_828a08d1a3e243e7b0ebe3e3f594765a", "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.35kB/s]" + "tooltip": null } }, - "4dc231bcb3b84bae9ceb7afa763c8645": { + "4340edf5a20f4f8ab38475dc8c2b7e83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4546c18600d0496ea6cbc9f8f5831e45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1890,38 +1797,55 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4a10916e9e8e41ad8ad3c7000d4222bd", + "layout": "IPY_MODEL_e61f8cef8f3c4b64a89831c5e3090a02", "placeholder": "​", - "style": "IPY_MODEL_cf8ed7281baa435093a60e267938b36c", + "style": "IPY_MODEL_f037dad91c8344b5a3944409dafedc83", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 125kB/s]" + "value": "README.md: 100%" } }, - "4e75d528fab848b998f06bb5793338b2": { + "461d3d7cfa194e24b0b433dacbd1b768": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "48f13ab0fd1e4de9a23d90349ff0827c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0243ca7793174c8d987c19c51daa3a90", - "placeholder": "​", - "style": "IPY_MODEL_0b13ec61dc594dfda9fb9ff4a3ffa610", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cea8c4bad6e642a4ae37f539b55258c6", + "IPY_MODEL_d610ba808b77410588da789369677dfe", + "IPY_MODEL_330abcbacade4416996e77330f6c1d24" + ], + "layout": "IPY_MODEL_cb9ece536faa43b9ac00844cff125fb2", "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 413kB/s]" + "tooltip": null } }, - "52be430244ac43218140c7633e6f1dfa": { + "4917b4bdda8949d59debb808346551eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1936,15 +1860,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2d0af3b45858495695ecd11901488921", + "layout": "IPY_MODEL_953512f4a5194aa7ba11b02f82829d98", "placeholder": "​", - "style": "IPY_MODEL_0d2e898cf98f4ff0bf943ff097e1df72", + "style": "IPY_MODEL_92268d0885fe46278fd9858b0a9409be", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 68.8kB/s]" + "value": ".gitattributes: 100%" } }, - "534c2062a82441dcbe8775003ff3ab5f": { + "5819281c23e04a3e82d138bcef6b731f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1997,25 +1921,7 @@ "width": null } }, - "54eaf3ed21294c3ca4cc75eea7eeaf3c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "55672ddc10b54cec865a6468894f8351": { + "5ab23e5c8c3d4ad881325a53c1fab2bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2031,62 +1937,51 @@ "description_width": "" } }, - "55a0b5fabd584495be04d9dc3cb4051e": { + "5fdfe72cdf0b4230b8e0c03a8417db9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "564246d366604d34ab1d16ad529ba126": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0b36279738da476c8b898b110b96cb68", - "placeholder": "​", - "style": "IPY_MODEL_2f7d28a055234c1d9dec696453f0b0d8", + "layout": "IPY_MODEL_de9ef4edb15f4844995353aa29730052", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e4ed003a00984824a6a76dd7f26b8d19", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": 48.0 } }, - "5899664489c24407968ee1c33db9b3ed": { + "67cdded3e11549e99de756a182e12bc1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5a71b8cd70d84f7ba31770899fe09c9b": { + "6928da7dd853474eb8801471d9d20d94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2139,7 +2034,7 @@ "width": null } }, - "6059268df3744b559c76372905e85f89": { + "70366cece2914512b1c2b2143f43b503": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2157,25 +2052,30 @@ "text_color": null } }, - "6a5bc0b6202c42d4becd870c3fc89c4a": { + "746f1ffec44346a08e11d72bf194e1a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a09069a5c6784ff4a6fc1d0200c912ba", + "placeholder": "​", + "style": "IPY_MODEL_b884d5e519124006bad3e25b7dba9370", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "6c5f50cde5734e65ae80022e95c8a7d2": { + "7476603e2afd47d7adb45667410a81a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2191,17 +2091,200 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b969c4646a1f4296a60d5269570d7812", - "max": 231508.0, + "layout": "IPY_MODEL_834cd3cb87cb421f997b0231ef6ed9fb", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_55a0b5fabd584495be04d9dc3cb4051e", + "style": "IPY_MODEL_019e85d71a7d4470b20615c82d18731d", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": 665.0 + } + }, + "79ca72fe19f9461bbd6eac4989f0d0e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4917b4bdda8949d59debb808346551eb", + "IPY_MODEL_d3751c0c966e428d917cb8c515093971", + "IPY_MODEL_f5b455d725ec4cabb55353c7f1e0a1e6" + ], + "layout": "IPY_MODEL_0aca0dce93c34498b434f71953c7af79", + "tabbable": null, + "tooltip": null + } + }, + "7d7037c1fbe045e5973787251a6a6227": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "828a08d1a3e243e7b0ebe3e3f594765a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "834cd3cb87cb421f997b0231ef6ed9fb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6d71c0eb8f1045b997085b72f441bf64": { + "89cd948eecda46b18b6d0f8a18b5c5d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2219,33 +2302,7 @@ "text_color": null } }, - "753e8b7795c943afa31e39370262dac0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_948f678b67764226a70290363bc21f69", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_317e39ae55e344a2b95726702a28d6e6", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "7de6fba59ec94a1aa5df391d3b952eea": { + "8cd322aa3cdf4c2e8a035c51a8784b7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2298,7 +2355,7 @@ "width": null } }, - "80b423d8da65443590ae4c634d0b83a7": { + "8e85e6838b3e46c284da9cfce9840515": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2313,15 +2370,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_534c2062a82441dcbe8775003ff3ab5f", + "layout": "IPY_MODEL_efa72deff06c4a40a14b3c6a129562e0", "placeholder": "​", - "style": "IPY_MODEL_1f441a285fe8463eb8d4917032d171f6", + "style": "IPY_MODEL_12bb52e641db44648cbe891fdb932ff7", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" + "value": "config.json: 100%" } }, - "8da99fc57db34318a69f0a2f7aa23f9e": { + "8eaf7f7ef5084839870fca73115e8b92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2374,31 +2431,25 @@ "width": null } }, - "91c91931728e42119a5ed1a8e771a320": { + "92268d0885fe46278fd9858b0a9409be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fc3db8eb310345b3b1c927bd575ab50e", - "IPY_MODEL_cf7840537df1484d8fb3ea86b9dee4a6", - "IPY_MODEL_4e75d528fab848b998f06bb5793338b2" - ], - "layout": "IPY_MODEL_97a2c254de1b4787a362825c816f4b69", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "92f1ff004b1f40519e67fbe042500034": { + "953512f4a5194aa7ba11b02f82829d98": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2451,7 +2502,23 @@ "width": null } }, - "948f678b67764226a70290363bc21f69": { + "9ce2a27e1f6a44dda4aa7f1350d99e23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a04eb2a3161a423fa45a690ecfb0db64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2504,33 +2571,7 @@ "width": null } }, - "94a5cc6c053e4ead8726e97f9ce65217": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d6c44d17bd624eb985c735cf50307d2b", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e50c4161bc6e46ceb2c825d8a4f8cb98", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "97a2c254de1b4787a362825c816f4b69": { + "a09069a5c6784ff4a6fc1d0200c912ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2583,31 +2624,7 @@ "width": null } }, - "97c7a5a1b558446099d39e138e95bd3c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16f0cb3955fd4bc4ad142727ace2acb7", - "IPY_MODEL_94a5cc6c053e4ead8726e97f9ce65217", - "IPY_MODEL_52be430244ac43218140c7633e6f1dfa" - ], - "layout": "IPY_MODEL_f57043327c7a43d580fbd77e72e74801", - "tabbable": null, - "tooltip": null - } - }, - "9e52acaf4e244873ab2a7f8db7a56f87": { + "a359dcf4a2e24056b90df34499bb6c1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2660,31 +2677,25 @@ "width": null } }, - "a58243eb6a194ea7957507b4c0fcd20c": { + "b884d5e519124006bad3e25b7dba9370": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_24871bcd90cc412a87f3523b51b28390", - "IPY_MODEL_19de02d763694c5da9f2eb73acc8c2d8", - "IPY_MODEL_4dc231bcb3b84bae9ceb7afa763c8645" - ], - "layout": "IPY_MODEL_badf4422987648d180ccbecfa7665702", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b562a3e54de946de8de1969318bc9932": { + "b90285e7befb48db88850278d4304fd0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2737,7 +2748,7 @@ "width": null } }, - "b969c4646a1f4296a60d5269570d7812": { + "c3c4f83d199041848bc14699273a6582": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2790,7 +2801,31 @@ "width": null } }, - "badf4422987648d180ccbecfa7665702": { + "c5358d2af5f4413db78296cb4e822b6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_00b3fc965ace45049424fb49eba903d3", + "IPY_MODEL_dc2130e2f8c246a6add362a3d24c0bca", + "IPY_MODEL_3d77a293b1c5401e9a13b51ee90fec1e" + ], + "layout": "IPY_MODEL_a04eb2a3161a423fa45a690ecfb0db64", + "tabbable": null, + "tooltip": null + } + }, + "cb59bdf9e30245ccac60b1a082c76470": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2843,7 +2878,7 @@ "width": null } }, - "bb8179f5ad91428198964675263f3c98": { + "cb9ece536faa43b9ac00844cff125fb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2896,7 +2931,7 @@ "width": null } }, - "c394f7a4870a4f5f8de748644e8df357": { + "ccc099e5560140f78c079b4e796e1f16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2914,31 +2949,92 @@ "text_color": null } }, - "cd86dc9f79bf4ea6b32ccf1b10684fdd": { + "cea8c4bad6e642a4ae37f539b55258c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_09d6edb40022407d9d74e5d3f54b74a7", - "IPY_MODEL_2e1b0d7a21034fc5824ae939b257969c", - "IPY_MODEL_3c44f2615b974d98a8796c59d501f913" - ], - "layout": "IPY_MODEL_ee3043f31e4f41de93cd71ed1d3aaceb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ead09590d1484e47a2e6236591cce4fc", + "placeholder": "​", + "style": "IPY_MODEL_ccc099e5560140f78c079b4e796e1f16", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "cf1f4d20a9d74334b6e45089bc689b1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d3751c0c966e428d917cb8c515093971": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a359dcf4a2e24056b90df34499bb6c1c", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_df94b95e62304decbf62a90025f02516", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "d55c849378c54f23a5b49a5fb9777654": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cf7840537df1484d8fb3ea86b9dee4a6": { + "d610ba808b77410588da789369677dfe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2954,35 +3050,43 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d4bfc6c1d28d468a844bbd112010b800", - "max": 2211.0, + "layout": "IPY_MODEL_8eaf7f7ef5084839870fca73115e8b92", + "max": 231508.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_debd8d9478f64845b7f4de702d42849e", + "style": "IPY_MODEL_461d3d7cfa194e24b0b433dacbd1b768", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": 231508.0 } }, - "cf8ed7281baa435093a60e267938b36c": { + "dc2130e2f8c246a6add362a3d24c0bca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ec20ad631a00444bbe3f32833bf83dc8", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ff310b8c1a574ff6af2c52581c6b20f1", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 } }, - "d2f0816714c7481ea3ba31bd7408fe93": { + "de23c2221f294627b5bf466382b61dff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3035,7 +3139,7 @@ "width": null } }, - "d4bfc6c1d28d468a844bbd112010b800": { + "de9ef4edb15f4844995353aa29730052": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3088,7 +3192,49 @@ "width": null } }, - "d6a96c30e59a4ad1801f48d9410f7122": { + "df94b95e62304decbf62a90025f02516": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e243840c5ab643799fff8fc0b99c895a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cb59bdf9e30245ccac60b1a082c76470", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5ab23e5c8c3d4ad881325a53c1fab2bd", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "e4ed003a00984824a6a76dd7f26b8d19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3104,7 +3250,33 @@ "description_width": "" } }, - "d6c44d17bd624eb985c735cf50307d2b": { + "e56c074b43db4299a289b48b848b8805": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21e3dddbfa94452b9ac53bb847706c42", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9ce2a27e1f6a44dda4aa7f1350d99e23", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "e61f8cef8f3c4b64a89831c5e3090a02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3157,47 +3329,7 @@ "width": null } }, - "d9438aa4de0a49669ef6cc3e242dea8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_80b423d8da65443590ae4c634d0b83a7", - "IPY_MODEL_6c5f50cde5734e65ae80022e95c8a7d2", - "IPY_MODEL_45c8dc232e4c422a8454eafb546ca6d8" - ], - "layout": "IPY_MODEL_8da99fc57db34318a69f0a2f7aa23f9e", - "tabbable": null, - "tooltip": null - } - }, - "debd8d9478f64845b7f4de702d42849e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "df19c92cc2b34e7ca61218f410745348": { + "ead09590d1484e47a2e6236591cce4fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3250,23 +3382,7 @@ "width": null } }, - "e50c4161bc6e46ceb2c825d8a4f8cb98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ee3043f31e4f41de93cd71ed1d3aaceb": { + "ec20ad631a00444bbe3f32833bf83dc8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3319,30 +3435,25 @@ "width": null } }, - "eebcc942ebba414e8985c53b0046690f": { + "ee837da33ca6482daecb6cc7bb8552e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2cd2c3cd9a904a8393460eb703c6bfe3", - "placeholder": "​", - "style": "IPY_MODEL_6d71c0eb8f1045b997085b72f441bf64", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ef05813c951740c2a35d4b744ebef5a6": { + "efa72deff06c4a40a14b3c6a129562e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3395,7 +3506,7 @@ "width": null } }, - "f16d80c7cb544353a5e1babe95cc1a97": { + "f037dad91c8344b5a3944409dafedc83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3413,7 +3524,7 @@ "text_color": null } }, - "f44abb2240724661a8f28fabeb7e6152": { + "f5b455d725ec4cabb55353c7f1e0a1e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3428,15 +3539,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_df19c92cc2b34e7ca61218f410745348", + "layout": "IPY_MODEL_2a62efa4ac0b4a71bdcd653a27c8aaa2", "placeholder": "​", - "style": "IPY_MODEL_fe392344d7834620bada4587f2dbf065", + "style": "IPY_MODEL_3f280135a5354b9c9745f8243f7aacfa", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 237MB/s]" + "value": " 391/391 [00:00<00:00, 65.2kB/s]" } }, - "f47d961a8a6443fdb97fc093198a3a37": { + "f95fa2a0418543fea006ef9489d34baf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3451,69 +3562,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_eebcc942ebba414e8985c53b0046690f", - "IPY_MODEL_753e8b7795c943afa31e39370262dac0", - "IPY_MODEL_f44abb2240724661a8f28fabeb7e6152" + "IPY_MODEL_110998629dbb4b208e73d47bf58de355", + "IPY_MODEL_e56c074b43db4299a289b48b848b8805", + "IPY_MODEL_39e900d03806496d9c99a7ae184fdf8f" ], - "layout": "IPY_MODEL_9e52acaf4e244873ab2a7f8db7a56f87", + "layout": "IPY_MODEL_c3c4f83d199041848bc14699273a6582", "tabbable": null, "tooltip": null } }, - "f492c8a7a79d41b082fc05a8a4fa2314": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f57043327c7a43d580fbd77e72e74801": { + "fd22a9571a294002baa926714a442d12": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3566,63 +3624,20 @@ "width": null } }, - "f9e39c8f34f044faabfd9b2d9c388e8e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fc3db8eb310345b3b1c927bd575ab50e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5a71b8cd70d84f7ba31770899fe09c9b", - "placeholder": "​", - "style": "IPY_MODEL_c394f7a4870a4f5f8de748644e8df357", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "fe392344d7834620bada4587f2dbf065": { + "ff310b8c1a574ff6af2c52581c6b20f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index c7a485406..cca73afd5 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1347,7 +1347,7 @@

    5. Use cleanlab to find label issues -{"state": {"a0f3a3764e7a4f70a89147d24e41d44a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "798e65658ced4c4ba43c73541fcaf498": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2afe02bb7907473397517feb001d0bc7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a0f3a3764e7a4f70a89147d24e41d44a", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_798e65658ced4c4ba43c73541fcaf498", "tabbable": null, "tooltip": null, "value": 2041.0}}, "e22da2b2272b421bbef0df76cace290f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "19d0ea09fbe34640848d1ec2ad02d65b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d2e5a2475afa46a89c0cfc93e8649905": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e22da2b2272b421bbef0df76cace290f", "placeholder": "\u200b", "style": "IPY_MODEL_19d0ea09fbe34640848d1ec2ad02d65b", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "b018e0e6db134be6ba16634195b51282": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b0531130fa84e98afcd52b0fc37a26a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1ca803e568a640c2aa768e33ebf24164": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b018e0e6db134be6ba16634195b51282", "placeholder": "\u200b", "style": "IPY_MODEL_6b0531130fa84e98afcd52b0fc37a26a", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007438kB/s]"}}, "9aedd1b5b4a94daa8e57b77e4932c62f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6cedc3a0e8f548a1ad9c3884bd4addbc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d2e5a2475afa46a89c0cfc93e8649905", "IPY_MODEL_2afe02bb7907473397517feb001d0bc7", "IPY_MODEL_1ca803e568a640c2aa768e33ebf24164"], "layout": "IPY_MODEL_9aedd1b5b4a94daa8e57b77e4932c62f", "tabbable": null, "tooltip": null}}, "163b36917c2b4640bf87813ecc7aecc9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2eb75fcccd564c998153fe7eb21cc15f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "94b5339e1e5d462ca9a8ed81c2cbc6d2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_163b36917c2b4640bf87813ecc7aecc9", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2eb75fcccd564c998153fe7eb21cc15f", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "bc3fca0de1e34fe0841a520f49a44fcb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "520e56fda33e4c98b222ee893d4a3946": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a86987978bf2456880b33e417bfcc80e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bc3fca0de1e34fe0841a520f49a44fcb", "placeholder": "\u200b", "style": "IPY_MODEL_520e56fda33e4c98b222ee893d4a3946", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "563342ed4a724e169020735f2e098785": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2133a9fb59af4c94a6d3bf96899e9fa0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d6b535061cda444d9943ac6bb614b319": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_563342ed4a724e169020735f2e098785", "placeholder": "\u200b", "style": "IPY_MODEL_2133a9fb59af4c94a6d3bf96899e9fa0", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200739.7MB/s]"}}, "a609aacd3b83432398f55caed51374bc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7f9cdd5eb8e645049e955cd7017ad172": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a86987978bf2456880b33e417bfcc80e", "IPY_MODEL_94b5339e1e5d462ca9a8ed81c2cbc6d2", "IPY_MODEL_d6b535061cda444d9943ac6bb614b319"], "layout": "IPY_MODEL_a609aacd3b83432398f55caed51374bc", "tabbable": null, "tooltip": null}}, "1cf489240a5147e7be36c2ebd34e4991": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae2362edc22d424a8ca4ef7ba7dc22f0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6724f0872c634ed28a8ddf5141b6cf52": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1cf489240a5147e7be36c2ebd34e4991", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ae2362edc22d424a8ca4ef7ba7dc22f0", "tabbable": null, "tooltip": null, "value": 3201.0}}, "0a09ec5bab80464fbc3525d61fd287e8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fac37b2db5114541b4cfa045627b25a9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6e641d93e8364bb38c2649d5e9409472": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0a09ec5bab80464fbc3525d61fd287e8", "placeholder": "\u200b", "style": "IPY_MODEL_fac37b2db5114541b4cfa045627b25a9", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "6696954ac6cc4663830ff71533e2274a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "245870b17e934b70a9d46ac916c5ab49": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8f877b024aaa4832a870ddeafa209522": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6696954ac6cc4663830ff71533e2274a", "placeholder": "\u200b", "style": "IPY_MODEL_245870b17e934b70a9d46ac916c5ab49", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007850kB/s]"}}, "6f35caf701d147819bcff508b0d7b21f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d5272de0323e4c94ba3b04a6b32e6aa7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6e641d93e8364bb38c2649d5e9409472", "IPY_MODEL_6724f0872c634ed28a8ddf5141b6cf52", "IPY_MODEL_8f877b024aaa4832a870ddeafa209522"], "layout": "IPY_MODEL_6f35caf701d147819bcff508b0d7b21f", "tabbable": null, "tooltip": null}}, "fd8d727262ef4b3c8a26a144efa6a319": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7130d0c967334fd481dd95531afcbff6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9401b730a9fa4869b1a2ed1a91ae3804": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fd8d727262ef4b3c8a26a144efa6a319", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7130d0c967334fd481dd95531afcbff6", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "2e035e4e57004636a79bb03dccd33238": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4103846b2bc4a4a8e12430befda4a7d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ffa1c84fb874460b957924837b893cd2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2e035e4e57004636a79bb03dccd33238", "placeholder": "\u200b", "style": "IPY_MODEL_d4103846b2bc4a4a8e12430befda4a7d", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "9087116450574f6e82ab1912c77b4c08": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0f05b5620d3c4ea8b8c2b62df6fd1976": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "24117d460fe04c2595c8a3df89e4dc71": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9087116450574f6e82ab1912c77b4c08", "placeholder": "\u200b", "style": "IPY_MODEL_0f05b5620d3c4ea8b8c2b62df6fd1976", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200749.6MB/s]"}}, "d0912c4ce6314fffb1eec46e7902061a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5915bf142f9949d0b62f3936280ff677": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ffa1c84fb874460b957924837b893cd2", "IPY_MODEL_9401b730a9fa4869b1a2ed1a91ae3804", "IPY_MODEL_24117d460fe04c2595c8a3df89e4dc71"], "layout": "IPY_MODEL_d0912c4ce6314fffb1eec46e7902061a", "tabbable": null, "tooltip": null}}, "ecf9dd73dda64d359b746655a5a60031": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e7a3765a82041cc9826e87725016075": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ef4ce1e627f64413bff7de5ef03c1544": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ecf9dd73dda64d359b746655a5a60031", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4e7a3765a82041cc9826e87725016075", "tabbable": null, "tooltip": null, "value": 128619.0}}, "35b6e4408720413d9e978a6f60746c55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0141de0607f0403f827d29243c404408": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a6e2619a05cf4c6892ae13e2c851eb0e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_35b6e4408720413d9e978a6f60746c55", "placeholder": "\u200b", "style": "IPY_MODEL_0141de0607f0403f827d29243c404408", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "8203d92bb037499eb58f4a94cf43af20": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bba811cedf5144c1a2c8e84f62b80614": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dce5f0e1a3174c649eb53b9cab013b58": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8203d92bb037499eb58f4a94cf43af20", "placeholder": "\u200b", "style": "IPY_MODEL_bba811cedf5144c1a2c8e84f62b80614", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20075.64MB/s]"}}, "9dc82a7b78864ce18d1e3cff48063e14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "35fc2caf823447f2b6a4e5ac4e1060cc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a6e2619a05cf4c6892ae13e2c851eb0e", "IPY_MODEL_ef4ce1e627f64413bff7de5ef03c1544", "IPY_MODEL_dce5f0e1a3174c649eb53b9cab013b58"], "layout": "IPY_MODEL_9dc82a7b78864ce18d1e3cff48063e14", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"a2e8879121d74da0b690ccff49a0a192": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a5f7441b8a44463289a97f849d9e8e3a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ea0c1a6ac4bd48aba8026d3f21161ca0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a2e8879121d74da0b690ccff49a0a192", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a5f7441b8a44463289a97f849d9e8e3a", "tabbable": null, "tooltip": null, "value": 2041.0}}, "3492c9d1fa35491a923143cf1df93ca7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9130709158614a41880b9ac947428efb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "490bb59350404c9684dfa7c949b9c1a2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3492c9d1fa35491a923143cf1df93ca7", "placeholder": "\u200b", "style": "IPY_MODEL_9130709158614a41880b9ac947428efb", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "6bb18fe4d9854bb69159e1375b3f480c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "96a31338010a4a23b6cf6ff1d9666843": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d1a93f95aa6b42708b8e52908306da94": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6bb18fe4d9854bb69159e1375b3f480c", "placeholder": "\u200b", "style": "IPY_MODEL_96a31338010a4a23b6cf6ff1d9666843", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007495kB/s]"}}, "b08c8e4da852497b9a878140b6d78652": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd10a9902e924023930c441cf5585ae2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_490bb59350404c9684dfa7c949b9c1a2", "IPY_MODEL_ea0c1a6ac4bd48aba8026d3f21161ca0", "IPY_MODEL_d1a93f95aa6b42708b8e52908306da94"], "layout": "IPY_MODEL_b08c8e4da852497b9a878140b6d78652", "tabbable": null, "tooltip": null}}, "04b51e05693749aeb05621d97fcf029f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2ec81d1d5104bc185527a345fdadff8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d88f123c3e794cb7ac5236590223be39": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_04b51e05693749aeb05621d97fcf029f", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e2ec81d1d5104bc185527a345fdadff8", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "14ac5a469f7f41afa43b884004caf79e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "374d67cdaeed454d9e2992e61e32c31f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fea4cf7165444869979d549b005095cc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_14ac5a469f7f41afa43b884004caf79e", "placeholder": "\u200b", "style": "IPY_MODEL_374d67cdaeed454d9e2992e61e32c31f", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "f2ea5afd653441569057ee994c9313e2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dac48308de9e4707be50211040572ebe": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "82e64b0358904df0ad449bb7fa0c747c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f2ea5afd653441569057ee994c9313e2", "placeholder": "\u200b", "style": "IPY_MODEL_dac48308de9e4707be50211040572ebe", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007228MB/s]"}}, "9571f4e98bf54fd78c3359bad88e0b76": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2422bd8870424c8392da7f8a920235ae": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fea4cf7165444869979d549b005095cc", "IPY_MODEL_d88f123c3e794cb7ac5236590223be39", "IPY_MODEL_82e64b0358904df0ad449bb7fa0c747c"], "layout": "IPY_MODEL_9571f4e98bf54fd78c3359bad88e0b76", "tabbable": null, "tooltip": null}}, "1235443842474ac2af74fcc60dedf59f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd04c1d7b69a4c45b2d3ac8f3d573216": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3d27bfb7f57e4dc79619a5707f7ddcf9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1235443842474ac2af74fcc60dedf59f", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bd04c1d7b69a4c45b2d3ac8f3d573216", "tabbable": null, "tooltip": null, "value": 3201.0}}, "601562e01e804692b184c2717be92daf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95346db719ca429cb9e0f6ff686100cc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "85a30b51702a4eb69d40916fbc0c5b40": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_601562e01e804692b184c2717be92daf", "placeholder": "\u200b", "style": "IPY_MODEL_95346db719ca429cb9e0f6ff686100cc", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "6ddf33ac4ebc43cfa567fcefd0626ba8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7c620aaffd7143e6b805e8e8b02ab235": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1081f158626c4bd986a2b119ba054279": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6ddf33ac4ebc43cfa567fcefd0626ba8", "placeholder": "\u200b", "style": "IPY_MODEL_7c620aaffd7143e6b805e8e8b02ab235", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007641kB/s]"}}, "f9f701eb08cf48589e014ae1a7198068": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eabc29af158e4aec82b97132e4d0ea48": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_85a30b51702a4eb69d40916fbc0c5b40", "IPY_MODEL_3d27bfb7f57e4dc79619a5707f7ddcf9", "IPY_MODEL_1081f158626c4bd986a2b119ba054279"], "layout": "IPY_MODEL_f9f701eb08cf48589e014ae1a7198068", "tabbable": null, "tooltip": null}}, "8c004d92694948eaa3070c1f020855bb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6224edf4a9784a1aa68fbcb02bd584ba": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "46283f3f1072446e9392aa753ed72001": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c004d92694948eaa3070c1f020855bb", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6224edf4a9784a1aa68fbcb02bd584ba", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "de133982735a41f1b2bb1771b50f404e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d1438b14e23f4c1cbf2ac85de27d74be": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0fe4955fa8aa4889804343150c61e988": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_de133982735a41f1b2bb1771b50f404e", "placeholder": "\u200b", "style": "IPY_MODEL_d1438b14e23f4c1cbf2ac85de27d74be", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "33bfd15669b64cab85f828d42950b216": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7d314129939640c8b51ad478f689286c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2afebb9f5c2a40798fa8de31d3504e27": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_33bfd15669b64cab85f828d42950b216", "placeholder": "\u200b", "style": "IPY_MODEL_7d314129939640c8b51ad478f689286c", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007287MB/s]"}}, "dd7018aff5e0482b91ced761e14f80b5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "645ffbe17cfe424c9f465f082b449bff": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0fe4955fa8aa4889804343150c61e988", "IPY_MODEL_46283f3f1072446e9392aa753ed72001", "IPY_MODEL_2afebb9f5c2a40798fa8de31d3504e27"], "layout": "IPY_MODEL_dd7018aff5e0482b91ced761e14f80b5", "tabbable": null, "tooltip": null}}, "ac49a619bb0b461c862e263c4c88219f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64a0e3cb40fc483c927e5e386ab6e959": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "acf2f07ea10941cd9ec5d62bdafcc6bf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ac49a619bb0b461c862e263c4c88219f", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_64a0e3cb40fc483c927e5e386ab6e959", "tabbable": null, "tooltip": null, "value": 128619.0}}, "3dac7c5a8ffc4ea097dc482323647da1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "35b668e874e745ea9a3d001d763a34de": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6bf39fbe1b3b405c956853bfa57d3e0d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3dac7c5a8ffc4ea097dc482323647da1", "placeholder": "\u200b", "style": "IPY_MODEL_35b668e874e745ea9a3d001d763a34de", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "0af6e38e912e4e7696c879895ead73ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5b70a564cba64f818fc84594a587eb9e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0b8a7b3b6ee5417c892f888aed2c46c1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0af6e38e912e4e7696c879895ead73ba", "placeholder": "\u200b", "style": "IPY_MODEL_5b70a564cba64f818fc84594a587eb9e", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20078.69MB/s]"}}, "48bb90edac5840838e6781305996eb88": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3dc6dc4c8ee749f99cdbaa3046d05c41": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6bf39fbe1b3b405c956853bfa57d3e0d", "IPY_MODEL_acf2f07ea10941cd9ec5d62bdafcc6bf", "IPY_MODEL_0b8a7b3b6ee5417c892f888aed2c46c1"], "layout": "IPY_MODEL_48bb90edac5840838e6781305996eb88", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index a2d329ad2..a38491bc9 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:01.430387Z", - "iopub.status.busy": "2024-07-30T16:32:01.430194Z", - "iopub.status.idle": "2024-07-30T16:32:07.507356Z", - "shell.execute_reply": "2024-07-30T16:32:07.506775Z" + "iopub.execute_input": "2024-08-02T23:17:48.674521Z", + "iopub.status.busy": "2024-08-02T23:17:48.674006Z", + "iopub.status.idle": "2024-08-02T23:17:54.489657Z", + "shell.execute_reply": "2024-08-02T23:17:54.489092Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:07.510541Z", - "iopub.status.busy": "2024-07-30T16:32:07.509839Z", - "iopub.status.idle": "2024-07-30T16:32:07.513583Z", - "shell.execute_reply": "2024-07-30T16:32:07.513077Z" + "iopub.execute_input": "2024-08-02T23:17:54.492364Z", + "iopub.status.busy": "2024-08-02T23:17:54.491862Z", + "iopub.status.idle": "2024-08-02T23:17:54.495158Z", + "shell.execute_reply": "2024-08-02T23:17:54.494599Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:07.515817Z", - "iopub.status.busy": "2024-07-30T16:32:07.515454Z", - "iopub.status.idle": "2024-07-30T16:32:07.520703Z", - "shell.execute_reply": "2024-07-30T16:32:07.520274Z" + "iopub.execute_input": "2024-08-02T23:17:54.497251Z", + "iopub.status.busy": "2024-08-02T23:17:54.496901Z", + "iopub.status.idle": "2024-08-02T23:17:54.501477Z", + "shell.execute_reply": "2024-08-02T23:17:54.501011Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:07.522733Z", - "iopub.status.busy": "2024-07-30T16:32:07.522401Z", - "iopub.status.idle": "2024-07-30T16:32:09.284078Z", - "shell.execute_reply": "2024-07-30T16:32:09.283231Z" + "iopub.execute_input": "2024-08-02T23:17:54.503439Z", + "iopub.status.busy": "2024-08-02T23:17:54.503137Z", + "iopub.status.idle": "2024-08-02T23:17:56.103711Z", + "shell.execute_reply": "2024-08-02T23:17:56.103032Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:09.287053Z", - "iopub.status.busy": "2024-07-30T16:32:09.286654Z", - "iopub.status.idle": "2024-07-30T16:32:09.297621Z", - "shell.execute_reply": "2024-07-30T16:32:09.297169Z" + "iopub.execute_input": "2024-08-02T23:17:56.106386Z", + "iopub.status.busy": "2024-08-02T23:17:56.106173Z", + "iopub.status.idle": "2024-08-02T23:17:56.117184Z", + "shell.execute_reply": "2024-08-02T23:17:56.116749Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:09.299786Z", - "iopub.status.busy": "2024-07-30T16:32:09.299427Z", - "iopub.status.idle": "2024-07-30T16:32:09.304872Z", - "shell.execute_reply": "2024-07-30T16:32:09.304392Z" + "iopub.execute_input": "2024-08-02T23:17:56.119274Z", + "iopub.status.busy": "2024-08-02T23:17:56.118919Z", + "iopub.status.idle": "2024-08-02T23:17:56.124342Z", + "shell.execute_reply": "2024-08-02T23:17:56.123884Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:09.307010Z", - "iopub.status.busy": "2024-07-30T16:32:09.306676Z", - "iopub.status.idle": "2024-07-30T16:32:09.814179Z", - "shell.execute_reply": "2024-07-30T16:32:09.813575Z" + "iopub.execute_input": "2024-08-02T23:17:56.126193Z", + "iopub.status.busy": "2024-08-02T23:17:56.126017Z", + "iopub.status.idle": "2024-08-02T23:17:56.587440Z", + "shell.execute_reply": "2024-08-02T23:17:56.586822Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:09.816449Z", - "iopub.status.busy": "2024-07-30T16:32:09.816091Z", - "iopub.status.idle": "2024-07-30T16:32:11.566172Z", - "shell.execute_reply": "2024-07-30T16:32:11.565639Z" + "iopub.execute_input": "2024-08-02T23:17:56.589528Z", + "iopub.status.busy": "2024-08-02T23:17:56.589339Z", + "iopub.status.idle": "2024-08-02T23:17:57.247247Z", + "shell.execute_reply": "2024-08-02T23:17:57.246625Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:11.568615Z", - "iopub.status.busy": "2024-07-30T16:32:11.568320Z", - "iopub.status.idle": "2024-07-30T16:32:11.586724Z", - "shell.execute_reply": "2024-07-30T16:32:11.586277Z" + "iopub.execute_input": "2024-08-02T23:17:57.249823Z", + "iopub.status.busy": "2024-08-02T23:17:57.249401Z", + "iopub.status.idle": "2024-08-02T23:17:57.268344Z", + "shell.execute_reply": "2024-08-02T23:17:57.267769Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:11.588741Z", - "iopub.status.busy": "2024-07-30T16:32:11.588441Z", - "iopub.status.idle": "2024-07-30T16:32:11.591552Z", - "shell.execute_reply": "2024-07-30T16:32:11.591039Z" + "iopub.execute_input": "2024-08-02T23:17:57.270433Z", + "iopub.status.busy": "2024-08-02T23:17:57.270112Z", + "iopub.status.idle": "2024-08-02T23:17:57.273390Z", + "shell.execute_reply": "2024-08-02T23:17:57.272811Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:11.593585Z", - "iopub.status.busy": "2024-07-30T16:32:11.593193Z", - "iopub.status.idle": "2024-07-30T16:32:26.818572Z", - "shell.execute_reply": "2024-07-30T16:32:26.817879Z" + "iopub.execute_input": "2024-08-02T23:17:57.275541Z", + "iopub.status.busy": "2024-08-02T23:17:57.275202Z", + "iopub.status.idle": "2024-08-02T23:18:11.647525Z", + "shell.execute_reply": "2024-08-02T23:18:11.646907Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:26.821335Z", - "iopub.status.busy": "2024-07-30T16:32:26.821126Z", - "iopub.status.idle": "2024-07-30T16:32:26.825126Z", - "shell.execute_reply": "2024-07-30T16:32:26.824635Z" + "iopub.execute_input": "2024-08-02T23:18:11.650258Z", + "iopub.status.busy": "2024-08-02T23:18:11.649858Z", + "iopub.status.idle": "2024-08-02T23:18:11.653962Z", + "shell.execute_reply": "2024-08-02T23:18:11.653485Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:26.827091Z", - "iopub.status.busy": "2024-07-30T16:32:26.826917Z", - "iopub.status.idle": "2024-07-30T16:32:27.596925Z", - "shell.execute_reply": "2024-07-30T16:32:27.596317Z" + "iopub.execute_input": "2024-08-02T23:18:11.656092Z", + "iopub.status.busy": "2024-08-02T23:18:11.655746Z", + "iopub.status.idle": "2024-08-02T23:18:12.346371Z", + "shell.execute_reply": "2024-08-02T23:18:12.345770Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.600680Z", - "iopub.status.busy": "2024-07-30T16:32:27.599702Z", - "iopub.status.idle": "2024-07-30T16:32:27.606621Z", - "shell.execute_reply": "2024-07-30T16:32:27.606103Z" + "iopub.execute_input": "2024-08-02T23:18:12.349358Z", + "iopub.status.busy": "2024-08-02T23:18:12.348955Z", + "iopub.status.idle": "2024-08-02T23:18:12.353747Z", + "shell.execute_reply": "2024-08-02T23:18:12.353244Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.610268Z", - "iopub.status.busy": "2024-07-30T16:32:27.609309Z", - "iopub.status.idle": "2024-07-30T16:32:27.732351Z", - "shell.execute_reply": "2024-07-30T16:32:27.731717Z" + "iopub.execute_input": "2024-08-02T23:18:12.356979Z", + "iopub.status.busy": "2024-08-02T23:18:12.356030Z", + "iopub.status.idle": "2024-08-02T23:18:12.482133Z", + "shell.execute_reply": "2024-08-02T23:18:12.481542Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.734791Z", - "iopub.status.busy": "2024-07-30T16:32:27.734594Z", - "iopub.status.idle": "2024-07-30T16:32:27.747001Z", - "shell.execute_reply": "2024-07-30T16:32:27.746549Z" + "iopub.execute_input": "2024-08-02T23:18:12.484630Z", + "iopub.status.busy": "2024-08-02T23:18:12.484204Z", + "iopub.status.idle": "2024-08-02T23:18:12.496863Z", + "shell.execute_reply": "2024-08-02T23:18:12.496354Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.749097Z", - "iopub.status.busy": "2024-07-30T16:32:27.748752Z", - "iopub.status.idle": "2024-07-30T16:32:27.756559Z", - "shell.execute_reply": "2024-07-30T16:32:27.756099Z" + "iopub.execute_input": "2024-08-02T23:18:12.499067Z", + "iopub.status.busy": "2024-08-02T23:18:12.498707Z", + "iopub.status.idle": "2024-08-02T23:18:12.506542Z", + "shell.execute_reply": "2024-08-02T23:18:12.505969Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.758711Z", - "iopub.status.busy": "2024-07-30T16:32:27.758331Z", - "iopub.status.idle": "2024-07-30T16:32:27.762339Z", - "shell.execute_reply": "2024-07-30T16:32:27.761744Z" + "iopub.execute_input": "2024-08-02T23:18:12.508700Z", + "iopub.status.busy": "2024-08-02T23:18:12.508369Z", + "iopub.status.idle": "2024-08-02T23:18:12.512639Z", + "shell.execute_reply": "2024-08-02T23:18:12.512052Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.764292Z", - "iopub.status.busy": "2024-07-30T16:32:27.764112Z", - "iopub.status.idle": "2024-07-30T16:32:27.769903Z", - "shell.execute_reply": "2024-07-30T16:32:27.769437Z" + "iopub.execute_input": "2024-08-02T23:18:12.514776Z", + "iopub.status.busy": "2024-08-02T23:18:12.514446Z", + "iopub.status.idle": "2024-08-02T23:18:12.519989Z", + "shell.execute_reply": "2024-08-02T23:18:12.519511Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.772012Z", - "iopub.status.busy": "2024-07-30T16:32:27.771665Z", - "iopub.status.idle": "2024-07-30T16:32:27.883771Z", - "shell.execute_reply": "2024-07-30T16:32:27.883239Z" + "iopub.execute_input": "2024-08-02T23:18:12.522127Z", + "iopub.status.busy": "2024-08-02T23:18:12.521833Z", + "iopub.status.idle": "2024-08-02T23:18:12.636780Z", + "shell.execute_reply": "2024-08-02T23:18:12.636285Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.886039Z", - "iopub.status.busy": "2024-07-30T16:32:27.885669Z", - "iopub.status.idle": "2024-07-30T16:32:27.991085Z", - "shell.execute_reply": "2024-07-30T16:32:27.990488Z" + "iopub.execute_input": "2024-08-02T23:18:12.639030Z", + "iopub.status.busy": "2024-08-02T23:18:12.638677Z", + "iopub.status.idle": "2024-08-02T23:18:12.743096Z", + "shell.execute_reply": "2024-08-02T23:18:12.742528Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-30T16:32:27.993501Z", - "iopub.status.busy": "2024-07-30T16:32:27.993093Z", - "iopub.status.idle": "2024-07-30T16:32:28.099248Z", - "shell.execute_reply": "2024-07-30T16:32:28.098713Z" + "iopub.execute_input": "2024-08-02T23:18:12.745383Z", + "iopub.status.busy": "2024-08-02T23:18:12.745104Z", + "iopub.status.idle": "2024-08-02T23:18:12.847386Z", + "shell.execute_reply": "2024-08-02T23:18:12.846827Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:28.101776Z", - "iopub.status.busy": "2024-07-30T16:32:28.101402Z", - "iopub.status.idle": "2024-07-30T16:32:28.203687Z", - "shell.execute_reply": "2024-07-30T16:32:28.203188Z" + "iopub.execute_input": "2024-08-02T23:18:12.849504Z", + "iopub.status.busy": "2024-08-02T23:18:12.849206Z", + "iopub.status.idle": "2024-08-02T23:18:12.952607Z", + "shell.execute_reply": "2024-08-02T23:18:12.952134Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:28.205976Z", - "iopub.status.busy": "2024-07-30T16:32:28.205604Z", - "iopub.status.idle": "2024-07-30T16:32:28.209012Z", - "shell.execute_reply": "2024-07-30T16:32:28.208540Z" + "iopub.execute_input": "2024-08-02T23:18:12.954679Z", + "iopub.status.busy": "2024-08-02T23:18:12.954492Z", + "iopub.status.idle": "2024-08-02T23:18:12.957846Z", + "shell.execute_reply": "2024-08-02T23:18:12.957285Z" }, "nbsphinx": "hidden" }, @@ -1392,25 +1392,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0141de0607f0403f827d29243c404408": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0a09ec5bab80464fbc3525d61fd287e8": { + "04b51e05693749aeb05621d97fcf029f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1463,25 +1445,7 @@ "width": null } }, - "0f05b5620d3c4ea8b8c2b62df6fd1976": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "163b36917c2b4640bf87813ecc7aecc9": { + "0af6e38e912e4e7696c879895ead73ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1534,25 +1498,53 @@ "width": null } }, - "19d0ea09fbe34640848d1ec2ad02d65b": { + "0b8a7b3b6ee5417c892f888aed2c46c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0af6e38e912e4e7696c879895ead73ba", + "placeholder": "​", + "style": "IPY_MODEL_5b70a564cba64f818fc84594a587eb9e", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 8.69MB/s]" + } + }, + "0fe4955fa8aa4889804343150c61e988": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_de133982735a41f1b2bb1771b50f404e", + "placeholder": "​", + "style": "IPY_MODEL_d1438b14e23f4c1cbf2ac85de27d74be", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" } }, - "1ca803e568a640c2aa768e33ebf24164": { + "1081f158626c4bd986a2b119ba054279": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1567,15 +1559,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b018e0e6db134be6ba16634195b51282", + "layout": "IPY_MODEL_6ddf33ac4ebc43cfa567fcefd0626ba8", "placeholder": "​", - "style": "IPY_MODEL_6b0531130fa84e98afcd52b0fc37a26a", + "style": "IPY_MODEL_7c620aaffd7143e6b805e8e8b02ab235", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 438kB/s]" + "value": " 3.20k/3.20k [00:00<00:00, 641kB/s]" } }, - "1cf489240a5147e7be36c2ebd34e4991": { + "1235443842474ac2af74fcc60dedf59f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1628,92 +1620,107 @@ "width": null } }, - "2133a9fb59af4c94a6d3bf96899e9fa0": { - "model_module": "@jupyter-widgets/controls", + "14ac5a469f7f41afa43b884004caf79e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "24117d460fe04c2595c8a3df89e4dc71": { + "2422bd8870424c8392da7f8a920235ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9087116450574f6e82ab1912c77b4c08", - "placeholder": "​", - "style": "IPY_MODEL_0f05b5620d3c4ea8b8c2b62df6fd1976", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fea4cf7165444869979d549b005095cc", + "IPY_MODEL_d88f123c3e794cb7ac5236590223be39", + "IPY_MODEL_82e64b0358904df0ad449bb7fa0c747c" + ], + "layout": "IPY_MODEL_9571f4e98bf54fd78c3359bad88e0b76", "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 49.6MB/s]" - } - }, - "245870b17e934b70a9d46ac916c5ab49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "2afe02bb7907473397517feb001d0bc7": { + "2afebb9f5c2a40798fa8de31d3504e27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a0f3a3764e7a4f70a89147d24e41d44a", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_798e65658ced4c4ba43c73541fcaf498", + "layout": "IPY_MODEL_33bfd15669b64cab85f828d42950b216", + "placeholder": "​", + "style": "IPY_MODEL_7d314129939640c8b51ad478f689286c", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": " 15.9M/15.9M [00:00<00:00, 287MB/s]" } }, - "2e035e4e57004636a79bb03dccd33238": { + "33bfd15669b64cab85f828d42950b216": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1766,23 +1773,7 @@ "width": null } }, - "2eb75fcccd564c998153fe7eb21cc15f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "35b6e4408720413d9e978a6f60746c55": { + "3492c9d1fa35491a923143cf1df93ca7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1835,65 +1826,69 @@ "width": null } }, - "35fc2caf823447f2b6a4e5ac4e1060cc": { + "35b668e874e745ea9a3d001d763a34de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a6e2619a05cf4c6892ae13e2c851eb0e", - "IPY_MODEL_ef4ce1e627f64413bff7de5ef03c1544", - "IPY_MODEL_dce5f0e1a3174c649eb53b9cab013b58" - ], - "layout": "IPY_MODEL_9dc82a7b78864ce18d1e3cff48063e14", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4e7a3765a82041cc9826e87725016075": { + "374d67cdaeed454d9e2992e61e32c31f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "520e56fda33e4c98b222ee893d4a3946": { + "3d27bfb7f57e4dc79619a5707f7ddcf9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1235443842474ac2af74fcc60dedf59f", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bd04c1d7b69a4c45b2d3ac8f3d573216", + "tabbable": null, + "tooltip": null, + "value": 3201.0 } }, - "563342ed4a724e169020735f2e098785": { + "3dac7c5a8ffc4ea097dc482323647da1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1946,7 +1941,7 @@ "width": null } }, - "5915bf142f9949d0b62f3936280ff677": { + "3dc6dc4c8ee749f99cdbaa3046d05c41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1961,16 +1956,42 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ffa1c84fb874460b957924837b893cd2", - "IPY_MODEL_9401b730a9fa4869b1a2ed1a91ae3804", - "IPY_MODEL_24117d460fe04c2595c8a3df89e4dc71" + "IPY_MODEL_6bf39fbe1b3b405c956853bfa57d3e0d", + "IPY_MODEL_acf2f07ea10941cd9ec5d62bdafcc6bf", + "IPY_MODEL_0b8a7b3b6ee5417c892f888aed2c46c1" ], - "layout": "IPY_MODEL_d0912c4ce6314fffb1eec46e7902061a", + "layout": "IPY_MODEL_48bb90edac5840838e6781305996eb88", "tabbable": null, "tooltip": null } }, - "6696954ac6cc4663830ff71533e2274a": { + "46283f3f1072446e9392aa753ed72001": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c004d92694948eaa3070c1f020855bb", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6224edf4a9784a1aa68fbcb02bd584ba", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "48bb90edac5840838e6781305996eb88": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2023,33 +2044,30 @@ "width": null } }, - "6724f0872c634ed28a8ddf5141b6cf52": { + "490bb59350404c9684dfa7c949b9c1a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1cf489240a5147e7be36c2ebd34e4991", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ae2362edc22d424a8ca4ef7ba7dc22f0", + "layout": "IPY_MODEL_3492c9d1fa35491a923143cf1df93ca7", + "placeholder": "​", + "style": "IPY_MODEL_9130709158614a41880b9ac947428efb", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": "hyperparams.yaml: 100%" } }, - "6b0531130fa84e98afcd52b0fc37a26a": { + "5b70a564cba64f818fc84594a587eb9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2067,54 +2085,7 @@ "text_color": null } }, - "6cedc3a0e8f548a1ad9c3884bd4addbc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d2e5a2475afa46a89c0cfc93e8649905", - "IPY_MODEL_2afe02bb7907473397517feb001d0bc7", - "IPY_MODEL_1ca803e568a640c2aa768e33ebf24164" - ], - "layout": "IPY_MODEL_9aedd1b5b4a94daa8e57b77e4932c62f", - "tabbable": null, - "tooltip": null - } - }, - "6e641d93e8364bb38c2649d5e9409472": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0a09ec5bab80464fbc3525d61fd287e8", - "placeholder": "​", - "style": "IPY_MODEL_fac37b2db5114541b4cfa045627b25a9", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "6f35caf701d147819bcff508b0d7b21f": { + "601562e01e804692b184c2717be92daf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2167,23 +2138,7 @@ "width": null } }, - "7130d0c967334fd481dd95531afcbff6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "798e65658ced4c4ba43c73541fcaf498": { + "6224edf4a9784a1aa68fbcb02bd584ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2199,7 +2154,7 @@ "description_width": "" } }, - "7f9cdd5eb8e645049e955cd7017ad172": { + "645ffbe17cfe424c9f465f082b449bff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2214,16 +2169,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a86987978bf2456880b33e417bfcc80e", - "IPY_MODEL_94b5339e1e5d462ca9a8ed81c2cbc6d2", - "IPY_MODEL_d6b535061cda444d9943ac6bb614b319" + "IPY_MODEL_0fe4955fa8aa4889804343150c61e988", + "IPY_MODEL_46283f3f1072446e9392aa753ed72001", + "IPY_MODEL_2afebb9f5c2a40798fa8de31d3504e27" ], - "layout": "IPY_MODEL_a609aacd3b83432398f55caed51374bc", + "layout": "IPY_MODEL_dd7018aff5e0482b91ced761e14f80b5", "tabbable": null, "tooltip": null } }, - "8203d92bb037499eb58f4a94cf43af20": { + "64a0e3cb40fc483c927e5e386ab6e959": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6bb18fe4d9854bb69159e1375b3f480c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2276,7 +2247,7 @@ "width": null } }, - "8f877b024aaa4832a870ddeafa209522": { + "6bf39fbe1b3b405c956853bfa57d3e0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2291,15 +2262,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6696954ac6cc4663830ff71533e2274a", + "layout": "IPY_MODEL_3dac7c5a8ffc4ea097dc482323647da1", "placeholder": "​", - "style": "IPY_MODEL_245870b17e934b70a9d46ac916c5ab49", + "style": "IPY_MODEL_35b668e874e745ea9a3d001d763a34de", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 850kB/s]" + "value": "label_encoder.txt: 100%" } }, - "9087116450574f6e82ab1912c77b4c08": { + "6ddf33ac4ebc43cfa567fcefd0626ba8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2352,59 +2323,89 @@ "width": null } }, - "9401b730a9fa4869b1a2ed1a91ae3804": { + "7c620aaffd7143e6b805e8e8b02ab235": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7d314129939640c8b51ad478f689286c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "82e64b0358904df0ad449bb7fa0c747c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fd8d727262ef4b3c8a26a144efa6a319", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7130d0c967334fd481dd95531afcbff6", + "layout": "IPY_MODEL_f2ea5afd653441569057ee994c9313e2", + "placeholder": "​", + "style": "IPY_MODEL_dac48308de9e4707be50211040572ebe", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": " 16.9M/16.9M [00:00<00:00, 228MB/s]" } }, - "94b5339e1e5d462ca9a8ed81c2cbc6d2": { + "85a30b51702a4eb69d40916fbc0c5b40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_163b36917c2b4640bf87813ecc7aecc9", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2eb75fcccd564c998153fe7eb21cc15f", + "layout": "IPY_MODEL_601562e01e804692b184c2717be92daf", + "placeholder": "​", + "style": "IPY_MODEL_95346db719ca429cb9e0f6ff686100cc", "tabbable": null, "tooltip": null, - "value": 16887676.0 + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "9aedd1b5b4a94daa8e57b77e4932c62f": { + "8c004d92694948eaa3070c1f020855bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2457,113 +2458,43 @@ "width": null } }, - "9dc82a7b78864ce18d1e3cff48063e14": { - "model_module": "@jupyter-widgets/base", + "9130709158614a41880b9ac947428efb": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a0f3a3764e7a4f70a89147d24e41d44a": { - "model_module": "@jupyter-widgets/base", + "95346db719ca429cb9e0f6ff686100cc": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a609aacd3b83432398f55caed51374bc": { + "9571f4e98bf54fd78c3359bad88e0b76": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2616,69 +2547,25 @@ "width": null } }, - "a6e2619a05cf4c6892ae13e2c851eb0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_35b6e4408720413d9e978a6f60746c55", - "placeholder": "​", - "style": "IPY_MODEL_0141de0607f0403f827d29243c404408", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "a86987978bf2456880b33e417bfcc80e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bc3fca0de1e34fe0841a520f49a44fcb", - "placeholder": "​", - "style": "IPY_MODEL_520e56fda33e4c98b222ee893d4a3946", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "ae2362edc22d424a8ca4ef7ba7dc22f0": { + "96a31338010a4a23b6cf6ff1d9666843": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b018e0e6db134be6ba16634195b51282": { + "a2e8879121d74da0b690ccff49a0a192": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2731,25 +2618,23 @@ "width": null } }, - "bba811cedf5144c1a2c8e84f62b80614": { + "a5f7441b8a44463289a97f849d9e8e3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "bc3fca0de1e34fe0841a520f49a44fcb": { + "ac49a619bb0b461c862e263c4c88219f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2802,7 +2687,33 @@ "width": null } }, - "d0912c4ce6314fffb1eec46e7902061a": { + "acf2f07ea10941cd9ec5d62bdafcc6bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ac49a619bb0b461c862e263c4c88219f", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_64a0e3cb40fc483c927e5e386ab6e959", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "b08c8e4da852497b9a878140b6d78652": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2855,30 +2766,47 @@ "width": null } }, - "d2e5a2475afa46a89c0cfc93e8649905": { + "bd04c1d7b69a4c45b2d3ac8f3d573216": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bd10a9902e924023930c441cf5585ae2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e22da2b2272b421bbef0df76cace290f", - "placeholder": "​", - "style": "IPY_MODEL_19d0ea09fbe34640848d1ec2ad02d65b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_490bb59350404c9684dfa7c949b9c1a2", + "IPY_MODEL_ea0c1a6ac4bd48aba8026d3f21161ca0", + "IPY_MODEL_d1a93f95aa6b42708b8e52908306da94" + ], + "layout": "IPY_MODEL_b08c8e4da852497b9a878140b6d78652", "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" + "tooltip": null } }, - "d4103846b2bc4a4a8e12430befda4a7d": { + "d1438b14e23f4c1cbf2ac85de27d74be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2896,77 +2824,74 @@ "text_color": null } }, - "d5272de0323e4c94ba3b04a6b32e6aa7": { + "d1a93f95aa6b42708b8e52908306da94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6e641d93e8364bb38c2649d5e9409472", - "IPY_MODEL_6724f0872c634ed28a8ddf5141b6cf52", - "IPY_MODEL_8f877b024aaa4832a870ddeafa209522" - ], - "layout": "IPY_MODEL_6f35caf701d147819bcff508b0d7b21f", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6bb18fe4d9854bb69159e1375b3f480c", + "placeholder": "​", + "style": "IPY_MODEL_96a31338010a4a23b6cf6ff1d9666843", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 495kB/s]" } }, - "d6b535061cda444d9943ac6bb614b319": { + "d88f123c3e794cb7ac5236590223be39": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_563342ed4a724e169020735f2e098785", - "placeholder": "​", - "style": "IPY_MODEL_2133a9fb59af4c94a6d3bf96899e9fa0", + "layout": "IPY_MODEL_04b51e05693749aeb05621d97fcf029f", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e2ec81d1d5104bc185527a345fdadff8", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 39.7MB/s]" + "value": 16887676.0 } }, - "dce5f0e1a3174c649eb53b9cab013b58": { + "dac48308de9e4707be50211040572ebe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8203d92bb037499eb58f4a94cf43af20", - "placeholder": "​", - "style": "IPY_MODEL_bba811cedf5144c1a2c8e84f62b80614", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 5.64MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e22da2b2272b421bbef0df76cace290f": { + "dd7018aff5e0482b91ced761e14f80b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3019,7 +2944,7 @@ "width": null } }, - "ecf9dd73dda64d359b746655a5a60031": { + "de133982735a41f1b2bb1771b50f404e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3072,7 +2997,23 @@ "width": null } }, - "ef4ce1e627f64413bff7de5ef03c1544": { + "e2ec81d1d5104bc185527a345fdadff8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ea0c1a6ac4bd48aba8026d3f21161ca0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3088,35 +3029,94 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ecf9dd73dda64d359b746655a5a60031", - "max": 128619.0, + "layout": "IPY_MODEL_a2e8879121d74da0b690ccff49a0a192", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4e7a3765a82041cc9826e87725016075", + "style": "IPY_MODEL_a5f7441b8a44463289a97f849d9e8e3a", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": 2041.0 } }, - "fac37b2db5114541b4cfa045627b25a9": { + "eabc29af158e4aec82b97132e4d0ea48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_85a30b51702a4eb69d40916fbc0c5b40", + "IPY_MODEL_3d27bfb7f57e4dc79619a5707f7ddcf9", + "IPY_MODEL_1081f158626c4bd986a2b119ba054279" + ], + "layout": "IPY_MODEL_f9f701eb08cf48589e014ae1a7198068", + "tabbable": null, + "tooltip": null + } + }, + "f2ea5afd653441569057ee994c9313e2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fd8d727262ef4b3c8a26a144efa6a319": { + "f9f701eb08cf48589e014ae1a7198068": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3169,7 +3169,7 @@ "width": null } }, - "ffa1c84fb874460b957924837b893cd2": { + "fea4cf7165444869979d549b005095cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3184,12 +3184,12 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2e035e4e57004636a79bb03dccd33238", + "layout": "IPY_MODEL_14ac5a469f7f41afa43b884004caf79e", "placeholder": "​", - "style": "IPY_MODEL_d4103846b2bc4a4a8e12430befda4a7d", + "style": "IPY_MODEL_374d67cdaeed454d9e2992e61e32c31f", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": "embedding_model.ckpt: 100%" } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 74c522b46..5d670a0c1 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1291,7 +1291,7 @@

    Functionality 3: Save and load Datalab objects

    -
    +
    @@ -1566,7 +1566,7 @@

    Functionality 4: Adding a custom IssueManager -{"state": {"a8759625ec944bbbac04db9cec87a317": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee9027d19159444e8d46c66083251836": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fa38f1de6f7849ee9f7cd7ad7a504555": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a8759625ec944bbbac04db9cec87a317", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ee9027d19159444e8d46c66083251836", "tabbable": null, "tooltip": null, "value": 132.0}}, "71845e53cfb34c7390d3c257eefae520": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9c800ac49fd453fbbdcc88f12d35194": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d477eb478231404692d7fabdeafcfa6e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_71845e53cfb34c7390d3c257eefae520", "placeholder": "\u200b", "style": "IPY_MODEL_f9c800ac49fd453fbbdcc88f12d35194", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "c9a94c2705dc4c6888c5b9bcb593ec3b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e1d8b31237d943e5a791e20c8cb36100": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "24e5bfd20a30498b87f31ca923bcaee0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c9a94c2705dc4c6888c5b9bcb593ec3b", "placeholder": "\u200b", "style": "IPY_MODEL_e1d8b31237d943e5a791e20c8cb36100", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u20079927.17\u2007examples/s]"}}, "fe623ece577749be8a8ce449c28b2074": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "724816767a8e4540b761b5447f273b35": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d477eb478231404692d7fabdeafcfa6e", "IPY_MODEL_fa38f1de6f7849ee9f7cd7ad7a504555", "IPY_MODEL_24e5bfd20a30498b87f31ca923bcaee0"], "layout": "IPY_MODEL_fe623ece577749be8a8ce449c28b2074", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"c73f2f5e1ae54b468441d578f7c2ba01": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52f1b8f2c74a4bb6a99bf9934c7b2337": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a744c826589e4e2d9f2285146f0341d8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c73f2f5e1ae54b468441d578f7c2ba01", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_52f1b8f2c74a4bb6a99bf9934c7b2337", "tabbable": null, "tooltip": null, "value": 132.0}}, "527cb92bada44744a7822b43b03ee159": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e0e9fbdf6956499f98167164d76e9bb4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c9798d892bbb4b4495225f4e0b80e70c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_527cb92bada44744a7822b43b03ee159", "placeholder": "\u200b", "style": "IPY_MODEL_e0e9fbdf6956499f98167164d76e9bb4", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "0c1a082463244b57b51d61d7f6c72e71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3e3e5258de4f42cb8228d1fc6798c2f3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b4e9ca667f8b4ad98d99a1c1d4cad9ed": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0c1a082463244b57b51d61d7f6c72e71", "placeholder": "\u200b", "style": "IPY_MODEL_3e3e5258de4f42cb8228d1fc6798c2f3", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200711675.41\u2007examples/s]"}}, "5707965d1e434f65bdddd79f785196a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1e77cf448c8b460fae551999784047a8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c9798d892bbb4b4495225f4e0b80e70c", "IPY_MODEL_a744c826589e4e2d9f2285146f0341d8", "IPY_MODEL_b4e9ca667f8b4ad98d99a1c1d4cad9ed"], "layout": "IPY_MODEL_5707965d1e434f65bdddd79f785196a3", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 899e02b72..282b62c0d 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:32.656232Z", - "iopub.status.busy": "2024-07-30T16:32:32.656056Z", - "iopub.status.idle": "2024-07-30T16:32:34.118637Z", - "shell.execute_reply": "2024-07-30T16:32:34.117917Z" + "iopub.execute_input": "2024-08-02T23:18:16.484336Z", + "iopub.status.busy": "2024-08-02T23:18:16.484165Z", + "iopub.status.idle": "2024-08-02T23:18:17.882451Z", + "shell.execute_reply": "2024-08-02T23:18:17.881898Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.121608Z", - "iopub.status.busy": "2024-07-30T16:32:34.121097Z", - "iopub.status.idle": "2024-07-30T16:32:34.124191Z", - "shell.execute_reply": "2024-07-30T16:32:34.123735Z" + "iopub.execute_input": "2024-08-02T23:18:17.885156Z", + "iopub.status.busy": "2024-08-02T23:18:17.884677Z", + "iopub.status.idle": "2024-08-02T23:18:17.887758Z", + "shell.execute_reply": "2024-08-02T23:18:17.887295Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.126267Z", - "iopub.status.busy": "2024-07-30T16:32:34.126096Z", - "iopub.status.idle": "2024-07-30T16:32:34.134798Z", - "shell.execute_reply": "2024-07-30T16:32:34.134311Z" + "iopub.execute_input": "2024-08-02T23:18:17.889898Z", + "iopub.status.busy": "2024-08-02T23:18:17.889563Z", + "iopub.status.idle": "2024-08-02T23:18:17.898213Z", + "shell.execute_reply": "2024-08-02T23:18:17.897752Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.136971Z", - "iopub.status.busy": "2024-07-30T16:32:34.136634Z", - "iopub.status.idle": "2024-07-30T16:32:34.141247Z", - "shell.execute_reply": "2024-07-30T16:32:34.140806Z" + "iopub.execute_input": "2024-08-02T23:18:17.900225Z", + "iopub.status.busy": "2024-08-02T23:18:17.899877Z", + "iopub.status.idle": "2024-08-02T23:18:17.904388Z", + "shell.execute_reply": "2024-08-02T23:18:17.903975Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.143531Z", - "iopub.status.busy": "2024-07-30T16:32:34.143189Z", - "iopub.status.idle": "2024-07-30T16:32:34.151658Z", - "shell.execute_reply": "2024-07-30T16:32:34.151032Z" + "iopub.execute_input": "2024-08-02T23:18:17.906648Z", + "iopub.status.busy": "2024-08-02T23:18:17.906301Z", + "iopub.status.idle": "2024-08-02T23:18:17.914041Z", + "shell.execute_reply": "2024-08-02T23:18:17.913599Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.153882Z", - "iopub.status.busy": "2024-07-30T16:32:34.153554Z", - "iopub.status.idle": "2024-07-30T16:32:34.532146Z", - "shell.execute_reply": "2024-07-30T16:32:34.531569Z" + "iopub.execute_input": "2024-08-02T23:18:17.916042Z", + "iopub.status.busy": "2024-08-02T23:18:17.915708Z", + "iopub.status.idle": "2024-08-02T23:18:18.290994Z", + "shell.execute_reply": "2024-08-02T23:18:18.290406Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.534572Z", - "iopub.status.busy": "2024-07-30T16:32:34.534215Z", - "iopub.status.idle": "2024-07-30T16:32:34.557586Z", - "shell.execute_reply": "2024-07-30T16:32:34.557126Z" + "iopub.execute_input": "2024-08-02T23:18:18.293440Z", + "iopub.status.busy": "2024-08-02T23:18:18.293099Z", + "iopub.status.idle": "2024-08-02T23:18:18.316530Z", + "shell.execute_reply": "2024-08-02T23:18:18.316064Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.559946Z", - "iopub.status.busy": "2024-07-30T16:32:34.559562Z", - "iopub.status.idle": "2024-07-30T16:32:34.574011Z", - "shell.execute_reply": "2024-07-30T16:32:34.573551Z" + "iopub.execute_input": "2024-08-02T23:18:18.318822Z", + "iopub.status.busy": "2024-08-02T23:18:18.318462Z", + "iopub.status.idle": "2024-08-02T23:18:18.330408Z", + "shell.execute_reply": "2024-08-02T23:18:18.329985Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:34.576252Z", - "iopub.status.busy": "2024-07-30T16:32:34.575906Z", - "iopub.status.idle": "2024-07-30T16:32:36.755631Z", - "shell.execute_reply": "2024-07-30T16:32:36.755030Z" + "iopub.execute_input": "2024-08-02T23:18:18.332448Z", + "iopub.status.busy": "2024-08-02T23:18:18.332268Z", + "iopub.status.idle": "2024-08-02T23:18:20.394207Z", + "shell.execute_reply": "2024-08-02T23:18:20.393609Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:36.758222Z", - "iopub.status.busy": "2024-07-30T16:32:36.757670Z", - "iopub.status.idle": "2024-07-30T16:32:36.781789Z", - "shell.execute_reply": "2024-07-30T16:32:36.781269Z" + "iopub.execute_input": "2024-08-02T23:18:20.396426Z", + "iopub.status.busy": "2024-08-02T23:18:20.396134Z", + "iopub.status.idle": "2024-08-02T23:18:20.417515Z", + "shell.execute_reply": "2024-08-02T23:18:20.417003Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:36.783987Z", - "iopub.status.busy": "2024-07-30T16:32:36.783638Z", - "iopub.status.idle": "2024-07-30T16:32:36.801674Z", - "shell.execute_reply": "2024-07-30T16:32:36.801212Z" + "iopub.execute_input": "2024-08-02T23:18:20.419770Z", + "iopub.status.busy": "2024-08-02T23:18:20.419428Z", + "iopub.status.idle": "2024-08-02T23:18:20.437088Z", + "shell.execute_reply": "2024-08-02T23:18:20.436543Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:36.803794Z", - "iopub.status.busy": "2024-07-30T16:32:36.803471Z", - "iopub.status.idle": "2024-07-30T16:32:36.818094Z", - "shell.execute_reply": "2024-07-30T16:32:36.817505Z" + "iopub.execute_input": "2024-08-02T23:18:20.439218Z", + "iopub.status.busy": "2024-08-02T23:18:20.438862Z", + "iopub.status.idle": "2024-08-02T23:18:20.452660Z", + "shell.execute_reply": "2024-08-02T23:18:20.452182Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:36.820298Z", - "iopub.status.busy": "2024-07-30T16:32:36.819881Z", - "iopub.status.idle": "2024-07-30T16:32:36.842978Z", - "shell.execute_reply": "2024-07-30T16:32:36.842357Z" + "iopub.execute_input": "2024-08-02T23:18:20.454825Z", + "iopub.status.busy": "2024-08-02T23:18:20.454481Z", + "iopub.status.idle": "2024-08-02T23:18:20.475692Z", + "shell.execute_reply": "2024-08-02T23:18:20.475081Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "724816767a8e4540b761b5447f273b35", + "model_id": "1e77cf448c8b460fae551999784047a8", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:36.845323Z", - "iopub.status.busy": "2024-07-30T16:32:36.844892Z", - "iopub.status.idle": "2024-07-30T16:32:36.859999Z", - "shell.execute_reply": "2024-07-30T16:32:36.859413Z" + "iopub.execute_input": "2024-08-02T23:18:20.477885Z", + "iopub.status.busy": "2024-08-02T23:18:20.477483Z", + "iopub.status.idle": "2024-08-02T23:18:20.492323Z", + "shell.execute_reply": "2024-08-02T23:18:20.491752Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:36.862276Z", - "iopub.status.busy": "2024-07-30T16:32:36.861910Z", - "iopub.status.idle": "2024-07-30T16:32:36.868061Z", - "shell.execute_reply": "2024-07-30T16:32:36.867583Z" + "iopub.execute_input": "2024-08-02T23:18:20.494620Z", + "iopub.status.busy": "2024-08-02T23:18:20.494299Z", + "iopub.status.idle": "2024-08-02T23:18:20.500213Z", + "shell.execute_reply": "2024-08-02T23:18:20.499712Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:36.870048Z", - "iopub.status.busy": "2024-07-30T16:32:36.869719Z", - "iopub.status.idle": "2024-07-30T16:32:36.889337Z", - "shell.execute_reply": "2024-07-30T16:32:36.888743Z" + "iopub.execute_input": "2024-08-02T23:18:20.502287Z", + "iopub.status.busy": "2024-08-02T23:18:20.501963Z", + "iopub.status.idle": "2024-08-02T23:18:20.520731Z", + "shell.execute_reply": "2024-08-02T23:18:20.520197Z" } }, "outputs": [ @@ -1447,30 +1447,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "24e5bfd20a30498b87f31ca923bcaee0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c9a94c2705dc4c6888c5b9bcb593ec3b", - "placeholder": "​", - "style": "IPY_MODEL_e1d8b31237d943e5a791e20c8cb36100", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 9927.17 examples/s]" - } - }, - "71845e53cfb34c7390d3c257eefae520": { + "0c1a082463244b57b51d61d7f6c72e71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1523,7 +1500,7 @@ "width": null } }, - "724816767a8e4540b761b5447f273b35": { + "1e77cf448c8b460fae551999784047a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1538,16 +1515,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d477eb478231404692d7fabdeafcfa6e", - "IPY_MODEL_fa38f1de6f7849ee9f7cd7ad7a504555", - "IPY_MODEL_24e5bfd20a30498b87f31ca923bcaee0" + "IPY_MODEL_c9798d892bbb4b4495225f4e0b80e70c", + "IPY_MODEL_a744c826589e4e2d9f2285146f0341d8", + "IPY_MODEL_b4e9ca667f8b4ad98d99a1c1d4cad9ed" ], - "layout": "IPY_MODEL_fe623ece577749be8a8ce449c28b2074", + "layout": "IPY_MODEL_5707965d1e434f65bdddd79f785196a3", "tabbable": null, "tooltip": null } }, - "a8759625ec944bbbac04db9cec87a317": { + "3e3e5258de4f42cb8228d1fc6798c2f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "527cb92bada44744a7822b43b03ee159": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1600,7 +1595,23 @@ "width": null } }, - "c9a94c2705dc4c6888c5b9bcb593ec3b": { + "52f1b8f2c74a4bb6a99bf9934c7b2337": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5707965d1e434f65bdddd79f785196a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1653,108 +1664,56 @@ "width": null } }, - "d477eb478231404692d7fabdeafcfa6e": { + "a744c826589e4e2d9f2285146f0341d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_71845e53cfb34c7390d3c257eefae520", - "placeholder": "​", - "style": "IPY_MODEL_f9c800ac49fd453fbbdcc88f12d35194", + "layout": "IPY_MODEL_c73f2f5e1ae54b468441d578f7c2ba01", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_52f1b8f2c74a4bb6a99bf9934c7b2337", "tabbable": null, "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "e1d8b31237d943e5a791e20c8cb36100": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ee9027d19159444e8d46c66083251836": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f9c800ac49fd453fbbdcc88f12d35194": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 132.0 } }, - "fa38f1de6f7849ee9f7cd7ad7a504555": { + "b4e9ca667f8b4ad98d99a1c1d4cad9ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8759625ec944bbbac04db9cec87a317", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ee9027d19159444e8d46c66083251836", + "layout": "IPY_MODEL_0c1a082463244b57b51d61d7f6c72e71", + "placeholder": "​", + "style": "IPY_MODEL_3e3e5258de4f42cb8228d1fc6798c2f3", "tabbable": null, "tooltip": null, - "value": 132.0 + "value": " 132/132 [00:00<00:00, 11675.41 examples/s]" } }, - "fe623ece577749be8a8ce449c28b2074": { + "c73f2f5e1ae54b468441d578f7c2ba01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1806,6 +1765,47 @@ "visibility": null, "width": null } + }, + "c9798d892bbb4b4495225f4e0b80e70c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_527cb92bada44744a7822b43b03ee159", + "placeholder": "​", + "style": "IPY_MODEL_e0e9fbdf6956499f98167164d76e9bb4", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "e0e9fbdf6956499f98167164d76e9bb4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.html b/master/tutorials/datalab/datalab_quickstart.html index 01ec56c9f..d00b92717 100644 --- a/master/tutorials/datalab/datalab_quickstart.html +++ b/master/tutorials/datalab/datalab_quickstart.html @@ -1586,6 +1586,12 @@

    Near duplicate issuesTo learn more, check out this example notebook (demonstrates Datalab applied to a real dataset) and the advanced Datalab tutorial (demonstrates configuration and customization options to exert greater control).

    +
    +

    Spending too much time on data quality?#

    +

    Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.

    +

    That’s why we built Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

    +

    The modern AI pipeline automated with Cleanlab Studio

    +

    @@ -1673,6 +1679,7 @@

    Near duplicate issuesNear duplicate issues +
  • Spending too much time on data quality?
  • diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index dd27cd645..94e8a87f7 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:39.968392Z", - "iopub.status.busy": "2024-07-30T16:32:39.968219Z", - "iopub.status.idle": "2024-07-30T16:32:41.428731Z", - "shell.execute_reply": "2024-07-30T16:32:41.428142Z" + "iopub.execute_input": "2024-08-02T23:18:23.440181Z", + "iopub.status.busy": "2024-08-02T23:18:23.440011Z", + "iopub.status.idle": "2024-08-02T23:18:24.873718Z", + "shell.execute_reply": "2024-08-02T23:18:24.873164Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.431407Z", - "iopub.status.busy": "2024-07-30T16:32:41.430932Z", - "iopub.status.idle": "2024-07-30T16:32:41.433897Z", - "shell.execute_reply": "2024-07-30T16:32:41.433429Z" + "iopub.execute_input": "2024-08-02T23:18:24.876197Z", + "iopub.status.busy": "2024-08-02T23:18:24.875898Z", + "iopub.status.idle": "2024-08-02T23:18:24.879459Z", + "shell.execute_reply": "2024-08-02T23:18:24.879019Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.436056Z", - "iopub.status.busy": "2024-07-30T16:32:41.435693Z", - "iopub.status.idle": "2024-07-30T16:32:41.444683Z", - "shell.execute_reply": "2024-07-30T16:32:41.444228Z" + "iopub.execute_input": "2024-08-02T23:18:24.881728Z", + "iopub.status.busy": "2024-08-02T23:18:24.881284Z", + "iopub.status.idle": "2024-08-02T23:18:24.890527Z", + "shell.execute_reply": "2024-08-02T23:18:24.890092Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.446855Z", - "iopub.status.busy": "2024-07-30T16:32:41.446459Z", - "iopub.status.idle": "2024-07-30T16:32:41.451834Z", - "shell.execute_reply": "2024-07-30T16:32:41.451242Z" + "iopub.execute_input": "2024-08-02T23:18:24.892364Z", + "iopub.status.busy": "2024-08-02T23:18:24.892191Z", + "iopub.status.idle": "2024-08-02T23:18:24.897249Z", + "shell.execute_reply": "2024-08-02T23:18:24.896624Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.454128Z", - "iopub.status.busy": "2024-07-30T16:32:41.453789Z", - "iopub.status.idle": "2024-07-30T16:32:41.461841Z", - "shell.execute_reply": "2024-07-30T16:32:41.461254Z" + "iopub.execute_input": "2024-08-02T23:18:24.899657Z", + "iopub.status.busy": "2024-08-02T23:18:24.899315Z", + "iopub.status.idle": "2024-08-02T23:18:24.907713Z", + "shell.execute_reply": "2024-08-02T23:18:24.907270Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.463879Z", - "iopub.status.busy": "2024-07-30T16:32:41.463564Z", - "iopub.status.idle": "2024-07-30T16:32:41.841201Z", - "shell.execute_reply": "2024-07-30T16:32:41.840606Z" + "iopub.execute_input": "2024-08-02T23:18:24.909718Z", + "iopub.status.busy": "2024-08-02T23:18:24.909392Z", + "iopub.status.idle": "2024-08-02T23:18:25.284990Z", + "shell.execute_reply": "2024-08-02T23:18:25.284340Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.843720Z", - "iopub.status.busy": "2024-07-30T16:32:41.843358Z", - "iopub.status.idle": "2024-07-30T16:32:41.846353Z", - "shell.execute_reply": "2024-07-30T16:32:41.845761Z" + "iopub.execute_input": "2024-08-02T23:18:25.287244Z", + "iopub.status.busy": "2024-08-02T23:18:25.286882Z", + "iopub.status.idle": "2024-08-02T23:18:25.289594Z", + "shell.execute_reply": "2024-08-02T23:18:25.289144Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.848467Z", - "iopub.status.busy": "2024-07-30T16:32:41.848142Z", - "iopub.status.idle": "2024-07-30T16:32:41.882970Z", - "shell.execute_reply": "2024-07-30T16:32:41.882316Z" + "iopub.execute_input": "2024-08-02T23:18:25.291654Z", + "iopub.status.busy": "2024-08-02T23:18:25.291314Z", + "iopub.status.idle": "2024-08-02T23:18:25.325141Z", + "shell.execute_reply": "2024-08-02T23:18:25.324531Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:41.885593Z", - "iopub.status.busy": "2024-07-30T16:32:41.885224Z", - "iopub.status.idle": "2024-07-30T16:32:44.166781Z", - "shell.execute_reply": "2024-07-30T16:32:44.166160Z" + "iopub.execute_input": "2024-08-02T23:18:25.327400Z", + "iopub.status.busy": "2024-08-02T23:18:25.327081Z", + "iopub.status.idle": "2024-08-02T23:18:27.419844Z", + "shell.execute_reply": "2024-08-02T23:18:27.419221Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.169594Z", - "iopub.status.busy": "2024-07-30T16:32:44.168967Z", - "iopub.status.idle": "2024-07-30T16:32:44.189239Z", - "shell.execute_reply": "2024-07-30T16:32:44.188670Z" + "iopub.execute_input": "2024-08-02T23:18:27.422496Z", + "iopub.status.busy": "2024-08-02T23:18:27.421968Z", + "iopub.status.idle": "2024-08-02T23:18:27.440757Z", + "shell.execute_reply": "2024-08-02T23:18:27.440302Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.191720Z", - "iopub.status.busy": "2024-07-30T16:32:44.191313Z", - "iopub.status.idle": "2024-07-30T16:32:44.198409Z", - "shell.execute_reply": "2024-07-30T16:32:44.197866Z" + "iopub.execute_input": "2024-08-02T23:18:27.442868Z", + "iopub.status.busy": "2024-08-02T23:18:27.442525Z", + "iopub.status.idle": "2024-08-02T23:18:27.449073Z", + "shell.execute_reply": "2024-08-02T23:18:27.448585Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.200671Z", - "iopub.status.busy": "2024-07-30T16:32:44.200330Z", - "iopub.status.idle": "2024-07-30T16:32:44.206405Z", - "shell.execute_reply": "2024-07-30T16:32:44.205886Z" + "iopub.execute_input": "2024-08-02T23:18:27.451087Z", + "iopub.status.busy": "2024-08-02T23:18:27.450752Z", + "iopub.status.idle": "2024-08-02T23:18:27.456602Z", + "shell.execute_reply": "2024-08-02T23:18:27.456121Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.208540Z", - "iopub.status.busy": "2024-07-30T16:32:44.208187Z", - "iopub.status.idle": "2024-07-30T16:32:44.218769Z", - "shell.execute_reply": "2024-07-30T16:32:44.218292Z" + "iopub.execute_input": "2024-08-02T23:18:27.458665Z", + "iopub.status.busy": "2024-08-02T23:18:27.458311Z", + "iopub.status.idle": "2024-08-02T23:18:27.470031Z", + "shell.execute_reply": "2024-08-02T23:18:27.469562Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.221000Z", - "iopub.status.busy": "2024-07-30T16:32:44.220629Z", - "iopub.status.idle": "2024-07-30T16:32:44.230293Z", - "shell.execute_reply": "2024-07-30T16:32:44.229490Z" + "iopub.execute_input": "2024-08-02T23:18:27.472056Z", + "iopub.status.busy": "2024-08-02T23:18:27.471719Z", + "iopub.status.idle": "2024-08-02T23:18:27.480622Z", + "shell.execute_reply": "2024-08-02T23:18:27.480154Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.232925Z", - "iopub.status.busy": "2024-07-30T16:32:44.232545Z", - "iopub.status.idle": "2024-07-30T16:32:44.240606Z", - "shell.execute_reply": "2024-07-30T16:32:44.239954Z" + "iopub.execute_input": "2024-08-02T23:18:27.482811Z", + "iopub.status.busy": "2024-08-02T23:18:27.482463Z", + "iopub.status.idle": "2024-08-02T23:18:27.489531Z", + "shell.execute_reply": "2024-08-02T23:18:27.489014Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.242998Z", - "iopub.status.busy": "2024-07-30T16:32:44.242622Z", - "iopub.status.idle": "2024-07-30T16:32:44.252782Z", - "shell.execute_reply": "2024-07-30T16:32:44.252133Z" + "iopub.execute_input": "2024-08-02T23:18:27.491621Z", + "iopub.status.busy": "2024-08-02T23:18:27.491282Z", + "iopub.status.idle": "2024-08-02T23:18:27.500416Z", + "shell.execute_reply": "2024-08-02T23:18:27.499840Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:44.255163Z", - "iopub.status.busy": "2024-07-30T16:32:44.254809Z", - "iopub.status.idle": "2024-07-30T16:32:44.273057Z", - "shell.execute_reply": "2024-07-30T16:32:44.272419Z" + "iopub.execute_input": "2024-08-02T23:18:27.502452Z", + "iopub.status.busy": "2024-08-02T23:18:27.502275Z", + "iopub.status.idle": "2024-08-02T23:18:27.517561Z", + "shell.execute_reply": "2024-08-02T23:18:27.517118Z" }, "nbsphinx": "hidden" }, @@ -1615,6 +1615,21 @@ "assert jaccard_similarity(predicted_outlier_issues_indices, outlier_issue_indices) > 0.9\n", "assert jaccard_similarity(predicted_duplicate_issues_indices, duplicate_issue_indices) > 0.9" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

    \n", + " \"The\n", + "

    " + ] } ], "metadata": { diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index c0c41a388..8fd98bf6e 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -727,49 +727,49 @@

    2. Fetch and normalize the Fashion-MNIST dataset

    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +

    Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

    @@ -1082,7 +1082,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1114,7 +1114,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1146,7 +1146,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1937,35 +1937,35 @@

    Dark images - dark_score is_dark_issue + dark_score 34848 - 0.203922 True + 0.203922 50270 - 0.204588 True + 0.204588 3936 - 0.213098 True + 0.213098 733 - 0.217686 True + 0.217686 8094 - 0.230118 True + 0.230118 @@ -2115,7 +2115,7 @@

    Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 4228b95b6..b6b82bece 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:47.382198Z", - "iopub.status.busy": "2024-07-30T16:32:47.381761Z", - "iopub.status.idle": "2024-07-30T16:32:50.574056Z", - "shell.execute_reply": "2024-07-30T16:32:50.573420Z" + "iopub.execute_input": "2024-08-02T23:18:30.187968Z", + "iopub.status.busy": "2024-08-02T23:18:30.187540Z", + "iopub.status.idle": "2024-08-02T23:18:33.174744Z", + "shell.execute_reply": "2024-08-02T23:18:33.174187Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:50.576906Z", - "iopub.status.busy": "2024-07-30T16:32:50.576348Z", - "iopub.status.idle": "2024-07-30T16:32:50.580381Z", - "shell.execute_reply": "2024-07-30T16:32:50.579783Z" + "iopub.execute_input": "2024-08-02T23:18:33.177406Z", + "iopub.status.busy": "2024-08-02T23:18:33.176910Z", + "iopub.status.idle": "2024-08-02T23:18:33.180538Z", + "shell.execute_reply": "2024-08-02T23:18:33.180061Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:32:50.582599Z", - "iopub.status.busy": "2024-07-30T16:32:50.582229Z", - "iopub.status.idle": "2024-07-30T16:33:02.303436Z", - "shell.execute_reply": "2024-07-30T16:33:02.302939Z" + "iopub.execute_input": "2024-08-02T23:18:33.182529Z", + "iopub.status.busy": "2024-08-02T23:18:33.182219Z", + "iopub.status.idle": "2024-08-02T23:18:44.664109Z", + "shell.execute_reply": "2024-08-02T23:18:44.663641Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7cd770708ca5498492377d6a0fd76616", + "model_id": "a83344ed6e98426eabf329c5f44403a3", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c4fa7fdeeb9446ddbf6516f8963fa52e", + "model_id": "eeb48354781f459d926f56b9d9f2d412", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6e2987ba28d48c28d884b33288562df", + "model_id": "53411696bfa143a2bdec30cc846c6549", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "29ade62a53ac448198f24b5900001b05", + "model_id": "c17e6593dbb94d3a9ee695742a582d56", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "926846a8c6954c46acf37f4dd63e7eb9", + "model_id": "a26294fe97dc43f9be84fc17b73f9563", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6aaa8d39274f4cfea54a66eb8516a06f", + "model_id": "dac75bdcb107415d915bb9ad97029fe4", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "96697881a93440babad369ae2e2fd4b8", + "model_id": "73b0c33bd83f44ad9d81965657542e7d", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "efe64e5c44d94c6bb0bed3ad6e844c33", + "model_id": "ecb36eb02e7843c881d512c1e1980bfc", "version_major": 2, "version_minor": 0 }, @@ -302,10 +302,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:02.305705Z", - "iopub.status.busy": "2024-07-30T16:33:02.305351Z", - "iopub.status.idle": "2024-07-30T16:33:02.309197Z", - "shell.execute_reply": "2024-07-30T16:33:02.308695Z" + "iopub.execute_input": "2024-08-02T23:18:44.666249Z", + "iopub.status.busy": "2024-08-02T23:18:44.666064Z", + "iopub.status.idle": "2024-08-02T23:18:44.669866Z", + "shell.execute_reply": "2024-08-02T23:18:44.669332Z" } }, "outputs": [ @@ -330,17 +330,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:02.311412Z", - "iopub.status.busy": "2024-07-30T16:33:02.311066Z", - "iopub.status.idle": "2024-07-30T16:33:14.158148Z", - "shell.execute_reply": "2024-07-30T16:33:14.157496Z" + "iopub.execute_input": "2024-08-02T23:18:44.671881Z", + "iopub.status.busy": "2024-08-02T23:18:44.671547Z", + "iopub.status.idle": "2024-08-02T23:18:56.267751Z", + "shell.execute_reply": "2024-08-02T23:18:56.267200Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c48d73b75d8543b7900f7e3a24c14ff0", + "model_id": "82fd82af78b445e7b64eeceba4a9b1cc", "version_major": 2, "version_minor": 0 }, @@ -378,10 +378,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:14.161054Z", - "iopub.status.busy": "2024-07-30T16:33:14.160637Z", - "iopub.status.idle": "2024-07-30T16:33:33.040556Z", - "shell.execute_reply": "2024-07-30T16:33:33.039889Z" + "iopub.execute_input": "2024-08-02T23:18:56.270597Z", + "iopub.status.busy": "2024-08-02T23:18:56.270197Z", + "iopub.status.idle": "2024-08-02T23:19:15.145228Z", + "shell.execute_reply": "2024-08-02T23:19:15.144654Z" } }, "outputs": [], @@ -414,10 +414,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:33.043526Z", - "iopub.status.busy": "2024-07-30T16:33:33.043163Z", - "iopub.status.idle": "2024-07-30T16:33:33.048147Z", - "shell.execute_reply": "2024-07-30T16:33:33.047576Z" + "iopub.execute_input": "2024-08-02T23:19:15.147853Z", + "iopub.status.busy": "2024-08-02T23:19:15.147474Z", + "iopub.status.idle": "2024-08-02T23:19:15.153225Z", + "shell.execute_reply": "2024-08-02T23:19:15.152782Z" } }, "outputs": [], @@ -455,10 +455,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:33.050340Z", - "iopub.status.busy": "2024-07-30T16:33:33.049814Z", - "iopub.status.idle": "2024-07-30T16:33:33.054210Z", - "shell.execute_reply": "2024-07-30T16:33:33.053653Z" + "iopub.execute_input": "2024-08-02T23:19:15.155015Z", + "iopub.status.busy": "2024-08-02T23:19:15.154828Z", + "iopub.status.idle": "2024-08-02T23:19:15.159184Z", + "shell.execute_reply": "2024-08-02T23:19:15.158778Z" }, "nbsphinx": "hidden" }, @@ -595,10 +595,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:33.056104Z", - "iopub.status.busy": "2024-07-30T16:33:33.055933Z", - "iopub.status.idle": "2024-07-30T16:33:33.065120Z", - "shell.execute_reply": "2024-07-30T16:33:33.064640Z" + "iopub.execute_input": "2024-08-02T23:19:15.161173Z", + "iopub.status.busy": "2024-08-02T23:19:15.160982Z", + "iopub.status.idle": "2024-08-02T23:19:15.169844Z", + "shell.execute_reply": "2024-08-02T23:19:15.169391Z" }, "nbsphinx": "hidden" }, @@ -723,10 +723,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:33.067246Z", - "iopub.status.busy": "2024-07-30T16:33:33.066927Z", - "iopub.status.idle": "2024-07-30T16:33:33.096315Z", - "shell.execute_reply": "2024-07-30T16:33:33.095690Z" + "iopub.execute_input": "2024-08-02T23:19:15.171692Z", + "iopub.status.busy": "2024-08-02T23:19:15.171519Z", + "iopub.status.idle": "2024-08-02T23:19:15.197718Z", + "shell.execute_reply": "2024-08-02T23:19:15.197156Z" } }, "outputs": [], @@ -763,10 +763,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:33:33.098981Z", - "iopub.status.busy": "2024-07-30T16:33:33.098550Z", - "iopub.status.idle": "2024-07-30T16:34:08.613598Z", - "shell.execute_reply": "2024-07-30T16:34:08.612987Z" + "iopub.execute_input": "2024-08-02T23:19:15.200155Z", + "iopub.status.busy": "2024-08-02T23:19:15.199758Z", + "iopub.status.idle": "2024-08-02T23:19:48.490207Z", + "shell.execute_reply": "2024-08-02T23:19:48.489541Z" } }, "outputs": [ @@ -782,21 +782,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.221\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.940\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.922\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.696\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4800d17f20734ee3900349a11b2585dc", + "model_id": "dcb047742e7c4146a32757077d93eb95", "version_major": 2, "version_minor": 0 }, @@ -817,7 +817,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "21d92163462b4f67a981a814fcb48508", + "model_id": "64bb6421005c4259bdb6379773d89e83", "version_major": 2, "version_minor": 0 }, @@ -840,21 +840,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.233\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.990\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.913\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.598\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8af1aec52aef434b81a22b708073556f", + "model_id": "7b496615a26e4658af3e583f61bcdef9", "version_major": 2, "version_minor": 0 }, @@ -875,7 +875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "19a5e3a37b304b559df2c5101035122f", + "model_id": "cf7cc11f28ea46039cc95c145d1ce401", "version_major": 2, "version_minor": 0 }, @@ -898,21 +898,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.455\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.891\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 5.031\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.595\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a2738be416ce480c95fff046962f1137", + "model_id": "4a80db32ba09418496242d3395cc72bf", "version_major": 2, "version_minor": 0 }, @@ -933,7 +933,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6c2f40cf42cc413e8b1040c82a085028", + "model_id": "9e16783844c34794a2677bfd495b5109", "version_major": 2, "version_minor": 0 }, @@ -1012,10 +1012,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:34:08.616395Z", - "iopub.status.busy": "2024-07-30T16:34:08.615872Z", - "iopub.status.idle": "2024-07-30T16:34:08.631241Z", - "shell.execute_reply": "2024-07-30T16:34:08.630690Z" + "iopub.execute_input": "2024-08-02T23:19:48.492853Z", + "iopub.status.busy": "2024-08-02T23:19:48.492428Z", + "iopub.status.idle": "2024-08-02T23:19:48.507600Z", + "shell.execute_reply": "2024-08-02T23:19:48.507055Z" } }, "outputs": [], @@ -1040,10 +1040,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:34:08.633394Z", - "iopub.status.busy": "2024-07-30T16:34:08.633052Z", - "iopub.status.idle": "2024-07-30T16:34:09.125544Z", - "shell.execute_reply": "2024-07-30T16:34:09.124944Z" + "iopub.execute_input": "2024-08-02T23:19:48.509976Z", + "iopub.status.busy": "2024-08-02T23:19:48.509546Z", + "iopub.status.idle": "2024-08-02T23:19:48.985893Z", + "shell.execute_reply": "2024-08-02T23:19:48.985338Z" } }, "outputs": [], @@ -1063,10 +1063,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:34:09.128240Z", - "iopub.status.busy": "2024-07-30T16:34:09.127855Z", - "iopub.status.idle": "2024-07-30T16:35:49.585066Z", - "shell.execute_reply": "2024-07-30T16:35:49.584319Z" + "iopub.execute_input": "2024-08-02T23:19:48.988296Z", + "iopub.status.busy": "2024-08-02T23:19:48.987937Z", + "iopub.status.idle": "2024-08-02T23:21:27.529258Z", + "shell.execute_reply": "2024-08-02T23:21:27.528524Z" } }, "outputs": [ @@ -1105,7 +1105,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1e7ed9a8db3f47d499c32f8ab98695a3", + "model_id": "65b0b32c141e4ddeb98d61670fbf32bf", "version_major": 2, "version_minor": 0 }, @@ -1150,10 +1150,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:49.587886Z", - "iopub.status.busy": "2024-07-30T16:35:49.587314Z", - "iopub.status.idle": "2024-07-30T16:35:50.063963Z", - "shell.execute_reply": "2024-07-30T16:35:50.063372Z" + "iopub.execute_input": "2024-08-02T23:21:27.531774Z", + "iopub.status.busy": "2024-08-02T23:21:27.531386Z", + "iopub.status.idle": "2024-08-02T23:21:27.988639Z", + "shell.execute_reply": "2024-08-02T23:21:27.987974Z" } }, "outputs": [ @@ -1299,10 +1299,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:50.066551Z", - "iopub.status.busy": "2024-07-30T16:35:50.065928Z", - "iopub.status.idle": "2024-07-30T16:35:50.128967Z", - "shell.execute_reply": "2024-07-30T16:35:50.128437Z" + "iopub.execute_input": "2024-08-02T23:21:27.999558Z", + "iopub.status.busy": "2024-08-02T23:21:27.999325Z", + "iopub.status.idle": "2024-08-02T23:21:28.049571Z", + "shell.execute_reply": "2024-08-02T23:21:28.048979Z" } }, "outputs": [ @@ -1406,10 +1406,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:50.131433Z", - "iopub.status.busy": "2024-07-30T16:35:50.130978Z", - "iopub.status.idle": "2024-07-30T16:35:50.141475Z", - "shell.execute_reply": "2024-07-30T16:35:50.140991Z" + "iopub.execute_input": "2024-08-02T23:21:28.051857Z", + "iopub.status.busy": "2024-08-02T23:21:28.051505Z", + "iopub.status.idle": "2024-08-02T23:21:28.060658Z", + "shell.execute_reply": "2024-08-02T23:21:28.060215Z" } }, "outputs": [ @@ -1539,10 +1539,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:50.143638Z", - "iopub.status.busy": "2024-07-30T16:35:50.143453Z", - "iopub.status.idle": "2024-07-30T16:35:50.148446Z", - "shell.execute_reply": "2024-07-30T16:35:50.147959Z" + "iopub.execute_input": "2024-08-02T23:21:28.062728Z", + "iopub.status.busy": "2024-08-02T23:21:28.062400Z", + "iopub.status.idle": "2024-08-02T23:21:28.066951Z", + "shell.execute_reply": "2024-08-02T23:21:28.066486Z" }, "nbsphinx": "hidden" }, @@ -1588,10 +1588,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:50.150589Z", - "iopub.status.busy": "2024-07-30T16:35:50.150254Z", - "iopub.status.idle": "2024-07-30T16:35:50.655702Z", - "shell.execute_reply": "2024-07-30T16:35:50.655117Z" + "iopub.execute_input": "2024-08-02T23:21:28.069039Z", + "iopub.status.busy": "2024-08-02T23:21:28.068692Z", + "iopub.status.idle": "2024-08-02T23:21:28.571892Z", + "shell.execute_reply": "2024-08-02T23:21:28.571292Z" } }, "outputs": [ @@ -1626,10 +1626,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:50.658180Z", - "iopub.status.busy": "2024-07-30T16:35:50.657804Z", - "iopub.status.idle": "2024-07-30T16:35:50.666671Z", - "shell.execute_reply": "2024-07-30T16:35:50.666179Z" + "iopub.execute_input": "2024-08-02T23:21:28.574424Z", + "iopub.status.busy": "2024-08-02T23:21:28.574048Z", + "iopub.status.idle": "2024-08-02T23:21:28.582821Z", + "shell.execute_reply": "2024-08-02T23:21:28.582318Z" } }, "outputs": [ @@ -1796,10 +1796,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:50.668871Z", - "iopub.status.busy": "2024-07-30T16:35:50.668531Z", - "iopub.status.idle": "2024-07-30T16:35:50.675953Z", - "shell.execute_reply": "2024-07-30T16:35:50.675476Z" + "iopub.execute_input": "2024-08-02T23:21:28.585102Z", + "iopub.status.busy": "2024-08-02T23:21:28.584720Z", + "iopub.status.idle": "2024-08-02T23:21:28.592253Z", + "shell.execute_reply": "2024-08-02T23:21:28.591755Z" }, "nbsphinx": "hidden" }, @@ -1875,10 +1875,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:50.677971Z", - "iopub.status.busy": "2024-07-30T16:35:50.677635Z", - "iopub.status.idle": "2024-07-30T16:35:51.461209Z", - "shell.execute_reply": "2024-07-30T16:35:51.460595Z" + "iopub.execute_input": "2024-08-02T23:21:28.594385Z", + "iopub.status.busy": "2024-08-02T23:21:28.593990Z", + "iopub.status.idle": "2024-08-02T23:21:29.355028Z", + "shell.execute_reply": "2024-08-02T23:21:29.354474Z" } }, "outputs": [ @@ -1915,10 +1915,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:51.463335Z", - "iopub.status.busy": "2024-07-30T16:35:51.463157Z", - "iopub.status.idle": "2024-07-30T16:35:51.478468Z", - "shell.execute_reply": "2024-07-30T16:35:51.477939Z" + "iopub.execute_input": "2024-08-02T23:21:29.357774Z", + "iopub.status.busy": "2024-08-02T23:21:29.357407Z", + "iopub.status.idle": "2024-08-02T23:21:29.372810Z", + "shell.execute_reply": "2024-08-02T23:21:29.372351Z" } }, "outputs": [ @@ -2075,10 +2075,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:51.480643Z", - "iopub.status.busy": "2024-07-30T16:35:51.480298Z", - "iopub.status.idle": "2024-07-30T16:35:51.486080Z", - "shell.execute_reply": "2024-07-30T16:35:51.485499Z" + "iopub.execute_input": "2024-08-02T23:21:29.375092Z", + "iopub.status.busy": "2024-08-02T23:21:29.374753Z", + "iopub.status.idle": "2024-08-02T23:21:29.380139Z", + "shell.execute_reply": "2024-08-02T23:21:29.379692Z" }, "nbsphinx": "hidden" }, @@ -2123,10 +2123,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:51.488104Z", - "iopub.status.busy": "2024-07-30T16:35:51.487778Z", - "iopub.status.idle": "2024-07-30T16:35:51.924919Z", - "shell.execute_reply": "2024-07-30T16:35:51.924107Z" + "iopub.execute_input": "2024-08-02T23:21:29.382139Z", + "iopub.status.busy": "2024-08-02T23:21:29.381799Z", + "iopub.status.idle": "2024-08-02T23:21:29.845557Z", + "shell.execute_reply": "2024-08-02T23:21:29.844919Z" } }, "outputs": [ @@ -2208,10 +2208,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:51.927416Z", - "iopub.status.busy": "2024-07-30T16:35:51.927225Z", - "iopub.status.idle": "2024-07-30T16:35:51.936102Z", - "shell.execute_reply": "2024-07-30T16:35:51.935657Z" + "iopub.execute_input": "2024-08-02T23:21:29.848126Z", + "iopub.status.busy": "2024-08-02T23:21:29.847912Z", + "iopub.status.idle": "2024-08-02T23:21:29.857322Z", + "shell.execute_reply": "2024-08-02T23:21:29.856727Z" } }, "outputs": [ @@ -2236,47 +2236,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "

    " ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2339,10 +2339,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:51.938423Z", - "iopub.status.busy": "2024-07-30T16:35:51.938102Z", - "iopub.status.idle": "2024-07-30T16:35:51.942887Z", - "shell.execute_reply": "2024-07-30T16:35:51.942471Z" + "iopub.execute_input": "2024-08-02T23:21:29.863079Z", + "iopub.status.busy": "2024-08-02T23:21:29.862689Z", + "iopub.status.idle": "2024-08-02T23:21:29.868549Z", + "shell.execute_reply": "2024-08-02T23:21:29.868014Z" }, "nbsphinx": "hidden" }, @@ -2379,10 +2379,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:51.944959Z", - "iopub.status.busy": "2024-07-30T16:35:51.944785Z", - "iopub.status.idle": "2024-07-30T16:35:52.122597Z", - "shell.execute_reply": "2024-07-30T16:35:52.121954Z" + "iopub.execute_input": "2024-08-02T23:21:29.870918Z", + "iopub.status.busy": "2024-08-02T23:21:29.870547Z", + "iopub.status.idle": "2024-08-02T23:21:30.077571Z", + "shell.execute_reply": "2024-08-02T23:21:30.076922Z" } }, "outputs": [ @@ -2424,10 +2424,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:52.124950Z", - "iopub.status.busy": "2024-07-30T16:35:52.124756Z", - "iopub.status.idle": "2024-07-30T16:35:52.135215Z", - "shell.execute_reply": "2024-07-30T16:35:52.134594Z" + "iopub.execute_input": "2024-08-02T23:21:30.080367Z", + "iopub.status.busy": "2024-08-02T23:21:30.079898Z", + "iopub.status.idle": "2024-08-02T23:21:30.089071Z", + "shell.execute_reply": "2024-08-02T23:21:30.088586Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:52.137816Z", - "iopub.status.busy": "2024-07-30T16:35:52.137602Z", - "iopub.status.idle": "2024-07-30T16:35:52.311705Z", - "shell.execute_reply": "2024-07-30T16:35:52.311080Z" + "iopub.execute_input": "2024-08-02T23:21:30.091316Z", + "iopub.status.busy": "2024-08-02T23:21:30.090937Z", + "iopub.status.idle": "2024-08-02T23:21:30.294894Z", + "shell.execute_reply": "2024-08-02T23:21:30.294300Z" } }, "outputs": [ @@ -2556,10 +2556,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:52.314392Z", - "iopub.status.busy": "2024-07-30T16:35:52.313905Z", - "iopub.status.idle": "2024-07-30T16:35:52.318429Z", - "shell.execute_reply": "2024-07-30T16:35:52.317890Z" + "iopub.execute_input": "2024-08-02T23:21:30.297271Z", + "iopub.status.busy": "2024-08-02T23:21:30.296882Z", + "iopub.status.idle": "2024-08-02T23:21:30.301477Z", + "shell.execute_reply": "2024-08-02T23:21:30.300986Z" }, "nbsphinx": "hidden" }, @@ -2596,7 +2596,41 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0013256c6393414d897e747fbb692b2e": { + "008cc90d3b174aecbf9dba417deead0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0321558e1f2248a4a77dc93038d153fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "04b1be295a6d4f059ade3404a98a6f40": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2649,88 +2683,7 @@ "width": null } }, - "004fcea71628418685555fb760dec429": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6826340ac4a7479cb63a98919d60e1b5", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dcd9b7afd17f44798d2064cf5a3862de", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "0119a979303348feaf5374a2e7f3b418": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7d9dcc168074809a9f461109ae607c0", - "placeholder": "​", - "style": "IPY_MODEL_e4613e030b794d219b1926a1e5b67f63", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" - } - }, - "01972cf3b8f94fab866c986e21f7f91f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "035a0174785c4ed3bb69dcff3281ef55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "06d84d61f0474ccabad6fb12d0aa215b": { + "053d6bcb7ffe4ee1aff83f2ff8289f7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2783,25 +2736,30 @@ "width": null } }, - "08618be7a9234af1a5348de326d6418b": { + "0701220c8d274ebf82856fa715f93e3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_70f89b2903d04a85b5e26fe705654626", + "placeholder": "​", + "style": "IPY_MODEL_1ec29b995d864c5487b2b5aebaaae290", + "tabbable": null, + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 93.6MB/s]" } }, - "0af0baad7c99404cbce2f5872c14531d": { + "0a065988806d4c61b5a9536feff6aa88": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2854,53 +2812,7 @@ "width": null } }, - "0b1ef64e0ea844c4a0efed4b089ecc5e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3123f857e00343f4bd9235d4bafc70bf", - "placeholder": "​", - "style": "IPY_MODEL_166f4e2b87384d8f94272fd75e017ce1", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "0ca0287b646c497e8e812ef207ee400f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a502ea89a10b4d3f8b810850b097c4c8", - "placeholder": "​", - "style": "IPY_MODEL_106a78e01b744c7e853e027a36ffe806", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1209.26it/s]" - } - }, - "0ccaafe3fa3d4248819d0a351c6afed7": { + "0bb0c6cd74714525bd07e548e7d6972a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2915,56 +2827,55 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_60e6b313ac404eb49b45082ef785605e", + "layout": "IPY_MODEL_ff995d6039774b1795125f0d38e2290c", "placeholder": "​", - "style": "IPY_MODEL_60cd2aa7a8ab4eadbcc00cf551cf13f2", + "style": "IPY_MODEL_117dc79c92dd4e5bbc59ed4371305ed9", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 4/4 [00:00<00:00, 1193.34it/s]" } }, - "0db4b028aefb4687827337f7e184db65": { + "0c527e0277824068b5b3b0c56c2cb88c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "0f32fa1658214a03a0e7b355268571f9": { + "0d396d9bc1ba4ca7a76e9acf1bac3183": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c9c9176e7a0b4f09b751df8cc4e0666a", - "placeholder": "​", - "style": "IPY_MODEL_480213636d724918930198d0a10688df", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cd7691b2898c48ccbcce3c047dbbbad9", + "IPY_MODEL_df18ff2baa2146ce9fdced9dc9025023", + "IPY_MODEL_0bb0c6cd74714525bd07e548e7d6972a" + ], + "layout": "IPY_MODEL_2b8380dc5d3f41fc8df372a9a0270fef", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "0f477d12bbbc409caed9b4d8a9bcc695": { + "0ea3cf33c1cb4c2797daeaac23d505c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3017,48 +2928,7 @@ "width": null } }, - "106a78e01b744c7e853e027a36ffe806": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "116f6fc2329645d68a83663b5feb94ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_67da9cc8d08944909f459041ea4e201e", - "placeholder": "​", - "style": "IPY_MODEL_be62105b70444309b42629557d23dd31", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "15aa61db4cc44bdc991db5521f2fa425": { + "0ebef90cea924ea28f7f9ad9dd121bd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3111,7 +2981,7 @@ "width": null } }, - "166f4e2b87384d8f94272fd75e017ce1": { + "11546f58aa7a4de882081abc528f2d15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3129,59 +2999,59 @@ "text_color": null } }, - "16ff670713eb4f70a0cc1728a34d5452": { + "117dc79c92dd4e5bbc59ed4371305ed9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0f477d12bbbc409caed9b4d8a9bcc695", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5d8bc20fd5c14f0b8fe44ed387e39400", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "184ad9317d854ba1a1ced110910cca10": { + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "157495f23b85447197472c8583f986a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d8be42381424e8386712e589902ea33", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6d3edf2e39d944c09f3fbef854866461", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1913f376829b4276979eb954c5abffac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "194f679dc6e14a978e8925bb038e3793": { + "1978db485a5e4e26988896e2745d50c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3234,57 +3104,64 @@ "width": null } }, - "19a5e3a37b304b559df2c5101035122f": { + "1c793150c7994b6796a456cc47656766": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_798557df3a2647b7986d02dc545587b8", - "IPY_MODEL_1ebb404b2871496886508c42693e8007", - "IPY_MODEL_4247f90a7e514d59a156a29ddfc979bc" - ], - "layout": "IPY_MODEL_7b0284c026ce41ef999e0bad78664f3a", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1d157e6477da483192d99d6ea6dc4738": { + "1ec29b995d864c5487b2b5aebaaae290": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1f7594d56c6047069a31bad06b2c4451": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_50def53d0bfc4f10b462dc84ac9d3884", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1ee495dc542a4878b7b0589a8865264f", + "layout": "IPY_MODEL_53090a2f661b425db670dc4fbf0fb529", + "placeholder": "​", + "style": "IPY_MODEL_11546f58aa7a4de882081abc528f2d15", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": " 60000/60000 [00:11<00:00, 7589.51 examples/s]" } }, - "1e1a87a8a45e4b57adf13faea5793824": { + "21f17e330fed45f991ac662863ad20c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3337,31 +3214,60 @@ "width": null } }, - "1e7ed9a8db3f47d499c32f8ab98695a3": { - "model_module": "@jupyter-widgets/controls", + "23d5b82109144ee7a24d9a0260581d3c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0f32fa1658214a03a0e7b355268571f9", - "IPY_MODEL_fabe89de1f3f41f493f2490c661f6d02", - "IPY_MODEL_5868a22f8e0e413da7cdf7bc7c8f6baf" - ], - "layout": "IPY_MODEL_82a91f795cc0496d884607edf4c43169", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1ebb404b2871496886508c42693e8007": { + "2429a33f84414829b992fe114424e50a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3377,51 +3283,51 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4718f5d7ff96463c8fc9e38bcb1d4f84", - "max": 40.0, + "layout": "IPY_MODEL_42284f1f76a24124b649b9ff215d227d", + "max": 4833.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_57c02383588c4f38bf7a1f4d6e862131", + "style": "IPY_MODEL_99be84fae9814898a5ec9de62f8bec71", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 4833.0 } }, - "1ee495dc542a4878b7b0589a8865264f": { + "2474303c0dd8433ea96f93d2d05be693": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1ff7f1a37c2a45dcb7598e70cf6710d0": { + "249d7227afe34c96a6dce625c53740e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "213272b1b45445c7b3f2b35602fa31b9": { + "28277410e85e4932820b42630bb0f742": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3474,7 +3380,7 @@ "width": null } }, - "21c7629462754933abb55f66fa8af51e": { + "2b8380dc5d3f41fc8df372a9a0270fef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3527,31 +3433,7 @@ "width": null } }, - "21d92163462b4f67a981a814fcb48508": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_365106e243354786ba305456bcfe36bb", - "IPY_MODEL_50051443ed9e43948d3f683823437ef4", - "IPY_MODEL_97665d87bb634843b13c86ccc743aab1" - ], - "layout": "IPY_MODEL_d9fce56a4501415dbadef0b6597c3c59", - "tabbable": null, - "tooltip": null - } - }, - "2276743b098540579a44bab387084257": { + "2bcb588ce9b74e8b8db00043d6cc39b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3604,7 +3486,33 @@ "width": null } }, - "22a0669e75de415dac70a25c5054d25b": { + "2cd1ee001cd24600a736d0c202a6dedf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aabe4cad481c40eca44a9026dcd4e8a5", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_be6f840505a94e42aa9f3efb5f70e58d", + "tabbable": null, + "tooltip": null, + "value": 8845.0 + } + }, + "2f629df02c234703812e8fe02b33e502": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3657,7 +3565,25 @@ "width": null } }, - "22b2d39a70b04bfeb7943490bd911b90": { + "2f74bc0d09e84164ae62a6edfda0b203": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2f8ded1032fd45c7a199a5a235b7da6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3710,7 +3636,33 @@ "width": null } }, - "23c83cfb62484a5aa0c6f3daa481f042": { + "309aab0ce99e45c8b890fac8e63f3ad6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fd69a19b7d0147feafb879a2901669a3", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d81d84df0bb349ecb366777bc7e66581", + "tabbable": null, + "tooltip": null, + "value": 29515.0 + } + }, + "32eff9a51cbd4c00939014db4c00497d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3763,39 +3715,83 @@ "width": null } }, - "24bcebdd6f9f41bb84c60f2b915efbc6": { - "model_module": "@jupyter-widgets/controls", + "340aeb36bd33457c890c7f97b3f4f1c6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "24daedc2073f4af4960d8c11c761dfdc": { + "3421965f67c4426d8b36dfd785b1bf63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3a4f6479c26141e29383509674559040", + "placeholder": "​", + "style": "IPY_MODEL_7f48e8ee87fa452a840ce03364d7ae54", + "tabbable": null, + "tooltip": null, + "value": "Downloading builder script: 100%" } }, - "274b94c3c9414616afaa8d88d50ed39a": { + "34bde769bffd43eaa0c93ba34df78a86": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3848,25 +3844,7 @@ "width": null } }, - "28a88184c039419c865f50a0132f936e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "29ad3993f94346419af35928193d2eb8": { + "3a4f6479c26141e29383509674559040": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3919,31 +3897,25 @@ "width": null } }, - "29ade62a53ac448198f24b5900001b05": { + "3f532199bde345fe8e1b171972211f76": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2e2c7cda7d9b4df4a04a6753ab931f09", - "IPY_MODEL_4ba04e6400bf4886bd6115b9e964954f", - "IPY_MODEL_585a8b54491d4c409958f8e777013c6d" - ], - "layout": "IPY_MODEL_274b94c3c9414616afaa8d88d50ed39a", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2ab5cadb30864d4bb423984588e08dc5": { + "4065de6c5bb94dee80e0ff790f27c88e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3996,7 +3968,7 @@ "width": null } }, - "2c4d2a0d6acb4e3890230f3c2c9bfe68": { + "42284f1f76a24124b649b9ff215d227d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4049,43 +4021,33 @@ "width": null } }, - "2d6fb7b4b561449a9dee9ff41aedb47f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2e0328d5e45b46aab2d236490c3e32c0": { + "4444efe112e1446388019b313627e918": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1978db485a5e4e26988896e2745d50c3", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_249d7227afe34c96a6dce625c53740e4", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 } }, - "2e2c7cda7d9b4df4a04a6753ab931f09": { + "46a13fa57d7241ffbd2a05fc67f50cba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4100,15 +4062,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_554c4f5cf7704bc59bac43290853c47f", + "layout": "IPY_MODEL_a1229e9727404c84a102b26059b3598b", "placeholder": "​", - "style": "IPY_MODEL_ca407d230f484390a47362031adf31b7", + "style": "IPY_MODEL_593bc84ba0924c62a14d3481b292fbcc", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": "Generating test split: 100%" } }, - "2ea002ba5ef6449d8d22840ba751df3c": { + "46c3e557ebb340229dcc748eb3ffa273": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4161,7 +4123,30 @@ "width": null } }, - "303be7344e754dc0b81cc4362585ad42": { + "47d79aa7c6b647af82a8011a03ee9998": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23d5b82109144ee7a24d9a0260581d3c", + "placeholder": "​", + "style": "IPY_MODEL_9052c83436cd4f74b13f470536ddc112", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "483d2c174d96425e9d925b22417ae036": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4179,7 +4164,7 @@ "text_color": null } }, - "3123f857e00343f4bd9235d4bafc70bf": { + "49235cb19b1240da96da6be6a4be548f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4232,7 +4217,31 @@ "width": null } }, - "35038d2d13684a2a91ad7feed779f096": { + "4a80db32ba09418496242d3395cc72bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fa1d6736721d4514a810de77663bcbda", + "IPY_MODEL_8dbd6e10d3cd4aa294b3af287468dfc3", + "IPY_MODEL_e23f8197e5884501a75740e26d8e9e87" + ], + "layout": "IPY_MODEL_9670764c21d1488a967b28bb0319e34a", + "tabbable": null, + "tooltip": null + } + }, + "4c0da95bd9e34405968a7b43a426f555": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4250,30 +4259,43 @@ "text_color": null } }, - "365106e243354786ba305456bcfe36bb": { + "4d03223657ec491b9af44b05ebc67510": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c47e19aac35c46eb9cad874bb2fde728", - "placeholder": "​", - "style": "IPY_MODEL_35038d2d13684a2a91ad7feed779f096", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4eb4586518fc4f2db7cfe1874cd78764": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3704b910152b45dc924bb624c0ee95f3": { + "4f6264d4caa6476b9b98871af8645888": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4288,15 +4310,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_605c839bcc484635bec417281648e724", + "layout": "IPY_MODEL_f849b0a54a9341d48816de434459861d", "placeholder": "​", - "style": "IPY_MODEL_0db4b028aefb4687827337f7e184db65", + "style": "IPY_MODEL_4d03223657ec491b9af44b05ebc67510", "tabbable": null, "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 594kB/s]" + "value": "Downloading readme: 100%" } }, - "3b6ea79aef284f04a18098981d12f5e7": { + "53090a2f661b425db670dc4fbf0fb529": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4349,7 +4371,31 @@ "width": null } }, - "418123f93e554dba92a9656f5d7cee79": { + "53411696bfa143a2bdec30cc846c6549": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e903c2673aea40ff8165eb514306d801", + "IPY_MODEL_4444efe112e1446388019b313627e918", + "IPY_MODEL_e968873bf55440c7a5c3dc2d54a2fffa" + ], + "layout": "IPY_MODEL_d1af880c7c064b3f92991455aee3c3cb", + "tabbable": null, + "tooltip": null + } + }, + "5359ad8c54da428fb5c392d67cc59a1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4402,7 +4448,7 @@ "width": null } }, - "4247f90a7e514d59a156a29ddfc979bc": { + "53bb398dca5c4c19a62d3c24d56b8d70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4417,50 +4463,24 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9eaf779387934026b193e48e9bb55a86", + "layout": "IPY_MODEL_fe373b9b0fd449b5b8ebf17e3268d1d4", "placeholder": "​", - "style": "IPY_MODEL_2e0328d5e45b46aab2d236490c3e32c0", + "style": "IPY_MODEL_2474303c0dd8433ea96f93d2d05be693", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.22it/s]" + "value": "100%" } }, - "43ffe5059e7e475ebc29e46493f6aaa2": { - "model_module": "@jupyter-widgets/controls", + "565a741194564417aaf7b1fd21fa7b10": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b578fa4f2c45411b949fd41b642899ec", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_54d3aef6e7d041718cf3822974717221", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "465e03a22e1f4b66b9a21c2e90039525": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -4504,7 +4524,162 @@ "width": null } }, - "46b2604d41d1439898a0f49c0ba53f78": { + "569f9006d69f4caca7b18ca08202ca8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "58488a758cc84ed19cb308e894b44ff6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "593bc84ba0924c62a14d3481b292fbcc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "59ead770817a49939e6e42fb179cb880": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4065de6c5bb94dee80e0ff790f27c88e", + "placeholder": "​", + "style": "IPY_MODEL_ddaad249589d406f800a55cd3d9d30cc", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:07<00:00, 8706.05 examples/s]" + } + }, + "5a47d7b41af140cc813fd5444cda9c01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5aa1569ac03d4c3d83ff4ee430d4e730": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_04b1be295a6d4f059ade3404a98a6f40", + "placeholder": "​", + "style": "IPY_MODEL_fbcb15dedf2043518d6d958db3a9251d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.85it/s]" + } + }, + "5c2b62f749034df5b665e30f802f6fdb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9b4711a3e0f2449ea9ebcdbe67e8b922", + "placeholder": "​", + "style": "IPY_MODEL_f9f44c7999cb4bd5a40d1e6c0568d6c0", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:38<00:00, 1477.75it/s]" + } + }, + "5eacf99f8bf24aaab277af5019922414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "62a442f149b247ff8ccd9a45e243f04a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4520,17 +4695,56 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_884c1f18b9ab4af49db7098fea18ef3d", - "max": 26421880.0, + "layout": "IPY_MODEL_e4f46e4b6dea45b08c00df4c858c2e01", + "max": 10000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9078ad04df284aceade5e9637028e264", + "style": "IPY_MODEL_008cc90d3b174aecbf9dba417deead0b", "tabbable": null, "tooltip": null, - "value": 26421880.0 + "value": 10000.0 + } + }, + "62d3e6c861184243978b09cbb9180e98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "632e91a3058a43858c9cfc7dd4ab8224": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_32eff9a51cbd4c00939014db4c00497d", + "placeholder": "​", + "style": "IPY_MODEL_569f9006d69f4caca7b18ca08202ca8e", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "4718f5d7ff96463c8fc9e38bcb1d4f84": { + "646419f558064e69b0146dce4f2437ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4583,7 +4797,7 @@ "width": null } }, - "4800d17f20734ee3900349a11b2585dc": { + "64bb6421005c4259bdb6379773d89e83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4598,34 +4812,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0ccaafe3fa3d4248819d0a351c6afed7", - "IPY_MODEL_cc7c41fca7e14c8384b2ce49dac60516", - "IPY_MODEL_83644b7829034008a0cf8f0a63589d9c" + "IPY_MODEL_848f6f62abc74abcad6e8f9cc4aad7db", + "IPY_MODEL_d53d95a4952b45b89e345becafffa918", + "IPY_MODEL_a26b139422c8486baaa60664a664d5e4" ], - "layout": "IPY_MODEL_06d84d61f0474ccabad6fb12d0aa215b", + "layout": "IPY_MODEL_b9c5d366f68b4024bdb2f77fd2dc0a97", "tabbable": null, "tooltip": null } }, - "480213636d724918930198d0a10688df": { + "65b0b32c141e4ddeb98d61670fbf32bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_53bb398dca5c4c19a62d3c24d56b8d70", + "IPY_MODEL_b14c7f719b46408680d1288c61b48ef1", + "IPY_MODEL_5c2b62f749034df5b665e30f802f6fdb" + ], + "layout": "IPY_MODEL_e6baa32cd3bf48bbb3299eee55d39a07", + "tabbable": null, + "tooltip": null } }, - "4a320115b97a42bd89dd7903073750fa": { + "6681c5297f7d41d7909cbc433cc45ecb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4678,7 +4898,46 @@ "width": null } }, - "4a6f02046de3424183282c1ef1a1321c": { + "683ba6147ad748d5b77a49528a104a66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6681c5297f7d41d7909cbc433cc45ecb", + "placeholder": "​", + "style": "IPY_MODEL_483d2c174d96425e9d925b22417ae036", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "68e2162e5d5141faaace8be366af170d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6a3142644e9e40a8b2c8234302707a6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4731,67 +4990,113 @@ "width": null } }, - "4ba04e6400bf4886bd6115b9e964954f": { - "model_module": "@jupyter-widgets/controls", + "6c8a531245aa4bcb90add7c381690871": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21c7629462754933abb55f66fa8af51e", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_035a0174785c4ed3bb69dcff3281ef55", - "tabbable": null, - "tooltip": null, - "value": 29515.0 - } - }, - "4be2bfe6a47d40969d0226111c98ad2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "4c1a2e32c7124951b219b1f250f77e8e": { - "model_module": "@jupyter-widgets/controls", + "6df5ef22733c45bbbc3872d42e61b702": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "4f219139576c49c8b25a132eec1c1644": { + "70f89b2903d04a85b5e26fe705654626": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4844,33 +5149,30 @@ "width": null } }, - "50051443ed9e43948d3f683823437ef4": { + "71528aa09ab0432cb160e3e3b4a6acc0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_886c2364549848efa14fa9cf9f8ebde8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4c1a2e32c7124951b219b1f250f77e8e", + "layout": "IPY_MODEL_d5fb1eccbd4a473bb932d6e2dc592e7b", + "placeholder": "​", + "style": "IPY_MODEL_3f532199bde345fe8e1b171972211f76", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "50def53d0bfc4f10b462dc84ac9d3884": { + "7377f7ae31a3483faa06d57b36f0ee22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4923,23 +5225,49 @@ "width": null } }, - "54d3aef6e7d041718cf3822974717221": { + "73b0c33bd83f44ad9d81965657542e7d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b9fbad1ce5524fb5a7338c17c549a664", + "IPY_MODEL_e77e939384cd44dda51896a914105412", + "IPY_MODEL_59ead770817a49939e6e42fb179cb880" + ], + "layout": "IPY_MODEL_e88d7ccca07b4801921e8888e04413a8", + "tabbable": null, + "tooltip": null + } + }, + "765027b1c316405aa103d28e364ef2f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "54f8cf66c9fb4adfb6053467fa1dd06a": { + "77e7a0f9b870494bb4c571576cd3e4a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4992,7 +5320,7 @@ "width": null } }, - "554c4f5cf7704bc59bac43290853c47f": { + "7a100ccc67564d02b628a843ff1d910a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5045,101 +5373,144 @@ "width": null } }, - "56e6cb6825cc46a2918ad113792fcfad": { + "7b496615a26e4658af3e583f61bcdef9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_418123f93e554dba92a9656f5d7cee79", - "placeholder": "​", - "style": "IPY_MODEL_973ecb943cf94facbeaff08a43b11a14", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_905df8c243b24fca9a8ee8739822c89e", + "IPY_MODEL_eaf9477f9f65458fbc77305c13d9490e", + "IPY_MODEL_9bccc67055a14409b7a9511bfea69006" + ], + "layout": "IPY_MODEL_6c8a531245aa4bcb90add7c381690871", "tabbable": null, - "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 791kB/s]" + "tooltip": null } }, - "57c02383588c4f38bf7a1f4d6e862131": { - "model_module": "@jupyter-widgets/controls", + "7cc1a2ab2a22477e9711561211e13f21": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "57f0147d0b40481487ead645778ad6f0": { + "7f48e8ee87fa452a840ce03364d7ae54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "57fdb406a0104c008712f455671416ae": { + "7fad793d634f473d8744175a5f3f9d4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "585a8b54491d4c409958f8e777013c6d": { + "82fd82af78b445e7b64eeceba4a9b1cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_70fd4c0942f949219503830958a45c03", - "placeholder": "​", - "style": "IPY_MODEL_a5bb522450e449f9b7e10fcb83ff9537", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e848681b5d894f569bed4b32add7e687", + "IPY_MODEL_d7e915eeaf6a4364a2594d8c712ea0fc", + "IPY_MODEL_1f7594d56c6047069a31bad06b2c4451" + ], + "layout": "IPY_MODEL_2bcb588ce9b74e8b8db00043d6cc39b4", "tabbable": null, - "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.31MB/s]" + "tooltip": null } }, - "5868a22f8e0e413da7cdf7bc7c8f6baf": { + "848f6f62abc74abcad6e8f9cc4aad7db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5154,15 +5525,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_804696d71f5c428aa77920387c9f13ab", + "layout": "IPY_MODEL_2f629df02c234703812e8fe02b33e502", "placeholder": "​", - "style": "IPY_MODEL_80dbd77206334fa4a9255057329a0f43", + "style": "IPY_MODEL_ca10f77b43a24fe6aa44d88c348f21ff", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:39<00:00, 1541.50it/s]" + "value": "100%" + } + }, + "8cbb314c9a5c481abea7647e5b1a6591": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5a01deaf41c841cab934b678df22a7e6": { + "8dbd6e10d3cd4aa294b3af287468dfc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5178,33 +5565,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_54f8cf66c9fb4adfb6053467fa1dd06a", - "max": 4833.0, + "layout": "IPY_MODEL_bd1004389ba34632a152035fce23cc0e", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c5138f4ab850429ba23c48fd5efae242", + "style": "IPY_MODEL_5eacf99f8bf24aaab277af5019922414", "tabbable": null, "tooltip": null, - "value": 4833.0 - } - }, - "5d8bc20fd5c14f0b8fe44ed387e39400": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 40.0 } }, - "605c839bcc484635bec417281648e724": { + "8e57a6b9a8a646ca8412bbe009b0f38d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5257,7 +5628,66 @@ "width": null } }, - "60cd2aa7a8ab4eadbcc00cf551cf13f2": { + "8ee5f8a57b194864b742d798195824a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9052c83436cd4f74b13f470536ddc112": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "905df8c243b24fca9a8ee8739822c89e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21f17e330fed45f991ac662863ad20c9", + "placeholder": "​", + "style": "IPY_MODEL_4eb4586518fc4f2db7cfe1874cd78764", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "93810fa8e7464aabacc9c1e1529a1762": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5275,7 +5705,7 @@ "text_color": null } }, - "60e6b313ac404eb49b45082ef785605e": { + "9670764c21d1488a967b28bb0319e34a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5328,7 +5758,7 @@ "width": null } }, - "610a71ef770945809dc9f2e4b94664af": { + "99be84fae9814898a5ec9de62f8bec71": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5344,43 +5774,7 @@ "description_width": "" } }, - "61751669aa9c4b51923ed3a7deea7f56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "61d0c2efb0824d70ac0138f650ac65ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6443147e64204784b6b79779c4b0ece4": { + "9b101dc9f09a48478490bc2e1af6d6f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5433,30 +5827,7 @@ "width": null } }, - "6538276c3913471e82d12b7dfb5e849f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d68dfef9ba6d482e8e9c7a037d2c1ef7", - "placeholder": "​", - "style": "IPY_MODEL_ab22b295e4a042c898986f757b7461df", - "tabbable": null, - "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 71.3MB/s]" - } - }, - "66018dbdfa8e4496b534e3d80379136d": { + "9b4711a3e0f2449ea9ebcdbe67e8b922": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5509,7 +5880,54 @@ "width": null } }, - "67da9cc8d08944909f459041ea4e201e": { + "9bccc67055a14409b7a9511bfea69006": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7377f7ae31a3483faa06d57b36f0ee22", + "placeholder": "​", + "style": "IPY_MODEL_b67912d222c045e49bd4d157bb5d6807", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.69it/s]" + } + }, + "9e16783844c34794a2677bfd495b5109": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_683ba6147ad748d5b77a49528a104a66", + "IPY_MODEL_cd403484b0244f29813a01bd629db4a7", + "IPY_MODEL_dd86764aad08416fbaa3d7ad13f99a88" + ], + "layout": "IPY_MODEL_34bde769bffd43eaa0c93ba34df78a86", + "tabbable": null, + "tooltip": null + } + }, + "a03ad15668694b9d87adfc57c4b57c28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5562,30 +5980,7 @@ "width": null } }, - "67df8310ec724197b5a903618210990a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2ab5cadb30864d4bb423984588e08dc5", - "placeholder": "​", - "style": "IPY_MODEL_1ff7f1a37c2a45dcb7598e70cf6710d0", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 51.58it/s]" - } - }, - "6826340ac4a7479cb63a98919d60e1b5": { + "a1229e9727404c84a102b26059b3598b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5638,7 +6033,7 @@ "width": null } }, - "6aaa8d39274f4cfea54a66eb8516a06f": { + "a26294fe97dc43f9be84fc17b73f9563": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5653,16 +6048,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f6229a7aab1d42ca8805f534935617d9", - "IPY_MODEL_f4570a2a6a834672b816a3c3c92674d9", - "IPY_MODEL_56e6cb6825cc46a2918ad113792fcfad" + "IPY_MODEL_47d79aa7c6b647af82a8011a03ee9998", + "IPY_MODEL_c7c395ea8e2445e087e498d7bd31932c", + "IPY_MODEL_0701220c8d274ebf82856fa715f93e3a" ], - "layout": "IPY_MODEL_2276743b098540579a44bab387084257", + "layout": "IPY_MODEL_9b101dc9f09a48478490bc2e1af6d6f0", "tabbable": null, "tooltip": null } }, - "6b304bb9a46443e0bf010d5cb11b422e": { + "a26b139422c8486baaa60664a664d5e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5677,55 +6072,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2c4d2a0d6acb4e3890230f3c2c9bfe68", + "layout": "IPY_MODEL_b75eaab370104141b4c6f5177d957c68", "placeholder": "​", - "style": "IPY_MODEL_61d0c2efb0824d70ac0138f650ac65ef", + "style": "IPY_MODEL_0321558e1f2248a4a77dc93038d153fc", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "6c2f40cf42cc413e8b1040c82a085028": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d8e2ad07a3434005b3e28de5674a34fc", - "IPY_MODEL_43ffe5059e7e475ebc29e46493f6aaa2", - "IPY_MODEL_82514eeb7db2422c95cbe913e49e59dd" - ], - "layout": "IPY_MODEL_4f219139576c49c8b25a132eec1c1644", - "tabbable": null, - "tooltip": null + "value": " 40/40 [00:00<00:00, 56.57it/s]" } }, - "6d3edf2e39d944c09f3fbef854866461": { + "a3df89cbf92b494d911d0d2d692a1723": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "70c567e5ed4d420aa7f58a9bfe7d98f6": { + "a7bf6d664d954ce8948920cffe990bbf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5778,60 +6151,70 @@ "width": null } }, - "70fd4c0942f949219503830958a45c03": { - "model_module": "@jupyter-widgets/base", + "a83344ed6e98426eabf329c5f44403a3": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3421965f67c4426d8b36dfd785b1bf63", + "IPY_MODEL_2429a33f84414829b992fe114424e50a", + "IPY_MODEL_c39181f43eb4427fa7305f7626562a9e" + ], + "layout": "IPY_MODEL_46c3e557ebb340229dcc748eb3ffa273", + "tabbable": null, + "tooltip": null + } + }, + "aa70208a7f7e4688a3dbd3a195d3bb6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "aab1796fdd9140d38b9ef03a593cae1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a03ad15668694b9d87adfc57c4b57c28", + "placeholder": "​", + "style": "IPY_MODEL_1913f376829b4276979eb954c5abffac", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "728c63d0a7f54119aa080aaa6102d38f": { + "aabe4cad481c40eca44a9026dcd4e8a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5884,25 +6267,7 @@ "width": null } }, - "74c23aa172ae42798ea320ca991b942f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "78e8cecb5a6641d5a9de69eb25af212d": { + "b14c7f719b46408680d1288c61b48ef1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5918,66 +6283,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_66018dbdfa8e4496b534e3d80379136d", - "max": 4422102.0, + "layout": "IPY_MODEL_6df5ef22733c45bbbc3872d42e61b702", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_610a71ef770945809dc9f2e4b94664af", - "tabbable": null, - "tooltip": null, - "value": 4422102.0 - } - }, - "798557df3a2647b7986d02dc545587b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c64517cd44d84c8293b4115971217abf", - "placeholder": "​", - "style": "IPY_MODEL_f36e7eec2ef6494ea5dfe75f34bb946e", + "style": "IPY_MODEL_aa70208a7f7e4688a3dbd3a195d3bb6f", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 60000.0 } }, - "7a2680bb83ca418e9bc7dd0bd7182858": { + "b192f59c91d14025ba0b2492bd27b4a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0af0baad7c99404cbce2f5872c14531d", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_57fdb406a0104c008712f455671416ae", - "tabbable": null, - "tooltip": null, - "value": 4.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7b0284c026ce41ef999e0bad78664f3a": { + "b346b1a4bc794cbb81454c9a608dea82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6030,54 +6364,7 @@ "width": null } }, - "7cd770708ca5498492377d6a0fd76616": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0119a979303348feaf5374a2e7f3b418", - "IPY_MODEL_5a01deaf41c841cab934b678df22a7e6", - "IPY_MODEL_3704b910152b45dc924bb624c0ee95f3" - ], - "layout": "IPY_MODEL_465e03a22e1f4b66b9a21c2e90039525", - "tabbable": null, - "tooltip": null - } - }, - "7d944b6142fa4b42a31040ba023cc921": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8839fda3f07946ab99f1eff02138bef9", - "placeholder": "​", - "style": "IPY_MODEL_4be2bfe6a47d40969d0226111c98ad2c", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8586.20 examples/s]" - } - }, - "7de7c4771e83468099e7dd5e21e3dc6d": { + "b3d44f799ab541ef96f5f023f78baae3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6130,30 +6417,7 @@ "width": null } }, - "7f7fd12e202d45a4909d8a8ceaeebfa9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3b6ea79aef284f04a18098981d12f5e7", - "placeholder": "​", - "style": "IPY_MODEL_eebb5bc624d34a7bb328172559a2334c", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8543.66 examples/s]" - } - }, - "804696d71f5c428aa77920387c9f13ab": { + "b56d36b83e774481a77150666ea3584b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6206,66 +6470,7 @@ "width": null } }, - "806b07de0bfe4dc2b704114688fd1694": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "80dbd77206334fa4a9255057329a0f43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "82514eeb7db2422c95cbe913e49e59dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6443147e64204784b6b79779c4b0ece4", - "placeholder": "​", - "style": "IPY_MODEL_8a1fee4cdac341fd9b445fbcbffb8655", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.37it/s]" - } - }, - "82a91f795cc0496d884607edf4c43169": { + "b660a71a145f42419f3c4ef895d68c8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6318,32 +6523,27 @@ "width": null } }, - "83644b7829034008a0cf8f0a63589d9c": { + "b67912d222c045e49bd4d157bb5d6807": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7de7c4771e83468099e7dd5e21e3dc6d", - "placeholder": "​", - "style": "IPY_MODEL_08618be7a9234af1a5348de326d6418b", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 52.85it/s]" - } - }, - "83dffa805ce741a0bea9dd9b781586ec": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b75eaab370104141b4c6f5177d957c68": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", @@ -6394,48 +6594,7 @@ "width": null } }, - "840737321da24bfe8003332a0accc1cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8555634c504d4027997abd8cfba7db7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9413cabdaf84f7c8e9a6c68232b43ae", - "placeholder": "​", - "style": "IPY_MODEL_c72bb5b65a6a48329cdc5dd5ef15e73d", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6952.76 examples/s]" - } - }, - "8839fda3f07946ab99f1eff02138bef9": { + "b9c5d366f68b4024bdb2f77fd2dc0a97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6488,7 +6647,90 @@ "width": null } }, - "884c1f18b9ab4af49db7098fea18ef3d": { + "b9fbad1ce5524fb5a7338c17c549a664": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c6fd7d44b29c4392a0758d28e120776b", + "placeholder": "​", + "style": "IPY_MODEL_ef3ba07b09534776bbd3029f5c272231", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "ba3b082a992647dbb72c0b369efcbecb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bbc24a37bd0042a3aa87d5b284707374": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bcf1e75b26a44b04823d7396d1d00242": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c20a82c4225c41a4867ac2ea3ae9b918", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_df9bbb3e076949908562f9325c764c06", + "tabbable": null, + "tooltip": null, + "value": 5148.0 + } + }, + "bd1004389ba34632a152035fce23cc0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6541,7 +6783,7 @@ "width": null } }, - "886c2364549848efa14fa9cf9f8ebde8": { + "be3b4e290d69438b918302b1ef5e92ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6594,49 +6836,23 @@ "width": null } }, - "8a1fee4cdac341fd9b445fbcbffb8655": { + "be6f840505a94e42aa9f3efb5f70e58d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8af1aec52aef434b81a22b708073556f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0b1ef64e0ea844c4a0efed4b089ecc5e", - "IPY_MODEL_aa62616f2a584678acaa6072d7e59db6", - "IPY_MODEL_67df8310ec724197b5a903618210990a" - ], - "layout": "IPY_MODEL_4a320115b97a42bd89dd7903073750fa", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "9078ad04df284aceade5e9637028e264": { + "bf5b3034d49b4c31b7b06806f6ba4d3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6652,31 +6868,7 @@ "description_width": "" } }, - "926846a8c6954c46acf37f4dd63e7eb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_116f6fc2329645d68a83663b5feb94ce", - "IPY_MODEL_78e8cecb5a6641d5a9de69eb25af212d", - "IPY_MODEL_6538276c3913471e82d12b7dfb5e849f" - ], - "layout": "IPY_MODEL_22b2d39a70b04bfeb7943490bd911b90", - "tabbable": null, - "tooltip": null - } - }, - "92906e8f1e224908beeb119e4f788514": { + "c1543a92e1184183af0cbfede9db7a15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6691,15 +6883,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_83dffa805ce741a0bea9dd9b781586ec", + "layout": "IPY_MODEL_28277410e85e4932820b42630bb0f742", "placeholder": "​", - "style": "IPY_MODEL_faaac1dac8fa4eccb56fbb10b45393c3", + "style": "IPY_MODEL_8ee5f8a57b194864b742d798195824a9", "tabbable": null, "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 111MB/s]" + "value": " 40/40 [00:00<00:00, 61.63it/s]" } }, - "96697881a93440babad369ae2e2fd4b8": { + "c17e6593dbb94d3a9ee695742a582d56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6714,34 +6906,92 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c8b3aec713be46d29ce76b2b35b3db44", - "IPY_MODEL_1d157e6477da483192d99d6ea6dc4738", - "IPY_MODEL_7d944b6142fa4b42a31040ba023cc921" + "IPY_MODEL_632e91a3058a43858c9cfc7dd4ab8224", + "IPY_MODEL_309aab0ce99e45c8b890fac8e63f3ad6", + "IPY_MODEL_daa103757a3a448f8cc15cde815426a1" ], - "layout": "IPY_MODEL_9e2827b7c35b4ceea2534454dcbc9f13", + "layout": "IPY_MODEL_c666720b6dc149eea49a691afd01db73", "tabbable": null, "tooltip": null } }, - "973ecb943cf94facbeaff08a43b11a14": { + "c20a82c4225c41a4867ac2ea3ae9b918": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c39181f43eb4427fa7305f7626562a9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_340aeb36bd33457c890c7f97b3f4f1c6", + "placeholder": "​", + "style": "IPY_MODEL_93810fa8e7464aabacc9c1e1529a1762", + "tabbable": null, + "tooltip": null, + "value": " 4.83k/4.83k [00:00<00:00, 597kB/s]" } }, - "97665d87bb634843b13c86ccc743aab1": { + "c4fb2348b5aa4992be3e594f1866e0df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6756,15 +7006,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0013256c6393414d897e747fbb692b2e", + "layout": "IPY_MODEL_5359ad8c54da428fb5c392d67cc59a1b", "placeholder": "​", - "style": "IPY_MODEL_303be7344e754dc0b81cc4362585ad42", + "style": "IPY_MODEL_765027b1c316405aa103d28e364ef2f0", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.52it/s]" + "value": " 10000/10000 [00:01<00:00, 8728.63 examples/s]" } }, - "9776abbe72d44baf86b75b8e6e2ec747": { + "c53e32e7109e4cfda8681ea4531b22ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6779,38 +7029,66 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4a6f02046de3424183282c1ef1a1321c", + "layout": "IPY_MODEL_053d6bcb7ffe4ee1aff83f2ff8289f7b", "placeholder": "​", - "style": "IPY_MODEL_806b07de0bfe4dc2b704114688fd1694", + "style": "IPY_MODEL_d26f4deb7d5d4b65affd35aad5f80d52", "tabbable": null, "tooltip": null, "value": "100%" } }, - "97cb96d8ca67417bb98eb22b83b67f3d": { + "c5712c9babdf4f0badd7ccb49b423629": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9d8be42381424e8386712e589902ea33": { - "model_module": "@jupyter-widgets/base", + "c5bbff9c879b4d0caa3c9cb4c424ef87": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f6111de8eda2417e962ee868c39a3fa8", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8cbb314c9a5c481abea7647e5b1a6591", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "c666720b6dc149eea49a691afd01db73": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -6856,7 +7134,7 @@ "width": null } }, - "9e2827b7c35b4ceea2534454dcbc9f13": { + "c6fd7d44b29c4392a0758d28e120776b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6909,7 +7187,33 @@ "width": null } }, - "9e819f5dcbd74990a4ed32e6c6f49d6e": { + "c7c395ea8e2445e087e498d7bd31932c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a7bf6d664d954ce8948920cffe990bbf", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_68e2162e5d5141faaace8be366af170d", + "tabbable": null, + "tooltip": null, + "value": 4422102.0 + } + }, + "ca10f77b43a24fe6aa44d88c348f21ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6927,60 +7231,56 @@ "text_color": null } }, - "9eaf779387934026b193e48e9bb55a86": { - "model_module": "@jupyter-widgets/base", + "cd403484b0244f29813a01bd629db4a7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0ebef90cea924ea28f7f9ad9dd121bd1", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c527e0277824068b5b3b0c56c2cb88c", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "cd7691b2898c48ccbcce3c047dbbbad9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6a3142644e9e40a8b2c8234302707a6b", + "placeholder": "​", + "style": "IPY_MODEL_5a47d7b41af140cc813fd5444cda9c01", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "a13807ee4fd84d609c078799a117b6c5": { + "cd87f818728744bdb00fbec6bc1c99c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7033,7 +7333,7 @@ "width": null } }, - "a2738be416ce480c95fff046962f1137": { + "cf7cc11f28ea46039cc95c145d1ce401": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7048,16 +7348,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9776abbe72d44baf86b75b8e6e2ec747", - "IPY_MODEL_184ad9317d854ba1a1ced110910cca10", - "IPY_MODEL_d5b6ab4287134b9b8225c58b595314d0" + "IPY_MODEL_c53e32e7109e4cfda8681ea4531b22ec", + "IPY_MODEL_c5bbff9c879b4d0caa3c9cb4c424ef87", + "IPY_MODEL_c1543a92e1184183af0cbfede9db7a15" ], - "layout": "IPY_MODEL_2ea002ba5ef6449d8d22840ba751df3c", + "layout": "IPY_MODEL_49235cb19b1240da96da6be6a4be548f", "tabbable": null, "tooltip": null } }, - "a28b02ad590c40019d88dd42a2c3e05a": { + "d1af880c7c064b3f92991455aee3c3cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7110,7 +7410,25 @@ "width": null } }, - "a502ea89a10b4d3f8b810850b097c4c8": { + "d26f4deb7d5d4b65affd35aad5f80d52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d3d431ac20a14bea9e787f3af6b32050": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7163,49 +7481,59 @@ "width": null } }, - "a5bb522450e449f9b7e10fcb83ff9537": { + "d42a8be16f744606b9f3e9bf355c8f95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b56d36b83e774481a77150666ea3584b", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bf5b3034d49b4c31b7b06806f6ba4d3d", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "a6e2987ba28d48c28d884b33288562df": { + "d53d95a4952b45b89e345becafffa918": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ac29494915a144d3970c7c69d41b68c3", - "IPY_MODEL_46b2604d41d1439898a0f49c0ba53f78", - "IPY_MODEL_92906e8f1e224908beeb119e4f788514" - ], - "layout": "IPY_MODEL_a28b02ad590c40019d88dd42a2c3e05a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b346b1a4bc794cbb81454c9a608dea82", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_58488a758cc84ed19cb308e894b44ff6", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "a9da43a6101a4854b4273cf805b61e2f": { + "d5fb1eccbd4a473bb932d6e2dc592e7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7258,25 +7586,7 @@ "width": null } }, - "aa4c4e45414a4a46a86dfc2a94bebb72": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "aa62616f2a584678acaa6072d7e59db6": { + "d7e915eeaf6a4364a2594d8c712ea0fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7292,35 +7602,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_15aa61db4cc44bdc991db5521f2fa425", - "max": 40.0, + "layout": "IPY_MODEL_646419f558064e69b0146dce4f2437ab", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_24bcebdd6f9f41bb84c60f2b915efbc6", + "style": "IPY_MODEL_1c793150c7994b6796a456cc47656766", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 60000.0 } }, - "ab22b295e4a042c898986f757b7461df": { + "d81d84df0bb349ecb366777bc7e66581": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "ac29494915a144d3970c7c69d41b68c3": { + "d997612f502a40a2990904da9ebae4b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7335,68 +7643,86 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_213272b1b45445c7b3f2b35602fa31b9", + "layout": "IPY_MODEL_b3d44f799ab541ef96f5f023f78baae3", "placeholder": "​", - "style": "IPY_MODEL_61751669aa9c4b51923ed3a7deea7f56", + "style": "IPY_MODEL_e7b50e39e7524f8fbeafa251e647f16a", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 5.15k/5.15k [00:00<00:00, 840kB/s]" } }, - "b578fa4f2c45411b949fd41b642899ec": { - "model_module": "@jupyter-widgets/base", + "daa103757a3a448f8cc15cde815426a1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2f8ded1032fd45c7a199a5a235b7da6a", + "placeholder": "​", + "style": "IPY_MODEL_b192f59c91d14025ba0b2492bd27b4a9", + "tabbable": null, + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.50MB/s]" } }, - "bc3ee82f278d4b7facddd3df9e43d736": { + "dac75bdcb107415d915bb9ad97029fe4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aab1796fdd9140d38b9ef03a593cae1d", + "IPY_MODEL_bcf1e75b26a44b04823d7396d1d00242", + "IPY_MODEL_d997612f502a40a2990904da9ebae4b7" + ], + "layout": "IPY_MODEL_fcab7035ec76447187b2c1f08507f4b3", + "tabbable": null, + "tooltip": null + } + }, + "dcb047742e7c4146a32757077d93eb95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_71528aa09ab0432cb160e3e3b4a6acc0", + "IPY_MODEL_d42a8be16f744606b9f3e9bf355c8f95", + "IPY_MODEL_5aa1569ac03d4c3d83ff4ee430d4e730" + ], + "layout": "IPY_MODEL_565a741194564417aaf7b1fd21fa7b10", + "tabbable": null, + "tooltip": null + } + }, + "dd86764aad08416fbaa3d7ad13f99a88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7411,15 +7737,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29ad3993f94346419af35928193d2eb8", + "layout": "IPY_MODEL_cd87f818728744bdb00fbec6bc1c99c8", "placeholder": "​", - "style": "IPY_MODEL_9e819f5dcbd74990a4ed32e6c6f49d6e", + "style": "IPY_MODEL_ba3b082a992647dbb72c0b369efcbecb", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 40/40 [00:00<00:00, 63.66it/s]" } }, - "be62105b70444309b42629557d23dd31": { + "ddaad249589d406f800a55cd3d9d30cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7437,7 +7763,7 @@ "text_color": null } }, - "c15afcf9ca54456fadfde7d364d41e12": { + "de1e258e43d7442b9cd0940a7c14f8fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7455,108 +7781,33 @@ "text_color": null } }, - "c47e19aac35c46eb9cad874bb2fde728": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c48d73b75d8543b7900f7e3a24c14ff0": { + "df18ff2baa2146ce9fdced9dc9025023": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bc3ee82f278d4b7facddd3df9e43d736", - "IPY_MODEL_004fcea71628418685555fb760dec429", - "IPY_MODEL_8555634c504d4027997abd8cfba7db7f" - ], - "layout": "IPY_MODEL_f3268349f66e4fca99547204d4fed8cf", - "tabbable": null, - "tooltip": null - } - }, - "c4fa7fdeeb9446ddbf6516f8963fa52e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6b304bb9a46443e0bf010d5cb11b422e", - "IPY_MODEL_cc170bcc85274d65b3c110def1444c5a", - "IPY_MODEL_e4168627ec534009a964921f659ea6bb" - ], - "layout": "IPY_MODEL_fd82af84285840158e600b4d0204c84e", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eafe7f20472c4c3e82c44253748fa8df", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bbc24a37bd0042a3aa87d5b284707374", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 4.0 } }, - "c5138f4ab850429ba23c48fd5efae242": { + "df9bbb3e076949908562f9325c764c06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -7572,7 +7823,7 @@ "description_width": "" } }, - "c5cd2207d2c8442b87534fd93bb1dd5e": { + "e23f8197e5884501a75740e26d8e9e87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7587,15 +7838,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1e1a87a8a45e4b57adf13faea5793824", + "layout": "IPY_MODEL_0ea3cf33c1cb4c2797daeaac23d505c4", "placeholder": "​", - "style": "IPY_MODEL_caba801044f146d4838a5424c49f290c", + "style": "IPY_MODEL_4c0da95bd9e34405968a7b43a426f555", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": " 40/40 [00:00<00:00, 59.76it/s]" } }, - "c64517cd44d84c8293b4115971217abf": { + "e4f46e4b6dea45b08c00df4c858c2e01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7648,25 +7899,7 @@ "width": null } }, - "c72bb5b65a6a48329cdc5dd5ef15e73d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c72eded270c04594b9cd5ab865ec18ee": { + "e6baa32cd3bf48bbb3299eee55d39a07": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7719,101 +7952,33 @@ "width": null } }, - "c8b3aec713be46d29ce76b2b35b3db44": { + "e77e939384cd44dda51896a914105412": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_194f679dc6e14a978e8925bb038e3793", - "placeholder": "​", - "style": "IPY_MODEL_28a88184c039419c865f50a0132f936e", + "layout": "IPY_MODEL_7cc1a2ab2a22477e9711561211e13f21", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_157495f23b85447197472c8583f986a4", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "c9c9176e7a0b4f09b751df8cc4e0666a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ca407d230f484390a47362031adf31b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 60000.0 } }, - "caba801044f146d4838a5424c49f290c": { + "e7b50e39e7524f8fbeafa251e647f16a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7831,112 +7996,30 @@ "text_color": null } }, - "cc170bcc85274d65b3c110def1444c5a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e5b12b259dcd4360b125dc57fbb0fca2", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_24daedc2073f4af4960d8c11c761dfdc", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "cc7c41fca7e14c8384b2ce49dac60516": { + "e848681b5d894f569bed4b32add7e687": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_728c63d0a7f54119aa080aaa6102d38f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_97cb96d8ca67417bb98eb22b83b67f3d", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "cf74cfcebf544df0b3274fc9e22c1e9c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3d431ac20a14bea9e787f3af6b32050", + "placeholder": "​", + "style": "IPY_MODEL_7fad793d634f473d8744175a5f3f9d4c", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" } }, - "d1dd8bf5204a4dccaa8161ea728fbc07": { + "e88d7ccca07b4801921e8888e04413a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7989,7 +8072,7 @@ "width": null } }, - "d5b6ab4287134b9b8225c58b595314d0": { + "e903c2673aea40ff8165eb514306d801": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8004,15 +8087,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_22a0669e75de415dac70a25c5054d25b", + "layout": "IPY_MODEL_77e7a0f9b870494bb4c571576cd3e4a8", "placeholder": "​", - "style": "IPY_MODEL_aa4c4e45414a4a46a86dfc2a94bebb72", + "style": "IPY_MODEL_2f74bc0d09e84164ae62a6edfda0b203", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.87it/s]" + "value": "Downloading data: 100%" } }, - "d677f0e9aa7d41e8851465e678a739d6": { + "e968873bf55440c7a5c3dc2d54a2fffa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8027,15 +8110,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a9da43a6101a4854b4273cf805b61e2f", + "layout": "IPY_MODEL_b660a71a145f42419f3c4ef895d68c8d", "placeholder": "​", - "style": "IPY_MODEL_74c23aa172ae42798ea320ca991b942f", + "style": "IPY_MODEL_de1e258e43d7442b9cd0940a7c14f8fd", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 26.4M/26.4M [00:00<00:00, 100MB/s]" + } + }, + "eaf9477f9f65458fbc77305c13d9490e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7a100ccc67564d02b628a843ff1d910a", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_62d3e6c861184243978b09cbb9180e98", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "d68dfef9ba6d482e8e9c7a037d2c1ef7": { + "eafe7f20472c4c3e82c44253748fa8df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8088,30 +8197,73 @@ "width": null } }, - "d8e2ad07a3434005b3e28de5674a34fc": { + "ecb36eb02e7843c881d512c1e1980bfc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_23c83cfb62484a5aa0c6f3daa481f042", - "placeholder": "​", - "style": "IPY_MODEL_2d6fb7b4b561449a9dee9ff41aedb47f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_46a13fa57d7241ffbd2a05fc67f50cba", + "IPY_MODEL_62a442f149b247ff8ccd9a45e243f04a", + "IPY_MODEL_c4fb2348b5aa4992be3e594f1866e0df" + ], + "layout": "IPY_MODEL_f5af569c389d402cafb9e02f3dd484b3", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null + } + }, + "eeb48354781f459d926f56b9d9f2d412": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4f6264d4caa6476b9b98871af8645888", + "IPY_MODEL_2cd1ee001cd24600a736d0c202a6dedf", + "IPY_MODEL_fd39e14b3b5d47f1a9c764d7f867f328" + ], + "layout": "IPY_MODEL_be3b4e290d69438b918302b1ef5e92ff", + "tabbable": null, + "tooltip": null + } + }, + "ef3ba07b09534776bbd3029f5c272231": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d9413cabdaf84f7c8e9a6c68232b43ae": { + "f5af569c389d402cafb9e02f3dd484b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8164,7 +8316,7 @@ "width": null } }, - "d9fce56a4501415dbadef0b6597c3c59": { + "f6111de8eda2417e962ee868c39a3fa8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8217,23 +8369,7 @@ "width": null } }, - "dcd9b7afd17f44798d2064cf5a3862de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e1158e5544334ef2b34dff2aa52d6bf0": { + "f849b0a54a9341d48816de434459861d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8286,31 +8422,25 @@ "width": null } }, - "e1894c9537a6499eb9bfed91c77fb518": { + "f9f44c7999cb4bd5a40d1e6c0568d6c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c5cd2207d2c8442b87534fd93bb1dd5e", - "IPY_MODEL_7a2680bb83ca418e9bc7dd0bd7182858", - "IPY_MODEL_0ca0287b646c497e8e812ef207ee400f" - ], - "layout": "IPY_MODEL_70c567e5ed4d420aa7f58a9bfe7d98f6", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e4168627ec534009a964921f659ea6bb": { + "fa1d6736721d4514a810de77663bcbda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8325,15 +8455,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e1158e5544334ef2b34dff2aa52d6bf0", + "layout": "IPY_MODEL_0a065988806d4c61b5a9536feff6aa88", "placeholder": "​", - "style": "IPY_MODEL_840737321da24bfe8003332a0accc1cb", + "style": "IPY_MODEL_a3df89cbf92b494d911d0d2d692a1723", "tabbable": null, "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.41MB/s]" + "value": "100%" } }, - "e4613e030b794d219b1926a1e5b67f63": { + "fbcb15dedf2043518d6d958db3a9251d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8351,7 +8481,7 @@ "text_color": null } }, - "e5b12b259dcd4360b125dc57fbb0fca2": { + "fcab7035ec76447187b2c1f08507f4b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8404,49 +8534,30 @@ "width": null } }, - "eebb5bc624d34a7bb328172559a2334c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "efe64e5c44d94c6bb0bed3ad6e844c33": { + "fd39e14b3b5d47f1a9c764d7f867f328": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d677f0e9aa7d41e8851465e678a739d6", - "IPY_MODEL_16ff670713eb4f70a0cc1728a34d5452", - "IPY_MODEL_7f7fd12e202d45a4909d8a8ceaeebfa9" - ], - "layout": "IPY_MODEL_cf74cfcebf544df0b3274fc9e22c1e9c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e57a6b9a8a646ca8412bbe009b0f38d", + "placeholder": "​", + "style": "IPY_MODEL_c5712c9babdf4f0badd7ccb49b423629", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 8.85k/8.85k [00:00<00:00, 1.49MB/s]" } }, - "f3268349f66e4fca99547204d4fed8cf": { + "fd69a19b7d0147feafb879a2901669a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8499,74 +8610,7 @@ "width": null } }, - "f36e7eec2ef6494ea5dfe75f34bb946e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f4570a2a6a834672b816a3c3c92674d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d1dd8bf5204a4dccaa8161ea728fbc07", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_57f0147d0b40481487ead645778ad6f0", - "tabbable": null, - "tooltip": null, - "value": 5148.0 - } - }, - "f6229a7aab1d42ca8805f534935617d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a13807ee4fd84d609c078799a117b6c5", - "placeholder": "​", - "style": "IPY_MODEL_c15afcf9ca54456fadfde7d364d41e12", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "f7d9dcc168074809a9f461109ae607c0": { + "fe373b9b0fd449b5b8ebf17e3268d1d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8619,51 +8663,7 @@ "width": null } }, - "faaac1dac8fa4eccb56fbb10b45393c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fabe89de1f3f41f493f2490c661f6d02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c72eded270c04594b9cd5ab865ec18ee", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_01972cf3b8f94fab866c986e21f7f91f", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "fd82af84285840158e600b4d0204c84e": { + "ff995d6039774b1795125f0d38e2290c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/tabular.html b/master/tutorials/datalab/tabular.html index 383216817..1e43c3bd8 100644 --- a/master/tutorials/datalab/tabular.html +++ b/master/tutorials/datalab/tabular.html @@ -1521,12 +1521,13 @@

    Near-duplicate issuesWe identified another set of exact duplicates in our dataset! Including near/exact duplicates in a dataset may have unintended effects on models; be wary about splitting them across training/test sets. Learn more about handling near duplicates detected in a dataset from the FAQ.

    This tutorial highlighted a straightforward approach to detect potentially incorrect information in any tabular dataset. Just use Datalab with any ML model – the better the model, the more accurate the data errors detected by Datalab will be!

    -
    -

    Easy Mode#

    -

    Cleanlab is most effective when you run this code with a good ML model. Try to produce the best ML model you can for your data (instead of the basic model from this tutorial). If you don’t know the best ML model for your data, try Cleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data -issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    -
    +
    +

    Spending too much time on data quality?#

    +

    Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.

    +

    That’s why we built Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

    +

    The modern AI pipeline automated with Cleanlab Studio

    +

    @@ -1613,9 +1614,9 @@

    Easy ModeLabel issues
  • Outlier issues
  • Near-duplicate issues
  • -
  • Easy Mode
  • +
  • Spending too much time on data quality?
  • diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index a6ed7ee61..fa39299c4 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:56.051172Z", - "iopub.status.busy": "2024-07-30T16:35:56.050992Z", - "iopub.status.idle": "2024-07-30T16:35:57.510285Z", - "shell.execute_reply": "2024-07-30T16:35:57.509737Z" + "iopub.execute_input": "2024-08-02T23:21:34.625401Z", + "iopub.status.busy": "2024-08-02T23:21:34.625214Z", + "iopub.status.idle": "2024-08-02T23:21:36.031325Z", + "shell.execute_reply": "2024-08-02T23:21:36.030762Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:57.512868Z", - "iopub.status.busy": "2024-07-30T16:35:57.512386Z", - "iopub.status.idle": "2024-07-30T16:35:57.530631Z", - "shell.execute_reply": "2024-07-30T16:35:57.530189Z" + "iopub.execute_input": "2024-08-02T23:21:36.033876Z", + "iopub.status.busy": "2024-08-02T23:21:36.033576Z", + "iopub.status.idle": "2024-08-02T23:21:36.052522Z", + "shell.execute_reply": "2024-08-02T23:21:36.052073Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:57.532740Z", - "iopub.status.busy": "2024-07-30T16:35:57.532388Z", - "iopub.status.idle": "2024-07-30T16:35:57.570290Z", - "shell.execute_reply": "2024-07-30T16:35:57.569781Z" + "iopub.execute_input": "2024-08-02T23:21:36.054768Z", + "iopub.status.busy": "2024-08-02T23:21:36.054504Z", + "iopub.status.idle": "2024-08-02T23:21:36.078555Z", + "shell.execute_reply": "2024-08-02T23:21:36.078092Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:57.572398Z", - "iopub.status.busy": "2024-07-30T16:35:57.572060Z", - "iopub.status.idle": "2024-07-30T16:35:57.575328Z", - "shell.execute_reply": "2024-07-30T16:35:57.574903Z" + "iopub.execute_input": "2024-08-02T23:21:36.080474Z", + "iopub.status.busy": "2024-08-02T23:21:36.080294Z", + "iopub.status.idle": "2024-08-02T23:21:36.083816Z", + "shell.execute_reply": "2024-08-02T23:21:36.083361Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:57.577365Z", - "iopub.status.busy": "2024-07-30T16:35:57.576966Z", - "iopub.status.idle": "2024-07-30T16:35:57.584694Z", - "shell.execute_reply": "2024-07-30T16:35:57.584132Z" + "iopub.execute_input": "2024-08-02T23:21:36.085725Z", + "iopub.status.busy": "2024-08-02T23:21:36.085553Z", + "iopub.status.idle": "2024-08-02T23:21:36.092911Z", + "shell.execute_reply": "2024-08-02T23:21:36.092464Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:57.586954Z", - "iopub.status.busy": "2024-07-30T16:35:57.586638Z", - "iopub.status.idle": "2024-07-30T16:35:57.589280Z", - "shell.execute_reply": "2024-07-30T16:35:57.588805Z" + "iopub.execute_input": "2024-08-02T23:21:36.094839Z", + "iopub.status.busy": "2024-08-02T23:21:36.094665Z", + "iopub.status.idle": "2024-08-02T23:21:36.097347Z", + "shell.execute_reply": "2024-08-02T23:21:36.096835Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:35:57.591284Z", - "iopub.status.busy": "2024-07-30T16:35:57.590950Z", - "iopub.status.idle": "2024-07-30T16:36:00.688049Z", - "shell.execute_reply": "2024-07-30T16:36:00.687486Z" + "iopub.execute_input": "2024-08-02T23:21:36.099385Z", + "iopub.status.busy": "2024-08-02T23:21:36.099048Z", + "iopub.status.idle": "2024-08-02T23:21:39.178225Z", + "shell.execute_reply": "2024-08-02T23:21:39.177680Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:00.690868Z", - "iopub.status.busy": "2024-07-30T16:36:00.690451Z", - "iopub.status.idle": "2024-07-30T16:36:00.700262Z", - "shell.execute_reply": "2024-07-30T16:36:00.699795Z" + "iopub.execute_input": "2024-08-02T23:21:39.181086Z", + "iopub.status.busy": "2024-08-02T23:21:39.180688Z", + "iopub.status.idle": "2024-08-02T23:21:39.190195Z", + "shell.execute_reply": "2024-08-02T23:21:39.189607Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:00.702232Z", - "iopub.status.busy": "2024-07-30T16:36:00.702054Z", - "iopub.status.idle": "2024-07-30T16:36:02.934148Z", - "shell.execute_reply": "2024-07-30T16:36:02.933492Z" + "iopub.execute_input": "2024-08-02T23:21:39.192491Z", + "iopub.status.busy": "2024-08-02T23:21:39.192157Z", + "iopub.status.idle": "2024-08-02T23:21:41.385468Z", + "shell.execute_reply": "2024-08-02T23:21:41.384800Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:02.936729Z", - "iopub.status.busy": "2024-07-30T16:36:02.936205Z", - "iopub.status.idle": "2024-07-30T16:36:02.954952Z", - "shell.execute_reply": "2024-07-30T16:36:02.954378Z" + "iopub.execute_input": "2024-08-02T23:21:41.388190Z", + "iopub.status.busy": "2024-08-02T23:21:41.387567Z", + "iopub.status.idle": "2024-08-02T23:21:41.406849Z", + "shell.execute_reply": "2024-08-02T23:21:41.406379Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:02.957056Z", - "iopub.status.busy": "2024-07-30T16:36:02.956878Z", - "iopub.status.idle": "2024-07-30T16:36:02.964858Z", - "shell.execute_reply": "2024-07-30T16:36:02.964382Z" + "iopub.execute_input": "2024-08-02T23:21:41.408952Z", + "iopub.status.busy": "2024-08-02T23:21:41.408765Z", + "iopub.status.idle": "2024-08-02T23:21:41.417080Z", + "shell.execute_reply": "2024-08-02T23:21:41.416607Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:02.966898Z", - "iopub.status.busy": "2024-07-30T16:36:02.966576Z", - "iopub.status.idle": "2024-07-30T16:36:02.975334Z", - "shell.execute_reply": "2024-07-30T16:36:02.974877Z" + "iopub.execute_input": "2024-08-02T23:21:41.419162Z", + "iopub.status.busy": "2024-08-02T23:21:41.418912Z", + "iopub.status.idle": "2024-08-02T23:21:41.428332Z", + "shell.execute_reply": "2024-08-02T23:21:41.427869Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:02.977396Z", - "iopub.status.busy": "2024-07-30T16:36:02.977076Z", - "iopub.status.idle": "2024-07-30T16:36:02.984945Z", - "shell.execute_reply": "2024-07-30T16:36:02.984391Z" + "iopub.execute_input": "2024-08-02T23:21:41.430451Z", + "iopub.status.busy": "2024-08-02T23:21:41.430111Z", + "iopub.status.idle": "2024-08-02T23:21:41.437844Z", + "shell.execute_reply": "2024-08-02T23:21:41.437283Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:02.987002Z", - "iopub.status.busy": "2024-07-30T16:36:02.986692Z", - "iopub.status.idle": "2024-07-30T16:36:02.995395Z", - "shell.execute_reply": "2024-07-30T16:36:02.994843Z" + "iopub.execute_input": "2024-08-02T23:21:41.439955Z", + "iopub.status.busy": "2024-08-02T23:21:41.439619Z", + "iopub.status.idle": "2024-08-02T23:21:41.448535Z", + "shell.execute_reply": "2024-08-02T23:21:41.447977Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:02.997442Z", - "iopub.status.busy": "2024-07-30T16:36:02.997120Z", - "iopub.status.idle": "2024-07-30T16:36:03.004551Z", - "shell.execute_reply": "2024-07-30T16:36:03.004009Z" + "iopub.execute_input": "2024-08-02T23:21:41.450685Z", + "iopub.status.busy": "2024-08-02T23:21:41.450360Z", + "iopub.status.idle": "2024-08-02T23:21:41.457701Z", + "shell.execute_reply": "2024-08-02T23:21:41.457210Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:03.006659Z", - "iopub.status.busy": "2024-07-30T16:36:03.006343Z", - "iopub.status.idle": "2024-07-30T16:36:03.014117Z", - "shell.execute_reply": "2024-07-30T16:36:03.013629Z" + "iopub.execute_input": "2024-08-02T23:21:41.459831Z", + "iopub.status.busy": "2024-08-02T23:21:41.459473Z", + "iopub.status.idle": "2024-08-02T23:21:41.466693Z", + "shell.execute_reply": "2024-08-02T23:21:41.466243Z" } }, "outputs": [ @@ -1290,9 +1290,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Easy Mode \n", + "## Spending too much time on data quality?\n", "\n", - "Cleanlab is most effective when you run this code with a good ML model. Try to produce the best ML model you can for your data (instead of the basic model from this tutorial). If you don't know the best ML model for your data, try [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) which will automatically produce one for you. Super easy to use, [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points -- all powered by a system that automatically trains/deploys the best ML model for your data. [Try it for free!](https://cleanlab.ai/signup/)" + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

    \n", + " \"The\n", + "

    " ] }, { @@ -1300,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:03.016347Z", - "iopub.status.busy": "2024-07-30T16:36:03.016027Z", - "iopub.status.idle": "2024-07-30T16:36:03.024539Z", - "shell.execute_reply": "2024-07-30T16:36:03.023965Z" + "iopub.execute_input": "2024-08-02T23:21:41.468785Z", + "iopub.status.busy": "2024-08-02T23:21:41.468507Z", + "iopub.status.idle": "2024-08-02T23:21:41.477200Z", + "shell.execute_reply": "2024-08-02T23:21:41.476679Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index ae13fe500..e92c42578 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin'}
    +Classes: {'supported_cards_and_currencies', 'beneficiary_not_allowed', 'getting_spare_card', 'cancel_transfer', 'card_payment_fee_charged', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'change_pin', 'card_about_to_expire'}
     

    Let’s view the i-th example in the dataset:

    @@ -1548,12 +1548,13 @@

    Non-IID issues (data drift) -

    Easy Mode#

    -

    Cleanlab is most effective when you run this code with a good ML model. Try to produce the best ML model you can for your data (instead of the basic model from this tutorial). If you don’t know the best ML model for your data, try Cleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data -issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    - +
    +

    Spending too much time on data quality?#

    +

    Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.

    +

    That’s why we built Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

    +

    The modern AI pipeline automated with Cleanlab Studio

    +

    @@ -1640,9 +1641,9 @@

    Easy ModeOutlier issues
  • Near-duplicate issues
  • Non-IID issues (data drift)
  • -
  • Easy Mode
  • +
  • Spending too much time on data quality?
  • diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index b380e2cea..ae24736d8 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:05.906897Z", - "iopub.status.busy": "2024-07-30T16:36:05.906716Z", - "iopub.status.idle": "2024-07-30T16:36:09.210694Z", - "shell.execute_reply": "2024-07-30T16:36:09.210137Z" + "iopub.execute_input": "2024-08-02T23:21:44.540425Z", + "iopub.status.busy": "2024-08-02T23:21:44.540253Z", + "iopub.status.idle": "2024-08-02T23:21:47.824794Z", + "shell.execute_reply": "2024-08-02T23:21:47.824202Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:09.213471Z", - "iopub.status.busy": "2024-07-30T16:36:09.212961Z", - "iopub.status.idle": "2024-07-30T16:36:09.216206Z", - "shell.execute_reply": "2024-07-30T16:36:09.215755Z" + "iopub.execute_input": "2024-08-02T23:21:47.827543Z", + "iopub.status.busy": "2024-08-02T23:21:47.827067Z", + "iopub.status.idle": "2024-08-02T23:21:47.830552Z", + "shell.execute_reply": "2024-08-02T23:21:47.829969Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:09.218344Z", - "iopub.status.busy": "2024-07-30T16:36:09.217971Z", - "iopub.status.idle": "2024-07-30T16:36:09.221010Z", - "shell.execute_reply": "2024-07-30T16:36:09.220555Z" + "iopub.execute_input": "2024-08-02T23:21:47.832743Z", + "iopub.status.busy": "2024-08-02T23:21:47.832414Z", + "iopub.status.idle": "2024-08-02T23:21:47.835675Z", + "shell.execute_reply": "2024-08-02T23:21:47.835102Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:09.223151Z", - "iopub.status.busy": "2024-07-30T16:36:09.222813Z", - "iopub.status.idle": "2024-07-30T16:36:09.264547Z", - "shell.execute_reply": "2024-07-30T16:36:09.263969Z" + "iopub.execute_input": "2024-08-02T23:21:47.837826Z", + "iopub.status.busy": "2024-08-02T23:21:47.837474Z", + "iopub.status.idle": "2024-08-02T23:21:47.861187Z", + "shell.execute_reply": "2024-08-02T23:21:47.860585Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:09.266828Z", - "iopub.status.busy": "2024-07-30T16:36:09.266456Z", - "iopub.status.idle": "2024-07-30T16:36:09.270175Z", - "shell.execute_reply": "2024-07-30T16:36:09.269659Z" + "iopub.execute_input": "2024-08-02T23:21:47.863473Z", + "iopub.status.busy": "2024-08-02T23:21:47.863101Z", + "iopub.status.idle": "2024-08-02T23:21:47.867008Z", + "shell.execute_reply": "2024-08-02T23:21:47.866495Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin'}\n" + "Classes: {'supported_cards_and_currencies', 'beneficiary_not_allowed', 'getting_spare_card', 'cancel_transfer', 'card_payment_fee_charged', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'change_pin', 'card_about_to_expire'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:09.272350Z", - "iopub.status.busy": "2024-07-30T16:36:09.271989Z", - "iopub.status.idle": "2024-07-30T16:36:09.275119Z", - "shell.execute_reply": "2024-07-30T16:36:09.274559Z" + "iopub.execute_input": "2024-08-02T23:21:47.869127Z", + "iopub.status.busy": "2024-08-02T23:21:47.868786Z", + "iopub.status.idle": "2024-08-02T23:21:47.872006Z", + "shell.execute_reply": "2024-08-02T23:21:47.871455Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:09.277262Z", - "iopub.status.busy": "2024-07-30T16:36:09.276911Z", - "iopub.status.idle": "2024-07-30T16:36:13.012240Z", - "shell.execute_reply": "2024-07-30T16:36:13.011588Z" + "iopub.execute_input": "2024-08-02T23:21:47.874101Z", + "iopub.status.busy": "2024-08-02T23:21:47.873920Z", + "iopub.status.idle": "2024-08-02T23:21:51.371823Z", + "shell.execute_reply": "2024-08-02T23:21:51.371151Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:13.015209Z", - "iopub.status.busy": "2024-07-30T16:36:13.014850Z", - "iopub.status.idle": "2024-07-30T16:36:13.913858Z", - "shell.execute_reply": "2024-07-30T16:36:13.913251Z" + "iopub.execute_input": "2024-08-02T23:21:51.374609Z", + "iopub.status.busy": "2024-08-02T23:21:51.374204Z", + "iopub.status.idle": "2024-08-02T23:21:52.273008Z", + "shell.execute_reply": "2024-08-02T23:21:52.272406Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:13.917763Z", - "iopub.status.busy": "2024-07-30T16:36:13.916780Z", - "iopub.status.idle": "2024-07-30T16:36:13.920912Z", - "shell.execute_reply": "2024-07-30T16:36:13.920410Z" + "iopub.execute_input": "2024-08-02T23:21:52.276055Z", + "iopub.status.busy": "2024-08-02T23:21:52.275635Z", + "iopub.status.idle": "2024-08-02T23:21:52.278641Z", + "shell.execute_reply": "2024-08-02T23:21:52.278123Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:13.924505Z", - "iopub.status.busy": "2024-07-30T16:36:13.923570Z", - "iopub.status.idle": "2024-07-30T16:36:16.057240Z", - "shell.execute_reply": "2024-07-30T16:36:16.056500Z" + "iopub.execute_input": "2024-08-02T23:21:52.281114Z", + "iopub.status.busy": "2024-08-02T23:21:52.280693Z", + "iopub.status.idle": "2024-08-02T23:21:54.282307Z", + "shell.execute_reply": "2024-08-02T23:21:54.281655Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.060459Z", - "iopub.status.busy": "2024-07-30T16:36:16.059879Z", - "iopub.status.idle": "2024-07-30T16:36:16.084329Z", - "shell.execute_reply": "2024-07-30T16:36:16.083774Z" + "iopub.execute_input": "2024-08-02T23:21:54.285687Z", + "iopub.status.busy": "2024-08-02T23:21:54.284976Z", + "iopub.status.idle": "2024-08-02T23:21:54.309240Z", + "shell.execute_reply": "2024-08-02T23:21:54.308666Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.087159Z", - "iopub.status.busy": "2024-07-30T16:36:16.086783Z", - "iopub.status.idle": "2024-07-30T16:36:16.096644Z", - "shell.execute_reply": "2024-07-30T16:36:16.096072Z" + "iopub.execute_input": "2024-08-02T23:21:54.311719Z", + "iopub.status.busy": "2024-08-02T23:21:54.311308Z", + "iopub.status.idle": "2024-08-02T23:21:54.321181Z", + "shell.execute_reply": "2024-08-02T23:21:54.320680Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.098946Z", - "iopub.status.busy": "2024-07-30T16:36:16.098549Z", - "iopub.status.idle": "2024-07-30T16:36:16.103008Z", - "shell.execute_reply": "2024-07-30T16:36:16.102445Z" + "iopub.execute_input": "2024-08-02T23:21:54.323214Z", + "iopub.status.busy": "2024-08-02T23:21:54.322881Z", + "iopub.status.idle": "2024-08-02T23:21:54.327193Z", + "shell.execute_reply": "2024-08-02T23:21:54.326638Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.105150Z", - "iopub.status.busy": "2024-07-30T16:36:16.104822Z", - "iopub.status.idle": "2024-07-30T16:36:16.111211Z", - "shell.execute_reply": "2024-07-30T16:36:16.110658Z" + "iopub.execute_input": "2024-08-02T23:21:54.329227Z", + "iopub.status.busy": "2024-08-02T23:21:54.328892Z", + "iopub.status.idle": "2024-08-02T23:21:54.335223Z", + "shell.execute_reply": "2024-08-02T23:21:54.334737Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.113187Z", - "iopub.status.busy": "2024-07-30T16:36:16.112885Z", - "iopub.status.idle": "2024-07-30T16:36:16.119267Z", - "shell.execute_reply": "2024-07-30T16:36:16.118719Z" + "iopub.execute_input": "2024-08-02T23:21:54.337162Z", + "iopub.status.busy": "2024-08-02T23:21:54.336976Z", + "iopub.status.idle": "2024-08-02T23:21:54.343438Z", + "shell.execute_reply": "2024-08-02T23:21:54.342965Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.121235Z", - "iopub.status.busy": "2024-07-30T16:36:16.120924Z", - "iopub.status.idle": "2024-07-30T16:36:16.126639Z", - "shell.execute_reply": "2024-07-30T16:36:16.126077Z" + "iopub.execute_input": "2024-08-02T23:21:54.345616Z", + "iopub.status.busy": "2024-08-02T23:21:54.345242Z", + "iopub.status.idle": "2024-08-02T23:21:54.351019Z", + "shell.execute_reply": "2024-08-02T23:21:54.350470Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.128700Z", - "iopub.status.busy": "2024-07-30T16:36:16.128385Z", - "iopub.status.idle": "2024-07-30T16:36:16.136815Z", - "shell.execute_reply": "2024-07-30T16:36:16.136243Z" + "iopub.execute_input": "2024-08-02T23:21:54.353129Z", + "iopub.status.busy": "2024-08-02T23:21:54.352774Z", + "iopub.status.idle": "2024-08-02T23:21:54.361472Z", + "shell.execute_reply": "2024-08-02T23:21:54.360992Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.138817Z", - "iopub.status.busy": "2024-07-30T16:36:16.138521Z", - "iopub.status.idle": "2024-07-30T16:36:16.143841Z", - "shell.execute_reply": "2024-07-30T16:36:16.143287Z" + "iopub.execute_input": "2024-08-02T23:21:54.363537Z", + "iopub.status.busy": "2024-08-02T23:21:54.363200Z", + "iopub.status.idle": "2024-08-02T23:21:54.368517Z", + "shell.execute_reply": "2024-08-02T23:21:54.367955Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.145732Z", - "iopub.status.busy": "2024-07-30T16:36:16.145554Z", - "iopub.status.idle": "2024-07-30T16:36:16.150879Z", - "shell.execute_reply": "2024-07-30T16:36:16.150344Z" + "iopub.execute_input": "2024-08-02T23:21:54.370813Z", + "iopub.status.busy": "2024-08-02T23:21:54.370341Z", + "iopub.status.idle": "2024-08-02T23:21:54.376019Z", + "shell.execute_reply": "2024-08-02T23:21:54.375442Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.152863Z", - "iopub.status.busy": "2024-07-30T16:36:16.152548Z", - "iopub.status.idle": "2024-07-30T16:36:16.156185Z", - "shell.execute_reply": "2024-07-30T16:36:16.155650Z" + "iopub.execute_input": "2024-08-02T23:21:54.378125Z", + "iopub.status.busy": "2024-08-02T23:21:54.377805Z", + "iopub.status.idle": "2024-08-02T23:21:54.381485Z", + "shell.execute_reply": "2024-08-02T23:21:54.380895Z" } }, "outputs": [ @@ -1433,9 +1433,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Easy Mode \n", + "## Spending too much time on data quality?\n", "\n", - "Cleanlab is most effective when you run this code with a good ML model. Try to produce the best ML model you can for your data (instead of the basic model from this tutorial). If you don't know the best ML model for your data, try [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) which will automatically produce one for you. Super easy to use, [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points -- all powered by a system that automatically trains/deploys the best ML model for your data. [Try it for free!](https://cleanlab.ai/signup/)" + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

    \n", + " \"The\n", + "

    " ] }, { @@ -1443,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:16.158400Z", - "iopub.status.busy": "2024-07-30T16:36:16.158078Z", - "iopub.status.idle": "2024-07-30T16:36:16.163394Z", - "shell.execute_reply": "2024-07-30T16:36:16.162837Z" + "iopub.execute_input": "2024-08-02T23:21:54.383731Z", + "iopub.status.busy": "2024-08-02T23:21:54.383385Z", + "iopub.status.idle": "2024-08-02T23:21:54.388743Z", + "shell.execute_reply": "2024-08-02T23:21:54.388162Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index ab5136da2..03cfeeb36 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -3140,224 +3140,224 @@

    6. (Optional) Visualize the Results - +
    - - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
     AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
    8nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
    @@ -3503,16 +3503,16 @@

    1. Load the Dataset
    ---2024-07-30 16:36:35--  https://s.cleanlab.ai/CIFAR-10-subset.zip
    -Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.108.153, 185.199.110.153, ...
    +--2024-08-02 23:22:13--  https://s.cleanlab.ai/CIFAR-10-subset.zip
    +Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...
     Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.
     HTTP request sent, awaiting response... 200 OK
     Length: 986707 (964K) [application/zip]
     Saving to: ‘CIFAR-10-subset.zip’
     
    -CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.03s
    +CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.007s
     
    -2024-07-30 16:36:35 (36.4 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
    +2024-08-02 23:22:14 (131 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
     
     
    @@ -3582,7 +3582,7 @@

    2. Run Datalab Analysis
    -
    +
    @@ -3986,35 +3986,35 @@

    4. (Optional) Compare with a Dataset Without Spurious Correlations - is_dark_issue dark_score + is_dark_issue 0 - False 0.797509 + False 1 - False 0.663760 + False 2 - False 0.849826 + False 3 - False 0.773951 + False 4 - False 0.699518 + False ... @@ -4023,28 +4023,28 @@

    4. (Optional) Compare with a Dataset Without Spurious Correlations

    You should notice that the original dataset has more balanced correlation scores and fewer (or no) issues related to darkness. This comparison highlights how spurious correlations can be detected by Datalab.

    diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index d6d1d2769..b1d172e95 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:19.928818Z", - "iopub.status.busy": "2024-07-30T16:36:19.928315Z", - "iopub.status.idle": "2024-07-30T16:36:20.362342Z", - "shell.execute_reply": "2024-07-30T16:36:20.361793Z" + "iopub.execute_input": "2024-08-02T23:21:58.540122Z", + "iopub.status.busy": "2024-08-02T23:21:58.539942Z", + "iopub.status.idle": "2024-08-02T23:21:58.972460Z", + "shell.execute_reply": "2024-08-02T23:21:58.971845Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:20.365042Z", - "iopub.status.busy": "2024-07-30T16:36:20.364603Z", - "iopub.status.idle": "2024-07-30T16:36:20.497373Z", - "shell.execute_reply": "2024-07-30T16:36:20.496781Z" + "iopub.execute_input": "2024-08-02T23:21:58.975240Z", + "iopub.status.busy": "2024-08-02T23:21:58.974829Z", + "iopub.status.idle": "2024-08-02T23:21:59.105776Z", + "shell.execute_reply": "2024-08-02T23:21:59.105181Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:20.499582Z", - "iopub.status.busy": "2024-07-30T16:36:20.499349Z", - "iopub.status.idle": "2024-07-30T16:36:20.524504Z", - "shell.execute_reply": "2024-07-30T16:36:20.523915Z" + "iopub.execute_input": "2024-08-02T23:21:59.108029Z", + "iopub.status.busy": "2024-08-02T23:21:59.107636Z", + "iopub.status.idle": "2024-08-02T23:21:59.130897Z", + "shell.execute_reply": "2024-08-02T23:21:59.130271Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:20.527274Z", - "iopub.status.busy": "2024-07-30T16:36:20.527018Z", - "iopub.status.idle": "2024-07-30T16:36:23.840701Z", - "shell.execute_reply": "2024-07-30T16:36:23.840107Z" + "iopub.execute_input": "2024-08-02T23:21:59.133602Z", + "iopub.status.busy": "2024-08-02T23:21:59.133095Z", + "iopub.status.idle": "2024-08-02T23:22:02.346575Z", + "shell.execute_reply": "2024-08-02T23:22:02.345989Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:23.843646Z", - "iopub.status.busy": "2024-07-30T16:36:23.843036Z", - "iopub.status.idle": "2024-07-30T16:36:32.528462Z", - "shell.execute_reply": "2024-07-30T16:36:32.527887Z" + "iopub.execute_input": "2024-08-02T23:22:02.349075Z", + "iopub.status.busy": "2024-08-02T23:22:02.348695Z", + "iopub.status.idle": "2024-08-02T23:22:10.790575Z", + "shell.execute_reply": "2024-08-02T23:22:10.790056Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:32.530759Z", - "iopub.status.busy": "2024-07-30T16:36:32.530398Z", - "iopub.status.idle": "2024-07-30T16:36:32.692452Z", - "shell.execute_reply": "2024-07-30T16:36:32.691890Z" + "iopub.execute_input": "2024-08-02T23:22:10.792934Z", + "iopub.status.busy": "2024-08-02T23:22:10.792557Z", + "iopub.status.idle": "2024-08-02T23:22:10.956046Z", + "shell.execute_reply": "2024-08-02T23:22:10.955515Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:32.695108Z", - "iopub.status.busy": "2024-07-30T16:36:32.694738Z", - "iopub.status.idle": "2024-07-30T16:36:34.079949Z", - "shell.execute_reply": "2024-07-30T16:36:34.079473Z" + "iopub.execute_input": "2024-08-02T23:22:10.958582Z", + "iopub.status.busy": "2024-08-02T23:22:10.958202Z", + "iopub.status.idle": "2024-08-02T23:22:12.292827Z", + "shell.execute_reply": "2024-08-02T23:22:12.292255Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.082291Z", - "iopub.status.busy": "2024-07-30T16:36:34.081898Z", - "iopub.status.idle": "2024-07-30T16:36:34.326676Z", - "shell.execute_reply": "2024-07-30T16:36:34.326094Z" + "iopub.execute_input": "2024-08-02T23:22:12.295279Z", + "iopub.status.busy": "2024-08-02T23:22:12.294790Z", + "iopub.status.idle": "2024-08-02T23:22:12.622073Z", + "shell.execute_reply": "2024-08-02T23:22:12.621483Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.329162Z", - "iopub.status.busy": "2024-07-30T16:36:34.328791Z", - "iopub.status.idle": "2024-07-30T16:36:34.342431Z", - "shell.execute_reply": "2024-07-30T16:36:34.341938Z" + "iopub.execute_input": "2024-08-02T23:22:12.624778Z", + "iopub.status.busy": "2024-08-02T23:22:12.624229Z", + "iopub.status.idle": "2024-08-02T23:22:12.637797Z", + "shell.execute_reply": "2024-08-02T23:22:12.637348Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.344554Z", - "iopub.status.busy": "2024-07-30T16:36:34.344214Z", - "iopub.status.idle": "2024-07-30T16:36:34.363020Z", - "shell.execute_reply": "2024-07-30T16:36:34.362540Z" + "iopub.execute_input": "2024-08-02T23:22:12.640065Z", + "iopub.status.busy": "2024-08-02T23:22:12.639723Z", + "iopub.status.idle": "2024-08-02T23:22:12.658542Z", + "shell.execute_reply": "2024-08-02T23:22:12.658085Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.365426Z", - "iopub.status.busy": "2024-07-30T16:36:34.365076Z", - "iopub.status.idle": "2024-07-30T16:36:34.596927Z", - "shell.execute_reply": "2024-07-30T16:36:34.596358Z" + "iopub.execute_input": "2024-08-02T23:22:12.660724Z", + "iopub.status.busy": "2024-08-02T23:22:12.660375Z", + "iopub.status.idle": "2024-08-02T23:22:12.877581Z", + "shell.execute_reply": "2024-08-02T23:22:12.877013Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.599630Z", - "iopub.status.busy": "2024-07-30T16:36:34.599295Z", - "iopub.status.idle": "2024-07-30T16:36:34.619495Z", - "shell.execute_reply": "2024-07-30T16:36:34.618989Z" + "iopub.execute_input": "2024-08-02T23:22:12.880604Z", + "iopub.status.busy": "2024-08-02T23:22:12.880140Z", + "iopub.status.idle": "2024-08-02T23:22:12.899913Z", + "shell.execute_reply": "2024-08-02T23:22:12.899342Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.621703Z", - "iopub.status.busy": "2024-07-30T16:36:34.621342Z", - "iopub.status.idle": "2024-07-30T16:36:34.761643Z", - "shell.execute_reply": "2024-07-30T16:36:34.761053Z" + "iopub.execute_input": "2024-08-02T23:22:12.902002Z", + "iopub.status.busy": "2024-08-02T23:22:12.901825Z", + "iopub.status.idle": "2024-08-02T23:22:13.071307Z", + "shell.execute_reply": "2024-08-02T23:22:13.070655Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.763998Z", - "iopub.status.busy": "2024-07-30T16:36:34.763799Z", - "iopub.status.idle": "2024-07-30T16:36:34.774206Z", - "shell.execute_reply": "2024-07-30T16:36:34.773713Z" + "iopub.execute_input": "2024-08-02T23:22:13.073549Z", + "iopub.status.busy": "2024-08-02T23:22:13.073366Z", + "iopub.status.idle": "2024-08-02T23:22:13.083592Z", + "shell.execute_reply": "2024-08-02T23:22:13.083032Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.776254Z", - "iopub.status.busy": "2024-07-30T16:36:34.776071Z", - "iopub.status.idle": "2024-07-30T16:36:34.785886Z", - "shell.execute_reply": "2024-07-30T16:36:34.785435Z" + "iopub.execute_input": "2024-08-02T23:22:13.085738Z", + "iopub.status.busy": "2024-08-02T23:22:13.085397Z", + "iopub.status.idle": "2024-08-02T23:22:13.094677Z", + "shell.execute_reply": "2024-08-02T23:22:13.094210Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.787902Z", - "iopub.status.busy": "2024-07-30T16:36:34.787724Z", - "iopub.status.idle": "2024-07-30T16:36:34.815725Z", - "shell.execute_reply": "2024-07-30T16:36:34.815298Z" + "iopub.execute_input": "2024-08-02T23:22:13.096577Z", + "iopub.status.busy": "2024-08-02T23:22:13.096407Z", + "iopub.status.idle": "2024-08-02T23:22:13.122565Z", + "shell.execute_reply": "2024-08-02T23:22:13.122066Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.817795Z", - "iopub.status.busy": "2024-07-30T16:36:34.817615Z", - "iopub.status.idle": "2024-07-30T16:36:34.820486Z", - "shell.execute_reply": "2024-07-30T16:36:34.820013Z" + "iopub.execute_input": "2024-08-02T23:22:13.124990Z", + "iopub.status.busy": "2024-08-02T23:22:13.124635Z", + "iopub.status.idle": "2024-08-02T23:22:13.127488Z", + "shell.execute_reply": "2024-08-02T23:22:13.127033Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.822391Z", - "iopub.status.busy": "2024-07-30T16:36:34.822219Z", - "iopub.status.idle": "2024-07-30T16:36:34.841825Z", - "shell.execute_reply": "2024-07-30T16:36:34.841320Z" + "iopub.execute_input": "2024-08-02T23:22:13.129612Z", + "iopub.status.busy": "2024-08-02T23:22:13.129258Z", + "iopub.status.idle": "2024-08-02T23:22:13.149348Z", + "shell.execute_reply": "2024-08-02T23:22:13.148753Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.843927Z", - "iopub.status.busy": "2024-07-30T16:36:34.843742Z", - "iopub.status.idle": "2024-07-30T16:36:34.848323Z", - "shell.execute_reply": "2024-07-30T16:36:34.847833Z" + "iopub.execute_input": "2024-08-02T23:22:13.151509Z", + "iopub.status.busy": "2024-08-02T23:22:13.151173Z", + "iopub.status.idle": "2024-08-02T23:22:13.155595Z", + "shell.execute_reply": "2024-08-02T23:22:13.155039Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.850257Z", - "iopub.status.busy": "2024-07-30T16:36:34.850081Z", - "iopub.status.idle": "2024-07-30T16:36:34.879946Z", - "shell.execute_reply": "2024-07-30T16:36:34.879477Z" + "iopub.execute_input": "2024-08-02T23:22:13.157749Z", + "iopub.status.busy": "2024-08-02T23:22:13.157403Z", + "iopub.status.idle": "2024-08-02T23:22:13.186218Z", + "shell.execute_reply": "2024-08-02T23:22:13.185603Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:34.881917Z", - "iopub.status.busy": "2024-07-30T16:36:34.881737Z", - "iopub.status.idle": "2024-07-30T16:36:35.259340Z", - "shell.execute_reply": "2024-07-30T16:36:35.258831Z" + "iopub.execute_input": "2024-08-02T23:22:13.188598Z", + "iopub.status.busy": "2024-08-02T23:22:13.188252Z", + "iopub.status.idle": "2024-08-02T23:22:13.558273Z", + "shell.execute_reply": "2024-08-02T23:22:13.557664Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.261459Z", - "iopub.status.busy": "2024-07-30T16:36:35.261275Z", - "iopub.status.idle": "2024-07-30T16:36:35.264720Z", - "shell.execute_reply": "2024-07-30T16:36:35.264247Z" + "iopub.execute_input": "2024-08-02T23:22:13.560412Z", + "iopub.status.busy": "2024-08-02T23:22:13.560221Z", + "iopub.status.idle": "2024-08-02T23:22:13.563654Z", + "shell.execute_reply": "2024-08-02T23:22:13.563075Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.266610Z", - "iopub.status.busy": "2024-07-30T16:36:35.266439Z", - "iopub.status.idle": "2024-07-30T16:36:35.280154Z", - "shell.execute_reply": "2024-07-30T16:36:35.279707Z" + "iopub.execute_input": "2024-08-02T23:22:13.565843Z", + "iopub.status.busy": "2024-08-02T23:22:13.565488Z", + "iopub.status.idle": "2024-08-02T23:22:13.578636Z", + "shell.execute_reply": "2024-08-02T23:22:13.578130Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.282287Z", - "iopub.status.busy": "2024-07-30T16:36:35.281841Z", - "iopub.status.idle": "2024-07-30T16:36:35.296091Z", - "shell.execute_reply": "2024-07-30T16:36:35.295529Z" + "iopub.execute_input": "2024-08-02T23:22:13.580749Z", + "iopub.status.busy": "2024-08-02T23:22:13.580400Z", + "iopub.status.idle": "2024-08-02T23:22:13.593962Z", + "shell.execute_reply": "2024-08-02T23:22:13.593384Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.298365Z", - "iopub.status.busy": "2024-07-30T16:36:35.297955Z", - "iopub.status.idle": "2024-07-30T16:36:35.308443Z", - "shell.execute_reply": "2024-07-30T16:36:35.307980Z" + "iopub.execute_input": "2024-08-02T23:22:13.596098Z", + "iopub.status.busy": "2024-08-02T23:22:13.595769Z", + "iopub.status.idle": "2024-08-02T23:22:13.606627Z", + "shell.execute_reply": "2024-08-02T23:22:13.606051Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.310642Z", - "iopub.status.busy": "2024-07-30T16:36:35.310307Z", - "iopub.status.idle": "2024-07-30T16:36:35.319369Z", - "shell.execute_reply": "2024-07-30T16:36:35.318850Z" + "iopub.execute_input": "2024-08-02T23:22:13.608671Z", + "iopub.status.busy": "2024-08-02T23:22:13.608346Z", + "iopub.status.idle": "2024-08-02T23:22:13.617864Z", + "shell.execute_reply": "2024-08-02T23:22:13.617309Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.321481Z", - "iopub.status.busy": "2024-07-30T16:36:35.321145Z", - "iopub.status.idle": "2024-07-30T16:36:35.324693Z", - "shell.execute_reply": "2024-07-30T16:36:35.324231Z" + "iopub.execute_input": "2024-08-02T23:22:13.619896Z", + "iopub.status.busy": "2024-08-02T23:22:13.619554Z", + "iopub.status.idle": "2024-08-02T23:22:13.623041Z", + "shell.execute_reply": "2024-08-02T23:22:13.622595Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.326670Z", - "iopub.status.busy": "2024-07-30T16:36:35.326496Z", - "iopub.status.idle": "2024-07-30T16:36:35.379645Z", - "shell.execute_reply": "2024-07-30T16:36:35.379123Z" + "iopub.execute_input": "2024-08-02T23:22:13.624963Z", + "iopub.status.busy": "2024-08-02T23:22:13.624789Z", + "iopub.status.idle": "2024-08-02T23:22:13.676686Z", + "shell.execute_reply": "2024-08-02T23:22:13.676151Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
    \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
     AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
    8nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
    \n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.382058Z", - "iopub.status.busy": "2024-07-30T16:36:35.381569Z", - "iopub.status.idle": "2024-07-30T16:36:35.388152Z", - "shell.execute_reply": "2024-07-30T16:36:35.387714Z" + "iopub.execute_input": "2024-08-02T23:22:13.679035Z", + "iopub.status.busy": "2024-08-02T23:22:13.678697Z", + "iopub.status.idle": "2024-08-02T23:22:13.685822Z", + "shell.execute_reply": "2024-08-02T23:22:13.685355Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.390322Z", - "iopub.status.busy": "2024-07-30T16:36:35.389885Z", - "iopub.status.idle": "2024-07-30T16:36:35.401052Z", - "shell.execute_reply": "2024-07-30T16:36:35.400566Z" + "iopub.execute_input": "2024-08-02T23:22:13.688074Z", + "iopub.status.busy": "2024-08-02T23:22:13.687619Z", + "iopub.status.idle": "2024-08-02T23:22:13.699375Z", + "shell.execute_reply": "2024-08-02T23:22:13.698786Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.402986Z", - "iopub.status.busy": "2024-07-30T16:36:35.402810Z", - "iopub.status.idle": "2024-07-30T16:36:35.583541Z", - "shell.execute_reply": "2024-07-30T16:36:35.582923Z" + "iopub.execute_input": "2024-08-02T23:22:13.701685Z", + "iopub.status.busy": "2024-08-02T23:22:13.701265Z", + "iopub.status.idle": "2024-08-02T23:22:13.918661Z", + "shell.execute_reply": "2024-08-02T23:22:13.918038Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.586049Z", - "iopub.status.busy": "2024-07-30T16:36:35.585823Z", - "iopub.status.idle": "2024-07-30T16:36:35.594126Z", - "shell.execute_reply": "2024-07-30T16:36:35.593611Z" + "iopub.execute_input": "2024-08-02T23:22:13.920933Z", + "iopub.status.busy": "2024-08-02T23:22:13.920727Z", + "iopub.status.idle": "2024-08-02T23:22:13.928739Z", + "shell.execute_reply": "2024-08-02T23:22:13.928289Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:35.596219Z", - "iopub.status.busy": "2024-07-30T16:36:35.596032Z", - "iopub.status.idle": "2024-07-30T16:36:36.032446Z", - "shell.execute_reply": "2024-07-30T16:36:36.031724Z" + "iopub.execute_input": "2024-08-02T23:22:13.930887Z", + "iopub.status.busy": "2024-08-02T23:22:13.930700Z", + "iopub.status.idle": "2024-08-02T23:22:14.283492Z", + "shell.execute_reply": "2024-08-02T23:22:14.282648Z" } }, "outputs": [ @@ -3767,32 +3767,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-30 16:36:35-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.108.153, 185.199.110.153, ...\r\n", + "--2024-08-02 23:22:13-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 986707 (964K) [application/zip]\r\n", "Saving to: ‘CIFAR-10-subset.zip’\r\n", "\r\n", "\r", - "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.03s \r\n", + "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.007s \r\n", "\r\n", - "2024-07-30 16:36:35 (36.4 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-08-02 23:22:14 (131 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3808,10 +3794,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:36.035427Z", - "iopub.status.busy": "2024-07-30T16:36:36.035017Z", - "iopub.status.idle": "2024-07-30T16:36:38.005904Z", - "shell.execute_reply": "2024-07-30T16:36:38.005342Z" + "iopub.execute_input": "2024-08-02T23:22:14.286320Z", + "iopub.status.busy": "2024-08-02T23:22:14.285986Z", + "iopub.status.idle": "2024-08-02T23:22:16.250080Z", + "shell.execute_reply": "2024-08-02T23:22:16.249517Z" } }, "outputs": [], @@ -3857,10 +3843,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:38.008499Z", - "iopub.status.busy": "2024-07-30T16:36:38.008189Z", - "iopub.status.idle": "2024-07-30T16:36:38.487271Z", - "shell.execute_reply": "2024-07-30T16:36:38.486659Z" + "iopub.execute_input": "2024-08-02T23:22:16.252933Z", + "iopub.status.busy": "2024-08-02T23:22:16.252320Z", + "iopub.status.idle": "2024-08-02T23:22:16.733355Z", + "shell.execute_reply": "2024-08-02T23:22:16.732689Z" } }, "outputs": [ @@ -3875,7 +3861,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2ed4efbeb1874db0a5e2316cc6fdcc53", + "model_id": "71a4c08b9dfc456aa328fdeec90efbf7", "version_major": 2, "version_minor": 0 }, @@ -3957,10 +3943,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:38.491380Z", - "iopub.status.busy": "2024-07-30T16:36:38.490234Z", - "iopub.status.idle": "2024-07-30T16:36:38.508457Z", - "shell.execute_reply": "2024-07-30T16:36:38.507923Z" + "iopub.execute_input": "2024-08-02T23:22:16.737440Z", + "iopub.status.busy": "2024-08-02T23:22:16.736282Z", + "iopub.status.idle": "2024-08-02T23:22:16.754516Z", + "shell.execute_reply": "2024-08-02T23:22:16.754000Z" } }, "outputs": [ @@ -4079,35 +4065,35 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 0\n", - " True\n", " 0.237196\n", + " True\n", " \n", " \n", " 1\n", - " True\n", " 0.197229\n", + " True\n", " \n", " \n", " 2\n", - " True\n", " 0.254188\n", + " True\n", " \n", " \n", " 3\n", - " True\n", " 0.229170\n", + " True\n", " \n", " \n", " 4\n", - " True\n", " 0.208907\n", + " True\n", " \n", " \n", " ...\n", @@ -4116,28 +4102,28 @@ " \n", " \n", " 195\n", - " False\n", " 0.793840\n", + " False\n", " \n", " \n", " 196\n", - " False\n", " 1.000000\n", + " False\n", " \n", " \n", " 197\n", - " False\n", " 0.971560\n", + " False\n", " \n", " \n", " 198\n", - " False\n", " 0.862236\n", + " False\n", " \n", " \n", " 199\n", - " False\n", " 0.973533\n", + " False\n", " \n", " \n", "\n", @@ -4145,18 +4131,18 @@ "

    " ], "text/plain": [ - " is_dark_issue dark_score\n", - "0 True 0.237196\n", - "1 True 0.197229\n", - "2 True 0.254188\n", - "3 True 0.229170\n", - "4 True 0.208907\n", - ".. ... ...\n", - "195 False 0.793840\n", - "196 False 1.000000\n", - "197 False 0.971560\n", - "198 False 0.862236\n", - "199 False 0.973533\n", + " dark_score is_dark_issue\n", + "0 0.237196 True\n", + "1 0.197229 True\n", + "2 0.254188 True\n", + "3 0.229170 True\n", + "4 0.208907 True\n", + ".. ... ...\n", + "195 0.793840 False\n", + "196 1.000000 False\n", + "197 0.971560 False\n", + "198 0.862236 False\n", + "199 0.973533 False\n", "\n", "[200 rows x 2 columns]" ] @@ -4218,10 +4204,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:38.512133Z", - "iopub.status.busy": "2024-07-30T16:36:38.511200Z", - "iopub.status.idle": "2024-07-30T16:36:39.047457Z", - "shell.execute_reply": "2024-07-30T16:36:39.046797Z" + "iopub.execute_input": "2024-08-02T23:22:16.758210Z", + "iopub.status.busy": "2024-08-02T23:22:16.757276Z", + "iopub.status.idle": "2024-08-02T23:22:17.281248Z", + "shell.execute_reply": "2024-08-02T23:22:17.280570Z" } }, "outputs": [ @@ -4236,7 +4222,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5704008e778b464799f617edec73de43", + "model_id": "b82f72b4461f4f2997fbc7789387a332", "version_major": 2, "version_minor": 0 }, @@ -4364,35 +4350,35 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 0\n", - " False\n", " 0.797509\n", + " False\n", " \n", " \n", " 1\n", - " False\n", " 0.663760\n", + " False\n", " \n", " \n", " 2\n", - " False\n", " 0.849826\n", + " False\n", " \n", " \n", " 3\n", - " False\n", " 0.773951\n", + " False\n", " \n", " \n", " 4\n", - " False\n", " 0.699518\n", + " False\n", " \n", " \n", " ...\n", @@ -4401,28 +4387,28 @@ " \n", " \n", " 195\n", - " False\n", " 0.793840\n", + " False\n", " \n", " \n", " 196\n", - " False\n", " 1.000000\n", + " False\n", " \n", " \n", " 197\n", - " False\n", " 0.971560\n", + " False\n", " \n", " \n", " 198\n", - " False\n", " 0.862236\n", + " False\n", " \n", " \n", " 199\n", - " False\n", " 0.973533\n", + " False\n", " \n", " \n", "\n", @@ -4430,18 +4416,18 @@ "
    " ], "text/plain": [ - " is_dark_issue dark_score\n", - "0 False 0.797509\n", - "1 False 0.663760\n", - "2 False 0.849826\n", - "3 False 0.773951\n", - "4 False 0.699518\n", - ".. ... ...\n", - "195 False 0.793840\n", - "196 False 1.000000\n", - "197 False 0.971560\n", - "198 False 0.862236\n", - "199 False 0.973533\n", + " dark_score is_dark_issue\n", + "0 0.797509 False\n", + "1 0.663760 False\n", + "2 0.849826 False\n", + "3 0.773951 False\n", + "4 0.699518 False\n", + ".. ... ...\n", + "195 0.793840 False\n", + "196 1.000000 False\n", + "197 0.971560 False\n", + "198 0.862236 False\n", + "199 0.973533 False\n", "\n", "[200 rows x 2 columns]" ] @@ -4504,7 +4490,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a74b29d3db14bd1b43bfa76b01669f5": { + "01182168d2124815b12e86a72a612467": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4557,25 +4543,60 @@ "width": null } }, - "0d5b18ce4d00414fa7849f07f919f0c2": { - "model_module": "@jupyter-widgets/controls", + "1b236bb92bf644779da7e7d8d3323694": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "23ab6deed4f548d781711f2b69e1626d": { + "1e44ea22efa84d32896d5d2aaf090bee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4590,39 +4611,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b7913d94eed4408cb306a3e2b47761cb", + "layout": "IPY_MODEL_01182168d2124815b12e86a72a612467", "placeholder": "​", - "style": "IPY_MODEL_872924f1144146c999720f92d3ee8e2b", + "style": "IPY_MODEL_c3884d048fe24b41af28a41df38517ea", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "2ed4efbeb1874db0a5e2316cc6fdcc53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d4d36e246db746c4acbc8f4787f82381", - "IPY_MODEL_357fb341466f4d6da6ea707fd3c1d55b", - "IPY_MODEL_5360fa3a0eed4207b44167db7bcfd0fa" - ], - "layout": "IPY_MODEL_f59fcaa8e8d04931980396c1bdc42425", - "tabbable": null, - "tooltip": null + "value": " 200/200 [00:00<00:00, 695.70it/s]" } }, - "357fb341466f4d6da6ea707fd3c1d55b": { + "1ef0da0c5da94764a858d4f7717ac7db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4638,17 +4635,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2cb72313c294a56bc0221871a2d5717", + "layout": "IPY_MODEL_5d68d107670743d6808663bdacce92b7", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_df924bb590a44f27a4f68916d0e77c53", + "style": "IPY_MODEL_8e87443447a246eabdd50fb1695f3b9f", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "489ca8ef4e094a6182021355bf8ff0e0": { + "357d1581f03e4afb9d2b6424633f3260": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4663,62 +4660,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a74b29d3db14bd1b43bfa76b01669f5", + "layout": "IPY_MODEL_52b0ba4251cb408ea152d6a5ee00545b", "placeholder": "​", - "style": "IPY_MODEL_a8c94e907c12444e8d0364601f96e159", + "style": "IPY_MODEL_8134f8b658d5423c98b7ffe9394d17d6", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 703.72it/s]" - } - }, - "5360fa3a0eed4207b44167db7bcfd0fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_845e948b5a894d6e94a4e04bf148519c", - "placeholder": "​", - "style": "IPY_MODEL_0d5b18ce4d00414fa7849f07f919f0c2", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 768.56it/s]" + "value": "100%" } }, - "5704008e778b464799f617edec73de43": { + "4222b0643f044a5f9e8426072332e919": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_23ab6deed4f548d781711f2b69e1626d", - "IPY_MODEL_91b05b3271df489f93fcfc926fa4996d", - "IPY_MODEL_489ca8ef4e094a6182021355bf8ff0e0" - ], - "layout": "IPY_MODEL_bd875ac3a62042068a132488eecbb1c4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5bed25780c8d4b9c990b530de43dde8e": { + "52b0ba4251cb408ea152d6a5ee00545b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4771,41 +4739,30 @@ "width": null } }, - "72b98c9996864aa9abad1934ce4b27c3": { + "57d7b16caadb49deb6a43c6fd109390e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7b2d92c1f6624498af65bda8fd36806a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d97ac03902bf40949b08b5f65f538140", + "placeholder": "​", + "style": "IPY_MODEL_8cc79c564011405db4fbff7e4aeb5efa", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "845e948b5a894d6e94a4e04bf148519c": { + "5d68d107670743d6808663bdacce92b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4858,7 +4815,31 @@ "width": null } }, - "872924f1144146c999720f92d3ee8e2b": { + "71a4c08b9dfc456aa328fdeec90efbf7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_57d7b16caadb49deb6a43c6fd109390e", + "IPY_MODEL_1ef0da0c5da94764a858d4f7717ac7db", + "IPY_MODEL_1e44ea22efa84d32896d5d2aaf090bee" + ], + "layout": "IPY_MODEL_d48001ab3b6148e6a9e0fa4aceed791e", + "tabbable": null, + "tooltip": null + } + }, + "8134f8b658d5423c98b7ffe9394d17d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4876,7 +4857,41 @@ "text_color": null } }, - "91b05b3271df489f93fcfc926fa4996d": { + "8cc79c564011405db4fbff7e4aeb5efa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8e87443447a246eabdd50fb1695f3b9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9d4fe395ec3244c093bada5689a24f41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4892,17 +4907,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5bed25780c8d4b9c990b530de43dde8e", + "layout": "IPY_MODEL_1b236bb92bf644779da7e7d8d3323694", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7b2d92c1f6624498af65bda8fd36806a", + "style": "IPY_MODEL_c5b4b4b00b804232a9ff311ead8306fc", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "9ab790ab579f415bbc804c1f992660a0": { + "b82f72b4461f4f2997fbc7789387a332": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_357d1581f03e4afb9d2b6424633f3260", + "IPY_MODEL_9d4fe395ec3244c093bada5689a24f41", + "IPY_MODEL_e66b4a469d0d4eadb2566c3d7c697ecd" + ], + "layout": "IPY_MODEL_c060ef50017c47518d8868c12ea382d9", + "tabbable": null, + "tooltip": null + } + }, + "c060ef50017c47518d8868c12ea382d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4955,7 +4994,7 @@ "width": null } }, - "a8c94e907c12444e8d0364601f96e159": { + "c3884d048fe24b41af28a41df38517ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4973,7 +5012,7 @@ "text_color": null } }, - "b7913d94eed4408cb306a3e2b47761cb": { + "c38bfaecbf7147b693a82b0b3e772612": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5026,83 +5065,7 @@ "width": null } }, - "bd875ac3a62042068a132488eecbb1c4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d4d36e246db746c4acbc8f4787f82381": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9ab790ab579f415bbc804c1f992660a0", - "placeholder": "​", - "style": "IPY_MODEL_72b98c9996864aa9abad1934ce4b27c3", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "df924bb590a44f27a4f68916d0e77c53": { + "c5b4b4b00b804232a9ff311ead8306fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5118,7 +5081,7 @@ "description_width": "" } }, - "f2cb72313c294a56bc0221871a2d5717": { + "d48001ab3b6148e6a9e0fa4aceed791e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5171,7 +5134,7 @@ "width": null } }, - "f59fcaa8e8d04931980396c1bdc42425": { + "d97ac03902bf40949b08b5f65f538140": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5223,6 +5186,29 @@ "visibility": null, "width": null } + }, + "e66b4a469d0d4eadb2566c3d7c697ecd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c38bfaecbf7147b693a82b0b3e772612", + "placeholder": "​", + "style": "IPY_MODEL_4222b0643f044a5f9e8426072332e919", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 689.10it/s]" + } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.html b/master/tutorials/dataset_health.html index b149fd0f1..31a94df7c 100644 --- a/master/tutorials/dataset_health.html +++ b/master/tutorials/dataset_health.html @@ -3078,6 +3078,12 @@

    Start of tutorial: Evaluate the health of 8 popular dataset +
    +

    Spending too much time on data quality?#

    +

    Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.

    +

    That’s why we built Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

    +

    The modern AI pipeline automated with Cleanlab Studio

    +

    @@ -3159,6 +3165,7 @@

    Start of tutorial: Evaluate the health of 8 popular dataset
  • Install dependencies and import them
  • Fetch the data (can skip these details)
  • Start of tutorial: Evaluate the health of 8 popular datasets
  • +
  • Spending too much time on data quality?
  • diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index b41d28ba4..464e6d818 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:43.263935Z", - "iopub.status.busy": "2024-07-30T16:36:43.263754Z", - "iopub.status.idle": "2024-07-30T16:36:44.677036Z", - "shell.execute_reply": "2024-07-30T16:36:44.676454Z" + "iopub.execute_input": "2024-08-02T23:22:21.207713Z", + "iopub.status.busy": "2024-08-02T23:22:21.207533Z", + "iopub.status.idle": "2024-08-02T23:22:22.617403Z", + "shell.execute_reply": "2024-08-02T23:22:22.616703Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:44.679704Z", - "iopub.status.busy": "2024-07-30T16:36:44.679219Z", - "iopub.status.idle": "2024-07-30T16:36:44.681960Z", - "shell.execute_reply": "2024-07-30T16:36:44.681516Z" + "iopub.execute_input": "2024-08-02T23:22:22.619987Z", + "iopub.status.busy": "2024-08-02T23:22:22.619693Z", + "iopub.status.idle": "2024-08-02T23:22:22.622687Z", + "shell.execute_reply": "2024-08-02T23:22:22.622224Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:44.684134Z", - "iopub.status.busy": "2024-07-30T16:36:44.683779Z", - "iopub.status.idle": "2024-07-30T16:36:44.695519Z", - "shell.execute_reply": "2024-07-30T16:36:44.695059Z" + "iopub.execute_input": "2024-08-02T23:22:22.624727Z", + "iopub.status.busy": "2024-08-02T23:22:22.624552Z", + "iopub.status.idle": "2024-08-02T23:22:22.636926Z", + "shell.execute_reply": "2024-08-02T23:22:22.636449Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:44.697494Z", - "iopub.status.busy": "2024-07-30T16:36:44.697321Z", - "iopub.status.idle": "2024-07-30T16:36:50.818481Z", - "shell.execute_reply": "2024-07-30T16:36:50.817920Z" + "iopub.execute_input": "2024-08-02T23:22:22.638863Z", + "iopub.status.busy": "2024-08-02T23:22:22.638690Z", + "iopub.status.idle": "2024-08-02T23:22:26.870323Z", + "shell.execute_reply": "2024-08-02T23:22:26.869834Z" }, "id": "dhTHOg8Pyv5G" }, @@ -3081,6 +3081,21 @@ " # run 1 line of code to evaluate the health of your dataset\n", " _ = cleanlab.dataset.health_summary(labels, pred_probs, class_names=class_names)" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

    \n", + " \"The\n", + "

    " + ] } ], "metadata": { diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 3a4b6f1a2..8d757350b 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -831,13 +831,13 @@

    How can I find label issues in big datasets with limited memory?
    -
    +
    -
    +
    @@ -1702,7 +1702,7 @@

    Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

    Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

    diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 0e282dd07..85b88d83d 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:53.364898Z", - "iopub.status.busy": "2024-07-30T16:36:53.364365Z", - "iopub.status.idle": "2024-07-30T16:36:54.816084Z", - "shell.execute_reply": "2024-07-30T16:36:54.815502Z" + "iopub.execute_input": "2024-08-02T23:22:29.317927Z", + "iopub.status.busy": "2024-08-02T23:22:29.317762Z", + "iopub.status.idle": "2024-08-02T23:22:30.709755Z", + "shell.execute_reply": "2024-08-02T23:22:30.709204Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:54.819086Z", - "iopub.status.busy": "2024-07-30T16:36:54.818586Z", - "iopub.status.idle": "2024-07-30T16:36:54.821882Z", - "shell.execute_reply": "2024-07-30T16:36:54.821439Z" + "iopub.execute_input": "2024-08-02T23:22:30.712568Z", + "iopub.status.busy": "2024-08-02T23:22:30.712110Z", + "iopub.status.idle": "2024-08-02T23:22:30.715506Z", + "shell.execute_reply": "2024-08-02T23:22:30.715053Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:54.824015Z", - "iopub.status.busy": "2024-07-30T16:36:54.823672Z", - "iopub.status.idle": "2024-07-30T16:36:58.536010Z", - "shell.execute_reply": "2024-07-30T16:36:58.535180Z" + "iopub.execute_input": "2024-08-02T23:22:30.717656Z", + "iopub.status.busy": "2024-08-02T23:22:30.717203Z", + "iopub.status.idle": "2024-08-02T23:22:34.286623Z", + "shell.execute_reply": "2024-08-02T23:22:34.285962Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.539755Z", - "iopub.status.busy": "2024-07-30T16:36:58.538755Z", - "iopub.status.idle": "2024-07-30T16:36:58.591095Z", - "shell.execute_reply": "2024-07-30T16:36:58.590433Z" + "iopub.execute_input": "2024-08-02T23:22:34.290077Z", + "iopub.status.busy": "2024-08-02T23:22:34.289157Z", + "iopub.status.idle": "2024-08-02T23:22:34.334428Z", + "shell.execute_reply": "2024-08-02T23:22:34.333773Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.593884Z", - "iopub.status.busy": "2024-07-30T16:36:58.593478Z", - "iopub.status.idle": "2024-07-30T16:36:58.639623Z", - "shell.execute_reply": "2024-07-30T16:36:58.638845Z" + "iopub.execute_input": "2024-08-02T23:22:34.337263Z", + "iopub.status.busy": "2024-08-02T23:22:34.336802Z", + "iopub.status.idle": "2024-08-02T23:22:34.379369Z", + "shell.execute_reply": "2024-08-02T23:22:34.378671Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.642513Z", - "iopub.status.busy": "2024-07-30T16:36:58.642101Z", - "iopub.status.idle": "2024-07-30T16:36:58.645752Z", - "shell.execute_reply": "2024-07-30T16:36:58.645291Z" + "iopub.execute_input": "2024-08-02T23:22:34.382130Z", + "iopub.status.busy": "2024-08-02T23:22:34.381755Z", + "iopub.status.idle": "2024-08-02T23:22:34.384963Z", + "shell.execute_reply": "2024-08-02T23:22:34.384470Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.647868Z", - "iopub.status.busy": "2024-07-30T16:36:58.647530Z", - "iopub.status.idle": "2024-07-30T16:36:58.650324Z", - "shell.execute_reply": "2024-07-30T16:36:58.649625Z" + "iopub.execute_input": "2024-08-02T23:22:34.387036Z", + "iopub.status.busy": "2024-08-02T23:22:34.386739Z", + "iopub.status.idle": "2024-08-02T23:22:34.389652Z", + "shell.execute_reply": "2024-08-02T23:22:34.388895Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.652675Z", - "iopub.status.busy": "2024-07-30T16:36:58.652185Z", - "iopub.status.idle": "2024-07-30T16:36:58.676038Z", - "shell.execute_reply": "2024-07-30T16:36:58.675495Z" + "iopub.execute_input": "2024-08-02T23:22:34.391832Z", + "iopub.status.busy": "2024-08-02T23:22:34.391513Z", + "iopub.status.idle": "2024-08-02T23:22:34.417865Z", + "shell.execute_reply": "2024-08-02T23:22:34.417276Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "57581a07cda143f5ae3947a8ceb2effa", + "model_id": "994bb101c48240bd91ac23c6d451faea", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8036196b7e194ee38336f33c15df9344", + "model_id": "75f8dda3bfd7411ab998335d777d0d77", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.681445Z", - "iopub.status.busy": "2024-07-30T16:36:58.681234Z", - "iopub.status.idle": "2024-07-30T16:36:58.688163Z", - "shell.execute_reply": "2024-07-30T16:36:58.687730Z" + "iopub.execute_input": "2024-08-02T23:22:34.423377Z", + "iopub.status.busy": "2024-08-02T23:22:34.423067Z", + "iopub.status.idle": "2024-08-02T23:22:34.429876Z", + "shell.execute_reply": "2024-08-02T23:22:34.429438Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.690192Z", - "iopub.status.busy": "2024-07-30T16:36:58.689845Z", - "iopub.status.idle": "2024-07-30T16:36:58.693407Z", - "shell.execute_reply": "2024-07-30T16:36:58.692931Z" + "iopub.execute_input": "2024-08-02T23:22:34.431811Z", + "iopub.status.busy": "2024-08-02T23:22:34.431637Z", + "iopub.status.idle": "2024-08-02T23:22:34.435115Z", + "shell.execute_reply": "2024-08-02T23:22:34.434650Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.695508Z", - "iopub.status.busy": "2024-07-30T16:36:58.695194Z", - "iopub.status.idle": "2024-07-30T16:36:58.701664Z", - "shell.execute_reply": "2024-07-30T16:36:58.701093Z" + "iopub.execute_input": "2024-08-02T23:22:34.437011Z", + "iopub.status.busy": "2024-08-02T23:22:34.436832Z", + "iopub.status.idle": "2024-08-02T23:22:34.443057Z", + "shell.execute_reply": "2024-08-02T23:22:34.442613Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.703807Z", - "iopub.status.busy": "2024-07-30T16:36:58.703473Z", - "iopub.status.idle": "2024-07-30T16:36:58.753286Z", - "shell.execute_reply": "2024-07-30T16:36:58.752623Z" + "iopub.execute_input": "2024-08-02T23:22:34.444958Z", + "iopub.status.busy": "2024-08-02T23:22:34.444777Z", + "iopub.status.idle": "2024-08-02T23:22:34.488386Z", + "shell.execute_reply": "2024-08-02T23:22:34.487771Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.756242Z", - "iopub.status.busy": "2024-07-30T16:36:58.755751Z", - "iopub.status.idle": "2024-07-30T16:36:58.810969Z", - "shell.execute_reply": "2024-07-30T16:36:58.810185Z" + "iopub.execute_input": "2024-08-02T23:22:34.491204Z", + "iopub.status.busy": "2024-08-02T23:22:34.490718Z", + "iopub.status.idle": "2024-08-02T23:22:34.533900Z", + "shell.execute_reply": "2024-08-02T23:22:34.533124Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.813764Z", - "iopub.status.busy": "2024-07-30T16:36:58.813494Z", - "iopub.status.idle": "2024-07-30T16:36:58.954189Z", - "shell.execute_reply": "2024-07-30T16:36:58.953479Z" + "iopub.execute_input": "2024-08-02T23:22:34.536698Z", + "iopub.status.busy": "2024-08-02T23:22:34.536347Z", + "iopub.status.idle": "2024-08-02T23:22:34.667900Z", + "shell.execute_reply": "2024-08-02T23:22:34.667248Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:36:58.956979Z", - "iopub.status.busy": "2024-07-30T16:36:58.956298Z", - "iopub.status.idle": "2024-07-30T16:37:02.028094Z", - "shell.execute_reply": "2024-07-30T16:37:02.027507Z" + "iopub.execute_input": "2024-08-02T23:22:34.670834Z", + "iopub.status.busy": "2024-08-02T23:22:34.670036Z", + "iopub.status.idle": "2024-08-02T23:22:37.696516Z", + "shell.execute_reply": "2024-08-02T23:22:37.695903Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:02.030600Z", - "iopub.status.busy": "2024-07-30T16:37:02.030207Z", - "iopub.status.idle": "2024-07-30T16:37:02.089072Z", - "shell.execute_reply": "2024-07-30T16:37:02.088458Z" + "iopub.execute_input": "2024-08-02T23:22:37.698762Z", + "iopub.status.busy": "2024-08-02T23:22:37.698568Z", + "iopub.status.idle": "2024-08-02T23:22:37.757100Z", + "shell.execute_reply": "2024-08-02T23:22:37.756458Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:02.091254Z", - "iopub.status.busy": "2024-07-30T16:37:02.091064Z", - "iopub.status.idle": "2024-07-30T16:37:02.134008Z", - "shell.execute_reply": "2024-07-30T16:37:02.133534Z" + "iopub.execute_input": "2024-08-02T23:22:37.759462Z", + "iopub.status.busy": "2024-08-02T23:22:37.759110Z", + "iopub.status.idle": "2024-08-02T23:22:37.799895Z", + "shell.execute_reply": "2024-08-02T23:22:37.799350Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "984213fa", + "id": "12afe868", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "2618e545", + "id": "8634f5cf", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "1e0becd2", + "id": "a6f1d693", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "cba58da6", + "id": "2d3fc7a8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:02.136245Z", - "iopub.status.busy": "2024-07-30T16:37:02.136064Z", - "iopub.status.idle": "2024-07-30T16:37:02.143652Z", - "shell.execute_reply": "2024-07-30T16:37:02.143210Z" + "iopub.execute_input": "2024-08-02T23:22:37.802141Z", + "iopub.status.busy": "2024-08-02T23:22:37.801810Z", + "iopub.status.idle": "2024-08-02T23:22:37.809564Z", + "shell.execute_reply": "2024-08-02T23:22:37.808972Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "fea318fb", + "id": "1fd92d80", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "6afc3734", + "id": "c2a27eb0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:02.145731Z", - "iopub.status.busy": "2024-07-30T16:37:02.145388Z", - "iopub.status.idle": "2024-07-30T16:37:02.165432Z", - "shell.execute_reply": "2024-07-30T16:37:02.164935Z" + "iopub.execute_input": "2024-08-02T23:22:37.811723Z", + "iopub.status.busy": "2024-08-02T23:22:37.811326Z", + "iopub.status.idle": "2024-08-02T23:22:37.831346Z", + "shell.execute_reply": "2024-08-02T23:22:37.830864Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "b8513ca9", + "id": "4c46c839", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:02.167476Z", - "iopub.status.busy": "2024-07-30T16:37:02.167285Z", - "iopub.status.idle": "2024-07-30T16:37:02.170854Z", - "shell.execute_reply": "2024-07-30T16:37:02.170369Z" + "iopub.execute_input": "2024-08-02T23:22:37.833309Z", + "iopub.status.busy": "2024-08-02T23:22:37.833133Z", + "iopub.status.idle": "2024-08-02T23:22:37.836625Z", + "shell.execute_reply": "2024-08-02T23:22:37.836148Z" } }, "outputs": [ @@ -1622,7 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0b139128833c45f089e40c4755cc2721": { + "016d6023fefc4422a008bb5081a8cb41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1640,7 +1640,7 @@ "text_color": null } }, - "2cc4889e619f4d3e9043341064b11c7c": { + "120dbf402c2e413e80f26076fd4182f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1656,40 +1656,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_52bb780bf78947d192b9701de2336602", + "layout": "IPY_MODEL_8a61bc1d6f25492fab2693086b16af60", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9a7b7b5c4aa8470db022c5fd5f7f5217", + "style": "IPY_MODEL_66eaf3b501134447b36b9e1bbc71f764", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "3fad135171fd4a1783040cd5e00be0a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf526f5c8d204d9dabafe472f6d5a633", - "placeholder": "​", - "style": "IPY_MODEL_cab24e4c26614d0496ef8c4fa57cb547", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1028368.56it/s]" - } - }, - "52bb780bf78947d192b9701de2336602": { + "1e531205987048c482bafb4fc142f9ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1742,31 +1719,53 @@ "width": null } }, - "57581a07cda143f5ae3947a8ceb2effa": { + "1f75e27885a84d0aa3e9f0392195004a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a8254c641447480aa7f722801a84cae4", - "IPY_MODEL_2cc4889e619f4d3e9043341064b11c7c", - "IPY_MODEL_3fad135171fd4a1783040cd5e00be0a8" - ], - "layout": "IPY_MODEL_7b88ca779115406292c37cba27c25c20", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_30473e6af23a49de9549b975a2e1d540", + "placeholder": "​", + "style": "IPY_MODEL_37668698005b4c13a561e7bc3ca3818d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1212296.66it/s]" + } + }, + "2d90afb6224e48d5bbd2a1387ca9658d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c44ab595018a49b38ee8fd4915c20b40", + "placeholder": "​", + "style": "IPY_MODEL_345f3d85cfeb456d8e302d63a6cf9438", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } }, - "617558923b2244798dd8e64734279f0c": { + "2fb957039f8d43f48316d9a200cc8c15": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1819,30 +1818,7 @@ "width": null } }, - "6fa5f4c53bb04dfe94f30f73c931e9ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8c5f02c3ba3b4e35a7fb7b38460ea0c9", - "placeholder": "​", - "style": "IPY_MODEL_f809c3480764400ea9f63b20e3e395c1", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "7b88ca779115406292c37cba27c25c20": { + "30473e6af23a49de9549b975a2e1d540": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1895,47 +1871,7 @@ "width": null } }, - "8036196b7e194ee38336f33c15df9344": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6fa5f4c53bb04dfe94f30f73c931e9ce", - "IPY_MODEL_acbe71dfaa064b86ac9d438d3f49c584", - "IPY_MODEL_ad2efaf794734426b265156be3d7a946" - ], - "layout": "IPY_MODEL_e9893acd97ab48599094be49c014c0aa", - "tabbable": null, - "tooltip": null - } - }, - "815bf26fdf864b97a1dcad97921e8ca0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "884f09022ec44bdc8c0f021616c3bac7": { + "331ba3fe0de8492abb1454dc664d44d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1988,7 +1924,43 @@ "width": null } }, - "8c5f02c3ba3b4e35a7fb7b38460ea0c9": { + "345f3d85cfeb456d8e302d63a6cf9438": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "37668698005b4c13a561e7bc3ca3818d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3a146402b7784c78a6df6bb61dfcaa46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2041,7 +2013,30 @@ "width": null } }, - "9a7b7b5c4aa8470db022c5fd5f7f5217": { + "4340971679c04328844d58d0f3db5f63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_afefcabecb3244f098765e9f8f2b38ce", + "placeholder": "​", + "style": "IPY_MODEL_73045b1bb48f4666a6e7652a51cc7938", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "66eaf3b501134447b36b9e1bbc71f764": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2057,7 +2052,25 @@ "description_width": "" } }, - "a8254c641447480aa7f722801a84cae4": { + "73045b1bb48f4666a6e7652a51cc7938": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "736c03db0bc94503b72e649f95847c0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2072,64 +2085,55 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_617558923b2244798dd8e64734279f0c", + "layout": "IPY_MODEL_331ba3fe0de8492abb1454dc664d44d8", "placeholder": "​", - "style": "IPY_MODEL_0b139128833c45f089e40c4755cc2721", + "style": "IPY_MODEL_016d6023fefc4422a008bb5081a8cb41", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "value": " 10000/? [00:00<00:00, 1026455.88it/s]" } }, - "acbe71dfaa064b86ac9d438d3f49c584": { + "75f8dda3bfd7411ab998335d777d0d77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ea2d8ca3aa264b30ab6829a95956260e", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_815bf26fdf864b97a1dcad97921e8ca0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2d90afb6224e48d5bbd2a1387ca9658d", + "IPY_MODEL_120dbf402c2e413e80f26076fd4182f8", + "IPY_MODEL_1f75e27885a84d0aa3e9f0392195004a" + ], + "layout": "IPY_MODEL_3a146402b7784c78a6df6bb61dfcaa46", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "ad2efaf794734426b265156be3d7a946": { + "831e08b227234d0295aa11cd11e50c69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_884f09022ec44bdc8c0f021616c3bac7", - "placeholder": "​", - "style": "IPY_MODEL_d8abcd65840740c1ab4448e80f8d6650", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1696313.19it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "bf526f5c8d204d9dabafe472f6d5a633": { + "8a61bc1d6f25492fab2693086b16af60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2182,43 +2186,31 @@ "width": null } }, - "cab24e4c26614d0496ef8c4fa57cb547": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d8abcd65840740c1ab4448e80f8d6650": { + "994bb101c48240bd91ac23c6d451faea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4340971679c04328844d58d0f3db5f63", + "IPY_MODEL_ed2821f3d3e94d1e9d296ee878800951", + "IPY_MODEL_736c03db0bc94503b72e649f95847c0c" + ], + "layout": "IPY_MODEL_2fb957039f8d43f48316d9a200cc8c15", + "tabbable": null, + "tooltip": null } }, - "e9893acd97ab48599094be49c014c0aa": { + "afefcabecb3244f098765e9f8f2b38ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2271,7 +2263,7 @@ "width": null } }, - "ea2d8ca3aa264b30ab6829a95956260e": { + "c44ab595018a49b38ee8fd4915c20b40": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2324,22 +2316,30 @@ "width": null } }, - "f809c3480764400ea9f63b20e3e395c1": { + "ed2821f3d3e94d1e9d296ee878800951": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1e531205987048c482bafb4fc142f9ba", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_831e08b227234d0295aa11cd11e50c69", + "tabbable": null, + "tooltip": null, + "value": 50.0 } } }, diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index 839c45673..9ec229e44 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:06.847486Z", - "iopub.status.busy": "2024-07-30T16:37:06.846996Z", - "iopub.status.idle": "2024-07-30T16:37:08.300373Z", - "shell.execute_reply": "2024-07-30T16:37:08.299802Z" + "iopub.execute_input": "2024-08-02T23:22:41.243159Z", + "iopub.status.busy": "2024-08-02T23:22:41.242848Z", + "iopub.status.idle": "2024-08-02T23:22:42.677514Z", + "shell.execute_reply": "2024-08-02T23:22:42.676864Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.303031Z", - "iopub.status.busy": "2024-07-30T16:37:08.302535Z", - "iopub.status.idle": "2024-07-30T16:37:08.306381Z", - "shell.execute_reply": "2024-07-30T16:37:08.305889Z" + "iopub.execute_input": "2024-08-02T23:22:42.680254Z", + "iopub.status.busy": "2024-08-02T23:22:42.679911Z", + "iopub.status.idle": "2024-08-02T23:22:42.683720Z", + "shell.execute_reply": "2024-08-02T23:22:42.683171Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.308567Z", - "iopub.status.busy": "2024-07-30T16:37:08.308093Z", - "iopub.status.idle": "2024-07-30T16:37:08.564617Z", - "shell.execute_reply": "2024-07-30T16:37:08.564044Z" + "iopub.execute_input": "2024-08-02T23:22:42.685860Z", + "iopub.status.busy": "2024-08-02T23:22:42.685596Z", + "iopub.status.idle": "2024-08-02T23:22:42.951861Z", + "shell.execute_reply": "2024-08-02T23:22:42.951252Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.567009Z", - "iopub.status.busy": "2024-07-30T16:37:08.566570Z", - "iopub.status.idle": "2024-07-30T16:37:08.572786Z", - "shell.execute_reply": "2024-07-30T16:37:08.572249Z" + "iopub.execute_input": "2024-08-02T23:22:42.954216Z", + "iopub.status.busy": "2024-08-02T23:22:42.953791Z", + "iopub.status.idle": "2024-08-02T23:22:42.959699Z", + "shell.execute_reply": "2024-08-02T23:22:42.959165Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.575053Z", - "iopub.status.busy": "2024-07-30T16:37:08.574648Z", - "iopub.status.idle": "2024-07-30T16:37:08.581553Z", - "shell.execute_reply": "2024-07-30T16:37:08.580995Z" + "iopub.execute_input": "2024-08-02T23:22:42.961766Z", + "iopub.status.busy": "2024-08-02T23:22:42.961424Z", + "iopub.status.idle": "2024-08-02T23:22:42.968221Z", + "shell.execute_reply": "2024-08-02T23:22:42.967660Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.583694Z", - "iopub.status.busy": "2024-07-30T16:37:08.583295Z", - "iopub.status.idle": "2024-07-30T16:37:08.588214Z", - "shell.execute_reply": "2024-07-30T16:37:08.587641Z" + "iopub.execute_input": "2024-08-02T23:22:42.970573Z", + "iopub.status.busy": "2024-08-02T23:22:42.970111Z", + "iopub.status.idle": "2024-08-02T23:22:42.975154Z", + "shell.execute_reply": "2024-08-02T23:22:42.974573Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.590172Z", - "iopub.status.busy": "2024-07-30T16:37:08.589849Z", - "iopub.status.idle": "2024-07-30T16:37:08.595724Z", - "shell.execute_reply": "2024-07-30T16:37:08.595139Z" + "iopub.execute_input": "2024-08-02T23:22:42.977356Z", + "iopub.status.busy": "2024-08-02T23:22:42.976989Z", + "iopub.status.idle": "2024-08-02T23:22:42.982565Z", + "shell.execute_reply": "2024-08-02T23:22:42.982093Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.597670Z", - "iopub.status.busy": "2024-07-30T16:37:08.597361Z", - "iopub.status.idle": "2024-07-30T16:37:08.601523Z", - "shell.execute_reply": "2024-07-30T16:37:08.600966Z" + "iopub.execute_input": "2024-08-02T23:22:42.984641Z", + "iopub.status.busy": "2024-08-02T23:22:42.984213Z", + "iopub.status.idle": "2024-08-02T23:22:42.988345Z", + "shell.execute_reply": "2024-08-02T23:22:42.987921Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.603521Z", - "iopub.status.busy": "2024-07-30T16:37:08.603187Z", - "iopub.status.idle": "2024-07-30T16:37:08.669967Z", - "shell.execute_reply": "2024-07-30T16:37:08.669384Z" + "iopub.execute_input": "2024-08-02T23:22:42.990465Z", + "iopub.status.busy": "2024-08-02T23:22:42.990022Z", + "iopub.status.idle": "2024-08-02T23:22:43.055914Z", + "shell.execute_reply": "2024-08-02T23:22:43.055064Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.672642Z", - "iopub.status.busy": "2024-07-30T16:37:08.672054Z", - "iopub.status.idle": "2024-07-30T16:37:08.683309Z", - "shell.execute_reply": "2024-07-30T16:37:08.682790Z" + "iopub.execute_input": "2024-08-02T23:22:43.059448Z", + "iopub.status.busy": "2024-08-02T23:22:43.058515Z", + "iopub.status.idle": "2024-08-02T23:22:43.071379Z", + "shell.execute_reply": "2024-08-02T23:22:43.070858Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.685772Z", - "iopub.status.busy": "2024-07-30T16:37:08.685236Z", - "iopub.status.idle": "2024-07-30T16:37:08.705410Z", - "shell.execute_reply": "2024-07-30T16:37:08.704880Z" + "iopub.execute_input": "2024-08-02T23:22:43.075030Z", + "iopub.status.busy": "2024-08-02T23:22:43.074109Z", + "iopub.status.idle": "2024-08-02T23:22:43.095778Z", + "shell.execute_reply": "2024-08-02T23:22:43.095284Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.707757Z", - "iopub.status.busy": "2024-07-30T16:37:08.707363Z", - "iopub.status.idle": "2024-07-30T16:37:08.711693Z", - "shell.execute_reply": "2024-07-30T16:37:08.711182Z" + "iopub.execute_input": "2024-08-02T23:22:43.099248Z", + "iopub.status.busy": "2024-08-02T23:22:43.098329Z", + "iopub.status.idle": "2024-08-02T23:22:43.104218Z", + "shell.execute_reply": "2024-08-02T23:22:43.103727Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.714035Z", - "iopub.status.busy": "2024-07-30T16:37:08.713629Z", - "iopub.status.idle": "2024-07-30T16:37:08.718166Z", - "shell.execute_reply": "2024-07-30T16:37:08.717631Z" + "iopub.execute_input": "2024-08-02T23:22:43.107706Z", + "iopub.status.busy": "2024-08-02T23:22:43.106779Z", + "iopub.status.idle": "2024-08-02T23:22:43.112886Z", + "shell.execute_reply": "2024-08-02T23:22:43.112392Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.720507Z", - "iopub.status.busy": "2024-07-30T16:37:08.720111Z", - "iopub.status.idle": "2024-07-30T16:37:08.731439Z", - "shell.execute_reply": "2024-07-30T16:37:08.730910Z" + "iopub.execute_input": "2024-08-02T23:22:43.116202Z", + "iopub.status.busy": "2024-08-02T23:22:43.115450Z", + "iopub.status.idle": "2024-08-02T23:22:43.125506Z", + "shell.execute_reply": "2024-08-02T23:22:43.125084Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.733378Z", - "iopub.status.busy": "2024-07-30T16:37:08.733061Z", - "iopub.status.idle": "2024-07-30T16:37:08.737822Z", - "shell.execute_reply": "2024-07-30T16:37:08.737271Z" + "iopub.execute_input": "2024-08-02T23:22:43.127473Z", + "iopub.status.busy": "2024-08-02T23:22:43.127141Z", + "iopub.status.idle": "2024-08-02T23:22:43.131395Z", + "shell.execute_reply": "2024-08-02T23:22:43.130979Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.739993Z", - "iopub.status.busy": "2024-07-30T16:37:08.739678Z", - "iopub.status.idle": "2024-07-30T16:37:08.850454Z", - "shell.execute_reply": "2024-07-30T16:37:08.849916Z" + "iopub.execute_input": "2024-08-02T23:22:43.133376Z", + "iopub.status.busy": "2024-08-02T23:22:43.133027Z", + "iopub.status.idle": "2024-08-02T23:22:43.247301Z", + "shell.execute_reply": "2024-08-02T23:22:43.246697Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.852557Z", - "iopub.status.busy": "2024-07-30T16:37:08.852223Z", - "iopub.status.idle": "2024-07-30T16:37:08.858285Z", - "shell.execute_reply": "2024-07-30T16:37:08.857774Z" + "iopub.execute_input": "2024-08-02T23:22:43.249758Z", + "iopub.status.busy": "2024-08-02T23:22:43.249222Z", + "iopub.status.idle": "2024-08-02T23:22:43.255494Z", + "shell.execute_reply": "2024-08-02T23:22:43.255010Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:08.860639Z", - "iopub.status.busy": "2024-07-30T16:37:08.860116Z", - "iopub.status.idle": "2024-07-30T16:37:11.081523Z", - "shell.execute_reply": "2024-07-30T16:37:11.080894Z" + "iopub.execute_input": "2024-08-02T23:22:43.257796Z", + "iopub.status.busy": "2024-08-02T23:22:43.257451Z", + "iopub.status.idle": "2024-08-02T23:22:45.391725Z", + "shell.execute_reply": "2024-08-02T23:22:45.391106Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.085782Z", - "iopub.status.busy": "2024-07-30T16:37:11.084683Z", - "iopub.status.idle": "2024-07-30T16:37:11.100012Z", - "shell.execute_reply": "2024-07-30T16:37:11.099506Z" + "iopub.execute_input": "2024-08-02T23:22:45.394492Z", + "iopub.status.busy": "2024-08-02T23:22:45.394017Z", + "iopub.status.idle": "2024-08-02T23:22:45.407717Z", + "shell.execute_reply": "2024-08-02T23:22:45.407211Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.103570Z", - "iopub.status.busy": "2024-07-30T16:37:11.102644Z", - "iopub.status.idle": "2024-07-30T16:37:11.106644Z", - "shell.execute_reply": "2024-07-30T16:37:11.106149Z" + "iopub.execute_input": "2024-08-02T23:22:45.409965Z", + "iopub.status.busy": "2024-08-02T23:22:45.409683Z", + "iopub.status.idle": "2024-08-02T23:22:45.412502Z", + "shell.execute_reply": "2024-08-02T23:22:45.411936Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.110093Z", - "iopub.status.busy": "2024-07-30T16:37:11.109154Z", - "iopub.status.idle": "2024-07-30T16:37:11.114773Z", - "shell.execute_reply": "2024-07-30T16:37:11.114272Z" + "iopub.execute_input": "2024-08-02T23:22:45.414713Z", + "iopub.status.busy": "2024-08-02T23:22:45.414480Z", + "iopub.status.idle": "2024-08-02T23:22:45.419479Z", + "shell.execute_reply": "2024-08-02T23:22:45.418922Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.118266Z", - "iopub.status.busy": "2024-07-30T16:37:11.117324Z", - "iopub.status.idle": "2024-07-30T16:37:11.149228Z", - "shell.execute_reply": "2024-07-30T16:37:11.148699Z" + "iopub.execute_input": "2024-08-02T23:22:45.421657Z", + "iopub.status.busy": "2024-08-02T23:22:45.421424Z", + "iopub.status.idle": "2024-08-02T23:22:45.459617Z", + "shell.execute_reply": "2024-08-02T23:22:45.459124Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.152348Z", - "iopub.status.busy": "2024-07-30T16:37:11.151900Z", - "iopub.status.idle": "2024-07-30T16:37:11.662729Z", - "shell.execute_reply": "2024-07-30T16:37:11.662153Z" + "iopub.execute_input": "2024-08-02T23:22:45.461965Z", + "iopub.status.busy": "2024-08-02T23:22:45.461590Z", + "iopub.status.idle": "2024-08-02T23:22:46.004492Z", + "shell.execute_reply": "2024-08-02T23:22:46.003940Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.665547Z", - "iopub.status.busy": "2024-07-30T16:37:11.665125Z", - "iopub.status.idle": "2024-07-30T16:37:11.811588Z", - "shell.execute_reply": "2024-07-30T16:37:11.810893Z" + "iopub.execute_input": "2024-08-02T23:22:46.007832Z", + "iopub.status.busy": "2024-08-02T23:22:46.006922Z", + "iopub.status.idle": "2024-08-02T23:22:46.139183Z", + "shell.execute_reply": "2024-08-02T23:22:46.138499Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.814740Z", - "iopub.status.busy": "2024-07-30T16:37:11.814355Z", - "iopub.status.idle": "2024-07-30T16:37:11.821641Z", - "shell.execute_reply": "2024-07-30T16:37:11.821112Z" + "iopub.execute_input": "2024-08-02T23:22:46.142862Z", + "iopub.status.busy": "2024-08-02T23:22:46.141903Z", + "iopub.status.idle": "2024-08-02T23:22:46.150567Z", + "shell.execute_reply": "2024-08-02T23:22:46.150071Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.825192Z", - "iopub.status.busy": "2024-07-30T16:37:11.824261Z", - "iopub.status.idle": "2024-07-30T16:37:11.832276Z", - "shell.execute_reply": "2024-07-30T16:37:11.831780Z" + "iopub.execute_input": "2024-08-02T23:22:46.154019Z", + "iopub.status.busy": "2024-08-02T23:22:46.153094Z", + "iopub.status.idle": "2024-08-02T23:22:46.160946Z", + "shell.execute_reply": "2024-08-02T23:22:46.160456Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.835774Z", - "iopub.status.busy": "2024-07-30T16:37:11.834852Z", - "iopub.status.idle": "2024-07-30T16:37:11.842134Z", - "shell.execute_reply": "2024-07-30T16:37:11.841617Z" + "iopub.execute_input": "2024-08-02T23:22:46.164386Z", + "iopub.status.busy": "2024-08-02T23:22:46.163465Z", + "iopub.status.idle": "2024-08-02T23:22:46.170712Z", + "shell.execute_reply": "2024-08-02T23:22:46.170223Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.845557Z", - "iopub.status.busy": "2024-07-30T16:37:11.844646Z", - "iopub.status.idle": "2024-07-30T16:37:11.849988Z", - "shell.execute_reply": "2024-07-30T16:37:11.849571Z" + "iopub.execute_input": "2024-08-02T23:22:46.174165Z", + "iopub.status.busy": "2024-08-02T23:22:46.173238Z", + "iopub.status.idle": "2024-08-02T23:22:46.179291Z", + "shell.execute_reply": "2024-08-02T23:22:46.178762Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.852085Z", - "iopub.status.busy": "2024-07-30T16:37:11.851735Z", - "iopub.status.idle": "2024-07-30T16:37:11.856242Z", - "shell.execute_reply": "2024-07-30T16:37:11.855836Z" + "iopub.execute_input": "2024-08-02T23:22:46.181687Z", + "iopub.status.busy": "2024-08-02T23:22:46.181513Z", + "iopub.status.idle": "2024-08-02T23:22:46.186322Z", + "shell.execute_reply": "2024-08-02T23:22:46.185868Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.858461Z", - "iopub.status.busy": "2024-07-30T16:37:11.858025Z", - "iopub.status.idle": "2024-07-30T16:37:11.938221Z", - "shell.execute_reply": "2024-07-30T16:37:11.937709Z" + "iopub.execute_input": "2024-08-02T23:22:46.188278Z", + "iopub.status.busy": "2024-08-02T23:22:46.188100Z", + "iopub.status.idle": "2024-08-02T23:22:46.265593Z", + "shell.execute_reply": "2024-08-02T23:22:46.264934Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.940497Z", - "iopub.status.busy": "2024-07-30T16:37:11.940305Z", - "iopub.status.idle": "2024-07-30T16:37:11.950235Z", - "shell.execute_reply": "2024-07-30T16:37:11.949598Z" + "iopub.execute_input": "2024-08-02T23:22:46.268378Z", + "iopub.status.busy": "2024-08-02T23:22:46.267931Z", + "iopub.status.idle": "2024-08-02T23:22:46.277696Z", + "shell.execute_reply": "2024-08-02T23:22:46.277149Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.952707Z", - "iopub.status.busy": "2024-07-30T16:37:11.952413Z", - "iopub.status.idle": "2024-07-30T16:37:11.955525Z", - "shell.execute_reply": "2024-07-30T16:37:11.954939Z" + "iopub.execute_input": "2024-08-02T23:22:46.280290Z", + "iopub.status.busy": "2024-08-02T23:22:46.279817Z", + "iopub.status.idle": "2024-08-02T23:22:46.282856Z", + "shell.execute_reply": "2024-08-02T23:22:46.282369Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.957491Z", - "iopub.status.busy": "2024-07-30T16:37:11.957322Z", - "iopub.status.idle": "2024-07-30T16:37:11.968955Z", - "shell.execute_reply": "2024-07-30T16:37:11.968450Z" + "iopub.execute_input": "2024-08-02T23:22:46.285113Z", + "iopub.status.busy": "2024-08-02T23:22:46.284905Z", + "iopub.status.idle": "2024-08-02T23:22:46.295023Z", + "shell.execute_reply": "2024-08-02T23:22:46.294587Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.971083Z", - "iopub.status.busy": "2024-07-30T16:37:11.970902Z", - "iopub.status.idle": "2024-07-30T16:37:11.977806Z", - "shell.execute_reply": "2024-07-30T16:37:11.977330Z" + "iopub.execute_input": "2024-08-02T23:22:46.297195Z", + "iopub.status.busy": "2024-08-02T23:22:46.297014Z", + "iopub.status.idle": "2024-08-02T23:22:46.303290Z", + "shell.execute_reply": "2024-08-02T23:22:46.302794Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.979672Z", - "iopub.status.busy": "2024-07-30T16:37:11.979501Z", - "iopub.status.idle": "2024-07-30T16:37:11.982695Z", - "shell.execute_reply": "2024-07-30T16:37:11.982238Z" + "iopub.execute_input": "2024-08-02T23:22:46.305390Z", + "iopub.status.busy": "2024-08-02T23:22:46.305229Z", + "iopub.status.idle": "2024-08-02T23:22:46.308203Z", + "shell.execute_reply": "2024-08-02T23:22:46.307753Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:11.984563Z", - "iopub.status.busy": "2024-07-30T16:37:11.984385Z", - "iopub.status.idle": "2024-07-30T16:37:16.038898Z", - "shell.execute_reply": "2024-07-30T16:37:16.038334Z" + "iopub.execute_input": "2024-08-02T23:22:46.310173Z", + "iopub.status.busy": "2024-08-02T23:22:46.310013Z", + "iopub.status.idle": "2024-08-02T23:22:50.335807Z", + "shell.execute_reply": "2024-08-02T23:22:50.335295Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:16.041419Z", - "iopub.status.busy": "2024-07-30T16:37:16.041044Z", - "iopub.status.idle": "2024-07-30T16:37:16.044136Z", - "shell.execute_reply": "2024-07-30T16:37:16.043742Z" + "iopub.execute_input": "2024-08-02T23:22:50.339016Z", + "iopub.status.busy": "2024-08-02T23:22:50.338110Z", + "iopub.status.idle": "2024-08-02T23:22:50.342873Z", + "shell.execute_reply": "2024-08-02T23:22:50.342277Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:16.046136Z", - "iopub.status.busy": "2024-07-30T16:37:16.045835Z", - "iopub.status.idle": "2024-07-30T16:37:16.048832Z", - "shell.execute_reply": "2024-07-30T16:37:16.048207Z" + "iopub.execute_input": "2024-08-02T23:22:50.345292Z", + "iopub.status.busy": "2024-08-02T23:22:50.344858Z", + "iopub.status.idle": "2024-08-02T23:22:50.347667Z", + "shell.execute_reply": "2024-08-02T23:22:50.347208Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.html b/master/tutorials/indepth_overview.html index 025a90aac..59b924a32 100644 --- a/master/tutorials/indepth_overview.html +++ b/master/tutorials/indepth_overview.html @@ -2363,6 +2363,12 @@

    Workflow 8: Ensembling label quality scores from multiple p

    While ensembling different models’ label quality scores (label_quality_scores_best) will often be superior to getting label quality scores from a single ensemble predictor (label_quality_scores_better), both approaches produce significantly better label quality scores than just using the predictions from a single model.

    +
    +

    Spending too much time on data quality?#

    +

    Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.

    +

    That’s why we built Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

    +

    The modern AI pipeline automated with Cleanlab Studio

    +

    @@ -2479,6 +2485,7 @@

    Workflow 8: Ensembling label quality scores from multiple p
  • Workflow 8: Ensembling label quality scores from multiple predictors
  • +
  • Spending too much time on data quality?
  • diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 63d074d15..dbe76443f 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:19.514665Z", - "iopub.status.busy": "2024-07-30T16:37:19.514193Z", - "iopub.status.idle": "2024-07-30T16:37:20.970203Z", - "shell.execute_reply": "2024-07-30T16:37:20.969599Z" + "iopub.execute_input": "2024-08-02T23:22:53.660990Z", + "iopub.status.busy": "2024-08-02T23:22:53.660815Z", + "iopub.status.idle": "2024-08-02T23:22:55.078462Z", + "shell.execute_reply": "2024-08-02T23:22:55.077902Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:20.972868Z", - "iopub.status.busy": "2024-07-30T16:37:20.972378Z", - "iopub.status.idle": "2024-07-30T16:37:20.975839Z", - "shell.execute_reply": "2024-07-30T16:37:20.975373Z" + "iopub.execute_input": "2024-08-02T23:22:55.080870Z", + "iopub.status.busy": "2024-08-02T23:22:55.080574Z", + "iopub.status.idle": "2024-08-02T23:22:55.084143Z", + "shell.execute_reply": "2024-08-02T23:22:55.083572Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:20.977983Z", - "iopub.status.busy": "2024-07-30T16:37:20.977647Z", - "iopub.status.idle": "2024-07-30T16:37:20.988855Z", - "shell.execute_reply": "2024-07-30T16:37:20.988422Z" + "iopub.execute_input": "2024-08-02T23:22:55.086422Z", + "iopub.status.busy": "2024-08-02T23:22:55.086068Z", + "iopub.status.idle": "2024-08-02T23:22:55.097345Z", + "shell.execute_reply": "2024-08-02T23:22:55.096867Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:20.990750Z", - "iopub.status.busy": "2024-07-30T16:37:20.990413Z", - "iopub.status.idle": "2024-07-30T16:37:21.236239Z", - "shell.execute_reply": "2024-07-30T16:37:21.235736Z" + "iopub.execute_input": "2024-08-02T23:22:55.099137Z", + "iopub.status.busy": "2024-08-02T23:22:55.098958Z", + "iopub.status.idle": "2024-08-02T23:22:55.335579Z", + "shell.execute_reply": "2024-08-02T23:22:55.334975Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:21.238707Z", - "iopub.status.busy": "2024-07-30T16:37:21.238345Z", - "iopub.status.idle": "2024-07-30T16:37:21.264617Z", - "shell.execute_reply": "2024-07-30T16:37:21.264131Z" + "iopub.execute_input": "2024-08-02T23:22:55.337901Z", + "iopub.status.busy": "2024-08-02T23:22:55.337546Z", + "iopub.status.idle": "2024-08-02T23:22:55.363253Z", + "shell.execute_reply": "2024-08-02T23:22:55.362813Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:21.266767Z", - "iopub.status.busy": "2024-07-30T16:37:21.266578Z", - "iopub.status.idle": "2024-07-30T16:37:23.611867Z", - "shell.execute_reply": "2024-07-30T16:37:23.611160Z" + "iopub.execute_input": "2024-08-02T23:22:55.365173Z", + "iopub.status.busy": "2024-08-02T23:22:55.364984Z", + "iopub.status.idle": "2024-08-02T23:22:57.475466Z", + "shell.execute_reply": "2024-08-02T23:22:57.474804Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:23.614599Z", - "iopub.status.busy": "2024-07-30T16:37:23.614210Z", - "iopub.status.idle": "2024-07-30T16:37:23.634028Z", - "shell.execute_reply": "2024-07-30T16:37:23.633465Z" + "iopub.execute_input": "2024-08-02T23:22:57.477895Z", + "iopub.status.busy": "2024-08-02T23:22:57.477563Z", + "iopub.status.idle": "2024-08-02T23:22:57.495457Z", + "shell.execute_reply": "2024-08-02T23:22:57.494985Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:23.636438Z", - "iopub.status.busy": "2024-07-30T16:37:23.635973Z", - "iopub.status.idle": "2024-07-30T16:37:25.305599Z", - "shell.execute_reply": "2024-07-30T16:37:25.304862Z" + "iopub.execute_input": "2024-08-02T23:22:57.497360Z", + "iopub.status.busy": "2024-08-02T23:22:57.497175Z", + "iopub.status.idle": "2024-08-02T23:22:59.083356Z", + "shell.execute_reply": "2024-08-02T23:22:59.082741Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.308828Z", - "iopub.status.busy": "2024-07-30T16:37:25.307885Z", - "iopub.status.idle": "2024-07-30T16:37:25.322222Z", - "shell.execute_reply": "2024-07-30T16:37:25.321727Z" + "iopub.execute_input": "2024-08-02T23:22:59.086101Z", + "iopub.status.busy": "2024-08-02T23:22:59.085430Z", + "iopub.status.idle": "2024-08-02T23:22:59.099257Z", + "shell.execute_reply": "2024-08-02T23:22:59.098675Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.324721Z", - "iopub.status.busy": "2024-07-30T16:37:25.324152Z", - "iopub.status.idle": "2024-07-30T16:37:25.419049Z", - "shell.execute_reply": "2024-07-30T16:37:25.418364Z" + "iopub.execute_input": "2024-08-02T23:22:59.101459Z", + "iopub.status.busy": "2024-08-02T23:22:59.101073Z", + "iopub.status.idle": "2024-08-02T23:22:59.182514Z", + "shell.execute_reply": "2024-08-02T23:22:59.181863Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.421430Z", - "iopub.status.busy": "2024-07-30T16:37:25.421173Z", - "iopub.status.idle": "2024-07-30T16:37:25.644270Z", - "shell.execute_reply": "2024-07-30T16:37:25.643645Z" + "iopub.execute_input": "2024-08-02T23:22:59.185181Z", + "iopub.status.busy": "2024-08-02T23:22:59.184699Z", + "iopub.status.idle": "2024-08-02T23:22:59.399591Z", + "shell.execute_reply": "2024-08-02T23:22:59.399127Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.646795Z", - "iopub.status.busy": "2024-07-30T16:37:25.646428Z", - "iopub.status.idle": "2024-07-30T16:37:25.665764Z", - "shell.execute_reply": "2024-07-30T16:37:25.665270Z" + "iopub.execute_input": "2024-08-02T23:22:59.401855Z", + "iopub.status.busy": "2024-08-02T23:22:59.401500Z", + "iopub.status.idle": "2024-08-02T23:22:59.418383Z", + "shell.execute_reply": "2024-08-02T23:22:59.417944Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.667885Z", - "iopub.status.busy": "2024-07-30T16:37:25.667692Z", - "iopub.status.idle": "2024-07-30T16:37:25.678270Z", - "shell.execute_reply": "2024-07-30T16:37:25.677775Z" + "iopub.execute_input": "2024-08-02T23:22:59.420363Z", + "iopub.status.busy": "2024-08-02T23:22:59.420024Z", + "iopub.status.idle": "2024-08-02T23:22:59.429357Z", + "shell.execute_reply": "2024-08-02T23:22:59.428784Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.680557Z", - "iopub.status.busy": "2024-07-30T16:37:25.680215Z", - "iopub.status.idle": "2024-07-30T16:37:25.783566Z", - "shell.execute_reply": "2024-07-30T16:37:25.782891Z" + "iopub.execute_input": "2024-08-02T23:22:59.431554Z", + "iopub.status.busy": "2024-08-02T23:22:59.431121Z", + "iopub.status.idle": "2024-08-02T23:22:59.523557Z", + "shell.execute_reply": "2024-08-02T23:22:59.522973Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.786394Z", - "iopub.status.busy": "2024-07-30T16:37:25.785963Z", - "iopub.status.idle": "2024-07-30T16:37:25.944890Z", - "shell.execute_reply": "2024-07-30T16:37:25.944224Z" + "iopub.execute_input": "2024-08-02T23:22:59.525876Z", + "iopub.status.busy": "2024-08-02T23:22:59.525646Z", + "iopub.status.idle": "2024-08-02T23:22:59.668775Z", + "shell.execute_reply": "2024-08-02T23:22:59.668197Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.947223Z", - "iopub.status.busy": "2024-07-30T16:37:25.947014Z", - "iopub.status.idle": "2024-07-30T16:37:25.951228Z", - "shell.execute_reply": "2024-07-30T16:37:25.950663Z" + "iopub.execute_input": "2024-08-02T23:22:59.671509Z", + "iopub.status.busy": "2024-08-02T23:22:59.671116Z", + "iopub.status.idle": "2024-08-02T23:22:59.675170Z", + "shell.execute_reply": "2024-08-02T23:22:59.674673Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.953418Z", - "iopub.status.busy": "2024-07-30T16:37:25.953075Z", - "iopub.status.idle": "2024-07-30T16:37:25.957102Z", - "shell.execute_reply": "2024-07-30T16:37:25.956520Z" + "iopub.execute_input": "2024-08-02T23:22:59.677097Z", + "iopub.status.busy": "2024-08-02T23:22:59.676885Z", + "iopub.status.idle": "2024-08-02T23:22:59.680782Z", + "shell.execute_reply": "2024-08-02T23:22:59.680214Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.959055Z", - "iopub.status.busy": "2024-07-30T16:37:25.958872Z", - "iopub.status.idle": "2024-07-30T16:37:25.996394Z", - "shell.execute_reply": "2024-07-30T16:37:25.995898Z" + "iopub.execute_input": "2024-08-02T23:22:59.682941Z", + "iopub.status.busy": "2024-08-02T23:22:59.682612Z", + "iopub.status.idle": "2024-08-02T23:22:59.719665Z", + "shell.execute_reply": "2024-08-02T23:22:59.719195Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:25.998305Z", - "iopub.status.busy": "2024-07-30T16:37:25.998128Z", - "iopub.status.idle": "2024-07-30T16:37:26.039427Z", - "shell.execute_reply": "2024-07-30T16:37:26.038868Z" + "iopub.execute_input": "2024-08-02T23:22:59.721625Z", + "iopub.status.busy": "2024-08-02T23:22:59.721448Z", + "iopub.status.idle": "2024-08-02T23:22:59.762453Z", + "shell.execute_reply": "2024-08-02T23:22:59.761973Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:26.041607Z", - "iopub.status.busy": "2024-07-30T16:37:26.041417Z", - "iopub.status.idle": "2024-07-30T16:37:26.162225Z", - "shell.execute_reply": "2024-07-30T16:37:26.161548Z" + "iopub.execute_input": "2024-08-02T23:22:59.764348Z", + "iopub.status.busy": "2024-08-02T23:22:59.764176Z", + "iopub.status.idle": "2024-08-02T23:22:59.883238Z", + "shell.execute_reply": "2024-08-02T23:22:59.882497Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:26.165084Z", - "iopub.status.busy": "2024-07-30T16:37:26.164618Z", - "iopub.status.idle": "2024-07-30T16:37:26.285845Z", - "shell.execute_reply": "2024-07-30T16:37:26.285184Z" + "iopub.execute_input": "2024-08-02T23:22:59.885892Z", + "iopub.status.busy": "2024-08-02T23:22:59.885655Z", + "iopub.status.idle": "2024-08-02T23:22:59.991995Z", + "shell.execute_reply": "2024-08-02T23:22:59.991397Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:26.288464Z", - "iopub.status.busy": "2024-07-30T16:37:26.288093Z", - "iopub.status.idle": "2024-07-30T16:37:26.502063Z", - "shell.execute_reply": "2024-07-30T16:37:26.501416Z" + "iopub.execute_input": "2024-08-02T23:22:59.994517Z", + "iopub.status.busy": "2024-08-02T23:22:59.994166Z", + "iopub.status.idle": "2024-08-02T23:23:00.206479Z", + "shell.execute_reply": "2024-08-02T23:23:00.205902Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:26.504441Z", - "iopub.status.busy": "2024-07-30T16:37:26.503981Z", - "iopub.status.idle": "2024-07-30T16:37:26.744760Z", - "shell.execute_reply": "2024-07-30T16:37:26.744174Z" + "iopub.execute_input": "2024-08-02T23:23:00.208774Z", + "iopub.status.busy": "2024-08-02T23:23:00.208393Z", + "iopub.status.idle": "2024-08-02T23:23:00.425932Z", + "shell.execute_reply": "2024-08-02T23:23:00.425360Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:26.747291Z", - "iopub.status.busy": "2024-07-30T16:37:26.746891Z", - "iopub.status.idle": "2024-07-30T16:37:26.752870Z", - "shell.execute_reply": "2024-07-30T16:37:26.752415Z" + "iopub.execute_input": "2024-08-02T23:23:00.428347Z", + "iopub.status.busy": "2024-08-02T23:23:00.427962Z", + "iopub.status.idle": "2024-08-02T23:23:00.434288Z", + "shell.execute_reply": "2024-08-02T23:23:00.433838Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:26.754943Z", - "iopub.status.busy": "2024-07-30T16:37:26.754598Z", - "iopub.status.idle": "2024-07-30T16:37:26.972039Z", - "shell.execute_reply": "2024-07-30T16:37:26.971400Z" + "iopub.execute_input": "2024-08-02T23:23:00.436322Z", + "iopub.status.busy": "2024-08-02T23:23:00.435908Z", + "iopub.status.idle": "2024-08-02T23:23:00.651939Z", + "shell.execute_reply": "2024-08-02T23:23:00.651371Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:26.974261Z", - "iopub.status.busy": "2024-07-30T16:37:26.974064Z", - "iopub.status.idle": "2024-07-30T16:37:28.066231Z", - "shell.execute_reply": "2024-07-30T16:37:28.065649Z" + "iopub.execute_input": "2024-08-02T23:23:00.654276Z", + "iopub.status.busy": "2024-08-02T23:23:00.653821Z", + "iopub.status.idle": "2024-08-02T23:23:01.699320Z", + "shell.execute_reply": "2024-08-02T23:23:01.698766Z" }, "id": "wL3ngCnuLEWd" }, @@ -2381,6 +2381,21 @@ "source": [ "While ensembling different models' label quality scores (`label_quality_scores_best`) will often be superior to getting label quality scores from a single ensemble predictor (`label_quality_scores_better`), both approaches produce significantly better label quality scores than just using the predictions from a single model." ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

    \n", + " \"The\n", + "

    " + ] } ], "metadata": { diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index fd2c70404..f2e838faf 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:32.718320Z", - "iopub.status.busy": "2024-07-30T16:37:32.718143Z", - "iopub.status.idle": "2024-07-30T16:37:34.160547Z", - "shell.execute_reply": "2024-07-30T16:37:34.159900Z" + "iopub.execute_input": "2024-08-02T23:23:05.094466Z", + "iopub.status.busy": "2024-08-02T23:23:05.094291Z", + "iopub.status.idle": "2024-08-02T23:23:06.519188Z", + "shell.execute_reply": "2024-08-02T23:23:06.518592Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.163333Z", - "iopub.status.busy": "2024-07-30T16:37:34.163023Z", - "iopub.status.idle": "2024-07-30T16:37:34.166128Z", - "shell.execute_reply": "2024-07-30T16:37:34.165659Z" + "iopub.execute_input": "2024-08-02T23:23:06.521921Z", + "iopub.status.busy": "2024-08-02T23:23:06.521450Z", + "iopub.status.idle": "2024-08-02T23:23:06.524559Z", + "shell.execute_reply": "2024-08-02T23:23:06.524087Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.168192Z", - "iopub.status.busy": "2024-07-30T16:37:34.168013Z", - "iopub.status.idle": "2024-07-30T16:37:34.175994Z", - "shell.execute_reply": "2024-07-30T16:37:34.175519Z" + "iopub.execute_input": "2024-08-02T23:23:06.526668Z", + "iopub.status.busy": "2024-08-02T23:23:06.526334Z", + "iopub.status.idle": "2024-08-02T23:23:06.534155Z", + "shell.execute_reply": "2024-08-02T23:23:06.533679Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.178122Z", - "iopub.status.busy": "2024-07-30T16:37:34.177688Z", - "iopub.status.idle": "2024-07-30T16:37:34.225806Z", - "shell.execute_reply": "2024-07-30T16:37:34.225161Z" + "iopub.execute_input": "2024-08-02T23:23:06.536079Z", + "iopub.status.busy": "2024-08-02T23:23:06.535779Z", + "iopub.status.idle": "2024-08-02T23:23:06.582288Z", + "shell.execute_reply": "2024-08-02T23:23:06.581795Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.228546Z", - "iopub.status.busy": "2024-07-30T16:37:34.228175Z", - "iopub.status.idle": "2024-07-30T16:37:34.246251Z", - "shell.execute_reply": "2024-07-30T16:37:34.245703Z" + "iopub.execute_input": "2024-08-02T23:23:06.584696Z", + "iopub.status.busy": "2024-08-02T23:23:06.584134Z", + "iopub.status.idle": "2024-08-02T23:23:06.601445Z", + "shell.execute_reply": "2024-08-02T23:23:06.600877Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.248429Z", - "iopub.status.busy": "2024-07-30T16:37:34.248067Z", - "iopub.status.idle": "2024-07-30T16:37:34.251958Z", - "shell.execute_reply": "2024-07-30T16:37:34.251523Z" + "iopub.execute_input": "2024-08-02T23:23:06.603369Z", + "iopub.status.busy": "2024-08-02T23:23:06.603188Z", + "iopub.status.idle": "2024-08-02T23:23:06.607249Z", + "shell.execute_reply": "2024-08-02T23:23:06.606678Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.254230Z", - "iopub.status.busy": "2024-07-30T16:37:34.253755Z", - "iopub.status.idle": "2024-07-30T16:37:34.270486Z", - "shell.execute_reply": "2024-07-30T16:37:34.269879Z" + "iopub.execute_input": "2024-08-02T23:23:06.609439Z", + "iopub.status.busy": "2024-08-02T23:23:06.608988Z", + "iopub.status.idle": "2024-08-02T23:23:06.625441Z", + "shell.execute_reply": "2024-08-02T23:23:06.624820Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.272682Z", - "iopub.status.busy": "2024-07-30T16:37:34.272503Z", - "iopub.status.idle": "2024-07-30T16:37:34.299362Z", - "shell.execute_reply": "2024-07-30T16:37:34.298706Z" + "iopub.execute_input": "2024-08-02T23:23:06.627733Z", + "iopub.status.busy": "2024-08-02T23:23:06.627381Z", + "iopub.status.idle": "2024-08-02T23:23:06.653432Z", + "shell.execute_reply": "2024-08-02T23:23:06.652979Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:34.302325Z", - "iopub.status.busy": "2024-07-30T16:37:34.301951Z", - "iopub.status.idle": "2024-07-30T16:37:36.536542Z", - "shell.execute_reply": "2024-07-30T16:37:36.535928Z" + "iopub.execute_input": "2024-08-02T23:23:06.655520Z", + "iopub.status.busy": "2024-08-02T23:23:06.655195Z", + "iopub.status.idle": "2024-08-02T23:23:08.797131Z", + "shell.execute_reply": "2024-08-02T23:23:08.796420Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.540387Z", - "iopub.status.busy": "2024-07-30T16:37:36.538845Z", - "iopub.status.idle": "2024-07-30T16:37:36.547424Z", - "shell.execute_reply": "2024-07-30T16:37:36.546819Z" + "iopub.execute_input": "2024-08-02T23:23:08.800999Z", + "iopub.status.busy": "2024-08-02T23:23:08.799464Z", + "iopub.status.idle": "2024-08-02T23:23:08.807486Z", + "shell.execute_reply": "2024-08-02T23:23:08.807012Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.549619Z", - "iopub.status.busy": "2024-07-30T16:37:36.549270Z", - "iopub.status.idle": "2024-07-30T16:37:36.562222Z", - "shell.execute_reply": "2024-07-30T16:37:36.561697Z" + "iopub.execute_input": "2024-08-02T23:23:08.809557Z", + "iopub.status.busy": "2024-08-02T23:23:08.809274Z", + "iopub.status.idle": "2024-08-02T23:23:08.821755Z", + "shell.execute_reply": "2024-08-02T23:23:08.821200Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.564431Z", - "iopub.status.busy": "2024-07-30T16:37:36.564072Z", - "iopub.status.idle": "2024-07-30T16:37:36.570665Z", - "shell.execute_reply": "2024-07-30T16:37:36.570168Z" + "iopub.execute_input": "2024-08-02T23:23:08.823744Z", + "iopub.status.busy": "2024-08-02T23:23:08.823567Z", + "iopub.status.idle": "2024-08-02T23:23:08.829911Z", + "shell.execute_reply": "2024-08-02T23:23:08.829473Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.572817Z", - "iopub.status.busy": "2024-07-30T16:37:36.572406Z", - "iopub.status.idle": "2024-07-30T16:37:36.575372Z", - "shell.execute_reply": "2024-07-30T16:37:36.574796Z" + "iopub.execute_input": "2024-08-02T23:23:08.831814Z", + "iopub.status.busy": "2024-08-02T23:23:08.831639Z", + "iopub.status.idle": "2024-08-02T23:23:08.834249Z", + "shell.execute_reply": "2024-08-02T23:23:08.833780Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.577427Z", - "iopub.status.busy": "2024-07-30T16:37:36.577104Z", - "iopub.status.idle": "2024-07-30T16:37:36.580747Z", - "shell.execute_reply": "2024-07-30T16:37:36.580200Z" + "iopub.execute_input": "2024-08-02T23:23:08.836353Z", + "iopub.status.busy": "2024-08-02T23:23:08.836022Z", + "iopub.status.idle": "2024-08-02T23:23:08.839391Z", + "shell.execute_reply": "2024-08-02T23:23:08.838879Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.582932Z", - "iopub.status.busy": "2024-07-30T16:37:36.582604Z", - "iopub.status.idle": "2024-07-30T16:37:36.585678Z", - "shell.execute_reply": "2024-07-30T16:37:36.585251Z" + "iopub.execute_input": "2024-08-02T23:23:08.841450Z", + "iopub.status.busy": "2024-08-02T23:23:08.841177Z", + "iopub.status.idle": "2024-08-02T23:23:08.843918Z", + "shell.execute_reply": "2024-08-02T23:23:08.843357Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.587663Z", - "iopub.status.busy": "2024-07-30T16:37:36.587336Z", - "iopub.status.idle": "2024-07-30T16:37:36.591506Z", - "shell.execute_reply": "2024-07-30T16:37:36.590945Z" + "iopub.execute_input": "2024-08-02T23:23:08.845923Z", + "iopub.status.busy": "2024-08-02T23:23:08.845589Z", + "iopub.status.idle": "2024-08-02T23:23:08.849887Z", + "shell.execute_reply": "2024-08-02T23:23:08.849429Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.593587Z", - "iopub.status.busy": "2024-07-30T16:37:36.593411Z", - "iopub.status.idle": "2024-07-30T16:37:36.622081Z", - "shell.execute_reply": "2024-07-30T16:37:36.621614Z" + "iopub.execute_input": "2024-08-02T23:23:08.852036Z", + "iopub.status.busy": "2024-08-02T23:23:08.851589Z", + "iopub.status.idle": "2024-08-02T23:23:08.880616Z", + "shell.execute_reply": "2024-08-02T23:23:08.879983Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:36.624325Z", - "iopub.status.busy": "2024-07-30T16:37:36.623993Z", - "iopub.status.idle": "2024-07-30T16:37:36.628891Z", - "shell.execute_reply": "2024-07-30T16:37:36.628307Z" + "iopub.execute_input": "2024-08-02T23:23:08.883256Z", + "iopub.status.busy": "2024-08-02T23:23:08.882881Z", + "iopub.status.idle": "2024-08-02T23:23:08.887623Z", + "shell.execute_reply": "2024-08-02T23:23:08.887175Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.html b/master/tutorials/multilabel_classification.html index 9eba8aeee..4f9d904e9 100644 --- a/master/tutorials/multilabel_classification.html +++ b/master/tutorials/multilabel_classification.html @@ -1021,6 +1021,12 @@

    Application to Real Dataexample notebook “Find Label Errors in Multi-Label Classification Data (CelebA Image Tagging)”. That example also demonstrates how to use a state-of-the-art Pytorch neural network for multi-label classification with image data.

    +
    +

    Spending too much time on data quality?#

    +

    Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.

    +

    That’s why we built Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

    +

    The modern AI pipeline automated with Cleanlab Studio

    +

    @@ -1109,6 +1115,7 @@

    Application to Real DataApplication to Real Data +
  • Spending too much time on data quality?
  • diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 85921d220..607a1ea32 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:39.759530Z", - "iopub.status.busy": "2024-07-30T16:37:39.759170Z", - "iopub.status.idle": "2024-07-30T16:37:41.225938Z", - "shell.execute_reply": "2024-07-30T16:37:41.225361Z" + "iopub.execute_input": "2024-08-02T23:23:11.947982Z", + "iopub.status.busy": "2024-08-02T23:23:11.947507Z", + "iopub.status.idle": "2024-08-02T23:23:13.351095Z", + "shell.execute_reply": "2024-08-02T23:23:13.350543Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:41.228688Z", - "iopub.status.busy": "2024-07-30T16:37:41.228204Z", - "iopub.status.idle": "2024-07-30T16:37:41.249656Z", - "shell.execute_reply": "2024-07-30T16:37:41.249163Z" + "iopub.execute_input": "2024-08-02T23:23:13.353619Z", + "iopub.status.busy": "2024-08-02T23:23:13.353223Z", + "iopub.status.idle": "2024-08-02T23:23:13.373148Z", + "shell.execute_reply": "2024-08-02T23:23:13.372529Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:41.252375Z", - "iopub.status.busy": "2024-07-30T16:37:41.251838Z", - "iopub.status.idle": "2024-07-30T16:37:41.265158Z", - "shell.execute_reply": "2024-07-30T16:37:41.264726Z" + "iopub.execute_input": "2024-08-02T23:23:13.375624Z", + "iopub.status.busy": "2024-08-02T23:23:13.375180Z", + "iopub.status.idle": "2024-08-02T23:23:13.388068Z", + "shell.execute_reply": "2024-08-02T23:23:13.387585Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:41.267369Z", - "iopub.status.busy": "2024-07-30T16:37:41.266961Z", - "iopub.status.idle": "2024-07-30T16:37:43.948010Z", - "shell.execute_reply": "2024-07-30T16:37:43.947423Z" + "iopub.execute_input": "2024-08-02T23:23:13.390138Z", + "iopub.status.busy": "2024-08-02T23:23:13.389833Z", + "iopub.status.idle": "2024-08-02T23:23:16.059034Z", + "shell.execute_reply": "2024-08-02T23:23:16.058466Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:43.950421Z", - "iopub.status.busy": "2024-07-30T16:37:43.950035Z", - "iopub.status.idle": "2024-07-30T16:37:45.317858Z", - "shell.execute_reply": "2024-07-30T16:37:45.317234Z" + "iopub.execute_input": "2024-08-02T23:23:16.061219Z", + "iopub.status.busy": "2024-08-02T23:23:16.060988Z", + "iopub.status.idle": "2024-08-02T23:23:17.421704Z", + "shell.execute_reply": "2024-08-02T23:23:17.421064Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:45.320689Z", - "iopub.status.busy": "2024-07-30T16:37:45.320261Z", - "iopub.status.idle": "2024-07-30T16:37:45.325116Z", - "shell.execute_reply": "2024-07-30T16:37:45.324609Z" + "iopub.execute_input": "2024-08-02T23:23:17.424281Z", + "iopub.status.busy": "2024-08-02T23:23:17.423964Z", + "iopub.status.idle": "2024-08-02T23:23:17.428263Z", + "shell.execute_reply": "2024-08-02T23:23:17.427671Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:45.327504Z", - "iopub.status.busy": "2024-07-30T16:37:45.327099Z", - "iopub.status.idle": "2024-07-30T16:37:47.549771Z", - "shell.execute_reply": "2024-07-30T16:37:47.549091Z" + "iopub.execute_input": "2024-08-02T23:23:17.430557Z", + "iopub.status.busy": "2024-08-02T23:23:17.430085Z", + "iopub.status.idle": "2024-08-02T23:23:19.529227Z", + "shell.execute_reply": "2024-08-02T23:23:19.528576Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:47.552479Z", - "iopub.status.busy": "2024-07-30T16:37:47.551972Z", - "iopub.status.idle": "2024-07-30T16:37:47.560612Z", - "shell.execute_reply": "2024-07-30T16:37:47.560120Z" + "iopub.execute_input": "2024-08-02T23:23:19.531878Z", + "iopub.status.busy": "2024-08-02T23:23:19.531352Z", + "iopub.status.idle": "2024-08-02T23:23:19.539973Z", + "shell.execute_reply": "2024-08-02T23:23:19.539495Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:47.562648Z", - "iopub.status.busy": "2024-07-30T16:37:47.562368Z", - "iopub.status.idle": "2024-07-30T16:37:50.183671Z", - "shell.execute_reply": "2024-07-30T16:37:50.183000Z" + "iopub.execute_input": "2024-08-02T23:23:19.541992Z", + "iopub.status.busy": "2024-08-02T23:23:19.541709Z", + "iopub.status.idle": "2024-08-02T23:23:22.157011Z", + "shell.execute_reply": "2024-08-02T23:23:22.156381Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:50.186114Z", - "iopub.status.busy": "2024-07-30T16:37:50.185699Z", - "iopub.status.idle": "2024-07-30T16:37:50.189636Z", - "shell.execute_reply": "2024-07-30T16:37:50.189140Z" + "iopub.execute_input": "2024-08-02T23:23:22.159325Z", + "iopub.status.busy": "2024-08-02T23:23:22.159129Z", + "iopub.status.idle": "2024-08-02T23:23:22.162534Z", + "shell.execute_reply": "2024-08-02T23:23:22.162022Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:50.191867Z", - "iopub.status.busy": "2024-07-30T16:37:50.191497Z", - "iopub.status.idle": "2024-07-30T16:37:50.195269Z", - "shell.execute_reply": "2024-07-30T16:37:50.194765Z" + "iopub.execute_input": "2024-08-02T23:23:22.164526Z", + "iopub.status.busy": "2024-08-02T23:23:22.164350Z", + "iopub.status.idle": "2024-08-02T23:23:22.167796Z", + "shell.execute_reply": "2024-08-02T23:23:22.167349Z" } }, "outputs": [], @@ -746,16 +746,33 @@ "To see cleanlab applied to a real image tagging dataset, check out our [example](https://github.com/cleanlab/examples) notebook [\"Find Label Errors in Multi-Label Classification Data (CelebA Image Tagging)\"](https://github.com/cleanlab/examples/blob/master/multilabel_classification/image_tagging.ipynb). That example also demonstrates how to use a state-of-the-art Pytorch neural network for multi-label classification with image data." ] }, + { + "cell_type": "markdown", + "id": "f1bd9f83", + "metadata": {}, + "source": [ + "\n", + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

    \n", + " \"The\n", + "

    " + ] + }, { "cell_type": "code", "execution_count": 12, "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:50.197502Z", - "iopub.status.busy": "2024-07-30T16:37:50.197113Z", - "iopub.status.idle": "2024-07-30T16:37:50.200387Z", - "shell.execute_reply": "2024-07-30T16:37:50.199867Z" + "iopub.execute_input": "2024-08-02T23:23:22.169928Z", + "iopub.status.busy": "2024-08-02T23:23:22.169595Z", + "iopub.status.idle": "2024-08-02T23:23:22.173262Z", + "shell.execute_reply": "2024-08-02T23:23:22.172813Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index b908d214b..82a016874 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:52.967876Z", - "iopub.status.busy": "2024-07-30T16:37:52.967697Z", - "iopub.status.idle": "2024-07-30T16:37:54.423334Z", - "shell.execute_reply": "2024-07-30T16:37:54.422716Z" + "iopub.execute_input": "2024-08-02T23:23:24.740098Z", + "iopub.status.busy": "2024-08-02T23:23:24.739916Z", + "iopub.status.idle": "2024-08-02T23:23:26.153388Z", + "shell.execute_reply": "2024-08-02T23:23:26.152727Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:54.426120Z", - "iopub.status.busy": "2024-07-30T16:37:54.425563Z", - "iopub.status.idle": "2024-07-30T16:37:55.812519Z", - "shell.execute_reply": "2024-07-30T16:37:55.811700Z" + "iopub.execute_input": "2024-08-02T23:23:26.155926Z", + "iopub.status.busy": "2024-08-02T23:23:26.155520Z", + "iopub.status.idle": "2024-08-02T23:23:27.265000Z", + "shell.execute_reply": "2024-08-02T23:23:27.264184Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:55.815457Z", - "iopub.status.busy": "2024-07-30T16:37:55.815048Z", - "iopub.status.idle": "2024-07-30T16:37:55.818533Z", - "shell.execute_reply": "2024-07-30T16:37:55.817973Z" + "iopub.execute_input": "2024-08-02T23:23:27.267778Z", + "iopub.status.busy": "2024-08-02T23:23:27.267566Z", + "iopub.status.idle": "2024-08-02T23:23:27.271124Z", + "shell.execute_reply": "2024-08-02T23:23:27.270533Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:55.820681Z", - "iopub.status.busy": "2024-07-30T16:37:55.820334Z", - "iopub.status.idle": "2024-07-30T16:37:55.827147Z", - "shell.execute_reply": "2024-07-30T16:37:55.826691Z" + "iopub.execute_input": "2024-08-02T23:23:27.273453Z", + "iopub.status.busy": "2024-08-02T23:23:27.272991Z", + "iopub.status.idle": "2024-08-02T23:23:27.280260Z", + "shell.execute_reply": "2024-08-02T23:23:27.279681Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:55.829268Z", - "iopub.status.busy": "2024-07-30T16:37:55.828920Z", - "iopub.status.idle": "2024-07-30T16:37:56.150888Z", - "shell.execute_reply": "2024-07-30T16:37:56.150240Z" + "iopub.execute_input": "2024-08-02T23:23:27.282555Z", + "iopub.status.busy": "2024-08-02T23:23:27.282222Z", + "iopub.status.idle": "2024-08-02T23:23:27.602378Z", + "shell.execute_reply": "2024-08-02T23:23:27.601767Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:56.154023Z", - "iopub.status.busy": "2024-07-30T16:37:56.153563Z", - "iopub.status.idle": "2024-07-30T16:37:56.159171Z", - "shell.execute_reply": "2024-07-30T16:37:56.158713Z" + "iopub.execute_input": "2024-08-02T23:23:27.605245Z", + "iopub.status.busy": "2024-08-02T23:23:27.605028Z", + "iopub.status.idle": "2024-08-02T23:23:27.610491Z", + "shell.execute_reply": "2024-08-02T23:23:27.610005Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:56.161294Z", - "iopub.status.busy": "2024-07-30T16:37:56.160941Z", - "iopub.status.idle": "2024-07-30T16:37:56.164954Z", - "shell.execute_reply": "2024-07-30T16:37:56.164403Z" + "iopub.execute_input": "2024-08-02T23:23:27.612710Z", + "iopub.status.busy": "2024-08-02T23:23:27.612291Z", + "iopub.status.idle": "2024-08-02T23:23:27.616428Z", + "shell.execute_reply": "2024-08-02T23:23:27.615974Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:56.166946Z", - "iopub.status.busy": "2024-07-30T16:37:56.166762Z", - "iopub.status.idle": "2024-07-30T16:37:57.061837Z", - "shell.execute_reply": "2024-07-30T16:37:57.061214Z" + "iopub.execute_input": "2024-08-02T23:23:27.618678Z", + "iopub.status.busy": "2024-08-02T23:23:27.618223Z", + "iopub.status.idle": "2024-08-02T23:23:28.510375Z", + "shell.execute_reply": "2024-08-02T23:23:28.509695Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:57.064231Z", - "iopub.status.busy": "2024-07-30T16:37:57.064020Z", - "iopub.status.idle": "2024-07-30T16:37:57.269680Z", - "shell.execute_reply": "2024-07-30T16:37:57.269071Z" + "iopub.execute_input": "2024-08-02T23:23:28.512934Z", + "iopub.status.busy": "2024-08-02T23:23:28.512566Z", + "iopub.status.idle": "2024-08-02T23:23:28.729976Z", + "shell.execute_reply": "2024-08-02T23:23:28.729360Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:57.271779Z", - "iopub.status.busy": "2024-07-30T16:37:57.271589Z", - "iopub.status.idle": "2024-07-30T16:37:57.276069Z", - "shell.execute_reply": "2024-07-30T16:37:57.275620Z" + "iopub.execute_input": "2024-08-02T23:23:28.732357Z", + "iopub.status.busy": "2024-08-02T23:23:28.731916Z", + "iopub.status.idle": "2024-08-02T23:23:28.736334Z", + "shell.execute_reply": "2024-08-02T23:23:28.735894Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:57.277956Z", - "iopub.status.busy": "2024-07-30T16:37:57.277779Z", - "iopub.status.idle": "2024-07-30T16:37:57.741717Z", - "shell.execute_reply": "2024-07-30T16:37:57.741080Z" + "iopub.execute_input": "2024-08-02T23:23:28.738485Z", + "iopub.status.busy": "2024-08-02T23:23:28.738171Z", + "iopub.status.idle": "2024-08-02T23:23:29.208640Z", + "shell.execute_reply": "2024-08-02T23:23:29.207936Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:57.744943Z", - "iopub.status.busy": "2024-07-30T16:37:57.744706Z", - "iopub.status.idle": "2024-07-30T16:37:58.080727Z", - "shell.execute_reply": "2024-07-30T16:37:58.080133Z" + "iopub.execute_input": "2024-08-02T23:23:29.211755Z", + "iopub.status.busy": "2024-08-02T23:23:29.211376Z", + "iopub.status.idle": "2024-08-02T23:23:29.548019Z", + "shell.execute_reply": "2024-08-02T23:23:29.547410Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:58.083717Z", - "iopub.status.busy": "2024-07-30T16:37:58.083475Z", - "iopub.status.idle": "2024-07-30T16:37:58.448789Z", - "shell.execute_reply": "2024-07-30T16:37:58.448130Z" + "iopub.execute_input": "2024-08-02T23:23:29.550940Z", + "iopub.status.busy": "2024-08-02T23:23:29.550736Z", + "iopub.status.idle": "2024-08-02T23:23:29.920855Z", + "shell.execute_reply": "2024-08-02T23:23:29.920218Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:58.451979Z", - "iopub.status.busy": "2024-07-30T16:37:58.451737Z", - "iopub.status.idle": "2024-07-30T16:37:58.897902Z", - "shell.execute_reply": "2024-07-30T16:37:58.897266Z" + "iopub.execute_input": "2024-08-02T23:23:29.924419Z", + "iopub.status.busy": "2024-08-02T23:23:29.923997Z", + "iopub.status.idle": "2024-08-02T23:23:30.376104Z", + "shell.execute_reply": "2024-08-02T23:23:30.375480Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:58.902565Z", - "iopub.status.busy": "2024-07-30T16:37:58.902206Z", - "iopub.status.idle": "2024-07-30T16:37:59.331261Z", - "shell.execute_reply": "2024-07-30T16:37:59.330642Z" + "iopub.execute_input": "2024-08-02T23:23:30.380802Z", + "iopub.status.busy": "2024-08-02T23:23:30.380407Z", + "iopub.status.idle": "2024-08-02T23:23:30.837108Z", + "shell.execute_reply": "2024-08-02T23:23:30.836487Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:59.334413Z", - "iopub.status.busy": "2024-07-30T16:37:59.334051Z", - "iopub.status.idle": "2024-07-30T16:37:59.529024Z", - "shell.execute_reply": "2024-07-30T16:37:59.528352Z" + "iopub.execute_input": "2024-08-02T23:23:30.840640Z", + "iopub.status.busy": "2024-08-02T23:23:30.840263Z", + "iopub.status.idle": "2024-08-02T23:23:31.057636Z", + "shell.execute_reply": "2024-08-02T23:23:31.057057Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:59.531621Z", - "iopub.status.busy": "2024-07-30T16:37:59.531147Z", - "iopub.status.idle": "2024-07-30T16:37:59.713867Z", - "shell.execute_reply": "2024-07-30T16:37:59.713268Z" + "iopub.execute_input": "2024-08-02T23:23:31.059925Z", + "iopub.status.busy": "2024-08-02T23:23:31.059721Z", + "iopub.status.idle": "2024-08-02T23:23:31.259783Z", + "shell.execute_reply": "2024-08-02T23:23:31.259243Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:59.716604Z", - "iopub.status.busy": "2024-07-30T16:37:59.716372Z", - "iopub.status.idle": "2024-07-30T16:37:59.719701Z", - "shell.execute_reply": "2024-07-30T16:37:59.719240Z" + "iopub.execute_input": "2024-08-02T23:23:31.262327Z", + "iopub.status.busy": "2024-08-02T23:23:31.262133Z", + "iopub.status.idle": "2024-08-02T23:23:31.265004Z", + "shell.execute_reply": "2024-08-02T23:23:31.264548Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:37:59.721469Z", - "iopub.status.busy": "2024-07-30T16:37:59.721297Z", - "iopub.status.idle": "2024-07-30T16:38:00.653952Z", - "shell.execute_reply": "2024-07-30T16:38:00.653313Z" + "iopub.execute_input": "2024-08-02T23:23:31.267241Z", + "iopub.status.busy": "2024-08-02T23:23:31.266775Z", + "iopub.status.idle": "2024-08-02T23:23:32.193701Z", + "shell.execute_reply": "2024-08-02T23:23:32.193146Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:00.656659Z", - "iopub.status.busy": "2024-07-30T16:38:00.656200Z", - "iopub.status.idle": "2024-07-30T16:38:00.806657Z", - "shell.execute_reply": "2024-07-30T16:38:00.806013Z" + "iopub.execute_input": "2024-08-02T23:23:32.196208Z", + "iopub.status.busy": "2024-08-02T23:23:32.196016Z", + "iopub.status.idle": "2024-08-02T23:23:32.322609Z", + "shell.execute_reply": "2024-08-02T23:23:32.322075Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:00.809105Z", - "iopub.status.busy": "2024-07-30T16:38:00.808873Z", - "iopub.status.idle": "2024-07-30T16:38:01.017879Z", - "shell.execute_reply": "2024-07-30T16:38:01.017223Z" + "iopub.execute_input": "2024-08-02T23:23:32.324841Z", + "iopub.status.busy": "2024-08-02T23:23:32.324492Z", + "iopub.status.idle": "2024-08-02T23:23:32.514569Z", + "shell.execute_reply": "2024-08-02T23:23:32.514058Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:01.020087Z", - "iopub.status.busy": "2024-07-30T16:38:01.019752Z", - "iopub.status.idle": "2024-07-30T16:38:01.734744Z", - "shell.execute_reply": "2024-07-30T16:38:01.734246Z" + "iopub.execute_input": "2024-08-02T23:23:32.516894Z", + "iopub.status.busy": "2024-08-02T23:23:32.516525Z", + "iopub.status.idle": "2024-08-02T23:23:33.194488Z", + "shell.execute_reply": "2024-08-02T23:23:33.193856Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:01.737160Z", - "iopub.status.busy": "2024-07-30T16:38:01.736731Z", - "iopub.status.idle": "2024-07-30T16:38:01.740592Z", - "shell.execute_reply": "2024-07-30T16:38:01.740039Z" + "iopub.execute_input": "2024-08-02T23:23:33.196816Z", + "iopub.status.busy": "2024-08-02T23:23:33.196477Z", + "iopub.status.idle": "2024-08-02T23:23:33.200251Z", + "shell.execute_reply": "2024-08-02T23:23:33.199677Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 51298fe0f..a012e364a 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -780,7 +780,7 @@

    2. Pre-process the Cifar10 dataset
    -100%|██████████| 170498071/170498071 [00:01<00:00, 107805868.41it/s]
    +100%|██████████| 170498071/170498071 [00:01<00:00, 104612399.87it/s]
     

    -
    +
    @@ -1123,8 +1123,14 @@

    4. Use cleanlab and here.

    - @@ -1211,6 +1217,7 @@

    4. Use cleanlab and 3. Use cleanlab and feature embeddings to find outliers in the data
  • 4. Use cleanlab and pred_probs to find outliers in the data
  • +
  • Spending too much time on data quality?
  • diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 3df92007c..3ad8a9b33 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:03.978289Z", - "iopub.status.busy": "2024-07-30T16:38:03.977787Z", - "iopub.status.idle": "2024-07-30T16:38:07.296478Z", - "shell.execute_reply": "2024-07-30T16:38:07.295899Z" + "iopub.execute_input": "2024-08-02T23:23:35.415873Z", + "iopub.status.busy": "2024-08-02T23:23:35.415697Z", + "iopub.status.idle": "2024-08-02T23:23:38.626597Z", + "shell.execute_reply": "2024-08-02T23:23:38.626029Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:07.299136Z", - "iopub.status.busy": "2024-07-30T16:38:07.298701Z", - "iopub.status.idle": "2024-07-30T16:38:07.318355Z", - "shell.execute_reply": "2024-07-30T16:38:07.317750Z" + "iopub.execute_input": "2024-08-02T23:23:38.629407Z", + "iopub.status.busy": "2024-08-02T23:23:38.628808Z", + "iopub.status.idle": "2024-08-02T23:23:38.648318Z", + "shell.execute_reply": "2024-08-02T23:23:38.647845Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:07.320466Z", - "iopub.status.busy": "2024-07-30T16:38:07.320062Z", - "iopub.status.idle": "2024-07-30T16:38:07.324323Z", - "shell.execute_reply": "2024-07-30T16:38:07.323777Z" + "iopub.execute_input": "2024-08-02T23:23:38.650609Z", + "iopub.status.busy": "2024-08-02T23:23:38.650204Z", + "iopub.status.idle": "2024-08-02T23:23:38.654348Z", + "shell.execute_reply": "2024-08-02T23:23:38.653801Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:07.326455Z", - "iopub.status.busy": "2024-07-30T16:38:07.325959Z", - "iopub.status.idle": "2024-07-30T16:38:11.831429Z", - "shell.execute_reply": "2024-07-30T16:38:11.830839Z" + "iopub.execute_input": "2024-08-02T23:23:38.656499Z", + "iopub.status.busy": "2024-08-02T23:23:38.656188Z", + "iopub.status.idle": "2024-08-02T23:23:43.176479Z", + "shell.execute_reply": "2024-08-02T23:23:43.175945Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 917504/170498071 [00:00<00:20, 8226376.49it/s]" + " 1%| | 1703936/170498071 [00:00<00:10, 16570351.12it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 10846208/170498071 [00:00<00:02, 59307309.31it/s]" + " 8%|▊ | 13139968/170498071 [00:00<00:02, 73382685.55it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 22511616/170498071 [00:00<00:01, 84811001.30it/s]" + " 14%|█▎ | 23134208/170498071 [00:00<00:01, 85416938.17it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 34209792/170498071 [00:00<00:01, 97255735.33it/s]" + " 19%|█▉ | 33193984/170498071 [00:00<00:01, 91344444.59it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 45875200/170498071 [00:00<00:01, 104168464.41it/s]" + " 26%|██▌ | 44728320/170498071 [00:00<00:01, 99919094.88it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 57573376/170498071 [00:00<00:01, 108391005.55it/s]" + " 32%|███▏ | 54788096/170498071 [00:00<00:01, 100132338.36it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 69271552/170498071 [00:00<00:00, 111144409.19it/s]" + " 38%|███▊ | 64847872/170498071 [00:00<00:01, 100262039.06it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 80936960/170498071 [00:00<00:00, 112866681.19it/s]" + " 45%|████▍ | 76316672/170498071 [00:00<00:00, 104840140.37it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 92635136/170498071 [00:00<00:00, 114109378.79it/s]" + " 51%|█████ | 86835200/170498071 [00:00<00:00, 104704399.11it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 104300544/170498071 [00:01<00:00, 114843936.89it/s]" + " 58%|█████▊ | 98369536/170498071 [00:01<00:00, 107943288.17it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 115933184/170498071 [00:01<00:00, 115260750.98it/s]" + " 65%|██████▍ | 110100480/170498071 [00:01<00:00, 110768998.54it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 127631360/170498071 [00:01<00:00, 115738038.46it/s]" + " 71%|███████▏ | 121634816/170498071 [00:01<00:00, 112151957.27it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 139296768/170498071 [00:01<00:00, 115934009.59it/s]" + " 78%|███████▊ | 133169152/170498071 [00:01<00:00, 113008402.64it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 150994944/170498071 [00:01<00:00, 116207199.22it/s]" + " 85%|████████▍ | 144703488/170498071 [00:01<00:00, 113634335.19it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 162627584/170498071 [00:01<00:00, 116186659.71it/s]" + " 92%|█████████▏| 156172288/170498071 [00:01<00:00, 113937851.78it/s]" ] }, { @@ -372,7 +372,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 107805868.41it/s]" + " 98%|█████████▊| 167706624/170498071 [00:01<00:00, 114298938.25it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:01<00:00, 104612399.87it/s]" ] }, { @@ -490,10 +498,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:11.833918Z", - "iopub.status.busy": "2024-07-30T16:38:11.833462Z", - "iopub.status.idle": "2024-07-30T16:38:11.838434Z", - "shell.execute_reply": "2024-07-30T16:38:11.837866Z" + "iopub.execute_input": "2024-08-02T23:23:43.178843Z", + "iopub.status.busy": "2024-08-02T23:23:43.178435Z", + "iopub.status.idle": "2024-08-02T23:23:43.183358Z", + "shell.execute_reply": "2024-08-02T23:23:43.182774Z" }, "nbsphinx": "hidden" }, @@ -544,10 +552,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:11.840562Z", - "iopub.status.busy": "2024-07-30T16:38:11.840251Z", - "iopub.status.idle": "2024-07-30T16:38:12.371586Z", - "shell.execute_reply": "2024-07-30T16:38:12.371033Z" + "iopub.execute_input": "2024-08-02T23:23:43.185454Z", + "iopub.status.busy": "2024-08-02T23:23:43.185025Z", + "iopub.status.idle": "2024-08-02T23:23:43.734027Z", + "shell.execute_reply": "2024-08-02T23:23:43.733470Z" } }, "outputs": [ @@ -580,10 +588,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:12.373894Z", - "iopub.status.busy": "2024-07-30T16:38:12.373541Z", - "iopub.status.idle": "2024-07-30T16:38:12.887091Z", - "shell.execute_reply": "2024-07-30T16:38:12.886524Z" + "iopub.execute_input": "2024-08-02T23:23:43.736253Z", + "iopub.status.busy": "2024-08-02T23:23:43.735930Z", + "iopub.status.idle": "2024-08-02T23:23:44.250070Z", + "shell.execute_reply": "2024-08-02T23:23:44.249455Z" } }, "outputs": [ @@ -621,10 +629,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:12.889299Z", - "iopub.status.busy": "2024-07-30T16:38:12.888937Z", - "iopub.status.idle": "2024-07-30T16:38:12.892536Z", - "shell.execute_reply": "2024-07-30T16:38:12.892076Z" + "iopub.execute_input": "2024-08-02T23:23:44.252258Z", + "iopub.status.busy": "2024-08-02T23:23:44.252058Z", + "iopub.status.idle": "2024-08-02T23:23:44.255571Z", + "shell.execute_reply": "2024-08-02T23:23:44.255129Z" } }, "outputs": [], @@ -647,17 +655,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:12.894534Z", - "iopub.status.busy": "2024-07-30T16:38:12.894200Z", - "iopub.status.idle": "2024-07-30T16:38:25.488449Z", - "shell.execute_reply": "2024-07-30T16:38:25.487794Z" + "iopub.execute_input": "2024-08-02T23:23:44.257605Z", + "iopub.status.busy": "2024-08-02T23:23:44.257264Z", + "iopub.status.idle": "2024-08-02T23:23:56.709113Z", + "shell.execute_reply": "2024-08-02T23:23:56.708472Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "23a512869c5e4f05a2356b8f464b1bcc", + "model_id": "d7f8f03577d54c03b0ecc33be697a44d", "version_major": 2, "version_minor": 0 }, @@ -716,10 +724,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:25.490754Z", - "iopub.status.busy": "2024-07-30T16:38:25.490545Z", - "iopub.status.idle": "2024-07-30T16:38:27.681301Z", - "shell.execute_reply": "2024-07-30T16:38:27.680552Z" + "iopub.execute_input": "2024-08-02T23:23:56.711676Z", + "iopub.status.busy": "2024-08-02T23:23:56.711249Z", + "iopub.status.idle": "2024-08-02T23:23:58.847600Z", + "shell.execute_reply": "2024-08-02T23:23:58.846962Z" } }, "outputs": [ @@ -763,10 +771,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:27.684463Z", - "iopub.status.busy": "2024-07-30T16:38:27.683946Z", - "iopub.status.idle": "2024-07-30T16:38:27.951193Z", - "shell.execute_reply": "2024-07-30T16:38:27.950604Z" + "iopub.execute_input": "2024-08-02T23:23:58.850292Z", + "iopub.status.busy": "2024-08-02T23:23:58.849815Z", + "iopub.status.idle": "2024-08-02T23:23:59.089528Z", + "shell.execute_reply": "2024-08-02T23:23:59.088872Z" } }, "outputs": [ @@ -802,10 +810,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:27.953780Z", - "iopub.status.busy": "2024-07-30T16:38:27.953567Z", - "iopub.status.idle": "2024-07-30T16:38:28.631392Z", - "shell.execute_reply": "2024-07-30T16:38:28.630768Z" + "iopub.execute_input": "2024-08-02T23:23:59.092082Z", + "iopub.status.busy": "2024-08-02T23:23:59.091879Z", + "iopub.status.idle": "2024-08-02T23:23:59.733692Z", + "shell.execute_reply": "2024-08-02T23:23:59.733029Z" } }, "outputs": [ @@ -855,10 +863,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:28.634456Z", - "iopub.status.busy": "2024-07-30T16:38:28.633952Z", - "iopub.status.idle": "2024-07-30T16:38:28.975662Z", - "shell.execute_reply": "2024-07-30T16:38:28.975098Z" + "iopub.execute_input": "2024-08-02T23:23:59.736298Z", + "iopub.status.busy": "2024-08-02T23:23:59.736091Z", + "iopub.status.idle": "2024-08-02T23:24:00.029276Z", + "shell.execute_reply": "2024-08-02T23:24:00.028640Z" } }, "outputs": [ @@ -906,10 +914,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:28.978011Z", - "iopub.status.busy": "2024-07-30T16:38:28.977574Z", - "iopub.status.idle": "2024-07-30T16:38:29.207618Z", - "shell.execute_reply": "2024-07-30T16:38:29.206996Z" + "iopub.execute_input": "2024-08-02T23:24:00.031475Z", + "iopub.status.busy": "2024-08-02T23:24:00.031284Z", + "iopub.status.idle": "2024-08-02T23:24:00.284506Z", + "shell.execute_reply": "2024-08-02T23:24:00.283911Z" } }, "outputs": [ @@ -965,10 +973,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:29.209892Z", - "iopub.status.busy": "2024-07-30T16:38:29.209709Z", - "iopub.status.idle": "2024-07-30T16:38:29.298647Z", - "shell.execute_reply": "2024-07-30T16:38:29.297971Z" + "iopub.execute_input": "2024-08-02T23:24:00.287194Z", + "iopub.status.busy": "2024-08-02T23:24:00.286847Z", + "iopub.status.idle": "2024-08-02T23:24:00.366770Z", + "shell.execute_reply": "2024-08-02T23:24:00.366293Z" } }, "outputs": [], @@ -989,10 +997,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:29.301052Z", - "iopub.status.busy": "2024-07-30T16:38:29.300869Z", - "iopub.status.idle": "2024-07-30T16:38:39.931040Z", - "shell.execute_reply": "2024-07-30T16:38:39.930336Z" + "iopub.execute_input": "2024-08-02T23:24:00.369143Z", + "iopub.status.busy": "2024-08-02T23:24:00.368939Z", + "iopub.status.idle": "2024-08-02T23:24:10.565474Z", + "shell.execute_reply": "2024-08-02T23:24:10.564795Z" } }, "outputs": [ @@ -1029,10 +1037,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:39.933469Z", - "iopub.status.busy": "2024-07-30T16:38:39.933256Z", - "iopub.status.idle": "2024-07-30T16:38:42.292073Z", - "shell.execute_reply": "2024-07-30T16:38:42.291503Z" + "iopub.execute_input": "2024-08-02T23:24:10.568135Z", + "iopub.status.busy": "2024-08-02T23:24:10.567718Z", + "iopub.status.idle": "2024-08-02T23:24:12.819254Z", + "shell.execute_reply": "2024-08-02T23:24:12.818651Z" } }, "outputs": [ @@ -1063,10 +1071,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:42.295015Z", - "iopub.status.busy": "2024-07-30T16:38:42.294328Z", - "iopub.status.idle": "2024-07-30T16:38:42.501084Z", - "shell.execute_reply": "2024-07-30T16:38:42.500563Z" + "iopub.execute_input": "2024-08-02T23:24:12.822039Z", + "iopub.status.busy": "2024-08-02T23:24:12.821413Z", + "iopub.status.idle": "2024-08-02T23:24:13.027440Z", + "shell.execute_reply": "2024-08-02T23:24:13.026901Z" } }, "outputs": [], @@ -1080,10 +1088,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:42.503445Z", - "iopub.status.busy": "2024-07-30T16:38:42.503259Z", - "iopub.status.idle": "2024-07-30T16:38:42.506470Z", - "shell.execute_reply": "2024-07-30T16:38:42.506025Z" + "iopub.execute_input": "2024-08-02T23:24:13.029812Z", + "iopub.status.busy": "2024-08-02T23:24:13.029518Z", + "iopub.status.idle": "2024-08-02T23:24:13.032865Z", + "shell.execute_reply": "2024-08-02T23:24:13.032400Z" } }, "outputs": [], @@ -1099,16 +1107,32 @@ "Detecting outliers based on feature embeddings can be done for arbitrary unlabeled datasets, but requires a meaningful numerical representation of the data. Detecting outliers based on predicted probabilities applies mainly for labeled classification datasets, but can be done with any effective classifier. The effectiveness of the latter approach depends on: how much auxiliary information captured in the feature values is lost in the predicted probabilities (determined by the particular set of labels in the classification task), the accuracy of our classifier, and how properly its predictions reflect epistemic uncertainty. Read more about it [here](https://pub.towardsai.net/a-simple-adjustment-improves-out-of-distribution-detection-for-any-classifier-5e96bbb2d627)." ] }, + { + "cell_type": "markdown", + "id": "03a5c870", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

    \n", + " \"The\n", + "

    " + ] + }, { "cell_type": "code", "execution_count": 20, "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:42.508323Z", - "iopub.status.busy": "2024-07-30T16:38:42.508151Z", - "iopub.status.idle": "2024-07-30T16:38:42.517729Z", - "shell.execute_reply": "2024-07-30T16:38:42.517288Z" + "iopub.execute_input": "2024-08-02T23:24:13.034934Z", + "iopub.status.busy": "2024-08-02T23:24:13.034594Z", + "iopub.status.idle": "2024-08-02T23:24:13.043213Z", + "shell.execute_reply": "2024-08-02T23:24:13.042768Z" }, "nbsphinx": "hidden" }, @@ -1153,31 +1177,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "23a512869c5e4f05a2356b8f464b1bcc": { + "310b96bf6543469cabf0f55665ff25f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_58618ff0d8be415dbaa56326b7b1db8c", - "IPY_MODEL_633d743f49c44f93be1bfe7c09cb76e5", - "IPY_MODEL_313c673f5ae140548d908be43be34294" - ], - "layout": "IPY_MODEL_f1fa8803defc478f8f1a9688f96d5a79", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3094116b83c34a98b8ed5ce27da55168": { + "330e053db6fe416e9722e5a98ab8d4ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1230,7 +1248,7 @@ "width": null } }, - "313c673f5ae140548d908be43be34294": { + "3408c76adf1949bfa8f227a1dca82da4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1245,38 +1263,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_afe5f4fb71e54d6b97c4b44ecea40c54", + "layout": "IPY_MODEL_330e053db6fe416e9722e5a98ab8d4ab", "placeholder": "​", - "style": "IPY_MODEL_59856c986feb4d3abc586fed584de5c0", + "style": "IPY_MODEL_9a1cc697a447421590eefe450375da25", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 274MB/s]" + "value": "model.safetensors: 100%" } }, - "58618ff0d8be415dbaa56326b7b1db8c": { + "68e47a1386df476da98d7f630d7b8d6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3094116b83c34a98b8ed5ce27da55168", - "placeholder": "​", - "style": "IPY_MODEL_7105d5b497e34139b8cba14426fdd044", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "59856c986feb4d3abc586fed584de5c0": { + "9a1cc697a447421590eefe450375da25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1294,7 +1305,7 @@ "text_color": null } }, - "633d743f49c44f93be1bfe7c09cb76e5": { + "9e08204f4c2845e1821cce00ebace48b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1310,17 +1321,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6eb5b857715449aaa4e92a9a9560a833", + "layout": "IPY_MODEL_e30e1ae7872c46d180e55263ed029b6a", "max": 102469840.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_dae8ad4cd0df4444bf5ff766e8012dc4", + "style": "IPY_MODEL_68e47a1386df476da98d7f630d7b8d6c", "tabbable": null, "tooltip": null, "value": 102469840.0 } }, - "6eb5b857715449aaa4e92a9a9560a833": { + "a17403bdb20c4c13949ca9635c43e46e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b6fd529321ad458292f2208a4d6fc71d", + "placeholder": "​", + "style": "IPY_MODEL_310b96bf6543469cabf0f55665ff25f5", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 297MB/s]" + } + }, + "a828ae2c754b4b3ba7b44cc7fe06cf4f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1373,25 +1407,7 @@ "width": null } }, - "7105d5b497e34139b8cba14426fdd044": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "afe5f4fb71e54d6b97c4b44ecea40c54": { + "b6fd529321ad458292f2208a4d6fc71d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1444,23 +1460,31 @@ "width": null } }, - "dae8ad4cd0df4444bf5ff766e8012dc4": { + "d7f8f03577d54c03b0ecc33be697a44d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3408c76adf1949bfa8f227a1dca82da4", + "IPY_MODEL_9e08204f4c2845e1821cce00ebace48b", + "IPY_MODEL_a17403bdb20c4c13949ca9635c43e46e" + ], + "layout": "IPY_MODEL_a828ae2c754b4b3ba7b44cc7fe06cf4f", + "tabbable": null, + "tooltip": null } }, - "f1fa8803defc478f8f1a9688f96d5a79": { + "e30e1ae7872c46d180e55263ed029b6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/pred_probs_cross_val.html b/master/tutorials/pred_probs_cross_val.html index 5cec9763f..02df34979 100644 --- a/master/tutorials/pred_probs_cross_val.html +++ b/master/tutorials/pred_probs_cross_val.html @@ -665,6 +665,13 @@

    What is K-fold cross-validation? +

    Spending too much time on data quality?#

    +

    This notebook demonstrates a toy ML model to quickly produce pred_probs. Because the performance of Cleanlab critically depends on the quality of your ML model, you should try to use a better ML model than the one demonstrated here. +If you are unsure how to produce a better ML model for your data, or want a platform to actually fix your issues automatically, use Cleanlab Studio which will automatically produce the best model for your dataset via cutting-edge AutoML with Foundation models. +Try Cleanlab Studio for free!

    +The modern AI pipeline automated with Cleanlab Studio + @@ -745,6 +752,7 @@

    What is K-fold cross-validation?Computing Out-of-Sample Predicted Probabilities with Cross-Validation diff --git a/master/tutorials/regression.html b/master/tutorials/regression.html index f2d06fe3e..496fcd8f6 100644 --- a/master/tutorials/regression.html +++ b/master/tutorials/regression.html @@ -1421,6 +1421,12 @@

    5. Other ways to find noisy labels in regression datasetsDatalab with provided features plus the best regression model you know for your data. If your goal is to train a robust regression model with noisy data rather than detect data/label issues, then use CleanLearning. Alternatively, if you don’t have a sklearn-compatible regression model or already have pre-computed predictions from the model you’d like to rely on, you can pass these predictions into Datalab directly to find issues based on them instead of providing a regression model.

    +
    +

    Spending too much time on data quality?#

    +

    Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.

    +

    That’s why we built Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

    +

    The modern AI pipeline automated with Cleanlab Studio

    +

    @@ -1504,6 +1510,7 @@

    5. Other ways to find noisy labels in regression datasets3. Define a regression model and use cleanlab to find potential label errors
  • 4. Train a more robust model from noisy labels
  • 5. Other ways to find noisy labels in regression datasets
  • +
  • Spending too much time on data quality?
  • diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 7c5c07d39..099430c03 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:46.925237Z", - "iopub.status.busy": "2024-07-30T16:38:46.925067Z", - "iopub.status.idle": "2024-07-30T16:38:48.345531Z", - "shell.execute_reply": "2024-07-30T16:38:48.344960Z" + "iopub.execute_input": "2024-08-02T23:24:17.404200Z", + "iopub.status.busy": "2024-08-02T23:24:17.404031Z", + "iopub.status.idle": "2024-08-02T23:24:18.819393Z", + "shell.execute_reply": "2024-08-02T23:24:18.818751Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.348157Z", - "iopub.status.busy": "2024-07-30T16:38:48.347674Z", - "iopub.status.idle": "2024-07-30T16:38:48.365919Z", - "shell.execute_reply": "2024-07-30T16:38:48.365467Z" + "iopub.execute_input": "2024-08-02T23:24:18.822083Z", + "iopub.status.busy": "2024-08-02T23:24:18.821615Z", + "iopub.status.idle": "2024-08-02T23:24:18.839962Z", + "shell.execute_reply": "2024-08-02T23:24:18.839405Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.368246Z", - "iopub.status.busy": "2024-07-30T16:38:48.367803Z", - "iopub.status.idle": "2024-07-30T16:38:48.370780Z", - "shell.execute_reply": "2024-07-30T16:38:48.370332Z" + "iopub.execute_input": "2024-08-02T23:24:18.842424Z", + "iopub.status.busy": "2024-08-02T23:24:18.842013Z", + "iopub.status.idle": "2024-08-02T23:24:18.844900Z", + "shell.execute_reply": "2024-08-02T23:24:18.844448Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.372766Z", - "iopub.status.busy": "2024-07-30T16:38:48.372450Z", - "iopub.status.idle": "2024-07-30T16:38:48.468454Z", - "shell.execute_reply": "2024-07-30T16:38:48.467839Z" + "iopub.execute_input": "2024-08-02T23:24:18.846982Z", + "iopub.status.busy": "2024-08-02T23:24:18.846651Z", + "iopub.status.idle": "2024-08-02T23:24:18.905648Z", + "shell.execute_reply": "2024-08-02T23:24:18.905180Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.471122Z", - "iopub.status.busy": "2024-07-30T16:38:48.470653Z", - "iopub.status.idle": "2024-07-30T16:38:48.475521Z", - "shell.execute_reply": "2024-07-30T16:38:48.475049Z" + "iopub.execute_input": "2024-08-02T23:24:18.907939Z", + "iopub.status.busy": "2024-08-02T23:24:18.907494Z", + "iopub.status.idle": "2024-08-02T23:24:18.911937Z", + "shell.execute_reply": "2024-08-02T23:24:18.911430Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.477468Z", - "iopub.status.busy": "2024-07-30T16:38:48.477131Z", - "iopub.status.idle": "2024-07-30T16:38:48.720327Z", - "shell.execute_reply": "2024-07-30T16:38:48.719696Z" + "iopub.execute_input": "2024-08-02T23:24:18.913935Z", + "iopub.status.busy": "2024-08-02T23:24:18.913612Z", + "iopub.status.idle": "2024-08-02T23:24:19.156090Z", + "shell.execute_reply": "2024-08-02T23:24:19.155477Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.722633Z", - "iopub.status.busy": "2024-07-30T16:38:48.722278Z", - "iopub.status.idle": "2024-07-30T16:38:48.726622Z", - "shell.execute_reply": "2024-07-30T16:38:48.726163Z" + "iopub.execute_input": "2024-08-02T23:24:19.158339Z", + "iopub.status.busy": "2024-08-02T23:24:19.158149Z", + "iopub.status.idle": "2024-08-02T23:24:19.162504Z", + "shell.execute_reply": "2024-08-02T23:24:19.162045Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.728701Z", - "iopub.status.busy": "2024-07-30T16:38:48.728352Z", - "iopub.status.idle": "2024-07-30T16:38:48.734485Z", - "shell.execute_reply": "2024-07-30T16:38:48.734046Z" + "iopub.execute_input": "2024-08-02T23:24:19.164445Z", + "iopub.status.busy": "2024-08-02T23:24:19.164256Z", + "iopub.status.idle": "2024-08-02T23:24:19.170243Z", + "shell.execute_reply": "2024-08-02T23:24:19.169792Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.736597Z", - "iopub.status.busy": "2024-07-30T16:38:48.736263Z", - "iopub.status.idle": "2024-07-30T16:38:48.738985Z", - "shell.execute_reply": "2024-07-30T16:38:48.738429Z" + "iopub.execute_input": "2024-08-02T23:24:19.172217Z", + "iopub.status.busy": "2024-08-02T23:24:19.172043Z", + "iopub.status.idle": "2024-08-02T23:24:19.174763Z", + "shell.execute_reply": "2024-08-02T23:24:19.174300Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:48.741068Z", - "iopub.status.busy": "2024-07-30T16:38:48.740746Z", - "iopub.status.idle": "2024-07-30T16:38:57.890643Z", - "shell.execute_reply": "2024-07-30T16:38:57.890064Z" + "iopub.execute_input": "2024-08-02T23:24:19.176599Z", + "iopub.status.busy": "2024-08-02T23:24:19.176431Z", + "iopub.status.idle": "2024-08-02T23:24:28.206119Z", + "shell.execute_reply": "2024-08-02T23:24:28.205469Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:57.893640Z", - "iopub.status.busy": "2024-07-30T16:38:57.893011Z", - "iopub.status.idle": "2024-07-30T16:38:57.900759Z", - "shell.execute_reply": "2024-07-30T16:38:57.900288Z" + "iopub.execute_input": "2024-08-02T23:24:28.209000Z", + "iopub.status.busy": "2024-08-02T23:24:28.208362Z", + "iopub.status.idle": "2024-08-02T23:24:28.215857Z", + "shell.execute_reply": "2024-08-02T23:24:28.215396Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:57.903196Z", - "iopub.status.busy": "2024-07-30T16:38:57.902725Z", - "iopub.status.idle": "2024-07-30T16:38:57.906622Z", - "shell.execute_reply": "2024-07-30T16:38:57.906179Z" + "iopub.execute_input": "2024-08-02T23:24:28.217833Z", + "iopub.status.busy": "2024-08-02T23:24:28.217557Z", + "iopub.status.idle": "2024-08-02T23:24:28.221146Z", + "shell.execute_reply": "2024-08-02T23:24:28.220682Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:57.908608Z", - "iopub.status.busy": "2024-07-30T16:38:57.908262Z", - "iopub.status.idle": "2024-07-30T16:38:57.911716Z", - "shell.execute_reply": "2024-07-30T16:38:57.911253Z" + "iopub.execute_input": "2024-08-02T23:24:28.223157Z", + "iopub.status.busy": "2024-08-02T23:24:28.222839Z", + "iopub.status.idle": "2024-08-02T23:24:28.226202Z", + "shell.execute_reply": "2024-08-02T23:24:28.225642Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:57.913595Z", - "iopub.status.busy": "2024-07-30T16:38:57.913317Z", - "iopub.status.idle": "2024-07-30T16:38:57.916287Z", - "shell.execute_reply": "2024-07-30T16:38:57.915835Z" + "iopub.execute_input": "2024-08-02T23:24:28.228136Z", + "iopub.status.busy": "2024-08-02T23:24:28.227911Z", + "iopub.status.idle": "2024-08-02T23:24:28.230792Z", + "shell.execute_reply": "2024-08-02T23:24:28.230325Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:57.918353Z", - "iopub.status.busy": "2024-07-30T16:38:57.918022Z", - "iopub.status.idle": "2024-07-30T16:38:57.925798Z", - "shell.execute_reply": "2024-07-30T16:38:57.925354Z" + "iopub.execute_input": "2024-08-02T23:24:28.232772Z", + "iopub.status.busy": "2024-08-02T23:24:28.232437Z", + "iopub.status.idle": "2024-08-02T23:24:28.240280Z", + "shell.execute_reply": "2024-08-02T23:24:28.239831Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:57.927921Z", - "iopub.status.busy": "2024-07-30T16:38:57.927572Z", - "iopub.status.idle": "2024-07-30T16:38:57.930349Z", - "shell.execute_reply": "2024-07-30T16:38:57.929874Z" + "iopub.execute_input": "2024-08-02T23:24:28.242339Z", + "iopub.status.busy": "2024-08-02T23:24:28.241943Z", + "iopub.status.idle": "2024-08-02T23:24:28.244706Z", + "shell.execute_reply": "2024-08-02T23:24:28.244158Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:57.932400Z", - "iopub.status.busy": "2024-07-30T16:38:57.932062Z", - "iopub.status.idle": "2024-07-30T16:38:58.059365Z", - "shell.execute_reply": "2024-07-30T16:38:58.058741Z" + "iopub.execute_input": "2024-08-02T23:24:28.246759Z", + "iopub.status.busy": "2024-08-02T23:24:28.246451Z", + "iopub.status.idle": "2024-08-02T23:24:28.374401Z", + "shell.execute_reply": "2024-08-02T23:24:28.373775Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:58.061937Z", - "iopub.status.busy": "2024-07-30T16:38:58.061368Z", - "iopub.status.idle": "2024-07-30T16:38:58.173574Z", - "shell.execute_reply": "2024-07-30T16:38:58.172969Z" + "iopub.execute_input": "2024-08-02T23:24:28.376853Z", + "iopub.status.busy": "2024-08-02T23:24:28.376504Z", + "iopub.status.idle": "2024-08-02T23:24:28.483607Z", + "shell.execute_reply": "2024-08-02T23:24:28.483029Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:58.176096Z", - "iopub.status.busy": "2024-07-30T16:38:58.175756Z", - "iopub.status.idle": "2024-07-30T16:38:58.686374Z", - "shell.execute_reply": "2024-07-30T16:38:58.685762Z" + "iopub.execute_input": "2024-08-02T23:24:28.486071Z", + "iopub.status.busy": "2024-08-02T23:24:28.485733Z", + "iopub.status.idle": "2024-08-02T23:24:28.990646Z", + "shell.execute_reply": "2024-08-02T23:24:28.990027Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:58.689154Z", - "iopub.status.busy": "2024-07-30T16:38:58.688791Z", - "iopub.status.idle": "2024-07-30T16:38:58.788057Z", - "shell.execute_reply": "2024-07-30T16:38:58.787414Z" + "iopub.execute_input": "2024-08-02T23:24:28.993111Z", + "iopub.status.busy": "2024-08-02T23:24:28.992883Z", + "iopub.status.idle": "2024-08-02T23:24:29.089656Z", + "shell.execute_reply": "2024-08-02T23:24:29.088990Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:58.790444Z", - "iopub.status.busy": "2024-07-30T16:38:58.790105Z", - "iopub.status.idle": "2024-07-30T16:38:58.799165Z", - "shell.execute_reply": "2024-07-30T16:38:58.798679Z" + "iopub.execute_input": "2024-08-02T23:24:29.093755Z", + "iopub.status.busy": "2024-08-02T23:24:29.093401Z", + "iopub.status.idle": "2024-08-02T23:24:29.103300Z", + "shell.execute_reply": "2024-08-02T23:24:29.102788Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:58.801513Z", - "iopub.status.busy": "2024-07-30T16:38:58.801103Z", - "iopub.status.idle": "2024-07-30T16:38:58.804084Z", - "shell.execute_reply": "2024-07-30T16:38:58.803524Z" + "iopub.execute_input": "2024-08-02T23:24:29.105807Z", + "iopub.status.busy": "2024-08-02T23:24:29.105420Z", + "iopub.status.idle": "2024-08-02T23:24:29.108643Z", + "shell.execute_reply": "2024-08-02T23:24:29.108081Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:38:58.806513Z", - "iopub.status.busy": "2024-07-30T16:38:58.805981Z", - "iopub.status.idle": "2024-07-30T16:39:04.543731Z", - "shell.execute_reply": "2024-07-30T16:39:04.543118Z" + "iopub.execute_input": "2024-08-02T23:24:29.110806Z", + "iopub.status.busy": "2024-08-02T23:24:29.110492Z", + "iopub.status.idle": "2024-08-02T23:24:34.719376Z", + "shell.execute_reply": "2024-08-02T23:24:34.718784Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:39:04.546340Z", - "iopub.status.busy": "2024-07-30T16:39:04.545828Z", - "iopub.status.idle": "2024-07-30T16:39:04.554540Z", - "shell.execute_reply": "2024-07-30T16:39:04.553952Z" + "iopub.execute_input": "2024-08-02T23:24:34.721958Z", + "iopub.status.busy": "2024-08-02T23:24:34.721544Z", + "iopub.status.idle": "2024-08-02T23:24:34.730054Z", + "shell.execute_reply": "2024-08-02T23:24:34.729479Z" } }, "outputs": [ @@ -1370,16 +1370,32 @@ "**Summary:** To detect many types of issues in your regression dataset, we recommend using `Datalab` with provided `features` plus the best regression model you know for your data. If your goal is to train a robust regression model with noisy data rather than detect data/label issues, then use `CleanLearning`. Alternatively, if you don't have a sklearn-compatible regression model or already have pre-computed predictions from the model you'd like to rely on, you can pass these predictions into `Datalab` directly to find issues based on them instead of providing a regression model." ] }, + { + "cell_type": "markdown", + "id": "8a7a5387", + "metadata": {}, + "source": [ + "## Spending too much time on data quality?\n", + "\n", + "Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.\n", + "\n", + "That’s why we built [Cleanlab Studio](https://cleanlab.ai/blog/data-centric-ai/) -- an automated platform to find **and fix** issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. [Try it](https://cleanlab.ai/) for free!\n", + "\n", + "

    \n", + " \"The\n", + "

    " + ] + }, { "cell_type": "code", "execution_count": 25, "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:39:04.556793Z", - "iopub.status.busy": "2024-07-30T16:39:04.556293Z", - "iopub.status.idle": "2024-07-30T16:39:04.620999Z", - "shell.execute_reply": "2024-07-30T16:39:04.620353Z" + "iopub.execute_input": "2024-08-02T23:24:34.732147Z", + "iopub.status.busy": "2024-08-02T23:24:34.731881Z", + "iopub.status.idle": "2024-08-02T23:24:34.800226Z", + "shell.execute_reply": "2024-08-02T23:24:34.799721Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index c4e78a813..9887fea2c 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -800,13 +800,13 @@

    3. Use cleanlab to find label issues

    -
    +
    -
    +

    Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

    @@ -1196,7 +1196,7 @@

    Get label quality scores -{"state": {"15b6c6e4483e414bbffdca6b1332ba45": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8b0bd8d97261484186cbbc3b754ec950": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e298261bfee74f53a9d4ee7608c7dbba": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_15b6c6e4483e414bbffdca6b1332ba45", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8b0bd8d97261484186cbbc3b754ec950", "tabbable": null, "tooltip": null, "value": 30.0}}, "984b4a402c5e4260b8d9a0f92ba2547b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbd95489418e417688ccd6e6da39d464": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bb262a4cefe2454ea0bfaf1857eaaaa0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_984b4a402c5e4260b8d9a0f92ba2547b", "placeholder": "\u200b", "style": "IPY_MODEL_fbd95489418e417688ccd6e6da39d464", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "c103e73e53c7487084bdb73546e2c3f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3ac3d6d5373421680b5cdfd9f305953": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5d9c48453ded44f187c73beb3ab94bef": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c103e73e53c7487084bdb73546e2c3f9", "placeholder": "\u200b", "style": "IPY_MODEL_c3ac3d6d5373421680b5cdfd9f305953", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007809.67it/s]"}}, "aace38a5bc714ce49401be885a999f66": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3c621015e28040a280bd1034a80975dc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bb262a4cefe2454ea0bfaf1857eaaaa0", "IPY_MODEL_e298261bfee74f53a9d4ee7608c7dbba", "IPY_MODEL_5d9c48453ded44f187c73beb3ab94bef"], "layout": "IPY_MODEL_aace38a5bc714ce49401be885a999f66", "tabbable": null, "tooltip": null}}, "b6e50060b45f4c09ba567bff5d89bbd4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f1789c1a5e684dd89f01bb738355ab84": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "665af0e8c3f645a59c02f43043fdff51": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b6e50060b45f4c09ba567bff5d89bbd4", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f1789c1a5e684dd89f01bb738355ab84", "tabbable": null, "tooltip": null, "value": 30.0}}, "4289a1e8279c46b0b291b9d03ed580e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4d10f8bafa946de89419591759057de": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e636b5573aab44bba46435bd71934d2c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4289a1e8279c46b0b291b9d03ed580e4", "placeholder": "\u200b", "style": "IPY_MODEL_d4d10f8bafa946de89419591759057de", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "7ee856f3b3b6489cadb00bc56b8cfbfd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7759184621734da7ad7af7156fef025c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2e5a8275ab144dd1837b3acb899ba516": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7ee856f3b3b6489cadb00bc56b8cfbfd", "placeholder": "\u200b", "style": "IPY_MODEL_7759184621734da7ad7af7156fef025c", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.14it/s]"}}, "806c92b800564387bef7dd39a678fbdd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0f880a204f2942c89dcc00391ef9c5e7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e636b5573aab44bba46435bd71934d2c", "IPY_MODEL_665af0e8c3f645a59c02f43043fdff51", "IPY_MODEL_2e5a8275ab144dd1837b3acb899ba516"], "layout": "IPY_MODEL_806c92b800564387bef7dd39a678fbdd", "tabbable": null, "tooltip": null}}, "b2fe9990927042c6bb636763d7937e0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c59fdcdcb4d04accba7ce0c3d58c5eb0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ec065695ccda4be494a55a12d2a2a747": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b2fe9990927042c6bb636763d7937e0e", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c59fdcdcb4d04accba7ce0c3d58c5eb0", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "f0d230f541b948e9a2051618e62f2712": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b240753a02c4bcf9fe60a2a6583280e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3959826deb41466c9cff772fbcdc14cd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f0d230f541b948e9a2051618e62f2712", "placeholder": "\u200b", "style": "IPY_MODEL_7b240753a02c4bcf9fe60a2a6583280e", "tabbable": null, "tooltip": null, "value": "100%"}}, "d3f1e045fd804f4a9b2bc2eab9679b2a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dd16bea5c99646b898f24b1cf3d54721": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "53ec7ed5cdda45ee9abaa821657d4972": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d3f1e045fd804f4a9b2bc2eab9679b2a", "placeholder": "\u200b", "style": "IPY_MODEL_dd16bea5c99646b898f24b1cf3d54721", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007154765.99it/s]"}}, "a779351ef43a464290826c053fbba728": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8aadf42791a644d7aa84ea5ea93db52a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3959826deb41466c9cff772fbcdc14cd", "IPY_MODEL_ec065695ccda4be494a55a12d2a2a747", "IPY_MODEL_53ec7ed5cdda45ee9abaa821657d4972"], "layout": "IPY_MODEL_a779351ef43a464290826c053fbba728", "tabbable": null, "tooltip": null}}, "916b2b82c5da485e96eb7becee3ab269": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "86ce7a15782f4be0bdcea8d3e956fdd3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6f0287eca6f748f48079369ebec0af00": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_916b2b82c5da485e96eb7becee3ab269", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_86ce7a15782f4be0bdcea8d3e956fdd3", "tabbable": null, "tooltip": null, "value": 30.0}}, "6d36dca0c74f4a7d8aaeeab44134b5ec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "842810ddd25f4f9a91f6c1488c693fed": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7ab2dd5b34e14de4aee5ee3ca7cd1e03": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6d36dca0c74f4a7d8aaeeab44134b5ec", "placeholder": "\u200b", "style": "IPY_MODEL_842810ddd25f4f9a91f6c1488c693fed", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "8fcef29a8bc14e859cd9c969f9e518fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c2a8b93dbec1492481abde0df026087e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a4dcefed1766446b8c69b4d02fab4125": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8fcef29a8bc14e859cd9c969f9e518fc", "placeholder": "\u200b", "style": "IPY_MODEL_c2a8b93dbec1492481abde0df026087e", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.41it/s]"}}, "3a237c75a8f54cf38e283f9c7d217f3a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd34f6363dd94413a10ce5318e70a5ff": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7ab2dd5b34e14de4aee5ee3ca7cd1e03", "IPY_MODEL_6f0287eca6f748f48079369ebec0af00", "IPY_MODEL_a4dcefed1766446b8c69b4d02fab4125"], "layout": "IPY_MODEL_3a237c75a8f54cf38e283f9c7d217f3a", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"afeee618b0094f9ea19362a3de535dc2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d08bb5b16f2643578ff29afdd913ef94": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "21e58677d88d492fb2d3aba2c5f2bedf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_afeee618b0094f9ea19362a3de535dc2", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d08bb5b16f2643578ff29afdd913ef94", "tabbable": null, "tooltip": null, "value": 30.0}}, "d2196adeaa7148fa9a0c5deceac6eadc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "309f96a402de4ae5be877a191b9896d3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e0c3975abf814cf990e03d7a488ed220": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d2196adeaa7148fa9a0c5deceac6eadc", "placeholder": "\u200b", "style": "IPY_MODEL_309f96a402de4ae5be877a191b9896d3", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "28953d553d724f8fb807adf8da9c8f13": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6040edde46224192af178b86ce4b7a79": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "94851a2fb10f4fffa7d57d65f37f9531": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_28953d553d724f8fb807adf8da9c8f13", "placeholder": "\u200b", "style": "IPY_MODEL_6040edde46224192af178b86ce4b7a79", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007662.99it/s]"}}, "9547cf6347094ad7934750a14799ce11": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a46521e429c5421aaf0cd8ac6b2244a7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e0c3975abf814cf990e03d7a488ed220", "IPY_MODEL_21e58677d88d492fb2d3aba2c5f2bedf", "IPY_MODEL_94851a2fb10f4fffa7d57d65f37f9531"], "layout": "IPY_MODEL_9547cf6347094ad7934750a14799ce11", "tabbable": null, "tooltip": null}}, "ff1b34f5107b4252ad231c68ed67ab7c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d0007b4d7ae42ab94dfb5894ddd6171": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e121b2c4aabb4b759f8ee18e52fa2e61": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ff1b34f5107b4252ad231c68ed67ab7c", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2d0007b4d7ae42ab94dfb5894ddd6171", "tabbable": null, "tooltip": null, "value": 30.0}}, "57630448ea2b4b93abd191d9fd1fe3a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a8176cf060c346a599ee8e8232fe75e6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7cc646d98b194f65a1612c842760c2cb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_57630448ea2b4b93abd191d9fd1fe3a3", "placeholder": "\u200b", "style": "IPY_MODEL_a8176cf060c346a599ee8e8232fe75e6", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "cb9709c9a8b4477ca5d5915db9905530": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "524457c7a59549e1b409234f113d2cfd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e6165397fe314a8d8a6d9140ec0cd5b9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cb9709c9a8b4477ca5d5915db9905530", "placeholder": "\u200b", "style": "IPY_MODEL_524457c7a59549e1b409234f113d2cfd", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.15it/s]"}}, "2d004fb51ea84ad7844737c34b40be1d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bbb9477350a14f3eb3d95cb40f0405ee": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7cc646d98b194f65a1612c842760c2cb", "IPY_MODEL_e121b2c4aabb4b759f8ee18e52fa2e61", "IPY_MODEL_e6165397fe314a8d8a6d9140ec0cd5b9"], "layout": "IPY_MODEL_2d004fb51ea84ad7844737c34b40be1d", "tabbable": null, "tooltip": null}}, "3c3c9c08c38849c39c8943d355eba381": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "22075318aed543b9bfb43b16a95303f2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8ad2397c67af4e0e8358d65f0d4a9f0a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3c3c9c08c38849c39c8943d355eba381", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_22075318aed543b9bfb43b16a95303f2", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "684aa9b13bc44cec85847572a5e75869": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d3c57ae8f5e14b428ef91851eea86ab6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8bd11d48b4334ccf98051fa8e2aedab0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_684aa9b13bc44cec85847572a5e75869", "placeholder": "\u200b", "style": "IPY_MODEL_d3c57ae8f5e14b428ef91851eea86ab6", "tabbable": null, "tooltip": null, "value": "100%"}}, "362ee5f9191f4ff7adb03b8894bf98d0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e08552147cbe434cb955ff1254f70e47": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8bede4f01da546d8a48dd2b51d7493cc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_362ee5f9191f4ff7adb03b8894bf98d0", "placeholder": "\u200b", "style": "IPY_MODEL_e08552147cbe434cb955ff1254f70e47", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007152460.81it/s]"}}, "a194ec35e7874997a9a9bba5bb2c8bff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f3b32f3f5845468683f887844415e033": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8bd11d48b4334ccf98051fa8e2aedab0", "IPY_MODEL_8ad2397c67af4e0e8358d65f0d4a9f0a", "IPY_MODEL_8bede4f01da546d8a48dd2b51d7493cc"], "layout": "IPY_MODEL_a194ec35e7874997a9a9bba5bb2c8bff", "tabbable": null, "tooltip": null}}, "82a6739654d547a38131b44cb4f14f1a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9a6edbb09f2247bc9a41314dd7656693": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a60d519967ad48d09abf2f3a7286348b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_82a6739654d547a38131b44cb4f14f1a", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9a6edbb09f2247bc9a41314dd7656693", "tabbable": null, "tooltip": null, "value": 30.0}}, "8a67dfb3d92040968bf1e325fa69d96b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "281547375fa944f7974709643e5fb848": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cb2b7b30cf9e4608b1096e58f87d8e69": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8a67dfb3d92040968bf1e325fa69d96b", "placeholder": "\u200b", "style": "IPY_MODEL_281547375fa944f7974709643e5fb848", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "ae7e0cea590b4d938850df01ecc5a759": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a34e3e3218784a3a90e45a039e566415": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8b07a341c396471fb626d09ef8a77a8f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ae7e0cea590b4d938850df01ecc5a759", "placeholder": "\u200b", "style": "IPY_MODEL_a34e3e3218784a3a90e45a039e566415", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.53it/s]"}}, "c1a36213baf8452a882ac1f99ee438ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9bb1a488410b4c71b46e7d6fe2110805": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cb2b7b30cf9e4608b1096e58f87d8e69", "IPY_MODEL_a60d519967ad48d09abf2f3a7286348b", "IPY_MODEL_8b07a341c396471fb626d09ef8a77a8f"], "layout": "IPY_MODEL_c1a36213baf8452a882ac1f99ee438ce", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index ddf315699..96da6f24e 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:39:08.949260Z", - "iopub.status.busy": "2024-07-30T16:39:08.949088Z", - "iopub.status.idle": "2024-07-30T16:39:10.916447Z", - "shell.execute_reply": "2024-07-30T16:39:10.915748Z" + "iopub.execute_input": "2024-08-02T23:24:38.145016Z", + "iopub.status.busy": "2024-08-02T23:24:38.144603Z", + "iopub.status.idle": "2024-08-02T23:24:40.117038Z", + "shell.execute_reply": "2024-08-02T23:24:40.116342Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:39:10.918962Z", - "iopub.status.busy": "2024-07-30T16:39:10.918773Z", - "iopub.status.idle": "2024-07-30T16:40:31.011988Z", - "shell.execute_reply": "2024-07-30T16:40:31.011219Z" + "iopub.execute_input": "2024-08-02T23:24:40.119515Z", + "iopub.status.busy": "2024-08-02T23:24:40.119338Z", + "iopub.status.idle": "2024-08-02T23:25:35.352783Z", + "shell.execute_reply": "2024-08-02T23:25:35.352105Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:40:31.014861Z", - "iopub.status.busy": "2024-07-30T16:40:31.014482Z", - "iopub.status.idle": "2024-07-30T16:40:32.523099Z", - "shell.execute_reply": "2024-07-30T16:40:32.522526Z" + "iopub.execute_input": "2024-08-02T23:25:35.355348Z", + "iopub.status.busy": "2024-08-02T23:25:35.354967Z", + "iopub.status.idle": "2024-08-02T23:25:36.767542Z", + "shell.execute_reply": "2024-08-02T23:25:36.766894Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:40:32.525566Z", - "iopub.status.busy": "2024-07-30T16:40:32.525262Z", - "iopub.status.idle": "2024-07-30T16:40:32.528712Z", - "shell.execute_reply": "2024-07-30T16:40:32.528246Z" + "iopub.execute_input": "2024-08-02T23:25:36.770200Z", + "iopub.status.busy": "2024-08-02T23:25:36.769889Z", + "iopub.status.idle": "2024-08-02T23:25:36.773141Z", + "shell.execute_reply": "2024-08-02T23:25:36.772658Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:40:32.530916Z", - "iopub.status.busy": "2024-07-30T16:40:32.530497Z", - "iopub.status.idle": "2024-07-30T16:40:32.534386Z", - "shell.execute_reply": "2024-07-30T16:40:32.533915Z" + "iopub.execute_input": "2024-08-02T23:25:36.775177Z", + "iopub.status.busy": "2024-08-02T23:25:36.774994Z", + "iopub.status.idle": "2024-08-02T23:25:36.779004Z", + "shell.execute_reply": "2024-08-02T23:25:36.778469Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:40:32.536602Z", - "iopub.status.busy": "2024-07-30T16:40:32.536175Z", - "iopub.status.idle": "2024-07-30T16:40:32.539968Z", - "shell.execute_reply": "2024-07-30T16:40:32.539531Z" + "iopub.execute_input": "2024-08-02T23:25:36.781185Z", + "iopub.status.busy": "2024-08-02T23:25:36.780850Z", + "iopub.status.idle": "2024-08-02T23:25:36.784519Z", + "shell.execute_reply": "2024-08-02T23:25:36.783988Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:40:32.542052Z", - "iopub.status.busy": "2024-07-30T16:40:32.541706Z", - "iopub.status.idle": "2024-07-30T16:40:32.544446Z", - "shell.execute_reply": "2024-07-30T16:40:32.544021Z" + "iopub.execute_input": "2024-08-02T23:25:36.786657Z", + "iopub.status.busy": "2024-08-02T23:25:36.786198Z", + "iopub.status.idle": "2024-08-02T23:25:36.789074Z", + "shell.execute_reply": "2024-08-02T23:25:36.788604Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:40:32.546293Z", - "iopub.status.busy": "2024-07-30T16:40:32.546119Z", - "iopub.status.idle": "2024-07-30T16:41:10.690446Z", - "shell.execute_reply": "2024-07-30T16:41:10.689776Z" + "iopub.execute_input": "2024-08-02T23:25:36.790984Z", + "iopub.status.busy": "2024-08-02T23:25:36.790806Z", + "iopub.status.idle": "2024-08-02T23:26:14.726533Z", + "shell.execute_reply": "2024-08-02T23:26:14.725867Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3c621015e28040a280bd1034a80975dc", + "model_id": "a46521e429c5421aaf0cd8ac6b2244a7", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0f880a204f2942c89dcc00391ef9c5e7", + "model_id": "bbb9477350a14f3eb3d95cb40f0405ee", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:41:10.693189Z", - "iopub.status.busy": "2024-07-30T16:41:10.692781Z", - "iopub.status.idle": "2024-07-30T16:41:11.146443Z", - "shell.execute_reply": "2024-07-30T16:41:11.145848Z" + "iopub.execute_input": "2024-08-02T23:26:14.729149Z", + "iopub.status.busy": "2024-08-02T23:26:14.728917Z", + "iopub.status.idle": "2024-08-02T23:26:15.176544Z", + "shell.execute_reply": "2024-08-02T23:26:15.175972Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:41:11.148909Z", - "iopub.status.busy": "2024-07-30T16:41:11.148535Z", - "iopub.status.idle": "2024-07-30T16:41:14.025111Z", - "shell.execute_reply": "2024-07-30T16:41:14.024529Z" + "iopub.execute_input": "2024-08-02T23:26:15.179034Z", + "iopub.status.busy": "2024-08-02T23:26:15.178572Z", + "iopub.status.idle": "2024-08-02T23:26:18.201528Z", + "shell.execute_reply": "2024-08-02T23:26:18.200962Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:41:14.027425Z", - "iopub.status.busy": "2024-07-30T16:41:14.027043Z", - "iopub.status.idle": "2024-07-30T16:41:46.636156Z", - "shell.execute_reply": "2024-07-30T16:41:46.635613Z" + "iopub.execute_input": "2024-08-02T23:26:18.203662Z", + "iopub.status.busy": "2024-08-02T23:26:18.203342Z", + "iopub.status.idle": "2024-08-02T23:26:51.154916Z", + "shell.execute_reply": "2024-08-02T23:26:51.154351Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8aadf42791a644d7aa84ea5ea93db52a", + "model_id": "f3b32f3f5845468683f887844415e033", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:41:46.638629Z", - "iopub.status.busy": "2024-07-30T16:41:46.638229Z", - "iopub.status.idle": "2024-07-30T16:42:01.915473Z", - "shell.execute_reply": "2024-07-30T16:42:01.914892Z" + "iopub.execute_input": "2024-08-02T23:26:51.157228Z", + "iopub.status.busy": "2024-08-02T23:26:51.156852Z", + "iopub.status.idle": "2024-08-02T23:27:07.219946Z", + "shell.execute_reply": "2024-08-02T23:27:07.219346Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:01.918239Z", - "iopub.status.busy": "2024-07-30T16:42:01.917804Z", - "iopub.status.idle": "2024-07-30T16:42:05.845501Z", - "shell.execute_reply": "2024-07-30T16:42:05.844878Z" + "iopub.execute_input": "2024-08-02T23:27:07.222424Z", + "iopub.status.busy": "2024-08-02T23:27:07.222222Z", + "iopub.status.idle": "2024-08-02T23:27:11.056697Z", + "shell.execute_reply": "2024-08-02T23:27:11.056169Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:05.847761Z", - "iopub.status.busy": "2024-07-30T16:42:05.847553Z", - "iopub.status.idle": "2024-07-30T16:42:07.336104Z", - "shell.execute_reply": "2024-07-30T16:42:07.335452Z" + "iopub.execute_input": "2024-08-02T23:27:11.058995Z", + "iopub.status.busy": "2024-08-02T23:27:11.058647Z", + "iopub.status.idle": "2024-08-02T23:27:12.531333Z", + "shell.execute_reply": "2024-08-02T23:27:12.530664Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bd34f6363dd94413a10ce5318e70a5ff", + "model_id": "9bb1a488410b4c71b46e7d6fe2110805", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:07.338634Z", - "iopub.status.busy": "2024-07-30T16:42:07.338421Z", - "iopub.status.idle": "2024-07-30T16:42:07.369072Z", - "shell.execute_reply": "2024-07-30T16:42:07.368500Z" + "iopub.execute_input": "2024-08-02T23:27:12.533874Z", + "iopub.status.busy": "2024-08-02T23:27:12.533692Z", + "iopub.status.idle": "2024-08-02T23:27:12.563135Z", + "shell.execute_reply": "2024-08-02T23:27:12.562506Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:07.371445Z", - "iopub.status.busy": "2024-07-30T16:42:07.371243Z", - "iopub.status.idle": "2024-07-30T16:42:13.423924Z", - "shell.execute_reply": "2024-07-30T16:42:13.423326Z" + "iopub.execute_input": "2024-08-02T23:27:12.565470Z", + "iopub.status.busy": "2024-08-02T23:27:12.565273Z", + "iopub.status.idle": "2024-08-02T23:27:18.578408Z", + "shell.execute_reply": "2024-08-02T23:27:18.577817Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:13.426357Z", - "iopub.status.busy": "2024-07-30T16:42:13.425904Z", - "iopub.status.idle": "2024-07-30T16:42:13.482723Z", - "shell.execute_reply": "2024-07-30T16:42:13.482084Z" + "iopub.execute_input": "2024-08-02T23:27:18.580517Z", + "iopub.status.busy": "2024-08-02T23:27:18.580333Z", + "iopub.status.idle": "2024-08-02T23:27:18.636626Z", + "shell.execute_reply": "2024-08-02T23:27:18.636118Z" }, "nbsphinx": "hidden" }, @@ -1038,31 +1038,67 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0f880a204f2942c89dcc00391ef9c5e7": { + "21e58677d88d492fb2d3aba2c5f2bedf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e636b5573aab44bba46435bd71934d2c", - "IPY_MODEL_665af0e8c3f645a59c02f43043fdff51", - "IPY_MODEL_2e5a8275ab144dd1837b3acb899ba516" - ], - "layout": "IPY_MODEL_806c92b800564387bef7dd39a678fbdd", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_afeee618b0094f9ea19362a3de535dc2", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d08bb5b16f2643578ff29afdd913ef94", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 30.0 + } + }, + "22075318aed543b9bfb43b16a95303f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "281547375fa944f7974709643e5fb848": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "15b6c6e4483e414bbffdca6b1332ba45": { + "28953d553d724f8fb807adf8da9c8f13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1115,53 +1151,23 @@ "width": null } }, - "2e5a8275ab144dd1837b3acb899ba516": { + "2d0007b4d7ae42ab94dfb5894ddd6171": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7ee856f3b3b6489cadb00bc56b8cfbfd", - "placeholder": "​", - "style": "IPY_MODEL_7759184621734da7ad7af7156fef025c", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.14it/s]" - } - }, - "3959826deb41466c9cff772fbcdc14cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f0d230f541b948e9a2051618e62f2712", - "placeholder": "​", - "style": "IPY_MODEL_7b240753a02c4bcf9fe60a2a6583280e", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3a237c75a8f54cf38e283f9c7d217f3a": { + "2d004fb51ea84ad7844737c34b40be1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1214,31 +1220,25 @@ "width": null } }, - "3c621015e28040a280bd1034a80975dc": { + "309f96a402de4ae5be877a191b9896d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bb262a4cefe2454ea0bfaf1857eaaaa0", - "IPY_MODEL_e298261bfee74f53a9d4ee7608c7dbba", - "IPY_MODEL_5d9c48453ded44f187c73beb3ab94bef" - ], - "layout": "IPY_MODEL_aace38a5bc714ce49401be885a999f66", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4289a1e8279c46b0b291b9d03ed580e4": { + "362ee5f9191f4ff7adb03b8894bf98d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1291,79 +1291,7 @@ "width": null } }, - "53ec7ed5cdda45ee9abaa821657d4972": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d3f1e045fd804f4a9b2bc2eab9679b2a", - "placeholder": "​", - "style": "IPY_MODEL_dd16bea5c99646b898f24b1cf3d54721", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154765.99it/s]" - } - }, - "5d9c48453ded44f187c73beb3ab94bef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c103e73e53c7487084bdb73546e2c3f9", - "placeholder": "​", - "style": "IPY_MODEL_c3ac3d6d5373421680b5cdfd9f305953", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 809.67it/s]" - } - }, - "665af0e8c3f645a59c02f43043fdff51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b6e50060b45f4c09ba567bff5d89bbd4", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f1789c1a5e684dd89f01bb738355ab84", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "6d36dca0c74f4a7d8aaeeab44134b5ec": { + "3c3c9c08c38849c39c8943d355eba381": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1416,74 +1344,7 @@ "width": null } }, - "6f0287eca6f748f48079369ebec0af00": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_916b2b82c5da485e96eb7becee3ab269", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_86ce7a15782f4be0bdcea8d3e956fdd3", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "7759184621734da7ad7af7156fef025c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7ab2dd5b34e14de4aee5ee3ca7cd1e03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6d36dca0c74f4a7d8aaeeab44134b5ec", - "placeholder": "​", - "style": "IPY_MODEL_842810ddd25f4f9a91f6c1488c693fed", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "7b240753a02c4bcf9fe60a2a6583280e": { + "524457c7a59549e1b409234f113d2cfd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1501,7 +1362,7 @@ "text_color": null } }, - "7ee856f3b3b6489cadb00bc56b8cfbfd": { + "57630448ea2b4b93abd191d9fd1fe3a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1554,7 +1415,25 @@ "width": null } }, - "806c92b800564387bef7dd39a678fbdd": { + "6040edde46224192af178b86ce4b7a79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "684aa9b13bc44cec85847572a5e75869": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1607,81 +1486,30 @@ "width": null } }, - "842810ddd25f4f9a91f6c1488c693fed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "86ce7a15782f4be0bdcea8d3e956fdd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8aadf42791a644d7aa84ea5ea93db52a": { + "7cc646d98b194f65a1612c842760c2cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3959826deb41466c9cff772fbcdc14cd", - "IPY_MODEL_ec065695ccda4be494a55a12d2a2a747", - "IPY_MODEL_53ec7ed5cdda45ee9abaa821657d4972" - ], - "layout": "IPY_MODEL_a779351ef43a464290826c053fbba728", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_57630448ea2b4b93abd191d9fd1fe3a3", + "placeholder": "​", + "style": "IPY_MODEL_a8176cf060c346a599ee8e8232fe75e6", "tabbable": null, - "tooltip": null - } - }, - "8b0bd8d97261484186cbbc3b754ec950": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "8fcef29a8bc14e859cd9c969f9e518fc": { + "82a6739654d547a38131b44cb4f14f1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1734,7 +1562,7 @@ "width": null } }, - "916b2b82c5da485e96eb7becee3ab269": { + "8a67dfb3d92040968bf1e325fa69d96b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1787,7 +1615,125 @@ "width": null } }, - "984b4a402c5e4260b8d9a0f92ba2547b": { + "8ad2397c67af4e0e8358d65f0d4a9f0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3c3c9c08c38849c39c8943d355eba381", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_22075318aed543b9bfb43b16a95303f2", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "8b07a341c396471fb626d09ef8a77a8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ae7e0cea590b4d938850df01ecc5a759", + "placeholder": "​", + "style": "IPY_MODEL_a34e3e3218784a3a90e45a039e566415", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 20.53it/s]" + } + }, + "8bd11d48b4334ccf98051fa8e2aedab0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_684aa9b13bc44cec85847572a5e75869", + "placeholder": "​", + "style": "IPY_MODEL_d3c57ae8f5e14b428ef91851eea86ab6", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "8bede4f01da546d8a48dd2b51d7493cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_362ee5f9191f4ff7adb03b8894bf98d0", + "placeholder": "​", + "style": "IPY_MODEL_e08552147cbe434cb955ff1254f70e47", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 152460.81it/s]" + } + }, + "94851a2fb10f4fffa7d57d65f37f9531": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_28953d553d724f8fb807adf8da9c8f13", + "placeholder": "​", + "style": "IPY_MODEL_6040edde46224192af178b86ce4b7a79", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 662.99it/s]" + } + }, + "9547cf6347094ad7934750a14799ce11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1840,30 +1786,47 @@ "width": null } }, - "a4dcefed1766446b8c69b4d02fab4125": { + "9a6edbb09f2247bc9a41314dd7656693": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9bb1a488410b4c71b46e7d6fe2110805": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8fcef29a8bc14e859cd9c969f9e518fc", - "placeholder": "​", - "style": "IPY_MODEL_c2a8b93dbec1492481abde0df026087e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb2b7b30cf9e4608b1096e58f87d8e69", + "IPY_MODEL_a60d519967ad48d09abf2f3a7286348b", + "IPY_MODEL_8b07a341c396471fb626d09ef8a77a8f" + ], + "layout": "IPY_MODEL_c1a36213baf8452a882ac1f99ee438ce", "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.41it/s]" + "tooltip": null } }, - "a779351ef43a464290826c053fbba728": { + "a194ec35e7874997a9a9bba5bb2c8bff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1916,7 +1879,93 @@ "width": null } }, - "aace38a5bc714ce49401be885a999f66": { + "a34e3e3218784a3a90e45a039e566415": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a46521e429c5421aaf0cd8ac6b2244a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e0c3975abf814cf990e03d7a488ed220", + "IPY_MODEL_21e58677d88d492fb2d3aba2c5f2bedf", + "IPY_MODEL_94851a2fb10f4fffa7d57d65f37f9531" + ], + "layout": "IPY_MODEL_9547cf6347094ad7934750a14799ce11", + "tabbable": null, + "tooltip": null + } + }, + "a60d519967ad48d09abf2f3a7286348b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_82a6739654d547a38131b44cb4f14f1a", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9a6edbb09f2247bc9a41314dd7656693", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "a8176cf060c346a599ee8e8232fe75e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ae7e0cea590b4d938850df01ecc5a759": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1969,7 +2018,7 @@ "width": null } }, - "b2fe9990927042c6bb636763d7937e0e": { + "afeee618b0094f9ea19362a3de535dc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2022,7 +2071,31 @@ "width": null } }, - "b6e50060b45f4c09ba567bff5d89bbd4": { + "bbb9477350a14f3eb3d95cb40f0405ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7cc646d98b194f65a1612c842760c2cb", + "IPY_MODEL_e121b2c4aabb4b759f8ee18e52fa2e61", + "IPY_MODEL_e6165397fe314a8d8a6d9140ec0cd5b9" + ], + "layout": "IPY_MODEL_2d004fb51ea84ad7844737c34b40be1d", + "tabbable": null, + "tooltip": null + } + }, + "c1a36213baf8452a882ac1f99ee438ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2075,7 +2148,7 @@ "width": null } }, - "bb262a4cefe2454ea0bfaf1857eaaaa0": { + "cb2b7b30cf9e4608b1096e58f87d8e69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2090,39 +2163,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_984b4a402c5e4260b8d9a0f92ba2547b", + "layout": "IPY_MODEL_8a67dfb3d92040968bf1e325fa69d96b", "placeholder": "​", - "style": "IPY_MODEL_fbd95489418e417688ccd6e6da39d464", + "style": "IPY_MODEL_281547375fa944f7974709643e5fb848", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "bd34f6363dd94413a10ce5318e70a5ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7ab2dd5b34e14de4aee5ee3ca7cd1e03", - "IPY_MODEL_6f0287eca6f748f48079369ebec0af00", - "IPY_MODEL_a4dcefed1766446b8c69b4d02fab4125" - ], - "layout": "IPY_MODEL_3a237c75a8f54cf38e283f9c7d217f3a", - "tabbable": null, - "tooltip": null + "value": "images processed using softmin: 100%" } }, - "c103e73e53c7487084bdb73546e2c3f9": { + "cb9709c9a8b4477ca5d5915db9905530": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2175,43 +2224,7 @@ "width": null } }, - "c2a8b93dbec1492481abde0df026087e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c3ac3d6d5373421680b5cdfd9f305953": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c59fdcdcb4d04accba7ce0c3d58c5eb0": { + "d08bb5b16f2643578ff29afdd913ef94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2227,7 +2240,7 @@ "description_width": "" } }, - "d3f1e045fd804f4a9b2bc2eab9679b2a": { + "d2196adeaa7148fa9a0c5deceac6eadc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2280,7 +2293,7 @@ "width": null } }, - "d4d10f8bafa946de89419591759057de": { + "d3c57ae8f5e14b428ef91851eea86ab6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2298,7 +2311,7 @@ "text_color": null } }, - "dd16bea5c99646b898f24b1cf3d54721": { + "e08552147cbe434cb955ff1254f70e47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2316,7 +2329,30 @@ "text_color": null } }, - "e298261bfee74f53a9d4ee7608c7dbba": { + "e0c3975abf814cf990e03d7a488ed220": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d2196adeaa7148fa9a0c5deceac6eadc", + "placeholder": "​", + "style": "IPY_MODEL_309f96a402de4ae5be877a191b9896d3", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "e121b2c4aabb4b759f8ee18e52fa2e61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2332,17 +2368,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_15b6c6e4483e414bbffdca6b1332ba45", + "layout": "IPY_MODEL_ff1b34f5107b4252ad231c68ed67ab7c", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8b0bd8d97261484186cbbc3b754ec950", + "style": "IPY_MODEL_2d0007b4d7ae42ab94dfb5894ddd6171", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "e636b5573aab44bba46435bd71934d2c": { + "e6165397fe314a8d8a6d9140ec0cd5b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2357,41 +2393,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4289a1e8279c46b0b291b9d03ed580e4", + "layout": "IPY_MODEL_cb9709c9a8b4477ca5d5915db9905530", "placeholder": "​", - "style": "IPY_MODEL_d4d10f8bafa946de89419591759057de", + "style": "IPY_MODEL_524457c7a59549e1b409234f113d2cfd", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": " 30/30 [00:25<00:00,  1.15it/s]" } }, - "ec065695ccda4be494a55a12d2a2a747": { + "f3b32f3f5845468683f887844415e033": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b2fe9990927042c6bb636763d7937e0e", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c59fdcdcb4d04accba7ce0c3d58c5eb0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8bd11d48b4334ccf98051fa8e2aedab0", + "IPY_MODEL_8ad2397c67af4e0e8358d65f0d4a9f0a", + "IPY_MODEL_8bede4f01da546d8a48dd2b51d7493cc" + ], + "layout": "IPY_MODEL_a194ec35e7874997a9a9bba5bb2c8bff", "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "tooltip": null } }, - "f0d230f541b948e9a2051618e62f2712": { + "ff1b34f5107b4252ad231c68ed67ab7c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2443,40 +2477,6 @@ "visibility": null, "width": null } - }, - "f1789c1a5e684dd89f01bb738355ab84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fbd95489418e417688ccd6e6da39d464": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index fb54a4777..9ef900ddf 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -710,16 +710,16 @@

    1. Install required dependencies and download data

    diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 6a696df89..7588e441c 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:16.108435Z", - "iopub.status.busy": "2024-07-30T16:42:16.108277Z", - "iopub.status.idle": "2024-07-30T16:42:17.473595Z", - "shell.execute_reply": "2024-07-30T16:42:17.472949Z" + "iopub.execute_input": "2024-08-02T23:27:21.097374Z", + "iopub.status.busy": "2024-08-02T23:27:21.097213Z", + "iopub.status.idle": "2024-08-02T23:27:22.032475Z", + "shell.execute_reply": "2024-08-02T23:27:22.031763Z" } }, "outputs": [ @@ -86,22 +86,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-30 16:42:16-- https://data.deepai.org/conll2003.zip\r\n", - "Resolving data.deepai.org (data.deepai.org)... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "185.93.1.250, 2400:52e0:1a00::1070:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n" + "--2024-08-02 23:27:21-- https://data.deepai.org/conll2003.zip\r\n", + "Resolving data.deepai.org (data.deepai.org)... 185.93.1.246, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.246|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -124,7 +118,7 @@ "\r", "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-07-30 16:42:16 (6.62 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-08-02 23:27:21 (6.78 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -144,9 +138,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-30 16:42:16-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.138.89, 52.217.134.249, 52.216.41.17, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.138.89|:443... connected.\r\n", + "--2024-08-02 23:27:21-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.226.169, 54.231.137.105, 54.231.202.161, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.226.169|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -169,7 +163,7 @@ "\r", "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-07-30 16:42:17 (125 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-08-02 23:27:21 (135 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -186,10 +180,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:17.476282Z", - "iopub.status.busy": "2024-07-30T16:42:17.475905Z", - "iopub.status.idle": "2024-07-30T16:42:18.926532Z", - "shell.execute_reply": "2024-07-30T16:42:18.925850Z" + "iopub.execute_input": "2024-08-02T23:27:22.035122Z", + "iopub.status.busy": "2024-08-02T23:27:22.034920Z", + "iopub.status.idle": "2024-08-02T23:27:23.618049Z", + "shell.execute_reply": "2024-08-02T23:27:23.617396Z" }, "nbsphinx": "hidden" }, @@ -200,7 +194,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@774f5b4625f50853a4527b3bf0414f14a7116208\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b699edd9acff56a96f5d8635fc51bcc94bc9a1ed\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -226,10 +220,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:18.929007Z", - "iopub.status.busy": "2024-07-30T16:42:18.928712Z", - "iopub.status.idle": "2024-07-30T16:42:18.932103Z", - "shell.execute_reply": "2024-07-30T16:42:18.931658Z" + "iopub.execute_input": "2024-08-02T23:27:23.620722Z", + "iopub.status.busy": "2024-08-02T23:27:23.620416Z", + "iopub.status.idle": "2024-08-02T23:27:23.624004Z", + "shell.execute_reply": "2024-08-02T23:27:23.623532Z" } }, "outputs": [], @@ -279,10 +273,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:18.934243Z", - "iopub.status.busy": "2024-07-30T16:42:18.933903Z", - "iopub.status.idle": "2024-07-30T16:42:18.937344Z", - "shell.execute_reply": "2024-07-30T16:42:18.936919Z" + "iopub.execute_input": "2024-08-02T23:27:23.626173Z", + "iopub.status.busy": "2024-08-02T23:27:23.625726Z", + "iopub.status.idle": "2024-08-02T23:27:23.628865Z", + "shell.execute_reply": "2024-08-02T23:27:23.628333Z" }, "nbsphinx": "hidden" }, @@ -300,10 +294,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:18.939414Z", - "iopub.status.busy": "2024-07-30T16:42:18.939071Z", - "iopub.status.idle": "2024-07-30T16:42:28.307360Z", - "shell.execute_reply": "2024-07-30T16:42:28.306819Z" + "iopub.execute_input": "2024-08-02T23:27:23.631121Z", + "iopub.status.busy": "2024-08-02T23:27:23.630720Z", + "iopub.status.idle": "2024-08-02T23:27:32.801377Z", + "shell.execute_reply": "2024-08-02T23:27:32.800697Z" } }, "outputs": [], @@ -377,10 +371,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:28.310072Z", - "iopub.status.busy": "2024-07-30T16:42:28.309609Z", - "iopub.status.idle": "2024-07-30T16:42:28.315308Z", - "shell.execute_reply": "2024-07-30T16:42:28.314851Z" + "iopub.execute_input": "2024-08-02T23:27:32.803844Z", + "iopub.status.busy": "2024-08-02T23:27:32.803644Z", + "iopub.status.idle": "2024-08-02T23:27:32.809441Z", + "shell.execute_reply": "2024-08-02T23:27:32.808867Z" }, "nbsphinx": "hidden" }, @@ -420,10 +414,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:28.317438Z", - "iopub.status.busy": "2024-07-30T16:42:28.317037Z", - "iopub.status.idle": "2024-07-30T16:42:28.691191Z", - "shell.execute_reply": "2024-07-30T16:42:28.690527Z" + "iopub.execute_input": "2024-08-02T23:27:32.811534Z", + "iopub.status.busy": "2024-08-02T23:27:32.811201Z", + "iopub.status.idle": "2024-08-02T23:27:33.180182Z", + "shell.execute_reply": "2024-08-02T23:27:33.179511Z" } }, "outputs": [], @@ -460,10 +454,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:28.693775Z", - "iopub.status.busy": "2024-07-30T16:42:28.693565Z", - "iopub.status.idle": "2024-07-30T16:42:28.698316Z", - "shell.execute_reply": "2024-07-30T16:42:28.697696Z" + "iopub.execute_input": "2024-08-02T23:27:33.182638Z", + "iopub.status.busy": "2024-08-02T23:27:33.182437Z", + "iopub.status.idle": "2024-08-02T23:27:33.187039Z", + "shell.execute_reply": "2024-08-02T23:27:33.186557Z" } }, "outputs": [ @@ -535,10 +529,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:28.700484Z", - "iopub.status.busy": "2024-07-30T16:42:28.700147Z", - "iopub.status.idle": "2024-07-30T16:42:31.466890Z", - "shell.execute_reply": "2024-07-30T16:42:31.466180Z" + "iopub.execute_input": "2024-08-02T23:27:33.189240Z", + "iopub.status.busy": "2024-08-02T23:27:33.188864Z", + "iopub.status.idle": "2024-08-02T23:27:35.925225Z", + "shell.execute_reply": "2024-08-02T23:27:35.924446Z" } }, "outputs": [], @@ -560,10 +554,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:31.470029Z", - "iopub.status.busy": "2024-07-30T16:42:31.469337Z", - "iopub.status.idle": "2024-07-30T16:42:31.473767Z", - "shell.execute_reply": "2024-07-30T16:42:31.473222Z" + "iopub.execute_input": "2024-08-02T23:27:35.928379Z", + "iopub.status.busy": "2024-08-02T23:27:35.927716Z", + "iopub.status.idle": "2024-08-02T23:27:35.931918Z", + "shell.execute_reply": "2024-08-02T23:27:35.931392Z" } }, "outputs": [ @@ -599,10 +593,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:31.476028Z", - "iopub.status.busy": "2024-07-30T16:42:31.475684Z", - "iopub.status.idle": "2024-07-30T16:42:31.481390Z", - "shell.execute_reply": "2024-07-30T16:42:31.480918Z" + "iopub.execute_input": "2024-08-02T23:27:35.933833Z", + "iopub.status.busy": "2024-08-02T23:27:35.933656Z", + "iopub.status.idle": "2024-08-02T23:27:35.939473Z", + "shell.execute_reply": "2024-08-02T23:27:35.939001Z" } }, "outputs": [ @@ -780,10 +774,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:31.483594Z", - "iopub.status.busy": "2024-07-30T16:42:31.483253Z", - "iopub.status.idle": "2024-07-30T16:42:31.509722Z", - "shell.execute_reply": "2024-07-30T16:42:31.509269Z" + "iopub.execute_input": "2024-08-02T23:27:35.941428Z", + "iopub.status.busy": "2024-08-02T23:27:35.941253Z", + "iopub.status.idle": "2024-08-02T23:27:35.967430Z", + "shell.execute_reply": "2024-08-02T23:27:35.966843Z" } }, "outputs": [ @@ -885,10 +879,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:31.511897Z", - "iopub.status.busy": "2024-07-30T16:42:31.511537Z", - "iopub.status.idle": "2024-07-30T16:42:31.516114Z", - "shell.execute_reply": "2024-07-30T16:42:31.515643Z" + "iopub.execute_input": "2024-08-02T23:27:35.969458Z", + "iopub.status.busy": "2024-08-02T23:27:35.969278Z", + "iopub.status.idle": "2024-08-02T23:27:35.973349Z", + "shell.execute_reply": "2024-08-02T23:27:35.972803Z" } }, "outputs": [ @@ -962,10 +956,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:31.518017Z", - "iopub.status.busy": "2024-07-30T16:42:31.517821Z", - "iopub.status.idle": "2024-07-30T16:42:33.009420Z", - "shell.execute_reply": "2024-07-30T16:42:33.008849Z" + "iopub.execute_input": "2024-08-02T23:27:35.975297Z", + "iopub.status.busy": "2024-08-02T23:27:35.975119Z", + "iopub.status.idle": "2024-08-02T23:27:37.460630Z", + "shell.execute_reply": "2024-08-02T23:27:37.460082Z" } }, "outputs": [ @@ -1137,10 +1131,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-30T16:42:33.011845Z", - "iopub.status.busy": "2024-07-30T16:42:33.011502Z", - "iopub.status.idle": "2024-07-30T16:42:33.015539Z", - "shell.execute_reply": "2024-07-30T16:42:33.015098Z" + "iopub.execute_input": "2024-08-02T23:27:37.462970Z", + "iopub.status.busy": "2024-08-02T23:27:37.462558Z", + "iopub.status.idle": "2024-08-02T23:27:37.466740Z", + "shell.execute_reply": "2024-08-02T23:27:37.466280Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index b023d4814..870b6615b 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "774f5b4625f50853a4527b3bf0414f14a7116208", + commit_hash: "b699edd9acff56a96f5d8635fc51bcc94bc9a1ed", }; \ No newline at end of file

    5. Train a more robust model from noisy labels +

    Spending too much time on data quality?#

    +

    Using this open-source package effectively can require significant ML expertise and experimentation, plus handling detected data issues can be cumbersome.

    +

    That’s why we built Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

    +

    The modern AI pipeline automated with Cleanlab Studio

    +

    @@ -1164,6 +1170,7 @@

    I1Zv^8-r$f9_0eiv|?PPFe3+cV3QJ%Le$#9>7*Eigeh~KK~ z87scX%SgNOaIU00m&L4?&aUT~D~RJbP}WOL^*!0*WLYukrBN}SlrVs1yTRqr-jDH2 z7Uz{i%Z~LtgT{S?Z^U{Mf-p;L;2AEiD~I)Q1J4r#i_VQ@ycCwsku1$?%-$G3Xy_Rt zh&yDYzgv@lpLp0aT|6KwCT>}~v1b(8@ev#l^t=!Ri^_RHfz=&TIRT5xDdVM(b6F@k z@q#$dPvQ?U%0$ePc+XSfZ?a<23Qws#UC<97;T)AmC&vo-Z0)052O&Ny{D9MHcpKw| z$EvpA!p!nuGSO)gZ_R-J;FPAGm*O?{B>3{EI>~G@s`Vz4<88G#ta?YXMz3|4t-gdk z*C&L>n{*nx+GN#gjar@Frq-I1EEbI>*`@(>b+Q3>i&`G-oA~>(w}d#jR?DQ-ICM6h z-K@81>}I%T%V4*gj3$#>ZT78SaQ!<$RS8!M?vmyiP$}1&nR}b#lWCslIE%yXNVZt* zaFLf*uXm_H8$*)a>@YdBR-Fmo9Ea=sRBvPt50BHS^+{HZ)v7l+^ag{$Vz2|G){>-2 zPBxl#cz;Jv17BD7@(n_qPOml_H3p+OS*_P;O(wnGmSnQ2K{IQT!{E!(zrIIMRm?cq zjdsG^O zJ}D{DWJ<|spFX1Lj2UfJO|=fIImxKjLCe_mI)@(o%3w2Fv}$#7vME`E7e&vD-iDV# zJ5_w>0E1gb`(_@>o+o7LD{d&A{8RT8yJwO{4qb`$lADfbi|bce7Ne>}u_T=E>+DwX zCW}F1P1e{94s8;&uES#08q7Mi$zatOEDi&<%)!yV+`+F84{u_yTO2xQO^rsU*XxZ| zoxy6hgWo0_H4Yu>SUd2LpQUJYLlw(B+UX<@ZP3!fD>IBa^2N$c=|$9yNm zSIk&V`&*o$Vy4}~ZfNl3G*7j7@HdM!$qdq&EP6BaFzDaF4?bm_tW{g}Ob_OzI(-uK z7*kTR!*10l8EhuIPOY^WbnqQyhgmOmxKX*+p~KnCY6v|Btrl+NGue`?R-4wM(V2|N z7PBGAgrl?&W7NlHy98Aw{MERdWw|E4V$OkH*8%Td<4GW$)TpyVJHS_%^=6yh3{7M; z8w$4PtwsycH_>3=`k>CD z(Hp>DtVW|rpKJu5v^fk`t3hLf5Ngrm{S%f#CN&L~6`vcyS$%N*ZLXYbAyZp%+u7v3 zsuGtqDWEGhp@sCp5BfkKtVA&bE^V^n1^m)z2(y)pKmUw+|BQOJe@49!bB2FLy?;i% ze@4CkS)<;IUQbP-E#BYMJ3Me9*ns@?6v3awn6Y}oCQ#N~gpfmgNp3R;%DEvMA&1TO~6!kvtxy3UX4f_!9 z-s0&HaU1rR=3ADXzTFD9*y`y}H69kS<{L-jgrADq*C1E&kF{8HQZF9C>$iGdj2H?p z>hs&+7th{qBj%)bBeFGzi|*TDq1cmvM{e`f$Rq-1Q(3dAh}j?-DLD?824tst;Q&r{ z>KVvO%}x!6^tSBOC`d}lP8|kfWTz5gvQvo&*}#(gB@DAEBkqpd;pD}i?vRckPxNZf zk>m+32FrXX^+obXZ{-<9p6K-o7V<<7X<5k=P4-PDPc+ZbMxJO!nVme*jadhIqPu!8 zkte$3KbkzzRmT+aL>IYI$rD*fn4Ee5?p46gH%^!uN!lH@*^2S0_A3&7_22b;7%99) zoNQRf`QzJXjGIXQw^_BuN#ktV_Ew$RVS{dfK z1x}S?dZq5=Yq#U@hW(ye;&j5At`JT?%I?+WOQ4SK?)>X0yH__v9lck#(R-c(aRX0| ztgpp7xsm`mdav%ozJBj}riF>yI1o(Ni;vv!XvIBzF7zO_OnQtW|CFbbfSx!;_TwMM4^DeliM@F`bj|;(GoCk5k7GFPtml2P2VYGV z^y&o!ls;q9?HJpW@63S)Jc6F}!u8I3j-oNg@Xhm{_r!4=AoB~_%o%(!v1?5N=--i! zz>9v#}F1xP~vLj=Joauk?xs zZnBYM$i=A3a+DVT4KZ$911CnikKu?L9xU$V`33sRLB5!ZvG*8$?k2RI96>HcJtoD@ zN~L(%ck&Yt+&=Ub&xUeOd~#EDeDO0+O}y_jSZck)15i1>I)(>+?%AL~mCF&$xuEzC0#1P0!=F*KN;Ku_s@%D1TuuaX4S1Arb@Z zxbHnla#*@}9_VWg%JYxJ!eem5Pp><$eK3V5O7}l9xRQV|;fcnUhuQUuiFZAx#B2_d zUb~Fu9LF#G03BcsU!yQc6DAPPhV4*g{^*$yE;@NsYLWHFeSPkeUBUHy6>Z7ifAw@1 zeX?R=7r)ZJdR7>@Fx1URrP+0;Ol#oE4@!}qzsf~F!VjaG8i5| z!E$p#@T12Rg4Y3a>ch{l%UmalUTX~RhMaI;iQbvw65h77Z!F|W0?>ZC!)V{|{aDj` z9~_ATrD<=R4M#8=^3>Qt556QoAAelOn<4CBHry#Q46)(6#D?vC#=73xNVve+@GK9S z^~$1-f@H#XPp~AA5bUT4gV*_0&A@3lX18$l=857$!H$-Np>Pd*TUN+9HoO`aL)}V*l9*=;z@QOCA^LIR5*J5Buxh5 zz&?|M4O4rYhohX6G#RLFApYKyz=%3=ICuT5c4(ZW>QLa2wV;VGgsD1^2(NYD%e@@)1h<3lkzKj!Tz-cw=_7S|v1z9nZt1%vdK>iCSwYrucKo)e32clOp7 ztDWKu638k6A{)ARx5|mgN4)|5J1u$hRM^D^bn{LYbU5vI2z&HyTQy-Wi&gFL-D?o5 zT#tMIRYmB}KxwS%BLgK)oOFuCs&=PXtm4Js$kJrC;B~%ReY_V0F`YL7%_A)HtN~i- zLKB`qg*uk@2OSr3I=(FvoWzoOM922H_CRkh0lr61tU*;QkURR+R7 zIojnk)3D8H=5!zhO@C7n`S^Ge7fi+Z0ToF=iRZm3pdUQZB%7_+GI~oi9_4`HaV1Y* z;hX+Dz<6pE`sT@(ypxfSTDBd|80~#b+`^leekc7jOXW4Dct1esB>W;tyvKMj+S1!4 zJCvUOPdgv>j`Lm>?^U4RxiYJ9Hm)EbSgbY_~6qXsg?T;V_&CfHO0G7e36LY z_aZuh9nO^m^zgNu>Rl8jj^irHX}clfWWIz>X~&)MrM(J0L=LQo;P)g8^W4~b!lu`} zW+cANlcn?F23as)SjrbuZf~E#`?I|5iVK4wyg$qPn;e01xN&%)R@@#8ft^F( zYZU7I7EB%5;dliD=9HRZz(eFnt#l3N4at4350{zP?R_`i@a`1QuV+}#_(cXr zoaYnfJReKW6Pz*!1EpS#^u~mHJtU?T=I?Ixg-EVpS5`-=UOd3Br$zVx5 zZh4kPE5M-%$srihxoGe@zlmbFQ^zT1*|{FaSvJR;ztC%`FU%s6(9ekn=5GTUO9ziL zv1M{`eP3pQSBw#s;JX>cBRHsJIaJhcZ>Rb~9)aqJOa7S2k34QaD98Y5-{{q|?63~V zLgO*71xxwnO9Hm^bv^67CWt4A$;vt&No(tO-kT*}logZ7TjLAf40Q4=UVOoOQI4hX z!F!T`JX_z*i{9_U#2mI&u!9L@e@lg&OVp644L?KX61HWZzR?VA zlw>PV$_6e5MvBLyPOp5;ck)kfd$jClZ=`SH58iw@9tV=jUReeVlW4=m66=d&aQ}-d z7y26i>g|o_LHhaky`Ld;{+!|sX23W(*6M332NGUtgd5#lIgC7ZLgz;%sAB52paO1plU81j6wc@OBWQAX3 ze)1v@cXyYoBV0^R-};`wS^JB7hjLx|Y7pEOxMS_&g=n!P#{!-{orTUn&)oW0o#Kz` zA@6ymTW^*0cAsZ%y#f9uZk=m~|CkRL`nho^3{?d`z-@#JkN{A24#fPI%?F-7e@abi4U+RaWiYm>HL}07+09ixy74xHF%Xnx@`}MCiLctTxRBr;4(umFqe7u zg3@K4y1+h{a${6+DVlVFdCUYE7!5cVSSSSW%Ero2{`6Qf2(nHRWHrwrDs6E;ST>?J z|N3mjKck%&lnru3QubY_A*Zb2pws{X9WB=&C*^Rs-ss}9=n88Ou6-{A!06eXt$4qt zq%pp8Brh&3b-kqPiVOedsChNDxV9ixyU2BB#X$B+S(|Y%6}8@#v0$_o7g_5)LMY2R zyy_yG?sOVooFJes7g_UllEIPYYk5(c>RkMfo3C0LNHSKEBt^!7jAV|Bto>$BD&CIf zUR1Wr_DugQwZ>i+qQc;&R>CxRf*jh#Ee5Z->J_z^jRVlar3 zjy>`rx5A#CI~`gi_7d}r=u1l9h`L05W7&-2bfmt-Jfocqidd}SCFU6b{hxO1_)HiK zMoDsvkZ~ZM@d8jLbDY0g6bu(|ohGY>;P|g+M&N!8y^Vb{XB7{uhhDv;93fgs#+Y`A zjSw%xzeHT?B{uN^qO^gZBkU@j_%tmuEgKz1y_MArl}HkM%1P{kHK6@@y?s4a6lYdN zM?pCG=x{t`KU76mFDae*(*PVDMPBz57liqyc#8Liq3uXN##va3xQNrFM6c1g<2&6Q1b8Q5+sJVMMe~x3hScAkO4K*_8l+!Cxh1N%7=ZN90Qa4Dj{cV8k_? z5m(BrLplNe*cY|8c)cKOWA@uDgCO=>$LxncX8kY(D>^9)Q8)5H@j~GXPK-}wOo$ja zfI8`mcit+MvfFi#RR8N^*6sd)e@VCd>SNaJ0H6BcRo;9dCuO=aLy~Sc7a16exBv09N5JuECOmG(sXUuL?RF0E|sZBk<&?9xA@1JcG88xO6m}1*oHjyM{iO+VqohZF>DOn^{hNvLp-rd6^AB zzstagYkeu1`#Niii7(Dl#{}okmW4vpZFsumu-Nj7!c;NMxsre;z8lY!3`3%Ut5h1N zvt%5e0BdBvBtR0k8Co(0J#~e7_+Ua=Hd7k_^Lr9S-+G}W523N}i@chp@NoO{R&>PO zTo6P7m=4AvSkWL5qVD67CAnzX6}ASov zB!K?Btv-04P}&DKd^f$8oB)0A&uqEGBsNzPKsB!7U&2c*asOtl&-8s~u$g3mmuw7DS1P`Jth zNgLiVSoYSf^wLkomONFu@BLdwsa90;#WcOBK zd`1@|D3|bvCLvsK@;@LUoc!*R8O%z&m$lJHC#`<>UY4RnT90VFidJDq1}utZ6=r80 zpp{NSsW&t8VZ1F8mFNca;^qXg1@;9)BAy5YALruU9z1Am6Vm#mOq4A+hS$^LV^b%k zqnpghI;)VrCuO4Sjlo2sj5#Tt{5&g_22O5$cY2*rYZ>JT#YbJ;cA0C)^pi42rk<3` zC6DH3{X$lpH0Q*FT9hw^8h$U(zz^X&Pg9%P%dzeYv%1OKYaZdUSIK85%?a~I6OsCh zvUZT|C(UEwV_q<>UT3lxB!fGYl~n#`1Uo!tTT7&9=oU8FP(T?9y%Bd}t%X%~~wBa(&i)`qmQ^4Wx3&gz@DF7ndLfW^c%v zNSLNtra@$$loo(8e1v=cqpVK|*{Z3w*#O5?Tc)YDfUBl8Cm$TeK-WiI%S~Bp$Zw}) zbNc0!9Ox#0mQ~_8a`TkAJyp_l%>&+ij1lrjR^`UTKiAx3elWr9D!c7MBNCizZZk8B zN!#Ud9klu5l~c0ez=Aq26AcH;E*lOm(QT`)=)P?@p)t8oigs=2Rj`&J>} z=bD}WvSx=vP$TvZ25y6Vf4YG42k3AORC}oU*`RHG;VYd5oIl(P#}(3?e;`*b9ym2+ zxAMAf6dU?U{%3y=**1}%YN&6AQw@KZO>O%_n)=mY+a`!p4fXBbQw;`KZtfaz!~%|V z62K92NGt-P`=qAz_6QJWloTexz<^tN_#d*Z-5$AZfuAy)gNcI;XnSRvW}%rN3vX`a zMsK^|r!3>3;Y-5PBUs7nGbGovIx)(} zYRjo6F3}AEPa^0)(t`fVsC88on4NP+{EBr~Vlq0z@s-#kA4IF|-rQD3fzy9nK6y;) z1_p&pUz6RLw5>cjp-J`gzjsFQw;}E;otCXI^0Y3w%zPD33vaMFQ)587=4C#8=BM69N zZGK-}7<(VoTd1iwzkqt_r-jAYojKbclTD{(j@f7cgP@1mr{E6IPmB4d^y25>;^A#$ z$Wcw8pA4LM^nZU^4%{kcY->qw6|nSG%{XKdR*3Y{@q`<4l;?80r8Nyr(q zvG40(!q`_eWB(@A1zG+(V>ieIV|O?sW9g+c=2&WbMuzu-#oMkcB<_r~_G<<>o?<$k zktqh?#ah30%Mzm#n{}PH)fFotUxbKVwr%HA#{Cz9%Qnp}058JO2RD&= zebilAy)A>>(# zDW%WK_52d>FPHTG8M&Sh^h5;ZA?q=p>-kkRY8hwvdj3#Wx0Jmq>3CL#Q@gXe*=1^a z;jHW^KdHThIRt9-Mg2FUq9saV*z_Lf?)roE^_wx4A+YT2*QotU&3rn%3eD-!kD zOo%2Zrurm4tV139YF|^%hjr|aZBL$V!<0Ghy_t1c$7uUudId`)Brq z^-&jC-#$?(%96G~|0mv62>26WikXi8pE8*wG_XHZl*$rTETh;Ausj?o>{{{HQ2bez z-QK|$Q?Y_#Ef6ply?7&b#DBf^`IoML$}sHoXZ}>%#%M!(L$8xuOrw#!R)|9Re?q|D+-1JIG6_Fj0db476^XfR01 zr{0}Jkv#r{^_3$?T%sFYt<}O_*NboivF#t{>cVTVf)$@XpRnui#?QaL)e8UTbg9G$MH4(iue`V+8%R z9KaH%pp9&dlcEI82v|;aPe=P=e_H+=vYj~oA>O*JWGLpxKgyqDrMufRj0mQ6%25`4 zxPFX5&RQa?nrwlb}!Zrp8z>0vvM!a$2)Bkub!Qg z&9d;z_6iCacTRo+1Vf1qqTe~$#m54`w$`M&=K1dH?$pX~XwpFPv>kYrz;u~+TQ=#L0oz7u=o9IMmcK7$^?H72HWG^XD@ zovAu+fc+Ih|Hjnh9>F=*dXT*`{R`KKm4W$#Krnh9q|a~e{N4c$=-t2au-yaf9#(9O zySRyf(K_jxpf{c@sQ74r-ivu{iv2GlTx~PN?oeobgKTii1KK#4XXSTsoA2~tb~|lr zKn1l(tMe=)9-Q0?*O;1IhA*P((&6?Vu&sb`O>J(W6|U&|v3e*}j*hfXBooieR+hpk zds~_4{gTeh#jvJ{_O*m$z+Ze5Zmt22_k5Gi%XS9v|E`^>bH>;M6sls~#7@huvGzuE z7cLe7rJiTq#@Ss)1d|~@`EQMJC&}K0oH{Q?pUBJER&-)A7QIOF3cxz8U`0eMOt!y4 zpSgenUDvM&F6R3A0U(Pz=3mZ;0WBt;mdC)Nn|bDfyt`Wu>g`ryM7_MI9f`hRR&S>j zEWE-Vte$wo{%kmDb%Dh#o!5>XUSHIPtg_b%E$h<-?MSx*EU0!N2M$8nW#bYQd`A{T zSdP9R!!nU8YzWH{7i3sAVD@8vDgpf8MJ3z$0mxz3KA;p^Lgwte;%9!X>&l;YoD)gG%$GI2~Ag=?|+aLxp&9JU;lM4lGq4 zcu{uzUu4-M6=gDq9Z4q{z_`WZFG|+~_`kLIylk-eM;9gA^`IeGoPC*NzozW6GWa;n zCfhHnuagu>V$=d>{PbJ@A*3I&|7=9iXD$0Mf<9{jHe%LdFoMZj8CC`q!xQX3J>uA>-}{`rtF?cy`#o)k zK8nTGu?MrbAMM*i#XD14lp_}6wm;Ex=HK=w{wjFeA5ku|Ex*`170!m!f3W&L6|Q=N zyZz=KVz#69@}%Dnti@4#xqwk{s5HItP?lBZQmx>+De=iEb(7;$CXCBW{EXw(O<`G` zx0Yk}qxKL|@g)1^sQtBoVAxYmZ!(mvDR-$!K;k)A$w=?R^3Gg+kqxSA4=$287Z$eC z+lu;Nmbh$NbU@-s4pfCDoVi+!+`GhD{bnCTN?&5Df3wG@UI!PY7aclw%+OI2k`u;` z$()e54em3Wl362Bxy-NZ;~J!aB+gcs<4@wiX?gx6 zjzw1BPvVS8MgAmq%ftDTScQ$?Ph!m}l0S(_zl}eMJ|+sD{1YLZSnlR2QwdxP_u8gX zm08LCGfS$T-|cD<^4w*X^ykX{?9f?zV1s{o%b)E}dllM{GZg{V@Upz%50^ll7_+=| zSzhqxqfT7#xAB~PBOQdv@db*o0jNYLCocFa&we{^&!eLeggl~fxzDHl=mcCG+xOEs zWb|cr;iA2b5rMbP@Rv9&?}fd$-C?fs6LJSH+2@eOms$VI_W6`y+I;#^MyH@{Coj4z zr>7YRRF_{~N4M{a{blmmWfp$b-iN*ON_J5KMl_Mrwhcc02jqHQvv(`@1?Q)LDg!eU zOR#R&?9Eulj;Y1yS4a*s4{a@Y&p+VteV#p;{C1hOziyvMe}4i^ZPoSY6KSf`ZrDFo z=*=h4(MH(Uo=AuB`7H9H<^zKlMISZhwmsI57P|sA@&>I)>X+}@$I%c&G5-|F=6m+u zq}Uba|F?a;1=f#$+uxzJOjs|nb@zb@@DSf;DTbL9Srm0Yl4ZPEz69(1z+RKKHsQ8p z+oz`nvj04=PlcgVgVm|QMs${x8W_T+JhX>cNVDr9Os@K3iZPGunOuC)Ct*35DeARb z`V96G6Sm2Z?FZ;Y15G}KPrkBveRegPj4MnewVUb+kW_mq*)J({5k?gq=mnD9h0MRg zn)qdh)A@#K{<``!zwAkLqoJ4|JL=@09m}y+`e#?<|9bqh)9H=^V60H~E4+FSeBKGg ziFTcxK}fMWhfDNU3r`|RM6j49v!dCd)Bwll9aXN%c?ZCYJw+ef#2$cko!8LanKI&ZFq>aG z`|VI`moQtI><{T^E<=8U1}8)&q7q#XFWuf^3-KvH{h2b}-j=+3RV)@DvksPK#VnXu z3dt-0I?Mu8G_1~{*>BJfk&t{1J)VAsOT@_a!>i_?9ce*RENkp8z&_CeRIF<3Dx1AG zj2sqWBUd$$eq$`K#G=Nj0t~*h02L92jicM2wQdLz_E?Ls2V7b2_&`M1y{mF!`@yr> zFDOb`cI0%nb|@p{8iwUjrd*Rz1~_p;KJO5MEQdhFa)J+G<}}V;P1;_QliSwUSZu{L z?b)s-*uUPm@#AK~j z+51@P9XSjU-C|_x?9p@w<|0z{@2#^tlbma;W}EDR`3PeAWp9(+ihhp~L=XdPmzeC@ zI;?Tfbb*I9UNW*YtSCParYgboUn-E&rz=N-l=Z^@x7S?X-!34z0UnDNk*=hQ9 zr7R{icNA%pClhi@&ce`Kn&ruae4}IbAV1O%{^AMw6$2b^DsA&bQ&F0+1_3z{OuUz6 z&6+7+E>DcGG=f*E2zhCjt$X$*Iu&azCi`;+&uu|x<6<${pPDBJAqE5|U0*D( zE7G8rG!Vt7dkwyzQ|2Q^s$7@ZF6z2GYF6UmygW8;Xtpi?OXXC3_*ypH2HoKyIw#5@e^o zBeTDxbFM>)H}Q&~?NZ}|Xu1d&$G-nrH*y_5@Y!{i&4^$M+EM>)SVX($^<)_@Os`Db z*JZm_Ib%a?WM3EEAUl41*>mKF>#|uNHh}T?*ba{1M=i3s6`mR&K0@c@j(KayLoF=+ zmSLgx9hNm`uzG#B$z9l<3f;71ykNM~k(M!7w z3h0UT-I6z?U;p;u*QX@R9V}_>v|#rA!R$4@I)vGWvcILtH&6tK4r=TTw&iek7djT# z@E##-6e`jERD{j@+?g0^UCAyUfu_IwhIB9E1Pt!Yydl$ehaa-%_z^q&#nbjy10477 z2ViA>{1@QG`n?ZsVu<6TF7;^kJaSr-E$AFTW5 zjOL#Q;Gc)f`;vR`FPH4>4SD7a@WnvrH)JGv=1i>gXj+5*Vu$0nMr{;O;TP);-o30U zdG@9>Q~jGJGbwdhmNTcL`qH`V(|)A;O>-{$%h?b1b$p!7aYeP@Lw(eZy$d1urDoeb*tXZNebSj*7P9VMSP%T} zUUt1ghHWMgU|;*F`2Wj^C~%>#k@3&k$_vW3-Z4ucau&iIoDx3 zZtc%Ga{Eq?zBe@+hToFgcc(%(i8rSL)unzp)fJ@yM?!meI%cYl*`QF)WhKT7*%}4+ zEFDNVygUd5N45wECW0DkBYPEGqWeKDStMtGLdV>KB5z!XBS*^ubL!JK48?pig9Cau zGwQIIA~|(f|Drj?EeI?rnp1<$HWMIYZn1JfIX8?5rhaLWrW_VoL}C~&(UmB|#@*jt zk(Di$v)or!+gB{-J6~yaQ}LW1>255kNUPg#vENGM^rG8wjYz95RDz|L|8RF=sC6Za zD3vo&ImcZ&gr4E}hOC-%uMBo&jEDRUgbmR`pTW zIV2~8)W0ngSKZrYNow7eS@n2m4l6>s+!k3C4QSk&Z#uH;_o3fDb=cWbX~&H6dcK_fCzR!wT7a+njNWn{d;M<#YZ3-(q zcvW$AaGjj@;d3Lm%^A47j>j9MvP9ZsI*7m%Fvu-zG7;OvX99kp+eD1geYmnq{hT}W z7N*EEuI)N1(cKGAq9d#AFV>I3d_b{g3ER7~twmkcNvXeNkQDz*ry|o|&|flK7d@Nv zvO;S8CBwD40gi`jnZKm=058JTnx{CR?^B+@(c4#(UVkxhXb|}Fb&fS9b|kYBNouJ@ zWA+5Hnn~*O?A@l>)oCJ@K&*O<01UqB5&M_4KbAn|MO>omskUyGQ%0eSIYDm-i=$e4 zly%fRjtR(fXD6EH_$hQf#`SI{w+zCiV%oRRR*@8MVIpL=hTVM|2 zed{|i#l^JCX*-tmzhfRa4%1B0_l_Jm_J)7CU@>=OetZ6ojHSk$us1k-=C^_Qh86iu zT57%~TRN6atRkk}kuNL!?acXtkWC<*F}Ib_?lRhVM~)nOY|n}GBirwo^H_y^I5l@y z&MHC<+%c!D8u=h{0<%HWa{-X%ISWJ)IqN;Fr_Y>KM5A^cIxl_)kq_78ewlOAS08!t ztDNIL_e^7J?`h0}zs~u9hTTPW7Xe=8E(_Y1^D-@iYs8vZNmPOY?Yn(ol16vg=>0jb z)5Zu!>|LO)q=lwc!@F`vv>t**^u&Q(^_!gWr1M=?``es1X;%bjCfZUX+VSZ`)#(Rv z`YCkS6R5S)s11HHHF0WI&t6`|uz}>c@XSLw!`Q4tIq%SS%v{leR~wD10be*Cmmm`r z@3QjcCEIsbQC6@cO&mk$Qcm2EBo^P5y-M%zbKvtW*&Iw;K+iJ3^0v70u82`(G0W=d z&|c>C!B`B2eAJcvIVVFoBL&JeFyS-I6L)2zSocfLr6BUmJ#(TMpxNNzU70BUzRQwY zuWYW|6?sBA!DZ`4k6|nNOcTBH?J0*rU@6k*p3Gnk?jci63xG>X@5v*pNYb*YbyE|Yu5lJ(ZAdgx8_iF6;X;d2<2IG)k2Wcw0qw80Ur zPV{puQ0OI$A$BQtJdP;Kx)yS@qc;t8vol+=9Sp|7Dz{t<>K7O~JnS&Lc@8+)yogR+vv9c}1v z48;d!%4;n4eGq(Wr{_u`wE{J@UX^NbBZu}uxH@~5)YuV=(xn#@3oH9cT!Qdhmvl@d zi~p7hU?JyW$d&W|R+CCOjujzW{+8pYO$HF2BH7Ee|nAhdWj(WwC_Z_?z=?EeUVb|w5 zEEhhWH^JvcIc6wIX)k#feLFlX`XR#9|k` z6s*pu>iCaBTi=IbZ!$9_o9-HWOiteN_EU97G@)HFu86w&wHzt5H!c=q|E~At){+6i zv>Fm?#Z2_Hn7ytI3#{X~9%|jBSjoDMW4_iwlxW8WxA$UcP~u(kX~Rktz7_*F zayW`nUY>6tG1z(!l^}WU*K@ocYF(#JuJ1Uj&@Bj243<#K8L6p{3CNUM_*usYg?@o? zMM_=X$T5h1YbfTYZ8|>Z=s>>E3~sxEISHr*IQ4LHPZe zKnqtM$QJ&H^DwmV`}gHSyQ?X@!$itIkj*^o0fytv-0y*G=J#3b67NXJ2S>5aX%{DO_5ogJP1$e0J_fyNpW-0$5S zdkA^wfqAs?sSYQWHTyh}%bFmEoQfb<$mzSaIxOR5$7x@2p4Q88n!33m^P4yC)g2Gm z*S#IXsRP%DxVEDb-TdkYufT3R{T@{^v2+^N*U^IhW+>)wYkvQLZRzW%YD6%#b&sY$ z<|w*}NL-@J;C0&`7MHQI6B`!*H=!yIwUFWx7(?oT+?uO0z;R0r8{jCWkn#_;xO#|z zMO;0UgS-0=?FiDG=5As{pS%13j^(#tefPSfoIkmtx%rv_j=TAo=4OBwt1Ujb@zi0nuJdYIya;R1e)?i=sOA>_G7W~al+crl)B_(42uJ=g#y4)k_Ypj9vH7-Hc?eLCc!&BN^9*gTgH<;N{9Vcwo=li^t zacKkC&Ql$kbonDF#)-#o$s@SP_{B@j%G8j?fWLJJk$@JV5+vlMX^!heeZ)>ockHAt z1Y=%sXs($h=aKBuwjo$VkFR2=Z@=q!0Y15eAmkhJmu5Pm=}}xPW&?*Gv6S~5@PT<; zW9m>_XzUL>VtiV~n$2VmG?W8xc$+g9(}iu{z@A4)vXtjv|U*Kj50S%JD4i zUx0j{XIRY19Zi^xC`D1@ny68H8Mr?_TUTAS+7UqL1dMKKRFgD}BtbBSjCqDldjKvm zEiib&fN-f=XJU%=KqR%bg^KGP%@n^CAalPD9Zl&<1R?J=SY|Er+nNN6HJQh3a7-pt z#pouPr)U^^eWf&pP)BKO?lxaJ?J1OmkHz}hqlp7OgMA#=E585%P*3Cbxl zG`enex(EXUC}Jn9+c8U7!C z^-T;FhGHp%5`(Ojn5Bu-Un;={Z|Pb{o$GLX?nkF!8gP8MGHd;j+eT;NVt$6%4*=OY zx1){)Mq7`=MwunXPLHFa5yR9WrfH&0(yaA{wY9uppaHiQ#SO`_tMWE!Ly{1Spu2ZC zw$rb%wA_J_`hLJ1O(cw3MBHqvR@&t#s?ehtSuDK$gi26mU9lUc`#$O_?t!lHw!(7b zTygXU$H!eG9Bodjq}Ed>?{$1zm=q^0>8N`I4I&tfcZheC#Yt*7xu&oz)zjV=FEM1b zmII^}gY&K0khLk{(b|bTN7#Zvdpf8!4>$%DBC&*Jz2+Q=mYp1$k-D+mwrZ$a;d{rS zLSzW6Xtj0?KwyWAV5N^aGKpH~m}4^`;|a^9Dn6!m!3#`S%tBWu(wVTeM_jLPS>j%G zb){GX(KSZm65Z}zod}ECu_jpEd(r`4&RorHmp|Avp6vF1OaYUV;~HF|Ghi8ifb+J4 z0^E5ngID;B!vQtt4o0haryXeu`APHM_Xarby`4mO55V_0on4>gJs)*y?Q@QnN~j@H z^8-nJ=e(nW5^6nsV4q)bJfda%uu)+2;8(&gkOf|H4509!+lvn$A}K1-ZQ(U`gfKR{ ze#tSA)<%$Wsrl{8j$!m!T+H*89{{pFVI|8MF--lvP5Xoe<}Y97{QHVylV1;@vGJ;- zE$xZPi{-DdYmRu@&rr-?2mJ1uqmv&%v+{Y+eHqYTXWNlR$r& zVGH|XINnBY`0+NXTx8c@RXc?G;3Xy;KI%p(>O|7mU&`^Ufj-X__5DSnWw5STRLvvm z5kh*xrF)QV(EzoZrhIpQ7T3lVqV_7RzTiiO!ucggw+ODU2`-|j3X6-$z}%Q=hw5-5 z({}M^r6#zVk*5A4A%RRH;bM(M!nNTN-PYb5Fgj3fPtg+U?{qy^)thj|^3WPoQV=!#1r4MGpoj&UB z1*>a_Um@8`K2wNARX&MNVO@n&Se{Tgg*CTnPIX$Y5DF)83M;e_%j$Kq3js`FV$4PM zX}F}ImFBQLS!;sX7iHBOK7vvGwwzi>v00~mucsn3PlZ=dKcRiNlwMDXcH95>A06l* zTrAQx0J5>Mm&&t}kG2O`p|MSkXp$wGt>>kRY*kFM2~EsPdm#*6V>KW`ovY9cRB29$ zi?lFKFC?>V8iLgcnKvN4SeUKs?QsdhZxaQv=PD#yu!Hk3WDxM3W6x7aG%f%avFC%Ch&>;5_v)z`gcN2;VJC+K8R+v&@}LlFaK+hPozp;VU6e!= zW^0S@#xLL;*Q`~6#rAY+=T*zXtG%w~#J?~*(n2l6NrbnXVQ`nsO>S&)B zdcCmBe0SQaEB#1nVRPndVuWMeXDkm;KklF=De9sQ>H>w#2f2(%@C6-(CqZSTv_-GN z!c8EpFhxhMhqrO~Jjqd2qXnjjbGwGxtR3iWecj-mR{qN4`Y!69KE`M2>aJ=F*iymV z`6{E|!NP&;&0d#=v&Z|222l7*mrgX@rIXdc^b9T*gO`JaS$Yq(rV)X+KHIklRu6iw zsJ%ecloDmwsgz0n>PxZeLP8%P1oPVcE1DfJQPH*{aY;co1LSA4rk2kv!;WppszS;I z$S?{GFo#i@0NLECzoOpvBMk#&bE{{7cA#Vd8W2Ze?v&EaR=FL0p-GkMxek47>9J=qB;4+7)-@;jL;A@Q6 z1v;GQv?m0}PCHI23gU=>#mdM|8~woNR?>>dp7A{di|C2N zniVFhTgbX1?AwXzbowCzlvB62-c(!AO}JPjln;xrQj^r@jR>a2oxPeAYo0EJTJtTn zEur6GK6*a;2^S0Y-xZOQF$02${TCYh{ZD3Zn&fy*hg~3t2e#6gnFr%4j`2s%sH;w?{$=Hg3LJh&5iUHl-OD zN<`1>K(>Fenqq-J`SK7AfAbPGfX!Z_HlypT@WYw9(1>rEuol+7T7?ymafC~Bx3JYq z)nA{oeF`q)FBqm)e|cQ|m|+QHM%YrujiF^7aNJvhe5T7il4~e%8oiKVx{P^UtqvNBE*7@He>0lxFKN9tck{UenJ2Jd^02Zu8 z9d?d5kH-doxzazR*T}e(Kc+5AwoM#4$u=?GHe^D=s1$biz{;3Hb?bs{+1jC{Lqf*d zh9`^}ws%dfTHM;h6W**QbTj2;W_iW@p~!uYrp z@FM%@?q^j4$Bu(|On57P7%SO6yDWQnAT=mJb2%&VU24Y~BjZPnOSVlKJAsqeJ*N5U zjf6N`oGp2D+<12AerScjXxrdk<0sh?QdsVRm7(2R4IVUT@0#Ib$J>UFkB^V?`msi0 z2_EL5mP*<(4K}=pZ73ECcfFfAirz33dq0R5%%QytR#j|&OkLzPRVA;foC^ikwO{x4JqQeNbyj8=HF(aHb3?77pYPhYE!|?A z4RYd$F)b?%g}f0zzEUf1*vP1{0+10SH`^MqwWXW`&|!$OR=oIPXq8HnhsQUL8y?rV zal_$Fhc;>)|6J3C@r{Qy9NxG|qan`^Z8-F~$(bzno9$(l4eZ+Z(g{Uv&EiI-G_&;@ z8P6IN4-01F{5MB3S90lR*|_CD7xsS+S5#xWe@-3Ms5h7~Svw40y{wYo7kfMRN}6;p z8qEEDhTQu`YE-mRgPW|He~WtKOh%GL*enBuS^DXDKf;2ZI5kW62Ru_#_AAfuW_mC> z+V*rqv8&@tCt4XO!oO(IqQZ<}g%Ue~mTX$#%tlqfkeP`u!=LGX6UHZGCUQF^J`V<( zl9||?+X)KT+NL>WLPzr&Z3LrRZBf)ETcvc{(;UcR-VX_@5dLeE~8_w03f&t7-zn7X`YuPb|Y7Bh5Hnd;S(|IsLbt-bYGrN}3r z%PK9uBD-msx--fjw_p5ts%i1ZW#a{(3m)+iM8aFMsZ*tz3{$nv7>?+?_@ej~2J$oUTvYt+{Q6xcRMpD=-K>Ub#y>SGJB zd27{yq+=m=Wvx1t>?_QAu2Tn)5`k>%I(1p$@i0wEhgZPYsuftbWEd*XTCbKY8~~k1 zdP^4l_-Z8EzFxJFeSz%6dbLAp;zCe4y_(mHPxSbt%n6H$b^sv%0^H?*pOy$#g5SGv z+f!O%0^Hz{mgs=D<FhXs%`vH+^S*cPvTaCZ2lx(^v>Z=;`K=fe-bD8RsJN-`#brQIQ8t}PvWeq zn?H$@j2`|ZR>8OPC$UGmgFlHq-JL}PJHsWsd|PN2FBGfpyZMt?y4%B_#FTw6e-iWj zFZh#~1AfV$#3=qN0SB|Ntc{c2XW{Sf>Op_uMc&Cg94+Vo@3|_4$d52|kN1SA*FREg zE6Q1(HsNic=Uarbac?as9K?~l(YY-`+K8Ww+L^u zFhJSF8uTpQp1tvjTAvmQ^2+hJD9c^4t7|ucN;G!q{pzKR9>@Rx_qPZ8vyq>w~X&J#gi~8hlpw&-o_6e)CQG{yr}Re zw&2-@=W4a%>|TJMWUW;t@{+XV#PT9>iK;}-Hkp+=SbItlP8AFdUpK6`ELyFYrEY>N zH_}fPfsb=8sOjV{^F*?(InyJVyYhyj|Mp7e%O$P_v*m8Jc(DX7o(Lv*VoKiobHWTo zTF^{}%IoJ=CitvOI=}KcMz^aw=@LXyghkjQR07p<{R)mD-A4!32a3KL)Y=U#TA&5x5FLx(cD}x9-l$%+}qnTIhF(f^J+E zcW+mDwbR#XQ-u_xQl%19cQpf*=F?DI!o?>gsJddm3Llp-0CVbL3{(wMU02h=*WDP|{Zy6b@2fwsoQ!iXHuYs8OO?C*bsF!#6W!g7WQmVuf{ zLhZiZMo*VeeSA0 z%^oN&wTqAqajETAb9q#4ex2DP4Nj^@%Nu9B9Kf5ydBcuk zJx)VzX^4wO@K!9QUO25zR;U4kn+QcuC8?D`K8V8*mUmYDl6JyGMIOujQ;nuQak0o_ zorb0!w5n+KoBRh4IE6eRke_fZ-+)=Y4r$&C(+T@W=F>EuFD=j z+SQQG#*Dc`k?M^k`I#7myN2!VL;cnL7hzyUm*7efj+>@AyUmYvN+=FFycer9Ph7$B1Ea!XT+4 z7EzA6+ul((DI})2*{E?=2;3%^gsvsKa!=h$U&X?iVs!j}NpRJDHHAzpE;hS^QaE8b z{*r^TJBDGiZkI0seEIq>%@8QKcxxxl6%O@6=w?Fi_ODBCUh4n$=5K5O(AgirgfeA zkT^Rj^jCx^qa(%NS%v1}Vi6qxC_d9*fziAWVB9ogkY9_-mstw3C{!2_3Y7pswShO2 z{a10B01XJH_**Kyk9A@^Ijc1ToEZuY$3#tmv)lreC%45@BmC74fzIoM*2d_ftqiBm zru11{EJUqcg59IeW<~^)s2^DH6S*1-uR9B#M6O;ZZ`1Ep!ko`OwxB2S->JC^>XBgu z;5S*oi+)U8sh@&%l6_{?IWN-5xL9;cDJ7T^<%vOg@^cHqT#zMYvm20%0&-+of#>ZA zQR|g<&MHmT0DWT~&apz^iGEDWISt5G$si(sINtRc?GjyVS8+%v5|VI-L>9 zezw~Q>A_kG#?wQXbzLAko)=s}eXX`L9%dpXK_+iQ;W3R=ukbHbkCHd0*C{E}VolDX zfZDe18Rb~+7tVUDR6S>J@={5ub6Yd8Oo`DY#g22elJYQ#wPHf)r?{mSuv^fBwaN56 zM_T|?)giey1a(Po16(0Ep}&%BcSWJ(2bg(R6%QXcD> zSW=$J8(UJIJ{g4#eI#{fzX-7s;GM3^_Sv;gzRCHSyg1e)(^HjvrOCP1Qcm8#z;^(_ zl-euGfA)0l4Dt@3z7x%PA`vgeD4>YwM4m2IpH2+%qYL}+?c9Y_5+3qE?%35mwyRN+$+4ykt<|OAQv~ellfm>CR z4CDWkHd~uT4O;+h);+H>c^UMD*F%DOa6Sd1S9I!K0R%dA_F;;%IvG_;25^EIUIuXQ zQX+r>MVyAhlI7D65&`V1MGv^;?!jy$w^Sv|G|`rrS?S}AMWtA5j=O_;ZK89rLUMqs zF&3I@7TQ*d@#Lz8z2$tUkpGl2$HGe{xD}I~Z!6^I0yZNhW-$^YzfemUZf?rOqT+B|(*9p$SEDhNdYdAabh@lI-yc=LDrCJF>tf&z=P} zr9sQt1FtlwZ-`%y@_olW}tbf1UYr?=Mc%(b!zdg&SeTM8Vumx z;jNg6{FvqJMN8viF%c;m%w}wJ#v2h#jr^eIC(Kc1loY%3RfX2VR81-OuobTGF{Xxe z+nM8>K-$CZ86Ska$SGSlnHT`!gOG}<^CvPmSPnu4n&G8yI|hqE2%v~_n?5*;l?CfM zkU}&S_)K&g_{7I`wwhq=)@OOz_gf zdD6pxB8HjPUX=4B>pGw+JPbFqOqE>@RM-|uY!&4j~ z*&*hU@=z1TvExp-uIft=g}(-(&zj!Q;lxOJrBq)@V{3P~A_xd3w13B>{S#(Q-cP20 z33x)WJ=w9d{g~nxT!EDcSY1j@KjZAHP`^-QY0*j_hp^UvI!DmQSPD}cnX4&sKSZ{X zy9hQvHc=a?z&z)i6?`?6%jbMIl+ov%6IuH&U89xBrghaNU%BeB0~efQ*vkE`WN$TZ z3as-tt^{Aq{y~QOfbE$)Ybe`&-dTlA4VCdUh1R!5i_4RTq2?%0&xcb1?tEENEX*9>U*?0zWr066Rlg4vozFL#reB*h zeL{eD(<6IL-Dp-{F`IET_1)^=u+V$lWfZ$#J zz9FumWN8@7y1i#)Q8Tpc52l3)qfY`Le!+;faQ~z~D8aG{uN*4x{NJZZ_?4Nb-W}`> zlP|L-40jzbM$Uwp8%0^o-nn6@QJe^qjpCay*(iXBTs1(>U_Ki~DUGDo6G&0ZmX*c~ zDQjg+v5Hf=tn3PQOmx*QLK>AdH;s2Sx(&+8rt$Vv*N!6OrLyLxvBm_qE6r7^2< zrfWG(!%W1mt?SaE6&YJPvqM`R2DVx3YGK5>esgCP7QVz4L)Tj&xOk0$jcKrV zB42o2Up0xjb|}!r!3IqG}Kyq7O~v5g8qalikZdts3bo`f>@0euGd3-)P1tT zwU1s#c(A0rrwZHo=Fl*x`|r7Ddij+kLLFyqJs5?)S3C7_8ZgAXZq zhw8&zYQ#F%WD>F1-+cX5f6mYw;3n@}8|Q;jbt-+R0Hk!u7|79fkvGb2fhyd^CHcp{}*3nWvjb)8q(NTyu*j42)# zbKBjSILnC@TXyp66#?oCpSemZ%8y(a`8hUy{8&{p&5?2{tlVbuv#0>ooRz#jvl1F+ z*2xDG3%u;|=dOnee7Y&j-GbSU%(NlUMmi`@NXkK$+sfT+$(-roTqu!@up)BZ7MJLL zP=DX%`T?%mFAqgNTl3?OgwUf;z#U_SE7nh}g=2@m0Mo(8&GJom!)yjU2V5&Jb3pyC zT%-M!;%wSju(z;XPz95{rS0xW+X0@)0X{?!ST`mggFl^G$B4dUqkeQXH=~b)@X>$k+3ml$F8E3a zo};c`d>(rKtawgicJf!(J9IymM~nmhgG%yU9>fm(2IBzhI<@ODSDZpmAw=_{@D5Ei zOhC4GT!PrGIu1b#H(ZZ(4+;946E4uyPrbCdoC1A4zx(RZ3D;MIgjSR*LS-tN;AN;j zt{|HEoeHv<`(P}Zxpf^-6@BYZEOze;W!Qq#uEoBNoV7UPnnF8pIlR6WwtWeeH-xx(>0o5o3w21F$yUa7{E~aZ`NU<)%xaZj2yI@xd*ZhX9sP%pjaeu~R-3dwkn9 zlF*+pX<_`#yRPB%I4%|(JKb}2CO^T<;GV0c5ld(%E)c$fv4moP@c!Sf1YZdL;V4qP z2%p?{bu%KEbn<@3$>1#L!h+fK2d;rn*=9J#)|PWevpNr5iL^RqFUAd3P>CL>@FW_* zpR%8;^vHEkq0b>ubF)9MSsjxT`vi+8yEl`U!dY#_{XT7vDS(kLkr%@G;)C{zr#|Al zXhlv;^e}^h^1_Avyuq&Xb5HZtV4wGQUk|l@BZajoWzcPU=Wu;o1Tqy(R5Z%KAzJP?5-ev-eNxam?FR@j578U5O zNjw!;mq2$<(zYU76X#yHP6V zmzD^e;1}4y?-lXOIivw){_7FXZ6PMp5;@H@z=q!m+M7W&65oSA6UEutS^P#?r0i@i$!8D5y3`8y6ajX?1^;uqBX4$#@XDzTOdq|a#x|vEfCbZQSKl( zk%y~9cCBC8-IR94#XMR10iZlIYrqg|5yh*xpQnQ?F=7{nl@q87w!aw6eyHNEMU(yk zU|LmoLptLh0Jg6N6c<|pCe7?#KFCl5i?HF~Vwqq&YpbyaIxr?zK&o6YrCfwK9n-Mp3M61Ra0^qcYx1Z-mY20~<{S&W8~fB{tWL%2lukJqiuL?+{q9KC zWADt8>Xzp2U4*QSWJ&Mu9vOr|#j5c8kz)7`Z={M@x(|M0rfFTLMz(SHA#@+MmKf5ZG~Zb$Y-vVPS(l?!62pH%ZiDfDaswDL7P|KVt2NNQkaa==I*ri`=} zA56ywU!BLugX@7db5JH*&=YM*99%C~0Dhtcyg0bNy@Puxt!V>>-uToHt~bEN;=D*r zn>@I#H?OxX2y;Qi!S$C4$T7tVoF80&xwG37PI?1cK>JS3mj=)>N$DbR*IInA5))YKIxU2{!t#5Wj~F>&lZ!6LZ1Nt#_HVdv z(_5IW()VO6xeomJ?STL$mOwFWu>|_$fbAN^k_vqg%+9>&&h#}9nK#M3h1QBf5hte0 z)lrFVGIi5i?!o@FDXNrjBQ{NS*Qaf8F%M8b0Az6^npZSoD7i1to)}mRZ<qiZ=|y^f=EGg z-gVC*fK_&;yMqx+h_n(TctwhM55~X-4x&TPeGf={Zh@e_JIfuY7%{{|QxEr=TDW6> z$W?)IY3^7;zs6*RWQTBx963a>8tLv7Bdnf&b1{ORe!q^A>DR!4W2r^vx$7wOuL5ZA z&UYUnfF{zf0nMaTT`Q$TTEJ@RVaMVYKpVDIl5IG=5~>kPm*p#|uoiWtFnPX`ScamF zF^Fiul`4q_T)vX*!hG-%U6^&9T7QLm9HGNFWp8d4)*W1l-CyZ`feywsSvBVsL z)H?SPg*r@BtNJZ2^bG3}^Xj7h#=b0;g7*|mob7+8#suFGl*nT`(-P&MUQ)Dqk9+iuZ+AZtV?l;VB=p| zzU*g)jbdWqDZ&b&!zO5U282?@wpU@}1~05j>zfh$01(dOrIs^dm^A5arOCAYJ40E8 z&F)`m2Taw}b@s7B6=P@XkO!NHHK&36EwWK0zOrn8LpTfEhmt{+g}wMmVCfXoLVRb}X#9%3VwAIA1mY!P?;Z`(BWq5aAJePQ(10MYykTF`!ZN= zxk-sjkl{M)bZ_$2CkO6=R$RUcKzlQdSQ!jMB|0UqO_s5^k=enl;cmA|YamEDTM;o@ z9~XwHcugZEFSl_FnfGBXLu7uF%YbMU|s7T%rrle*MBdK}ldont9~00Xm%X zHAL6YDq>GjZSs{nNr7pLfaM!wG!?^&2z$MXh%i7A5$1y_PxE2cbufF|y{t7GyleVk ziQ>hVeCO_?{K@gOt#Tdj8y!zHb%G8vI;Y8rPQdI;FfIls8LaoJO6@GKCA*`y*NSRed%&4))+>_u#k3iL! zmhv>EH&+$DR|g*FbN)S5&1vbb3GSgW) z!&#ZsttP!(i%Veea&@TTUVisHqzINiz!M>M&glynQuw)EHQ{GK__uyudkOqJuA21o z=xTEQ_VZ=;U-Ui9P0ZhB02@Ak12AhhJVkpz=P#tpyXJ03v$5Spe~^Vrbc?`~XdiXt zn?!^2+|-ZmMWAx0NY5wHnrkpQnX_?;&Va#7pcBbS%^AOArNwCcSIrsQZ@Vif7IL|Icq)p+v zOulr{^y?2`SLA`4$+HZB`{bYNNtf#8=Ga9um4>Qre&~)=$bjnR=GaSz6V36t>asaT zR+n*r^^y4*m*}QmyvsAmSH9_{cz&Uo)dAR>xkXScKqWdMuc_i>P-GF$+k~z|piCc_ zeu|4l17BC2ohjs5V?+=c;l#E*P3d+kge3bOxb+;@2!!yXpLU@Kaj};}YWAKgMg(1? zQ&tGkfu7z*1Tm-G8t9o!Z(sy5r=48X(}#c}KNa<47_m&5YN+NrY)F}@a7jVaCd&6E z$5W5Pm&;le^ZZJqYM5OXfl3O}9VcD3zPM)#q4f}`xgC4oHO1s)JH{nC0~S--Gg0Zn z;%0k>(2kt2A*Z&hA&+vcE#tYZ#B(Tl9ElFWprR#rt09sqV2Jf$AMC{B+DBc7P|r_K z$%W%&E=&ybjHC>kL9AD0q7q#bHKwemydT|wD&=tale{j&>1JFk!f-2B8kw` z^BgT6v4-5v!7L@plj=L4aooZeFXkthyUU4BMe7| zHz(TFT6kjTh&9>&_k9Gz^_?l$h9aMc?;}jc#Uh_{dl>q1Fo*VL(SP!N1Os)x^#8Q) zBP_st`RZzE#Pa{b?;{u#H8vT;d4*4xA=;D6s25}rJ=SSiOKKh*Yo7;1f%Odfa?dgdQ^ z6n_;s@VLEMP%Y4p+gJZW!qW_znaGjk7ZM6rfyeZwtYn32%?ee4&AfD0YVFkscFMV< z5F1m^Q;Y;xVN>dPqDjx1@LjP})eFyqNfo@bmlb|3G@t?uB-5J?V+*ESieMr2Jrx2L z@RHUe+33_u)!A$HJ>^JV4K}I1r*`2^JW$HAaND)=sTDcXfBd`{KZzk}41a>q>;T9eTO+~ci$;HX21o((X9A8VETx4yg`v7*TnTg}4@zy^DdX*!#QL&hsVRiK&Yt1ZUcN4%7eOVzC#yvz9z4Tg?J1|4=EmsXSErR{^%#McM{XaUKPipkReV zQ;k{wA<%kD*Fh~zEU}b8B?zU3b}sR`o2a6*uer62(QZw2`#*^?b<9UfpEKF;mjj>Sz~9nHQ?@l2$7Tm-GF zmfhsd$uYyM16dn1h!*C9pJ?jVb?Ve~&s%;pA{vFfspnf}p&jq})R`HcQ3|btQT1ND5iS;?P$!yQ zU+5_d_d_V~l}z|A|HHKg5+>WOu;BhA+bWrmy81`U9NL!)VK8oQsNs9quPyf6QAkR( z%%MpbP8fDzv@k4yi)~YD}O{IQ@)=KNMb)5Gm!h3xJ1`b{p+meA)xL5(52zV-zfDy|i2L~A^1aem)zFF>Tec$FRjE!(HA{`R zSaiGv2k!5_1S5vKJY~fv>Vga^lJGSacBq&S%Y{m3|S!|7_tDmwvZLzMj&G7{&W({iC!Q} zlgqQg!CzJgOQPlZTKO$+Vu>#CF|)_z$DWYHO~4%vVQ~}F513UphOncdd(M@&@E3Q7 zutOjB<|GM6(WMSjb1i}o6~z^o29cnmMqS9kyXCD(rvcs#)l@K3*OlG#;-#)yDk8A8 z*0Xd{BcNiw^)20{K3W71U`xu5HPsVz)2T)sq(m)-O3^Yv`r88EDeMzR{&T! z5bn`Kz(}Y>^<`$q_21^ zm!tmWXBn%5fVJ_P9>Sd_mN*@RYfXeYWNuSSXQ_Uej(cBi3J#?*0?IYCnPsxnQV#)d z7^o0vh;6I1{)KWnOg?~Nz6G+&-?CH+abbS10*YbY8pgu>US?jEx1$n9MT`jLmjl(&YMQ6dmTnoM!8%*PHHcqaNfaBzDdI`L#VQ`~CG7Pss2P%ac+DF9@D% zOy^3fTkj207HV&5&JDG!6r=?lD7Sc0#22Ia7RctSj)3MX(?eJrVL71YfaWXe2QmH` z9s%d*z~QS%%P}>A#(Hnc*5fr~k)unrWxiC-6U7@nirb#iL&Y!M4vMkN5i7#Ukr+$1 zbWTfxbLY2Z67Phw<@qxltYT;SvDsGSZmcCmyc|wads)(@Z#Y2Q=i!LHBNP3ycB1Az zy)E@&!K(&p@57Rmu>tSm_}w9W zkd zCY9?U?4N1bsz%U=+)7X6n%Y=Tqh+;J#q+}c(GSV^5P14Z3RID&pW0LWy_+5pG$l_~F%F5%fVR~qiiN9K zN?8@IqTmf(9Uz&OH^d21ELx4_!7y6IMPal8XpB~Fc;QO1n|Jl+S$2s;Z3d6?&7TDjLsHp;Ty&qUz@nmJG#m3?WmN|f;h2}#js<1DMA6r5 zTyEJVNE4%>NEP8`@Fm!UD2%HKT_WeF-)T+~QtmV$pD(xA$j)MDM=B~xG|AyfVfdLC z&5qV94xcZp#Y@SqdhjKR+^%|BMC)k;e&%CKH1qyVl%2}^H^Lj*S--N%0-p^&5Y60w zFAsmbcN;N)X_?3Jt8i$>BRIf;iYG6j=0^YqGz5%5(*Z^!>$9v)!NZ zWFHgWwaJp^&-YQB?OT>vw!52JoGG*Hl_tgjw9D&o$9^1FqEIql+Dz^BSSSf?n%azX z*b04o8VAW{76-RlVx+lzG5T6s42gftGEN8K`tr&cX}KQ4_-&TqY6QFh_3k!ULfNE6 z@S&o(8U~Cnwpb!ts19GNMAh^b`{nB46(`R5&a}218^sdvgyHE3x;=i5L@?8OZ?o;% z!66MOj>_|o#IVx|e>?`gA5hTyd5Ji(H24STzw;t-sfXBw zZSnUQ)&<;*VG(lGZp(bK_(O{ifu|C&Nvt+jz9k#NHki-tL+K_rqL+;UMEkB46vD$9qBLxgwhfgf)Hb89bHh4u@ zx51YvW^vWaXQc5w3lY;|QF~b1+1<|i4l(St3?SXd!am;OSOtgRKHdVb1l`9o#A%G}aySu02n^y18m{oC1Nuy|RYFUFYjKrgl!R2{+o?0j#s z|G1^A)KU*C~FHs~XqslD{gm_{MwzejY*B%)n#ZkVhAkn)Q z1_{#lOG|t6S&OBihwu)HI|Z)5BLW7EsS-+ylzOp@QQ z%wm^^TfJd9CLBaP=rC&6trcB4WY-60T*wcdvRn~t_ni(N^9c**4a`Dk3k(xNF>5=Yg-Wz|EZ&$ zeIFd{(ca9_HuPr0uR0%EJOub)CdjE>w;nC)|6Fh8R5OYX^dN?w@agY1pI8#fiXSZP zNwX4dnLlKlQYh-@-&{2enohNg7(*LL_~dw?SB|CkQW7_I&u-AZvWM51Sl9_=21|Cs9hB zfVEi-P9R`4Cp~|Fq0z`ImQ}EyLM@>)U)-+XQGXI%q!RWayS^@KMJ3etDR)MYN5ety?{m2bVbH>k>NKqP0 z3A%Be1A4B5!-}rISsDt`xEgQ|>fz!#iyOD=a?4`(=f`NAqJQ49tdt6QZaAdK<4QQ_ zYqu@mODnl|+$?52UyLJ)m3_(fKP)e)5j0~1i>wUKkS!U0bjQ+Pke=bG;_zkAU$Ei6 zpD(7&d?=u6gl8d*|Fl@i6L(>7ry`(XZqs8b%Zz342a^9)4 zR3Oy|<(OyEmtZOoB=)`^1Tpj6#7 z=$r0b$)D%MNd+H0TOfW8D#LdYrB8Tyu^;#-j(N|g&8$y};%{+m`R8XI4qc}z4qXSp zYjd4id>Sr*(Jy&Hrr0N}VcUjoZAoryvkoWdLvsV6Hvg(`txp|kqW}}d(rSYcU-=6U zQT^0z)SMvpRd1{RJvSPBudJOgf)djmfB0)Cf@6IHgM1mBAAht_AhEv)r%Fr`+w^ne zP_>w%9W%u`GzGbSxum54IfCSFV>QWYZ;dDQroqT#S3j;oshiOO{}a$t`7SDHEUxMI zH(kxx(fXY9Hl^vt$wFj3d6!}XUA{z-37#-s!MZa2q?~WamJY(VXh8fHvUHi3pSqp! z1+8^CtM|k%*3P0R^k=U37Y~cB_kBNfy)XLJ>Usfg#3Sd0jXT9|{aM)R(w~hzz~ux% z9MoSMsD{hh$M;t}%nZZaI6<7yUmKN1Yk)B-{ndj-rA`E&?4ed4(bQiXpC&4(7@y+$ zv-kw^{k`~fJRIWFW3qOe`*SYz^r36@$&yHGEcty$d1q;Vf2GdY&|?p1Ps0^p>4&RY zTsVz=H>D)nn(D6S|0CM^T+KI767~{dL0{ zlY7Y$U?}V6u5YOE1X!Oxr;jyJkm|&9tTbyXu5YNRaB=X%mnh=UZ>WtU7vI{|L2MV# zf^8rruj;B>!yCHR?$zH~PZWE{Gmnqq;n3qd#G}UpI9^I{!x1;e_1^(wY>=y1gUq(B z=^)OQ#WL~iun$OyXMI4s!PcH0VzDgNavl!F%4A{zIQ9Yhtl99v&AUH`TXzZj$@z=6 zk>Z|svU`R#oqU&IZAuP|grGlfq;;Hl5~!=rzb0&#+liCpj)MHL!4u(TEkhb*eOmk= z9-E|cUN&K;8vei}7$*SyRPi!cK)o~O`ktCI9?!zUBFC8NHkP9j#KTs|Yr;BkzJ#mc z&?GuE8Xymi25_zLhcOVyZ@vV9yxRZ{0mlnn2CxR`H^2?MKz(+u8a|4Bh&V;&J8=Lt z>g;Wkt$w8c1kgDT=&N@Z%VqOq4`AU9?0HjMIY1lOoEk7NW4^crq*Pn*v;u}fY%U0J z{`f=@1o?aBlO6)|y)LWa;LUexDwwb5+c0&yP|bWF%H{(EeRj2&??Yz3dIMRtc@CuJ z`#>}d)LPB;*|RnS?^z9YK$ES9#n6FT)49I7<$?v%wIoS1p-NshT8E191GPqUeYFY@ z(1Yk(IXpSGTFaMk(v@YxNcJp9_0GkV2E5o9 z#Lj@NXl%VP$J$C1za7Y8>t!AegV_0j7+V3nwjdUuFNYWD@B6B}ljApt`AwriY)El6 z$9hN*yA9HMPqTXL41bqF=so6;d~1Lx_8Fx0oFENcMWOXEK^!$m>oCCz96C(LLCj%5 zj(<{Tu*UrMQ%%kJi>wtM(xO4`>#U#5m$yufbr!lD>TDaxPiG%nC}mZLxM>jUdCH2c z*Sy3-gJ`AAZoq?KojpDX>kOd(!~QUnj42!3)I555Owx4hbeglxBtA;~XV$5E{IWbSrr zkeEDJ>&8!LP?sNsHDW+$M@H|kP84$nYyJ6O3Ih7`@WITVLE?WD0AFB=?~)aNYVf@P z2>S=FMP2g^=u%$gt&ctO%U}r_{{Ts!w?FUwT;0X)f*$NEndK$L*89ajs~OiUEBrfe zT-?!J_6&q(u<%#{PlLsVL$t=VYEZ$r&B?~yP#a*}PVDL3XJN+Cc8J!@ClypQ^G(^z zAgsQswfNT=X6D2p%)j6!xoh^iimcdU&5+WDaP~p#8i$~Dg^|SB-8M|(OO~H}~G7)|ItP+8~zFPiD?|#Y)^| z?7`1s;(Y90mMHvJwJcE=>W%>UH-wVD9j=9o-*+eWW7bG9HJl}ON{Ye6PU5f_GWs}d zd41WRWFNQo5VQM|r;l6vil6o;pC7lj5eEzH2@`z+PiI+|Xm%r5K;Fl)F6ES4U#KrEBF1PN?ojwTUwp9F zjGhJaa_BEDB`i8`URqesl<<)BG-Fh1L^$NmGR35YrH4d?M8}3k#zdRaP2r(osbS&9 zw1`M@e%p!wvb5W^hGdp?Q$wHmlr;{(;EAPPQWeSlaVfmSPe;0YiJy*4JY{`cdWNIO zGDPg+N`M=7@TK5<^wW{KZ(8AFj@ow3f4j`PKMjjQTBY^NO=N}hVldR2`@ zSJc~pm~3L}%Fx8KrZf8);)g?t@jdfM>0_QY9sz!TD3?-5p(JNr(o$+h7QbsXNc%6WC;;2;J!_l>mR^h8_?|UF>Z^y)`h9C}H3Btw6GfZGOdIcE?D|DL zjtE!h^!kN4@&j1Am1c4fOuuU%LY>dziyR&nMqa_uAQ5H*5^dlSZe>V0r;a=|)W zkT$5;P&;kqOVCamhLM(^T0_;a8ph2S35zVXgf&~hjVU?ivB)~jQG+Tu7;(Ga$Mw(kE*y}TWR-|b&ntg@kB9xpf5eh7o#r) z4JS9hwystqP+oqDC(9ocZ37!+wosDXs(WMqmK-6iH$U{Pb%ZD-auB%8$PtvkI66Wh z7@$wEnsH@ORBGcIBVWP^l=vf@1S!yp!r3vH)p0Hlg0&TY#d=IC;fwJUTc@kg@YeCg z7%EGKlQ*wg^VA5MDhttJg-4ArW!Arjvy@qi+2s$S@}il~U$;*75MLV3Wy?|!qI4L* z^bbG5>Z39c@%^}sfpq!RdQv*g>w*q>jxRxnJUyHpK-0p?UG4`KOD>l!t2jX8!h zX?eNW7!%F$do^>6)PtuP#9q2>-R>cJkI=QrXgw@?zH7x>D;^YEj?fx?Mvd@YtHGz} zz}MuE$M0I7l!lDpnmk>x4;;vqDDDeSbWwUFWXO-M*M#I;+O$j>&q1<1{*BMC?jlX& zi-Wu^iQ))oJTI)Cq(;!xK^~Ky=Z@d2HD4EPjYP2kS}6TYsN!M;dIm%5LfrE#` z1%m@4aD4>8aec&%^tfN3|ISr4|02SyFPoAteQZktc~@2hb3x|7o#WL#$i9ZQ6zNyq zBDiJq6IY_(nwK=PEf*z^kx(R$N!iGtlb%pz*DJtY&$|*p4V)qNwUJ(-BhK z2~v|x8Of@6BIT{B;&CHc6_0CSyXh_Fjbv4v&BI|8PaTO>4B)sXq|cS@y|{Td{nv}~ zs^ya-*?fKbNH&cwdgpjO64u#vOMC^$!<3op+&*S{zeI#}Hh;6Fi*1b{o*Id35*$<| z4@J&&wOtlJ1eIZ{fE$2ZmVrjHMeai**%}W>fr}5k*la0)FX8OAqlay$Sa%faAb1ex zK3gEU_*ijQayHmD&O0J1G%P$eHaI4lIO8_ABtv@I#z{(HMgeJDuPi_e9EF;4;{C+L zYdwm^?Vj!T_aI9`Y$JGzLjTQO$c*8Y)!)Rg-P~CW8HI-7h{_)pb`k9urlxmkL}gR5 zG0Zl+EiYlu{OR(?IhaWOM`=xY_nxe5Zu1j80EJ%d;!TJ~ z4dhD{qsso8;K{yNm@8X1OR=uGRg`V8Ag*I}YkDu{C3wquXVx&onSYM99TCJQm?=28 zCK|YIy=>hCaX-_IgKML};Ud*4)N7)c1)qSSpDyGTsL@Y`_qDwueL4zMa|IiWO&@b5 ziUG*HINKb5H}9^-*+z*!fgBATQ`;(6wd)i`x7NNHu0*=p0``fliehHkc z7_f%N+hU}ad@+VNzXUddsgBTj0L)IiYY{vEkQhJpY@ud>L%^ht>jz13JO&N{fdzix zMbWmOp73mlHv zg|8Q`rVk|8_Dbt{jd3Eqg)gCI_5c{-4DfBC2BsYYCvTxU_5u3ry~suDBmIcu;tD^O zDC)HY);E|be^uXb6yDH_sY}M#vc>ljSl4il2g9zxl7L+UKx5aS&lbCeK>c^XS3WI3 zKl&~FNp6(G{`~I=Y&F+5)3%KG9)VrMqzSfIGVB{$XQ@ddCo8V&`X;hfbHKt@%5!3^ zlrQ11drz``EX7fJu2zb*F@!Hcr;ke{=O^3dXkhOxYfRQdxHZMrRgIvjz0K}wuNG51 z&c5onX<$ivu_%#M;8NZwbo>U(dS&m}f=Tu?TbB4Z80c5$>;^m#R$p-UfqYUx2Bmo5F4 zyI-npp}+nRlI%*geIogf=BgY6a}%yaaS-!&X|{JosRQ?tO%%SIWebzK^Tp^U9Y&L! z*`T!w0oM#p&bAGZ;&=pDGe{yS8MZEBhtcK@8McLj8cpLYugK2A3(5w8e2F4DJYl=C zaGwC3J(@X-iOQjB?J1+#NO0^t+g><@GnzH`zCLR<5_I$K#XMV~ zcu*E(KhFSX9eZR!8Wh+9>xys6f}G^xP>{n+5CBKVb;As29s2KF_PI+7lGlGx}WsYzK6Qg@~8 zsyHi&?fxmSf607YuuE3ih`1n$?er;Nb>t*}0EUC8Bv756C;>@OspurNQUi!%+nVOO zn%z(|!(LUtF3FrV5QGlO3h$Q{Zc=J9k=qZK_z-x?72m9;y00wfNv66vV4ZEGAbwm; z?Ep0#`EI@KjQDLewF4C}RNE=54f0^1<7H>VVZH=RqN&wR?4yP!9vfY<|UpR|1=o&@UZmNZ6^&NIk(E1btHsNpH9g#>w4#X$7`l^f3~NOo0Jb7tt^0AOshl#+#xiC6#@_3% zmy$V0u6dC|&%iKipcVSCZeuz7W6#}XEDKJ6rSH&gOl{uroNXVZvY-TAu?*cZ_XS&j zX$D`6emrq3k@ncOsu484l_6V4WrdnT#HPLATdT)1-zwpC!+xg--p~_V*Z0|sg81}U z=37tjaOhiW#-eWlcx}EFz>B7s(uh?lbi-I45R|a6Vn1R_6D6;4T%BN8Y0Q^kb$E><*N)mOYFJHmtoysw@x-f8 z9WmorbwpC0s-_+WZ)kP=VYclR#4+PobtLj|v^oU1Vcgx`Rs`^WTphcQ@82md8OIvL z!f{H2*y8)P7xA`2dsvzbHBrVh$C`KqxYENqfb@@Q;yL^@rP4L29QVXH4nb;ffZiEQ`1X&W#3@Wsfs&UiBAwC#u*LBsYnJ+{SX zY}cfYJUu)dszhFk9#&1UCHZaJ0$~7gZn3u^zS}MhX+Vjq{J9ULE!zBAu-WmBt+cK% zm4WVBP&`ta%)?@c88jY4450jDpZ-3pSPn6($1}$+8P7TP^>-l9e+Z6!{SY|z6TAfI z*pCBi>ezs!@7QhvJ=yWG%^{uQO^Y>{bl2ud)?ctCN)`M&tj1I0NyI0%F={MLHGZvE zA($bf@u#-4g7h^{RdLm;d@(Zndc66`&uz&X3=Ow$^|;kk{XbSgENeD_#WKGM+PZHv zfz|z}OSb8v7(9W+vTi&a)_cGNtakvft=?;C#eZ-;{p1O({wGXO>VGp-f1_`p`oDb! zsy~Yt1gn1zNI0l)1Pd|r7JuFYS89q+YS-1j{gkwR3c%&D^BFB zc2A^VYz8%~##epyRIkZboxj>Xac@HbeS4Cdv4wlqnK;!CJx9smPJy?+R9(uHjW zsBl2Sf#lprKHmP_I7FpUm|weP8wiIQxR>niloEj3%3ARR*tc>@|FA6)rD;4a%9zHN zp!KFrBq#o|8LPnt5r{@(rTKaYf8Mn{T@7K9v{nyxieT@ihQ-Q1BG~UrJ9q?I`P)3~ zRuLq!d)S{pr<*l&p_T5iZS5{S9vn3D5;>_9s$R%8kwv1H z>)O3M#m^_QNc0I0hmq*iM2tiLj;lQStl27$n|E1~eSzRjoEM-+#I)7*CTWH7oWz8w z@Ug$>A+%?(*d-cxSP-bUFp0_osYV+YI9ii_w@SLZ@h!H{tS^(xRB!|d^0f*Hq`0$V zq&Q*{TOFC+)c&ZDPKCh4Bg!sXLZVzHsifG?;ZKU1*>4LAC}1c#_uQK99OQU4Ku~}XlHqYZr6sx-QGqNPv zt6JFKl#WtMxH&Kn;r_sX`C-2n|Upx*8WwcjvTFsY@ReU# z{iCn^#MeL0&aO>j(*a9cyN@6?oXi}z!DK~ymTU1QbChfUBaSkkCH9S(%zDts$;?ys zx3fPZj+v~T{kt;GCr)Ow|4Z%d0fLw^Sv&hLkm=6!%|aquOIUCe)Uw)YgIozzq=N6_@iTmNo_wd`tNAX-3Vdavd?J$2`h&3Q7r>wMps5z0GSw?H|^W22jeb3c#LXeYAbI zG=eY254FK(TQ`dXrm#aHDlAPqd)ZyJ)ncyKNYHyFP0587_I(EZJra-TE+n#ypcDJIjz}EHD~!3ypI#3KsR-s``-mePgZOTDcZp<$*uP?6(O@*>&okzcvw!%v@(MO2kI!3VfYUmc-g(M@ zbX@YxnJ0FoXXhEx^Gv27S3P#gYy<}iH~8x+X^_v*$OGiZcpGBtx3AhdS9*#s#z{ir zpZ?>TQfOC}pALpER%~&Zs-4SJHBhIk_Z|(pb|pRED+*{=Pd2F<;U%6gJ#pd3v78(T zD>DC2E1-37ZRV>V#McmcFYcgUP+eAMYE4h_noOJrv>sKD2&9ovo*igHn$kjZ*Og#g&_4M}kMl%M~ z$@~?xB*k^NMsxr}Zq57){<*=UFfU_kCbd&$EEs6n*3912PEbI0$GpzW00X#gr!C&B!M*B`go417s-)*pC~G2SbikeFWf5rL-g5L2kp z6de;CmKqV278(;`ii`}43OA*NgvF*rnS*Rq*`9`|7*j;FF*H0TDlI)CIx5W=8w2~} zQQ;wJ(J3)$QK{z8IaN;!hFDWbOjt-ndPHhiOhlw9G$t%GHPsXnVoEWlnj&IS%;$eD z{XsC)!qZ4@53r99tc52Tv+c1E^5j5!<3La$Br-fLB`Vz%5gKKRjShqM03sSewg_X2 z`N*l2S)OfUjUWu$ypN6u3yq8oF~JSCh{%xe=*To9X`FYlh56#}buS2k;Stb?qN9vy z>7lU^u_@`snDnqPP(Llz7!wAdK`D1=zuKu{trGAuScER^1=iwTPj1KuGq#)!12^wj83(m3q#rsl&9R!#K`3=a)SiH%B0 zrwuRAX#Z zcqF~o7h%rve8esoYGIv5;*F1o2G-0J?g3sdjUtB@+Bt@978Suyx}%8Yd#$;IncgGl`J|F*aP zwzvPbH@P$TUv6)Z$@$=mk`RNV25uDcsop3A=J!oIZ@4#W?E!P$9(1nTgU)q(WM}oD zbKM?nu1n%m_c!U>Isd-q#boy{2inzqqb0$?Cgrad+YkEdUxOxipB+a&gU%4AVS8ph z`DhL)4$7-!_aUm?ZMXF5P6r-z^pT&r4+cWZw$?t}*qTX^@`>@K7X#`}fJaDiyuKTJ zpCV+ny>8uWaJ^EWcdT03lqCcB#zbgA$9ZVuqcMC z2)@>g1U+o;P?VWKNp*4=twsYc+FF?T5{la;lS)vUN!gZW`U0cUOvgk^!ZoyP`UJx#dSiYjInb?d zOOmrNz>l<9XHSxf=}Xr-4lJY%BiECJI^uH3%Wf)fMpm!2FCf=9+F@mBt$igVT!8Uv zC|MEP$DdqpU0g?6PSIU!^2Sp8Ln2&OZ~UmeiGkk{Q()i;mttNPNZDDRR-7RF^aXiA z7Uc7F_8){}TJ|sS?1MJkH~a3Qmi>GB?9a*UpW0}*3zxL)&++U*`^1K8#0_=X8qHQ% z%|T1J+gtASsC|ueN1yF&neCQM_6f}V@MILdr_xjYy~xEkk|k#U+gb_86J>VkJ}cqX zYF6ktRo5HZO=aG2X0!dK7+y_?b`*C*tk{es? zWr+#*M8PLYe#7klFqK1_m&%%vJCE5fNHaO=n0O&z8du^{XX;cha`45*t<1^9KEqR* z$ARF=Q5yhY4n0!Nzr|BwJAA{RwC@n5B|IuFnE39rFO^pE#kgSd*-m?^xMV7c-(`Q* zV+-&vi}Pqf3!3e=Z&8!M*}Ecv{6%|S0!UKPw^=Yr_?JCXI>@u4N5lj6b0xgS=O*~I zG{-+<&lM#H2SV^Fi)E_W=XtxAC|USdR20q_4cR1)XTXfHdyoCFD1FAGBGr$lnh)%^ z&l07N`BxgMzB*Ltih=p*gZ57Z=@%ZAZV7M#`RSn2{*j1B>?_<>{f41Mk)+~?eTL*S z4Ge@)GGQvq)8WmPD8@5C@sj;L!K2GGHcJlBhw>t!DIqP)M~~W1dPrS4Lga{WX`mFw zm*C!f*J-5PaeFT{ENtetC+m;fyGVny2p&L`?0!6^r5XdNPt*d7K>fYf>~=LQ9u=^c z+xtkfbr8%GE%rHr4#rihJwjTngF%+rAl#{x)l_e5R!6+anA1FJw~zDi*~}63+7k4K zfi!yE-rn;`D26)<``b%Ta{vT(0y~osgU}li<>#h2!bwPHp+3oeV^m|0JzyJStY2R; z{-nKS6Q%vMW&Af!BgH4}(Gt&(U97!)(!PkaI4Sy&Yc19oBpc5U+wRPkYc`004{f&@ zS#!$%wnqi=}^7?ru`G?B2O!KWcgsy>I}3L7p*VO*zbB==V;x1%RWd= zOJht~8I>_6|-jnuQP)4{?9_R)Lx z0=Et9kLiAq|5tZoLOI3dR*Sna0m0Q@WP)pucRy&{YFu~mfd|IZEtstA0#izM_8eGo zpO>ALUqILF^I@sIAbSzrW|^0rW||BCfDNRK)H$#vlarU7R!FyN@=R$n;U6ja!G-~* zRAXU2*|qjav!a1>O~$Ob#uP(pUPb}z*31Q*G!q?!!*)-Wp#Z*8y7ZiD5X9r1TXPJ1x(+oXloAOM--ouf!!3Y}> zg<1K9@W0vF3n)F8_%51c46GoJ>u!LZg9UVF$p||~#sb(#m`9>VFUDBvBL$2T`%P!DbjIgJ(d3{MknS;Qx*Sm96}?g$uEg(n7J}3*83vVI zVBMNuIp0Hm%=4S8w01%fn4fuAp4%clB(a84UPb>rMJeu}f9lb0&XfM> zMqhNHe?F%F{DA)Xo&LE={}j;|OX(jY{WAmpDAQ-kVr^y-rC*A)*CO3gq*;pe)*>wc zLKsS8t&))rr9)eybohkQZKWcjbU1KD>97Mu>CWDh?goAGL-EkrsCb!^!8cU%>&Dw& zYVJ*ZAHQ6e+#a42B#+JyO(*9Uei=<157ze<4@}2tRZ;i*Jdfbr1O8L*yZt>>e(T8s zQs<`_Gn>~VQ)ZQiDRW8`tJDsMsl)p=Yt&zv$Wiwp!@~SJv03}s;W=ZakErghfw8iD z@c#cx%`WR{mb195ZUZVT&Qqttgw~~^k4ik}C<9{s}A6ar6p7q$vSt3mzb8&-AhbMxZ|=tOB%vaWV7ReT#3twlwhMi z+cN^(y?nIK_EzR5-`I!Mk*0I_Z0ZcyvN@Zwz|B)Jpa0Q*NR;N(fF-AM$rq+ zf0DHGVoTz?^I|J;$qbgma2ZbvC!LFCD5tO6DB{Se-Bg5W`ZPEmZU0$(YzA5Jll`Vd zcye?I-9(`vCt%xx^yB?EaiEIr2u<%tCj4SIiw9csE;u0E97nUTdjF&}c8u zf4*mu2IyCToItLWv ztF#y*$duse=&OUUi?Z0JMew28x{d)gC%O5%JE?JT3ai+zr;hFD$qGV~z`^%6&u@3o zFAxQi!>^PWxb_>WgGbl0%}wh$E(`Eg3W`WBCL7w4qzK>c9A=~rCQM>kl020QV3IuZ zEiXriAid8k+PJ54y7U=eLhH{1V2IBb#VKlFtnt5MoiWl?Er$61Ow!25k*7w`SZE-V zmzRv)dB-$)b(8UeKBwPcJ$O2`4{qc*D~kTf+|*vF2RRvEbuO4DuTwQH6ZN>zdPDfA zYVZ%~z}M91<}`I|mBuD>Q2`TPjOI$XCYsgEk?HT|-PLA}?NSDZ$0g0n<%_Wn0gz?Q zQ(OENh-(-9kMCdOw0Eq38ooI0PvsLCM?ahn+W5m zl&wkf^?!v)Nt6Q)yIa8E6Vhn3!9ktu0WPujGOE|1@^?CoSMy;ApE@ z!O`a!ePb2|Q~YLbXhUu6R0Mj6>fEDQpO(LeNMw zO0FNCKRb%YmsFQ%tU!dkmj{T;Q_#yf9Vh8g#4a6EyggD4VX7ViE@Q`yaV(Xd=Ji5# zG5^~0d@-u~bPCJArkH!C9%U*D=3jfQnj}VDc-nWCk8^aZE4~FBARQ{FtVtJx_Jf#u z?UQOOR_P&NN2qUavS+HJP`sVOg5YmdX;lyKGrXZeuCy8^_QC}NwRPIc@Sq-B((D+bbWH)s6k|E?{2rh_eaq%vC)URcy+E4-n$+&Iet zxo=;VZF!i7!&v=fD)y!Tj=ibA{OqEkn|FzGK#+^FAfNLLP>@e#K@QAyWC-GIS&-j& zI27ayCJ2E4Q$gO$c9co&)7;zmtZZWg4}*>Ks~pGsQYc@HF%_pOv3xOx)6g`MmgnfB zhd}2MBlQqQko3sqlJzi zrDeRBIILOBl_<_jzMt=y_&8OOK|p5~Bcj?Va*;0yk}f3* zX)rEvEK-BQZOsnkud0%G=_eidX2p&@YIs!U`(o&PJx#pBGWzF-R<+TAKVRY)CHd>X zFI?%!Rl{p^zpAG@Mrz&~T%BK71&z9|iA9%Ql%*Etz&_>QkG){&j5qVGFgsqOC4*(CuKRd^I#~)Y9c&0_wU&4ZzTPMw9JZ``bZ8gj^s zN9ACu*Hg$HY#>F6!YB4tlsY776vq4GazA`Ztc@rzkF zLKdnhQ8ItgEv*dEw;I~Lws9n-zV#u?h+`ha{}pkW3VTpMJt z;Cgd53$E9g$#AvlN6Nz0QM-+>x9?Rrjj(CVV1qMQ4GzfA)S%cegDp1=`id?$88fsY zc7iPBj0_fHXME=fs3YcOXhZBQH5`HErh4XHHyrInbEg}QfudLfBG62fN-J2bpkOYF zsbGjKYi}U~gA53U87cZukvXkv2(PY`DvQ%tI#7K-GQa(+V+efIil>Vs4c~P;Vk8@1 zj3bR#GsyXyj!ZRzX5dgJtHN_++n`x9SMDPTzdPWf);3=sG9sD%GfeuBXQXMgTlC1) z6yCG{aD3-(UX*pmaYVYsbHjPjuUrY|6p#D~^CJCs=0<-x;3H^_GPw%T2)<7ioF{;G zc&v-_GpS7tmA!PHwiE_Y;(MFtpDLlIOF~yInPU9@zsjc z%OCj?Y(!sWl1&Yrk!n~?BdXMM0oJ{CK zdQ>rsTY{gnQjiQhE=u2pFF`(rIpkVXXQ~<&V@B1-#lcc9ErJISCD~(sfU^&OS?cMa z*}8A(C5_UeiNNPae`mQG0cDz@2Ro;^bEz6uW6>}4bia>A^(|{u7vI{|L0mnDHL4OS zfvQmz!5iABqFXtuAh+!t)~KG~;jp(|GY5PBB2u>WVzVvRzpu}FTsJO-E1df8T&?Rj zmTK!X2@0zmDZVj>HLhEM&Mo4lIogJFN47!b9M+H;MQ+B1bV~ebj<)%To@~#;1^akA zXRavD)y@sPTwtgX+4ON^FP3ZTQxdwlve<C2e5(LbYY@Fy9uhQcZ2je5ZqRx2M!| zF6Zo;DBD!#uOf-v17E^b*T$~S7u|IaN!^@pN@I9#w0kflawQ5SR}BPtk{eYkjDa;n zbtcZ(FPf6KlD2xAgL^nX5~SH2Rko&FIn*2ew2Hwri-fry3UT^*kKv zyd!Pp5%4_gzr&n+MBuPA+}T}?rJRk~%VW7jN{(=*s1Y=6t-D+)yh+#)ATbh9ojg%Z zeFp2H;#sGOQO+?Q@6Yuj=bsH9CSBlZpkN=)B?-~aA<~DcHxK~1o+L!3{_nZ$GpA=c zSfyt19F#dP#(7eZ?s5?H3P*zY$6Qj@%lWeOhw6=*PpHi2CgT&J&xalM;r0kz;;HP0 z&dir^f?n_Agf*9WEGqS!$GyQ}cXxP0qf%0w6PD&j&SOz&7!QY0DPkV>^#G2`XKt9` zI*XfkbK*geg|Z-pJOdOYZyrlT`1Sy2swkGpf;_^*p&*NyAOMbo4mZqd66BL1&Rt^p zJT}%iHjjlv-(k)(;`=~UJ+7E8*V6fUG^iJ!#cDT>2ScNF&BEFR=-P~0OAIR}xn3_Mk^aMWM~k_#R9QSblxj{Eo9ji7 zb9VC*H$ny~I9R~7!F95A)@5;Xy){{Eu9u&Mb3GA=ps8k4@~&}?+j-tfnPlQzdaNLg z*adS3(TNhKG^i$Ed6pSY6|D3SKL?AbJ>or?&?mqi4iu2j25*TZ=Vm?YX}*~1EbtJo zW@%lbQiI_;Vv84fe4n$o`EZ7_zhIu3;e1LE{{mUmKJvYShd%O=Y=GBUWtGeNAJgbx z!;J48#RxTo4D*b6&YPkXmd)8!6M}!gM~H*LQR1Z>=Vd|a&*S2VY#3jHL9&0gd0oCU zP-y#D(!mGtzkBKDROr}0RTaQE?;)NB_D|mzI_Hc1v$gx=cl5-oN#kA%oX?BWVxB&Z zS1+E~6egAM#Z+_;03<>EhO|~=C|%-KErz%_+nl|`=_zP1=r-B&I>01)nRB5U7UlVD znRA$QOb?-Gxs&K1RKDblZJ-DLVUe?|8eY>u*Q>(@cYNGo>jZoW7jLewfJk&Bn?<6l zl&5O=`$IO1?@1-j+a7Rusc~gR8jKON_{2IYmp?Ir|E5d>%l1 z6W<%F+i|erYFLu6!Ffc0c3W97jf3i=Kw--sn!}<$i1zoQ|BXkS3xwUwmYB5lY2KC? zYoEwbdH~@y28vlW%{(ZY{h1szJ7D~WW{1x~)qN_37^ay!3g2_meZ#Xv>AuP_H{R+j z@Dl6hYCD0+vXMM;xlZ7LT-FKv2z3F+%fzo_i(R6WYwZNa$Rt@OuvYAq%e*x@m-9fB zD!ljB$N`E@}RfbGsS=qZb6D80if?gxr^%y>t-Te7tXz^pPGy(NSjy zHG(42cX|j@UvWOCM!P4U z^K~@>cFIY5u)o-x7c{UwmJS5(L8Ry*tafO{*BIq(J)_j%apZHS^L2L<@Sa9X^#9e{ z*N<>I%VC1$!d+keMW(VM`7sIoc0<$u=E9{(eE)}Y;XcV3p5?+-%>Ie&YkcLfV-x?) zh0AAn-pAVzLm}qEeTgr|P>8v3DYPpT-cK%E6?J;XwYFTiZ}NO;T=e5u{(qPYSEV2| z-+kx8y})ZqEnGt`T+RkcE?gCBO{D!y&->{C;emRoZdHlG^#E3*$FO<8FL^jXTv3g8!dYEYYXzOQ7sZSv7BQxt+<=@7)`qni!4R!iMqHe7E|lgozN z1pX;!!=;8&Wy6I6mJPQDeIrlO;0ZSfzpW!@!>vs&Z8ls*f0yM|A((defqY4I)>laA zElbl*|7*Gb^bf+i6o>vAxRduzI9K`W-!*2r|4`3CXUvfMZ;0TB|I*3#7f($~?W^Sb ztIeQWGbs|w_a{D-Pj0;73>L4zk&#o*_VpIPiP8-%=918o?_1Q*{0TOrHw;fBWq&w^ z*UKCUtIQj^k-K?Udx&fE$PcHSy^Au(0A+?AdkD}KyIp1@8uzA#J=b`%IT5Ml%;XLJ^UpPO%ZAAdtd){gASxx!j> zmw4;k-AlZ6-s3&zD(NMTB1^J$h${hZ*uWmoCr2K=*xKCZediue$-zOed?Jl6z?s0) zd@**uhb}n#ijI78^@1~3jYR{08xWH<+mQ`ekmgyl#TveZ6DILf7_(pF`Oy_Vj-Y%S z{6`)H=P~i0IR}Z-pL{t^J`8^x50>f_DCT8bA%EtR-c?S!4#M7FD^jEYErJJ7Cb?^t zbk@Nr|E(fUdQgkuLuGLdPWq7>KizFf_I~c{NLqj4Y*>xTB&oNSfCw_)y`Z=I_Qi1!TEeC6CHnRuES(+9G;RAJ(MBfKCBnTF_UIagIdI`DXP zxbkaf15sRAz+I44Jf@=#*1a1Byw{N2Qx`{w+pDn+cjIyaJhI|)UZl0ZUnH5DQeGmx z!fTJmYhL0?6dcm+M_5RBoqNaKb$y#J#${OmWOrRv7@B$+$i(IuvNVyCt~!U3_j*^t zE$d?scG~vaU~kUGL-nwrOY`UHaDo?Ka~6mX6td-|KdGdyFhG}=gx_I*uriQ1F0Sw; zmDio0i!BP-){K842a1bwVj(W?{9eE|-rVrR{Vq4}=KTz^43T9S$TPsDuKw_bZV|op zi}SKLQ9Th87#uT&y^_kWj^qi^I;F^GWU|X zD@Ktkd@(NMTrMQ%yIg8p4PlaWR}c22$BB=s!O9`3@qA817x6K5PK>XHFiC2!2b)^= z#N%pMoD+7bcjAN;$s=I5)T{o97eo;M%lao4sIj0cm?Vwh5nR$V_dd~A1M7Waq%=(r zwqAo1Bh;|CAXePqL=P!Ti{JqUCs(C9E!7yBX1|CvV7}&9p2kDc313lqn5T;U*|~gE zcj*zn7&Uo#zB#|qi7A2_L&I!ob!KY@G(G{p*Wq^(es93<6#U+V-)Z=rf!|y3dmDc5 z!0%o2fW{Sr4tu;jUmmOTf-5e^4gkA(7kZ-Nb;-tSpmfxy_+nJdHlKN;7GaX~u^#Nh zCo6`iiEC`IuDT6aPJu~pR5TKV>!k5a8fudb9W|l$5gkN4)^_<+MXVtG#Y=;^LF+Ey zoF6lf{xzSRK3x%_hDFzG&cmYK0K3cMQa3d$((TH_y6CQdtD>U@7M3^2m3NzTmHO}q zxVQ_%Q{Jw~QzKw4j80z^Atmw%E@^ONq0&-g*)2K-!l7B@yA^{4DV-;Z_lsYssOTzX z@x@d)4*(>_Pd!_xG0;pacwiJPeF5=2S23U(tQ>$g>ml4ZSJAH;!X)WgEi6jnGsm;N z8W?4tv#7j}^eT^mh6Qmh{ktMlji9m9V>))iRcANtrPuov>!eSsvHEBM3H+dIik3bdT!>=?0LP6xeWvUnuKqihKu1XE(2{M!VA6PTC42<4RaHx2A=@q8_-VyV zamGU2{c56&BF#+ksSDX@!R4P-yeVcc#LX@a%BqHX`}2yyV$ni&PEetB@*Wi3-V!EL zA^MPAUzfEK2P|ZpTfFpmET$F%zeSEj*K0!BUaUAN9iV1&b>m7TJjxfNs~=cM9=}vE zM+YI~3z&eM(nC1&MMWPqLgOzh#z-IQ!D0hfNu%+mvu?a8fLCAf0WY%8)AZJ_ef)|5PzT@VK-{KKl4IPXwL%%SB|@ zFBP9jU-ECT72rJl7GF#eJOGf*!>eQ9JluORCnv@5p@6P=cuO`9kNu#cp_(Oix~7Uo z4P=d~z<5>Gc>m8hITX{d)0XMCD&hnwM9Wv~zL-tlyYp|920nlA ztac=~&XY|^_w|<+yIq+$FtKSQ>2H56UAn^?23IC-b0rFA^HcTC#*32o5-4&tR&==) z`!9Bo{P<#Qe%?#SI`6Yx)CicZzRLS-cc}x9K!=(hK$+Y&&F-qkKo+(JXFEtyJcf%! zU+HY78bRX{uIxp;QtZ@qxX;;lq(q*m#x1(bZo#9jncwg%{LaDeJpBF*zxUwxKKwp_ z--qz~2!0>K?*jZjf#0X_`wV`co98#Id?~;q1N6k~#5`Ta&iK)RmL$7VU}q1{*}Ce*VQUiRd9<2d*(z8Ez*w1h~(m9c6B99f*v!g>HvQg*DVK@Dv5KGA`knb|L%H?VVjVj@Ks^BPEzrsjdXl0=&E@dNH%2L(*?<`@9O;3hZUJzRW6b@*Ya$syg zyOa%Rm#_hW8&()A1p*ziYbFc z5aLppb*MCeYU_#_cwQMd8DulTJKTpGbkFYeyz&@!gt1K4=aHpsT=Pk<%G=^Tpihq| zD?&_=abH+!9@D2XPY}zOvg2n8h$~0c3rpF+eMB78$J-zwJ#wairQD;$#x~D_!sm}q z6hQ#gWxYlh`LLOuLWzn(HM!5y_{!r#9TFN?HBuCp-K(}7LrO|YY(#W)cw~q%G$K9R zloFm68=0CC5t1Gf5fW)Kv3jc&3hS-yGORbQ@6MK`YehM?rfJ=T=JYX)_?p(YqLQG# zcQyJ>X{)DdhN9}dx)TzaP9vAGsyh_4e-!B-U*$!5_N!_~4h*fFFV0$~t;xkQrL<+N zntHb1pHHzKB)%IgK4ix5%01%3W!lPJp~2cXqVipFEvTTb+%*aqPPic3A63}#=#w2q z5EB(1woL7;HB@lEqBU;z>NiZ6e{aCFTY{Zg#j?!2JF!v_#E+|)V6#m21K9*;^AGhP z?|0qbn*@)kY|ZSDT)>re5x=Wuk;gSeJ|9!LQ@mZxB0Ci@w8+0Xi&ΠXJPv8_x43 zpq|{2&DrBCXT!&4mh%RLWtZSiP~sXU*E95>UjWv8XqiIXixAK~bRZ=YE5oHed@*(p zot6{dNtN$O)e%PA+7~V*>LKi&Tp6K8pbxjt;^ZqvW!wz^)8RV8@iQIKBIDi z_~LTbyX@n^XzwCyBcU->ZAE~_s{VoPE*FcNm8%8Hh_H9 zx~j8ug=dL*nO3<=Xhn;Qd+UgXfcgRM!&*_At`X_T<5 zrvg8mB&G2s)CD~Nh8TbLY*`IhUKpIOi;-g+&{hZI`tr&cX{{DRoK{4_=2Q+*BWT7c zAGmWRw|XwkJ~*2ARvzpu9s(25gdGPcXO%t&R8l3~x{1aEr*RYyTlR9~o@#MS0%Fa^#6`XWf&2`A(@l^>Tfa?2Hpqna|hZt8_ z=EJBJ=*B`g2^v>*nzVZPnin}-SQ$&2&IIQgRgLR#vsivKCl&NR!m0hIKT6iBy*ws(&B}J<$_mRY>NBOAnHNw`_6BgG|29!c_m&j6> z?abmiX(qY#_3&{t!>eE2s~eKs-Nj9bV_oHJfBoSAiCbTJNGj!dW8e8OSEA50PuoyA zLXZgel5Hiwx3O}Rw39DJ+md3I8CQj%v5mj18_y9t+W@{qk->}DtG4$eyS$G_i>HcN zgnXTHRz*k$yrB{Dt4%P0sDkUCbVBzT4~7x)bTLLqfW`=^&ynqBx_Ote1txS-3F~sb zN|c#F+w}01@UV0^T?${ikBEwiiV07TiHVMhh=>S{G=-4S!^+kL)(jI)ZghCIh1jt~ zJDuwx+pHb(rPH~dVqgjD%0UJUyLC&zCa%!pc0Sknp7pu;+yq&ju_bI$&~AI>7BLIx ztLJn7hrRcXi|Xj&#&gGpuu2h8L7Jk7SayL0){Zr?fhlTYV`;Xim_%bVDg+x=urPM9 z#i+3xv5T5+R5Y5zL}iyPirvIi6Z1P$mYu!#g75SG{(C?9e4Zx`=gxf3nKNh3oT(en z%Z~kk%>vpCJkc5#w^<6W5d;}Z}wxs@WsBWUz?zrAIK*Pot(h?*4&(h zmOzzU=LkKVIq2f{C{PiZ0D{D{@`B$kRz||EGHhV?loRrkb_oN zl$nioBE{J^AVo*JwOGpjAc^&%Sl~vYjOZL^K4#6@9CjW0>h+t}+U$uzNIt5KUe1vl zZnV@hWYhX)coKh!8XjudiF$My0@? zbxXTw;?)W)_blzJQh;*ktyUn%eJ&T$b zq9_6)ogP;5?GL}wchOf|j?YB~^rYKaF2~@8rRAuM%TX$3qjH>MazJi6W>&(h zDmm`^mlh(;Y(8erCKJc6@z%zro$>{XKZ3!=Y z57_Ncu-nGj<^Nx@yGYoz$NtSr)6ox{=T%-!91hitd=(V>K*9Ge=L>nMuM#U&r9$UL zlrE~waYVK(ovjI*1FCR1cj`Do1&UK)MZuA!f$*Ax@KL@D<9PE+1Yo;DU$!oNpy@6a zrMr(^=D=%25af3ezrb!*AI(6KLeES=-rw7nPIApl=LvL!Wt3Qec&=&yid(N)73x|- z<|iCab-9R4XC-%Zr7MvpON5nqYb*CLE@f$uFH)QubeJ66WG7B0c|mp@$oS_ZAwgPoGv9MHa#vaHX}Vsr_;u3^>n2?$WUc2Z1m6fM}NR^O{c{+cP}5^C#ax`kmQ+D5B~=? z*nqteR(yVJ^`d4yO8=5Ht3_7M-M&pCIds&?{t_sKJSp#*Kl^AXe$=)@E4;_k?2cx? zjd|8hFP1h@$x6HI=PJ;2OVkBg)?piSjfuw0mU=~s(3#fvE`3+JPqZJ1>C+Z>2wRt~ zc55!{YR~$VomaC?n&gZ%#+x8h{rHivV|Vcf9iC$RK6BL&#C30k8xyUMi_gf2G8i+`(hR!j z^bDNv%BlKAnNJHANWribuaA$7i%W}-Pm3``Wu!!i#2VAmjm9`#OnipXVAQ7S)6!GZ z;V?kD5$dw<^PKV3gQK;E49FLwjY><8F{bNN(&OXepxU|=L%bn2t>`fXUs6!IHZ|H1 zr#Gf##Oq>GGYkf8x;8p3j*P?UX;IjCCC9HQ>%CdqrRTE63C5MWpsJbT1iw`}e17V# zA^1WylY4Mfyg?tGricH>Ma5*qXQaey_fqiC8%4 zpff}nGjwo2J3clwJtig2h^1w?eo;y2ik(uhAtqk0GeTqNv>7oO85zd7G(AKR`i$tf z3}93gT66wMDdag!VT0hwil~4pc;eETr^4~0mh*k^_3YA6ZES2*8-ro=J8j<{)@1th zRv}Fc`k1)XjM(UyI50M2TATq=bpJojU`S2ZVUWYOC~4Q0q1A(`KCgkZU&8ed?O2{G z&8)hiqO?tb?@LLqkLZ`!y+_{>&oR#o*WAz1o36>QR(Q7Oe81r5Rcv3_tY$d*es0a+ z3|&feOom>kjZ2A%(nlH7qM~)Fv0ziNamJK5hmA(1X|*H=7#y5zF~UiSw2TyeJp7ZE z7ORUZy41g5gA|;ui_)b;rN$VIDJjt8dP7Ehdb%z?T_2TUj7pDX>V&@bgA|hS9KN)( z1wV%^hH7YOUkld9#YSsmV&c<{QNY>&T|5nXP?{klO_z}#Z6pRdp?a_}UKbaenxTz_ z&J+`C)Ef-x>GA3DQLwxV4+o?dou07bloS$|ni?Aun`Vel(SZw!)f;uOx~SCnn5Z}? z7nPb)^jL>aNFmQ*8I31i&((%Jhh;224Y^29Ylly)+ZBM{Zw}opHN^lHnQAb`r^LXS zlvJZWO>fZY(^8<@Lnp+>*%*G@uG22COE^=ck4ue%y69sJ=@5%+4N=gbI$d;HR4V*H zM$}4Q-s!-r#_GX`fIf6F#&|fB1a;Iw_eq5VO8S(dP>)roq~NMKYgwiARda=l;~G;B zylP8nK%`#iZlpP5z;1Nu#(2`*U6S5m||3U8V66TzL@v7 z=e3q=4|SVdAR+)kHx9X+y{X(8ovosv~XHGt1Nie)=t0qG z(RzJ)iZME#^$%A6s3>imK3W%VOi$CtM5h>1GE(3lU91t@qc%FD=+Y0Q!^M;CYKTjP zzM2t}u1$}R*2fb!s!fYA8Zxvv^kgX=+@Qlfhc_H2K3Mv4@N?MW(@U4@@cquFI>E8f zf<{A%E;=POCMGpKH6C_H;`DJ*Mm_YT_}HS;{dYl!ON&m`gUg7|(5LI5m80U*GYmTL z{pnxW z!!;H^ezKxnFoYH9>3WdIpd*72jAtp@=#+S9k`#~tezSmdGE=pc(8;v%dN|VuV?|1O z3`m$_(Cfj0Md@QQ;n+UpBOnh2e6j*y&T#O+)wW!Ou zQ;@4_ro4ZpSIsaEU$W)K;_CxUt#wf`vD!BAI-!?A=n#{h8V&6b4~z|Q5O=^_+^A0h z*BqY$E`dZmU}ZzA2UfYURpfng#Rh5Sa~elBo;}ARjjsLcIVwvf{i}YB0>9wr)oH-+ z`E)$15gZ?7jE##n#Oh<9&aBE&+CFFvg~*rKCU*1ffb?3V7NW z$OofYT&zAe)=>0#m}!F)VvN2(GJbT6>ZG_3)mFW3k)#zn2VMYrNht!>qKb=aC&-e8uX9!)KtAO z4jwou$b=y|Iwn0DYNsPRs>Wy|#I-Scqc+-*4h<2b!}-1tf@OWb;$tZY-uQvsI`EsZ zF>$(#l-Q_PXp{7ecq7Ei@kNg(W2i*cO!dq`Jcp^Cj9)$Rn(|WLNPV=>wNiCP@EYLr zj2W;O9A%7$rcc#DFrE&6As(B@K@f;nfWxSA?Murm^=0mSY36g9#^Bmvo@bG+xnUAj zmBuni_j)Z0`-N0puhewBFL2cxcwK|Vb#d6^(%%0~(*B#I{WnRgSVQ=4l2+B+@V`mg zf0MMC|4q{Vo1|6D4gZ^@g*18Igyz3V+JBR@|0Zcw%?$sWq`6E!9h0;XyLZ*7x1#0? z692^$_QJ%?Tzb$#xV-g9R{5#FY=%pwn~MDCbw$1*C~OvX zsc|%+7Ci}3@v+eT>^Z3_+JB;ZuiC=+SReab~6^3_Z=o zd$Ud9wQ}GP_(K25IO*_R|7v60XW^&Wrf3v22Wvktg`r<^apI8^fiowK*$*$_kY9cw zz`0{C!P95CV}656_qk)9!tQ167=n`v<;j18;Alzim|qBe(ineU&<_fZp_OhxQuJlI zh9pHF4QNDC^h~}#Nzrrs0VGAwe)=>f$vWihT_8!pW-5D%lqd>rAAHW9B0Z90I^~9R z^GPegQ>0`5e?CQeEa9O)?y|^Kw@w?vl(q+?*n6ZdB!1!{0Y1|ANGtnD-y@y1)6yQ_ zUu=3!Gem%8Pu2|dd8CZc)*5R zUF!=uo#NAXLGX!{rq<}A`S{*SlTNck$Vkt*36P!)^26stK3xT-dTKt_t~SMKPFDfx z#UM{SAF{_9Q#bV8d^~@Rsh8%5Dj>ZXAOsCYOHDnq|jpt zf?>2|)!W7mV~bEk(68~&Qvuk0kEyuY3k&%pN;MV=c231d3t4@U_{CY@1|r!}pzA)< zc#V1iyd(<_-L;v|UP=b=q5Dl*mApsxoBC?ntAWd^8p*2q?73C-FKTws^iws>Fa_xA zyo#@jUn;7Id(RUjhP?kyGwZSGRjIZ{Ss<^KrUqVj#MD}oErLstpF3FEls^gE2!K*u4)k=jQhe1K56nW>VNUcEi6Q(|j0)sSPspYM6(v+si z8;aMTH05c2QY#>9uU4$RURy{XziOavnhMv!4O-dLi;7LFHBUvpvYy^X+0)rcS@N>9 zR2!SunF9*~7Y5_KpL`G^_!g~Nxko4J7d<;;T7jfSv>DqQWBc$5J$La6}i>V`uiN(5~ zO?`0C9n+gQ_`0bk-tny|tey)@NQ>Auaj^CGt?AD?E+4S&N7F~)QBkpNbg_n3A^Mm$ zaI&h6E;_D_POGo@8w7*zI{eR%rV%w+W_UBzblcknE2M=EW<=kc`v1RJsRX>{x=90% z6M%`(6ZgW{I*u9U!$tJMpR^S6tZ7?cy*-01rcuvr&zlxg`Tx*>J#aI-Y4rbbD|(wv zX|;HhV_@|fE-{p>pA#kqr zn7HVS*)egEA`Aw@el@|50{}X?n%r%%@P%G&=(3nS*Ld_d(~xRt#A0^GVyKvpjuS5~ zCgX(E1)C3>8{jFbb+yeMT#M1V`iTV`EU>$|wJfjunQ;8OJ4Dhg)Cx@YFn5s^AlHp79_A=bJGBCt z8o4yG_^F)Pyx7X@4v|Q4wmV)^$J_@ESwh!Vg`o6T6&U)!uW3CnmN{pGyrzC2Y%@xLXT%bc=F*ZU0 z$LqH)1?Y-~ND&$*-p@P<-Cn{xkB!vZB|t5MFXSF&K?CzxB;_&3^GwV}9nYO5G(d&i z^m11vyr|Pr{|0>N&8i@59CZ-RVmC6wuXMM{1G2-j&~|H)hua32&uCh>d?63+I(61m zO=on~6E`;RsPFJ`iNiX)VoKJIYyH#lBrBk;7X8rv`PUw zi+)S3KzXpanQH;p<*a_qcqMw_iM`6$E5?4^1tg)J$eKyf{Sfnql4hllgDqz)&%+Oz zm|xW_7r)TjOlS&zVTVYjwSfZeVdm~C1!!%K%L`NkWGorpZ{}J;R-NX&I$%JK>NHTV z4x48S&FRpDXgBN?*HO*Q$0UtOl!(?WsfD?@=C(+tH8bV0pVm+o=pP9M{!%NjF2a1V zG7g%2xpguQ4QjKl4t#L_@$SBu!Uw74z8DEj<022yn^5@{mD=)Gt;{p3wa^i-(Uai$sSCuC$ zj4}6xUvbYrR@Qjw^#(Zkc6Nl&67gzq6~mRZud;F-)XLEs-1~lZZH!~h&GDF6vr%(e ztc!Cf`bs2|p-4K7vu$OtKryjqGeN#CYJ42yk#wUn@w%!OBa2Gk#GALd!PQ@)4_w?L zI0T1$<`*e&?5SE5MnFu)Ch4EbSZ1h|BMlQQwz6Opd}tUiylmbW=C~wOZnV^ykFBWq zEoGtdCq2y#P|-&{&02)?OWC*;CFZ8%R?t#9Zb6~vjaz=|!WGT$ZAOx2C_#3NRMZL4 zUz$oyki|V2C4$PIg zCDGgrp+j7a2gH0-jT@L6Av;~4QdbrG2*jXMI#GT$r4uPmYb-jSX>Noxy_UHe#vo0iNTD{-YZrHB}&JBq+;YG^T-;SSqjvwWjJD*xuqsc{6cM+j{F58naJ%)GEPca zv8NV0MS*okOzl)kJ2xOcl0%@ZWpo3g5|&3*^0N&HWdY{~#5ZcC=mvyJDY5}^Q>{Sh zOxPGv78sia1s=%@R3{nnhC@jWaN>LBTG&0?+@`X^Xt`h!M2~eyVaF4Thp>6Fc`**^ z^L}kS=L4AP$we5X@s$IB7GWGVzu}sf*n`kbYH@pbe;NCUkN1Q+IIWib#K(?VW`s2D z6ntWrGYg3ozc?+VuSlkr4Fzt@HILI&Qee1Rf#2rI3&?8X&TA62obA`B*F+IYI27R0 zA*zZ8JQtX8WeXq27nor;R}`P_Xe<*bPNhPMIyXN&;A69Ik#(W@`)ZmkLRPk=L4SPU zW06dCxMew>m~U>YQXu*M^fsE4Y6S)^g_(+y1O3U0614)c%iy=ylm%$VFH9IoiNJpb;E7)B0rvmePQWKW5 z@ZIb_nqV<29gsX$VDGudgQOK~T(5*BosX)2bF^6mKHUYL6m7c7T&#JCuyG9XWKT~B zhT8nE)gAie=)3T&4XrNS97+`{LF=2$>RS}O*1SuS;3ZiE^; zpXe~WI_ptXy4BoWB8&G$8@8JBB`gu!nv?OgbowRbqp(NO9Ux(Tg9OGm*xtKxjznzihj~tv3|OwC{Npu#wrd z0QoJC{d>&enwIhcbx1~sEB^>T{@DBx-qE)T2@eW`jB~mB<*L}Xdl=kW}|&zO#$r#%L@Ll z`@qQ~&PP&6^{nnmBv4($s777p5F} zuXvR`ZjLppAkLLp`zmKn`mEK%0%q+X(En!bhYe*}NYf3=tv$U%S(v7eNT$}_4Kr(3 z7HHcM3Jg;#Kwq44DIl|l*8Bvm*dePN2M%{C+o;JFdC_O}W(X9geH4A!xvYVtSt5Lt zuLHE_0*C-i0FmN^#1|9F-jzNkZO9FBJ3)6b$PaOm)UB*3l0IYEs6n0)vr&WGjj2I? zh?zlF!jEp-SMsf-XIUY7h?zm&!^|LSzF4*|P;$fBA1Ms-RbJT|E15y|&M5mJ5Ke|b zR)z0f?wS`Tf3?1P(V$snj~h!7tboieuR04*yF@FQU4mTHF2y=9FDz079k$V=riYbR;iKFFTX5k-04AJBaYEwa?O=hQkT&2JxSycASm2(O?BGbq z&a%ytbb;liW_V7_OU{}1iWR-kEK2DZz`j=(f-BHvk`GkCpGasFhd*Dllz?ze$oM?_f z7HWE;+|2YuilDqkSIbUR*6#PNmMzkZSp~TrW=Y$9q(E^Z72W=>tY=Nl6yYNa=0opm{lKXRgtc&EE}QAtJsR!MKK38remw9F&%(rFFMxCuM#%Ym@4@; z++J2F{mmND>-++L^yeyJphfjp%MGfWSJG#-Fv_CltK|kYr6zL%j(l{4MX{^p2IW?( zA|Ev1U_B~00 z>glBza#T70ElUfj5FdTZa#dQ5rP-Dy_`zO_KYFqnUz%d+ggazen&P(aSb~tWhEWzw z0m|NYER9iJPRakk5{9*tEIufJQ~IugJpaBAd0J445htCs*TBg^5$p11kT%g?i(%J~^;FOD7fD(MmS|1g0 z%K42zSv<|+hd$+$?S(+O(=E`KSM?I37tFS_M>lyM3x+&YL3cSNYzI(gOt&;Ze{jls zlY#OFq10H*RKG1BD34}9rF}SM)>a24m{T;9KrzW#&={>aW&V4Rr`?feK3pCHr#D;= z^buK>dZ;I-6t4!#wKFzf^a`gO{17Pp{_@fAvdNtO#v-7%*?qe{8pkQ~Hvy$>6MI86 zl~cZ72^5Mymr-DHMh&cGj-@GD&U1ZAOl5BlTr}IrDeZ|A)Axnc@Jh zHlRG}dkbDi=9Kd@fZ~~Ss|l*Tj_LjCbfDCk2YUD8ls+?ovS1zr(|}H!`V^;hSqqeD2XD7P-*AfYeV~kA0!?#`Q&Ne6cd1_95ZO7U z1u@>?dBE`(PAMiWcE5gkJ@mqQrf5VIq>U|ajOuX8?011eS{3-XR3$~IAuR^ji_Y2oQB!4a2m3L>Q_uN&*}#`#cfD%>6ZSx>~J5WjPZMBK;l)iC%}-@vr1dB*|a z%_&2OJEJ&3oRXRgl#(?TEsErn>x6R6>rNLG&nbO~iJtVo(+u_Cl=gW*S-j5D8@{$I^iDWh#>pp$%N)Pa5{wEtrI;x4(MHP~Xcwo{0$+o7ZL)MkM>!>VK2Z8?wnU*X zIOSbpbtV1mHSz7uAn+AVHZ275j4c*#Wag9*GJFKqx%)DDz$s6NlK;MSpdTLI;%-g! zl#>?`u8X%9dE@aPT52MBy3F6q}MT2qMZ9uNi$%(|_G@5j`Cu+he_vQg5cJ|%Q zs4b^_FbOFASKRG`I&jJ;lBeU#;k9s=jd%N^mpFL=@shoESYpvYPKh9cr)h^J0i|-v zY2v*Wox0l#Wl~BhkOU6MLOQUN6OfTUWG)Kiku zlhk&S>Pk|7lT;!}eMVA4N$OLQ8ckBCNoq1lT_>p=lDb7wd27he@SP{gb%a<>QaecM z50WY(sjVdSDM_s(sY@iakECvr6eg*=B=svv{XtScl2nbgka|c`J|wlDq=HH6Ba&)G zQfnbKbBuu`zaYe(Bz2UeULh$PNhOoiQj!`+Qe`AHm85o))LfEUMN-R2s+6QQlGFi` z+D%dgBz26W&XLrYBz1|Tu9DQ{nIu_8lIuz8AxV8hQh$@w36iS44pKjmlpjf*B&nt( zb(N&FB=tKSKS>=XsZ%8NB}silQddao8cBUmQg)KsNK(I$)Nds9!g@$OBB?qgb%><= zN$OjYni)=#XGt=Kq&_661d_6nRDY7%OHxBf%1lzDNa|0LnnY47N$LZV$|tEMB(;mA z){@jFlG;vEpODlclKP9J&XUx%>N6o(LXvj~@dioVAgMbfb(5riC#j!Fs`>^uBX4oQ7Q zQp-rnPEv&=^&Ls=BB?DTb(ExTlhhX^b(f^BkkoOKGLzIEl6pW=B_#Efq;`^&TOp*D zlT`hIBzce|n~>BBl4?s*J4mVnNi8F(mq_YslAO$d)ORUty+U1Ej{S$~oe=EeH-&zu+Ur2#oIAoj62VeZ^mIu6iUySX-Wqv(mPFyz)*gjy!D%kje==9nOlkwnKJ`5+~@( zvJnsXmo+3*ay0VTMB5O#ZNjHJTLE>jB=S5nhh&hGhE|+g}EyGuk|$hqh9t6Bv!- zl7j|XVC{&SK6p`|Nwx5!ljU&WL;*Xp64+YB6|}Q@UEF!ZBu{+Y{kEs{ zyMX!ps09jlhqdRP)Ar{<-Cj zg0{$QApj^cTW~awC!TTB;*EFQ0Nepv@Ig=C*F$zUscVqa@ewJ|W%&_-=ofWVhRA95gP6ytx1W9iRh!Z%X_g(PlZz^y`D{-h&lkP!4utC6C%W>M=x4ep0 zDR2suI0+9d^Q3PWMCOIpYf22Ezy|*9=m9q`+-03x2p+oA%?;mt49)Yo0`#mBlnPh; z$kIXjQxNVqF5F(v+a9>(PPcXp@fQW+BPF6a0POI$pFum#KV)%GQ#{}m64%7pTi~|7 zAZ^Jn5J7}6swv49B*Z|0gxXbXUE>FU*XUPEbMy+wOA_#C!@B>b3Bomgvv^DWR6%-bV)X@&qz%On$ z#*ZYc77n*L5Cuz1B}5)=CvU5Wzo^dJRI>)dVzX1!0taZ)B>+u2Zg<0vdV2=od;6{4 z@H;sw@OkR+G)&wx1-2wQ)vz{_J{NeLb?}&Ivp2?G`+{HymlP zxJ$)q+)k)-qq^F?#Tx>X3znKNA#v8|k&>HscD<$rt!(aa)k390chp%>|DIUe8i+zZ zV%F$P2p_m3FdlrvFD$*ny4RV(p$-7 z=J$}P&;auHQe)D+3MQZ;_?_ju^?dP!I@X$KDrfSpgNanv`ik_98tO!KRPS^cJ5oGh z<7XSkf_Q;xCA+aT2DkUJ`oXZTqKozFfK(S*nbsOO)f;qug`-|_pgQeR>tk&N$1qf& z&s70Ex}G%xN!wWqK69Wxu6?U9o?2cn0%v(aUn}te<&y5IXu&_!p&gyc4KJu~ZGhTv z{79^O+v!GhXRKkku(5X|Jk}3-Qw#P{HZC+H)UHVAs8l1l4Xipegu@PYf!%i$dg}Z@ zPXjKzZ*`YmQ-yt50ZV7ePx^YpPEiA^2F>Hxvt6(!{$Ab~2Y+jIThZlS1YXy%aV^FK zeubV?OeXtG1rw)bZ_D+Ds5JnL?i0>wzY8a@mfr9hiyG|5Rlu48t-h#?BbLe$V{qXN z?;7|>5UBgQD)zMsY&xzPwz1J7mihp)+QLQ=@bh#OY2c*Ok!0qIau_=Yhv?X3{IB+R zoB=J_nU!MkrT1WIB(Ila9VZ%lzvnUxYIissJ}k#1LGw8Z_~7bnDa24}d5 zkOI%8jOUUa6~hNzJNoCYcL+Y&0*1R|0>r9t=$MD)5TB?+oOJVP%ph(G5J3^v7BI%k zr1+r%f;QG$J6I3`ns6*CP^q@Jv<9I%J6Qk%n)iV?12)9nfdX&!31e+7N=YE9q<~rm zh$p^lHLwP4{LB_hCkzyr?5pF*9P5jCZymcgPR_pVi;v`3>o0qBrzx6Si2u&9!mh(k z782$DBP`6&{r5~R(!c*&Sxkh+DMT8x6X&xUd(nqfl=e9DEmRZ1H)_IjaPb0bNJZrHW0bWSx+r459&L?8 z-zc!Zs=(IA0JdGkhHrFYH)p47OT01Mrzzh~_57H%2UOk%e>lh5TGC)?v5S$xrDh=D z;^=Db2#{!#fIcYlNUl}$8DYvu&oK1jz`M@c!=&yMLTKWIk1O;^n{a}`szn*jBHs89 zgEdY{m6uEYSm>2{JnEZz&3HxTh=oVCw?;`h@`_|RD+23>p$GY-6FS_hXuDYaK?mrw zAIghwmKS%nR5oOI|7sP@)1CClz=-PvPo8iRq;0OZn=|U3s65xh7e*-KX zX&YMWGvHqnK+O7tN>{Q42jfGDbV-<8NN@rFyQ?*lggOtVFX9c>niV|!WsrH=?3QODbRS)0Jb z)}aca)i&*Nm>yMa?u!uELqt9HD%2Tm5!DZFnBbYQagK=vZG!2H%l7kd0)lW!0=!B)GOL!cJ- zR}y%IkVIe-fiG=VOtYHrc2P;I{?<5@xLYvczND0BX %2E9~)CFrClC9=(jZh*m; zqp41UlB_Xkng|R7sw*%^8UdrKL&$2dtATfJgYkmyX2=2EU$#c0Z6e?nIiT%j80t1w z01A@A@dQwXI`ETMtR2v|B5;Wu_y?H5O6S#pzjg(t#@l?is_~8=X!XaPcC!Uw?jEMT z0Tyv@ptS+ch7YnWDYVC>sfKo}-;y_YkEdG;T5uyJveHh?+>-MM7avM zIj*(+_x<`&T(Ui)WFL!?bsuhRjkYVGKID>ZmeqFf2&*3bB%=KwqJd!b@QcYX>A0$Z zyj%(7_w(yJMzdObosA+@$L13*y{J)&wV@;ts(k11nG>4oagL}*w#G`w+pD;KAlFET zy@Ecy(yT2dLj|&6^|6%5Mgp1lXqXOjw-F-D*wNNT_+m(54ZLKe)khjy0Vw#>*Y~?U|&M=sd=cv_|9CPBGgSM1yxKK@+S)P6h1jFJSZME|J+kf@FWmDjqo=dPbCp*H*v-vD|Qt3EsCTQe7!F2Y%17k&AWmDOt z893C;rdV`%Se)qBhT|O)@eT-hAYFvCSB|%f;-MMvW(kQDjQeP-qUk(xNam5lFcSGV zA_qMVO!f=KruSja{JW@tZtudx?g?cf)ctWq-D$^bHU*|U4fYFq+cX8@dS9TpPJ+BC zB>~mlUt!P`;6{#L2xHz(M2VOR<`bttiBUo63OmwoE^}02n22(4nzb!@gQ3tN^!yda z5Gt3W_Ido3vS>N3`#B!lh#sRf;Fr<;BWM z=G?+bi>!O4KNv7Qmjj>Zq}G)|EG}IPGlfum`Z0K8sFgQAIx3`2tN`{BaN4ZZMJE3JO0T!C#@V$<^%_g6uOZ2Sos zKNH}ZXZ~N%Sghi?P;m!rFg~>zX25>ryL=a*9?pISy)<)KAGlZdi(|sHgtgqlgB3h8S5d4n#rNw7odX6 zt${ds14Jk9si90}Qq$F$x1qQ*`00<=6@r)hm}71iF!RQMsSitIN@N1zwd8{lKYZ$SEQokS}Qs?^5Tm2ImBAm z6X(~q@xYKaG1Yc)%|>;oMZ*dfd`}d*O6@}qgLbGI&UbCIhN2D}(I7{pN-qv<-wGT1BC#aw5Y0;wq$F-S@oar}mrkWjgc%%e8 zO2Hnm^RFm7LGzziXrA_(-}k`Y(VraaH#rtGV|Umilquv9A#hdShoW57)aRl7FnlyG zqGo}b7FF)+%UK4Zp5H zA6VotyM5WVS8?3wpX=bvL$Iln3xyxRDvS#TIm0z>Gx+B&lD`M;QUn6$C?K<_z@(%@ z4|I!b>|qFp4;5kE_}i|ik7_x5YTkoJ{`lc3t2^4OK;2b=O0_VsNMR4zcihQudxb)%eVzQiSxtQXIP3~EI?Q^u9}W$$alc*i z4gj_N)EaBX+XX$X`rsr4RXsUqHvu&1ibEeI zr(i-w!gys!WQ zcQ2oSdU$y4d$sT?1DqBZNwEa)oJNH1ii}4p?2R^BlMAq600+g1knl7`g^)8gTSFLT z!;7#Euv`w8uYjX&tw)KqvGfIl`;@^YJp~b=H*gVkmtgfiF0**>I{)$zDlP|-} z{0YN^6=R2paC)l+F23&{fMt#ZvaI!I+-b@~}Zvk<~h& zJ|24&ZlVSpmHXU=Kp{R?&>`)!3%&zW?av|mC?E@~1^D7=&+662S-r|VBn4~_CG2B8 zH23x&V0t}`!%pF_!EtcFsyH8aqqPs$%)#NHy9Z7L+hpK{ zM*^B)?M=YFsKEV3iAxW^Cze`c5jsZO4qti$A}Q#UEpW?UY>g`<4#Nxoh10%&D?tBL zf>L4g%%JAB95kw%19agq(1rF35V!cnfQC5lrvNY9|HJfJc=|awN)&-Zd$_ps=7hk< zdaw^V8nrvZMx!`cpX*|U;C2+_D5aBvQP`A!D;zAkpOhj;9w8tD5=91wLnpZniH*mz zo#ow{yH3YN?@4bv#wPj0>fhx@=HO^5NGV%j-+0X7WvD(n4fb|~tzU5&KW8%T4ZItU zL&~jvrL%G&iv=N1Kq)??QExcHt+6)_8ey-Ae&cxX94D!>11}0E--S^1ksS2CIw+NL z?md`vG(FA+-w)vZB94-kY-^EbXpAdL!3F6X8rx^&+5=#Out1v>VR|KvLRjg*5)&bT|_0rAL9HOL| zWaozb36(EfH2^qqlGE@n*#1c3Jo>TXP9DR~*_z-kGXi~ZvQJQeOCzf>>gCFaw)7*e z`TG_6V@G~Kb+kn;IO()S7M!sU#D_1+&bw}bgNbCbDEPADyz55FOBm8&J8vjhelN;IE;E)>j22umuWulAa_?~2gvDJx4$B3V6*kVy{j@U~?%+lI9V)7S39=Pxd zgh}1yun9_7>Ti0w!4;=>IqW+kY(Q<>Bx#}?XS@<;zB z178<_-|Px~$ZJC|IMGR9?AO$QzjFnq9_+*k=BbY20VyzNSkM1lL;mc5U;XfId*W}h z-C#Rr=5%=Rq9vTHCcf&}E*@y0aG<#E3WXI{3>?%^EeW3YY2p2uWtm8LtK(x#6@-EpnOuyG)9qcssnK%)6bdxkAMXtX zgC*_>Wr9?$3&!K9oC#KPIym+CX>9>~76Z?ggVSMzHkZ@s&yb@}Q%9$r3q%jV zc`HIRI4Q&KDeYr?cFXzDuC_M{)U{KN{*gL5xUw0r$wO8AlN`=5S?VTuvLEEYSJi>R zi%mryXPCEz7baJNx25eyM}N>oGv>f*z)L{7WebAyO2X6PZLLr|2h|Ip4oQbd zQF6St>UdPGMeV?6rNiFLky~8_wA`1uEd+ap!rYU1tr2qAp-xx{mO%>na+lPNq`RUn z#lr4Y7^8(!S|@xUM7XCz{nwwwf9*X({g?D3yO^_!GLVJaJI+-2FFH-|e6MjR?))yi zC32Z-0QYmY+?`?X?G);F{Qg7^CBjKh0TRjf&{#h||#2%fx!$5((eq^oVZ z^qai;zc{Op9ziMYw!jf4;alBoIx;ui1kFgU@=DF|)tErot;U3^Bl|_@&N%{; zEEguAlw{m#bVNOR-)6ch{8V*#>Mbtx26#AeQlX+>?n|#LB1Rmmz!)*sp=g$OJ*aT;rz&!?kR!S4fyr z!C{>dILs6|q)-l0F!_fc+O5WzzCg2e!kfa`8WmN@3C_;c+7UG#Rj@1ititQU#jsJR z^fT56u7Ad&JSgjfook}WP2f^dXAN8`BJ*2x4e(s!z3)DAalJ_+ZO!52%jvH{F*QFI zAiXX_l$U(n8;1U$n|NTa*)|_k?Q=QW3qTW@pJntJ2CcOaCUuYjGagr&O{5t+6inD$fHqarLkp5g(=18hue zy#9#I4;3k34=Q2lP0)UC*+O8wfx_MrVPOHV2k4*{EMJ41Rt2D02}rB|&O5dysKFOl z7h{8~w%h%)yNTO zJqKOm3YsdxYvHanUr_~Ar|Gt)=p2XoQhARPHUovm|sLaCGzUyK0ZI@j;uP-Zn3mED+6#pe_BR$?|gVu+V@c58F zwEok6V57x7y@FXh7e&6)^$H=TYx||(SYq%GIkx^Ng#(Td0AX_56^HB(V>41XU+lmV z*7aT|l6HkaEBg-{y^aUne+pW{(H075PU8%jYm0#=om9}~$kFJK`0bgnra0uipqe!PB&cTle;4ocClMbmt9*{#qbT}84a}2wH5z+zHOfugLYl!Q78|IIP)xG5nw{cXY zG|3?$xR?f~ogV)Nny802K611OC~$=2g-`$L(gEv`9IOKhdZS&X*%Hu9HwM&20CIZG zkUU!lvia%?*-jObuH@WYVe`RW?VD?GmJ#NJnGAfK01nH@E%7592JgX=m9jB%@R6$E zRNm!r&EQGIu{I4nK|^c5TEK;#P4x-;Fk@hX)V3C^;$k`Ya#e7L2K&0 zZ87}As{$wC!L_k#QeFbR4x`gp^yxfydz1!!`rY{mDKP+g$7hP)o< zD!edlaX4BN#OBq}=UA+#J;wqwK=Hw}18Da(Zp$LP)_~_4;k7*HaKzNlP5lU_62mys z8zK^{48831#AuKL=~XIg0vZ6N#kIlI0nOnR(>XQ`n$L0Pinxn++Qy?<3bgD>&}#33 zh5RB8bWjAM`xSdfG&it_Yo7vgcO{TR_rT(%l|!0ENT~A!bW;KJQzby#_QA@8_cyE= z>V6|M16^EvrFk1%vL9j)k8k9y;06>D84J3jE46vvlh6* z0ik#WtX>IAC!swL!6bAn7j%?}3(K`*P`UyrMF~W$Z_Z&`1X}qGHfG4=8xanxsjoDT zz{Rz~t2^BcTB?9vQVI0wqp+{=**Ey~C>b<}_%dwax2lPYhqZE}?{J_~3fSXHSh`(d z4-5~+At%5Zf9CanDApfVz*}OX*MflNp7a?CbWed@uEch1Wv&01qT2rtrOmJPdHFc9z}-% z6j<}U;KmOf6X=l?TfBgucHYtZX>&IJ)D{JYy{Oo^Tx=-rgZo~A0p;1i@Fw`h&tPgd zM5>Eco))GP?Dw;{e zfH`6$E(vcD#%7&26hJ?6(Y`X%l04F=|Qfd#R3uoNpO%m>2=pDejEs%*)x7NK@U za=fp2m?cRdT3#B+!4lxQ25RD|^Iv1haj^PrIl=Gm9 z2)P^H2nSz;2QKMOW|}IzQ320}lB=-s5flZxM=xK8=x7Q9o+Jl$h&=$_lT*W-punU->CBrDl)@cIqKZv&OqheV#MF3C z2HP9K19NJ?Yb$`M@7jBw`7Uq@^zStOxA8pjWu0)d6yXRK`RN88V?81=aPM_$tm81& zeF822RW|!HDvQs4a-FI zE`)NmOB|k&E+)m;V4&;3VGVLvs+^Lk5uwxv!BQ4wD{IMULgf*t790E7>0FieytG?@ zKANLv$k83m8G%oKs>&j{au&T=n&t!YMrV_doZF2HVuYTFDF#dkE){6aAnmK*w@ay7~zR0z+npX zi1WEG=i{8-LtFUaq^~3R$%{Lx9B-*|q}?m-5p*v&2KO5DY5z-X{02+(!Ol69sdq#e zE@=k~XU=Va2AAZ+xi3&)IG3Ca4xapd368)K=w2c;_-`ZXu0TjoAUJf=N_v;Uyd%QM zlu#OH4?+_asN)r=)DX}AW@`!$j#A+^im1*tW2kpCc~rMvfxkw9PyONJKj`z;6#s&V z@1oZTwqbEjf%>Hal}g>vp-qLD4nX_6HmLQwN2A zOSLb+PzoM%U4C1`&JbrB8^cM=d_OnpmT>)ady?RfQZ76E5pDi&C3`Eh;xe0REWOMu zlmecg23`5l+?I{;g&jd`*$iJDX;+*HSxCiAK)C?Ir)xAou2bC}iOw)&e08)vnw?~z z*q+2q0CscggwSz-aE)G%C_!lpb+2iULJv7;#G5Xl!^7=d;H*yfSXhK}-c$-~uLOIZ zn>_|KhAR(nG6rXlcfqb(EhvHxhp!xq^u-rEB5UD$ z?sg4&iE)s6k|O+g2UW_5RJdsZE8eeQ{X{OcusGR8odfL+QXP93n*1$2ha*QFf7Alb zi>&t3wsfm&uMZ1nGV#Z$gHx5a^t87{o4L^Nw!5p))Jj6U>;_mhlYy>Q2c^pcBfSB% zgoB=!fv)g!DErarmeli7^@{rbLLHk5yrrI9hyMANp3IRU<9TFD1r*VQPM~4sOeXUa zbzCa*t@g_ ziya05`=pm!)}=WG7Bb0Toxw6;9<#<8tOucopAUPVNH$xxKYGa=AxIZb)3^~ zj&)1y@v|?*6^7w-NCc8yeu0Me*I3EdDAt#iJafb@8MEB zY%(cXjlEj2X-yRsgjzLaVe7K1%t-S{v0fM;yy1A8eYCWQ5ae4Z^RGHa1PZgWgBvYt0B2;U={XHDFN;#sfPyjiki-)Bh0)%U?f$=Q)r}A(N=ceIsYGSL_ z&J{nLx<(0lMjh1MV2^?m$W*#tMd@1Z1=p&r-a5t^$Ktu`l(-KSxDd%E;w201?l`%< zy(wz;J+s~>SlR-%L=U~wb}sA#96<6mvak_OKG2-9c~WCS?JBf9_2O$ff){_8vq+S) zpp^g?5ap1)hQ6x6FUf(awk9F_`*PsDUF;L#Ca0R5lPMh92i=)GDKnqDh`ANr zhlW$1bcJy0Fo*v{4*z~P`xt4zD*PS_FFE0;w7+x*uWI9PWpcRP$02BdJ7W+u%!f-v zA-_g8!b^USbi;jDm%GDWgjzMOQ$A=euLgK0>giz5Tl91i{Pr#UI8Mc@mE?yJVWVl{ zc1KGm?StQ=3H?DH0tdm1;QamzHJ5*@wF#%rj>J*hq0@Eyfq4Wd?~NPuw!e+K0ElZ; z+3^R5r%QNXNyHQSK-dDY5Gg)REZ)7ZeI^>CC_a)(l>o05=}s}nM*Hife$Zbb`XMl@ zMVPJq?K2Qoz${n5&=%1q**n7)A%*!ugz*?)pM^eEz?@cxS^KiR2Z?KlG*3jB>95%5 zqsI!E2kJ1sui5*euxqp@qR?xCZvTGGo{xgA$#ok56yj)|%AvJdJ;>ex4YKNMi7@-d+NYoc3YfhL7;2fZ5Aadym4}-eHuIxK&i5E3N{C> zKr^TP!2EwlcpRC8qV0YV;!|*clo&vXop6e+B3_KeF>l-brQvwrd5HB|+aX*WLJ-9j z&cQ#qhKe(qYwPhf(kv$MbU|RifY*P>+d6PH+Z&r6X+!a}Np|v!5*6|bD+=%aoZ+d!V#~p>C6-(pOTtyldCO;!p*a5I=4tRJi%_Q^i^WZL8^1VAB0P!@MHHEJ%Ze z4=QNMOfCF^=zFj-cu5uff;#w`sStEjzs`aV3Fm(gF$=wPLG`f5(*d76RO^o~%+BY9C?8PnYMFo4j`Yt zPJVR04Yuak8^gwqOdpPQt}tx+R@(p<&H}-Y$>9&H!=IdOZ;l>t!SBkEv*y@elWxnQ zY!y&6I*Yl^I-<~!Y@EBJbv%z54(HLylTu;$^j#NI(vo+jsHKL)fTfn`!IUy{!HPmj zPO&M2ZaA8f#(pE_gIWgMpo6F!^y^n0_PO^@Z7V!s0jRqV#S5Qfw$4#Dy#N zQS?_GTtniS*lK7CpB3<52F2c*Nf|(AQ$zOQLWTxONWF}l?;w?-2 zP+5u#7DO#)jGxSLc_xwe&S0y*-fb>vDUs zo?6&U(kzX2z3Q9cEnZe`0`2ILJ7WKkyW3c-17Xjwc-#*I54=ay$PH0CrflTx$V zRm15kUsc)`NC0YE1klSAUTTecGCwY#M|J8=#Y}PFl(@*0ohG=t3gm<-DF<;>!?0lEyd)gq=?mVVfvMAW@i;ndmkjW43V6wh-1?TE%@EA3$rzKl68k~z{IOV8l~MdxV*YMCQD zMTxfd93i84!ZEaWuUKrQdFGJ3V1Dcjiv7ldrkbPy;f?d%lXE;>F3Np%2Q|d%^=w-p zv*s9O#|U(e-FTc%iR1as!4sY*sM60J>Q;{rJ)b+0Es>$o0rG?%at_L^xSd;$XDn$L z%!^LMwu|@7%Dt;7HwO?|ClU0hgreKyfm(mU;(eUpqNq^Pe$E}u@+Adb z91jKOI%4y}(7a-N`Y%W_yP0>xKaY}Z)vqX<%kl2@ku$Jttp#!hb&!QYmIYrAyuNmah50jWdYX{0aKj{S8C-d%vSW zft75&^j7}qr25uNpieaD6U=m+wpf;D?Qd9&zjHaalm*M#e8IS+(VyA|_zKeGBLlp~ z1oo!MneX8SORhp|ENSzFvp<@Pg;^BKXQ2{Om6?7&kKd15=v(a2;uaW5-iqYq<@+ zd%Db7?lftL{qJ~bo*>8Fs;yCoDxN$u7ZaAf6-5d9<3Ua~i-0FOj z3r5}KkA}NPO*FcV@pK-1_p*Y-ISHN=nExA!nguseJpbYkc|k)Wv%Sbda*ZM{h!4$h z*N{}K;zIB;dz^jnDIz}mX>6{(7I27 zin8I#o!m0)c?lhAhSCA$C>$DN@ROorQn$Z}*a2rFx98(cFQWg$Wt`2*|cLi);Wk8fZi$Kmb25w@C=E7~d#}4|>fO z!W;H6;FJ#8ef;Q(%+`}vdjgM}Aaxz9k}11Ae3Dy=KhsasbEKvxiiBZojRdV!LGGd; ziG7GrzJ2{=8ppVdyj)>hWp+~1eo$$mXkE4kwaw@ed67IZv_lY&tBaf6zcbhr-35dE zME6>NZ6y0gBL7m6-f}QJ&{l^1scBiDYe`mV5M+yE)zAtM$3RuK`x?3(i?dU7Nu?+M z@uL!XV(X%|O01`ZWU7!EPh?aJUdRjNbwg}rSyu&_Hp~x_^y(c7y=F+{G!+R4Ou%h) za1y@N7R{y@IK=@c;SDCQR0kw2hlSg!u&oA?*B^z(3oR)iug0w($QhRK+k4FBsh##4k^*q+;lpL$#Y{mHL7aIlg1I29-7BrQG zoMc4~H33M@VJm)?u*Vi{sp}D;3@Fy-L&y47+9csXN$5Y+;0{u_GfLUIVQ$K;s{-ny zfv87zskE(*Xg>=D-&H^~kiH|v*3L4=A8ocqBekkrZdRFJK41$IjcI}0ryx(4wLN3m z?T_}EM#C)ROwoWAj2jAr#!IR7U+`ul>|Af(JeaTA5BvP#k9$?)l9tcK+8VKvPJXTz z=uRbH(m+4aGv_s`#0MWmCWycl*S@7v7~c5H1h9H#mhLq2dn=Xewsuu2d|3+(+4L#M zot13W*jR~tQAOgYaOtRzRx~Qgw|)y%M{3;RI+s@HoUCF?WGf~2LzRmGWZAt!0vF{^ z)-}ROp-5o1OoP9#!zp?HsfHr!2MPbq2aX~O`@d{;+1DEF$Wv&cHIb@+N!p((%}CW< zjVdgwg~%6Z#G5)1!#HDDWtU;1IG192(KuUnyLmZ&@@4VHWO*v3 z>Ls9*%9PlyD%M*{6{~B*P^gA%uOlfD8z8F<)?6ylcB~Y$^As(x;qc$cw{|PCF?cf+NTg3*GJ@kk;DrMky8^7N=EaT2C&dM z4S8BeQnRB)L&PZ{&oGlEPcaiUI}ToL6vks4!6_eW$OjsddLzvmLxE&Ttg8~;?GIcB zFg7oMe|{15Q|&yndB{hXZ#D`J^NvOL(FFAJ zBS2gi->f-O_gyJqjv~Nouk0e|qQCv>uvwqTW&Nba8%B*s=l`IyV-w=EpsvaHeh`OzQz ztS_A0?QEXmey8$`U4@%oR(2H@bg`Ai*w?jf?q2ih*WBaECAnp*HkKKkZ>$49$*Xs> z?Lza({TpK)IKCF6*_H_Jdpa#*<#RZ!)IF9Rk!h=B8KTG>^E`Gv4fF(2+P?kr-Of!7 zr%~O}aGE7Tro*-n-JT-eWywZ=GH_3}KN*xQr?uG}$`AIk6~|~aN&C$! zjaK?R7-Xx&4=qTE=9_yXAN}l4z>od~kT;g^m{M6z?-u3bkD&P)c*`imDTQcG{`4*p zp@dd-`Ko7Ag8Ah>D9sDsG8emr@J1B7uiy%dcRiO&cH;v&rMRzEYh*~MuS!5GxD1ax z)T#=1_Cs-=q;V5&xowG6bF<+9q~$=BLF;o54Y2iR{j}iEO0}N3<*^=oq8CpXgd%Fb z0eeS6m|iN3yR6SSSKCEw+^!n zV#Nx~_6)@vVNWIDD8ex#Z1q^0q@}2|ntvKGPUfkF(~5KFh=tLtxyEhco^w~TTI ze&en~NY3vgQJYSYawe&A&`a&eUe>_lB^V$A_mhRnv*iBX`tnCy!y^loM!eXZoU-f- zgcSAVg3c%uXfl5fvDEr*L^N#rYPjBbBRr`mLd(cfU0dT7j6}@Cm-ljf)xteE)%XloTFA1-t&Is9 z_LfF{L#LA8TznIAyP1=1rP&u!+dZnbRFOx#YHP)IX~-QwGh2gS*5OpdzcLjqui|$MYe(KutevzB2|IKeViJDGZ0QiZF{P2P-nRAR@Z zgl|*{Zqrxg19r78$|r9|eREV(`jF0br$Y#T@D_5xT?xOf!jTvqS-wVd=``w$6q#!) zkA;pib73JIlTm;s3FUCC6iDK!zqB@bH<)F_SLQ|u+Fb?iMv0QA(7nyzT^Av*j&`*U z3Rf2<;1Dq(sIwvn>xDx3>%ZEn@`n%7!g#aaogtWZ^dqgUe`&PJqT+m8MGFoP6Y$9j zeB5HJ7FubAEmNoFmEmFUp?x~hAAEv;I2jVTu8QST1CHY}JW13g8clp~alUgo6gstY za1qi+{@`o;!`O$+CSa&PHvq7>%kk{@^G5!`+%=c}YZi2p{`C#uORf zc^3)vL=odHEgnzB{h_^=K+HpbV*c?jhDwf!OKq_@fK9+z9o(BOs&#TA6ddhY&Aa9@ zqZ;1$D>JBgTfl8)a1JEF`l>Lus%fmZM(p_%;_44Ed1N>^ZKi5r$^Dc#2p%X>r>D-S0Pj8 z7}RWk)EMuy47;phFX~vguZ8gNER2&x-lJk3J0ETb*kz9Qdfd${TPd84gs;pwK1jTj z-4G?mQ%O?guQriBtB_jWGZu+>MNpyg??>o&Hugtv;Ga&e3`>UcQPFK9c;t=dMR}|B zVxfqP#Rw5j#=>jZabKmy@T8(`l_?!89`O^Yq5j2s3)_U=Z9}*<6g4iF5|=0vA8)XA zv@G%me$PLcyl3#IsGPr%xT6Y=9Ovv-sQqM2+aUhIHB3St@<%`5pH7RMLVrN%JAIR_ z0=q3mOdP7@VY(ZgRfX=xtdKZVNvC5aia)xyNNoAI zZ8)D64uejXa&X3yM~=Iosmiy{M45PSGA`4^8Wmj*7N+=kT16LuRIaWv{-vOt9f6kM(8w95^;8RI<`Q)kyn%#yow=rnq;VU-(0^`#v6b2 z%jXAd4YBT<1oTz~-~c1)&Q#?P5WWO z2aLipQ*6P~Rm2>si9{+=P30=wA(F?{v=w7ZBopfqJxp&hN0#bPhUXRTP)y86iTzl* z7|gKx6O(xg(|kuI9P1K2aB7xW?20psr|LQYKKtXG69#v zp?u)=^rHN=^O&B+0B*8fT|OGk*S4_Bbxvl-px*YXAJM+=V2Eg|i12o}4j%1*i4`Zx zsJMC%frA`Di~f<`7TMRoU|97d zgS$rIx*KH8u}IOR=7;{7)DAoL8`2raTZwc&so>D~YKsMlCenBQN#x1rf45aeZ-7Yu zD5N2$kds$kvZZ1fq6zn>f1JCM7Q(M~>{ygPzKm8g79=)uuJr{=&V-ttR*L%dCAGye4q zM$tUxbJyVwICoyq_n7Il<{eAx!ugQ!PSL#8mX1NZ%?*ga9w?EDCdGH?BE<5&5xMAM z;aGYhBF8L3=`z2QSCKzs13lX>{jx@<08rqNJ&%nO|mOjY%56k_YB!gK0H0 zv0){Y5B>)R?R^tJ8{rrHynpc2d~~Fi8(?k*W4}raAJVK-3Euw}Qf!G|@FERN-I8eq zwm8c%1N@B{?9QIJy7IQIDlQi%8<>*!kOrotSbPU@yla4Oo59|sh?|Es{!{*hYvlW- zyEHoa_Nu$+d&WOBh8SZp&fpm-@H#g9q6Cl3>sW-peh=efS3|^_6=L_3Qv)&q~r_P~a{<#4-#c?hG`PY3oxMw_+&ntyN!pxeTa17lc+?W1_ zMxCKksp0r>puIZV^N1&pL3yWYhlXP{o*mvPm>;U!DUxR|ofOQs2VvrEhsNHjv%TJv zBa<*&h41;+S(;teKo@loWos;mD#~|;*vqoW$A+21A1em&mKZz2?ZG%X3%1T`0nGn7s~b`Iv@%a0Y`nd(%PS2O{jX`H^sYMb=m&HqeO}YRKR> zi`lC&tJHafio^&*276uu4fTSkRnYfePpg3b-&J7zzoWodP0(hBXA-U?w*AEjF{>q-1f&l6H|$U50>TGr*Zk=FH+SDIIeX5jXoS&#_+S5UCt8gt4I=rQr6*Mhb3uY@}eVQ_8;Nh`Bi> zaCQ^mvPn1YMy@fH$tzB_o9}0{KJiJ$0j0W@m1_VN8~QDP?0Y!g4jYq0dB+l6%kf9$ z?NMx=rsQ0ywV`UsEfs(!$radtg4IU|4Q7R9?>=oZ5_)j`TS%t?|flO#tf3lXI3H&WSi z!;OOsZhwGFp5Lo$FURUycvPmN9q!(ANJVR7y|-_g)UfcK%Zz|@ut!d!J%MFf_}Y_5 zhpza!Fh2n9i?tryY|L*Z!NEIO`1rT&-IQ6z_7*a|I2`dql%VduNO(PaZ8l93r}z+M z+}pBA8ti2aM$TEk0jjc1684D#qZ%@6kG&|WhK$m@Sj&t^o}YvU*Ln@TRzs7Cin}tZ z`b-Y|BE?)##E6>}6O0qtwJ&`xzf#q=^!fw%xvX&QLdockY@| zl#gkOn)k7WexRYDZU%p=8LG-;iLR@l3vS!dI&Gd2!&g6>5yG1_1hqCZ8>oQdp#AE?O};M zs9>k9!*Vjh9!Wz-_zR7=M<>#VU{GtgXPzWF6e8B-m*lB;GfVN5OPS?(=>Y7+$knhp zI+ofQ4celeQKqnA`BHr5$FMxbpO%S{q6?Sh)#ZI>Qz?q?&BKf6n0|}`ZAiH~QA|k& znt*t&y}c%DC+V#f`iy2+MNRY}H!`F65lenqKDq-$q>3MzMWA=;PXtv<^E#p_`jQke z&MN{->2P}p%df`gbpm&^KQ4NxPvvgz3~rX>t}=0
    ^`m|2n^ev}!^Z>6D(UhYo< zx~i%K;ld0qNCn~ua?TW9CdEdJm(p5XM;*}(UUapv;lpP-VboES+*m3oIHrrEe=E#) zmU7T&3K}_?+>v1~&(O*dWg^;)2+^Jc5zR3WQG#cG+PxBAaH3~0hBlxs&Zv+HtrU%a zgQ%9WXS$=5t!)rl4GbiUQkIZ(3Vr9kc3kb-!yeD72ADH$r2wOpt;lEWHA-2U%)y1Z ziL8$#_EL$sZ-aPMTN%_wke-34BOztg4zVVY5^ijqH3f=4NJwr z>VEcUexz!TV7_I7J%W8E+1ph%hMc>zEgEs-Q;9X%Rmr(z;xy(v`k|Ll|1+$K`AsAK ztPv^8emwwLHmrzY=Au060ET~QvpN|D{exbXK=D=`?}bAhkeL(Qw>PSy1Zbpy&TS+FoBc&g1u>(xFRn&sz%Kv>e7|rQrL55VMy7g%YNz+#AE-1 zEIY(3YoK3QRNvyx^dkI&%RNf*l?QMZ)%#MyLbC*SGX|4AU-YQT$93#cgtvO$9*t$A zrii`c6~-#Ud?M!}dr;23SJ+e9Q!#gA7>c=*Qsxh4nKapoBrL~wTYx@7tvP@1LeD7KX{g4tPNEZDnV&oEE<`Y{lx~R=FQ|A{N{tGEo>GGhpF7H46MNN( z&{ZMOm8U1HcFYZq?HR>yzKC@1{8@VQF7 zzV5Op-Qkg_B+6D(qAZ?(M9DUQmlYs2bl69&`xX z!Ix1@g$EghK?q-a&ZjW&x*jA%@rCW43E_t(LJR_&^C=+U;pcP_WX?;k*s-`!ifC*W zfh(LtIe9mUxHZY1gxNw9J=sfV7i97yf!xXOZaRtnG|T#nUZYw! zNwO-Ey!nXJbk0w&p?=Jg_*G^+9q2<5dGc%baGqZ5dNk^E6Q29W)8zHFX}I*{l*Au5 z<7o!lz!yAIi)Z|SEK2Q$V`drO_{yM?2UWdDENljFw*!n*;Sx6}?ccG}rU&wfdDtx! z7Hl*i9&f-|sYUtFt6JM3FxZo4X+|k+7BX4gV8f5F>-8$KJwnS} zP$T*{Z`@bEExu5)7!sH)R+zr?E>%CCk`7oZ+v| zv+u&nvhGeyO$nrk z#HKmf5~Mn))}OuH;RY2ooTNWbzT+-zz<{TmN1J}!LKMM$#8+zb11F3*(QE5b)KhP+ z-D}U}dluO%uy-YIj+uA%AUZaY#q%rkPZp!dnr(*STrm@rMh3on9}T{J61v+AMQ^DO zj*&O%httGND5}@*Ek(V4L!$mLqp+bGdv%xCEAV2U_b$sHErXI*&19S#W+Kxd*uVw7 zgLvf+;BV0=v_*S8g0KA-1u#wCQgUL8aTu??!d`=~DUlz@@6UEdS;CATnI@p1;J?19 zOXYUba(hqKO5$6X@fBCtr@`zb)WmD#pSN+PJ(;~Ic_Ym{Y~C)(XOzgV$YU$^M!#qk zD)-@j@y~hilu_Vm*VUkmqE3)`BK`L-sAh7PQ|`ozgBT0N9} zgH;JNdR~V9o)QzHN@EijM4kK`qAF~_2uggYxg!=EYK)*L5u%Rsql7*|yu~NTfzL=W z-F?K!WGcf`WAaP!q)#!H)=h(V_QJ`SFa;U&BM~=g%z|D@9kuMcKE-70-VZfQdb&48 zY8FDa?}*?0P*Ld7&?IW_QEa!=@-wL=g5e6R9Wdr=i_vL28-q-eeW6bTUw8%)6Rlsi zUDJ1q)ORDEVk8wpgud(@5}(3*-c?3Y>Eg1xQp+#?a*v|k)>K8s;O;h44{h3Z^w3Hn zvx>pV;4X*r~BBD30V6T z%1`aLw`PB9$a@-+D#_S`_EMJG+)~OR4+pEk*Oqg%=cF-p92TzaSD6QYiOcL}Hgsrf z$tsDT%aJrC6_BVIy!s(~S=6gub}xlZGg%l-LnG>Bzv{fqVbnxDcv^XfS_fzNr&Hn9 zQQd(HeArJNP zO_**x_4@T9eEDe%Zyu8pzVVST?Kh;(j3@mAc;>|Z5&XqH^@EM>z)`OVrB8fFyfr6( zH=cDC{o%V(05ADlf5n$T>1gF^$#RBKK?VhZLdk- zWH%6ATbpP7VvolfOFzH~{()3@pZ*nXr%xsDV>b}C$-ufwKdd$X59_y!n2-5Mvd+6% zJ6*7I+?;`d%k~cpr#U(-vGhYe>7Psu^PEcvsibL$dLSRvlWCy`6!uyHNhiu6! zY2Y9F!~f$SPl@p0ioFtcVG+I#@7{v&9=-XRP5s08jjPCAHTmrpK7}lnU^e&Tl>yfP z#EM9vZ(ko^R_?&!{MI!T*uBlHo*IkR&KAqD$BM<0g7uc0m9hxgv)JE=`>nizk^Ip< z6fMneU>DsRX6g)$O5NzF8}>3{k))vRa#Q!*u(!jBkES?o)d}LT@erF`?6e|6wwrLf zinBP6d2BDu7bXuX#+^1q^s*UvQ3Fy*dbs`|RL~BLB1A?RO{s9yn`lbG)+kEbvydor z!zn1rXgDePjtpAZ1y5`#Da||-n6w*ftWg^16dEZHzlq|&Dk&p8l(=c|JB*ODV9#r) zp*o84ZLM3#w_Ku@cu>f=wRrZbK~X%i0F9YN8t*-wM~(T!+bH(Fk-VcG-uN4+5Ox%E z6y*yY{VN$e*AHpX13Hv^BIQr?Pj5?Tz6T1gsKpoj**}_Byo+WgMlMVf>}cN5+6uE3 z8r{PnP%M_7i{i8#-`Pv4XWz!CaMHj1EAynk&|!)(zBJXiCB@q&yr5dsP_fcgR_Bx{ zI^0LS(pjQA_@LccBN02CNTi9H?w3k#)9D|$&16ZP=tHH_ATe-2G;jG31;GTr=&?^n z_j~~K#}fUK58Cq3-i_bst+x+X`o&RWcHkp43eHR186TWG3pTTmzoK zU{56Vp$`=;u3EfcM_$a*Oh=UEAHU?k{E{hU$5_zkt5e*_)-{W}vo)&dT6}Q&;F5eG z!+d)++=}bFcB67}k84q56HP?wZyxZpANhJWd5qG4Ku1&dwx;NtQqh?RARU#s z9|bvTvi*{_SEbQn{nu*e*X1z**Q40y8gi$OMBaai*(B|{N~6WA)GI8gogdGSygN9E ze;I;4@imQm#V@xvzZB}Iz)F-bY!rnnCPXimBJPD}Egl@rSAT}Hluv}gV8u$94HjC$ zFqo1Klwq&N1{UGB!X0H;nv{^DN}$CdN9yF4;}?p7+g#%|(YchqcOsC!VedgTXJTH}fAPu2^t#w4pMXF=!!1rnZ(ayekzeL=5lR1hKx} z^+^fy0Pb2|q=aJ^`x@fJI0Sw`V%9_RC9YRIU8S2P9mUx_DWSp|IZDj#XcBIf@T>)( z^nI_#kQh16Qo5vJ!V)D769N;>Y31H)$&NBSE^A02kBdPnN0l^NuNaD4xgLOOz*1!# zwON|vrKmh|3E~a8I3$vnuZg<}n`^u#*sUs7-8Do|nJe7fXnwlHP;ADih1@nqN*Lu| zLfmyosF*thi+~^D+@cpWF~f8*R7-ZNfKq3LgnyvIX%>~#&nh!Cgtv@EaxB%ji*+tJ zUH^)XME1Speyeh0FJga>kt}zHl;c-!V-fII8u##1xYOd{%=aYsj>@G4^xZ1K7jJ1a zG<(g7Oj?3goX3qB8qBv~^t&dq6T{ZHsnxi4^r4TZdVO>n-yPc0X z&1*Sgmi+p#qIBH^UfasUZblPeIAF0BhO>mSHhraoOfA$ZiGJjUT;OBC!u62 z$1NT8Ed3PbvkH^O`HnZtug^nUf%%M?*BoS?x=0~Tmj>Tb58=mAH#U_e#2_>maW0uW@c{oFv*8te&Itndq(($ zF)_NR&hcj0?Hye(t%tYfAtH>BZZ-;{Xslp&I}v4Q-oa6irAuTh1xY8d zZSL%-#IrUJufz|p#sxT8-{NAX7XBnOeY%7Tolsegl@eZ5B&_M|7;G8ok2d`2w9u}o zqE<@UhYAhrNBdfq`J=t>LnHItj4{mP6jqbwnKA>*Dcr^pn<3cmWsGc|F%vrxekF=& z#Q3K&o?Py`*ML2eD*kJz2!y=!uz%SDW%-Ujr^ShFAL3eR-CTD)3P-WqUVBkF@?1}( zX05V@3m_Zrao43J0ZEFLRKE?c&Lb}k$E~V^uq3OB_>r1d<9XUP85&Jg1r9nP6i zRylWe$C8|Awv%MEnfr zoH8fFaREn>g=_HCiuvIH6j_CM)FHH09+|c+a;7JTMWpQLSC&ND0N>tQ(9fON!B21gA<4WpEf{Ewr#I1^sH z6+;g+OrCI14wLf>2aQt3FbeQwltv`iF#P(BN=8Urk`rsmGSsBC0%JEJGhltPubRtA zO?3;&4&G-NJYbIjrWGUj5edU0WrQ|_ovEN~;u0Q!g9#{2NLXr|+{k6Y$ppR<|G?)8egp@b(1nyz^7I`8v3Fi}Jj&yX!`eeLN{U3L(e2cW91>}#*`C9*-0!Jm*SfX&} ziU&ojwfc{Alv&QgNq~&x2<@1*)KWJ{cdHAH{2c3?2zQ)dKC|k zy0NFnJ6ehRRD4mp{i8^~vM)hDm*n9}6%P;kb%8Zas6TvBl!ahna+j-$yR>=WsKD2> z&n@REsmFepQVZeyy zk&_)=u`P?K)Cw;*8NKZ3QysNLz7^3j30mb}5H$k#PJ`Kg zBz(FV?)Fq{pE#OVnIC)|?VwYBB^>uJfilAH(~%Jh#Tx1UNRv?(v*6ojpw*7epMG?| z@1IN-EiwxhO)$u;R;)4j;I?KJKJ6=<6h3(hI@;A^&EpPLVvR1WVo!K+LeNrH$Wo{f zHk6&rsmxC^U7qUdR`tdxD$jJTYFT!f>Gh#ked#(sVoy zGCP6snfEpJLNA*PgA@>kVMXy?jNT!&>3`hUNj+5SSLRCex=;WsYR{qmjLfo^z_5$S zVpqJWD(X-4*w5WXbEt5f9Ctm3!-(lT`Qy>8sv5^m7m72R=8;tNUvG+%iQ0aM(T(~B zF-av-|11`5ZkC|IYQ-7mQDAHL+Pm}ND=^o1_O9by5gkkdt%NV_zURnPhHjqKgOVNt zSE2uM<1cs6@~a&U_?i2TO!jsbkN?}znJKc20O*792YtG~y7nkp1GvGC_clD!sI=H)7#Tjh6ZK7Vjn?ETw1V?F5j^6RQpI^>cUL$YBe|m#F0HT|@Pnfw z&)yV(`3Uz>2`^|uhUr46&D3l++Dt1X`U3@R42ebTL4mhaqb=5HINLvi588_uelKa? zsx%rAYq8JKiG8Kf4nLiSBiTDnD#Z_e;V8!LN$wqg+{(OLXZ-NX#uJ11)P1PQZfRoj z{D=|bI<0=mDaI3@4Gf7g?Odx=*~s@OtIPYiIh7!0tocm#j_N=_8tbQyU&Ivz}Rx@o5!Z5h{;Tq2cRgr{gPfkidm1d`&N?W9q@OH!G4 zw_!=kZ<-!Id-d=gfMJiNMh~P$0MMostl-r&x+gWdBQ*k*H2RU`rSL8rmBF@YALNv^ zwB(k0&h|X+m^+D@RW&D3-U<1AQyD+HW* z(=A|@CSZD1Ps^Lyh@XfcvLU}7zoy;UZ^8~ZM-f*W{pM)F)~3l^1wU1s=+A#PG}uuLkgO!={wr3nQn?t4~gA{1XPBt*B}=Z=f_qdMZUH zg=gd7Nl%+Yj27T2ENRT7~f+ff;38+y5e&D0{1ui)7vKA zrdzI)Tz)p&8fvJ1gHTlv${E#-QkT~ z$YpJ-8@UWWAcw0)K~wnZU5XSM)ShHW;RE-h;H3pYFKc4PSNFIam3JRjH;Vpc_@&5a z2#f6;Vre`Qq$EEZcOa3y56QlnZ6S0L3m)bplsc+S$(dLr^u|B7?DKB)7Z5r8;i@ zee`&{X|T>ZjI!4Cza6F7ObL5kfpJPjD4D>|{(}Lg*EHm0FOm`v@uviQC=>A8YS`Ad zuxoGcxaQdvIZ5nD4Wpu5Tpe}OmyqaNNA8!@y)`^5AZQ2M>K_;4gwaPBsrthJU?lLp zM~+0E-p{FSWV=+u<8!xLyOQ~6^y?U_$rp8ZmE<2i#*|Odn!NjJS6A^8`X(9M6maIu z6AZ9C(e!yJ_4x`~z|dJDan~9)RWBoZ@^+fU`Lkt(yQ?U1`?f zGIl66+cv$ST;sIDgDD;8%(Q%9CM?wnm997B9ln`fLJ|&n2uJ5&&GP;rXDn{fH7T;s zgYldg5bW&2u6e?iD(b9jxkAB|;`aBNVsTbQ{%KKXS3bOkJ%R^>I6n^jyJkqCiT~l2 z`PaJ{Z^J^J2lThK!kqi`w{64y{r0(H&I9ak)N10m3Wz1AhUMsgxEK8o_r(9r`Q@5+ z8c;m?nX3`M80l=q-l=8ycVC?BWmLs)^P{7Ds^T|md3=<7scEz`fo=4L!|^H6&ic6U zP=r&wXq|YG&a!Ixy5ia5&UkiG4c@tgvpNn}HU5#w`iPO-V}eQV^PG=vCbBJ?N^3LC}|Isbyj7gB{%Y0X%c2NxJufN;EP^% zqATS&FD`FcdFKxH2E>Wx_K4bs-Jhp`DSTM8(qedTRZb_iTM9`kjsj?6Wf#2RqImu~XCR-k$eGA*O!Fz$PRqnQ0kB#O+2fqG*nJf-D&CpQ?i%uy{B!#$ zfY8!2`^oHEwvJ&$#2|{-tLz-XO4l(Pu|yrih>9L*Rq)G}YFJBEXH(Wp3)@%^yGWEl zG1X9r4N(DGsySP;ff}Hn9{`G=#?^a{8#d0y*zeo+~|qVy%6{E$kD^%#*T@5 ze(1|XN^{%IYsJ&8`&+&~~GHm;7b_~DT0AjN}i0&P+z&)*@vl6?kaV|cEliJAHmKCl` zHis57FQJWct&y`M7L=S@=~JyedJ5so;J3TVBBq*$v#yELD$Yg%LMerDHWFSK6VXb9 zcD{uorlTk9(6=GJojGi4->{Sok)&jpr4-#1Ua_0(IE!+}+5+A<)1dN&neOWPb>b*R z=WBJncG&=fe%BIq$?}Ga=Dkv!EwF&Z6q)6ULcFf8b;h)ER%2hQjQm#4I+i15#+UyO zG+}%D$L?kVTZb)>#CeIlTSsSOhNqW! zwIiAmbIruJ{1b5u8!38b!2Dooio+6qFp}zx0cuZWyaUY-`qShfd|J+-jAI=bExHm9n zA2Xe;ESM+XZf0O$eOW+P1F~*DB6<}$;VgS|ywm#tOu-64O0tygS`-&Ra>Chc3H$AMCA37^xm$pfR9VQLxj6p~G zXK$#jW1I<=AI%z^H8eP7XfR`HZm309fMP@iL6Q2D70HI89AFHaLVQQTo|yFDk}=pCjk1(%zbh318g9P`|Z z6Q3V8eB_Jb-QT!xv1)neup0m1%Zb)1L4^ugn~RT9;^RDCT1(@v&H>gE;ze8o!>*7; zk-#yLG*}(>xzVnT+Kl$;($}4R#o0C4&KjQ8ewH6{;`xsK?(vTdP5Ukld^5f1Z(7D1 zu|~LPeruhx2n|iJF)jbcxw9+vyx@~KU+tLhet%n}VfX-8#MsyQ^3SS`(=n`xmbgKyivyn<2O zKWFAp(_@I4Gtk4KT!9FYgPAPa=zkh&!KArQLj0HQj|FC3=NY;}H_{cZOS*O>v!w7@ z?TwS~hAwbUupC!pXN{7#f8f|UVFabA{7pkY?(gsotKqF@(IgbUwgOVyylZ`ook=mIUM zuj8_PDun9E-5TUG|B%>~s8xSg!>?WGOk}@m;eV1THxlPHis61F1i6yQ6#rY3JEXDK z_WzyBv!KRiCkbfmaT3xL4l6Xpsb9hojcO~lu2Bo5RY8xX+q#@&mM&EYZ|pAlTWRDL zjXm4m$pUBA!bgUB14i>vA2~a)L0Z862&i^1N328ZV5S-nbw&gBx)$&?8JEfUMyW2A zeGErguZExcv9ktStA$^!hd*}|QJz$Dbt~BmKc-^hKS4|38x3>Ri}7R|G1S`mQ)hkV zQ~|$!imsqd16;?Iukv_BO1VJCYWGxFNE5^MNcd>pWD{DuL416)OC9S95HHfvpcn6r zb}NA7en=QHGE$iS@6*`RoTeSSNt1H|c&+F)QM}mW>w&DTDs0~tG;Gres+4c7n)ur4 zy{(vX8m5LTxeZfJ|1m2$n3QA#ns_ZGy2BmQ*2K${o})rO*^XAjY%^q*23b2D_cRRa zye7dI7~QNgQg=F=VUwvTwLaDul;p=}tZ~m@o>n1wpJAZogc_O_5<;k%= zE`S}=Ra~h0n|e|ge*79nQ@jB?>~nU(!YNb0W?Dc>joqKGsm3Q&aCI|;-v0ti;gVuq zI9w%*kBW75_K~#TIf18FbagO(yXt_mHUFietEtkNo1sZToz{pSI_ONofQh2xm(IqR ztu*PljzU{-8b_SlzmZm2f{PsYU6rghvYq#Jec zG(TI_h;(Q*MEaH~dCT$ciC7sxYjVgq8@_Uu#(7ESYWNrjM={icag@-M#>>CPF3uD) zBIX;kbeo$Ih^`574ylf9jwS`f{dw3cXHuX)g~nAa<7k{TSr92>=8nCrBW%?~N zv-clE>vuk}l|+08?MAii7UcnsDKqI+>j&ty)vVVhBUYc_R#RDeQ+BR+94`K&8L|D6 zGmP&$j$+}gnR80xkbBK(wYC<|Kj93-eZD4rx}Aih{b}YDcsP`+5jDR~<~W6+->S`( za(V1&41ZMOw;TCn=!(sKlP0kBx^hNo&{hq6_6&vw(kZZ#Wm?e-V*;Z^b58=1m10h= zts)D}7gSQ8bI4D_%%uPPKcr#jF`oFY%J}0v#uMk58MFT%hW$q{wyBI^7r@wTW?;KN z(#L;{M*W2D+&PtT?${$0<%F@}Dhm0b8GBAc4bf3(!jETj)vyDupk?-!7WNHqSV|DY$DAPKe=OUX z!uF}a<=M_QY_|sd%$pz-(3=B(RYQmWfm=U+(n6n?>YTwhO6!jA8o3VZD{@e)K2Rw$ za-6l<-x}rKQz&z;W8y5frDE0K8<;r5UhRH9rFV>Ykg@G%uKBi`>05`MflNEElo!-_283gE$KJ!)N4Y1@jp zf_R6&o$V~Yn2{I!BB^j0^$*rSK2kZ+|6-owUo+zV(-F;|-<&L?7l-2~grmSlQT)OK z6nGU{nalgKt>kErkDD0ZVHfop+I>v46w(N`wfQ7rVlN#U$ z9YCg?a&OCXQja?-W_gfn9J{4q@}7dR1-qKDlBtSerxeA~gJ`~UiciLlpcmYnlSF3x zFvQi6HBk}OLtV`+81(Z+VCD-i+z2Wgkgut1=xF#K&BmAStIWn%2zT{h<0N}-fA?(s zXhJCkgf-Q7oMmA#R{~q$4Ttf;2v>az1~;LC5^gTSsZI6A5w5CiyBcmfX0fJp&}(Yll~K zHN=^CUc}0ZaQ>goh#!3sl)%u&Z)BRsyGF2JoTniQTQb_ic-LrFB%KOdr9;H{+V{{G zcOODkp)#_54KU41S2ItG>|9S| zP3^aB-oQrtjcwL+{Z#7uu@YlZcD+~p^F&#So>MWqYr9&o(;DW4ju9=nfPjMFLVRc4 zJ*D}X)}I&UkLw^#_tU9WSNLvv2yfoz^A zv<~6FN9^vxU+)4*gI40>+s@8(L)^CwT>W^&Dwn$BWQs}6oTS}-C37nd))5(mRDHJ* z^8Y4^q>?{AA!RM=dGZQ$SHSY8Za|s8-Nws0=F#}7OwvoO`R`3o2jS^W(zlzUl=#h@ zq(7Tx3=y)N=~rgfuU`j zL^l^`x_Nh516Qf=CT+x?4Qm7@wCADv2)vcXZ?$xVu_h>)#d<+fp;wA)AZw_pP*190 zvS+}-hwcO#&}$EFCT)c(Wt5Lt_Cgz8I@L8yJiTImPIZlB!!$AfY2)j97f0-=CnJM} zL!NYcGu@TK7HgpwNG0bP>4Z`Bp*!3|C?>_(%E!Dx8&u!Ne3kvC4d2lQ{VzPd%64vx zjB`{Icc_i0VL^Sizn<{E?Oe&YGD}VN!nfOm@I@c&`43NNkF0-N1+Q-JdX?pCV3#Qs zj(2dq$zt0oKK*G&*E_6STeG9Yv^5;1B%W{-3+~es2@qE<4VxIZxa4{~@|BW>ix%Rq zIrr3-SthfsQBHJi%WHIT4PbbB6W~f0*BI7G6W6}2ueF|ZMO8FK)$_Y_SUpI#cW+n_F&gBYrv)skRZ4u#qfaXc1@~Kloq`o_!jNyLPlSwv^%P zG2KxSxqtSO_*ubcT}$vGV+)7K7#{WhxMB}iW$|Ng3|IDm>Kimg*BOf9AURX=T?mAP z&E59afm%SPjOeik81!H{H7i8X~b2d z7e*tlayzwZZ^(P~b#-AGD&s+4)C*nAjE-IgR*>&J4$nGU#vY2h38eAhZ0VLmzM0Nl zKn?BeN-ta#2|-oizyYoZHou+Wa__X`Uk-3}XLx!e|H435AFM$$MdMAc3Jf{g4gcQ< zIQA>i{_h4j_@1wQYQN8YRWq8&?q(0w<0<@`3C0Quy3caK#=Vhz%m%pe9jQdta`!rk zTLe>@WqIvHR#Of|thU*AkyBh~QEib^)6k;EBBy5fQd{Iy94~zqIR&>jN{u{W+jNV= zh|t-0aD}eB89D0U-ab6>6X@Iw?R(*K>)*w8(#Gx0B~gR+zJBUm0^QdeFp9@!I#XG1 zEp$(4BGxr!;u~)xv?0G>*;ilY=BX;C=WtgldsV}{@)XRt5w7uUjS6V?f@?BcsR2Ip z0^F?_>gFsQ33vU<2ViyeVTU!qL2oidjdBfVf2d*3j>2lUt6G>#Qs{5^Mn;~NmtEcS zMNeZVP>~Lvw2$H+jCKuWtb^GAPrMXzMQB2826K|eUi_koOwtA__Rq1dwk%o0*6rZm zGRv-iQC?!6RWS?4yK1s$G)#9LGjsx41XI+om0xl-XOpzBFMGpM%;0Jivt&xi6wdn_ zCz#P#O4*5s#%Gc`a=?u$Y`X^Bf=gG_GIjbZXkDE1hKb^(CV_HV3wT0m@;$y$-L%PM zD1KK3oSckC=4}m-?*+L1>)c#)@Je?y3=D;%_?12A$Cc=4HgHr&kJdPj#e2SBzt>!K zSYs7%^)=X_fd)wKXqd7tzEQQmG1Zm9`l*2V(@@Dgs{x*Q3gF1=u1q#f1&o~TdX`Pm z0F#~qSY7&nT%eGpQfkh`c+@J5vivEO)LAZU^-%$bXJO>$hz9u53m}I=%AQNYl2>1= z{%-^5cNF>m?f$o0nx=VDQ#c%H3eP3i-$-;me8r~*z+MoW661{m%I_;~#S zHSE-Z$Vdr-8ZE|KEgps$a0pq@e|8LO(Zj?ed;3@i008!E*7H%b|XrDhHa<8bs zitnK~_+113>P-zO%=E z(frv(uG%cNv)O*-IvchCh8zM)xnt#ny|LI;on@-P;qN0abk%^JBoN6$KsX2i<0%Fy z{H=eK14+6qMcn2{YTtizs<7D_a8_rJhtb%~{$;LY_K7!46mNr5NZ5KU;99B4Y78q> zbx@~((z*W!t|WF`1zi6CSM46t0N-@>b(PZ}!j4Wg;IQQ=)@@qA>r(PHJcX+OL}>s` zd=fQ$C0YSxx)@eM^rQIRm1qT&>SDH1@h*my6ae~Q$=tpQR%y|NdI^P_^u`?+8-nBb zmCxZrt-BaK8+@C!8e`~qQrnos)LnxDwy7qjkuFB0*#A~=jZ@HPx(M)yS>j z6_ljYDe+UdJxZDMYuTfE5Kmo;PRXZIi6hZyWPYqsKkDM~En0c7^&?k(cFY?liZ@+{ zD&re1;8Cg0A$+6ezRdNmy3DBpep&Boz-$`ex_`j`mek>04HrTzqbkj-Uil@ttNtlF z;`yR)bIY)hu4XR_>S}lyB1LJ8)S)z9L)xeC^`FR#$v3!0v9?m?=udO2uyl>ps;ehu zDbvv|_~&Jqg#B1k?cJ6zR0};wYSJIysL4x*CcLduXkWsc8epalKofWY+oXp5ce85< z`$P-7UJvWt1Aj^dU{Q7vV-NgsjdIKnMXZ?1+lI-P0+ljnz1*-jhe@vkn@y zZ8wj{P)ow<4I^6;BeXEjOHGF28|f!lnuLj|$49Fh#o&CElCm4+{5u-uZ7;=LQBWg# zhZ>fe6I->go4i`ncGHu4Q6isJ19shqBH@%4@VFFu%&R(Ols;de>Hnt+xcLPdK?NG% z=2HNn2he;em0{Q$2_DTC9dOlS#WT!ijLb01Xx4yQL`_uywTK#NfcjoQ@*N!Ih3lEc z6b+0)ZUKYR|LLT93jc7e;uiA{BO6SULSFa?-Kr@Xe^Q38N38Vz9JkEu0^ma}%rdFd z`}oGcM;uluI7%asx89BPIjEt&@S=R&;tv%-eXFZl*h^m3sbV?)Eh-k4X&433jpDt( zgPosf0Ut`C|9JH$w-|HG)rM770ioZc?Nlk#Y}JZ5B3U%9&46w{|KVQ4*g?hY`2o$T zwi+hgiy>noLS#%OT}iJ_Cs035Qh}FGz+GR~fa4_)00P3e1bms2pd}x9%2j&$atujz zwpbsDN1*i!@rbZ~B_3hceDPq`2jUTB-6$S~tPjN_$oj2#SghZOM}YOHcqCXaiAN!; z&3JiAJjz%d;!(`{w|Eq>ek>jq>niaGun`yKur3piaO;VH z>39~ho)iBTv7Q%?#@5y15oA3n9v17D;t_8BRXj4Rhr}bm`jdDBTJMX8#d<(In01|a z1X=HjN3ivXc$BuT5sxC)GvZ;f9yY%F-FSIApwM&?aG&_Mu=RWK2(n%fk2vcu#(!(Y z!(#nQJR++k8QN;SAcoepNEglx@2IIf$;=!ytjF;EMBgp!Xc!XF#5RW3(MdA@` z-HOL_1pG++8)@Aw9?bf$@%T+VELNv@6t-R#j{xfxJxidYYd zM}&2|coegq6^|IJ7*j>KCE^ic{oHsg6_29UP2v$`eP28RtjCT2Zi+{+^*eg-DQ8_N zO+_XcxWw84vus1jr3WslVGS#7DP--0k74A{;??R2cy(HQoW;j5D=sWQi=NG`0Df|O zrFu22X(6nTwKYD5k)Hy2sU-tacqIPmzEb>iGJwx$loE%#pH`o9HB1qnA=p={6)9xR z79W4$W0+MK9$|JJFM=?_#NtQi+Xfc0UJxHY<71e02ah`MD&0m{QhdGhA->s#k6~6} zKk;gGkDx-1;v-pn z)E6HO1I1_KP`>&{S7j=i7LpkjfF}HdY_pJzB3_BYXCWCy{3jfcEVYnKBwmSvXd&6^ z|0w(JxT=ok?|_ASsrHHpR#Xt|*bsYH>|H=XoY!Sgkqlprg zXhe-7QH*lW*{jB`(f7N%m*rxf-{*ZE{y4+z%+Ait&d%|q}4QCiel~boceFJ8UHSt{qG{O6-f`Q%Y$vmgKf-%Z9d{8 z`(IYvnuoYO54Ix@wkr>|Cl9tS4|X6Ab}$ci7?|jP+5FKw#P9N8$Maw(^I$xS^Jw5% zJzk{qT#To4j`6%2FYYeJ+vb{9KGD|6Ghu00KKc{+6Yy13usM!);4V z*S6i9zwkBPnT5DJNgr}c{ATC>!jw++?!-LMakaWlBPkJo3_!z+>#b8 zM2XiQmio4~ZedMk`u=$MAC_tkl>^bd$*}-huZ90st*$nA^(+|2zY@{KR1Za6O!d1_ z;$2G}pCEy)591X6F^MjwhA1(c8sUoBxJfs1yl3%uw=Edzi3P(y)byUE3T%zMXX$~{ zQYY?NS{37KXFdt`N=LI*Z+(Gz@jVsFunY>~>u8AjAOT-T1LIQ}z*!0YkbqBLC@hJ! zMuaJqc4S!Q;|Xt#`#53whNj=Q__*^)3>*xzScGXK?YVF9G#r*?M5&zdC3$87+@_J4 zmi7id2Z8?xod$*%M+^RG>0#j6AB7hv;!hNwqJ4j&LKeN_*h*^kz|z-XTfijJHxFRq zI(qZKG6X*`Jm4YDh#sYj4=tWJt(o-@EnJequ2KCgi;qLv@xED>vJMWLXyPMF4R=13 zprxyrAtFpkbl?$MNI(Aik!6(w&LAv)3^6xo_hU;HpVyKz9mzaGtgpE*Be766)jydZ zzT8gM$2bY}g33Oz1maV0ot{``IBceiPv8`}qB31YdXF$A(`(LghkUawKE<%&h627O zryf{m{enxB=>!eRwv=?ZNRzT5@H%bHw(Q2C{0cu5Nohk^pyq1Kc$->;go4U z&EhkdFTuIMoi(uXy5@(=l_0+Sk_$G|Im{FhVr9;mTD1W^rY$bFJ98$!ROjVCcSq5N z9%4Z!?LLEfBf^wPUutOTEhTD}M)=6^6SRnT8C-Nrpu1f1nYLp}iNIiJuUq!hQ@y1v4yy#+k6rJh7i{#4C6xQ7dHTn9U(=&jXy7$Co`9RKemvr6Y8Os;^ zoV;KPC~;FcMJ^ys5idk%p&0=S4Ht~(IS?r6=VhEbW*fWcfW)^#5vnf;XycJizAvTNs zuvx6i%wjWa7JFf{7(8Y%Ud&>kn8iNWEVjXB33lb)1QZbe!1y#)*KA6Y*>o;T$KTIZgy~oQUN(vFVKyd)_#)<&6_@Z02Dc0zo{C z<3tq4i6D*>F>Dqg9B0x6mB(+~BvS+YmSIPnDcT1(3xgU_{Nb6Utv8QVQ(a7DrT{ls zG;#G@3`Yadmk4iP(?2xyxuv^P4szNaDgL)*kfKcc+cH8SkN>trR?p(ESUTH`!YqVa0n>4b<6$72c4v+<>Ib_0 z#!}BF6rHMk)-&*P_r06?KZ-tC~XX&btpWa!zDa7l&rJX`X zzqgZi=)I+>P1_&1wja}QN%%cS+iQGfB72BY(GQkj8!unEn5tmKVlrjq@UFYBc;C~M z50?727T?piA1qB3^5%o;l=l?!kEMm8n1K|LjlJjcGpx8&dPhDVE!Amo=R!^fn=0?A z#78@c{Xbe-DIq&PsyKO1e|@xTE8vrI!h4$iNk!0mI`>I+^ZPYrwHznDUo%c?Y_Cwd zGw$jXz>l(Vg|^HtTrj8AH7~U)HqY?&n5hK6{gXRTzMBA48kS1U9kd*6Q)!8VmJ^hz zbl*YCiQQBRbkus-#HZ3CN3FF&es|QmD5OR{t%E{l=F@sAj zQl_I8K;DH)7gL;5^V`YzIlrBZN(HoriY>B$of3x%*je$ufYwN{H7Tg&jHXmF7u4D+ z%FTjW&ZteLa!y*#07|78C#_Ran}fKniqd80;$d zH)uIyIh76=v{E*!XkoZg%aAa#LErp~Y^hf8Wr3d!(Mb7G@Lh zhBmlsgL9As4=unJe|)uXx`Va8UHrM6R`IuydUah!z&ohS_?IIB(ORLA-tsAKxjj1yW#PEobx-jV`Q>vnfiHRal#> zkRe61DGIq?M4PIRu%g;{g`^kNCMcwPF+1dPF>SP>gcR3CD&$CUJ4%%j+8CQ*LfO!J zQ1&NWWJ*rUP=>vvQzf(ro0OMSp`?=Xk`hX4qZGwhN*iyp|0TEo!6V47s;T0NgqpTqiv&6@aKC1{t?+!tAtjYwtOmIkzyx%yXEr#Ra!aiC54sI z#;BIBmr?Qcl3JG4hAGOSvUZg6o?5h`EcaCLb(<1BwIMdjZ7Nw#iM~xs$|-YiCwM78 z-=^tac3f63Ek@OkDz7@~Hr*?)#n_DGi%XNY18#MH?@0G6!pQjUK9%t9m3P5nt8HEp zJeM57<6xkz^|V?EK3Wa?`h^XkjWo#mfqk-S6t%B8gHvx9=+{847KIF|P}A1MLTnZ% zHZwZfy4ckPsO*a)RJ(#2yGLk61ufEM%@O)gK@Ha=MlP5QMvO7wXUS)tZ0tV zo=R#^9wCp)TDX!nxw4(;%*tAnqI9lehn%cpC!l;))l<7ExT@C6R%bV@uc`ubH#z#M zc6L*=uL^?Q^t-R>o!!)_nigSmC|}!~Of}&KAAGR0B3$;gn&zjZSFEmrVmB?RuGHI2 zZ|o@%HMD`M&bb;|e|zb!O&}c~=cv^OKm8p-m8#&yf4_ppobKLDaem5gyGip?mR=wi zf7Rjzn&Piw{{mV4wXwDqFVL`>Dtla@2Q}^31_Wr66x+=J6_gh!G*AuO3-n{4W>Rc* zYuQnD)l#v4fy&m_#@CkNa)JBpKo3|}vsX?uIrdi3bc&N#gTm7-esK%QZ_a@dPV}*N z)e6e;Q{+=erT$YCTSrCNDSA>z8)9>!kTrKGWL1ciU9{yz)iM;=%D0G3=TmgHu3g<4 z^;CeJqJ(-jkNwYow6vSk@7_rwQp?4cBru$;aTL-#IDZRCfWd->U>vg za-RoX=iwq%kDjkoUrEoJsA+vAb!)03bR{J zP1-U@Z?l|2EAipCu)3#fOiX0X@K{MVo7pwdGDHpPm2@aXWuKMg-Q13{w7D{SCB0~_ zJi3zlwXmb4w9q1KW(!SvZGa{Ragk;h*{IA;q_!=UJ&AOpr5bUGRIim9WQlaRl{Uj> zTp~Aa;V#H1j_=IXgmEcJemN_`L^{-3P4kIVvyC?0)`N+3u#FwXzpXaTUf`Gm5ctgz z%JhZ6LS6l8()}9Mb0RX4%C^hP?sXLGQ;*Wv@{-*@p==fWhJcL2L~?DfRtJeRyS+;7 ziKMqziD(_UcF-o;)LTajJ7{wh;@(koeXN!Q!RlrXr(=p-BXRL4C>g+4%y#J4V(;e?XBf(Q8OsI zx7Nef#~D0me)hX<wgsr*jqDEI%021qXw9GQeXQq_%Nh`+ zHM3`Z*AuK+y(Fu*bA4wO8flagWoJX7VRr5rY>(_8W~cVEVRi=98*V3H{%||HQ-|A0 zD?37MCez3?!j5ucgu1DaM#gBnZs-}U<=j+DqkYkK?Yxgxd*U?eW>O0Wu$k0KIE|b} zszI7Y!$+ztfgT=dC#}pVbzdNjMvqcs8Em8Mv@Si`u1@r5H9XSj*l0Vg9mZ%)?7bhq z8s2Zao({)oHEGru&1lO`X|!}q-hLYWH8^K(qH9Anf47O##zy6g@H8qFW9RaLFD_ARj%8L)@iAHucE~ zrcKmqoR)J-aTBc_rv}C*x;IX%VYB5j6&kNvPNIPEYDJMm3FB4ENn{zXW{f0iH9<`U zNwi~v>e3{7KS52qNo1O+4KBnp#hQ*^;AS)aeDS#N%0#sfNur=hb`5Txq$cnrDm+;& z{gP0tj&xc(MQds6&UEgp(of*4QiCaTy4HZ6y0&yu zgDIWrPE}K2IxU&1qAHy-rfOYm9v4!)zre%CNe=m``EYoA><`ULm5vxYcGR?-9v4jW z9l+E+A3cpjQ?qV1&zE<*$g{w_hlclIwydWy>Dkv)sJlaytTj})sbh~=KGt@Xt zr^z$4cJ_w8HbTfK7xGzz1T)9d+}R^CX3~&RDk#&b#7s3l(`ocfHB{2+^i0*~=~Q@@ z8aL?_G0To}Y?d0i=~QU8o%2T6BPp}(M0>>A={zXbPQdY4JJXDF?4(7^QBjvpr|c<3 z=Gt}j=(%}2DXuy^(AFxg{*JkLtCb{a8tJ>gs=Pffhpae&dx$7U7g>;NX=qf z4nm&sTAu zPCMq?S^06kU7fxQ>^kb;0=pi_zfk3fbn3QH-CPx>x%Pr-Mf%u+bdI$}xxA)V=mUDK zel&N6)*w&5N~e}_cD=MBPTf#Vr>r=;VG(3jX)T>*n(eyzl3Arx1ll4sZqsS_A}z$0 zcG4+vk)8hU7pYZBI<;M_@?tv0FSgU*;bJ?sz$JF=%vho|w;uw3jE8~Q6Ue$4JB3e6 zRO(JAkEM387O~V$@k92=r==>XrBknEcKwsM%uXZ6M^zwZ66tyq&i=2+#jbFL8W!#a^^nsBza)&MNzEr$1I} zEo{CL-1BfW!!-J4jsh*vGd2ZYP^&d+7{8#sYg9scK?M@Deztge!Q0%3lh3BT8Psj9 z=1uVlT7b=wFX*QPt&ctDH9XigrDW2IRa#jJc@bJ&b?OV6MOt^8ZbE89oR2X1;`oPj z&Oi9irdtZVBsFqUsLfh6-=@&6wQ4z(LeA^doq`mavQDKA{3@b7Qe(Y}(-bnVSBWTv z9<8^l6S6^dLJF1&ak+RcCG)pQT0FyHQl7{hosPfO?G+}+^jNG3iaHql5Yx~*{l`@o9XUm zHF<3&|1Bz@Hq%#I)GBN-A*sb#1MT*?5rv8g`dbiU5I^Ef=+<%>_>`__mI+^xpK{mf$r#*XA^1Dt?_9)TU zDR{4%d#=;`y=t>_ol^IzIp8{Z?$dIPAY7-x`|R4;w$Dz$lYMG6eVqdKt9ZOlv-aCj zezZr72h?)>I(0gra`AOqbU-~@y-t@7*xBQpXeTW+Q3dpM+LEX>wFSy`-Y@44q9Ya` zq7)t|@lOV*{pWS^KWNw1$b%~OuhVx2?NoYm(5|iELw3l#Lw5R|KV;Vvg$`@YZP6jL z@IM7D!cXT!$BHBs9XDypVXci#V`O8@Unw9OexR${pz)TKVWlYiTv*P{>zh>ai0YP` zG|V3P?uc3++@z03)EK)--HvLNZLzSGW*t@W^NPMcs=D$O-9M^CzoLL|?U32us=#xX4LkzD4=?DHS}SLjEZYIH7X>Q#yG< znfa6qC)GH6O5rD!Wlw4UNi{Z~(myAa2al2GDV64q(acjS>mH*=r_@sR7Y_^lyCMjKZQeu*7{vo9%DF-|x&ok;_IzO&&+J|$NcJfaRQt~rt+!@u2 znRNb)8ta)S4kmO7qO`D86EJE!Fw zC0ffBu6zSByl&-)e2D*SeYk?2=T=-n_0Fq+TtRcsYdMFcR?zq7)tQ48^ya)8P%EhQ zPpWrU(CVL5zpNnrC#{;zH3z8N1r-t7sL2JD6SmQu3(7Uy=;8&X!8R&(QDw|+H29)& z=QjHGqU!Q(Wc*o;wrw;Vh;4jtb|j#ICT@Qde{@SrZRPeJFLr`&?N-VfAgew1TM&Di1 zy4pHev{|niBw1TJ*@EyGKPoIo)OS?--*NJH z?VZRv82gyLFQ!+?+55huKQC)FY%Sj6Y@PVg;@mMjpofx@O?6V$)Rs+Or7DMKQ);T} zvAd+Ds$jcI^?p@D@h*M!tEzLCQh!x-?veJZ8jAO**%hshO{eEvCue?MIajClbCgc| zY3&u2B=^(PD_TceMSj-VL;o1d7D4r z5MVBKd3R_isp>RbE>#?clhoAyymAmu$K{eot;E3?N#=UP%uHuEeTvlqO#&P%gFgE2YG3Uiaop zd#X5UBI_P$!pWQPI$dt%a~1GJN0P;njNZU=sT+e8^#aBJrn>7CB?7T^mw0gPgNN+7 z^~7^)DHS&ozA(MV6YX58c)TmA;!*84c*iuC`s%c5a~-cc8F(($=dPk=2y?#q!=Bvb zxgv|_UCGbvsp4^$Y&e1DTvz5?qfJ0;=A`jPzp0kbuF)Gia5q-g6L+%90MAvad~emw z{6M)W39pLeQfGaq>f+7EH689n2LepHTxD6qx;!ePMEQxce;zod^ik_@rtsfYcio}cKy2M5wul9> zMa-=yc8Ic3u@AhDy<;v_Yy&0rB5yMi+rnJx?rEw`u}i1{JeMjq39{}@VNNmZ8gj{T zeU;1kYdEHrcnK$$+WwLf{fa_wDs!IF7$7!tj`4b7WeVEWtH2kZvQe=Z-GTRZa;0YG zwyBn%xm2Larv6|YBwOMXGv6zzeR&bS0VR4m9?SQ$#rV@W$$P|y4g>tEV|4|Bym4P?#T&h?Y zNXg#`b7o_ukV_V80ZD$xMPn^sM_rKH@GT0wrOe5uEyW51Lr08`7(X(4%<$DF!8jSe zmmKtm*2(yfWF6O^mj0oQMd`;sv>5=??`jJG9PVi=09M`8mIC->XcYla(Tj#=Xu){% zaB!C9NoO*&@*XFpq_1S7_-6g_e5L9B3q3z=d8Hf4J5%$_w;FF@*1E6tL&e4Sq4Y_5 za$g$?&^c2Z0I(-h8xBzTPi+{$)IYUwfLnix!sZV&6R`acM4{V5EehC#hXT9)P_Q(~ z(tJ<|o!a4T$X!`lH6vezz!kgt)2%G6F-nU+(z*gfJy8J|IY~(8%v~<2d70L!H zqrutGhGNBkrh3cB0$7=CXmWka*uj4|6v$dks^{H0N zI4WXD)F}M?_KU)TDAdx5Tn0X)*R z-T+ORkhGq`?eFO$)A|GSvuYy&&RgN(_Z0Y4a4wYK-czj%em3guQ!U!?0qUFX6my_^ z`wQdP?K7>ukr%JC9$ zd>@vgM}KQ=!CUi%R#8%3c-Wel^+Geq>iY`Qp_f=>n^KBmo%DhBz0lf!rjPeattiCQ zeW?XW1$+swP!y9|l&7CxYGw1P;_^x>`I#y$UTGzyD&=VME3LEPJU2PGgaiHK_pl6Q zz0!hQc@a#mHUOiGrnf6n#wcE*%jFvOTC0!W?%McT3-LH7nQL+8)l2Ye_OpwWrr=pc z4CMAkD*`U>HwdqDH0P~WnKr+{m^w%I-e`?veNU?QHixSmMZHB=2-cSPMd2=PdNtDD zYVGm=GB@3a`o7cZIiHp7bsXSK&Gzdh6W(b)bmg5^$-oI%?mN)vh7YTd&wH)6EZS1n zfifFC#N*2MS_g=-yhre#rA{9ZYG-M$1crYQCueEsKiXh`E*^S0%J@g)TFms&%Tn-1 ztquM^=%IVj_K%|cua6j?XQ}fiZ5%-ICoRU|?3w_5B(59u2`KV#&_@Hza?m3HG9+m3 zs1F0S+fnDW%H$JZNj`lbFfR|iG&$ziJL3N?`SpoX{RN#JC}vmj^7JIX-UpQC1@u_} z$p!RifNBNx0RZzQ$SkN2k+uGWA7+n5=nZw!LuHX4ioA?P%hK;odS_X58%2k9l`KUq z4SIK3WbEreXD2@_N2d&WS4eg?>f-@s8TH8kcZ%!2RMV)}rBG+R3<}DZ(5ujPUU1%7 z_p~+C3l2Y2!i$_-^f2%YchO@3{&LZ$0))Hj(*Ty2)GN_PSJ4JKx*3Yl$8Dqp)r*eq zdPP~Jda;YUUJ}gc#qu65B7t~EPna+XPvS+NmZk&ldT}tIV?8OuT`z+FpS$Zd0N~&N z0Q9au06Mld0Q!`JKRxui0O-z2)VPrDh5yl~l_|E6URHE$1xhN!O-Aqf(Az?KMR1^t zt5e&;dLjIeelANB3Jc}X*Mo9EWBF-+U*Ky%H zV5Fd41D)~91vOzzNGb6AMXseWGN+W%E93u-rSuShd!^8wf>H&bPHDZ8EJSaV);l?* zQc7t($jD#jg1}J&$)OCINu_~h^f3UJ%IGG5`epTr0Q<^fc&1VjPdx_UOHT~vRAQd` zBscLg*j)ZH7%o(JpN?mi<@81%Un(b<8+!@nU0(Vm6qYM58kt&N$jd0NN1?E_HwJ4e zemhqm4q)`rN4N{I`4&Mezt9$=UV=i(>$T`=MZJJQg!gKEpWrtieH5yMR6t5erNjz) zIDkh*Q8=@rKDxA!Q+NgB@Cy=g{>X@l5xlBnC2&2Vm`ZvZBfm8OCww!I&Q#KeqO?L~ zX#0fLR@P?%6t9BB^@Pk-^eF%iRWVSX&5Bo1SH}Q< zLTjpvdTuo^dPIYzsdWu#`i6Ga(1V@%od-1j(?Dm6@Y9D-sGpu6v|fHlFmLFhpZ*m< zCx87*fGhqOYHujpUvKTOg92;nP0Q?%)qh7sz&u0rn2Ay2$3%=;ZF)@$YwFz`Hq!Tj zdKvn=re4!yqvX9Oc?VPBh;qL4OMqS<>$8otA^;h5BY6Zu`Hi$85W`Va9xm51p46O~~SkZa(;g))ca;TTs>FA7of>j}ZN>g)S~-IHK(1AQm3+Clm^05^jK zHoKv|3s{v#@Y+ji)>1D?DUI}o&iwWZly@2AOkUm5#Fl1yKj{3DmNwS6f-|6rz6IcF z6G(YUQ<~~~0DOW4?Z;q!8?a%`^c?`MAp$!XqJIsnQ*(Viz+cS;Hm`-g(M#OvdH(_i z@e8`f7&&R|sOX^)6ZzpNu9F#`$T-^(s@-o1)%d+1sOAsVQu;!*IW2W}3TvhF4{0Q} zLSwh7TWctCoBnPM<8IT2Hli@Nt-c-DpKYP?Z8EnLn16eHBd|;D^$h^SI|!^mM}3nQ zZ^k5EXW|#GR`lp05u+l;424=kpZ@qsYtK%4s0V+S9~yNYBqFO5Ma213C(q7U(kFI8 zrn6E~XT2&t>!kM*ANeqKb#|n{@T`h7t~0vp2p#N#48Nr_5~N_2p90C{s?`PICb;?< zkI1GX2H|ABJ|CqCUE#?iR3{V$9HA?r=$0ciwj1m}LPfgkYXEk4*9jn`hrSlzRu55O za!-AuE0<<+D~(%8Zl!5%PkkPFwb$LjbflN4(xJCL9bY0j-&=3z!S9;E$l21!@f5MF zQUJvc)LSAfcGHSJ`U*F3V=cfB;&7qDUC}wA1N06wXSiN~KF-&jAnV({dICVle)?tr zOFw-Dz^wjIZ8wz|psxhjGXQGure*^LmNrmd0xWEhz6c5Yd#K(6=3bzg5g1t)sM-*WvkP=%h<+Gg;ZS|Qt9Wne zN?Ry(r7eZe*8_Odg?Y`M(hr}S>8@bTiqsDPtcpU2UZBRqFjnx>Ny7wY9Q52NO>P&547s!kL>T5m&xyXl3&-enBB;S@a_qb~=T z7^5$hwc5v^R{I#Tj?rh*n8CWiO$a;6i*b?to-56>k!~z2IK=Bp{DQ73I3{LHbTnSV zIYmv!>7DUOo5kbwHXi&IE4=i=xY!b5RYVjdS(<}at)2nghK2e`cT}EQ% zf)|>`!}KhQnE+$6DBnbVnJbrL`fWORf1Az~4Wy@)tK}!}33?0eMmLu=2HW9RQx;X2 zgbb5K`zImZvZ&c)*qcRHChH3U`b-hD%qjY!(n6?safx4GME)_8Mq&QQqIpv>x2>cC z)AUXrE2Rm>!6F$8gprq^D;o@^PhaWl z+{C9#OcOSt*$JEI{ty@)vOqVBv8x4W zyGH*Bn0tbL7T{`vehy#_39Qdr{d-_V*Xbt#Qr8L0yk0*Itjz{2#f4^b@uj9`8}ts& z{IwkD_T^w_@~NVGCo~Lnr|^w>1L&7Q2foJ62XE$V#K_N}?HlzO0OdCcuwj!v51996 z0d{Q0Dky`hZ9zb0(B3VWIWow1tG)o>pak`|VdBW3)7voRXHc{4Ldy5sMfH$x1UUbV zkkWpKkn+n8-5Z=xvjGKet>r{xcj1(oO-N~s|)0lJf7VcncSqxK2f)qVO9 zV0HHEBLKbzD9zh2iI-^jg%9S55feu8Hp(5)TR2>!@B_NP2mh8147(>IrWFMq!18)f zqK<^VJ+>TFx<(HU=-t6yKT+=qusBg~=gDiCE>y%54}O7cC%%@R5QTeA$H#B*3Y|FffgL zj_47tT#V^z8?<+|4TT@pyVBhwx-+Pcj|c&sj$$CB(TSs?X1Q-g;oNVrw@#zXZ!yf% zsKs~iP#W#{4jxJ)_hX_k=9p;X_hYyLkw!ts1-ALP5ax11XfsKIj1!_l$Vnk{%SplF zdP+1j_LShfeG2=eG;005zz%+o-olGUr}be{{oi7s{%Qqa? zel3mGreG|kQQ@;fotb9^?eSS*cefvei6?%*>LHCv{wVx4^G9L+y&r{%&CUrEH=jcY zrcr_Og2i+mYqvC7cpkC0iLB@K5NH1U43RS=%$eq%;3oaV=h&`IJrFdThPe_jX99&}-N;rb`7jh0*3~aBn&lOv9=&o#v(?67a4_8eEZ1 zgMNdMbh_~yHgoCJ?mBkU>6COGj!7r~8=`Q_4Sk#|muBjjAE#b>=BI9V^+7cKcPv-% zg2?ZJ>C^8*+_;-aE_hMoCLEkjUDEZj0LkgN2Zc`>-qOcNIi=kor?eaS+=m>u+gO;T zQ<>YM%|*9`2A^(Y51UTY?g;IkNf7;qkedF7Xrs+t!IE+}N4wMBkb2siYG&v|Y0Ev` z2myQVA?nhpVup~jAwzhe#C_4m;`>Om>ExOzOx8+6NOiqsMpx450?t`F~L=ROccZPKF(vuM@2>tMUun| z0Z&CQ&V4GHdn!TLGfWZbv{{0TXBhE#4dA&j``71!=Ki;6?#sV1@1-Za5YC?Z0@Ig> z#j^N-6~@*Xa(#_CDd?qM%b7oI#^`7f?o7-6Mp6lViEZYVhnh3)rQ?3y8OnNzt~x{E zuP`wJd!<*A^}FJ0hy!2iHH`d;G$e$EQ~Yb(PP#$YUgMtR4f1)Tw+9&cMh^uz{YD>N zmb02B9D&LF!dJn=qDSE_#A?$$I^2&Hqc!jKV&r$Mi;-g9>Mr;S^^CWAJ?Gc5g(1)} z-pKGw7o?H3iX!eBVQX?KJJZ-pZLj z^akTNNXm4Dq(XsRJt*`a+(GN&-?aoX({`%+0dC!no1f_R?Nsg`B#7;_?jNMN?ey^< zB)#nv`BC=)fJ9H)_7QiUU(lzI*aq{5=8!%=TqLDQw4y*aUn=ClYS7aH-710W_fP1S z7i)U5FLAxezCzIe2Q~-b4+k~_ps%9<*Bx0^U=Uh?yz;T$_=e<2cUGQO=VLWI_``R! zvO%^oh$38AXNoVt3PJr8s+k}1Qs`iQw2?x!3$P^s$pzRnfQALxG*|KLKK?oSApSWP z7r4zjC$*bff-CdoLJE6?g$<2C8jT(^AuNmwtmVXJqHdy-5aDZJQ-N(Yu;~DvMm8K^ zo{^aVtVSpgO`X{UfDC6g79i9`)ceInRA}wWmZR{7tB}&gjg1C&+Krh3+PJey05Eg{ zK9-r`&e|C_OH;3eQ=kVMiqh2{Y$AZM5E}t7UV=M?SVdr;3bC&E;rp(IS#TMC#sEIb zkUlbuiHaURVn__)OwdbEQeoEDA(>clR+9XSFh7rES>Z2Pp)cM+>RpAF6=8KqfY>fXOBJ$j4DJg_Vb zyGU2O5H*v^vbrApfCZW>7a>A_B-Qd_VKk?Be^+RJk*avIxnSSz$zlO~%du&0yn^YU zF|Y#{N-oHUH5VV|#c$Z!dWGB5n0z{s3q!5}!b=Tb>0v^Aj6ru2zII#a3hZ z+1OtPltfF{DWyC{%XKR0&AI_Zd&9`@jvoT|zO0xRh&q>T0z6@HSSd^I6#LNzuB zEZ3^B{-uQ);y^pU@KyUH+`r+Lx2g`aZqnxJtceHC?Qr)@k-gEK943Z&(U=;nCdJPQ zD+ov3q-HhPNU-m#0oUB5qJ9F*@Pkio(p^76Ywyp>Nr@F{kv}W#u$8{?XSGW46EBdy zSV}KAIwn#)g5FBHKkMS~ikj49fgb!+IG9#RrWSOqCToF)Ur|a;IQ13z1PJhD037~` z{s_SEenlaHu=EvelHfxiEP6$KYOyGQBnc|kW`lu!SsNMP6U)x70~CopOL3anfYtWk$97=XC27|L@|ifykH!WutZmyqDeZ{;O`RYXk1FSa*iwM* z4cS6~+YQ-xhu^4kBi7o;&-Oq>dIW7~#Ksp9M}5S(bACaWPNS`j*kB6p`NY%F^c!tx z%=#O|iJw1P7bKr?Bg#>kCajJdFM^m%p$W}t!aR-Qv!W)&_H`3<=T7?Agf;izhl0TU zMCv`73O8kbRA?Y`CijM{40#XlRvU})crwR1Q`Z<{eMI@F9+HS%LcVEzz6_nV=U z1j*!(Ns%Ee$Rkq{^A8cpV*oYpX!52@A*?AFjLp%}nKZsR(rYF?YR+N+dbePsU3o2& zHVay6v*=lK)}B6fF_m$|hl%U9gqCkMc37K`U=*MjJ%jTgq&MIrJ?>wq;WQ{%Fg}I6R=&ZCPvF9BSH*`Ma-` zvIC^v)V$L8qU7J6RY9DurEl9|M6V_1_L!B{Qvddd$+fh&Z(RrTO!qTrGy zvUWpC>A>(DzDP3!(F*F<0kv1q!49k?z~3EM8-PX~kw8|^ijGJUD=51oLU;vr?!=ln z9H2#=kdj8%)SVo=4x!7PSX+l}w5$i*U%NB&G4eB1XshQC8rT_QbQ|sKjM0Ge;aw0R z+h}AL#Q!$B)CHqq8#U<4Os?Y8)%MCb^0d7&`Gm4=^sy@|32KQ@_-Gp~3dO+KM%GYK zWk5GJ2G}p%L}5U8%y-*pU3Y@HYLJupiPod!F6M~OXIIdbmFygj~?s!f+}=t^fV zPc27HnO=#3vAUqI=*2=D zZjpa)1hv+SRrIxj_O-p)X63dpXt0Zd=%Iq?&WJ1{V z{FL1r-Ih(2`ygj!(}F(8OLr-=4{PMX&xygYU*~Agt59Me=1Pb9!uf?xO?O8$+@+a) zkznuA!@kIKcd1=JgrZpThIsI^WRS2+N(iUsPBW{}RX(EgYzo>SEU zSQq@>A4@>2-guovS*I8|Jn2{5(Ihw~JM5=T128=KIWzDalRQJ|@Bmho5BOj(bRCGb z*?vkHh;`cosxgSQ@OU8ElO=l?T^opHD{L^*p+T5_AJDx)7zPih_h5AY1Nvn!+`NTc z!m!lXBCGx~gt~=c#@Iq*hhR2e7{n+?;}BHL+?2!DmW#qG$2hm8jK7*1=%| zEg#8t0W=uJ4g&l&iY*2xIToJoN-Gx5DMN=$%x&=h@3$iH9r01o6Q?zk-$XYB{Ot6_ zlBzvyzc1-MF($@)^rWF9yeHybjCaf!Z+_d)Th&=e*S5|LF^KO@+w5pX4acyG2L4TR zQ+BvfY8*F)Rd5nT6C>&H7&gu6cTP{lFCfNXAt|)4O<6Gr7GXl;ut~m4s^N=Kn^El3xXm%eKSMC`#bt3sZK3X9^X2(j>e`Cfn=fd(M@#vR< zGN4*3nhU)tYxQ=P45q`EZM}o8>tYa+=iYRpE3f8Or4QrSjDn)*JO6flMDl*o1q{V|2Dl1;TiQ=1zs^rg*HS%d%7deLdj-@c6inmmmawQs1q zeH+clcRFil-%w{dH=R{Ah!CFD*C1OfJA(~&y3cLBV4yiO*boIT90#XBe3Qe?3oO`FNu$s(T**d3N%>`7TO*+^OR3Pqix7dIoC#X86a%6}y9 zFEMjC&xU)2DDxKvn*Jpc^4i&KkYw8FNFQdiRTAk_fChfW>eJ;|)?bz+8_0hS8zvE{ zaecZvht>E@w}83K>oeWP&1KC$)9vkC<}F1@-MZ&dYq%syje^MgD^^dINVQB7fkvrc zu>(%exDT&+(%gA0)Nx4-dNzZVrHqctig<7e9C}+uOdmxlM3GBbO@pXd*Tq1G|2`f- zyXUiEvS^;WfqbSe3!*Ly*jRVL)z8E5#ggDUHN7b`dT|pnEJWW4!dHbUY%!}#TNkoH zvi7I42AbPDyEX;Iu}-pROKAfI1jT#N-Z<7)7QF`7>6rM^6m^1?Ty-egz%?#3@V`&K zqV=CWq1JypmZ`9rh34@VoiMWi!)orolkP_82Cqe|(PwU0yNI>=k8Y^4nANs-L)2#; z__&yPf98Q!OITThn1zE|*gP<238GRIEockZ4a}~`$2(5CEM+b(@>ey`i5`&@vXpg~ zj3dk2I_>ABtd}fW?Q5XrVcB)5|1#EE7R6RGP{f=SmFUtk)<+h3RyW|hPh)OaJQ(X{E@hl zwUyQCx1bLzSs#f!ZbgUJvZ6G46>A|&?zbYg7PnvStztn^#``u%E}d7Gp`g{Qrewlm zXY}eEk0=LQSF`%Eit<~;8dgOXDZd?ElOtI9ty%)>ECoxyjs4G#DkXW~qX5E8{tXYY z?}t%e%F$i=sFkGDjV6s)?f>AOmatEXlD?=;U$15EvP3$hzC@%int$eoZtGZG!z13f zV><(ln~`0dwyk3ojJyajg|$WMI#&8Kj(qFc1i9Sk+K*l6VwU>E3 zxPw71RmN{%EoITnPKe4|bG+&9hP(@w{xoV2f-9!MIyXxH8tGij1f9DWsQmGDHK^W3 z*738+;m}4_N9yprJ7sTVZ6q?FCpFl_x=LhHUs}2eOV8t9vkKw=^%_7l-L~KVkT>`m z06%f>y{;JL-^?1?yQU|t-TW_eUT$V(WxpCnOAYI8VWBP}2K-~tZ~$daWyL8pbVFH6 z-oh#xISKyV5lNOUtc^i%E*xO<@1U*7nW9K7C4Sq=Cd(F5!YOnc+ar+yV-mKrq4IwO zn`t|1DG|iix7%4KiR36%;4r!*u-yh{YVi%GEYU)bF$TQ8ys?^q$A zGPm!)O~~A_0o<|06Vf-9b(QO-e|f0k4%Sy{E{*L^&v&p|vP4*nWVZ8j18B!i*4glw zNB;UP2I{!|fiG3q#e6+@5nO#OQfzkm(6w(_MVh&b)pruiy(Uw{_t-PN+{N0sh!T%+ zu*jRbRo_yKGQP)$UQD}LBgyPMp4?934%vm>Y_M!=&UgdG?#ymN(R)}I$<%o=o!P^} zB+_~^RoaWSk&s+|22I$@2FRLsrx|4$In6E4^ zKHWfv4rN!T2m4rWDXQcQ3fa%TlE}hXdUgg&n|J$>_JkzM3B_psb;JiE@W3G zh^ppNPyU9K>D+u<18a}4u2Ndhg=nDI*6LLHD1uzra^6gbet@oYl(mvfjaL|`;pnXu zsKB?Zi7Xnh*g)}_*(GuAjkT8bep^EOzhz-I`cea(t+A~%`F+QNCEaB?jr)#8N#y8q z>Uxe};r)G1Sj#aG_8-H)suUq3zmF85f`0dD zRzuQd(EF2967!HHi2QO%tg=K9`R$W1wF=!-hwe|pYDpBS$bX)cW2XxG&@-4B1eXl@ zdX#)7r&$^K-K7u}^kb4)uq;xM_%xYSl0_=$gHv+4B_|SVSKLzBAb#t~BtzdMtEi}t zKg&F2k&5SE&tjh=v{TVr;fEX>RGiNFfmM?>$T;mJtEdpI@*^f?Aw_lX;2*J!5JfUX zE786mSt-dhASX^A{)m}JFv&PAM-|WI_*@2S=zoaQYv*#bks%r)MabwZNnz)6$TCE2 zgF{89?@w4tiAHmxbNx@OoGekHc>5>jCB@26^rrF`a>ksD#}4$}1>6VVKM-f?a0EeJ zc}D;>y2vVf@FJw_pQ1#{Zbc52c9f^37g<#o!Q6N|##|-5b&2ULB|Ez?J-mq2FGy+I z4YaJyjv5sCGaKS0il!c>)SvP2vaJyFKiupQwObtdpQbmu)@E;jQT$L?u1%AFVbxu( zax){@XPRIAh53J`dEh0ieR4FPb%}))JU(xnqWe7ugM{SSm7|C>eUfK*=w&+tH7ytcNVRbkaZ$ zSNArd{=c#TPJ(OS89MzdGfVo_v!F-r^QY-o*jPz-_>rDnVSh=){TyXnWfvsU_W}jp zW=$#k8k;VwTd;+G>S!6pTP#P`G)%yv4bNZ5?>BZ-GTr#aK<+R1hf$mBm=pxP_ay_> zbUF}7=dUBViK5`kc6uNvP9W_?swz~QBT?4 z<|e!^ilpuB=*~@yW>KOX&?G&_LDB((=zThyB&$g;Os8kJSdc7{uGl7JC@+NE!3-nB zN(Y3{`8!xth!W+6MSrl`vPgO1#UDB91Yb7LnIZ@LsOMca(di%$l8+X;a+ggtas*+~ zY#4>!W8DmbcK8m4hP$OAUB1WKx`?7hR}fPr@p~DV5$k2Z;i9znZw6}amRN>1Ww2-| zH~KcY-)CDSvgZ!fdcqo!^*);~OG;-@>Jt`DcQV;{bw|H4L6lt@o>qV0dN3Q~}=|LI?>+`sJ)c#IU5*Zwh&Su-h3 z+TWaBKE{+Gn4}ZdNJQGdQ6kdxuca(y^;ipbJffzu+Ev5GS`LtUW9I6GYmh5$-4X>DQA7;`-n9e`NDn*nWeL(@w*d|$H-wOjZe*J9&a(&LmNV@YIn){rclXS;7xSbLB zT`$`9HybVKbKcY5{MODi^aal02#HhQBkDSJp=Ex@I^nHkHcm1g_(1z#vP%+K`jKY8 zV*4dB|0C6U&6Y`|n2~;Z&3=~c70hQmPH&i#gG4_%;(hw$W7Em|9s5$UcPT)7-myoL z-ll+&{^@KPO7GsYxl)<)1#wHfUmq&e`FKCvk!2~enyV4trM7ONwjbGOSvSUDq|E5! zoyhPBcg=($`He;jnRvVfo%n=XE28MUaZL?tCx`Y_=sBw}=)c~gin`04|A)Kts~0A$ zKi=Lbet^=XqM(q2wWicf_3d~EYlzfM_U%^^k=@#c%#POjvWDv0kB-(*$t3%>3vJJ5 z?J1d52lvcx?JAjM2Y)T;=v!LR$kLy77qIq_0eIj8y1OGz)?wWoSkO9G)?O z5!u1DX||I!SeD3MZbps<>nJH1T}|lfNV;vX&Xq-~yYCvUk+Pob?jf|-**ZirsXm|L zVjcb;`n;v9b*HQ=``jX{sqPMNx3-c+s=JfitzBdl+1)hQ!|LO-k0;=kF0{bI>g&T1 zj6|Q|Vg+NIIB8otj_l%=JmtQ~1vQEMAn(zpy+i(1!9w2arQKYYl4D+*+B&1bpviOT?YdPy;iInoCa4)!CRA1&x-sP!k}yRj`(n)uanNse1)$D_J7_(46j7uy&Ru(it6S zW<{&7ERh~*ClQ-7s7xhmZ`pF&w)n{V?g#a7l+0Sy$dy6gZAR!_X3XW5 z#+Wv(%_KcNgxqRa%hN<(q#q%+SzGE_!|Fq~eXVsr)3;+aYmoF*+%l=)xoXz32A%uv zsoB6yB8z~4Gl(ku6-Pk~4fLuy+4%964D z=xj}EONZt(u7$64!q zX3oJtYkPZhmgcd9ey@cYV-@$^yg^2aO-OD}t7==TdGI25@SRK#?J1&8F>f5Dv(}Kz z`3D+l&bH+0)UFQ1i~7EUsA)Z`uR{mH8#{i&#Q*YHmHgFm)67BtgL|;6GsU5T__1hH z{{g7lx@FAhu{h~CX1I6PNfT*#LUKbYQPGwY7jwfcQ#L!o-sD)u(S$cN5-CK%~T zRls6-FyTSrQX)@UQ1 zN2i3+&IZ=d&z@`t23ZHlqWR;Elv?9#Q+|)RrD*4Wc;RB!97pwgg)n)7wT?Zx3FA(5WLm6-w?+tzLX)sVjMZoy7CN zY?%W7o{p!A-&(3t%_i1%lK#dlbJU(D*2c1A&RnuIv5u99(>$COwALeP3VlT5Wfvfg zxMWmF2(~u)EU|^L>EYZ?7cF?RU>DO0zW)XEVotK8F)s^`C}tkEjA#K)^FWxHF&R{eOr zHSH&@V)MB>Q*T@r{~1*G+l5wdp6g@g`tcn9l-%Nu_b5A*f&U zV1WkO|JS`CizFnXFTfUfu3)J^_b(8!Twr(zV1+=I{(w~i^~M2K3-AE(-!61pYecv{ zs5;g&9ODY&zF7%289@DPF>_YU8OZ)wVDMbPc7e`|06PT^Ed%TpaA#f%*(>ttCV)ra z$_~H*flLPhhXh{#3OFJ# zfnDB!SOFfjo;LGFpg>MQJOg)6gyHJ>{7Yi_z(PI8@iHj}P=)W!oHZ*iveN{5s(1(W zou*dsZ9YU~5;#nq!OR67;IYn*8 zSJtWvUQj?6wTOT&s=t6Ls@n<>(Pb?mpvziXKo_+f!wD`3^*hH!t!MxhR@uy%>}m|h zIlfh4#Md-1$jw*%T4vTNTnPDf1-dC{AkbK?p|OBoWitW2jurxX9jzJA$(*AHw$hHk ztt77!mkGgsbTo6^D;@9VX9Col8ADfrBDDcM1Wwlj^b*)z7tmMWAp@O%AtJtNnE?VZ z3ceKB*AOeQ1TrWXCa_JxaDm}XvB*e)dyN630XYAPH-U_kkPZsI78s;f;ucuh5{rBz z@NEmgG=aq`VunE7Hi(!l(7Ck(_rEzJQ%I;{j2dJ%LLB12dog7 zs3Lw8nBEZ)YZ%;U5EnW?)=P+6g=`X_9@uy@TLmg9*e*c5uW`gK0qT2=VXwfz&Vc;_ zXF5CF9CAoxKo^7@75Gg-j6kKXh&V3rkAhPIZMz}jjKI$d&IuIjj)?OFy8Y`j;*x~u z6XL3XJ_T+F=u_affIbEO640l>0|9*s{3GzNt{WwJBBBrYa{+w{yb{o-z#9R53M2^V zQ{b(DJ_X(h=u;rI7eD`@1?W>C1N9cBK%W8`1@tM9ML?ed-U9j*$RVIlf!qT66v!vg z*{xc90TF!)6c*4ezNmn1@x=vniw_deExwe1Zt-OWbc3(Z+imt&xA@8uqFa150o~$j z3g{MJTR^w?dIGw|Hx!^2&keqbfLpit|B2`p-%>!g_%;H%#XALbi|-(yTYM)0-Qv42 z$i1Hm(%o$YSNzY-ob^=%3ffy>vw~oO+Y0&#=tV*W^df@<^ddtT&hhQA?nu@C!;GL5 z!_Ax(J{qNn5cp&aV3fcd1)~N2P%u`Y_E;?PmB3>KUjuOcZ${lBQe{k(5bh_DV3NR7 z1>Xn+j7P*&fpH4H6*!<^hCtBQSY(z!;i>BSA0={^gtj|J;QMKSc>;km0rLg8+eKPr zp};-`iv>1BA!3QZtnUEJ7~D7xjpjgpkdP|#04oK!S4P^*j{-b=1Hl@Gr+h4V#0G-( z25=}hnmMb{LS%0isJNKHZEY3#4PtE*2(_`y4uP+K0PGUjwF0n5;KWM6K7pXsfc*mb z*8mPGa8t>9u7w4aYnYD_k{4N62QztLboq@V+QG?15^pps_NFM>c$QS>2k^TnI0z=K5 z+X~5!ZG36O3djc-EbxzlAp$@7B4U_8aDG6zz|RE$BLv(90V4%67Xr8=MP@4*Bfvd_ z($0<(2=fDs7bxQon82`+>xYNcp+zPcz|MYS=By$mkv&zQs++nCr3Jnf*{NWLK)=d} zm?e;*3Lr|rQZPrLdJRO(6UbQ;Fkis>1h5e2A4*=d7G$x6oU9F4B9Mc68Kt5w6Bw=F z2LbMflp$!JM70F$5t!TxuulQsf4RF-+QxnfdD<3mP~dJmz+r)z?Eyyx{_F&Z7Fhim z;FtjSWlCE)F7Pu0oqs1;&_n3Lt_V4806Y7;nX`PlBm11dz@C6V1=9NgE(lES54a>y zV*uca0k?Ht$u%SB7L^KmLtw*~Smu^Mk3oPt0vRp9Ujp1oDy`$b0C$f{@KAs|LM3qj zBck{I3By0!Se8&XqZIPo0IK7qnL}TwlpQN@W(?xr2+SJ`h!>bP4v;8t$xWT4(n{Wn zwD}s4A`m$N@Lr(cBtWV__Q`;BfqmZq9Mo;1+LIYm02u|i2UXf^=DvLY`*>%wamak$ zdmc-RLb4mc-sd!P*3oIm&Mm+ls#1Jjfp-dg1-5*Lhyns_=Xl}sk3u3Z<{+eqK)1Po zq5{zhiV0ZXBO*ZHulax=fq4r6B?Y)|Rw`;~0{6fDv67UPkmuAvD?xdIuFC-x8Mx;S zi$@!xh$;*Z82YG-O?3mPu$nygGiU!oBMeb|ZH9j@PIUg&GlB&gm^pOTN((d+=&~L~ zXd-Y`K{J8r8xYZ4p!7ySOM!nj0a_byTluy?+8VKbRp1l|`xy}~fjzqb9R-T-26Pgb zp`f!shCPVrDv)(Qz}=l?DOXUdTacaxP#wL^oaH=%?7jlOodA3x(C#FlpTK(s0|b_y zLc~CUcJALGgGAmdump~rLBvpj>1P390yF*q3>TPr9uOhW?;>E7fbS*1Xq9wX^92Sx0xT5xUBO}kw<>6j#|T*>Atx0q6Ik*L5kCmzc@9`9 zFh;?T0(TYsBoOfei>wuB5$lGm7dadY*eFo)HDI&AECpKybR}@rj(?*|h z$Ufc%4~|FhlHno)kJU)<+5k2hXXdQF6_K4F@J2zBz>O-1NEVpZJR|OZ??hZJ5b{Cb zgn~4IAuSP+f%=nG#o~^KsaReDYuf-a39M=h$RhBC6OfI-tybdI9^xY*MO=U!0-tvP z|Jy8`?L^7Q}|7ijr8AW&d< zFF*-_hkXI11nvd{$^`T0|2Vk)Lm=fOB4*t`x`u z*)Jg;1qTKG$cl)=0=c{aM+M$0h!*%dJ0gw=jL88wF5u=qxTz#3MV{pX{3ftHH{guG z<~)G20;lo;{t$TQ3pg)Ox**`9z>*?>%Q*i~0So*fS0$vdKj69mckE3?y(v(w1mL#7 zs#1Wv0)Axx_XJ|g0v;G}TQe#^{x)KDuLO7`@T4-}i9nX>fM)`^Y6D&fc-05I64=}b z@LJ$eQ-C{8WKMHPg22)i42!}BIx_G-E9u{yRtQZN7}FZ?PTkY^uu%izkmjeF$t6X15 z9trtz03e@0)lfiwfujlv3b+O$qOibi1%3iUzC?t-z&i$d|1K^va}YuT1v(A}ln^+p zpp*djpiVVXM&O`=astJMAfkeR9S*1j!1I6o5s)epaytT0P2k-~Kn;Q4M*%(&s5%-@ zTcFJtKwSZ!v4Hvlo4?6~-`_M8iI|Cy#sc~R+l=8T?oZz%qJ;rmaa)-=>n{CXpQ@vc zKr8wVjG&#sEPC4|Xs>~uzv9#?JF;BiZSeTw6!Mt?Y@>^rvwo$o?kKyPzy`Xb6Z8<6 zy$aA%fd3mVMf4Wn4&Vv;e&ME#-sO$*c*-Op9P*Yye_1%d07@~C=MHf;k8DoygAE{i zh?%o$9YFRl0UbY_VGXZ<2S4ZYZ=?~dA=1oQwdi*#w1F`Kw|)hT6L6jcj2Gy08Zbd1 zGkv>F>u?K9y#$yn;8w-3rm`e(xp>%hT4uTd6l1lqp=Y!cv}>uIf91a?xL5&SIRqHhxkwhO#euv4Ia5+Zg3 zaQ;75vR6X9=m)*D5|2P~D&T;?1P6W)e@Ng@FTfFjRha<42#lv;yJ@8{0=aW$#`*uN z$gbQ7IU%q&AK;Wg?}C8S0>uggeizWkMRBiX!5I0UW4HdXCQjv&E2q#pGMf z0sz+pHU$E12;40JxFw*sahKsw-sr0`h`4V68+~ZzO!gz3|G)489m`^YryRn71)iHZ zi@V^b%6lnLr6M3!pj}nK8-Wrv0PzCn>Hrc2`q$5l_y4ydjur?>5zxi@z;KJpIjIdI z(hZ=T4(bJ4WuIw>?2H23tv?k!v%tajfUFAm{>xqYQ;4^O=xyX+_=7j9|NBL51K4O@ zGiRMv|2xB%fi8`z(gF{M0Llt*Z~wHH zIcv)_WY-bMJOfZqAZ{k0fdRMG;yXwqBi0Y|08Iq^<^!4utXcqQF0gtLprycJ8_-%{ z#WFx!fq)eNw^QWIj}Vu@%+-L70z3c#RbeNAtZM+B1+uIKbQO5I9?)Ij_C~4MQ0z>uz zh6zmf0Kx^<8~}_E;BgVCibe|P7BiZG?yMQC{6`QmP63^NXhY*AKX)|pCkPZi25<|E z{}nJ0r9plXIFb#YK*tDl$p!dTV6!jaguu8$fKvjx6lWOrak2Er+UGR5)p7n) z@*DbN4HpDP1OYAyd{r87MPN=@z%>SXzNFvcRRr8LfL*_B<}4m)g3gh<3~ns&M_tH0 z7JAC1FH~Cs9vZ+J{xNeV`w7E(j&I%y@y`t){-v3-!dfFcR)9yApd!2p;phLYyoMj# zc>Yh|5PGttPY8P>R^7XEm9O_`?ETvj9gKKE7zg7*N0e`_;@^ z>EC0469PMz0Zs{c)&fp5{Kz}eaWmko0hH+vGiMdujqD2oJ+}ZZE8zF9R3+CWWb8JC z+!PqO9dJkB#~pxs0&f*O6!2BseI%gE`BVTUqwC)b5nZ%c0bQ~<0bR000bR0W0bR29 z0=i^r4D|UF4}p@6kE(-u#4L1@vZ$3+T-R3Fys~6409|%kYACw)A0?tbzgTS|u}Qm3FKA zsx0)eCl9cK1!@?;0-u;Ui^f&q%Bv%AF9uLwAj7YKMgrwd0GbN){|(Tb!HtdbKq|D> zRuZC1(U##17mG$m;fVGEqXqyvGF;_|Z7v+v&tx5XyIlp;b|cGKJ!CB%-82vit+yA8 zhgZWRoDlRifc^i%%<;%2oZVl5#w}qODDeI^V6XrUUBVGV1$Yz^f^Y`+#~Y1cS<9uM z?!GxBQkKzc9m{|Up>abvVmw1UFG8b+FibRnf=@DY)|Lmzo+2>n5rfHpM&}FY%`6g7o3WM%=&dYQz}FwWnUyR!lr&BVZ)Px@4yexGi0@Ge#_3v~vQwWakBR$u0@#l3f+hCA+~upCR)YAt?K81E|5f z{rUGN$fuz|c<=9XbQtZE;)_P!OMJ*2wk#t0bMdL>epTEj4oMb0bR0e0=i_`2k`R`?g}&n1#c!7 zhX8222!^}{P-DJk&Z1#BIJ=+#4JN@*M1Y2pVDJ~9fg~6L1ZLOBhUbqGB0T5@g_IWf zsSco=z{LiDiUMa8R1pZFF*ax&)dhIa4T4Vu^uE?1aI2lIt@ggYggj}1Wf}?GQ_xg^ z#@pbvHW$$M)m8$!2HOhgDrzs_F7L)lI*RBz`b>c8h&R(!Kvz)@0bNDC7;y1CG!TpQ zl?Yu$ArkS)U_=ZU!0jJLTi4N-vW%_~OF-AiFacd7!v%DWjAVGkO_v7V;IfZ4fF?B7 z%psfm{}|7L3tvYXn}T4X0W2`d%vm(<24_zZpiws%z7^0n!I=Uy&<00D3FvFNDw&TcYu z77c>I+t@0g?}^(5qQ5}IE`eTQfV~2`CF~c_2mX+NTbJvo2#tfm+l>+6aV-dr3#gJ? zrv!9C&Iss&oDc==JAPi| zg8+>{!H|yg5A{KP@w0eQNAIeFrcVT97I3SzW)q;k_<51+0yO>vLoNa8^PeHF0QJ?+ zkYC`XTdky!2=(31A$|fhMgc=H0qV-1AyD9iTBM`^b>`0zWdvxn35N0lm!bfbLizrK z3ZRbsIi#wDWSdBv> zwE&Gnz|c;BdiG~<2^9YU@TtHowT{jLG}Hty(oI0O@6X*Lx`Fo=&<#9TKsWGy0=j{R z3g`wtNFYG9ydeVmXoeYZTe^XdFkRPA-Zv{7SL^Tt$=Qu z8w7OQ+$^Bm=FbAUZSD|IZPRV-7SWA!pMY+g2LyE6JS?D_;x7WaDIOEhP4NW7bH4J@ z02AC4e^X$-|2iZ2Jf;NYpA(>wBpA*MjNJ*iB)~&MP{dUMy^R|T=Xs+%+yh12mI%Gl zztH|sF1^+V9CDbK;c*^lnSTu64)NH`Sv0@_XFn65;SCsG3ee~V46g-fYy*aPfh|YX zMKwu;MmFG(6amMtfDZz>jswyKdYl4y4KxL(kqvkqnFajM0I~_tum&8FeIP%7VP|Pn z1D0G8LSq^*kzYVpKp_EL0e%9y0*VRf3J4U~;y#MaloZhwP)0ykKzRXO0hI)F z1ymK#6;MM!S3oTRT>*6m^7a4Y3TPl9x&j(A(9g$sNCyfhBaX5D{xyygb2{U z1{^Vfz^(Qzw~{X<wT?(=FBhzZTK^>lV=a z`;CC!-)RDRe`g5j{hckK_jitf-reuf{&8^i{x0MYTrsF8e=e(S07rYNnKKuZ9|WkI ze~w=zFfb1Alfdo-z&Ziy=O5pHY!vZHM#vTc>gAu;x=moxd%#Ws9>akm_6Tq<{{$X^ z@6rGV1*R!D!r;cv=J&?VMoS3w@y{#yRe*ZKnH?91#+mZ zTojNMTC0x=Vh)7oKSE}fX8N_h`R#%K;0M6N8)b*eIy69|ZJ~NEeuvrrN(3^@XhpqK`yo0evL03Fsq{ zT|gg+Tmt$?5{16x>pv=h4h2_$pM>ZmQA|J|i9m)eTxZR*W08^uaE6pN zb0)hS13pL^UJUUS4ItiK+02>`nyLw8@Wlc(1)eFWEf8H45%mNb_yHOU>{k&@1e*9G z;(r=w|7pwx-u0FeGDtxi0bO#ZfG$}F0bR0A0=i^f1a!%|3#gL0t)3#fXnh29$-WTK zCF{?yhmS!J4NpL2A7}t|I>^jfK|#nKB0wW8aD146yJLCC2$9)k0iy&8mjjFun4{n; zftLy<2((r!og~1+DA0DN2;6|%S!XgV;(enb5qOy>2KuEl4~PJmD~sr&&KJ-{ zT_m83x20^qYS8@8FR3X7>1WzVKfQ?uk^SqqPKfW zV5nPd_l$_%?l}Ry-SZ5ad99z(U<0()O9oIsSInG6gCTJCb%C560k;HbJOqxo%izW; zOLv3ZmyqF~1O67^5e{gX#{#+(&jj>#Ukd2$z828ijTfNJ;{KB)qPLsEuz+`#hA!ak zelUQYO*3;A4OYO}4(gCz#g|j@nFM(30gCwVhyn!ODuTa%(c8!&%jmV{7SLzQOkfEC9h*UtfT_@#l>;5=d5!x~agV$%tq!kaa4cl>l|) z&+BL_pihkUgZTdUak)Bj2u>#I$e)+_OqS7`=_;T%(?dXSrkAXP`tj#=^fiEe{ld&y ze7^GM&;3R8Mh6P$OWt4s>T{o0IaGi;@n;AZ2vr-65ZI+4Qa~4LEJJR za$8LvtI0Vvd8#JKYO+pER;bBN{`~;0+g6iAHKG5a!btzWgD3P~eR#4_O@2_5Q)+Th zP5x1n`D*e&O}44YQZ@NYO?IovVm0|a6P>@b?h9)6qMFcuM`ApyCP&odx|$qSlPhZS zR!t76$r?3DP!s-7F0__aYQq1if#!ZulUr&+zs;xq`>5wAHT#>ITvn57YQjI|rH~{w zd95b<)P#R~NqPK>OPZ`#lfTtuhnnzD6)7)8P55_qG{--Mqsh-SanqE4LPe9kYQjH% zqB;Hz6HT6}3IF1V=J;1aG~plr(1d@|LlgdC4o&#SG&I?uCj8?Gn&V$5(1gFFrwM=0 zP80r0nkM|cX&?Ii3V(k@vyaq-zsI3D{?3CY{LwB=_yZoA@QXf8_=S%q{M<_uewL*P zKcdovpQ>oW_hg#z&50&_C!h&md1=De3!3nW(`TVQZewi2tX!gbQ5Ee;zs&Koa}AiC zFCU$fKV`{~VeZ0mDCfMW%A8px2l)o=rx$OIExzFS0dK~w|G~cw0XKh)_Wn(=`5kJZ zFtyOykMb*c(@!X|Jq`)VSG~&curC+Vnzww+3xW@4;mvLP81vOMu|I#z_RGz&-rk!& zq5!-2me}mx>pr65_NQB@SWoO`TVqSu)BjB`xOW8mK)>TesZ>OPTGfK9nXT>oPnKP2 zt65PM?>+y`TDCPdhqp)Dd3*cT*h=09W%kpbV}lli#b9&$|EsT*(r-smi1RkZ*1||w ze7JUuK3Iv5)M1^?2Y+5vCH7Ja(vNv_9{p+*i*k#Y7gfUEc{sM{f_Z1MaV?%Sd3K)d zRD^jaPz3rxty)59p5LIq{#WOngdY1pdK!A-W3BA{`^U2-?68tYu=TV5<(1p%(8T=5 z^4ATPW^n31IkwLZivI1t)|8EY6st=gy(6}i-C^aCEcQgoa4fO`+jdZ+IR0@^WpDb~ zESA}9Pudw<#Lm5wj@F<5wMJ}zd~AO9(4DlsiyvEQ?@J%g`sM%R-_~;Zzd3dO&AITO z96S9mjiy;?7Zv%8U3V9aX-2=nMe$zR)po}gD^R`Ozl&b~|FWdQ?th#WXusG+`~Bd* zR(v{6Q&ss-Z~k+Itrn-Aaq2q%3FO(j{O1-51;1k%ez#QDyAvnKeGxS=cd$zWgD6ian>DAp%P=km_dDtHHJ!aF6gKW>RF{z=^$!Rl18^a6bIr%2vY zn()n^CVcZZ%h3_2R(EevJ8*=@$6qhRyH8VgiXV#9 zPY<~g)N2gyr20V(Z`-=(IdmlUZcDGj;r8;3uPgENbjH_pa~-CNc7-}zM;$Z}Tv_F%)9aQOcpFErye`hu zyH{S9RNLy~x$*J6 zbM194p0>XBx^ioN!LZgeq(4aQr2(*1>N1UdrBc;8n^d75CRMzTNv)=_tgHjm4_$lh zIdtvK&D^|Z`|+D{JdJt$#*e3W9=|D#aywtSKH(}V9c(uX&sM~4>iZ_UDtz51Z~Qs5 z+Y`0uq$h7m^ZbS3rHcP^mJTqctOLV3hquB|C?Xj&Jh#0B_ZMXQ|a zrZ2Q(Vv7|FqyXCZ2Gz`7Pp zi>t`7(bM9}4t&o|IOR3{L2Al-lWOZl13tmlWiqM#Sxo9^Hj}#NZBm`Ho77es+zQJ^ zTJ;|A(XsFEFB0Sl`!>!OC()FnaZOZxHFLJ6`r3K3u&@2s(YVqIJ3G4)zA0S9*ADt6 zt_YX4;V*GTYoS7aa&9wwMaOAqXqX(Q9nPJUlb!31azaO_3_FTeQ4Wh9avr9DJP7DN zG-Tw+;INQkd}~DRQD-!7bypGJ%9uaqJVDXEYIUPSh7KMOGAcBf{)FfSPC3s~fWI9Q z9alKpfWiIMQLP*uhts!vbX)~4`IP9m@;u!Z9fx-LdvqL5>&MY?0qoggR4XVG6BnS) z$ubUCC29qBCojK(95Fa1t`tw_#>AE6>7JN4oYhZa)Ryuci$krpKc?nKAB(Hl=o}x{ zS~R$Z8r$Ou4Vj@*-M==eQ#71~vKKT;g-VU2u_vr^p1a555}Wh3u4IYFUO2MGx8Zqb z*7(nOx+-gY2cE`ejc@@LOuD3cOZ3z9v^# zjymzWl|ORE(m{?Xk-KO`)d1sMMNGM?@1gDRXH3>48h1jaPSAi8RKKS;&IuCnH7(w^Jtc;t-Q12ahGd4JN^?c)#%x( zbX#V}S1iDvW?3ta(bkY^N@GY^D?HC<$B#e*?z7%h)?30&%7tIvf8#jz~Wn|B1SQ9Cn`Os%;hM zZ-0I+zDjwV&u5+Sx>fX{VII^t3sE#SgGybcK^d$>&yI8Pe`0f!Z<)QT>+C|CD{Ehv z7*y2$G~h)p-qy2Q@pTIDCwo@oG+Gd;88otib<Og=@i#TnV^eZ>On>*z5eAB7E)1zJb2#kiN~8P_aCJdT0d|_R<3o zOs78i)ldZI{Y)yV7^ghW+zBl!=ERP-#17PKZ&&G*;Af|`Oen0@c&UB@t}7|^6Uuud z@*C%G)9vWorPZm`tw91Fb-rtmfNQ{k1_@}wuNov&57@{hDOZ)Yh18fDCN-rdr#y`t zCM?O%dw>1Ygcdw4-YLP!(;=M_aHm?{DFJt`vz-!Z2Ji=qD^8kRewn?Z#pldO2LZ` z4~-ZWIVxn-;P9~EQK2Jo(WhH?c89B?{hggq#E!HR@ErH8t#;63CsgAyJ+%{R1RUfY z{h=rA9#V5cO)7dIr#$tSB)kn&O`xQ+Ds9!DUV6&=s{_{OfLi060|~gc96FGIYu}>- z2{^m6A55qmz@Hvly~oqqkeWk1xT{o-iJbCuKbUZ|nySDS&M>OL3ywzx?W#>*@j&Wi+Gc1FBNs9AtN zzqTgMqm3e!Og*Dp^F0S%B-|*aR@ubqq*c<1b)*t@<8YQwa?(E7okAX!^bZ~xIx2Y7poq|sgTjXnP&Z4L z%i-$D5vxyEDQORHo9NqUDevZm)3hTA2KByZ~pVBH-DA1(tQzz2a1<$hB#2vUGwNFnhTvYE3 zJ#|NAZ{DFpm4V?AV?rX(25onGVqnlkE>_t}v?x-UtLjvwb)jNLu4X%=O|8Oq^rww{ zJP*ab73N7D~_5k@QHd z^|muf@6~(i?N;@R+mpJvRjDD=zpY9&qJC^uD%UoXT1Z{l!Xm8$8&Sv#{fBz~ERocD zHkYpOHdVSt+mdiY8?`M7*U#14l5np5Psg8PMx>OUyB|De$RL-hIl%FC5z4%9m8#a4BZTZg)@RjG&6 zZ>>sAr4DOVDvf%oRjF3gMXgGGO?}g<)SSOes>B28Fx@)h*|Z~RL>=Bm|0hX!*68^p z32*qzpCsW%c>PIIk7hXL4Y*ZCW9EP4ZK(V+qbQS}YegCBCQ)4~YmFrr)Ss862)GbVZBGiiS2=y&vUx zmV`IDvd@xmEo$>DsbnwyKGI62{&00qy3`M@O1Y^6T$SqEH)Dvj~p4PUjOX$cS-uL^trPi#pJhFrzGXC zsM}^JUjT8&rO>x;s_)4!=-F1K*3#A4I_e2~pVVcOdSYnnI?wxE% zfxlk+7Ei2x>)ztDX}s<&u2BQmy~P{dvUP78)#Rh)I_u@ioRLd6{tl8Ev2SZ}HGwVf|Zt(9>2=2d#fwp(0keBBSdhErgv|M_=Qr&MiyQ z2aqcD-7Zdfj;w#XtPnS-&yT(>p*}w8?3{+>td8^{mvzW9_vqWX^*AIj`7N$dZIj>P zniZb>7N^n5Dhxcc>~AKyR@swek|DJcUx;PDT4(Q8&4yx;f3`CuKV%u3rEytuN{(<6)vuy<`-w zX}x4znL_I&qmZ-p{Em9b`5Ps05jNbWRU_r0FNRg>GTp{h>N$M?u2RqF+h>*POkWaP z2_8rNBPm!xQ^^!oQ&(s)5XcS)#S00n-xOEEOOqYddWI6eBh{I z>bhtTvXgN>%(Ro$)40pu;R>+l*~xxBBm0NbvjVE_FFQF1w&OOo+KPqMXRs{Su8(5L4r6(46(UT;mxpFT%YxmD6k zszJug+OA|WsaifJHJ*BdR7sgR<4>+C6gQ6(GvQqc6z`K91(^Qm77PKjJaQ-T6eMeUqJ^e$hf{uou? zjR_q&<>^o~#mc2F1UdM5eI$Jk@sN60wEpm%EuZqnmrMRjqm)t=u%hbR zo8mC)O%bU`%O<3HnmnOrRZqjlDcMnswjn7+i(%=eT=P*mhew3>52X+1MuiUv#WRCF zIV8nbJ-IAapYaU~jrfu-ClTTO)LF4TMD5z|At}YX@VZ=C9j=nprHIPd18&_cp zbRTFxBHKj1u zhtDb_E?a?CQRzSLi(vVGK1rApPJ9x7Gp0Ci2NQirHdN|m}wol&Zk zhkBt@se07?q)NH}p?)V-axHZ@sZ#x^r%9CxT4PdyYfUQS29rvn-Xv9A=w?Y#_mRpL zQ@@cab$7c-?WLX~l|@k(k(6pljdV734yo`Y^$Mv{gQ+)2m6}G~K&sSg>in%7k+%98d0#$DD^DFns;(q!P|uJmwdhxq8h_lR+MP71qSX7Nbd`JuV+071x6v{eKKb+pF z_6}vrUHu*25E@p0hv#0a`n%fhB))=drG6q+my`9Ve@K`tsf$Quoo|`c5$Y6D zFG0OQs?=EO^--lV|7}utB^CA9Sin=0n)xiZPDWa_&f}8wy*t!zdYc;WJZ);c-#PKae%|WIv%dYloO%{$;pKY7Ct^uEaT*@A z-{V|=X1~X+Ki87?CDfunXL5OGrbWxzF>T)$w_lGrpcfsy|>3h_!z4Se9NJo~w$Mx*-()U%{;;P**t7}14ebpWnOFPUz5w!MD zUz93!En60y3Zvd9l^yprsRh*Er1jbpyzG5p{q<4_=Lovta{kJ+1Uyf3Hj$mg7o z*#`_P!A)uL&G%*0%XJoqs~goH?i$_vX>I#>`?IOjNtIey+N3s8HS|(E@r?SGRGm;hp*|(8OP+6we^`a0lx_I|mEED`2mRjB!a0MgwuC)m zL6;Ii`ZSyEJf;gXllqKQol7QAXOY%=PfW`X@7i;nADRCFH;X&-Ka^38{gm@It;x@J z4E*4yj(+6@A8_;Ou;4?f5~%3R4p)6{D0zbE*CC@qBZB*l3&vMsc*tD1-~$faxdk84 z6jEsUf>>^m!?jNBowcVk736PEm4zR?qq!jUx}>5YpLaUW6S2l+$2WJu`O_nhi?~4v%EF)4Qhn)kh6Yak#!$`Js{hgXvXMFSpR) zTF#ya%aK!^gp7(9tlo$^cS}W0ySt?}#8K^*iZ{YH-BhLK?XLH$dn($`pzf(S<9_U( ziVM}b?ke8VBNeYb6?&xNRO{U%RsDFt6_wF-hu<2D*p5+8{cr`{+9S29dT#K}L_=2S zrj|@yeX34DGk$4OQ>k-LWhX|ORF;V*m2sv{MOxWHvhdT=_jSTbc{+cdT7Ek3%*1wSLgT6HQI!gzK1Wrm?P`be=kAA_ZQdg+MQEQ2(XYaJ2P%hhqm^9St#+bCqIDMSk zU2ZNy?tz2D2GDcE@Q*%Hp~uQ^9IhWI+rH2*q5v9Pp<`)im2Houp>frP${a8|^no&=sD&TS~}y>fPx;46o#fY)@}(Kt(q9CSug@e6sm%92zo zHKrm;f4fh5Efw3<%N0gB#k*(mM^1yj>3C%u+BY3Hw8eeX@j>IczUh@ap-<0tIkW2S zPoGogrK%&;yhTi^Msbt6K>d`e+%wccsY?A+!K6-8kEGU59%pcR3tVcypOB94(qbm0 zS5)t4vzwJ1S^>TPtKA0Us-FT}0J~#H}l;`X7=_Tt^%UHhJ#}T0Je%tXSHn)iX@3yl1 zo{u9?eHzu;;TlCP18s06b?vD-0nIeTq#jadp4Od16|+0Ch5RbOT0pM-og_Kl~C7S=UZ0^v$dYoE2rwdvlw;9X>C1px})P4 zzS%9GHQm8C$>m$7JN(t9ys^VI*evHapQ8Cc2UusR6Hb-7NWE_&6=^M8kd>}`k&*qX F{6Cd^^=AM8 delta 764819 zcmb@v1#}ci8!r6y_(UcnnT-1c5+s7l;_kMvixVKY1a}ggg#dvD3Ma^7iv$AH;=vt) zI|N-=B*7L~>{eCRH0+-HpYw0!at`TwyQ-gh>Xnl2>YkmGC#c4xja8+sj_*FaQ;8BC zhm?#>=o}wcJTb0VnfTIWOBe6bC82odGR4YvE|t)!Z0Y#2r8^ccR6{OvN zuH?g_3(uOOx)%us>1AHX`O+P&yw+z1_maHPAU(+&BuOm= zmMw9W;`=3fxp0tR&kaY2CVulk6Mv?#o!3Q|=i|CY@d*h9c|NgVn5I*&#DqS*5<13q z>N}{AIRNebvWuOM_U+zH&KA`*3Bob6j^2X~^!v+o-*tdW8 zgkA$;g<|0IlVmGjrlSF*8~t`v+zvc_+uQj~og%@3VP+3sDJGcj?X!SoPm&$HC$gX> zRIIjtLZ6=ezCsS(+uEbkil_Sy8rZ9QVt>A&-_MzWCtGXfe=TSR+975IKci4F-XB$h zU))B?muze2)7#lOD@X{*weny64v;d&EaS6_TKSc2^!(T1M#RShHh=Exx)j2u(DPXd3f^7B&KECQhMyIw=POS%^O|l7{$(cv z=L88~dbrW)I9#^41hunDkzsZ|A*LW_1DiJtv+-v-6yhoX-PD*0s@bV>q8>i4n-y1G zzkW2LVggMHCYt%pv5|_pgL=7($7SA(l@;dG3dIw%2<5Qmcx6#N=LTaA$GeF}aZM;8 z)WgjN=}(fKfP0W^Nluse;N;b)ugUZ$Uwla48yR z=f!QcVrBDXJBoVzznC~JvRKeJm*N+-iRTyku_2s%rwOoe zf4CVqH_%&-uhGWO#}$a?BEdP$NGC|zI!ejUOpNAe)FEFJx(JZlZoVZfHS}BjbxG*Q zYrDGnYOQVHyykZ^iZnmpq^*zlMi$@%uP2=b>J$Q97Vchz;ODtWn-DG7Lxm{g{t^B( zjzcbWO9~wwYPuJz(h71yrmA>v)DM}Tx|fnB z&zJr0e^ZpZPrey5%&F+Ho=DFI{zatYM4Ggi8;kSS5UE@{C6U$z$Xy+r+1|kg|D@eZ+Nu!M@-d3%Yppk*A9ju7c>FG2cDq#Lt~k-V9*|0Sd9OVuk$ z#OEY)K#7V(I!vTC=PMKG29Y!m1?d2h?EkAy@>UXQVue~n`i)4bck2*oE|ChHs!OC3 zMC!G=0g*N%DS3+WA{4~^LS}p;l6i?p+Rv?tltrY6#o7|-HIX8l3DR;Ry*k>3Zx)f#DvT#m29c6W9T3F7iKu8cfn;7LQrRsN ziS&#}Nhv&$-VkZ>vDrjgNF?xFkX{n0QWZe*mJw;MZXuC!iPXIDA|f3mQe^VY#Y8+q z#Esk%B5fj4r#}Sg4+>7NT?@uDlFTILL+lZv#)(~kek&;TR zBhpeLc-A<5p66x!YTa!uVZ6Z!7w3kR9h@@OCNXLj2pC?GGi1gsIAl)R=mr`BE z;STC3k<7hYkH^vyB5~bHO~leCB9)I?MWmBN>e@D9QZmk5OvK{WpJ!odACU%E5Tsv; zH1@)Cl6Q|t)!QH7amfcns(B!K4we=W>HfO|M7mF;_sP@e;=K1nntiw-z|s~XNmSN( z!;+B*iFnC}L?k^V(#drbiFArc2YWV}kMqtE=}61>MEZ+JVb1Z3aNb!WWz-U+w?w-4 z^5SBg_lQV|uRpE9(mNux>RV{tFehJNKy7Y5-*-SUZav>`n~A?Mz{5wb^s3W(;NE}6 z>?r=_;G+B`(1I^Hs1!dZy(S-*VdRGm3FQl{^zspdEqur-EjayYT^L_^lZ?Nyu{$5X zxd%UCP!vCLhy}smVIu&8FZmu~%);*c>46RS(L=5L_(9R=3M*e=ftJr0q6T>lnj2)Z z(|WAq7Y^Ody+RaCeA;jwNSa_)qQT6=j~Q+PS%xYXqC4#-fFm zs0iG^&wTu<9}w?i{K$3H{^1mS&ghza*R;yWx6lCkJwfg#o|{mQuQWr!_e!mgnoxze zrIbVE@W_fAQfXQfJ|Vd*-(qqVqTv0hHG|W7;E@*dY(uX$@Uv$`^35k#1LP*X+@*M6pxw!G1P*Ax< z#bAEVrlNe-+)^T66uyWf9?x;b?GeZ7v*tT+SHKnFtIV;3^fpzrDEQjp96o8D9S1%q zNEvg`dTp)|RmCGans{7E`uZ2)!~>cy((>u^oAA9?;iHkyn-av$;rDNfCRO7;;l)-P z)<0K_cdv;CDL1>Q`Ei2^{a?F>bbkFdH@{|#MvW&Bm}v~ZY={{&zS+>gj~U`b*2i-R zltDVO0xNN#-y&Td?q#%B8k_h58=^>urCIDjEymLej8g$yh2Jn+#Xnd)i669~z(2eY zHM|I^D4lB>jve*_ib#{#bMgL_K2*_c)OnTWdo7LQc9T@mWnTW~@*sY8dUxVnO_omu z9cKNk4nhEUdV*=@F8i4ui#(uxs*=CCES%5WQUoDo@NJewlWPm7cSrKy{OA#;St}yc zc&dWwmK2(;Y31O5T(O*c#;0w>4XbdGSIePZ~Bm^*a+SU0scjT%Z$mfVFav zgz?+i)s%RKgHfDoO7n-Ol;k#%Dgy!Da$(f}w|cR5@Fa+m;Ntn0%Po9^->P$siH&xx zwezNhRrykLwS35LI?%UEcQvm3G%-oYZ!T^HU*xwn+@JiYwXOKr^()nQYJ`>6lHb3% zKEH6Ih9A2no)6uK!hTU4KX5}qI)GXECd<3yut$D@Cs6pB@BB+Q*og|JA=NHLs*O|Q zX%sHf5y3X#&n{F2^-t{DKXJf-?tT04*#LFQ;sB^5gC0LaCw3ypqY?<6o zvbitefrrGrEe=%872-vL?Bv^T@gwgjO1mXMta~dnly96_m77O`8%r=#!)^R7FBti< zmcNyWqw@vt*cyjIx(0u7tCoK=ySft3+OVFp=EsvTY@Jz}%S7Q)PKoDiIH$=HD~*O& zHJ-TP27l*#?Y9qB6H&~DB$1>a-uP>?ZmnVRo~vKDpA zQzHO8HNya-2*9l@9shj)FZ{eiU3i@Cy+4Q>NpmbneWx;q9k6g}JT3cn(bt1Ie#Qwk zKkw*pe%7%Re%6su{EVY1{EXu%eAp56AEm<%kKxmff91o_xfzF%d@KN*dJBZ~14Z$8wMOzGsH2atVI*Jw{763M>_|TQTr%H2TftYj5#4p!HpowN^X2#VH z9D>nZpQilpF#Ndzrp!lo7jfKr5Z_c&i$8IH>wiZHka2=J)$4Z#VGSL6{>D=$KjdL& z2C&UzC7m;q9(|CpT|0_5Jxgc1v>l)Ip-5)`=eHFgz3(U;pYY})J5Y(t_iv9#1fa9; zJ2C=gW_?H&Kr$PDx*;WSbAI3!F~Xq+mVgU6E?2+=3uRmvMktsj=caLl5R6fBH)ztT z<{(Yp3lfv-LbwM4d9YN=F+8vV$SbgUNek&!)t3bt@7DXT0ywod z1Q-0!h`TIQ4s)7u*M$g%CtGn3Xo0Nu+*;nlL<{t?ZNF=u<8wi0R*N5 z`?A|Bw)f}aDBCJSxd@ueA%zr6pf!qmEUOte_4wvby9pEzq-$W4F;V7~dq`qw(^C3MZqa0)L6U4*pwVziyz0Lz8lusp zI0qg)PIK@}?-vF|#!E8(I|`ZhfZygl*MoW0>nFgu6C}%7rg8~TS{dX%lej?KSeX`H zoh12F!X1YPr$}CF&=Jm;9Ouw+%tDDCpP#*0vIWbvmP(XTbZoR-INx!lB)1@vo1T)a z!q8-lef21bC!^Q8tD z|3b0_Q2`HLO6KGP%?Tr3OEMUyzX0=@dtjgnHuxx+ZbeM`d1c`+&nR7hG!3SjrD=?` z5U2*Ou}JqYIs|5=0iP^VH*htmFNY?()Q^q!gG;)E#b{$zD0+hzCkNI7d3!^Ofxf2( z`arl}`j(-20jPLzHBzd{2S6O$T0nXdw<@KO^l$94Bg#r8I&>UeSK1Sw|FeN~x(pqM zHI>%H$E+68!Z-w;{VeT;<(6%wyRnN$BuZ1|=(wVXv>U!Iq>nTVm$N5HFJPC?>nDAN zkGBR$-{Iq>LDJUv`uO3}A-Me7QPRKh`IX7i+xR$cj5Hgc|8atJCdPR*Nje|nr%V%M zeVX(x&VR#8*RfcGx*ajF4rrcB+JOc0qz(pMBBX8*#nNh|2Jk*zx|j_k36@$eeU5$J z|EqKeE5;A2q@9skz_PW{Wvm$Y*GV^E9y2$v^H{r4YQ#MDZI-euHIPn|pfXds8Ds3& z&cXvC45Er7JEcomRiW4|-Gx=+_xoxHV364@X92KJ8s*Y zBhuggJ2}|zDC!>n`*nm6Tz^736*sEPY3VvvjB#hAsf_(<63ob!_QnL97o;m$33R$B z4Pn-R_KGmN{C15+`+^qVU6-z5CQ$jdbSc(APL7miNlC&Z_MY?rvk7KBkPgBGRDZCW zpuuD5A!Y(w{*#NX^r z81YG3pK;RF6etG`vTc{ilANeNLX)mfxIgMsK*l)sGzC4U57K}>g=HadY(W{oy__{# zb`c+Q3&~m|UBh}sWga|P=v_i~4WF-7O129R>e3%%-9z#DI3q#^=-e$fmH|69~+wVnKQ_l^K2=B>Re# z0lyBD-N$pH`;%qqnCAHDvg3Hp(vX+U!E_!hka76x$n7&P>z{k~4b^{;B?UW6|^?leQ^I+MQC5us@W8EXNy12eMCuA0U z+;m1}!R3yhlikI9e!C)z#`2}>vIF?KdADQ_usrInEC|b!@5>sf(ed&#nF8b8dL<)+ z&-^#CNw}Qny=+eqI^L1UUn2FbJ|~mo%g!t0`*8NGAo+Q$)x;2a3a}H zghmudl{;`Fs?U@cWr-y;HZ=my@`I`YGV(mGXI*wP}sO z`sG@ABdq!=8|4Eq>us6xmDr71?ULu=^Yyai62?|E0deb}>0r(g`FL}n6~pexe`FkS zC|rko^1hf@_9OXx9Be(F$oFBn&9GeisCHZ7(j@HYey=c zVC(Ut6^pSK#*b5kW3Q|^K~a~XwQ&CwMJ&s8o;1ZZ>`fne#SC2k)VYd2*qi=dsA$13 zzk#TQJw~$`eGq6geW(HguaeyVkQPvWz#95oP^m=S0F+l&reJ0hYbf{P^EGNI*Wlxe z+RFX-m{C`G43D+Lnh5!2nhE)Le-!dpv`{|4`IFlU`L)^$`FS0L{4E`oS8@K-?m~Xu zojq@9f5%NRE3HjT`3;9DPDzk8YnQ21) zyXiuHdYX{mahAZp@O&Zv&jmt0zevb$zC?KdUvK_Z$iK2m$WK`#@L=wh=2#$+pWGmzGvA|{JLKcF^^(Mh#HcsLq30DMAMJ`aIood8?Hy}g+(qO_2$a|=g|2qPRpRZ~Q^*vQ)mY$tl{CjUz zx}Ye~JxMj0l|ynrRS%W`ARLAaQ4OXXz6?{1V&$M7q4KjtHsP>qv}!)(kT^y)k(I-+ zv8uMrw&*-T)Wg$BDwZLMH09l7)m6FRRyosEeOa4wYlfW%)C@J|G$F?5mPB$6-%3zyi(PL6=uM%s`ixF{Z*>R zl-SL6s)ekG^7X1wlo+4EqAa0(<2I|_QZ~PAQ_W&!vv#{`1hX@5*`ZoM1FG$A_JHcQ zM>UVaShG~USep{QU-h19#Bo?Pi4~^U5mhmU1rR_zeI;=Fh&&iH9?)G2b5E&mh5+F6 z8)42hRTN97MG)KFlWX9_TdG{4X>j6Q723>2M!kmjRp$h~!MI1N#&oEg`KL-p%Vs`T zRTg>)D0{6!J1)p&H{YnxBYu*s@LshmR7k27YV>+CIXlv>ZcQ(H>`_bg!r4#7)jz6* zWI_e?JBrY~inv;|hxR2x9!Aat@xBXz}mV=JMy zx%#&tf%vKR>c?6kc{oWO(BriJ>VO{m4pO@mLV=|t)Z2xT8+MtbuBQ^t9+;tiZDw$- z&D+&AVBxjum>|I?`eds03_bx7PDe_`zfWwzvn;U%XAY{3)DzwuRUf1Nar%V%PkQ#) zS@jxfyfGKlUn$tko9a%~y7EWrdPSRN-6>t=6yW`XIS)MLVgCYK5cD#I99 zu>gYs1f~GUoC+W}2kAgo8c?_>P{7)! z9YFzWZ*m6(balxe6wuYifE>7@K#N z0XY*@3eaJ9kP09_HNdDfLCpnc1sB!?(U9D?C8(G>KNUb!!Fa0OxBG)$(%$FY*`Ob2 zU{=ow+C|+@`&iWD!zV$9sm69a4cbVP!=DFPsaya0GN>)Xoq;)?kn*7KEL9}rKLqjA zQ_HJ^TQS_T`i50N6MT-wm`WdfF+^~o=gwd)?OZgG!2x&sqhRoMmNn4kQXzxI#}h3j za9fe!RYWa%*gGaThq`UM3c-EkgDKseFl<~2~J1-oHpYVcE5 zP8iDrqvi+Kq(Pp%FgP$^{`!IM8jg5tW1}~?{hPk4- zeJ@3Ge|QyKlHyi+AH10%j<$J1ezyoFePIb{$zW0xJ)Hz&&W;T6z^;biNDjpLLmVI@ zBDgk8^@MDuMrc?#q#AAH@?s&knTF9)A={{-hm;LDO^w&QYRJL=7siXL8zO|F4*pRu zrZ0(9df zG1>bUFB!1jQp_{tUD(32ii<9DKsz#ZU0MXU=CU(H8d~>?V1)Em=sjzLj$)i zE%QPr(5`CJg3uMTtLn5OR8LzxaZTuCmKLK)x^Qn3re=f=C;%?T?iIFPuPNj#2gY0p z9n3J%LpOM>AT0g47A&Y5cGAU`=N9b^^)76XcP51(Bxj|1_mYm z0~R7!55ss0zDM!E=qI5`EYnO8W&6|6qoJrxWIOiF_n{Ls+&b7%saY>a$FNY%6%HN$ z&}ga$p<@w?20cey2P15n$trYQ>eHZIzw6+DNKKjq9c59PM!4LM#WZj6^>xc=&_;}P z@Yf2O-iCZ?EC^fE1(r9_Oy^$VS16w_03ttj&Rz99m^`Ndl}-=UgR|EQtAKX6Mg`wB z(@bR1<(SKwsxYs)<^@Z*;)?;g*aec>X&4?w00huM*yBH=y=Iye>BiAXvx-4C2&fxu z(^+$$WgtTr*PS~`qXP3A6*GWQkB0`qJ3Te)LJ=L}Sxbg#dPtC<9;q40#;xx5QJQ#` zfT7eh;O23S4)nR8HG|x(1>3^P<21))+$*S_tU+&Uyn>H@(QL)Xg;O=_@v-(a;rMpC zrf>w3J-=$62BTx>X3YQvI*x&w^E$@1AXO1QschGG0CAt18=>Z;2A~#zRcAFU_pOP+ zuV-uSFgkrV*z|&?9k%M`OB#l~*ANjH#WDmF;^3O56R!K?4Gqf^4uVnQmS!Jw<5TZw z>S6*{?y_q?_&(}D*?gcI9P&_u_E*0G5C70CXT@+o(fF86aPz6AGA7`7p<#KTLrl;p zSJQ$es;e~8)|*>0%#ORhaM!wtK9wQDRswni>jI-Dds5n4Z0V!+deT5ehpE44WT@rkS6|h26l@(Q6aJ z^d@wCwkWJYB083nXkX&#YZ0aPiUl2I9&MRObgWQQdx2p`7(~^_;`;iv)5;m6r{(qp zZ8YXoC{bGpPmz1{)SklJOZV2IeV(u2s{Yzl_S)9%+R`7IHT)+0=;7!7(vSZ0)=4hS=z=dzKLKOgBi~ZYEZUj$Kv2lghdWpEzmAz z@y%~owg~hc`1B<*7HM}I89G`7T_1*IYO@)6)d%QeHBcr6 z8^N7Ut^#oJHtm841|r1ME5AWl4KJWSDchqBAU7^j3GbZJj>RJYSuzgJ);41?s)!B| z`hEllwO6!R*bUEJ)t(7L$MpN!%}R7^`c&JWAymlh2qONw16)DbcUlAJP%_L4E56sJ z=7+TfbeI#XfQcWqdK?);IUR|h8d6~_TosY7N$GNvQ8(;$*}9R;7)(Hpml(> zJ{lG?=_G;Xz&cjlQx+$|=n$dz#T4CMf%1!uo#RLw5>0*3Q1VPdH}aU|nyP zZk>2@`e^cZD1TLMZ8-qI|&rIE0rWaQNHxA*NMY=SO zyN>UPqNl30I5}*+L>DCml}mYbVD>T{!`3^9Zj{y+5a9G*br-?a@n&)P?WxY--UVHL z@xrWAW1#^{a5`aPAD*RwH``9UbsRJtE|(f zQ?OSX^yTPf6*BaFXma-!eFnX3)K>j`nk=|oe})!N?9iX02={mEJJYj2@6)%T$;12g zlWDTuA$@n6ym|!V=B<_M;euoO?euKINs*5JtVpNrIg!rI3nHDxmqa?XuISHFgo4-g z*_4jzw!Q~FJ1$3$UisZ2ycxFRo*wPkA!@DhQ2&OOuKPqkot}O2RR4%3b6)7th5%A_ zX`X&72QnHVttGzF&!cBGZ}dxOa?e}+Vw&vvPG6l1)OYB;zBYw(eAG{;_3i$mj}p#q zdutHwB{iI+MLh}w+U!JXmIfIDdL0^KKwpO=XD@0DXd5a?Mur>q(wg5G4UITZd62>g zvPK$$K&aKAgxyVs!t|AWo#exR@be>QW^QRYeUf9q%No!VYy#J=yrE*CG(e?8;oct% zHE3Pol?=`rDEG(FT+d3wEGfg_;!abBjqhjIb(8?MQ zAMv%ruLTK7TeI*$2f#HC_l5~)OLPwJOk-?q*YIdHh#QCcxd%z%f!=RL|L|?JitYo$ zn^XOs9WJ&lZDe>KiV&6(eiJP#amAm03HQ-t93Sqa{@Z?Gco$ms@{;fsTA}QeO(Iym z&EbDhvozfvet=dS`8#fA+;BA9J>C(H_STRpHth;;OmVe`!jq{j(zC-y(6$xH5w-K; zZump=EkrzEKD-}3lU6b5ad>Y^NB%5)I;FGnlXzK|FX0_&foq%*J-#LtUkNqdrm8-o zHEyAFe$g98(z6jp<2`y-Z8A=ywXL=pIa*+c!+4(-*x)kSO#<%qQpTIqSVyZEhXkxy z-IzzqHm+&BNs|?78&A-(=4Qs9s99248Uy-$*T#r;F%rHbI~(ID*q$!N-zdVcZbtOA zT~Z*imvI!;NNZIJq#$yygl5JGc zr0u*hFbto#V0=f*p1))ajFvH1jTdQI!wutIT0nlwi1v{a+{?F(=v@zzEPdZNi#GoH z3u7vsDh+*UY(!Ok^`mhh)mhuGMzlYjTvl5Zahe0kg`_%IAShxj)q0LDq9@f(8(YNh zv}~k5q7$0mZ^YA|f)OidfrjxByD1%8@rW{%Z|9N`DO3+{t47384y77Ibfw9SKSc!m zw@B-V)fDVO=ZJux{naJnVPNd(9q~jX@O?Bg0==e2sCO9?F@Q$PpJ@@bC~nn-5e7QL z=#n1soO0;AF`}{>q-{Vkv>iso&|dECiHL1fCA-c*Hq&K zIdjHX;fw+%8Ot3MJn!eVm*wzz5z`K|qwrUa4#Id7ny!%K-z7|FxLbGF1png-+8Csxla}%0`kh7|mCNzs9$x*FMXm(7Jf3`KDDHBPK>tI5I z3Q2zMDB|wzEYg|S)r6)dq(JGOBAv0lMLJxPc-et|BAs3XOlWpYE~`J-gl5MiS#-Dw z&5lWO%}A3=!hIBG$2Uit@P2lz)^1}=Xm(7Jy(gHa)3YIyO=xzUaY>_xvZ*Hg?gcJ; zAk~DTnItDo7psm>Goi2~XLDwn(CnBbr}HK>JEryhG22v|B3A|`G>0NZ?kq4x(X-~o zqQSZ?HJzkqt1mYlqh%edM8(cpV?qH>5MHb^q3`jMWNd~BO^-?P%Vtv}Ts8VCL^#;{ zyD12Kh9)H(kSY4drfnuPK9a(7pea017^1>b70AA-)x!%}rg&Pn@sQ|lJCBO)_Tjh) zSMrp|e!>~i)XsAzG&}wX(U&UP(#pX70f z&u$Kf&##)k&=Q}ni$1#Xw&)Zea!hExN+3Gl7o8&Vq3D>h$D(82eJbj&#S1Yaj^&A$ z{qjn5!6t7-7nFPuYisaPtnK&D;$_3Wnl@4nWhCZ+Wv|H10n2JtW)zCVlM;f=Xz(I@ zk88~>16n60f>re9ZWL%|xEW22Nx8x%bK8HE194`v5^gk`KcY>^Sb00$=0Lab*=G)P z3(E_dV<^PkXmg-ja1_B@$Ys4_%z?wcEejbp3|FzI09aHtq( zcCtKrh^H_vFx6&l2iz0QEcr{n@6Fz!9@DZG|ymFGr?Lg%lwSxu5Um$PUxFsocOjtrN@@4*yzW{vs8$Bwt}3$EKxks7_dNrTK40RecY0bCo%X>Z|Qq^Z5Mmf~d7h zMqm1#l7E9ag;LtK$^1)xC}9IQ;nNKBb*lTzTmN4GhHN)yu{s7sj-il&MO`}^Vb3fx zT1t}8d4Is1l#iAg;Map@wqM_&&T0S%K>@>#m@WBqtK;S{5ck9!1Ku2E?R5orfJw*A zOh4ox1|Yn2*6d_?=p`b6q|0U<2!3lW1`b~^f6a%9P;Y>tZvSQO0nc1A7i4*2hG=z# z({AAj1$H2C^`_YX(ym*qFfPa3h`LhRJr-Aj2%BlU8@jGH82krnS|z1L3lBXspJwa? z+JnAN%)zk86SJGq1qB3MEi7FPMg#~^1urTrZCP6N4dJ-T(o*P=Vet@4 z7ZxQWumq5@^O+hTe<=t0Xf2Nzf>T6+$Y;(mxC=xGV;K2&0I@bp7zlc6E)N>mE$`X* zQ2UIdnae#SG6ps z$=|A5meOSFnig~;pA;xs+p?Y}|EwdHU0hEr+n|93-RC4_BN|!u`-J4<{ucBeCONxj zpk*;*N7)SC9%89V+Y&$0Vm1kot$2%yWyeTB%PjBmk!wdUw1hzId`k~H&6>K%!ZUcY zhy@T<1fTa-1y3!uETy0$msyy;*MwaN6C|LZ@skc}xM#Vg2GhMs5o=1UwGq6#*3yt= ze;aA1Hr)~o_inK;?G_Xf076gzXIv8_DBCcs80@jla+KwTYXsN`WIeLT!RIp;72Lbe zlA{*-g2erSz98qgr8?~kN}jUxW;5`&S~RfaX-hT6UO|9?i0nPN;QVl_Zpmd;Nu7xh%H#WD1bFkGzOINDT^M6=o=R=EPKI7 zd(vK54A3R9o@XY45dcDvgI0sB_25OB^(srOE=#oj2r@RB<)D|%s)7~6tW^}kf^xRe zx`BFBQ?qpngGc=XTLTALtbJIT`wtkFVTAx_{nmoQtG7bHTyt3a(dM;wTUp*=3Bbm} zH6ANdtY8F)h^?hWP86`_r+u-|9A)jx5+S51IZmq%q6oRdY$Sq!g5w5DTm(2MU|u=v zgZyw%0ED0y;$n9N>ovx>XbD}lt#xQLjA|%GL-{7G(a;h$YHA(H*tC`aU916}ezdZ@ zh>WzG2ptbB6*zdHh3NU!Te5n7B0ylmv}$H6X73kJpu4SgEDeFo_N*cB9V0G*DGVS| z(hn@tXmnjqkQQsL0}phwrZPHzE0D4G8Tw9<#99o*mA5LOYoL{BoI-5AVaXsG9xky^ zLgQ3Jh#pvMk^xDpUxm+-T+56v0j^E7GCw@YFxo;u<|ON148zH}JZl?R>K7~e8vavQ zZ>n{o3?0wUutu@WzA@OG-F6qSKSGaD=BHZ?=o}wc zJTb0VnfTIWOBe6bC82odGR4YvE|t)!Z0Y#2r8^ccRE@|HQc<&x{_smieN?w16{-l>tM`h+A8Z>Hhqr-f8WG)CQmJv6hjeW8^`r47*&R!&XfYI+i_aEv!bz#H+$_=3VPWmb*5A zx><(&fRV#t%Rj7tAeNxYb1Tb>!3b#d+)Swwu6$wr#GpZl0Cr;Sq`tNu<I zqOjQZGcqBz8D+J-W>m>6SlnToh8=dl({>eiObdLrZTTT1kF@n<=(pjrLbm(ZEE8gE zECGWqpGfXm@lX#lYucu=m=m>t0@iqBvx1D^8gj6F zrL8E8sbk9uWw7bXwzlEl-gp&M692O;TvSP`*0wGT5daZzF+6+mceJ6GU7x~-oowi3 z*Qao6AKNqqI#wNIld{|lM7aGx-;{@Hm^aF{6Vseo)MA8LV{9iGXaW%qAULJ)vTL;o zHVvlU^cNd?+4U)OO|_N8l$+1A`SEBue6Fnqqx*FOX%?Fbc35O<#%z9!01$!}{GMII zh+oMz!L%i|s<@jWUi?S8?WGd&ytc+xgk@SxoGg8ZEgDQsD{mkb08~L=*kP*;{Scy1 z3wXT6hJM{{jnxXrZ?}zO(LJsQqI$YwrK3dCOx#FujymUq(8B3X7MvLe6@uLxHq;;gO|2t*fP0qZHI9jjTD4?xquMIR#v`qS| zceob*s<5N&SzrHZsDs7Tc69rUB)0|IQxrn7rrwTrC6lvR;r1#tsW;g(q{7(?Ry)g& zB>#g9!+cr19@cT$Hwj#T+Gn5l-!&^j0R$!70O{bjvy8X_q^`nev0fFj*O3t|f%>ue zVb&L}kF&FU_$5H7FRW7Bo-G&;cuUzC7LVVc_|o>P3{mzCpm;eu+Q*H33WQa#uVJ$o zM4mi``rz^^b_YXf1{gH~Us~E#K%EqrO7wL>?dh5d$b+Ug9uH8t_)_!3BK`s=S^F+LC zqE@2)>rEhePx=i#RE1H25HO7(lk$VTE60j$5qF z7oqWoGSIh9%j*=NYnVd^j!ZXbVd?TZCkKuPIUL*74l`9tbdUq>Q73BY7UDoJ-jQUC z#xa1ZWsA-+h+%lgO@)Zh4BEgQ=0F3R*c=f8HW=!3Fl^)qXt6tKAYAWqn5l&>`NS41 zjC71r3XO>_>i8)iAxp=w$|W4@xeegu)`o*X$C3`lo0w4`dD9CO-N?SZp%(sF%F&Hs z{eyI1gR1h5L=H6WG*AOa{NM;ta=#1TIXGL*vHrjJbO3EoFUsE;tAsh#9ebp6(_8A` z#@dcz5|VmZ*I{Lt2moDzqaB#u#G!#}8aTEQEYPR1Vje*)57tSz-{i& zj)}s#qHP^a_gO@i0I}48Rddm8-R&(Mn#w&Q(AO7IGnw!0LWG<~xPdK+4whXb2p|Py zYYV91moAP83_UG2K@aHc>sY7+J%_h6!ZU*%Lj^j$w1i*H~9W7aITw*o=U95o} zMmw}2#FS&EINX8(w@i1G7gAqlITo?Dmf!<~Pfa;L%o$#8AF~ljgF)lv4zDoTN?+vY zDA?4n%(0x!lY2mfH=8k{dSEhz;M!juHw8n^UE|1LuXFq?g#5q_j_wToy{MxQ zaJG%x2A5_!xDdhLw(WDw%uhoJB6_#;mP!FX9&mV7LinF_tWcBGy^D^M97*lH>`(@i z)aAR59!ipG@&t{iBvt9DqluiPmgPB)D@ba@JI4_rx9JDRav>%E=-4i#PJME073!F& zaQ-Fu<-B00lcB>F^wUA_bc5e#Xk*|~t&{0Tu}Lr^7_(GR?lhw_Loi%Ji?fJ|yGT9` z1m}62TN!2%cnl~BDk!3(;SHbjFAk*q-dYFmMLI{zxI_5UHt!g`j9|t+f364Fg`Ha% z0Pa?Fj>g}F*T70eolJWrL?_;k|N<@Bj@i7Y&>n8tKh&U&J8RMgD!@kUI&*JRNjExy4H`* zwG6#BL@-SI)BjDDJ;GTse^fF? zJMUsDv&J|t=Zi|Can2m|L@(4CYOCqVJ&|0$ZjrIV=J@00+%*MzAP_ zTs(S~GY9LV{T%1H|E>>+Ft#z*tzO_fkL$jrV)<`%ek5sb`#xm|^2G9_m2O zvgm7Y#&rR9Y7+ajpb*fBEQM12t1z8f;ES zs*A+n!)XG8^)pot?J-*Qa{ea^d7b25q;;F&C!HWWPjp_dU@ zPNQzbeba4)?lZ2-5`m%eoQvT(3vTjsh$`vI(hK2>F+&ab<+4k--3?OS#6^Q=7hOyX zf$#B{){E4D;qc29*CUyrnYTAxyZ*cFAZlC^qXVvoF?U^CsbOB+`Rib}p5;cmjx%_4vW z!ir#w(;Y65fveo8WkgG`pVuA9vabu_&Hx?mp`olpVfPA(8y+L#-idWvSZ320ckb!H z+6&u{Bw%HHE;qgXp^igM0 zMOsrgdM%nHJN_tEQK*IcIz!-MSDyjyfH$F_?{<#`Xx=#|!~SjES7l&L=N?AbzN5Pp zOSk+DHur!d1Q>g`>3~(BbyO;>)Wuy^AvEEaUhc8XypspJL+74~wgT;_7Bcu(e>eJ$ z7@_^!VD~g(E&=Ndcgq-~W(L3&fb0v=p|Idc_bF-sS+e^qHNb-uw~b}`Pt=n!(QQO7 zTf{hbV)Q`R_7~B$#!eNTsKGRM9~QSoV@c0%>x;AV+|8KQ7XcJueers+JCSO&`!e?) zVZeu_SGjM}v;KANUM!sgVM`Vovo^a|GA%SPQ-mNaG`NHAB+72=QFnq$aJ4sQ-G3;B zg&gVHu}K!_to> zO!f=}d%AdCAjsok`8`_%FazBF$wQy1pp{Op6f|C01%1A)faeCo+#~?#gaxBK_gJEh zAOu!A0IhVQf&2G}AZUv7M5@4z^L35jSiHvovZ|vS9;3^6(3*!3PAuZ^IsC$2G1XsPY#!P49PtD5!=Jfrhr zA7XH_GK!ag4oy5t__eVogQ_yCnTKUwN*E$%LXXs%dk(Rx5+Vfj@n&MvgRMLat2Ka$ zz=~}=k6Ah3kZ?j-dy&YK1ke6_Xxj-Vck(bToWALFVHXejurE=|i0&Si72G#0OHWU6 zmd+X>Yz8U6bhE>{{X8oKhX!8;v3ko6xN?Z+FGeHnfa8aIu2GHj8Rgl-W}h9}VK+0#5s?}wu57oy#C{@&0t$Fq-N zVFYzcJi8cnapDk917T&*yd6EYu!4O@Vmd+FZ=Q)Pvr&SD7a0&OGE`E~=C3+Nn7YH$ zhH*$v6ILu_X;EXpM+Yib@Mr;9TJ+uHK}!oV4(vGS8O|7kX&~dMhb%3i?Sy9-WxV#Z z2krDE*mcgKtr2X_AYcotil_@7w5lM8^2;8ysvyaSS3EA3xf3$=T#y~*^MjO;QBBbU zC69{H^1VRgm!24~p;_TNu!!3wzO; zfh1cL^`bQcNjhS^Xw5*9O-gyunt>$GmGh!C14+)P z6VC);AKgxnx2wNV@H<1{!_zxj@cnFT;u=0Mdm#I)N2aysM=kX<#KC_-mY( zVdF^vuMb=?!F!g$6#@W_L4(VYHdt$#_lg`8*;dgAOf$Ub_XX3@lgSRew>A1t)zU7y#`9gU)$b775<~R$cHer)Fz;*}IutL4Dx8D_)jo zE8n<`zwX^dxir4zWw>{Zp&*LBQjC!cwRgQSG}IbB@G?vV1qKhj8rCRtzxDPPc4zl_ z=3Pm>#P^cfOAy|0xZ{=gGh-}41W=Kxr0;ugCZmH88j8QYFBxf|y(*|3H$HjMEppPw zEdQE6E@e3%%VL2zE8%ig>O&7C375qRAH!EizCp#PeC6}uFKr;&eubWgU@q{!&WE0} zkmN>#?>566Gr+3}NHIK8fViD8E^_xe$L>Q9a|p8BC03H{_EpMnC0dX*5#1vd?~`|n z7HgVTSgh&iqP}|hswumekM7T^T}rH=cNrgg#zR_FwVV%)IwTqNgIMjQ3gX$tm3*Ta zp7DHBs0MFH8C}<>p?X|gU&Kyq=tJ{OQhAZazSayA$8XgjyM2ErIJ<=p-3cbpvX(xU zcig{0YmEQ68$7GM2z?~MXU~TdHvyYodP6{V8+Q@Le}wQ90H;dhp9eUvQW}*}2zOE#aydWxm^(RJ><2#@w@C6s z1^;WIq40BM|8|OSsD^mi!dl{G4eN-P8SD9T>1D=-{$E($#r&s&aLZWsx_v{zJ_Z{X zi|#0anil@W0qgzjXZa@8KVY4(Oe;UjitRh=A$Cr9yp4Ymf2sX)5C1mGYf*1M!!qXI4Yl|6AIo195<710 z=O0aZRUVkn-hlva8{|Jod&OUd`Pb#!0NY3S(a%PbUiR8(|8M!mgH2NWOfMV-4B8K7 zP4LTwP6=F|lCPK?2HU0jnLa;`*+4Y5HK4kAG1Jd*!$NebVQ>`hXL{5cP|Gk_ajyR; zb)|^;{)~KBY8YI)!2dBn-aQNsSnNlS!inFMNY5vmJ$Q5+XlOd@ zpOQbU&8zpVJJr2$xB4G0h3^M}yM zP0k_E#ms8$Fq{VVNN?{AS6wxgjw8X32ZTkUU#-5GU-_>_{UTg^b0l+Lm*+ZuuPA zIRr-DjNF&*Au#f0$zJ_KVC2n`orZ$j+z%DvB{uk{}SRvTP+D`Xp0t2WYfc^5CN-U?XL97s*snq zF$xTIp~V|QCfU;VXekWlBkk;tlFcpqWs%xDLsnsW8W5jj`gk`o-2a*De?*aLxho{W z!R{!XyDwyw!;De)vPh42J;TVR-$D@c7Ay$J^zq*0MdfFXB=#r!R%GwBa246qEYzE( z9tjzY>EP7z3LQmy9ScD$1ro@+QC!mfd>rg-hUp(~a{qM5eT4o1iqb7-L(XH23o_3o ze5xXeC^uL4CJ#GB#Ih89ayg`rBYBc&=TACa0q;9?L1+M7bUoyTJ>xs^RtRPa!}3W_ z>V7Ar6;knxv?r-vGZZcm9T8fUJl`s5K~LNZ@nyQCWe-BOV5SeOE}_3+DU`Z~qDK2bVJ+?J9=cVe5LYP_ z5!r?U$~*^F{Z9LZV$MD?P4uiB`bcy-odQBJTY?!%#pRwgYr|kdcG+Ecg!^SnxMD3iZZx-x+?ZZy~U8H7zWVlwJ+mPY1TM z;4kP9dRXM&yHh9?Q}JCa-*o6^d3L&c=u2c{G?x@_l1qs4mt;4R8x~rT>^YhmAPxkh z28GV3z?yja=MSNYSTmuwhllQFb(ofn4m~JJG5jY>%Jg&S7V(+yxX^WCxt*I3dQr@= zb!zAXOlOwqwJ7m{_jh{+D$KFyHf)|nkFV#4wndg*pYl;x(W+20X4C~tMHF$sHMb7HN-1q1(k&^pns!;{SGj8QM$C`{+&RdNH-~V`z{g%X{ftsMzJD z`zlEC&_!QbDb$IbrXz5gZX6v}QBuWzhVHXBUEwa_6{&}(#KO%>G8_G+sdwQjY#4a) zgKu@JNa~12+^Cvl1QwMp36}gS!nCg~*@=ZAFG65`0Yc&U(n?ZE39rnha!D;w?e;1O zFR0UMi!x?JOA^t|Bz!NB{;H9j7P(K2mz)!ezbH{M2kC#=I4YQ2OOt%InylLix+TUbl-Fk9kDTDO)sCQhXIaH|aTtVzPx zs}pl2P7b8>Ngr=gXq4PQ$SD9)0K^>;!WIpNUBm8Y+vN! zUfdyh$(3+DDwLkVB#AADW1)SmGq;kP7+jnD+REv6;6C71y_h0Ho$>M!q0FpGEW^SvKRP=j@r z+3kr0c8)Ozb?vDHvz*CbT0fJZhU+YIhnJF_oI~V463iWB3})*a32MB~GUvUQ2sg0` zj{4R|$y%I~TuhsMmK+m{be1X%6Ud&CS#KA1nj6M=$1ub`W6>_1ox@PWcHl6Q1l^Rl z&u$OFlqb4}fs1CEF?)w0D~X6l5BP-DMmE(PVTpg(6<$tbtA-)YQ3$FLu}JIb5Fxg5 zK-k}yF4A`}H>!uh)^Mh!Wx@XoUdmcws7ZzIcpa+~wuSQ=ABwfe|J0XHSeORc`g0g| z?zL}Z*dTOcpwxtkV|cnDF6S0C^OlXe_wZu^bdH$e=FHPzk z2Deo)w$r~cP?5CY z6Vt@QuhC1xCL%hR6cC(wm&=ug!I~-K^TYlySTkkGzQ@8W{WtB2FjzBXPaRH$!I~*c z#{C`!Yo;u@<8m0RnX=@7Kf_?nlqFZ(4udsQmYn=om>g}4w?9bW3`m45P(1f~>q*!v zG!~eLlX&>`?aQzaXc!OwS`~%ZH(ja!hcF4!MfIdGu7s=X%7|SB={-beLKxl7m^#9d z8Xcq_4t8aPis{Hw2K!QDdkSbCQ)p=6XVLH;_wTV+O;Jf1XfSeG(4iM@Rr7mX$C}`UG@H zUaS-oCd2|1L@&fiF+(IlnT$#hZIdXSBb3TVtrQburyQtQCq)gH$`Skw((MA3Q)$ve zHW_cD3@K{VR8FN~wsf;V#U)RA&?YJ~@};Q3Q#q9olXQqcWl5nFGmI<;s##yUU+@jL z8)54oH<`9gq=y9{Nek&to0PM*r4%)gdbv$Hl$bP9x9#nvD}{Qrsxzt{S#iW6OF~!a zdyG3Thk%A{Z%Niy}hKEjRNIpY#e3oEq!JiDF)-;Pr5)LwPgUR@V_IaA0++o zKOj}<2Wg2wYR|C$g{Dj+q&G0#lXBVE)eHT`Na5;*GCFQ7_%ryeKVEtRacqnTu(P$& ziUcC8PN4&5h^P~1iKvZ;^b}?_l9Ao?{HYHqimCGl-MLJJJ-b{Awhy3D`b4 zB5jT@xsy`&*(YlS68&juWvVY5el3&QfxF!PN_t%A44rr@g$obL==P7&al)_ut8|wQmJXxnusU;Sy0eVc zpQf%dR)0d=WT@*!pyBFRzH;2HvMdTSvb3U5Q=n{wAZ2Ng46b`9ql@aunDi4QvbyLJ zTx^bjz$n7%se?iWcO#ThU!{!Iz&};8qk@4fi;}fR!z<%tY{M#FH%&>9!QBXDv_q0C zAB#y_8Dv`o5TA6}N>{rh!eU_-dC;UuIFTD=*sY;NKS}07y-YIH4Ot^2pQ(tljZ8=O z70NKXK`j9Fh}S9^9|~#e%U~@1ce0N+32rPaMRZjDg&IT;HIcbvs)qnWLApX8&^Gf+ zq_515Q(H4YhFO-fP-{jGY?U}szd^EgnD+QPn1ms+0NY^*z<84zg|e0qBwOZ3jP+!Q zriWO#m6xd>9W_j*b`;C>$S4`+h-@ydWlEEw{tDB#R46_UKJHT;sWhedz`U+Vf z+sk>qUL-@rEc&+PFf7S^u&EQt*(Ex$~*GPKG({Y{e41 zZ4jMMA}i&9-8acF$GWY6v~;s<52l&7B9PYCWWxHIj1Hu-V-BK?8TZ)eD+Ew+jCg0S z%mLE}{x?Ap>+k{DpS)Bz{U*bl@BY6~Q;+;l7#5F^2UE#$8RZP0pZs4i^m3^aOh=!V zp>F2*zoe~xP6lDDm?yb+-bQOKFXf^OGE5Yy^4d=U>kDR*yIjWGdEw4N#HikM{9m#@ zn7QF{teRyqpZ^FnM?=7DY*BwcHNw_!39U>El!o*ZJ zoCi(1QYRdOCJ7czk4wW*2SKfxAvIUOsl=it(aOs3d5(5R=;oMk*s#pt8^njBRwKWI z7s4e`X<|5U(Wz5%IIK&uFFeqNf3dA#pccR#(PL{?6NB{nXN9BIr7e{I;{@p2df_@- znwtMS0qW2s99Auv$U~Zk!>T1qX0-{2RZEtP=@5=OyI9VfodBKCJ$x!+>C)<#*g;b9 z(vQD}g~JI@My|uCa9GV`$t&Z-VKtK_&rJ`9)l8P0J2M~L7kWXYKe!(la( zCH440O*kRaho8*r@$f>I?{&a(4$h*85V z|DSmIVVvdfp(_&Qs3{O&vWGTImLKIDB2wgtBcT*v#-QzeX1W~iE@UbgmnA=eRe>%? zj+)hADrl20zr{J2P4eSd4o-z~)Jy^6u)Dr|wLMX)J$y+2MsmzLK7$ErA}`~0wR#IV z>LjUP6vtc2UvZdIZRMylpaRUG_HxwfFo?3K{B$fS);T%Q;I8t`+&SOriLEOP6^^AA z$uFQ?k-o3ok?W@60QnJ|wQwSSgXE8}L<9xN=$j$(Yut8k53`ZYq7ib`>XoIqWVCRU z{1471@h7bLaoxNgBkzFr((ITl+fKV=vivcocgKV(KN1VuX*-lM{bWcDLBI#Kpq~4u$q4RK{#NY0Z*+~oZ{^Pjpi)ZrIm?5eaMch*x_KzG!r%b#>@8mE#Wy$WJt(BCuByzkd!6+4%ne3BG zCPlPDI2}t~4|;xb1RR)R^yW{CnC1W9gHZrmB&v^GSslS0Y|6%n=}1K`r>nO_oaO5K zd3(e#t~3AL5pWuUQEh$*t+NFr=4eFy|6WW2VlJQ!k42p2>WVoTF}gAW2P)Gj+U-t6 zTQ|Gq;<07_vIx|!IoQ}uTIW5hMhc%rV0IOHhK71Z=718`r$Q+8uM@DKDzlpO4 zLH|TRB);V|?R|tR66qAp{uoh+sr^7>y?AtXroEzr4-^I4rr_zXs8j*|2&$?;EgcJ} z?C9*FYKl%sp+p4oC`92+BmoL9s;RCxis_Lt83i^17AB;%rL6quP>JH6Bj}}dgyJT` z<^kvwO^8&WM%^s)N0s85JrKAQt-u_8XBZna3fv9@fqlPt#e0E3k0b@+6viqbfN}DS z_plU2Wx*(CrYRm{l|MK`@eOH@AbYkVULdd`Pw@gvU|xZu3{7CPS@Bv>{=oW*yI2AZ z8Y)n;4Xg;NHBsyl2wZNaz#KAR7;9Q6U@PKsvaXHdDprW%b_yo}2{Ju+J&O6pw78 zGGc_n2h(d2s8CQ%lE7m9Pd2hx__M-*au!yVKAfQN6R3QitaxaXLjInrc!R37Rw|EX zD4Yc*|kKm&o-?T|Dt%xT9cKE>oygTd9`9V zW)NkmJZ|FM!J(TJsIZj`Mi-@ETmA#Z1?#1|6n>bA0EQK8U&i+NSEF#B@C`If@rMUh z==2MUooIxbUmgU}tlNs`n29GQigJL0MTR4>Yk%m(TR%55S37qO~M;)9a?F4gW0tC25&O-|z zpwm_EkpbWn=%GrH=k4HkrnmUp(Km9h@ONGRNGA_$wU}Bn(wA1R6FJvP_+&`rakM{W za6if-eFVZJLL}NHQv6L+iG)9>BO4(mgD5Ec51|cZdhMALi8YL4^jd!8VGx)uHbtHg zRM@33^04r$s2@455>}Njx({m!>bjETzZ($^y&R9-=UK+Uu%yO_d{sYpt(h6f7ci zR={?)4I$lVwF=6Pm5IOmjx2Jlni8|C7>?#kh`#U{Y`6N&Ckjn zw5Yvutw12KvvL!nYy=Df7y+cHjoy_`?4tY)QGtmShDC#{)Lpcf@jaE8BNhJ!`_N0d z4Aa_JP#masfN~O;FFiF#>45RC0ut>pOnD2f8OZEO&h=M0lABcPMLmj@Wpta30F3i1sh8!syziF=Wo7ilF`$tfAH+-D`!b)qr?GfS;ns2oau(5gn#BeRst ztj=TTTqR8St|N^WDA)Y=21)^yV#I`eqv-r4O4Ol1Av1x@-bD9S*^+d*q4Xuexhl*E z5}^8#W~-IrmQOPNopKwwwOr{;hc8!-5cKkOr4qA3A>dNLJtrtSyhMpPf@9$pM3=3{ zxgdtHWS=rvTnSp(UTJSft8GY-{&R~%7xN5gE`rgWwIPbnoB7sQAN2m}zE1V7Yq_F3g6Pz!6_ zpPW^uV2RPvi%L0~6J++J;EEEgzUS)|CBgLQnTW*^51pv~mU1GLI6ZSm`3DB+U{%!s zQuFP?@3R*RNld;&Vmq3p)-V9aJ3*{1`I53b2}B^ z!VdmSC#dG+N9C^n-n)z10JI>Q{aLw90Q&Y#i3t@X(4qi@I)Mq9N03E67MVmZ_S#uB zMQ|OXE2@x^G0Y(9=B_$}EN70e(o;2Apc3P)!fX!^#G@b{CXOD3%#D!sXdpchtWqIG zA4niG>oj#F9<^0hKz!z{KGaraW4sl}F_7$+sXWNdi%JCvk*Z$d>~$aolx(ZVsv%b` z#p;KQh*de!?oleCxuox7RF^SGZ91y@ktsPU7Yd!PI>Hd1DeBi073+6RPE#TJUBrUw zNuQ*vqA)!$3qr6kXp1KS*{V{6#w{oqU&ZoHHSv1Q`d+joPc=rUOHoD@rrRYzQh;RL zuGaNcm~NMaRuH|?K!qFmbyUsx&mLDnb7n&1T1%`@^J&Z0DpY3+q?u2jwN%52Mh#I*aiL@X`KcM76gS$;n`qnuPUJy~f$6h(b^GSLv*7A$Xt))v02n zJUgmf$gSbRaPgutnq&@BJ;5>)peR6DnGwI?D!9$Bp)!EBE>?9#YP~-#`dKwi@LKlc zRmGTDeVF-Rla|3$JzZt6BhxkNEV5^Y3VH7b+;Fs1LZpCxp!FA9m$dYc|_HP z!!$UqDnh~#fbpcQPN?8|3T8vUo>eX4Hq`dKstQkzzo5EjC%!QJlIpo7c}11uAU?hN zr^=n{>FrHbGyb&gJ=JoKTjjAT*wq%2r1X^vGjR#(Z%d!QR>2J(f`H`WJJn1akG2G0 zDwE=NwOnby2Nh~dn81d?&`qD9{SYbTepSt}g%X>AocT?49bujn811(gEwjIi+8bGS zyUuRoP6fNE_xN6z$9W9l(L)gzmV z)qD`WI91)Pg562tmZ`?fms`++X!9)fW=xCD5R&?-T_~&oHT4B5YzX1fPCWq1i;U=? z9)VMNJp!nnbZSR+D#mUtyn^X~&T0c@!QX;_89rF_TA3F0S3|gwlVrhQ^-8QFptytR zUqjT3(TZRQA;Z+|g)$jGLcI)0g#yqv+gLb{7Fl%v3C%*V{~)?)jGEX+qI)K)586g0c#68OKxM`>^$KL!h+4TeUA@ybDlxM}Dr<<1R9?(cqe6^= zUI&RA3(hZ6!}gPt#PEw6)42zrVmf2F+8)ywv&7;AK5{ORL`mBiTCBP&O( z!KlIl)0n=l8g(A6hwY_>3A9(usAXsleisUj^nC58e=xfzK#E*Z552;omLfP%K$wE8 z_VtO^bm)J!Q%3!c__E+QIKpvtRIp%?k7A?Vp}8#7MtPD{U1}6vksO8X2i7MHrbb}v z0QyoN4#p zl+Z8rq9!=b+1ViqGob<~QKaTCBWjR+Bcs@G&X2z67}ed8kt032M@>ew zcK<>RqVsx0q4vOh2lJvRYObg>GOuscINNz0>KEmURDHS9f@r^iQNM6rVMC%O*v_l) zhp5c|0k62>QT;iueZ^6j5wNuYC|Jipj0a~3t;bIdBE6PIIg?g?9ewHfu~8X*b_dDJ z#%6ySu`ucYW;VkLOaXYfpIDc^Zj0K(YuKrsQFT1Tr{9i7Evti5dP znDsfF?4n&T4GCi`z!89hXo$C(JJC6g(N$F<%Y&L|Y9}Vg#YHdY+>_V0;4gjSCLxBXD`B7c$E#w*dSMNdR)-iQuH7$60$ z_pHXbk^X;0`;y|7Q315(muOU<2H>(u>sgUbH2Yihn?RAKF)-!?*Q>O4Odn_QX^AxE zNFYwH-#K4*C;}p6CXm^Q zOfbb@rt8_)mzZNBE5HR>`QGGq{TR$ZnDGFZ%4~|gPQ#d$7&`?N^X%3!HN^GnADYGV z;;cTkj2Vq67Xfd3>zEv*W(6+J^g_p&w-vxZ+PJ`))UB>D$B~lNr}Cnh-R^+I>hkBI zG0?Ixoo^Zu^CM2W`UEgt=)vNc2}sl92v3GZo9>;`SKSydG$?4^{4r8NfNv-B_LWp-=b3Ttn-j%l?=`&f)aI zm`PYYd_EL&6lqm`Xoq7ltvH8EC-7zAaw_H`rjy9ZV#L{)4xGcAQoKz{evd(gV`Ll_ zUbO1L;|g96`afdsqV3_xwU{1U52-isdgy;MW)Fuk+==OfHLFHyC}tQ?lt#B;b_%LWczLNu1Tc|@W?`>21yG{@0;XeGDSivtP`+D$); z)ZqQ(K()rwGY^l!+hhlg<_kQ?5zTOy{Cp zO~qTMcegilwxltv7KfO=kTV3W)apN zG@Uf~R(w?#Ygshzj`tMPduUFhTQ9pJ4czU={KL6EnuSD_i2 ztXYcXuzrXJ)43MyK`~5I%JopGSn~^(LxYhv*yQ=q8o0NCmBrC98qBV0rcST18r11O zmU-rQ&3(>c{3Ojym^VWhK&0~gPdXQLra%y8XzY#`_SX-tfkU<1GWY2OP6ib1fVUW z)fUaqyhz_|#ao7IyXG#3sk>9t4{PL!yEGrUWn}ErAg9m!&|&*EGdP=Chct-AKng8; zLrx^_D851MaZH0bjz`a*(7<&!%x|qetr?G1=cO~6`{;J8MJaShL=F#r*Py3St6kKf zmi$>QeR^5bm~&`w6+bHf>6+#cS`SaIYwB|j##{JN*znsLxVo7YY1BPUkN>_%>G^w_ zEN+vshxnmb<3~0O#qK=Oz%o0NqEne>+J7&F*f*H}Op}AznFB^qpA>tI`oZo>g4k~>_9+-rT~4J>)G)O)+LtH45FD|HE__4Db3D47U|Xg6Hs3vb`}SG z;1r9jn*Rw{%O&<2dKC@IBiWv>qOH16DHholF+Q%ejZf?i2c|4)tP+db#m21U@3$IH zdbxTmD*D}>D+wl|)TL&ST6JPyA*|d2P?eU{jXj0gm&g!mM#cJ&g*mCi=~zW<6-)^U zFce^xi}pe=rT5d@~4wn!Y;Y7D>2|KKJENU|!`#fa!ASFfV z{-kwZ_-Dh%^!D^X-&j{?QBT)~#GbShliP;IW_Tl1CR7z#JUR9!w23y^k?KVj4Tx_~ zKa$vLXiWo5Wx94=>>06jp<@@uUgxs)UmR4WI>ro zBiDc(i0baRG4=zu+oE4%f8(6fw#U}O)={$IAk;1QtEuft)~;Az+Ie^ELjHxy`|%b` z0Ty-76chW**;scn?p4}Y`sqZh87mqEn0;K91;57*$6VOO=(Kzs>q#mqVtr@-UDZrI z?#8a>b^Pc98#Dx{jWFiLTA3d9Kq<&8tsPzWGWHz?hDrAAbF4d!{1}Uix(F_Q6(EQz z-sTl|fLEM5c5&~yX+Cj?tHz7K&n4~(*V||JxKeb*FOEqYK!2+ohq^_UNeu`-WJ6q< z6YW$jE{Sv6S|jcT*3!sXS)2zAt`q0PTM|uJ9NPI)0IP>C(bKVUKBQHp1Yc6AB&{n| zMa2bRrJ{gk#~sg2ZCq!>by0-rTQNAT3K`*;#p(}{){FBcpE|?^(|+~i_KU_r(i+EM z2JaU58nj`PxG$V*`_^$S(AG7)XPiHoFg20u?_!rYDO!JkCF7iS_KRzaxj%{tsNJ0A zFZ9MZC&ffOCjwZ3Nq`aOn}(bEGUUfLYKJb z$vAhirk1KbJ#i>*0k2^Lj@eKt05KX}DTcpFn?W1?9#?=ZN&*OORCy(C3wLI(uf^R$ zwG=YCRw9xmc$3eRsHzn3Qi+r~%xVELBzi;qR~h0K0L zw=K0JdD0)4uNxm9Orr|cFVzs@c zDPawt1E|_KVO>S>>BY7QdpyPD(%uQ@xhSLiCp_l`GGZUOKAy&YWn55;Xp2UA$g4j2r^%o`V;DXm!lJFN7(Pv}A z2ws<$?Mb-GrJZ;n;TxBB!EXuc+(c;`pG#n};<+rsI6Y2x2p z)H~sc7Eztmi3%=ihCcC6E~+{$(Ss*VnTd}%SWZ4#)F!0Tkj&ZiTEoOH$j%c(s70ZM z&K1u+&^f&lgT%fhJvJ!O4O0kheopKpPWwI@nRr}uMC9O@L`26FLeD4il}vhkd}0`4 z)rHoYn)n5y9>~{~9GDE_`~9;L$Mb?~IyZ4WceqtoCQji`cdSW#i1~!j29X+@6RVMp z7cv#JXk%g>Y=c1orY>^Yxsdd_m$`!u-JiG+DFs9Dqni#VKH{}u&C$fWybW4#D)Dcg zoKu?E9n+;A`2b7`#{Pq;|DD9`+@!AGPehFNDPXVO)zG}m_X)Aq?uc~KmBBvv|J{( zK%3-A&#>cE8l03=8AAsuhlxOD7rIZI^p!I?(>cjvVMn_rRp#Yb);;MJx4RcTlm6k! zH$_QxxhsQnWQOQVE&K-fS&qQy}CWv^`hb&XE+y*YhU*Oxg`N`o;8uS&O*_ zfC7d13gYJj8)-3n!2zL|wr{L;#;l~W%+;G|OYB7sS6gUjVO0>^N_!5|=r9h8+i16O z4jtNSF=qo9Oi2eVYG)(MJg~F2C+G0Ct9A@l4-wt9sQu`o06nz>Ifv-pT1*rd2Gg^T zb}GipK<2h|+92&A7n1iC;*WG5sXc`()3&6FG})7^TBh|R^-2;l$W%`kHEsH%_JJrL zHUF%AFPc7WI>DN3H$~glff*ycJVU#mCs)qVp0E?27SGed9tNSp(q;>^D|ymqk#+-5 zo?oo}fN79H_IhN>s-4c0zuPBU47rbxhE)PZk=BJCsF9rEC~7XSPV!)6fv~nY zm}sQQ2kc&p5n7UE$t4KiYUyiu(B$ysU5Kv2jNY?rlP|jps*uu?G48ZybaJGf-D|oi zCV8%t-7=Beh@|8_ws0d;M?I@bR%w&JAW(XD)_0_dy5y@6mg;;zZyI7q?v7ca5pc*F zZAvg{ZBFh@cjPD6!BlYuV{Dwv!&uKROz!N!h!MX=$;+|w0bqLwLIv`X!_AUMAz=u> z1kq2;lOJ$Oui7M|w#f>rVpxgol6zxp9JJJlEb5sYBSyTL*d@7?i`Sz^@?4yFohSfS zz>IV)Y=UXy0m+xq2&R$GDv_oGlB>~Y!;|AM<4=JI-8UtfA}T6jQVjq0Fn~(tCOcLq ziTnEblg4wBVZQWRaschQ4GdZ|p=CR&iVx4<+Cizt*a$wpZ zANux2a&rg`Ce*}s50mZP#N>ci$yFiFnDBJ*=j2}@uoZiug04AFmb&UfAu5;f)VY$b zooEd72OphA;@>*!)6xv2atBrI#e_Sp)xaoRWZ8bHYgx~)QZ(%hNR5&1qQT7 zoX!E3w*-S2rPEd6=C?LSSA!eRANjgJA-0|H!eOHhb|kRmbh8fbED@9SbfNs+6Ag8+ z8-zW*+F17&Po8b6gU$zgy1Kaz#(*r@p_T4eo|LxL!Lk#3dcVDHA5U)Wq>JFT{HmL- z4gW;@Ub?URg}!}sUpVf_e!58h^xyzpU;b|T5FK>=8E(OF-A4X`=SUq~6T+UZ8Lji@ zFPs}=rG9IymHNf;x>NiUn*o#%RWQy)MNBC*F?h#K8pQXFRlkMl|w)158d>w3X zWM6BrNY|Ywe_yJ5$6vU%+{(A*YF#jYVe&fNOa9@h>#YSabfYegzi?!W&Wq)m?(B+Dri}+mA zVFtYdMG6#^bwzEC_@+C;omvA&{dMjv4PN@e{OM_b{TwHv-`?Mc4ydm0$n{nhtWV%p z6<1de=ayK}Oq1v@AUiLjfTZF@owv{tYDv~y*ZY!r5qe~wYPlG&Y?4AhU96WxsnKu8 zDZhmN7OUSN%1A~f>L+4h{!Y@v{1G#S7`-0TuZH3)q5DzX+!{mqb3dKr@Q5NaGR z*rLFc{5%f)2kU{FChN~~lZc$I|M9=qqtL}2LIB%`7R}H*an3)_*3ach)jT~c;0h&0 zBNpp_LUsp-kf~XEPqL(IeJApwdwqZ57z8=762$06;kjE&M>Dy-HCao>tkf&S;(-6H z&Wq#iT5R3>kMB}_iQbnB)qbPi%**8HR{c7xP_uXHJ;<%2jsZ-ZnY;CWiqwDHqi@Wq zmmR=X)FBML)m=vq8h1#qhCstY8T@cgzpDaS@~xi_&Agy@=R&mqLw^J*!~j})Q@@T^ zfvI=(T{!WI53yBX00G20wDlu>6gQmZPxZTb_oL{UKA)35`&z#kGcyDhJAf3+%lt{v z(kLey`AJ{dS?rE9wNKg1=~s77LAvX5Y!%YV^@64N9F)AIs^o-Dla^rk6C5n>Z7z_;cpaFrnAa;{YhCU%h(%CAjI zI!2XurlqtX`aUUj#F?iWol>9+#~5AjnlcH|CRqT(Y3=Sv^>9kzbZO6&!CXJ#y;FWh zvY{Z}XiP=1h~hz84o<0Ff$TmL=uf8%O+f`vvw{%-b0G!oJ2=sR5h)3xwrPh^DIq*L z|EHAB$fEp#Zk&(;!*#~=$>fxyh)x~_rn@~m#NO_8B z<0C1kaMp~&p<^j9mjin6AuUg)%*T~SF^#@ZcfN zg){JN;G4Z4RS(lY-fG!-N|8HU$-Nk7aiI zkOFa(nJ7PfO2O>9VKApZr=ViBvdrziSvlOWGhlW=F__Q_22@OImU)Gf0Ztb%J@~sC z(0XWI(SV9+%{ZKKH(0!O`$~od|GimJfI;0y&pxm8HMHj{SmAF#JIk`l22?m}#-U4q zVKnFPr8-6hLVuu`<^&o3LiC=*%(rS8W^)c>>Kc~*_r)N>{1IY6g|lV?j0iJ8uwK!_ zgc~pyYBHEUasw)yHOuUwv~t*_MswI6Z3Bh*vDRAYmVm02DgPKo(t3%8V`y_Ym29mR z`V<4&OOG)a@E)>8x`A?YxSxqP$=Gbe9S$SSGaya|iI$z6Z-8|(W}JOZ26PX1ui1ba zj4|Uh)iS{fdq4Rc6a!)E^Zqz-r$ zOzdbt1+r!;IMT%cn|7HgOz3V{hV_*SYd zs^IUj22>1drh*?P82;oc=rq}|4$I-UDF%Fxx^O!5Jw#K;oMl*#<*;J54dxg**8owR zm^sERFd$a>L`Oewq2UgC4nn@f@PTvC{9@RO)x-Sd22>1du!oT}dbMF0=kRbXzDmTG z7}{`{bsO;Q=BbSa2)M;c#rIbOX8$BJ^3Gcgs2J8P^Y!i48ghK60kv=-bg(764X7B_ zj6=jB1KiEQ^l;}erri{+Q+?DBh;BT;9yiSA9M+z~TgK4VZJW3`Tv;>OB%~;2YGjHw~CT)}ltb-!XLNqTIh{ zK&%ysFtYmwR5WX*hXW4{6FG+#PYmc;)YX3*P|>UzhjGsg-8l!Rm-s<>!7BqMnl**t z6YQa5_MPw!GXSG@?+tai)6;x1U=E)$J=FgU!$^^c@f&&+wry4_eh?>+ zp3wGjPDRDB1~s%LrQWGQ;$k0!uw}^!T)XRH`SM-ZxEZC32;DY&+U1J~a&kGxBh1eF|}_lQBI#A+r$lx+;N~ z)g$Qml+>Y^?fwi#2wY7eRN^|!ZchtBReIl;3L%*U%b}y{rKVv{s57wgz|}vtO1+Ed zzFJU*&<<@<2ST(ofl^tg)Rmmw@@}aRy_!8O>79Da1NjLG0jHBWPUcUksMw{9Dhpiw z`sdUH%yK(JfY{TCq-=63Ci=Mr;QtF={cUP$u(PP9$T_KS@RMn*;=I(>n22V~i+)>^ z>PST!0_%P&EK60ArP5t342p3BX%oNfcz0z ziQAA(tD*i@K9-uq4Yl2w)DPTHdz?>&aMg@j%Ei<~Wc6%7HXe+vNFiLcj61%}8)$1~ zU|yu*om5Y9>PcEd+W2-VDrTHe4CL%th@;J7Ru?=P*2=fv;)NQGkSK4%Bt*K9hkktf2R=205TACfQ z)-V_!8d*K<88=Era2mu-VfOj0W*VRPpe}XO_$)P5OVS{GHG3gIo^}VzpF;3yf@Up5 zuBH&V+Q6CEY144ghJ+?p2wF`bXmxw~%#gN&BhpM8Oal;o$?@DYUY}0pq`gJ71N5ai z%@@-PfqWgw&Dc06y0lRmL}_D%HNQpLC`_mz0BcONO+X+^;n5)G9sB-+nQ22SBU}sMcP6bNrqoyupgj6?-o3Of+^{P>vca$c(TDDRl9q(= zc>*U20i^LYRfs-KAo{cub$g#?X&H`xO8bCr8H5nj6hcr#xE;X;$U6UY%u*f`4Y0;? z*BMte9imJ#t9lra?#`1AHPRu=Opk18F4Ota+t zf^-NnE#@+%Kf>4-vj!o^G=U(~3R1ga`U8ZWTTuFLZ=7z&y^2qZbW2a`Tg!AQCNiG) z?DVE&aZ$PlJAs|ONqR87FeiO0SK^#SR=!0`tbFS%ONZ#vjCzIT>D4gD z?3ilH154lCkdBJZ$n*;^vuYr$hGm8j&^?ffYbu1H7UM?~h#$R*wm+W^F-VwR2H&(Q z&V1XdIETCG5JZ~2aQ|LDa_z&X<$a5?;}Yot7hmCk)$bL@x2UmMok!H;H*Uo?_(k!_$EaN4j2SWh3 zB`NYqh@&l)8PzcsU_o#r5K4L)U7^l+=_Ybom7D?bq#3=^lnjU`&5}(sG9aEbOQzJz zuuNXuY?uM@q}kIR%`#?SdKs$r8MECH$sBKsx(}_V%S4^1vuHy^r4Wg_9_Lv*HxDrRAZ;sO>0thL<2#(8Fa!w;i%ZYrO|;|!x7CT z6AfVe=)CG#5KNl+*F(Ws6*1+(z&?FTOr}#pvT9=t%7Wk}MwD(Q$=WOv%dSRYmOZBI zUbf9@PD|Qk`61{~$h;$5{Qj=VSrA8>nbEIPvmlN%OJ19v1#zTV^2W?8h$AhO1-&;r zs}A>URhDEy9BKAKjTKoCN17$Stj`L?OfvwVhGg-=q{%eyaMndk!)rnCq)Sg_K`?1X zr{CEu2qw*v>n>$2!_;HIZ9t~(Nt#Go-OI|tcq4{TdN9d{>KotvQ$`?;k!HAh;+WdDG5CPE15RS-g&m(_^)YzQ9BitT_t z+X-W{;=0%EEGOD3GrJnbS;EQECd8{36ugHiJ0ehA4L5enwrs<8>X}`PkXL}E06Q7s zTL|M+?OQZ`fbWS%#+zWvM2K7gZh1kD`-Y>KZ1*`k%1KPFv(G^-!dbMn z5Lry5Sd~*(41sjcC8r9v^LL&(nB!863;@b$s#nfobm23Ey*@c3#PT8e{x-6iTRErH zCN_4t#LhoQMNGfOc#~dLa-3-AYB^F)Z&_f@6dSZJrw^;=Tbk>88v8 zdZptBU9oHpz3dc!hIS=R%Nq<|&Rx<<8;B-Z8nGc`_0@Q>E| z?yoxQyUkOq?*^sjZs70U$hN+_AlLeCdcO5tXJhUb{_e>J)_2D>vc9WsVtx0Yrny&m zhx&Tk+{1{nqM)5YLAGd>44jhdP4v~%ylAWE&aQSOXmW0KQaaq#o3#2muqoX#E_WAK z*{}&#r4O8x8(CFUFI|xfVfUG)J=a+UK2u^9c)$j$z;T;$OSp30Y`4CN6Rs3!efNCzybD}I z+v?{1gxN4+iEdVn-j(NNS0>(p2WpTJ!+hjqc50p3Yn9Z_X&Yw&duve6&ZQ25OXC2GJnN(G_euqxV%LJRCho|N36W$v=Coj+yeitvzdx}}?1u7lLk~Mji zsInw4*V{s4>fXG`0;k}E*s>B)37|UDqCAH~f0u zapCu$8+nH?omcP+qe<8MdCN$@mAh-qSbQ&>9BA1^MutDg8-Sq9JYC|$yz_{>E#K!U zX^%&FC72yZLS_=UwIG-eQj```B-nkWEzia*%fyiF>{EfKs6gBeABY!uhSq36$G_rF32E=h7 z>RCJg0cKeOKB^)I8W#8np^700zTgiJMdtSmvYSO!1^GFcR?CV>pPTYuIsww1M)?|0 zEv?!#zhedX9nm7cxeNSW?~s4Y4t|$+%5UTbzn}Z$t3BX1vN->?@c&-p@`*3}u3nJ8 zUC7sJN&bXT`2G86{#`I$diHdFMQ8ZEdLe(VAN=-xl;7P8es90ePZ#os+7OGP@L}fn$lSOB*y`{tFMuA@6;wsqporTb zwcvmtXywcTrkI;q1=9pUiwX*M3cs@Y1zv){iOmXz2!C&HU2p?wYbr8ztAjUr(dKd1sOh$Eciz- zlILR!*1@Og{22uk1Y?oRE;u4QFI!MBUnsP3D@2(c))j2WEDk~8F`s$KZV7q0wcu|= z9cTXjY||#LGoH&F$%wzooXD3}{amSjdqGcx6Q0p~kuPyctWkUR1fvVBzPljYj(mPN zqAG2*r@+(MZj~53xuyJ|GuiW7!LPOuCZ_99mUWa3I*@9chWU`9Lnc@9BCE`obU0Gb z9)X-v&DfSUKUxrn@eq*t2ckbwfLVNmyv@nYP0y;(RwoOtS0KvtVsDanwqQR_2#&S! zTtQ1rhr+_98hP8^T#cT-T(Hp*3T|m9qdysQ1>EYCiv@7ibR9cyy7zhkDsWEuCw6r= zyHoA0f?*y^YI^Ev0c^b%6hP-bEBM1vOpf}eV3@s_^mTno=PJhMg9_IY~}BPu%XcQ6?_#-9XIr}K=Mb+Yf!Bn8F|m=WQ3Fth3##|fl@8yOKX zLCJS$KQuPh#*B&t7zz$xlY`wO3NAR;mfF&Y)ZArsq6@kiVRGOR9pB6N*%^L+9%y_o z{1%Te!ie+{Z7|Y!N%##PZQLjPKKaqO))s{(kmqBKzC_>77(fdq7?mK3*vlL^9v*KB zHwDlGQ;evkTZ@*gzDpAHJYmDn{ku9Eh zYK>k**UlJ7_ii-)2;UH8d%VFS+h}V1fSJ*;$X5Od7YgOKUl8l|UgH^|Xg2IO+B?GU z=EKIOf_UzyjrCmMxAjHiNK9md@^98mGghNx?i$ZqB%1q0e8P8ZGNT3gbP0QSPanOa~CfjV7UR0Uh z15bJ;&h$$7J)kqG1j4T}P3MH7IFxPLFZ_#NP~x)rUIO3jF*O+ctv|T z+O*IXdrzQ%?j-Q7J`tre@R61;` zM2ZKR;S$r|OeZn*8=!}gW=Bn!5yLb`^GI^wriu5*wj47R!nHgnhIkYIb0$oe%mNrh zx0ISLW5g*(XnetR1dh81Y!sJGn5npOtOZw0!5F7gjxgbx=^SU%?S|Mza4l!S-p!rus9}Qd`*Auf9s`JoAI- z`sbz)+gL4oWo6a>jS17`DlhXpZ%v17W7GemX$RL)@)sM~to>@*ju?njkf*9A$v*r8 z+|}o6#tcd5OMf$L4ibu*{!`Ul0cpV9NvrM8-06}U<~c~uAR-VzaF{*O>`y-in~g(Xea7&mezcfC%fy+%i&H{LBq8&%v~MC?ub@b zX?|H1`gwvGE>sh0Hi?^HDc6xx%@eWo2!q`^!^*M2Z1V(+&w)-!rX88-Ize1XT(Zc# z9nn6NPktTP3EL(1E;g4TP!8@XjGQ=YHW|Oxd;}?wz==Ty(YNc&s41O)F$FU9WWnt1XACQm^WZc4$ul|hht_(tbQmU zoDx*C;ItVt(PfdTkUl?SMn%mpM<^~8ODX$;88c;C4z&KFc@kD3gsJq^74u+0E8VY| zF`dzJDo6e_*RhStlAC6?3P7dgj(M+5W>V{(*#*-9um}@P8vR;tBu)FieTrrd`7NSPV{}zT%4Zcb9+|6}bdz@y69aQ~^hw?LtSdt2P0MT&$} zXpo>b<0#HY9Ps#{pet5_J6J3WI?eKUT|?MzAx`+BI;e`k9nuDUsU6%jv-b^fT3S$` zHNfpJ2r6WGQD$H_zhjUIvi}-vihmmuab}3bqoPg}CCI2oWm30 z&{_}xTdfIlBw>S%LG_`R#a*`sRWhu&Aft65-nci2{0VY z4nAm`q>&k3cRXktqt*ssz)EKr^x>3?L2X%@HOMy_dtVM3!`K54z;!E_R8H(Q0H@yw zVwqzwJeoB@rFVnsLf#-;Fm&(bTzk{!1U47WTS&LS;2_D=eIL<)hgirAG zTFHl7whLZOh@I~kyo1!T;%>p~N!Y44B`)t5e4WAXsttk5hX(%)DxlT8-q2vanqL_m z97wt$kC5QJ+9(78z7y^w3}*U{F*qATj~Ya=Xk741a7sLQVlXTy zzJnbnQ-j}|68tl{-aRdNKM7N31eesR8dK#QbbVrl%FIIC@fj5Sfarzm3m+}gSCUtY zgJmqO_jg7m<>1O?!E;DWFIpMApVaVP>w@c&FmzLJOs#4-^2VbbP~!1m3#`}~eAR{* z0}n0_){z>1=twPVxE|jQ-iHUjs#SZ(amB!OHi%w!CRj)s>Cnr;pNLh1uLgf4;mBWt zx0*xv<+orV(NM_!;Gwmv3VI2===4LEpMvfDHE!nr`Oma{zUkUz@;@#oqGLyOW+z`& zWIMkOQGV^aw(HWZONZ!aRfou~?Yl*GRz-B{(ym(Qthmc|X{tcclPUtDLu7yAxD_`8U zk8qz6W%WKl$Z%HGcdP>Y30c0dXF$QAs}($ih72uQbur4m!n)|BiNYQ4PZf?c<;p@2Q-rXZUmNpy7YfVx=%QkwoS|be$bt(e3f)bpwzf_cs%nFU0LvL~m@O9Nb8`Uks(n|YB+uy8oI}qZ_yt?=SxZ_e`x6GChX_RWYin60&R-S@^KpVl}FGS-K^wKZX5+$04x?#UhLK}0S(#trM#b3Tb z^TcyaLI*Iq0VRcj)CVKr6K565FrxTYI!}DTI#gLJK14~L_?}(p4MOUmV<^j>*YA|% z?HtUoK3}xnG-s|9{Ug&N@MuhamGZ&Cxq{zeT@=T7KWVxZ%{haRzoaPsTW zhr}?+e}y`L)8pc|q36i&BR_|>AQEQ@!sfC_4CLm@mG$z7Xr9e`0l{4yTs3qjtpx+*xwO`1(C3WGz|6*@5dJMFv|!CoeqaJ zW*Cziiff1;91B~_;B++*d`^aW0awm+$n8`ZJhU7Og`FW6!@>#WC)dI*5k>F25q5!u zQ}2Y869Wu;7zXc=_G7QdVFyTf>q%HAlHU1c7)-bB$M;@^!S?9=c+cyw5^`VsAq=LG z_G9JOFgunVtDs?Syyb=JI*3jSejo$E0Mx`$#L@+SJFZp!ATq}toJ7wU71;m*LRXY{ zOyq^aTZ&SWN%&QY(>+SK2Kf z5yQOCcYp{0>Dy#qKT&(e)~yD?YCQK2qSd@LE_4#1T3CaM&LN{w#{w*|cNb9sYKR0tduP2Z^F;XPu1=MGknua8Va4ig+hX6j>XN{;0eyAl{XWe2meUv{tUD zxm@Ioio_y!JX$ScTIsI$C5nyqED+gYuP6~5QO+r0ORVTF^)0+yE7~ofccYR-`}t`5 z6j30bV5&~^%!VeII7S4!zc_@(6GbXMI&UhwjWD!3SyXELe4fa!Hf|Y;%NK}#;U!$Z zMAQimdfe373BM>2?c&ASwaOr2@fy)~UVwfZMelj<7{1FO_u4(8NqmAn2Sghg$AEmR z1ug3tG}~Sih>DMkSU!AUXz$Ue3sugj(|98llG|(PX;@_^MH#Fu|D2mEE$3ep`J%JJ za4+P3TEwzVowyqh6ioKvIOEZ0M2n0CrKs|}=pbW*Kmf}wiYBnuEuK&>T<;gr7gONE z4W!%L5;1+nqK1gQaLgSM92Z)O8$S>=17tkpi3lDhO0mN;5j;$k;#-v>Tk`v}7oyFU z5H5HxI>Ijtlf-q^z^93E*(@c^^%zgj`qqg}X7lUf*uxD5ukxnwN( zKn62`=wWzx2?LA9W~!*Js0|;qELt;t-ZR0Pp`G4`=ay0LY@d&)O@) zrlk&s!9U!;a7 zu(U-aGlI-!=)lfAS8S;ZSDPY}A=$3DC@0+23_J{$clKC!sR&XK3GuxN;jc|;^x?Gd zU~?KBGBJXW)$SuZKb{u*0VCCzh0+ z-R|(w48}qRYz)};)N8Q){_ws$ef5#>PJDFz$#6?PdgOd~TN*998oozBg+6sH{30*u z#+%{!EL|0_>5rfiV8JyyK`qY`o1sme9=IWxGGW;{sISzP$l+3zCwWDzLhT=gvvhv1 z>?IoH{|qcZPH4dsABTIgXj~7>{w*<57{TxDl=Bn=8XpO+i&&e}rFVXteZbt>ED@ zoN0?!HNw0%;aiM=O279^W~v6-{UMy?#W1QynEE+6Iv12wb|zpNdVU#!H_2$e`%@%mb6dWh0fvBA^pi=%6!R~wj56W1{YIk-{X32!k>3SPtWnu%c`b`48f zh+zf&HEh>b`~ni;FMi_dEaOOyaG!VK_DJI(>4(K)#>pFqrF64UTaPf5_MT?PQSn7Ta|1nAoM~+>?JA%Yj**lhEv31n6tiy zy`^GUA$<)$mWfMAxKJT>C+T)YiZ2rB$H$86u&hVpq%W5}x5tBY;v8ndIfR5vG0ekL z!O`jrF&y6#D0asq^To-8YWWzk4+&pPq@o>~OhrqaDuzYg*Kq6U;=yJR>gI?YiD4%q zv67`n=R}&dT5OAFtrSPHii82d2WSv8x}xi=#7>+vWgEn>Tk0BKx0TvcTPijt*D1T{ zbr&pF5g`^Hpx25+;>JXnu}8(j7?y9)mUreEu?>c`Xc|^w5Qi}NytolBkqf*X7q>76 zVoxf>aQxskjBn6z{4MH;18$2Cll$g(#ap2*!DaWwkBMN*pHji1D#bUf;5y(f&1e6f zhPOV@{7XO4{E9C$znwrbk0@fbsiXmeRWVrgHKX{2Xj^x&E8gHFaW{y6-Az)5i1V_6 zWGDfJQQcB`gck z0Vo}x3z0BQfODB;VUippAaFfg!ZL%&VYo;nOdHa<%#G!e6hdI0Qo{1&#$lXQN$#`M z11@t&qy%S;UoSasgA5z!5lAC}A4LbD0aqNOlnd9mY#mvid;I z1W9vd9~d}U0{fII(f+BDd5i?sy_qIqE`RY%Nfs&J|3?Ya zsb?I4^!*YgA#nAeWHu`S>vFb1AxB`<5lK8DV1G=)a;O}K5qMnk8?z6bIVq760xiz4 z4+j)yB?5+q2m^a#V<>yxC3gS2{IjG7L)nPa+|H|#jYN3)b;&AL^RKOtFf9P&2>ftU zl1K;$ZnJj-z3xaJF`8eCUQ|jVakKl90RllKPIw@JUBZ>9zm=>fb~*K4vXs>^tUpT5GZQHIBAGx4mkidtL>$|8Oo;Z!bB%&BoV&S zMas}BA-$w9rCEua^pV0; zXC;2%FNLowRASUu3SU>K#3TAktxO>dA1rM_!Z9PHty$htsvgSxv1f?1Bk^NSkoBQ@ zLFR_B)k}hj0J9EOiKPPwyLAdGO{R)U(VvnCQD)Zvl2I) zA^nSlb>>JPk?<>$3R&a<_v(WVEtcA%v;{Wq_}NnFH4D8^U6$&FGF~TL%-D2LbX*c9)!ywO1X%J(@>4P}*siqxm@t?P)g+%%352SBc-~xV?_d}y}5_|mou{4)u z#8Qp$?5T7bD2~3~nD$0$#&TX4c!NJ$F<#=Z+gavqsHc;SWPF38GnNTh1U2B|w`MXW zvAf7d21|S^v5%chNmMw~N%o2O`!qM%4RSxWu8h^6{ZVNXStC5kQ`W~ILNhPD2$vel z5*c0D9|Q0n!ZNOf47TW3;*PCkT$}l4Ygr1BBHB;Zh)6fNlMG%XRbq7)Stn*MKGaX< zhCO=8;KT{utb+q&W{lkXV1WCHa342FRzbMQ2g{}s&QFKa>z_u-_S?aAv0T=Wg)=l@ z0cgc6i5)6fnq)yg4B9JF_D*jDJS0}eG(-6fupKUqmxV$Th0W7tM+pDZS+db)5H={3 zwI#YAGEP>?!k=piy(h_BaKRMWID37gAzG;Soc@bsOxtA)zzBf(k7va!k!guBt}d53 z6Cs|glEFKmN^G-U1}{S@ar4cx020QP%KDOU^DfzMjN_+12!t{#+bd%_Iz><3Z2n%E z6Z&*Q=32I2HV*Vm8=8fOW%n2x1j-AoSS4{mGvY^@p#xlRiV0T&NZh!f1a`{FehZpfM4m76M zGE+G>zG!YP|CQV~vXtK@;XNywZjKF2H`tD*b9Rv5C%?aSl*^dqp4Conj-+04YxE?r zzAJuKNB&xG5Y(lPobOD%J>Sq^6;RpPSgaw)T({eO`(z{_S+i+Rtb4S~sg`Dmu0^d=bFf4wEKLF=Xl)Wkb*UFnQ)JQyglU$_tUi@XNTui{icgQUmz!0?g{%F=~iPii= zU`S}XT<}{gzihz2y-&WD#e4?bvP1GBVzuJK@_{S_xn98QXSpY8y}{BM$DWXP(z`Kw zeMYa-+h^q$S;tBk&=H}CugJq0C}MaZYigtK?Q$Q=16aHfKtfT~ZI}ia{8S!A=xnQ$ zcVM7H`%PansT2BYr?5a5OcXA-=nr|CL2ZNI>ebfio%|6CSBJA+yPn5CKS2o7n z6Rpx#YR56gz<8pbERMHQII&pPfQdm1X+)oCj*9xM`ov${6fXKofnw_^`2IY^T``;$ z69J|xI&@J1Ge6#nbA;lDMhe*PTZu0;QIG)+UeHYOCujmsZ==wXrtYJk!j@%WC1rmhbVTMG(jS53$ir-n*@Pkf!V_1$g*aFQi9~Fpt zBq~_e(HIt%%_*H^jd~|39x(LBf^@|Yyfj(C^bVS2MxE0X42y6uCL7L9g#k#R`_b3}oeD(|$83?yozF0n8i=c0RGkXCEqlF{j$wQ>8f1vd)}i#(~v+ zr%2|txA23)orT$9Q>7X$%y8^_9F6Bzr2| zSe{aVI)z05Yla&)RQBT~$!wy84eO+#!rfXb;Y2FySdrelt;QbZaG+oKE)?JV0iEqzPmV>Bh#ShFt7-)?m80JXHvbd?5jQ;{< zN018ZmMGm>oSz_JyH(1G7Qlwg8R3nalrctd;j~rB@>vv)8UR`##ZIWp^|vYE6HBj9 zuN_L3^&18>_^^W#cH6wdfqRv2p)z3qa^-X2jD1ciLr6IGl5z;k^Mj!TjxQ2dC|QO> zfRaS_bS(N+xs$lrh}+7wZ2q5#m)udZtR%+3;tyiFxxcfQeea?2JWKa;_p$OkDZBKU zayhHqZ!47>8OlZ=cP1YELb;d_`2Ce~11o{fua!(E&u|0;Z#5+|coYa()&qhob}HSmm$zyiqZUWvfsIu6K!LbrGu36%Eq`vVIzqzoma0~y z^?c^5f)xm_@UeC(*!1%XM|D&omML~l$9D#(?9iRFL)_6GH+2?n&_{JsFAugIsQQcL znZ*E%XAMzh6H%;2P*HvxNku6ctqNjn=tm-;Y>sonRrmE?hOUY9ieD~MvDQ5bj21M@ zfD@;bsszG&S_I{-jH0|7$EbW6d+3qKI}vzSXjQFPJ%b`lNmAX_`z|g@Rdr%f`XILg3~R)#`uW8e_od$?~AdmA&Y=Y7Hsd z|CEa9up*-U#ivzF0|kyi{5ciux_yNnUQn@2RdX0UF0nOMT;|J{RT+f9kZbG&mj9xf z$kICl0Xa8Xz)xGFSjJPJp%7&M{DUdZdR09_z(2iJ{mIOegX{Z2b&K>&-d||X^ygRF zGhu<68yws-S961d{g!HOa3Hl&Z(|u85CQNkH+8W&_!y^(W}fP=ETaKV6@cW54>eM! z67KDrskwoTSqn8cusPLItzzuNLQv@ml{tdZKpt-2UQIe}x@w}LqnaO!-RY!e`2+}Q z>Unf-NRZT(L&rCJQ1Yd{DEYKL>TWDU0uKJ-HI)VWRjcZN5(cV2{`*FhlH^dPCaH?C zE>I2IOkSaqn31md#SnE1hAAsDu&ptDgI5Ks3rx_eZpuIuCsMO~?3v_DI5t-e+uBM{B2usX_o~D| zz>lR(;fOa}qP|MXe!EP~G6Lf;f>x+wn1zp9MTK`-t7e%l;RvYKsUw&Pq;FKiDK;gj z@fJ112n=xqGPkOuNwxZIyE>4i9Rm;*8d;>az~y_?I(J~h^%g@etBV=s;^6FX{55rB zOCUD$wmKdv8UFZC4T}#-@TJG<7%K?7y;fVALfG$}`VS&N=TGWMB;6t72-sXuf~S~9 zbOt*3uvdhaErfU5M9c$a;Y{C%Ff#}*bc&cmt|Piegb|#5z3BBw|A<56+I}ESza}tZ zvISiGj;6mK4UQ0z{0+nrairV{vIuw(D8VDu5paT633iQ)fL^TxUyq8|YzN`^^oTjb z|9#yc)={CCGt`!-&5Z~PB+YPlM)09MQ>2rs8*o41cSj;#LQ_aJ{`r@Pxy%|TW%Za7xsE9D{=&$YI=(V9qDpHzb1uBG|Tt&c1x zZargXRZPd^d)lU`&TeJOGZgP<7T<`VBOyGdzI`z>-Uq1WMY zWF|4*rst8PiSa)F89AGXHS=SnKM5}iqB!x^7)Nnx$u*6Fk4cnZGn=UHq}B!4Mb#(y zWzJFk$aRTpl!mCs#yx5?i;`1SbVV?Izbv2SSZMban69+~{4IsWaBRQ%$VOf?LHI*p6Z+?^qi*JE`xWU+M!3*+&br{;VU~qHP zcv4gbgXm;bi0@2_YQ*wD)G$3d8qGQuZHAXmiR#SaFnRcrx@1^|!6QD2RKh{v+11GOQtet8trDHH}G2UbSC zBt*8ZiQ3CZq-cw^MhghR-dD3*`K5?Szytx;!L21X<^@~f(HN6Cky%us1; zV`to@EXv)2cnNt)8+|ZJ#3~&Ji~$%P`d{G1C!*xW5Pmovm1hEB=7lIH5>B}sb&rJF z>rn|%EdKRQ)O&J$<@czwBrJIv)yfjWv#+Brc`@1ut=JUZ2ql(uu)qqJXxRA2OZTpE zbUL$idQ3aqv3Ycr6;N#4KKi{4gdTmOg-zI~&Ojdu{hZO&)lm)6r>pgCNz4bYh>UIm z1yGYzBu3X^nC`(~>zTw5+jFAf8`Ljwt0K5&V;O_W|AddM+c`HiM_YnhJLB;aqi;Lv z31%;hW;&aQb4CJ;doPI&u?C8B)v%w0u7nQM@KFrUCi=$k3P!a=+WCm`~(>=ir!`>L_6bFlA>XCF>S&WAn zgi|A8W?Dg5KQZR31qm}_+LCZ^Va#-r{+HqynDsr1caM*e5gg|!F~Q{bm>*&uxUf5u z8r?XM>x>($kEt+d*Xnr8B9^9$Xt(TKj4M&6+s`rch>d)H>J$s#O*@Jwc8R@2 z!tidfyGUr)BNmQqIf{?Zu?qy}X{*^dCH6Q2 zG&gwmOO0*BVyfcA=q7WP?&d!ATL+C=9#s$a1{>Momszns0>OFgl@ps}CfG&~`JIBZ zo1#xev9)W~y`5fIpquqID%7XGpA#A}CUzWy)GAqAG}6w>b4E(P-ln*CY^)1Q3lA`b zsLWg^N5bM*m+nWHKN*K#O^OXM1x*c{5zBIhF=U^~HRbnb#`a-p$_W4}m$$LR&whyg z(+HT{nHS5_gd3QsQEUOr2*`11EYrClkgpKEOn_;vmrt_f_=gp-g|;9DedDw>c8R56 z8$OC-VR*X@H`*5q!`p3m`Jq@h5|$l}eQ5{bx}RgafEDoVUt(dRX&cu48f#C|kG~bW z0l={Dv)G3g5W4*t3x|Sl!w>$V;f}YlaQw(NoccZ%4h7$aJARCX>C|ob{^wX5@PGW$ zI8MRxm<-CyMk^fRY_O?a+)kFq+iHYFhq$#?dWE#CA2-$-h;3;W2My#le7a?vgean! zPuvx9{jpu#Fd}eZpEyntzXil`im2)zhe)~!gX7GJU^7O>tz>w0f}!Hn5eOa`#(OM_ zt7j|X&M{Q|yQy(OXmV7X*L+pnkBs?oPj%dBmTIOioMk);c_Wd3=rI0+<9DOu4jY3C zS83wP*~H+`Jh59s97{iqflniAAi&kIx&?6_47D8rNCGOlWnqS|kBvLxBzS}u&yRy+ z&>rFV1#$3Yhez0bQ5;O-KEk&a$4zPkVf4W`=!+lW9_4Y<%pg2@Jg$!igcc9tV7C4d zzWjS!sVRixp2fl3@grQfDsBzAKKMFrj0J=NpW-f((8*L&XodP0)eS@y_8OLldT_wz zX!>7Ombl76!*tRDNDn*GoitGb!8w%J)1wa7x@cOPp%C|xf#{CAhGjK4$11s-#uROP z18e(#tFO7w;2r@(H6yUUhvpiKmy^s0GMk|`lVafnB2SGY?IpX1Xqpho)6v{<sYew%*n4|fbsu9N_%~)zs{CS}UR=04tNh>u+_-uVw z8%le%MpMe)-LX#d+M1><+i5@;Ql^>9b9k{&lg)F;F4vT^JobQEMj{6t90pU~C*Oqo zS|9olklz=#IH`#-<5Z5&New()1Zv#zrSlrLl>y(Bf-hdu+~q|$@{1;vS6Iv6Gz<8< zKi}63;stBhO283o!A2f@9$1Cf3+xR!UhW>0H4`A(p1&(zUuVP13<{3hZ&2{~!v+M=QG3>#I+%gq{qlrmjw4(bMJew%9%(!JOB8^HB+U z*Zwd%LGRi-gA??wtrjNeHQzKWLGRj~WC?oL9<4SYG>J^myY{`P1ifoNOGwbW_8%z; zde=UbmY{d-0Xc@dPI(D`@l~eom;`+zyLnuKKW~rE(+#CvoSC3^_?fd4^bT+PlffSM zjwQtL_K==VVETp^*PQyjud0upskQa6^m4*t+K6JCUlSTr&q4lo5?FS+R%2_EwKizV z!vq^V>u$mcz7ogYPe|oEnPD=8d%#MwHE~rdpO+5F!(0GpxBbzjkcKwbJh6*f^ol zZM7_C>k~E@baSM3M4q?Pp5oPVqNA4ODY#lKo}INxwPO?5P5Ud)rbACH%L2`6Hq(1) znLdnEjS%Fo-OID_=*Mg%>M|+)wM^yZf~d%xLu5Q7t?bl4cgKJ*GX#M|CH( z?@a04f^*u#{M}I(v_o0Oahz-`u4=uo|8;G)J(cbJBkfXV**GwVXWB))6#HIjTl0M1 zzR`~0?}mQXo}^s}_BBuR;_oVK6ZI1N+9$5&WqaU|2!k$(G2gRiXp_ z>uh4A1=V`u)x;GHBoUCLuz1ULgMI^V8|aREkhqNHL$+K+Di73JqCX1#>chgf#HVhQ z=^3k}FN{ou@C{|HB^KEwEj6KvHFHkd&71$MOA^d~a9*>(EomDc71d3eZb9$9@lMjW z6sH;`!LucoHmgYzJX>0yV2;MJ(KiR=4|hzo^|QndSOZW*6N`sNyK~ONJY|X zzFi8AG8EA)CQ0AO-H1)v!xynylT?rQiSsFjyC^NmhQGTj$AB;~&p@(sLDFU(;dNos ze7<#EG&yNC%S$EBHc->xtf*1iMm0WzU^*+QnXuAvSDJ^5K>H7$-g9ZGCTl63lXNmcj>KaV+VJF}?fc zRMI@&5UVd3)R=k6V2C!C4J!ZZN>T)m5O>o+r`vA^I*)G~RKDhJ66Oom-Zvy@@O#oi z{_gRIN$2^3*Hk7&v&>L)+FB;oHo#l{OzK6AfWLlDN@lJq1PlR~Ij$>69?Pq9vw5;! z^?8=b`a00sI$2)_s%(<=s&DI@tXF;Wy2*Ogf2x=4$1AQ^!(_echc!(;&U2>U$(jIjv8SRdjj7&boQsX#;lfq<{r*g>KA1#$6)A!nCVaXGXkw-
    %3c?-+iHa$Bpcb zKNt;?fUk8<(efNZx}`8IH^v~!0+!JwF-rd6i($dpW$=AGc6b?MP|*f%I; zu|0LJ8>$p9OB%I~Pq}JAqp#9ZeE6teUdlu&H$GXAa>|q>aKfv`r4({eN8DjbN`e)e zNdj@*c`1*nSZMHy6lav2oC4>ZmZThKv{N81UX^mpj!F@>Bc(ns+t__6Yx(Nb{X~kn zBTW!=-5}f3UsG-}*7O0$q0U!x^bVQAEc?Bb_h!^gnkTS?hfOaO5nEQJe6gWS>wZjm z%p1hfB=s{N^|DPJZcY>AyQI#wXDh8ef-c4j&uNl6#aOVR#;Ve(EmB$f%u9;&I%sgq z)YA-fX3NssqZ>bFJLAc%QlA>5u_caOjZuBf>XU1w26VkFMRPW!&CEFi|;N@g|l#p;gLj^8o>yI ze3Yp+ST0W;%=^Sjx$_co;tYe}Ph zuBM*j6L{QC4KSs5lOCiF=3BZ`k5kR5y71knsb+liU1ciEhh31Pby_H09`Wpt)KXWy z;H4I6ehf~90WR5&QvRV{+CbU{;wN5dG5lSXPuh(-G{NwJX~jJI+kt6oc}eGwFx+i1 zI_($!u0vSb6<+?oBx$*PwqkkOVLm}{WSU-AYvR&2@I8n^o7S79F9yeGi-s4c)uG!% zo2I78&Gf2Skd+q3GMpor7%;1Nr3{;tHiswwa(Y?=KI$f{3&f5 z-(f#JllBK6eSSG@IG=53MOqqT^=*f}@1!M|=*25}kmkYQwxlftq(^Bp_?maejO88DTcbXAz|XXqL0!4TXCqUev(Y|+|)bXX^OJk}g5_wtJpIML9~@v93g2O8GNMH|AcaOtM>sZKzL8#jzP zn7+gaE}oaCvyAHqeA$uoGYl?7G)$=3Vd+ole=xW{x;ry-7`ixdXk%P;COwT9TYVwD zN&w;LOX)?<5dQoiU1|=YZ)JK9GYI4VNN-8PdGFG#$^DYA>E}uMWPy(9g@axM1R^-1 z^-I&`FiDUJTOF3OZ*>671o~`t&q61(0NZqR)Uhl+0ibl8=cLPFSC}kR$NAfi9I0i1yNzuoBqptvkZ30q3T=GD6^VbKMqJ0u5T~Ix-Nz zpaJ;)Y6TkatJ}<4_BB7U1oFD-n2yNh%-_FCE!)yXcpl%r<@L>qM{|y_aThB~j;Yi&oLZDZW zu9Q^+KLqQJFq`1LkhVc-B6brT4A=d{OrW_`2Zx4Npo4N9%OR1RBiku;CCnxWiO}T| z0vDs$HBdiBca~WL)8cfS2!XB%>`pjEt9!%H$K&nkx==?bn;Wb&n4mk!G6(_?IZAGB zVurJ4==PaFhu>+A?mFrC?dIv8knr7nor4vGmL)p)kaq>Xx>5%RK2+eft97v9y8@@L z)%`}o;PpBUbjkQ&sqQhkUbjQ{h=enD>9&(FpiBpc*j3=m`*mTUGTi!*F4!8v!qd7N z}1{O~)yRz1=+wt?&MuXQ`g z{caz1-R&Vvx5|JI`c~k-Y%;VYjIhs;GwjPIW3gc57h!6T4z^P};~0;OL^7i1wEnbF zMq`Hl%Yf;M*EY+DCsI1K%7CM#D{y7&j5$QwBEO73NvP|T(Uj%kjzhxIXvK z$Yn)BfMkp8t5VGH*MS*L39+U_GdMT-GAx60lgA@6PC{9Ddq@W7Ci$TmoSTdgWpHlN zK%Bw3$wx^>95Hj0I)gKNKx76SP+5WJ#%H`CxKooeUNh1ZBEQX*um$fpyvy;)%<$4z z4m5UR25e-3161+MNf|5y4q`AKU3t&c21ifJ2q0ElKQlu}eCx~XjBDij>bwkRBHWY3 zR5?eMQsr!3p5aL9(7_EwaA`aLv%@!kxsE{xirv4MEU zhXWZ6$nSNIWq1>1bv>1Fo`mM-GwzdepIynYB6aZ1%?$W7b_G6tC!@6`xqgz7M$&1j zG6pg%M8kKDGZ#Sl)ahrKW*&yZ&?uWsmd^tKRy^I_zQQ(hG-3INL*_Fg-EU5rq-x>e zbu;&}xBwuB;hCP9*9<zc{A zud;h4Y^|@rj{ccVN!VpT=1f-Z=uqMFI%utDW<6XmG;;tH%PAaf7?R1muj$ClA6Ys} zP9B1eWkH!H#1qt^nN5fs6Q!9UB)qB4bR+y<$7Fi3Otx~Z(-iWj4_};liZMyDSs9@L;UKR@s>z3_UJ+s#c&y z8;5w|YlWFliOU`?&eTH1MgclA7j$K6rXzx1?67)T<_HGA!%%<=Lq0+*7njV*tb6SrKH=|UQ(-b*q^u()Kyb(tchjUVES{LEEO$je+M!ShyTvV8d!1J(^vjXrP8 zoJlxM-$JYUryZFYjF#Z$H(F!&y_x=f8HV4WG7g~~w)mV$y5QaES?`HS6OFQ7)PYd$ zp0$D02n+A5gXI2+hFR-LnA|uE4z#Jj?VD!ZAvMRj4gLM+w)FR0U;2BmcJz18uJrd? z-RSQVdeGkkdu3fA`91p6-)|0}zmFe8e;+hB>n!=*WfcAW@@V>dUNHT=w=nAo=?hxO zvY0*>4<;Fi5>J{taW=;Ac@CzEuZO9Nr^jR+A+{Z*$=XO1_c1A}9SPg&vY6(l^%iQ4 zPG1Kn%(-bk89U`=&13m$rXH&u8nhOc(XBAfa=?lg=9U6nI5R7Nus%GSnt$J%tgpoU z`!;3uBkaGHQuQC)LDe6#i>kk6Syl{D|Lg-z~Qr5?r6)StQNS{`K)pibkI`ih(G?E6=OuBX;-s08q=sx zMOFe!7i1^`+1|`znK{-21fUhIG<5oSeps>@nl~V|DH?Tqzd4?9D+^JUsPo+{ma|8` zDZ>+|+{=2!(isvM4C-Y1{*<1>Anx1>3@3N(GDkg)m9Fc4e3fNQjd1!?7D&!nX{d3w zIW^e22=iO<*>w$UBDwd?NSPMrj~n&OzGsV04D)ow^@e04hMIr@(ZP-r z2ph?=EgfjIfi`=THI3$HWy3xRA~7DAlPxo+(Ot!cyZK|YJHi3aB*Br%*=lq^*P2WyLl^il`hL z{Bm2iuRyQ>dvDKfXeQWdSe&<*!LEeid<7iykiRGUE<=7ojmv*9G^aKCvNgwyob~8} zU;LQ8gt1C|i|0jaMB#yKmQ{B(>9s*gr?dH!-$M^(Czv4rQEeR2LO&ym}pSBs=4y$Ft`fQGS|J+0$!jm^K(BKWxn5;ehkmV<WT?4L7>PkUrYj)X7RXJk%)mbp{CH+; zJv5 zawLakeEqHH98-MfXikIwCCjzPa~AO|N1w`JZIZu}9~Yg@Q7}zZ@Gisa(s%PPAuhj^ zv%nFZcxUU1wfA#I{||%*SPMF*DteexVanME_pQvau%J=NpE*ORPB4CxQ^F^R`$QTD z;(0jWOU_CDuDeO@Sw8yKGFPAAf_3gOGn#gdQ*ORBjdt+Nh3&N*f|++NY%S!XyBp@V z;}g7XlMAgkcemUpcRY_9+R>1$WoJXS>s@kp@_d*0=dv7>jH>-h8J=684rP7A3i@NK zLAjgksmf1>=GLv1$}wP@*ifN#QMq~@&(P-Tb^J6b_Y1Ak_ zgH{_>7_^#yBlk1Ued-;9R-Zk{g|P&uzw9TuFqYt=GoI%nKHB+@+(kU@-M6_rSUx1B zcPp+BIV`wMpEbB|a`ZFJW9in&5%Xncc@7N2P#j>M$MjKD$fu;A+$b;3;~!wh)y;zk z*xl?8umCDXfcN4_)p z#)T<5moUr+7rN&aGU)nSEdF~LZyMy8*`VC#ey*s03pg(SPQN_(@=MFS4rZL-c#Llz zHl@)ao$}sW(r8GZyeF%z{P-X5`&v8LoZf4a-sboOXd|-I%=n4C4>t%=69i;2Xqa^KLO} z*{k}S2}S04F7%rTeiQOq3IsdR%Ll?b=vTYE`gq#JJTEiBUc;kwQ&evTa|I-vQT4|Y zCiw}SkaaG(7c|92_WpYz5P?Aih8st2SeCbirG+=3ApdS~goo=&fI$wD=I|`PI&WUBX*FA$ zx80b-!;d%Q!Ku>(8ZX|QXTs8IaAX};#CoAwOJjX-+V;HFEUv7F8H2rdv{H_1C6Mps<4Yoq+zW;EKOWxkw`BH#S!OdCsy{r%qLyP!J(`KD;kOa~wQN1yy) zW{nUm3|Jj4sYY53%}?e<+c+wJFRu}uIDa*7(N^+&I2MZ&twUtK)|y7QC*|w)l$Vk( z;P1}J%b#hElt-F7Vc&82a9R?V?alanIJkw29-Wxq#+-|m&CK6uL2vFu`H2i`AxPb* zuBaQ(C6l~Bv~6qtN(O({H=HPWS3Zp2onM&F-=3pD^-A+uHt~(#m9NHdkmNmJXdEht8Y3dcQnC5y{U=#cVh zNWo;5_V61lc(6;0bHMP7y4soQ{IRAWir2Y3&7cJzok6l&83rvZ$}0H8Yhhhcf!-*M z#}?>~@^zvC;lgACLc!F6lYF+YIR^DNnpZI2nyTs43d7yGD+|u@rb^jnP;~$82C&yV z3SM!FcEWEC6r{qqmMA*=sG;D&#|&xT9XC+leX^hv&*9^Rf#{LN}&eMk|t3_cHv7C^z?I*HR`b(K0|Y^sIV=b zT~OHEsQM;`o8lVRG*R5x!ah9SkCO|l;OJ?Bw`WG7BY*eTxrL!t90~?#7=&^O-j@^x z^3kBxg&}+tuPxjRpIaaZ=^G0hThu6g^Nzw}#x<@dlod{}tiDEWhYCG#@A5)XL&1BD z?iL0KAbfhS(8(0S&yNcC8bi3}Ss^TTe2-T@FI3y1;NQao(TGol@BV#%i8DVJcD6&K z28tc=LF=MhFe62xo9h<6GC^Kah;H>LI%Ce=T{op^5zNTJ@9P%(6~Sx>m$Fk)8T}cj z^(xv0(=g<2*MOpTd^BJ{Q4g3zA$O+_E`k>_T(sZFq8oey-{7J@_-OmEqDuW;Nzns7 zTN7o`WB#s3WRW#YLJ_cTnxbD}QjkQOBosAs7p$cdDnCppI`Z%JfG*81YKD4yy|6?d z73tRK(8MCO-CC3X{6{m;{6GJZ&22Hw88!T=*ctboRP@C}a1(=bvwV3BLpg^h7+n`2 zdB|c<6xz0UDIV!r+;lAJV6w~+-`G*y${5YcZscJGi>m%JttTpK{=x+(mlZb>*yuDn zfJ^?|7MjG9=qxU7*iWZ%=kJV#)SB%5@Mj!}oj3@8#*?r)1 zL}EV2kYkhVB2>Po*j#XetFfqb?KB7cW>4_}3!^0`(WQ0cCCK4OG0RE-khM8l)&g{T zbJAivn}wuAS0JoecoHQ$Pn}k$<{kLWjr_J5dKJ&)8FByh$8v>RCscW~IM(KPO~6a5 z#}0QpTH{VNAlmLaRpa%~zd@=xQ0!29RD8F%Ey_MtJjCWs4HPuGDtovGkmA$T)wmFr zw`wNYJ|)uy4?kY~R$yCI5fp!v1LJsp5E}s*`BXsp4xk zHM5~tNjWu3bpMAE1@2=!=C3I7v#BW*@_IZq>A$Jq@QR`a_{*7M2NPTGQy>g)2cBb( zi^WMcEo$7S96wwv9wqR`LoXGF2yAL*LxL|^4bi9@#XW6$)yy^9p=h{~_bKGFsp!VH z8NL&$B^Bx$`Xy~()?|hM!NEphr_k-qMMG`EYhtUG=L{DJQAyje?NI3jCr8g}qqO-u znmIcB#@q)Fx>lTFWRq4ChZxkUI!;1ozX4S`wD~cxxY^K&o zQ9~DVzPWvK!U(}B^yo(MhHujoRn#EhM+r>)|0Ixjt9XpSX7@KG8H{nD=55XxyHBCn zO*7oT&F~$A_LRZ)|2Ko#cZx^Xs0_UBzOmw6)8dH#=7d>yq1HaH$??0|6+oFht(k;# zi}-uRk8D2HybT`M1bNLbZ)szEy4s%+C-lctsCZLm{l8^sh`ja{wX$*jrwpt26*c*X z4CO~R`5?vBVk;wPwDjNw`-^)1EiKQc+dqLXeOTP-ZyERsH1wY`fX(V#*A(}=`qS^f zC<^y@Tx=__iKvNLU0364-sXgfIE`$c7AO8ghILPieQe-y&Cpa(=^=yPv*M2bkYVf0 zvE6NE{!@l#mBlT-&G4Nx1O7ppOACtK(92nSe=u5i8jT)ZEUDplgZ?SKs?Y_0cwYR} z$OxZCvyY9Bu90ErKV;Cip|&;M*Bp&*?eC2j94TrmusK&#m})Ivt$CYh(HIh>bXqTUUEY`UFm*0k-DXfotH!Lo&QP;>!n{2<&;Fg-2w>e`%LUcHIYuL9r zzVp~ARJ59<;^HsGCPqeMI5iJM7duRCRKo+O{XGNXbWszcS}2Hd!;%H)?#+GiMkQy^ zC9`6c%`(E4A10yM;bVpvEk1*`-zsX0?;4GHXJoYZ47&SiOssXyWbJMjbvIgd29*Si z@gT{G-=h`JXZZa$ov9Lvk(Ocm#O1V>{LRG(xZ)_CA(;8W`JdV~dpfzD?7gQ>m?0^UFTYSvYDDf;;hn%a2 z8>gus#KR9$#xz8Cq9%1Qiam=6;W{Azsnawe<4d!0D4QE;0xDQ+xXoZvo__RvDPdAy zR5W!=9S?2@tsgk^PIHvzd;(4rGFF8~nQdxnw34U2{BN|EoW+g}#=yHCkKdQr;?Ra; zUYi&lghF%S%i9Lt!_5U0bRXbEj&;R1n~jOFa-R2}{|Np={^if5KVLYDR11owH8R%w zF5`<^L@~F|qQk}$B{kBusZPgvsB+1ewnlrXW{g(zrd+}+W8rto5PSZE9{vw|-yI)S zu|4j+p>sn|sL3W2>9BYEA_^!<4G;@95Vj%#1fB>YAY_+hNjAGlXhSDpLlJ?evI;0f zp9Pf?6_uhSARwK9AWi(8nYo)gdvmkv^Zow%{rG&o-)ERTGv}N+WzNi~=-(-J*) zX?Ytob0ADc;NtSOXzM^vXSDRv@_H!Sx;+s+UcUUl?8Xi9B=FmIEA?`OB;yZYnm{kn z#LLT{L|proO;ML29t}E{<}sqzuPkqZ_`&ecg@ZlKQ0AvATgJ8Tl7a?ZS$=n2$FsKQ z#<)g|nl$z~lzw%2bCipNH02un&&^?; zMD*IV<&9DCAMnqH>F`fmx~Dl0l%`)>-lh(vln^>>n5XA|+rOpUzx}L*Sqn24hK=^{ zZeonGmr5HKrk7|lF~#?Hqx9+XhI6Z-X^6n;Hr;o!EsPD#c*L_@sJ(~rT{z^I_iky^ zDvXqYAuFT$hyaCG#{&*^zQvI7p!81C0g z%rWEZ%{H}-e0Cq#^b$z{a)wnT0-@L`_&tD+V*-)2;F->aRg(!yb5J>#nQ zEmShr^BX6OV#y_weDA!1TIl>Zk4_lF{zhhc)Lt}Wyr+9)FHAaPz9BWiM_X-|O@P%l zxR=IuevFf~SbpAKy4+rS&hrSzzpES4Rs8nnWKW?` z!m_ULPv1)n?qOlbnM8}{J?DiZY_p>44^?#yEu7*pal$#aFOf#kh(SGsD{M0n#JRmF zZ>p!2N{9VZK?!T_V-z&p;n``P6)GJFhURJ=K7Y~ER;|O7S~XD8bny9|)p}+2c&QJg z4nL`}j0HqaD_I$kRU>-bopuzZf4{T|N}1vLMi|0kS4{LtH6_HSvgl%udeuWSXL>Yz z{0L?M>DcqjmpyX@C(}-kJy*>3xZ(gDam`lD7TA7t3Jct zgTh=+sZkouT)y;xxfJcA=CTswj4+pF`>46xJ=Zgt<3HR-&1DM8SLP`8KYEa@C~-iAy~F(XBksMy@|9%aK-YhMam5IS-cLLm4Pz z67)3YxF<2}JxJTu*P4NC5($fb%J<}RV=-t?R5Wg03Ip0w29>u#_m|Lh8^|JDb}V5G z9=KHB{?wF)in0CKIp6ak|BA$TQHd&KzohVvuMwe5xSzKnbXw&Po zXtTL+UTi2VPi{Nrb_BELb&#n05Dm-q4C1#C7A0u{6@<@~3O?zcS5=y=WoC&q3tX>P zNb?ktW;tK|TjlOSFZJTTB|=0guX(znvCBMZIR1)9J(qd1(fR3-d2Ym_QX_@`Qp(bzydq`HSW*IFYfGg{I&AZ9$HgIhFlk`azqk| z7bQ8KW99fGW%hdovr!DPQ07>cW1H`(pGouaLH+dL1V)f>TkKDf>E1lJRl zgeotdYo+0=-&4_Qw|f#eRBKaZ(XNYxMBjYmDda}tLFv-TtSB49plI@ruy{@1la&(= z0-&wGko0||=BkT#xy>}{vV?BJT(d{3+a)?T0F&5O-y+P?HI!ROIWAOi97V=kWVU4)mwu1RMeiU^ z67j^(Jv-oPmzqq!kh))`GDWYS-`*9S|H5+(t=v{wuDcb`6Lxu4^DXu(P4@dR7$eim zl1zW593E6~s4ml;GIM`JrcgVcv%Iy5+fNldeLo{or`4dh*lY%;OKUS&O(v_$ZE`sD zE}cQ=bb(hUBGtrzLg|k6&G`xYmF~ApA~OSi!6F?4|HbZiPVW1SP|DY!!bA2)s&Ev6 z9+G*M1-eq=Y1w{iw8`Ik-r%?FS32LbQr~y?Qwx3KJ5OB>b^D^SBriomqSN1deEg48 zl1#{ST?Uhv(M^QC;oLIH8&dG5F3RIFTUeA;oOqzGeuOi*dOuJJ*8PESyXAn#$MNld zP;y&6j_xhm{y@3y+Rbb(V5!6eE=7_S?UouVd@Wz?8$+F;VA6?UuK)}Rx}O(>8V;o5BMPc zxKN-3=BNIEUO5I|m?B{#k9m?LhS-QD>PMB*Up=U*4~2o_p5KM-EFI)S;fG8M@R^9e zgT4JFx_AOkwbXwLO+M+_6(@YhbR_q+m;(ueL^wMDC7f+x&~-ZNnZ{oPJ;2{v&*727 zgpiMXr+*+DZj^h@Gl8%DBi(P;_>lo4`|V3Vko`7ynhKkIZmj|#Ii0HFw>K|%eipQN z^zfHIB6V`{%EC5dsdHL1pd92F0l&F@W?QuJFHav~pbEV05*)Ecz$?xx2B=LRKK%-H zzU;Y|6Wq!{dHav()8FA>%+CIz7jGIu~~sr~tF`R^nG_pwNc z*6fxDG~Dv6=g&&ConpZVZTltK0Q_&!R)txh!rLH##y>G?BdbA6wwb6+<3$6#8zaFL z@*1xuFLLW~F6X@wC+OKRiH44TSg#ZAVVlVjnf@naso_nJ?4UsQoEoxd$}zpBcN%a1 zi7Lk^j59(xM*KvT6Y0#6CvrM37kep1E&K4}8}1HV+<5h(tN+!09J0Ap6VBk&p~ zT3S-pVx(bj5&Z;gPQ^^)6EH~Hbrh8NrbPU;O2l9J3Bg5y{wQh6`;O4=X5Mdjt|=<7 z>7^gFn5BN7G;Wgv^qcIFY3~Pdhg1%|t%17(7n8g{b6f}9Hwld{{y15AUUo<^K+T!& zkHiC{aNNSsp;Ry8I7>xujq(WXq}*GMG#Wzr9DEVxPf5;Km?^uYm@@USW0yQzSQ}&b zg-fXHXkp{f#dh9VoG|_XBNN5h^&b_(GBDB9ePjpkG%g3TZx^!hz^t}&UXModk*HIJ0qJs{4D+PxSLq%^9-{>F>1M43o zVPGgr=XG#==Yz^PuthZ*2X;6}jP@7EmP^Pn;gY^{LXZSoG__`wHB9LQKgXBkdb z#dZhDo|Fe-pfOEgxuf6G*%n#Aq1rvXO?hGZK}Jy&%4Cu7u>&CTvFh!f-uDDwl&(G0 zx<=E(VfTUCeHA7O2TE)3$gCprs}5qf+cmVYm$wVge{_&WN?TbtBJ0-=QUwI~|7pz& zJOJdJmdH8Dq9LC5S3*uVbgr*=EFX7>QghcKhH661S&13|kEMAj>?F(Mz+WUVc&Zxe z^R_RW*B_!Yq-AjtlDZyZ7K4TTz3FxMp@)==Y{_10qFKKe znoz43ye|nR7AM}7rRbR!rjMlM@Yt^W$Q+v{I@DEEvMR4hNV}kT5+|fF11j0NDY3;4 zN7#yifJ1BQ2H->Sbnh>MGs^fis#E`7Y5YXCMP?J7e+j%w=3#2WFXNFToZO7V)XAmI z^p4>9WrwL-K`b0`E8fFYRRNy3l`622tAXmj0cPS>S|Hn`d1gdDi2Ua;UDb*Y)1w@J zrZwVWmyBSHL!%>m9@2KCHCM?lPFXuKjqJ zu4_OJaX>61bX{Xxn5mqc?cFPM{ux@r?n>U}>e*(pUFnSC=6Ow#@Cu{4M@`IR*ZSE! zuZ|OjDhK5U{fr*Y^&S%jvA-xry;p5ivJ2Yj_kO|&W7xhj2NT(5;upsJj2;Sl9V#8j zql-+n4x{qDtyMaZM;8m!Iy_L|eO09cIXZYvt;704@6^Z+3jTYk@lPUzD&*R5fp;2u zd9F8^UeDWwu|}BB=RcFJS!nV??|zOujtaf7As~V3Q5Ke%(4L>E2|=I#(S#mmOsM`Z z)P#gzs0sa*_i9bleW^E_@9>M#j-HVCZ}$shM>}R@HblLbdTXKJGVdF_^%tc@J)`Kg zeYtlWKj0UoMY&`!*`iwiLM;lY`>!l2)MAzQv1-E9Ul@~8M2eHD5@rlfI}L4m&-;wV zX>u40PSI?4nsf%2-D)v9%zC54ZPe-XSq@7k{6l?Wnhk-L$i2bxCRM)VZ}5(PS144zs}`x@>y84ZhJh z%?7Q-?Xrfr$AiF-+v?I=9TvCV;MN)pZkx^Sc3SN^r`4giSX>rVIDT=n(6H*c>$qf- zTkEjvtwy8UX|OvCHm7LNnRRBH!=>=Q12bUZjDN4;=Bqm4433IqehZ4T?5E-~IWKt%+dVMzhwS*X!`rB7@#(v}oNR z6|>8%bAh0=p@#oi41$SqsR)&|4<>|)9$J*c%@(6e#@rgTVZg8_N2Lwz`{3YFG4xUa zZHzu?w$>xNpeejRF(n39A`)B8?Wh6Gaf3~WPMyVRFj;JHsmg8#nd-En)(*U9HbN7t zB|BYqrv<(@nJsRU!D2Al&2IQOW!CDP2A#!##DTd9*vRs@WVhL300T2S-JlZ&r^Rj8 z!xt-)-Rg9?3^tU0GDotpSeVi8N4&#Qq9eAt(B{0k+KzB>NU|}b%`Dn24yRe`gfHA? zY+z=y)?&4~U0SQdDme{@-U>h33>GtdUvnGX7T^Uwof-@-i_@()Vov}zwln7qPUCjy zo%qwLUexM=Z@nEZEa|`}!POR<-KY(LIf9PHKx;>94lLAaVxiqUZLx@ar@SpRU=wKdlr_JiNTitGh4b07E3Z-9I zSj;84%tohCXK~x?7K6oZ1*6oO>~%kbKqC}f@i^Y`a7)32A zKd{h*3NCrucQuH5#>A{x1oyTDMu$g~X$! ztGQ$m>-4qa$ppWrzTuJJ@gXh1H0?vPjr5q6y&O(vsc zVRpMkG+W(9o6`!*jRmd*Sxp9$*{Cz=-FmPv+idJCO*W(5p|zWITAc$vS{v}C1h6)T z-tDkh9fnZZ*WMkRMh6xME4S0Cb-*I7vsuhweLB6}DB5)vJuE2g!MHRrFrxI;OT<_R z(PUWX(3QG#TWJh7QEL@p<#)lALlMFNn^W&FYqeVNWjdWbWUCDxPvdY~Tu!)^DB9sW zyxs_xpKK^7&{0Mvt<0QZb_#(}SaU=mEm&_?aje^pD0 zdN&W1whtysi&qSxXd~?;x*|F)kOHdy>juF#skOTe_u5FT3W z;Cqb@2wXspdJ%f*0nDUx+F+)@|IjEg25KuRX*>6kSXhyGKBpbpxq5@p)u1yNfpE#t zbZ}?Vp$FrzS+xcmn1dd!JA-Cv^$wHW?UKSplhZ6ZpxNRUwXi-}t+3j`@~i`W5bbVL zNE{FZLvy+84&Vk{gxzKkVVT3xv{7%@Y7KC^1Xi)f=Y9+;Kvawa-wy z8^oAqx6WyY)yfzWow?u#fF+yVuG1N`W*v|X*Av}jU4uDsnM7E%abVf|qW3LM6CJmK zx{MfTk!|~8Gn#3h+rEoVZ%&iLMXSpQ@wE+Z)IsEG0iSEv*~}0_fYBRGZd5dMiNqLC z9Q7V0jx!QMbGnx1aXa9(Fzus+g?U--b75F>vcqdcV2pDKT(E_*;gwolPdKNhcYc zRp%CApQ1I`Va3%NMXSqXcH3QAgU$%6gI-#nVY6m%f~&=GEo=_#R#?LEhR$I!L4=`4 zlP#}F3q!Kj3SPx&H)yp)X`NQs>bZIPP;x-y#<2))CwrNJ#0=xAtr%u#C1Od^e!Qn6) zU2tt1{@<-<7C4O_HsWp_m>ApxHb5*2>okNYMyt~Zv58d-t=Y8!%riPx8!B)5niv!7 zn$=4z=<1Vm+jg^dGa4A9bGh`eM{|QOHh>Fpf@(mJFTz^^r``q|-f&z)NoUi$a0G2Nn4GXtafx6TdeLHcSgoL( zJr+-{mSly?g5Z;^4)9D`5R%2^5*>Qj!C-Yo5ZQ#yO=|@EaDhXHMG|fTTWxx{7;FY0 zok{D|N~9R5hY8V}z?2P6JuDHT zQ#9FN&ttXQAYLv@S_(^Bbc|@&>Lof&415S5=b+)w&uy=9xwS@%2+^()wr5%g2*wB@ zt{L`^b{9m(A=u^O7+7nx>P&b?3BSO5B`ZGLFhg)+bXj1}iT6C=T_!k3mmcnTx?xjh za5-!+AzJu{9fCOroM?pr6f7(TS~R(HE(F3cu%`bC7B*q#+_v2<-Slh_391C%*J&`q zCIya@TsDVR)Wbq*ce>#O2Ug*dG&rA1j(*!Xl-?1o;%3JXiej%7Lm91+#ua0(tk}5P z{al&|fmc+9@cK@TD;d-dHYKn!*}(JbtR@KcL4V+Q3yu-YmQeB8SFyu1+F%)jeKZ^p z8Q}B_uMD7*;5xy>8%31r$qic)E?DOD1}B^h z>6zs#B?e|UJ^qM=nFPY4pUoA}4~you(3qWY3~09*tuBaMZKBO)1WU4lzlX40=W>P8 z-@xa;ZqeifTQNHz!T=ie@O})oY<4`=4$)?1k8%t!`*^FS11?~v07qS94TO#+2u_`$ zJ~tMEk;OoZQu{0tV`7Cs$&8Myn%l0c&eDyI9bq!zEXrXtJ0U2>3Tm>tVSR?fC^!Oe z(}Oe!is2X}`W0{l8|d=&^IVo4N7`mxb7+dr?vtVO;EpAa_N_58HpbkzO??(H0 zzcFsnvAfXZ*XNGBbHab;g#XS7KYV#o#F}?b_~lOvcTV{4obXru_2te9|D6;5@F#^k zC;WF#_+y>5-#OvGbHdMjSh#b-ulROx=Y$`BfxmOYf9Hh1(g&zJC;WF#`0t$XLq3r^ zC;a#>ag0;cJ16|A-xlti@c;jC!rzAvz@q{vr@`dNn5Fg>py7tu3Fw_2#RVx0bl!iuamHMaZ!Z7FE)lNVao(8AlQyfjq!(1j#4a%Gl|Ukfid zR%U5O%hj>)5IGqqpzJ_S2JV`Zfji}7ti|ne$*hm?>j=Wz$M`Q&hhYc)i{v=jiT@&R z1B>xr`opA9RxQjRWcOXgl*&q2owcgr7 zj=Y2V_7_?ui*145$P1d|zerWGs``;s$@=4RK{M35>xGtRcJA_c6zun_^v|LJzt%vL zelMsg{KcXpX;^MCEi$@L`CC~>x%l`aGIcbG>f#MqSwaHSOmnF2-;gzik3WL$dnfBl zf$c@hTLJx4e+Jc+vU)OD>5FAj2}*Z_R)R9H2yi7RUV8-f**?8@a)vxqeC44+rJJ%o z;p2xe-KE^Gd*98<7lt$KlcLK9Q>V@8rE8JAyiH&&rI1#ZSQ)#EmK9SEC~))uJk~&gvI=+u4+Dktd-hdahRC z7@?FU5I^_tYwt zb)FVMf)3voXH8UefGJ{VYpX(=T)iiylsI7q{%$pRT)pSwr&+5xURz45_sGn5Qt5!7 zj^Rwp@exysG>?5SfPbhGN-G_Kg{5zZ*%nzKsC?OM6Ds{8YrJ4*r-XQoQA`WdW!slo z8HrW=cF(S?rNVTkA5)emlWoRAiUUAemM5YI)=Op*AEq3!2vG?x4CVehE0^b&l1Y?m z^T;##s7f#Lu8|#wVd~H04RT)i)A3ct6MzB2v>4=g!(`Z#e{DSak+ zt0Ze2$NyGJUl|`~;m8xol2ZCa65z=jLXz633LZ!jn<{>5zCUYKVih{DdwNDHIP`C0RO#A3EI_)Dd#)xTus*FzijYC0(4w1R+8v5>d)~Y!EhBTLduyAB9 zk4bY0@Z^=RI$E01zlz_I&SXvD+N1K_SyEY$wnvqcO+8978HE;}&ANx@9>B0tWe(XX z?4mQ#`zTFf@#@7a6NhWV#E0O|`#J7W+)G5mGW~T(`XXj^ERnn7%;4iMWkIoCCxxGM zaA#)*^k4-jQ5}-s;@+b)RZ+*IRIh+q_;E;GR-mNRr}_kh24BtU&k2Q?>#&UyJ*s^x ztGBR}Z6c|i=@@mx6EN}!H=J>dy5VZ|vS)F8&N1qSvspOoI=FwK)YDnXTn6fWI;($GiW$ZK zqOJ|Ii}-gzHn^_dreicAz{d~61E6`0vWM~C9HR*VWU2L%Sl$H`K9VyUZE2i6pa1z7 z%>W>SJt%__Mc>;b`)U5%F`5BD1{*Ac$-dxokUUgf!sL(~>JjqBP9TQ7(`mJalwT=V zNxw2Fhg{9FTfNU)eDATdp7@hhW1a;`bDCk<~? zrDK9eq(Pg)5`n8NkOU?f5?Nz@MaBJc_VQjB7v~a^X?a%aHs@EGb78`fdB^yLzbdEr zIR#i?V2+J{6-LE1=H$^{kiq0Bo<%qt&I1vIDW`&|r;^q9vCI7Y4YQkp%5DUkphiDr zKU(E($M)?~Bl`Cb*?GdT2nujr>r$pgwvW(;AG1rj_;U6~T622qfozv>ooT0=+ldE3 zkIP|N4rYHUu-y>J5Bc7q>^?%h6t)McZB2H=(2eYdBk(Ak zhF6+JmOr{DWLsp8Yof^~mZqaQSC+Qn2Og&$qaQ{e;W7FirygTMX?9(ncO0i4V>Am# zJjP%oHpouq0i0+9376IJ(ttz#w@{~FvukrgE;|b(*@moltJT;f3)qh1*}H@#Y*(^? zy?-LRn^43y6G<#Nj_x~|JvOp~VoKMj;UX%kPCiT?Ni6gRt~ofK|3aG8|FE+~JYuml zt5;5CZ|3+?X;yz`;mEA+qO%I%B!W}NN^|$A{}!g`UF^Gtp$6BojeLU>RM_z+l)|oa zf^lg_&u5p{;Jchqy0q=mq;!N|DqPy#CukP6MlfcjENU<;@dh<9!f+TB-Nn6MG4t5P z*-*;0>~{QUiSUt?2!HAX4MO{0&%Vs_GXY$@NgHyuX6Y1H=I$}WuK11FTeFI>lF z`ib{TeCK(7LBfEkF5{&@=w=7koPEJ^{x}ZMJ70+==sO(&} zU1)JqsZvc(QnJe9eG7RGo|B);meLaGSy(P9^B(RbojvICe}l4~sJM4#lhC7$d~-Qr zBt{liJ%vZ=v->5=qRI_=PV2qjjgF!qRsT|ItYrnQT27n%vy?SvBqlj9*GAD|^t#C4Rpn0!L3oI+OakfG=>qpiB>`=Hm=2qo(;OL}FIZa^hXd;>`iX4nOn)$vKE7hhmfBEp;h{6^hV+rGXn9NJhX zUkJgUpKu&(jq3QG6-wD2#A?6!je05QDSIh(a%iNZ{#$5CKi>^bsB;P^3i~B_&Kj}J zBwVR;3Jn|RvqW|v@y(eV>mL%@s&yDX$TumT#X$5e1zjHG>miuf9z@@U&8Sv~2R!oz zgRI$ZP`W{5q3|~BY?NQ$o{D-HM zam3FO=Uadmd>mEqn6Ej6cDZl?HIK{Hvp;KBS7@-hS3s#BV!IHTi?nRFkd0zAd7cC-{<4L27;zwBpydb@ZRT zKb_x%|NgX6r<+TYQ34EMo$fi#XXW_gr>PLjxem3>7wp%dGTl_d@UQ3uD0l*k?m;hX=V@bAUK ze~wQ-L*+gMV~>#gpfgnN&vnl?@)>8S+{dtBMDCBAp>hZCSaR2>&k7(WuIwR9k(9r7 z;Tft0g=gqaXvI|DyS4cZXOz+&EOGx9uz`0%N9XuD*5N-sqm=eU1>AhUFHoD`b4Drd z1u~p0?l;a*aRV{x;*P=C7Mk$C8}cP_!cA7piqL(Vnk>m-z>iCOe+sqFGKxc1*Nn@{ z^g=_nnJ5kbqWybTbcyT%s@4`=Smx^}v{ClpYoA5WFNd%#5=CVA@{t;KWQ(URSCqfP zH;o&JxG~{?r60x{p=5o}qT-dl9Z+Krpq>>*vj9ZB2A`$s1%R>CE3pbPx)k{eVDBQ6 zQNUs$2N;2~%t^t=YkZ4paT{p|*g*7RjtPH|=HTtK%xS@!XX$CdA{e*QX#osPlqMG= z4O@Nm(}KMf6OB&`=0Wf#(_YHbPRg&HrKLB94K9dB+lDSk3eDN*dyGQ^+bxSnhtrrw z8^`^HN2;`g(nzVbZ=EGZgl-Hi&@awkrdfQwI0Y58@+O9EZT4|-TmzK33Ph>4r|J|r zL}>2&zCU>=trzZ4X-{R6JIIE1olYcwToU@v(%cI*nXxHby1Kc5uwUT0umL}k*bM%OQ+0o5i(dsXKV`vTCdydh6KF^)4P!y@) zi@X6HqZni9E^rsOD&Q+A)N!s0Rm{i7~RO5p}^H^o_4X=y;wHJywtQn7l;= z@lq)fvU<(y-}UNzs|zHi zkU!+7)s*hgUcE5Wu!CvN&ug-o>$h3%%c zi0q&Ubi4kyWUkkr1^LG#JzU|X-eDMWpPam^z#Gc-|K>a4b z|5LxYo|{+1pSgh2-|`INE>wIyeu1xcQK@@jugY;cvzoG`{-0 zo_xED%5XMahLxS+Z6E}HIR5Pd{cy}mn>fQ5E9Y=j{Qmq+{1X@HI`9}!T2Z*{Sgm>E zM(~p_Dm_6s)%|nuONA#G2mh$}a16r`*ZlBBMq{JLN#U&fu;9xdj@MGMxYek*%-0`n z+Lt|#-&SdwCrA_X!A0id@i&#``gsKy`FMP|(loy$gUQqUKH+XSzgl8!g@Q44;~pao z_4k69IkdRRkqPr&6&jQ?6GsfQ8QVe(vq3rPK5?Ek5>{bnSrrs8<3)2cPfVIOjqg=X z?W`xp8DVEu_yz0?ft`&+oBlPgJ9_dj-#Gl&J^T~p)ao8%dl9SaQ%k_d=L5`@lR7VZn^V;Ad z=QU8NYo3|s0j9zbVN7C(r&#TYZit&IRE9A`>m@qZrc3k&$HSMD)BKs#ZRjP&2pyM{ zbN#gfj2PkbFlyutj&Ef!d71|k&W7_q1Yt^liBW1`O5F%|$o%|`aQ!E&U;|My|8ZM> z1F(XNp1pN@dQ{HtGGWezNJzNKM3*J56NbD8 zZMrolmDx#O4TE3Cl7U_23Qt!q4h@?=?{OaJ`tOWl=Q%Knk(a5$J$0Eeih393ef=0W zm6A}`x*Z78 zNYY|dl}k!X%bCWv{GDokv)`4PpYS`~pKchE)1BiDzf)ZoSvaEWNx##LO9Co?FemoL zr77z&Wt=t9s!;{K=q0jeey1Ao^zX8s^V5D;`XQ6V<`f_l$6WJ%SGu5{GK9k2FZo>= z?mrNQ#cU)Kz2+zXPP{$$G-Ykau);0^OFjv^QrH%TA?bLue+`t{GemVQNZm6(-&RB+yQBt4IS7a~G^}kYs(Sq^k?g6f`jawef5YYf3#CsS*(79mJ?95b@UjRLd#q^{!!krf z3#M+Y%Sqx-y^St54ffaAw2%Q*5Bc$3Q1rwNMNceHy8)8x8eEVk)L@WOX_~DT$W>}G zS{yDXWXOa}@lY2*Z#0N*oa{WJl##;JEZ>9mG$nHQH1Qt|5`7ra>qxi3XKq}|m*Z6V0x3AK+P zpFK%+ii>1uT{bOLMS*<(CY;s-Y9qKHU9S^LXP8jKj*twx!RbZoq280uWwhxGP}9Y2 zgDkL+KpE2SI;>C#z+|vO!d|I_LkzUxJf~678gWu*5siN~H&tWTiWZmFWpY9x7buZo zf`r8;$ge6wa#^FOvxFc|EY2frhk`nysMoq7WvL6&Z@V3koz|{}@+Xil-6Yl05Fu-@ z77|254If|?n1tdF78le~vb%LqAPYeufMy}BaqjC-P$N28WP>_1v9O{(&0e#hS(9_y zchR%8l%TwV(<$1Gc7qLS(%5Vk$bk#R6kG?4Asj-NLy<}P>&&;OV|pj zqrt#jB4mz-;s_3#73S1wfyCVosCmZb5>AOhfEA@@=02i{g&TNjhae4a-EJb}kvE&n zrf}sKoNCRcg~a1vPGJ8Q$RljjX~8wvAV0iAO2G~-poCD22viSPgDL@#_!tUK=s~nl zc8TT}rnQxzE)-NOu|n|J#TZJeNGcp-#^em%F}Om-opalv zeVW&5K-nC~dJmOBY(`kvTxM|iCI=`w%we-UL#IH2Scr=}l1OO%Ii#V0i<5uo|>hgCu@h z3@kcoQa>d*I%YJf4^$0wZ^-SC3`zT~MyT;;f+|n2zFA-;gHl%D)nGj}hocYh08k*x z4kdb^&<#|%u|bh6lg$B@njBDR%|Q7edC8N(ubS;z5FnIhvgmQyD6P{8MJsGj@WQBL z>%c&9n`o$MGVfTJp@J9Gf!UJVzN^KkWvVWjpjZ_|MqoWqco96k)$VXZ+II`CV*-v` z3PND1h8id?$gfWPA%s;>b_ZOE9rBQyY&45HHMtn#Q5aDS4OKu}qR*LJ&MXE~bftsh zFHjo`YA5MjP`wSRTtOIO6QTS8l%0ceNzzKUfmCzTLp=$H)dWEz)R};?mrf`69K8rZ zjNR>~2^pa>r&fgGWgv41zhF_YLxOrJ?P0TuHkaO_#j#7c_)84bu*Q83Yn&OPr6_1= z%_X|VK`l!Y=u^1p5(vr&)j=WiKiHfes!3VxcCFqCD>W2|)Q8I7hZ2{`P{T+M32y8< zTy+!t2o%zQI+hTG!U|wBGbLa&P>4^2atdy{1!_Q;puPoEvw;FzV6m_wI;7S6B3caf z_o8E_C5xbLTvW`Y2F#hgxhWbeI4@DeUfyUnxJ@pL4hmyfMV$jo$KcRP&O-}@EO31f zEtEimdN5FS0%8{^bLEBwT(p|$V!iKsC^nj85JfXsq!t!_C^KLrr3|1vgvIKDqF!iC zCkWW2S~k%!V@7mIQSl<}`JB7aXnn9Ty7?2Vbp~rU6H^Mt3FX_MsvJ~p)kEzPx7#kd zT;Nz-uo;2!2coo_FiI(e(AtZ$<#ZXp* zA|Q=AZ)UL~#EiieDsB#I9j+so429jSPN!M#gu)C^@x*9_ykt=4&1i$-N?KT9Y5`*@ zMl=G7<3gQ9GnAizNBrfcvnGYVRqbyJHbp31GKG1{SMFYL?Am_EG|!Vxp< zUfe(%lw>eM7&aJc2`0m$3;q)tAzeNcv#{u3=L$vy8Vdz-p+YGs17kBm=^D`r)nZ^d zhH6Jvoy`TYH`FpQim)%0>U8R3V8pd#b)f1|@X<0b&P%y%G%&3|G;D*l5Mx11Xg5N6 zGuZY31yDCmN2_!~`9hmT6k)@I!w0Bi1LY#2jxX4x4%T&0S6ZRX>2Mj{T9=3mmID0{ znn6@)w>oUFS%ZRzxH!cQsL&P_A*sh}HY|TbEi~i# z3v7KsFYu0859=C~x`JXMqErM6VrAHW*gzIgwhijE*-a2h8KH`=O9VkV*!^1!!6*Vr zSWluUqr$jiOj<>C3QY{I@SL;yi-{Xctl zg1Rlq61Zi|H5+_Sj(H&ORlCGOl7Js@FQ1tbJ(mT%x+Y1$hgI`0PE=1xO_P9=3#t`K zz{$TaN*cN7V z{0)`Y^!MO})2M4LfB(3RS85_#hq88PWi5XlHy$e|qX{HW%*nvra{wOyuKboF(L1&OS+4L0gi?$$0Vho_y+SjDvn}u& zxsrMrW+8b}aBS16ek2*fzii@vNr=D73`o+s)?r%Y0nz3Je@3GEZy_qyX;B8AH6d-s0qE`$e~+*)%DAoQxZnKEaYx6+k)f`G|1E+0gRvH( z;!rPFh-Tn0!_+fvbBi;SuB0DJNLaRbCT-{AX z7Ynw|=RJRr+p-LYIyHElWBm`&U&!(E|G;@!rS#ykI+#>?;hU%=(R#$J(?sj*D&c*A zj=;jw*UM~6Wtj~^lV94|4IMW6CkX#xCkXp!O)=9_xoje=yc01Y;nkf8dOXu2GXsA$#i_SFG!s~K zpm}Jsxn|>#v#(#v3E9ke#J4jR5}=dLjz%Y)ZK+Je0#tH6>wbRaHKoNZQ5lb1uE*J) z`3;reSE#@f*ZWc4!?n@&SAr9Tk67|a_U6yn7V-q{qiZyKvuwmgDg%@3%?B#cuvP_> zWN+^Hdax*=@uEg`A|GF!QrF+tRfdsMI$x(~lPf5!$N|mH^xv5Kv|2cE=Kys6U{)Kx z*>$S*3D;#AQLS%uohEv@@NsZAFJ7lg-;D($O5fr-ReAuIm7b-D8J9dPSN|hcfe zg(vX%VO=Jd=4E!9N*N^C0SLQ^Yzu=FW{S^#)bwPB%jEGNu<7{{VxtCMsF9W*Fc52J_Uh z(+&DWgdLrxgJ4@^x24i8&}?)v}X%ofr#(Dn2D&MLN1C@0VVl~BOqCL6K< z(;}0K4mHgjmsrJbBbsHl3XKZ--{6EdnBH_(wvlZiA?q7A(8mS-tC6sH@n=+Ut;9Er zk#4nm&G$dW3tzCKlHl%iTz-FHFWZcf#Q`7+R?FWI&-P%qU}bEVicEi`-|6c4OCmAJ z!RTeSTLmUa+_+HDBa*LI)%YS0cvw!Ed0(^C{{ns-Ima($X>59v`4!s-*97(PLgInH zmihG@r>CGr(=rDMS{9VpNUNLlO&Ab^vb`I2Dfna@fTKPiwoX#( zci>IGPdHhr-=??x6G*=`ODru^XuHMsAPSF>G`JEx9|^3OgWXllL1_F2|JR(*{Y`<42x9u>l1*a%(tjLLH4_q{vlPUE?sie$pEy(l%PxvPTRlwegCsnnNrdg z{|;e3J2^N)hzs7Ti7uQ!-MMiG8U@0?W#w&{2bpsB{TN>-(a$t9ydDUF#Z~d!Qy=&@ z3hy%gXw{^53Ii5l8{15T^zJRR>qCFH$PPrScdNl}-0FWY5>_G5OOilY;>Zesc8(Zb zJv4Wl|7}h<&JInMfniNPu?XkbW=!zt zo!kALQK0(ddMen+i9*9anHjG%Kn=9HQBsr0z6w@Ey)wS?Xnhhyf;$KsTdkw>~x!~ju+KLXL zHHZBT>TvH@z)IP=WY}=>ZWvsC!5jROzTgGwpfOEgS)vJQ*cN#V#LZPBE}BAST<}lhAGj?!Q;ai0Bk#RUo#|H>{m1wb zwLNz>b+VGoZ@71~8KPp{?Lx=p;nZ# z2cPs84Z$MlQE2j7NhT~qbnnl$Fzg>3oHvc1^cU6S2^c4<$x!pD@N+1lyR&po1Jq+k z-e-KyUsRj3Sy19-|MeG*4Kh&bNpOQCab6Wj$@xYVzpWpZ2eqPrRUGPX!srKt%F^>@ zHsim6^qaVlhpd4gO5E-O`msh|%*bol9F<-0L*9tukEL9QGI$*+^II5v-rT&jX8gIo zXbK7$ZbTRkb25nk{4b)?Kn(m-O0LHePq(~mi#&^=FIVL?=7bh^)sj_`$e83TZp}6m z_txSrR9KW(5ZOT?<9|!!u^6MuxZzrm@cIU?jaG4dG;_xk;mnULK zvXrnb%$#hC4{T0}dWfBd;!x`91zpjH^#TE*Imf6HIWtS((3<)Xqb9Jw$bPR8)6C%Q z-ykq9QT?~jt_Fc8IH3pAk)Cbb&$bYK?ZKe~jRM&!u#c+2Hf<8v5DBZ$?Re>~1WOn_ zs%2YbHsCK3m^DUysu$535Bv;{YWj$yk~_%7KrHiERO0q z024h|M@;p+ir;!Q4}8cKL-q7L9U9gzvpN4UhcYemLmGGkDMDreGrXOIN6T8f*#tQw z$WtOSBvCNJw}irZ8hC>p4GP(g9%;@WL6R4fW%TwCg#`lH#E0M-~Z^cMxGZ-%v7Xl(4 z=K()qry9@L14&7y#!1Hty+Y-S=R2xUeAK&Lpop8naQULd<#I1}UdN1MyOx~LK2l}8JZEMFz_ElKu=!%(S=AAgWDyX^LH872D7)NcgUYyb<>&8)= ze5N~qb&8{_PkR=OSY_ilYLx)~PpvXj3>5K?#-Wm_?+k)eX=L#U=>pxG@e|^d>N{29 zG9!+zEYk-CK5fRo9H-Rb&lGTWH3s@sz30=LH26_m3wGN}^1%^a+AcH@s z2J6ZR+#3li5B|7Xhs-IfT10kGFg>kGrtA0vdBQ|?P#lnG`}&ezj&d)H5&e zBJZh&w&VrO=&3FNaw0^|h>`*Uz2Ij@B@;Kd8d@I+q|2~y*w3s$GbB`VP+7YGTr%7; zwow8z2BS@IEviN6U@-6oFKl2Sm;<->*=B-#Lp9WAen1o10nZZ?=*^TUc(WQxeesp< z=+^weeE!>Ns9-^0TKxCSkTucfm#Vc!riFoS!Xc)exs>*OHMC=4pu50!BX`mmj$fAW z?V}vyn_zLftJOlqBYQPL?=A}bi@#Y7wO<^VD*VYJ!6ITtnJtY1-;VLTMUG-eff;gWgxJR&ry&X^2Qs!>aTgO+SFnXD$&(QiuvomDyz74NFnfoNd_20XhAopU5Q8=%5j zN;*UDEej;_!ccZ#u#mQ>?h~`R3XikRgutN^fe{^KGa0Mafe;wcK|x@qMBpHqKz=u< z!sG90(VW?HS~8jvmK@fU$KNxf(fskcby*pKN9;*DF<B9L93r7~t z4y})}y4|aTl@qV_2P}idd zO4<@w6bY+9^N|`FEL)BGjDnQOuH{oCURXI`ar>?9_^~yppxu~&2thj_cP!qX^B)G5 z@}3%0&a+uCBIj{6sGI?u1W4+b>9-m6-@;VwMr+U(#J^pG?$h6_K|`fk+XD|I@t@UD zhDzT_%zpwW|9BJr$icwLB>smQ%23Hvi-tU5xZ-Ppq$K_XV2OeH}`HRD3(n7)|qiE67%snY?o8IDvbQvbM*#bE$AT631 z@`>5t{~*1X5mI=RpImsB(?myVMjKOtLp0Dk8b"q{rtOGfIEC!>?2+1kzdIKb? zwBjT-I-}VIS%_T5aP|$zcxKURAv1*)vJXL$J-Z!p`B;Ev9b`@st>Nq&21rq8ha^rq zNGSt}f2=yE*=@7qq*9Pg%Oqu@i-8fR-_RvT$49eo+}A1ipvGavsX}ySt_g6&J-wTMe}S|E#@PH%QXUOC9IVYZ4coz`J-K(0YiE9IbrEOwCW z#;McV^pMpJ()gI&dPr_))#>e!1kM$L%w`{RDKRkGX%4y=7-^S(jWgtK1&aPznW%{bNYd}ksQJd!hd}V$5*x9 znNthTAcUV^qdtK-Q12VwqM@R_%c_TVyMmwB;zto-J%uhj7p(Koo}jfy1rxT_MHin9 zR!74d`|HJzz}U&@4g7^BH}?AzBbuaGaUx9K<${c=ek;CQ&I zrvkiH1sDyU7HksbiJN%H1We4uO z2A|^%qL$w*fDg0fv&`UFd zFA97uS!`%>*21*LGA+&N2w(>=exJmf3}$)$QAyuWOSErh&|j@7jD?OYnw2UvXGbM- zox-+|xo%zySzZp#h=j$n!B8MQUrVSJlY&s;>|i}kxSvI%U`Kkhc3+IaG+WY{S(N4= zVirLj38CYe!3<6qp~S~@mEN93bZz*;DrbWFJnmb${8?dYl<~SyaXcRZf=Lmxg7Bnc zF58~IZf#pMsr4AWkQdSX&dMQNEu`@UpNoVC8Koj}XKIxSe7||Y%t&~J)=JODB1j`& zN-kc>T)=HX#Rmd#-Kg<$4Z<&unK_bPZ$)%0ei_oflh;_>=d|afCGHfI@>ybCv`_DE z&2%@YObMJF&}Uif!~@TdeK3GKTs0+qRLliSD^XQiwa~=p=NM7_gu*GpHFn0Zr%JrS zv@n*^Ge4M7)o@pG%JjdE9bY^>E zi(sZtddL;glgxgn1;KKTx7J2t!2;UixEmX8G>v{f(+Vt4q zF-(u-yXm$a9`)d3gAjd;H5rOk~Ql)yZUjt?g*U=_OLr@F+lLO(;YEezu=*9HdxnPMO~g3+tRDx+j(E$GWN zRYERPfh4*szx8Tg2k=RO1>!XCrJ|kv{e6Y*Y%^I0Au%KzkoIBdSfw&LaZ5WVEEKs1 zl*CBy!&p`km_w5gJo;Lfz&(QDMbzMM(8Az&wJIFic^`;S?pQH3w^hK&cU~4NGr@%) z1z+GicogZC!EDTTg#FB{gYD-gx12(e2L?-6C~Q6OxO~mhU@|uo?OYlhl2`>cY&%u_ z7J9BY2+z4bVW%CtljI7=kd`3bmSqQzsy!S26C4aRI`I@S!=$JUL)7P#611%vDA6DC zj_W#0tgJd*T}Gpb>RhL)!w}IyZR85w;S=i8-HyzB`1Mx=^F({-i>`LiBkW8WJl(3q zgY}0uR>G5^)*+e(75yB1fq%3v^}gwt^$6`5QkNduk~drv>Qd*M!GaOzJG?G+z5q@R zZCN&%A)_b|N-ql*@u)6!`U~r#vVt}JQ1;Q_4PgU|Zr`Fc>HJ$j@7?nU^8iMUQdx9p z^OC}eRcUG6<3V`1^%E;$g_h>1O(4-3@)+eb+ZC_D@h6}qe3H*TM#1eBj)?@hx7Zfk zmpg$Pt_ijjB0#arWi%lCkSv15XafE1GzhefKn0p2Ftd+utHG_4ogW9gqleB0C-6N5 zDo-m5MdaB|K;nk=@Fj?@r7Uu0K(dyq{{~Rx%fNCpc}YT(kn1)7U!35;c*4G#OvyO5 z1y4yFz@Vgc{?-cMQAMeUJe--u_E@t#zc0cMXLyHz)?8notkR1-o0(s!7kM^=k&$OJ zl_`6J?LmSqKvDln@IoXCg|v#)v?ue_f`rh74gRkgD!6LABqH4 zAPT>;V`o3AGyUmC@Iy^R%v)jUlB@>Jp||sXz8PF5TxQ9_u}#WFrbX6)u$D1iszafr!NR1_EA{hX z$A5$whaT&kWLt<(j>My}4fE%!z+P9v#^dqA-hMa|8{|KZYBtV~kL;@uXsIMnmRhQx zMUC@c=7om!fG@@^LhSDi^c0%2&4kc~_0ZA8{I4r@NEbRQVdL?jVM0^UnkKNLXy0jE zy-Izhef_=40r-aXLQgi&*KmTKhdB(~Cv>1~{%npf zsYgE`%g{BYcPSs$qaT`&+@0T*=gaER56CiHA_Ip%Aa8|{@CW2qfmwXFj%AicJ!}gz zqknbEza`YGuhcT~&?u2@CR$dnK6<}P{@BP43b}WbNMjMw<%exyNT}B>e;R*peJbuA z7-xjI&Go6cpX;7)6Bn2kX8Jc2=8sEM|1H#Qe!hhlYByjN2M1yc7QzzN zkZtZ$@XpgHe^I`Ruib#0AVl_3XwP(M8d$W{A+A`Qk9eUAJ9G)gIC^QmUof!EB=oyy zS$+oJr2%?lS$i+~PUEAw+AJ1BUX zp~e&5H-wh0%720TKkR*XcvMyTzxRUFi_|2vWD*FSgt=4i5Tq%cP{e|Y%2XksfQaBK zQY}Fw)56IFX#y5hifv>q6xY7Gub)!*lwb0>4=X3Bo|d4A8ce}sK@ zyt((B^PacA=RHliL2Q);A;Y%e;DcMl*9_PV9mw%*HFu;|FaWzH9WZ8gMUp1Dj3*Y2 zuO-r|gA<8)>VZ;u7goQ~eKhyb9;7Ja)(%`5pZU1v9P;6h9gtVuQDc#x?ZDOYDX{`m z%lkTTwM0dxmgzget#F2Kdv?_X!)rmY zHtGav*^#*4sF^7@??_nB&U7FrpWfVA`Wq=8STjZWRHSyvoY193Y!XVxK0&3L2I`XS zOCml_uHhXyxhgsu$)y1%_WzKwja$}|_RrS*LS|XEw~9afc+EYMd|5}MP5D%B{gRH% zrjV~PO&yKasZ@EgEOHqs=FRnen7!yN-F}?B{DnrM7~&yDwSxe2uES zCpI8}9p9Fx*JyK#$*8y5b|F{(p=PjhN-W<9;CUQi{7B6Z@_AW)yHuzK&FrM}K%^E= zx4-*h&ArOmodnVwG7nwSRn014&0N98T%x!0W+%4IC;rsiHD!|gH}s2c=1V&H zD^tsn1@F|{C;!-qX=`%wvNDh;#u1|1oaAF1S?L+hlg9;I9}#iQsI=3PxMq=@__FtF zFgrQ8vmlI2Y1@BTGgPsOuety0Om==)Gd#5dQ`+{&YtC23iWS(ncyMR3=XlN1Minks zW~M9q`H7m_Qp*~&>beHBgdS%>kX-Q*RAWVFt{OK}n4)S(Hzhz~n+jd-Oq(+K$px<`it2Sw6m)P^+;q~y+R-$ym2QdjcrpKJ6PguE^W zYRR3t@F@AnuQi{ylWerCemX=_=-cZ%Q`Ig!QXbYWD7BZy(6SZ8TzY#iK|vgbvVZ6q ze61bvy;Z|@JL_jdB%8icC{Ep4c^8g<_b!}0=pMtrJ?(f-x7JE;?KFaOnp4TZINhk- zO18JXt8=`4SrB=oY7qd$|8gZHzG0GI-GvM^2d$}PnQpB!2Zt#;#0pHeP@zN(mZVl- zjXy4yWnPJPAmIjElTm}_6{J=JoKkYJC0M4sDArBD`Ot!6RES4o<_`to1OAadEBTi6JavX zx+IU=kuD>H&$p6Ep3#mxs8b`F$L&ZckLi)LoJ{|BO&4hi?W%q%z;zcxaFvM8ge;;Az|HdmBHY7*3K;a=hi&bRIn~AbvzdJfoLAl|(#? zG{xs$8pM$a!}0~uHH3UU^qz_A=V=u2jUa^cFAr8L7mF>@vAt=A@FrP0AwK=c^aWRR ziLaU!94RS2p(ss=mXL3*2u@Vyi?5kR`ttceKBa;|!4kWXMfkk`;+tfT$mXkpOQi^9 zl}8CukSW@AS3Zwef0-S8ReFdsl+9N^AQoi`R-4a_KdP`HX9jq5hN?LIw*+-u*p@-# z)}!~_RZ3R?(XPEC!eh$ymwc{VE&RcyZKNL?gl&Z2*GB8y{63#6*x&QHqxvwPJ8HDS z9Mu~ltuty@h2Gi>v_eOrw14v80=IuyS>9Yg{(ML9u%QA?EFG#2 zzN*B<3M{eo-nw8!My+p`)t98!GHAfd4gD3cV{=c1>p?H&&tlVTX6UgE2oK&BU$ZX$ zxqytW34WVef#Ebe2nYCex(c5LgP)~VF!b)#biKozP8V`4Az9#4jR9@YcEA?Te6<;%hHuAja)$;mo+@+_~GDxtyp({einL&H* z5P~OVuh=wOG*$6j&_cS$f^6v`TQ9X2#Gs2Y8kg<-hu}!%WwD7wg*|@=_D-#kO#Htm zR%l54x1-G`hC>B7`0J*85_lol-p~qN%6~>|fN4LvSoUJ@mDI9K``PMzxx0Wp(|%Og z^-^$IY6S!Bycuctz{|lPPR|lsW#|Q7#h9m;_?n@&_XbZ_a_t|3*UH_ylMnwGoROyL zm9GWoE6zq$yT2ZsKx_G54_2ktGIZ9TuCrN8)xkdnZ_1P&oOU$$aQ4L|mDlp~@Txuv zzL05mhbrwE)sl_-8}{$8ztZgAS=gO?|7mbav&~rC`mJX}S&LIxow9xinSJi*Zlqw- z?yk*_VCBdt?}m}`*X_ya&w@kbIo(O|=RvhaYbe+H?&Q>n(>>+c-O0h_o4T)9QuT7Hv( zcfNrq!#8Z;c|v(fXo~IK$$wsW12D`7q9tj-mY#9>``|2D`HN73ZA2;DL*Gz?I7!dy zi;d`;V!G>_V#LbK;C#}ZZ;F}rx}$B+hKAbl>4B7n*q)fHe+oXQ$UTx2AWVBN`8haF zX(PU7+WXDVL5D2&AbtOZ@FJxaRl&~5j<@IVer27(4jQ4G0u|^En)rZ!2jh}5M1+-G zXXF%LGxIj22ifu~;>?r^EE=M_ILJBA!CG(XP7-DB{4MB8Eo3h2W z$nGAG-xGRBR_2L4N_KRy_?iKq*Mqx?lnMz<^ssF? zClx9hnXV9HeHj4HoE>^2wX6Z#&K%pTvtxUVZUt(@%oO2aLm2Umz}9P8h2|(Piv6R> z0inTOycd5Ei!et#yLD)vq`W1*Pm=fp@pZ>;cTd6Q=GWVX`lgmoQuuV5@_Urf_SEvp z_NAVJ7SQ$~;B0?EYK0_#&c+Jp&?o1FE=(;?IUwL(ng;iV9YgYI5%~R1m(XtI8j%=m7*!>_ zNtVVFGi^wquY1f>l(ozxc5@FgKd@=JvQ{X`M_T4zR`plbi?65CU0yxOp&5H-rj|GG zU>ZkI>>%Iou(@mKU0L4AXsU1jNvgpGX=+h5Fp2FnM)WFvC)0C1d6<8Qb~xb%*cjxQ zp8S}YHw#0Zo5}C@E5Ci%jK#&`A( z-J+aRh_||DZQ7xFVA zagd19>@;g$w;g9%*l?JI)9G`#%>kd&;ZPm=8Ijpbk(EDLrth7SQl?)TRZAi2 zM?{9{vxS_vJJN%8ft{&%qeyEy;4EZuiB2Stiz!(+L3MsO=SfY9I9Q!6bW9@-=yY{b8}8cMNbKpmQ)%lgnE zhSdrYtBkxmtYgJ^m!F<@WWlJ=lk!hG!ap#U#Z3;s#icntZVL|i(QsaiPt$B3tJR`u zc8A3m;2d-3D#bX~$zR0EJl^2G54S)8M z=cCi9{QRz=dWkzUoWfK{aAK$pIdM_QNo(e9d}XyF-;54o>82nEKQ~llEWQXWgT>Ma zvac*OUKwT*zXXbSc&Eo za{9thYqE0F>T}4ci$arRSFwSOm8L{360(K3=a4(0ZOY4kbBuoyF{Zps=QJwYCNR#* z%+Sox0eLZcK`rdUVs2qw7KdhY;CLm6%Wm`H$s4db12&(}VfEt}D;L+-oTZq)t}iy| zYh~i@xN34j0|{;`X8I~EqzI2!t|=A-H6uF{7vLq>`LvF~fnq^luX2OnU3ac7;rhz{ z{M+8u#qwK?cJHKOv%?k*|q6^!^hUS~-EJ*F3mSG86ZtkbazWSqW#d!|ir!J}XYxvIT73fFD7S z+u`tgG&obY*`XWdoTV6(CzKeOJY7e3EQPEGKTtRJ7QY1tX?ZkVfpe8&ylv5o@m4U%H|U*f){A@GvwCrl3+N2R&qWk7 zs_?=Din_~n^x{Uy+Kcn^`X!;)}ct{r8kSxaB<^(iEBO~;J;bQJ3$Y(}&{VstEV^{XDwlczWQr@lOdtWcE zkA9qQhg0_8K5-DA*WvM)J$|3n?Q{4wo6T#rQl3@QBjd6bVk~>E5z98|9XzD7>=~V9 z0M5|dDWaK?Wwi-3b(VeCiqF<0vFk%u z$U7Sm;LnM&0s)ry=2Lugd$Zv(dc}ytRw9ehI^T*Vz7g=j*2Fc+F^XYgl*5(;B{e3o zSx~H>H3y&sLA!5s+I`iCc7LO^(=WcM3Ly{BvXtimnwJXQ8hYt27nxnXxs7~A$L?g2D)7b?@=*M@e; z?oy*P|6(YH$hAaXRBALr&Gp?`XpI@6iKU#84lI4ACkmr8Y_2wit8*A+z>` zUYFnQ!%e`OVlgI!hfs{F1d6llX$D}~H2?j5p^zf=6^La(?J6C$UsKShJLP`bA96@a z`z&?c>FT1V>_{&~>@Bmx#p0VJN$|v0Qp}V2Nl)7!3q>={K~8!+6eT@tLTtW_ZKSjb z{Y$nPpYlX#ucV9-KC_2!d4NdZ;k|{YRk} zB*iS0AjzpeO?=H}Z_WM4jh}`tO|8JD#((=Xv_+XHR$x=(r#=haD5KV#&qJ@L)}oV7 z0?!8N^a#?>K6b$UogMyV0 z+}nzLcwx8`8QdnUHMf^rEacmZ!g*wQn{Y`p7yjDbCVWSR_X9{x+pr>yr5)F|G9}G) zL?_>Q{dw>iRKp|5wMuw+YGVcDeI?wML7Hw24zEa3wi@r}Un z<$=d9B?}8~n=RMtoFe_%$lGMY0scPK8Nea(R-50CgZ|A{o6D`L9*bSG`^c!*SKnEb zwTPFn@bl3IG)4$1hQ!^O`_OYbrSx!r9)kir!yrn%*tyb_0xI=qrX|D+h)Ba^V1D7=MzTjG%4v6-X|XhAev);b^uTJ zSX7_OqB^WLhs9$H;G#ko(sdd}JYJ7Yvzzr4UCvTe?#SjZVEAzlt0;B<)X{hw-KSFb z<^V2rfX}4vsR93q)P1YB@^n8gb!`T6ELslaMvh5cZ=$vgH?mT)zK^qbAm<8|I_%9v z(e!qum7zQpKk592@{J5b`($~>r^11pPv{y$u=zj%!Hk0VuOxyjmdU_NGEH5xRlaE; zSv2hKNs^9y(!y^T64uU!g{N6M1?KR>A>m%lT&k6t_-Q2DSKZL#M)Ncz?4hF=(n$zI ze~ST3S2El}jXYo(jQmkGJUnaR@$_!=Ox#H9Nl$==m7ip2jboU!@EOrWk#c&sx(=%m zC(TJT87DXBoLr`JQshZi6aPDB_<;O3T|_?}$Q4a<2UNG;Yqz-l0h<-cZ`EzFc(CjP z*4}PU%yZ-{#S*L1AY(3kl-~DW(Pye={~E~E4A7Yrek4j^M&n+gx1y_=q>@E>VST=) zd{9!=h$2o9FN`Z@&znj zyJ}X=xE9D_(WlpPmSSSpf3R_SZH0~{l0>~>df64Uy>K}rcy(y|>W(-TbGsuvUTHm8 zU{yxxyD`ZscKPf~j>$!X1;JZ1*eH03UH{kOOM~F89&8l6px$_*7!$nkU?zCU)eDs* zQH*w6M`#{J=o0B7j>`oiE*b54;`9J$QZ}*MHUnb!GRN};9nXY0p9njLtEH$V??N`r z3>T2Xi^Hw((rm@`Rn(xLxsaLrY=yX8mp^JmwjDa6$91x?;N3Zs*=n)DVjWKs@R>Y6w|4xWkyr}vfla0 zW!#icC}XBvvXYVt=#shYKhdS<^hOc^(+VAfo67`csw*=p)0=v=T6}3xrU%fG)J*Za zhGI;a4m4uJ$wV>QbFNHs7>yx}#R1w3n;S)JGHTOnNo=S#<%o1YBcWgKCh{2_ph zm*v*wMr=>%&9=aohJd|$xe?p%48@o!A6RbmSwAO>vGAc88lsq<;+X!&68EobAaPfq zc`9+2m2)%h@LB>kvo~O~c)d2&>eoD~8GmaQw;55oMGw<+mSQ4zL%C7pTI&1s7o*EG zdRSP_qX$4|uJ)4h|3u~_y_JN_-K*oUqg;@=gN?Y*DN#-50*f4uHsV58Lop_ECmM0V zlq|-$aDa0`Mkg35+eB0{3S8SnE8Kh+h|B{i^c)$E+&%Z1tvHQ;)P?Z4U50Qpwcmv= zmCZwp!ZuKEvJ79Su-$r7_(Glw!P9Jc)DWZCnGF@@-y9wxPak3wJ7=;Oiy#Kl-dG4* z6N@gfDH*Z**&^5YmRrKVmy}zE2<%R7P`FKe&C;5;4B?wnQYs|#pmoLy%}|h^Bb`!% zWvNH34)0cWr_{i$Jnd+~#5NX8a_)SrlytbO{W+<9OoDtmr2%>u5&DRegjbP6Yr|bq zYZ)@BqZ@cGV4rm`cG-kyFzfJgjZ^-32+yFNpy0&}s{FwazO=mb_V5n*-$Quv^e3?x zn{4=W2%l`A#pzMPBFBU#*?dxlZ#Pzlk7vr9Ub`+FQp(K&Vk~nyNO+Tk62JD&Fb-lI zCVVtzPA}JKB{skhrd)7W_%d0UDAr{gj4lx0FyWbKCaZ$sVQI?x(v@8j3eQVZ_69@Q z(fPG!oh6+`|5e@G3O`-2^Q{W7>cZjkQtLCRIn}I-Rk_2^NTrMlu}FA9Y6YeW_Gs9q z)Eg_DLorUs=_;INbJOB{@>w*ztWgWom4}R#DYX2JVP9%lgLqz%j^r%16q%6ZBB>(b zrP3RuWF8V7Y&z^Hg_|OrubH`UzET(7E`805ve~dN#G*_<-!gLnrB$eaW&p|rH2t@D z;iho0taMgIDWvDBuv>zAh_9J^bXLhPn<2K1E3gZe%FzaMx&NMUSOy})c0kZm`o(04VZKbPmB5^x zr;$>@AP$TFui`LaS9qzsRpoZ-ZVEF+6k;kDg$M2p*T_$*#N9tMr>$6uNx^oNO94u= zwHN6*%_b>K>AwLkn^Im)+zan;@u~6CP!U9*1HDGi4Y%Z7AY6)m=k4wX%W;a_+cSo_Bs}zgd=2(nz z+mkw?evp91Z5|7c+W?&*Fu@||TE=nrBMqX&ldE+)4z(5@&@6fiBC+3MM)wLSQv zN6%&C(9_`;4g?dc>w+3e%7 zLrChkwsL;8urgfZEsumNCAk-}nDLr9!sN+&dYdME0kZMWp9{w&8F^O2$mnB3xjrw1 zt&)5mprnf4*U54W)1GLFVv2sSh)onU9a)6nc3|O@WHE9)i#zornjr3F8Hi7m> zaTSnsC9PK}kGG|VnL}dwvMb`H8V>x#`;XwnfCs|k<6rfUER&@BDejGCUdr@?Gj`eH zCkICUAxQ@sNL0j+x=c>5IvdJz{hC!4xm-eKEF(=vCo50|Lhcsm=^5hn8F0)bNxNU! zJd$}L>8A$bc9VY)s7s#ppJ`3Heze0yR4v+1X>T`>S61xY^r9A1V3CDffyFmM?di72 z)tREH*KLt&lra=mVqTVo?W2V^$(G`~?UCuSGDG-i)aO|`(ZmMWq08~xwa7$Caf@|X zPKv+V`MFQ0?R?$Gdv<>A(;Mg|J(>2X zNa&3IdSL@$g>#<oC%+w}aciHd7+wn#p4vM%Q*I(HwRfQ~USH^vHo`^2H9L zYkSpDuJqzaSu;7{FuJz4g>ux|jc{;e2RS%P&>x0uG3{wWt}{CG1Buq`-0@^!*7zSc z7siiX4*RIoi|w*7``K6aYsx+1YbM0?4r0DC@>-e-PfhL8lU#FXNiXFwW36_y`NTkP z9y#;W?fuD_S&{R}(Akl8sZAO5;qwMe1iab0y*Fk@-dFx8LgJ%?nl(d}H^tYi+kbSB zMV`o|X(}*0KTB6(oj2l6tzhWf7wI~eO*Sulw^)m5ZF?sd5!BA5wWjoffPSzD=O=P<1c076Z%wIuvEIuW zB0OqNq-j{07}3bSnbjTQfvU*V*79{uV~j1g;wgj$POiK2om`w}I=SvnLtm-xR?^lJ z;+#=;|J6Wes=If{_v(GyVeFf{4e;n~2_O99aQk@0(#YUu@)4&|cPHtcJBT?4=q`Ei z$HVsckeedQn#pgVf2mpfiw%X3PW-4jX+QkP+3}ZFMsAYgkF1Q;N^O=$Ildn|jf(9N z>QlvjTBpSQI@i!+Mv2WLB{C}Z`Fd-kvn%%R*G4AG1sdauu7rS=U!$@& zq$|r5@5y=5VzT76$o+~_6WU3xnjIm&rmJQp$n~WW%w@b^&{ycr@6v%_qawO;R-VzQ zPdBHlz*fx`R!2Iul)b2dgIEL*E7R3rAlMC;iyML1l&(THl|CJc?CMcl)=bZyvBX)8 zNB|amtQX#ZW(oJ)IueO1n}u)uRFzYaNMB`__?p?U%^JBj8X1|U!h2Cvh^MPCt2T08 zY6XK0dr(JM>>+m=;v1pQH5*~WKGe7kdym3QV8g7#U&-Ohh`uA}G>Jsye`;h^s|V+_ z6-zR^bwXoyOF|7Q9Bln&2AC}3$ndSaKC(?Nagmb`sD^C*KpfO;SQ)UFIf#+YuSA z#KhN3#6qrk-OfmBLk)w-yp|3c(-9GV5*-q{7b0^AB&Rn5Jwt(tA|wCa#ogYH`y;!! z$HUWp`5hNIW`1~1Td_P7oFgvo@KBFAybMs8(4_yi@xe$?ZatKDsKroYhnfxLA!_)c zNVk@9pP|f-D#>xz=dDP)HId$QSxim6CBUz-%d0T zl=?R>dG?pv`^cB--MhF^_ht;`X_sE{NNZVMGSukbN?UVhblp%Mn?8FWvRsyLL)TJW z+mK{AmYzBCbmTN{ZX9ZKVHL@8EbX#DNA~ieoDb*^Lw1^oY(^JWm}t$#%#0~Lhd?%_ z0%J+Z{CGK;csMdmc};AenblW>H%TVOTOWyRm6Z2{k4A-=qIW`UfLlHBO|nT+_Xl{? zzjH|t{L7{3+F>45t}uGvE7Fx^9@Y9nE1+?Wx60jU=GD3zDZ)2fcYFbIXB*g?E54V$WN~k zWbmhvYcjc)y`M%_D9wkVwS=)@`XLE#k}%_&KZ{%=E1iUoM*VnIXP?+W9LEFxRZ@z@ zYRs41_EluE(qDYdd`a;zQua0Co5mH`nb||rRe0i5}tt=X9i8QZ5i% zHEa$1Q@XlTCW}QhlXOb(<}Jv>$9GI1+bXL|N$^3?4yT8*%*xzh%yY$e{5^6^lI|d( z2P1_%xpFJ*M?!+Be3E^SMVgb&TY^2v^N*nv3wP4P<=a&`*B#-jA2!wU$ zkzw3(J@U^;ZENXG-XX){@~?C<92>^RX0H!pzDxQ&+5cFii}VO7IT+Dz>ewq%Go$l1Wz0taKHIm-wbR!UZ(^a6FpMxQB@@;w4NzTlOb|!nDj+e^k4Chkac6gF| z+!VAL&V$(72S*>5`wiz_s#Gk-yi|wbTd3V>WO0;pO?2()2SL|Eb>M~7}46Y5Osq=%XV+fNv_ zIPxP2{z?)2@DTw2*9w4NY5;#h5;$rwGbSRKjk9reRJ6OK+(TPzuu*hX20P<_xA>Z^ z%3x>w-!p=r@t;!5;G+NjUn(1}z1fTq=;-;;W%(Jb>Xl=nH)RTePLGMsQ%;KAW+Bjr z!kZ-P;xCVlmdVO#;iEAGI!izJTWo-jsaH>k9+H$_#JVgF>X1LIIaxd@YE#Z0DG-$f zL%)n5^5p36QfslvqK76&tx7?f3h|+pQJVpdfz)!kKC&oV>~#`ta^=+MQhE4DZp11m z&_s;FT(dTk$1~4Pi{b*ZOGa`lcA;2~S+S8LxfMfsX2mip{lyBF2vQ~t^ zda`OH4`c>h6rClJ4)r^)BA;B0yT#gF67588%G+5+v`eCSEzIQ>v&~KxG2CJlCkv-{wklr(9AAdq6w>6RW&kd-QEJyCjXgsWcKXnIppzPJG=i6ceS_t-AH2$ zd#TQxGb8yF!y9gd5f|ULv+#cvkD9yp_94ZU*kt~V=YPMes@!~(aX8>hlAMKtHNI%8 z|7p?LyK8UH=IfvTAJIiydR^p-%6@5q=&jLJ(Zpm|mr=%{*1{wYSf=olZsFe1{RNB= zvv9AA7B1sZ>w=_(%jVPS=0t0iNuvah%N+lB;f>(u?w%W+m!IKVVO4ap>=|VoSFP9k zA=cvKs_Pn+4W=ubm^OP!SuJ!*7+0+mU$b%5>QTmVRWx18$#K<|MqSyMt^ylZt-Ln6 zu%)~QHB!e__33IP$5qcZ0ufJFf$>VDl|cP{OA&v3fD>wHmhWAPbt3-g_{;uD(kMQL z>TqMUM*d+Gk3PN=OEG_Wd=!s9-Uf~6Qnw7SSoD$M+oYQ?swp1L#!v|RPhJ?+$ikbW zei4bit5o8;(Qh)is(s0D8 zXs9@SR0Sw3k+7;QKYFU!>gdEw@$&rD(N)TwV#k=;+#$RX@R+qG+FDj(!bfAg{E3c- z*Z_~0zr8hjQc~^{>+(6M+oQvkz2a*YD&IGn)ZGzXmZrkF)zQhy;WQQEpHxRD7(f_8 z<)lVtVgs4iM@FZz8kCd0+6^%%eL`J!BQ^1+YPfb>S z6^k-?{c<#y*N-4PR9-UxWb&Hf+ta~l5F5)G6t>E%{5+vUEMgvX9*>x(grhe%YhC+k zf3}_DtoSRn(b{HGrCvA9IxAV>`L>BT;`fc3new>vcvxyZkB6mbm>KQ<6l6k(Glr%A zYM?U@OShfBqmQ&o==m)vJ-2O|Bmpj6!2XxJqkobmTu0@O&K08O5qkIP&*SMpZCi9y zGigr)KBI)P6I07Ru@ku%>Dh*&CbI9}D@%m(7YpTSYLEcNh)osf5j&^uCLQx-BIX(0 zm8Lg#2h0jhEv08AXvkF5O%6YVK+F8iqn*iY&!eTd^)<=e?^9?*m&X77Jo0V9gG0!& z-O;Gjk$k%(swbMyIbRS2CT>6Ly+@V*R@|O^2 zvgoE=K9kTw5-~h6DZNV}ql(vbCi|X^PBhtV0nHn5IJ~Za$L970JPxxRN8mUEZq?^A zJL1#tt6R|AgmV(CTEOPUS>$G$#f5t#tT_KO;IsP!IK$c&S3f$jRWjM#X4U6+2W+ZW z!~e0h1E+g9oEi>Vu(+LmGX3*v-0!-#`ma)P4zO;r=*8&NTwuwn%TM4uy_ceGOaZ6Q z<@0(~2M!UzMs%0k6|gx}6%T%g+3AfR^PO1Oya=zXezVn#Gfizii|X>II5OX@`t9gt zz!5K*MGi_Pj8;+I>9U%w7)s+9_JG~$w7D&QXTa*Qsqs-iN1v5)0VMk^8(J3w-H z+*&ia>pP?~X7wPYCXn8%SzR7%Y{qH-R=dZK9nMaRraEkz-)V{Oe|P7C=EY{8$L7IC zXPlnmu{kuShTZkJ48ZAEHJi`lu*bKT?K&tGIdRB^3#VJyahj3c=XK%s2af|sxSIWb z?9z{KfB9ixkpm*>_%yJ{0g$+#-iSb}l=L5Ln>TvM;wySBUp~0Fm(5`Zsd2K4UkyMC z93Ge3qIxZUdX|^VZn4K#9f4#O<+#k}WMM2XzHMx6wX`A!U$kBTI$_$SS5;0uf6U~o za>$}1wX`)mwXD6a7)-90?<^?Fjua(DAF}df^lTGkO10p)GDxM*W_6hH7r0<|25^jc z!0V20@3WQ)q|fd5c`Z2j2Few%xg2Jn=2ca%)1mqTK60|(hA#0Ab!5F%|I z?EpT9-D5>Dv(Fz;Z8(b@i>F^*lTfW3kS*ljUqH1iIY1vCw9ZWGzl^puS-j8{x7mkF zCp+^zS_QI z_MCMJ+3;PozsawvcFk|M111iY3s^i>n=cTsxN$>~&*2HgS9K!5L$iSyPAiW2!gr*c**K@)NW_L znJIp*J)Y9~9kSt{K=$e&ZoC6_TBK6F=fgqJv4X7G~2i^(_ zW2bNkHTu0^xCy?$JTWB21ODkqGl-{OexZ&kZZDsp%% z4wSK}KGkM*X)X=djM-dX+|6LO2AuI@qc(gk72{TIFT2hJ$T)$=0&O#w|?M;2)E0N!;0Xi ztn}^yCob8-Ra?;a!dOC`++K^zhX1K{H;e)94{@5kPFxfN)I1K&%PoCzcF4Fv=G#Y3 zsJWo3-&FVE8g=C^($}O}p+Ig8Ud!*ascu}4;CA_ZE{{`#JUaaG>Dy`{g8^J?;)ObS zwSe2^_j)}z;>&|WJ3s>@n!UQ$by-|yT&xgK{T7SOWyYa0e%J$--xk2N8FrPZ6E<{> z7yoW8>_>K}Ub6k2s5uu@?s|*gjkY8MO||_8tD3%6tWd^U^Q z;)S`g^O&e8`|Vhy#8H>8d#)TDvZiW`ExTkI{9F#Y*%JC?%7GL)+-;riy5Odr4#*UY z8?NEATHPL;mW2=ztVS%Pa??_bQ?n56Ic-i2H)KFI5naI71p>H3O!Wus_ISt3VOvZ# zkK1g+6&Wy20h^{dJU)bFc8?1RX~SJc@x!il(6byM{p7du+G$1EL6X@BR>+niwTcNw z9+uDU4d6OKo5yQM!0NSGAz_*wajP@F=m9F2UN>yLk2*7iTR3CXZF5>3m@-ij23u7R z**>+dYy9Y&>+Y8d{T8T{59;TFiG`~+<7OVG9h7ld)c{%a&o%k+X{Perf#q?jXxL_Up{W2OOHfI*dL8ja+Ag>(C$3w}0+y8A zR;%WO3KX!!;!ZMPuvOG71TVNF&};R&Y${@7ha1L$-aY3-?_s&PX63xQEPi;$+Rf4m z+?|t!D`uBLt+ESZAhmQ3Qu(M_`FW7iHm~|^rtcg8#<9ezS@4} zPPN=B1c|iMP%Ag$HP}H=6XRYSq-^&1T!^(@Jmf9Per+5LN)nDN2cryuVh#cIrD|Mu z!np!e<7!9L&Bq^u>V%^v#_Epzh1E0#s>=#!Rl*Mf#a+s-{}30hg7I!F(RK%Yq>jx@h+~y?#G- zlTq3onnQzMrxkV$q6$PXfbk-(#HoVtdRBylZZ(cr5P2HA!|(7S!nN3uFLAgnE*0#e zhYq?dpn#iuv*H|3T@(v72S6UcvtaSeQPQsr23tsUSfK7sbPeMWyUlEOVqA-$$79uS zqOHw>{ms;j@Sr~X1%K4ICz2gGSY+^RImFUXItSsBzAXo0@bNriEHb+T7&p1WNS6yb z`QgA{r;0J6n_$G6P&20+ z_g$Jjh+z;aVPuDtm=oDZkI$)U81U+Yv+Ph+A6dS!b~4qlY+(IFJxQD<)sM5jod|Gk zu<;(d6MCcK@?zYf}kW8l+ZnWb;HaK>;VVH3TtP_bNrymiqAM1hKR!4v)JH&yd+3UuL8OFut z0EQ^)hXNyU!mNCVxT&XKIX~@(Ed~R#NjG)Sak)R8?3%DsH zT9CX5aCcU0C$pLtdi)j$q66bg9|m0*CYvo5jDl4!l1@IdXliXt|jix=Bqe+>~jk%SauT!W+>o#Mgtp4(}4`Qpe((x5RrR6PNb3u?l4 zCz#^=Di`QNORrADFA3Kd$W zk!f!|d^TCH)%9wDI~B_v4z6m*P~oO$FCZdZ_d%AB9>#?u&_Fr_MLvXOP;*>F8^=W` z$m095GsrOGl|wQushXLCS}r;`>+`{hd{YjDsKwziV=)4E+_i#f6)?)?bRm+r;>Hyh zlC2K2U-cl!TV98di>8y^;1q5M zPBeso+ePGokQOtMcE8g~kVEVmANlX<2c$xT_EyYI(n%IXm@bzSZDXy02L{CBuNg;B$>&d*ta2tbd2WWwuHr5+>a3UwNh#0iM?qbaYPbBKI&=^RlAR=g;ZtbNF*{hO&m$)+J+c5LD=t4_A>UlPQ7J+m20=DW3BpRi zfw?etf!VBNPYyya&F2TZk&(iotX~|=i?5u0;vuOB zDIM4b4U-yl`WdsA@a+M!8_PyCm(LZ4t3&@WUziQ3j~v_Zuv(NArbeUzv69Iy*R{#^ICp_2)%%E1q3sz34~@t;Ky4LXQy zayD9dS!(e&c(3e8*(oLTIWi2c5I7-8Xmeq=4OT%R5=1&Y;KF>0$LH5=J|>T`Zpeyh z3Kf%@c3fXa*Bk{bc3h~8@wDi^>}DtsT@K-+R^A1sTLZ9Lu)a2{6T=DQyb_UO4%oN> z0jgD$9X4@mwJNDB+1MIu1fb2Z4hZ*=N5i1m>-K4w*6>(p>d>O2Vx^N$J|wfP4h%q% zy2C7)GvN38oK9E3jIl{_LfY!UtvU`Y3$t2bYBA;Kwwe*_Iy_$JTViEIQFgGTel21dr0#OC#nH?_Vz^Qql>jE%T#D#)3Kjt-knCaJ4 zWDYUqM<;uHHqkn`oDK&#tvs|N0M5#BXNqPfEf-Lw$qB0KRj(pXDLiM z?xv$dGQ^2F*yBmnv>bA27{TSB8y%C;byWEXHnL;2XcQ)!j+%D0z@kEUEDY$uDw_wh zVVJwbbTk&)&@nQWk?}DZ*6JXN_Q3{W9!f>#&<2l$wG~(ufi+231aW>H7AT@A47?p! z^n*n+bmRgbfaQS}A5u$LN+S9%q_wlc<^C%NSenMs=ggR@S!n`XLkfo8XNe_Wn1``g z?TGP^v&S5b9*bbzM*wqZNE*Vy`ZR=J{elzlZNata8 z3S$MdhdDW{w9xa6#W}$8L0NGQu=>nd&3koiF)L+9=&+Y9OmIS~5T{}x3ogF5(#2q~ z*71_-ABF+ResLWgEH}8b?2IvF8FR>`!JXxxm|It}f}-p=33Jn!sMP2@3|0&v*$Y!g zhoDGfVM!jsWIfSXWOsUzh|&;XXh=umbHM4w+D_yTF&0w^=5mq8sw0@1Rxu(*oaRCH zSjAK~%|x0}$Kt@`4;Iw%0Xts^oCCCtblkmhiYY5(OzI+sZzfYpHnuW(;gg{yJ`AT} z0}vk3HM=T|rHY-Z?u3d3tPUJB@23kEkts%~Xva*j(;mQjWjfO?<{2^Qq|?;_EM-OF z6f>xr1Nl3eZna~E!^4*Y7v})0t5^=O`eRH?vvMOwz}y4=kKvO8OO>s-Vhd9t zuzqfhX1pPgSYd0y;t9VEnK}m?lLgc2K*)>%B%%&o!w}v&0~m0^$iX!t7ox(QSRmlw zveV_^p<*t8WD({WiY?gz>I&u>5bHhIB04doq%kUo_|SX8V6t3@ev#MoAv$nCl=M~R zh(fa6&?o9w4z3tdg*oKW5M1V<*Mc)9!RGl4~&&R0c!xMWF+q>naFepRtGW#D?*CgjoBnj*3!(L8C*&C?g!=YWjSogey@6)+Y!B=rjmpOE9m6>k`n02dW00F5n|Kp(6K{CUPo zGdnz({i17o{Rp+_?Viv=412I=Ky|qE8C;jsiNrZ#GNj7ZsvnI!7eAG54oLCP2 z7}O@aOseM8xH1RX%+!fJ{^#0!Qx2?>8ATJOZRrwI-0DdgNAuU1prMOk!5r8dj(-uj zjCrE~>_3(Wt8jc?xH7DVz;FSnVm`;hl&mKrw16LC0a@|e5Pc!(kFgodD@JBy+KX!n zbQQ}1*UMd4Ro~~#F}TUhQM~(6PC(ng^R>fAA%8Cei2>Uk5x68ZG^ROB2xtAhCtEf%!u{Kv9~an#THi; zYltE+hl%x-UJTwaOYXsJ6M}Y6AmBmdV2`W5b(mo8eL=ubB72*#hxRZJ`QH z>;uEpj~6R5^u!z1NMo@F_D9jtN`QXGhB7Px$1n|{2V%qI95lXS>eq)|K^Oobe1ta9 z1>ar=a!H7+xM}6FVGh`SJ`tS@HWNu~18K{%^W#V#9noG8b?;u#Osrmws4i zeZyN3GFO<$byyufj7qSw2)n^l%s!a0wgOH}Sny}URv3&#Rfin|7L32F7=mG0KSrpS zfpDq;I+29kELnk);!#L;WCy7)^`oj~(%22FSPX+D&aiDrcw)^H(lc0ogES}h7J2BN zJq`P|ke$JV38uba7m-r5!@v)&s;N?Zt?&U~C9(2Im z0Hk?EWagSSX(o1sHf_>OyZaPjO4BCIrcIjJw}v)t(oAk^ZQ7*Sv`MpRlcunf*0994 zX_ID_9imN}G@CYQ+OT-f>%h)-4>tH=R}7B*!HHK*n>1-UB*$(zKB3PSe>823p?X=dIY+O$bi+}zrF)XovtZ9>G(u+N4?3v`MpRlV;N<%|=^l|Mxa&4wweY9$U3$K*<*!VraZ0_R4OZLI@|f(*DU*1y}WxQlsxTc7*7 zd1Z62abHavTTWjUlP!}@_mb<*CmSw{^^`l0ArD;^>$-yCSzQI>@JlhPuIky3{vKez z6rt)WibXZ+c{S^7HS1n=742Ac)er3Vy%F^J4fadBP|cuLSJmOJ)#|Fww1p*A-9h2y z(f(Bq{8`2Lx57yut9s%`qfc$okt!E`vY|6oL+O(VU8$;|PfydQVf1MbI#zWqeOhS6 z&v5!Q8l;5eUgUZ=REp!<+my3^~PwZCn zvGj>u-8+sxZNfFbt@f;J2Du`IUtKhr9GDdwsa#1vF$tVGhR`c>r(7<)!8dw)_Ime_ z>#tcz|3CM4^o+Kp_93{3!%VLgz~Rd-Ty06u*u+Up^ae?s!-ONgaAF=d+?%nFzVn?X za`1}S4bs85*&v2^d~r`6?yfJmCi}Oqkk=@KP&0a z8v1h^{i&uu>*-Goe*8m&>wc+_k8+^-i14bSG|i?2>|+w6;zaJSAErB_j$)%Jav>J9=Vcq-KCYLRQP?1Gm!RcjISq)gu78 zJX%HHR4>+rg?*}`Ko^sauMb+@iZ;K*Q?-kXx@%<-*>~^y4)H>N?D1C8^Q2=9Iyw9B zv%^XGwXrtpe@E{~(ASdGTpR1s?g$`pMDRowb-we?{FGNZZf}htqrMAPW%_n(LF{Yg zw9pijl!C8?Hwh}e1uz?8E9d5?{}_L0QS6mwN{g|{ZjsRYvEF3!&XpGBoRrrOJW<&U z1>=Kutt^$uB}-#7QtPQFYD&nT?p z!5gdk4;uT&%Gi05a+}!LvFkTXS2l=mzHL!cDc?4hoL(K9kXn{fQoy2+174j2u<42E z0{L~+Q^#kHf4w8NHMN34*2>d#ZhG-udF0IZ zt0MBRV~Ki8=yCxWbDHvpZ^5}frFX_|m*jKC5j7YYOO9Ia>?PE)rK=U&P`Gj1N^?7r z(5;B+q9-TFrD!G{AG%mMDUzBpwBSSGO#@1>|NH-P z>)ebV)wcohi+5M+fMrS?R3yV}UV8_zVcQ_?fs&ndE$tXhd4tsJqb z1v%lr!zo=)I{px|kbQ&Jw3cU&$L)igJ4-WZw~NTp*{jUTMHCtfWsZy?C38ZT7P0_< z%U^@b+Mb{{*}f#=CPz=K>?7~d`}<(p{@y=6?tUcpaWnaq@nm|uW{zO~f8mY2I6i*( ziCC}Z@_Xpk^5Cp44aiisk`hJ8{ukHh#jBo*t!gHJHJ*I?xBAPIEmd|&l;a4^zI%0< z^alaqeLA1+7ZBbhBE0>g&6lM`_=g6BsaR!V?&QOLhd(#>nbfxbv3=fFk#B@Ene|_>>^3=)0PwLq#my*N!1}bwZz7m)?{ds ztb7sZt=7?7k=kcnEN`B`&C-W2#oV&INyo1)wQPmFR>u#;|4aPHw||Ump65liiyoelI4cVIdaHzL5gM_xm zJZ+~@FpWH49D6La0u%Z@pTy2rj;E_o`Dx6W zTEWn})#-Z2%wu|Ll7*kaezcgx&117k>6m-gB*xtM>z~KQNwR4Yw~swj%T~y(CUN^n zi|1f%4za7p`JPC)3o{I_*%xtTL^dBD`r_cN^C# zQ}$B#l0|iSUE-@x#lDf1IYNU*9eYrxyx1IJa`Epou}dZ82C=UD?=i1(i};3##0`_; zrte}VLtz7pA5I5|u~-D1#FvzR4;JszS$q!#D(decN2t4`b9ns^vG$Vutj^)5Qj1o| z_vswos&hC4JQ_~rXZTk6Q*3Jvo^Injb^RO*C}%_xu@T5A;Y|Z3W5_xGip|SU|1Dng zFG~NGlTkb&9tN*_Oed+>0O#HHzr?0UN}gC3Dmq;$6yGr3}jP1zx7%GQ2Y z?@ldh;PM;kx%cwnCmcnQJtPm%O%lTn75`@Hu<0K1CMhK_bT{lW*0UiSowD`1ms|>pRQx zBa>P5Da4jv>B#S$%wtP$oBHQv`MJr)81%EAlO(?ZD2PFY_FBk1RHW^Z z&_wwmwDj`b7t?-}46LbC#Lg4u+Ql~w6dXe~b*x`1x2V*uWo5$`VRUjbJ=gDmg{RRuY8r#K`oPotp(Rmmty zim%+?JpR)8^|!Vs#g(hu#s6@A{g(Ff;z}ch?@X;1|Kh@WZ;`wPP*W-Vy-ogF}e- zruwMddJ3127E@A+R>*(XB?P6J@}-B)l`s9bM9*#@$J(s%@}9Y-aM^XFg40I|)+u}d zYhO`c(@MT*3LC%*dbC2P%>`44`;D5J^3*A0`|!w6xnc?%w92T@xNWAbC-_GPtVL-C ztd+|eC{0JKKHkA!rea=kXZ>%oylaY4%wN)*yk`nG9ItJtU(`%~0^Lg; zyuM*5_k6hiQ(1mticzeO3+1R-Z`BdLa|%~q^oJq5Qbd>zSkoeWIEgUx*Xh|7SL*5q zO3Ke-lPoNJ_LcpbB2N`a%Y^#pDddM({hZVa2BALP09mMw#CRV0vc7(;(p_xS;2Xb9 zS2aub$(484FO{4`?Ob0-PE0y5whe8(krJp=xeI!BbNzdgG>sOY)3!3TXoc*W%IS>K zxs;$dJv9NFspr|v$;tdR9y0Q+no?;c@7=y}YsR!)o(fafgx^i&n(+2L^_6X;yLoxc z>5LGx;T(NhDmImC!^Wvx8&*%{+JH8ga4h|Q?7atgRmIjY%$@`SVTYQ8nnqP1;hgjU z0zrBx3B8jJgc3sUB%${Nk__bZ5(^zgj({LoQ7;Hy6cI(Rp`sMAfQbInPWC!G=Y;#- z_kF+ryWit|?t?pP)~q&btywdBW*=x>kI~>Gs2v=PEwzuVm(Bwj&$^ZIUBZ_JgYIB? zYcJ^se4$SHG$3AvAo$%-9t$al%S*kaN0q7sV@;cNtw4uat{w2zB>&ou-;b8hmTOzBfjFt(CL8@^# z$HynipOoapWZ>8=S`KUsXoiym=heiin@=~F2S5ZCH;Kvk^sD9bT)QToB6Zn#cesyE zm3MT-RmIrGN_l}OG{zisyW1_}1&?(>xUhGv6rBlS?5tHid2n zkjjYc;~4yAc{Gx3pb<==dmxxu&6bRNoGCAI?Vz$mxzGl3eTS4)A0+ds z>3zzxO1}6Xt=_rvBGe*< z%hEK(oh$(Zd(5CRj5R}3b1L@BaLnBK4vD4)KN^A0I z^57TS+Mww|z^QHp%p#0wX87>4@^2*ENwZycT>Py3o`lw=sAtSS1@+Y_JWGtbR-WRG zb`nWlXUsY^d0FJdi~PF$gco`)MV$fy03J;N1w!|kDLj)C(U|V(P@iOg(Ou0)>eoG2~_Knw{Dfs^b}xux64<`e?o37z#alfrQ7szOukco1JPz|ACC-?hT;47%J;b9tKut4C<7Vt5*0!e5y%sp0~2uC?DYe1a>SOlsOvE9 z;qg>}D$y1*j4xvD{YvVr5yN=IrMRMYMNbXmV@j~u?ChR9-^}ySW_&=RZMBf4z?FfR zidPKd(WZG=F4aNiVd`ibB&=Z=#-pu#7>~BK!+5lj{>3 zn&>kezYwIeyLM2y@r6pxfG8_UzX;a-EN4NYs&M|NyRKCH5clFcBj7TRfK%;tZBZfF z(WdWmS5iJzB48OA9{Mh~T`S!xFQgmJLtv*XE_rD(oKHH-u=Z?u|3LTL`6A7In^Usy z@adPfCu2>MRgLj^>y|d?Jt5v1SC%3u-W<+@;>HuY_I1#W;p(9HNf_v>;XEj=4`)Fk zoyB>V%l*kAB_eK1-1AFYr2HDRv&Xo&S!r<|7fi+$Bg8a0!kq~NM)0^;6QkRMP}~T0 zTy(9)rY-=^pQ26LCuJM1RNJL|r{e-V7P295}s_ED)la z_``Wm>u$=nYADY9uTmV;N4F525+iuR?Fb$tV?l#pZ(m(~Z*+MCzM$DR)z=lZD|$^B z_ZT&9wJ{J{eGIIsg$oAlSc~e68?nyBqa=K8=7HVZ?v!WM5` zA}aO96G!Mmq!9XN%k7^w!Phz!)JAnj^4WnmASk5RCu(#SjtOnr21&{!ev zD7WGcAIbMRJB-#z5}H3!9R;TZ$vLEj?qQxBqsx`hS|Xln0d~d}4<8<^i`uU`NGvo*e zPAuAwQM*xisLN7Gi?U1L#40e>`~DZ5c0Ert9c+rC)7)N57_3t!CtH?&fCr;N9CTP*M{9 zZkcW*`aTKwT(0ZjwPqCg^{6MVx9hZxENRsz@b8mFMb%UHjYjd)_RB}{a<^3K+#tuhV19#pgPP;q%kh zHN-u=zo>a6_q94+_`JNSHvWA4ZC}UcLS0c!=>*os>ssRE#=4NQpNhh|r2jWhuv60b z)AhP~e#e+N2Bhiud>lWzce{9N@{076t}fqs_o zV&|&eH)3+Gx~1d8O*)&G{3qznL%Hkuf?T=QXlh0-H)e76`}u-o^yetYks{rjl501b zK!XTRo|%%w(P+qWl3@m zNQP$I#)=H$d~jDrH!(0CpejbqtV0v1!57qbUI1Sg~Zrf z+=URr)-Ab&nod{Yic2jCv=B$5r$2@yxjeZu&M{NlRinGyn z7ZkeN__|ToSdw3YaOD`v2?(Yd`%y&aF?+JLwsu!D+&z3#XS{IT)<9P(Y`ypApGA@K z`)VrarP0`7(M@yhpz=U*VA@4u<-qif(X5aI8j1tcF8J(-?^&DfSqc3{I#eE*Rtzl; zOuP1S9+-A9Ha{@!M^0MO1JeqHUVK>sarssegn*$cepXi^KRJd#oS{kQ`jB=2qF|FJ zS|}uuy>oJ;>oG{9@S!-L#{BejPe2Zwp6(C9%!PZ7;isovI;e(XJXaBl$WKrA+@q_B zP%5#B8`Dm7(~J7>W3-rtuYY=cI$Ak~RrT^RDzQk2{N?rHF?^X}J)oP6(9SVztu2>A zJocKgU<|Kb2|hbv1jPq5*>PU?ZBFYi#aeG;V}5Gd!>EoutSgt_h1O-G`Zj0X|n8ZjeZk$ z`MHW+?vCZ}SLfW+EtgP(aomag#(^PbPV_(sOz{6*C(_;0nWZkcSg+IKo<9~gM{(oW znBcno3uAF+|H2k{*}%eJ++tv1DBf~M*9IROSl9t~9az{JkNipZH2%0hY2Epgu0CFy z@Jb*aeOLEi>?S1@2B6{N_|m%4JqL%0<3Y*e*ofoYd%Cf>)z3PATr#MzDegUpNLKK= zp@mobPN6vI7a|E7R2YIA{Hkk#NB*p9S~p{A+N>#A6DH4|HVdcxs%u8i%4Gj{D6~bH z-m`JyL){M9LVeSj9oSM`;n+=Zg#G!t5keH-cE(CC zcS;-NyN%Uh{s~()Hoj81pnWRmC}cLGm^&h?E2?8 zzB8mn`X&-;K3?sG~xxZ~?$oe1xqt zaFVS5UVa83U{*v~$KxVDeX?wYEh;v7f{pPpY(kF2VRLtT$3XW6#VzaWr+aEM)Yliw zA3-5hk>Na!{!bSida|ea+`?P(S1w?B*F{j@1sWgo3bQ5+Zs?S$-qE|T&<`<5UJHbwD zB`nEO<;-T$mK$Euk^qKbza#mwB1WuXkO{q zN>7dkoFaYcj zit*(2@)P<;@}F=h$+?_1IN?eCQ*y0|z|+_W|4Gz+Qa{+WgKC6d^EASqM5xzMj{`j{ z4UTuz-y- z_4`_V2PBV%ec3hpq0#yXc`^hS)9d*J5#Nknx5c%Ga!V!;_F&sWqbK4HvHC@>9aQ$d z;!(VaIDJbbZ-7*l?TKOtW`nz7BJSz4tpJ}|z1`onmx|+O?l{sI4umFB#szQbs-KTu zp2$P@CCb<(bYGarL-%GkeUOAMOyr?^4&t%UJvNaS1r(oNd-1@H9XayQcC3f~mk{^9 zR_Q(bQp6uU^-E;0Nd)RFl$ht$01!nFXWw6h=T(pOkj>|gRlW4(lH42+RC`_xanu`< zqdSQK`1#)YU*soXSGLQhfe<#RPfWt2`s!bB#Z`?ba>s^^CuFQ>i|_Z-&zDBy>$UVj zIDf(ZzI7>E=a61lus=zf#6}eNxZR>A9zQ_8Oq$KH=}k3xCPZf=J9ZKu*%Z=`j;sg1 zY-HWHIW{EepF%Q*24K5r4_9sJCYvCb*#%E>Y#gE|pM+5NNRbbzk^Lx+voczarDqQ> z$3G_P>$&z-8MTQgqc(A`Ky92qSnj^f5OUJv1wSNTqSwmetT72;(LV*FTW% z0=wRVsLZaP2)mLltc-Tgn(te9XnQb{%yum%^E$feWWEK^d9=PCLeZ1yd>2mN`<`l% z*MxoP2~29?!UEdKjthql50h}n7=0-28F4(!ak0QH~F7MAI$W@oi)d6p^-#V*J6AiAVSaZL=ZN#7$>^$*U@me z*^Lwrme`l3e?u;uOopQ}BhX^Vm`;-YMhIpORyY~A&(Mdtc2N1qL{C2ADFEU#^$XFV z$vlznr#xLeW6xwBcI-mTyOVhyeH)^sJkocSCi7q;*#E9mES^G~;%DI$cZE|Nn5y3v zg8Wj|MbI3frEeYhnSIy zFP_tfyLMnH>ipcSPV!oH2R};LnRQ~YbXFgWTS$?9t^`ybbwn5h3eH#W5CT*YCDSYX zN)0`-kM^Z<|JqF@a`CTcQ@MZLHmoZ~Z>4hodL5#%taBihI~YM{4(6UU&pIC3iZ1Gl z(62&}dyqreQ#+ERRK8i->LdM$I;c?^+bji{=Y3&?`f2<~mYhbRI zi$>`>W0@U9akEJ}*m==qd@8#wfcmC!^E{oVHcwB&j-E~&^`-tDf?FBYLvA-~Grq5`NM@M6v^tR4qb#R1yMg*%Hq^NrJ`7cJfIv<7R(H;;;H8l6ysq`22ma#FO)+}kRvEpo$vDsxSapBbUqHw^oqM;G4n~=I_m9H51pnXl z?)86?^cj)P=hTkrd~fRHUwU#wv|qZ~YqEs4y-5pQLvEA|772|>S9{G&72XS8h7bu& zC0tzR!vzW+JGPXFuf3xmjffb`S>PD4&4>^PQHfo>s_33i048^S6C%iHo zq=fvsdz`7aYq+JFd%Nmrha{xRhxLuXzRL)^b zjtaw$+s8Q#5jLWcUWSEBK|LI46TAy3K72NwuW4mAZ)gP|6bf z7gdKz9S!qqk{3Nr z&D)ag36npr`$qYoQ1`{GGkOnu(L;1otBfn(a6^ir^#3ET`^ zxPV}G;Ube?XmY_(uG+9;=3O&+gvV3HE`>`>CNEqTb~ju? zBQkkvPl0GGexAzY-b2t?gu7?S3l|Sa={0mH+wsZdKoU) zLgq|$`O;U|z>q1fS!D9?UYp6on-F2ny%ZYQV|e$dv?w@Eeo;txp^Aj(GWm3LZII!v zgzjXjr=wMZ+>e<&wljwsvJjH8)YFmkvID_m(^m2@!zBqdBtJgqIvte*dNh*17s`Gl z#)8Phlzk5>>oJm-Dax`)c0Wo^FRoyB6w2BkYm1VyxbO7OQu|JyEbco$jW*mvnOWR- z(jXf1oxxeucUsmhtx-d&LI0OSz7kr~Aa2LGm!n!wDjr8XsYHlX4Ea${lD6X64GjGq zttS|Cwb8*WwGSN?hS-+`!ii0_OG3X3rN3cg6C_;)N?(CWd-SKcbVC(?NWTAkMd-IK(JRvKnLCV6)hC!nY28~V!&A#;|&=K+Y~)Z~d(+uiZ?m5uxz zJqir3BY6!#1&i1%5X=^_YqH7qu;HL<2UQC1DO830`H})c6p3)^T2h`J&gKDli1LKV zTiTDqf(;>#gX;|B#m?Dm9)RycG!}qIvU&2}pUsoE2WE5+G1PsV(=^GoaN^!|YtbVi z((jNLOXI&~^9AUGO@`5RP_rrO=o>3c5IBWLU*jn}`u-yRO;@0#KTB#qLj!xv;Lhtd z^Rj6MUylY);ieimMP(|~kMJYK87BARMmk#VGJN8VrcF_Yo>d5!J%xoHCYR)j9e-I2 z{Se!f!9yGHzlS5VWQsZ-534$pn{z`crwHU2^{inhLK~;3GyL123(fEu!WcuR@Bt%2 zGh_6o>NwMo$B5JkYQz{UBHa(AgWQmqD#<4yNmiJ#OLT8RF!Sq^Q?PlzVV-LTm0vsW zML>>xH{N`}uvxweiK?RiTBXoH#cIUIEf0~9cqqpCKBWvp0{t?D&q>Q(F!YoBao$Wa z&)gYwe30C5DnMmn@km&ibYV3Olpf%+t#uD=xrfP$tT*S99CxIzoCvwFfapGz2ZVIQ zaJeSko}m)akYLt4O+)FsAF5lvjy`rGpfA8j!D@4?l{tZz`Xc#=mB$<0YN0R45VPMyhac zzG;|DpaYGB-9q`YsXP*hY)tu0PZV>4>y=Jy zQG85T;u$eYMqvpZw1h|ZTCG@umD28$1Fjn#w19E_=l{;xc5Ukuu z3&`Pj(p-9}a_{q%!T`$ECD6U!7?yf^i}KVB!zOtU6o%DH0|10@5ee6+;7eS=5#Jhq zMe;a+N>7Nl!B>7Tgv;p=%;uGGIT-z5c-~WodG0!7{Al>lwS&qS4q*%^FrN$|L{R}h zahv2iT@J4rc2b@$vq@Ij~veN)B6l;vv^x@WEYvHpHSwIqK@=eWCpCq=iOC@E0$HW6dvyMX26%b+PiH z3b*sGhSn%}y1GF5R6%2L^IHzjAYTfFiC8RyK&ALOEeKJp>ga#pFtMhbG@XE)2}e~B z-0(DnA?`^MN-WH7F)zfS7mK_dNB%UFddcaK3p;(%;4*3_=Rhz$eS*@b;|Ivt-L-?t zv+n(yVm-hYR&4Rdy}gY&A=Pg4Z*-20HW9v@2X||AGow>2gJdp z&AkxJE^XSU^Gll^I-GXXL0sCb+Jjx%{0R0?E^QJ%?9!%^_NCgq`ha#|ksSgdie;Q` zK@N5rclhJ?hwtj^De0XKGzQ`8-o~QG9Dn(R-_^VtXxtv?;Wi$-tI33}ysOFna&uR+ z?hJCLvNOG_sr7ne48Ng?I+2q=&5iA9Jt8N3HV?(ceQyV0-{rb!f4!lWT{m3c4prkemk>hI^NjA7=j*7=eIN|-wip0Bl))zVY4BJGTV^j#o(0wh8#+9 zLr!0kg*N0AkrCRE^N{|l+|mpt$T{q=PzZfu_gq5h6FaaOMxWR*qgM2ZxqWN;M0RV* zEzLIck*)39(kC{1wxdrhz}wTO9n;w@&Dzw=QC1@cWn^+Sq-}PEQ!K&HM8&AH;gxG@!Qi^`nmR1Nht2YR+X?$SK~Q39rB>_J#YbWk=3Q=g=e41 zWGTiOj+MdU^nlj*!q#2dvZsvWbKu z5keG-_}w1Hd02DLFcXoiKb;%ZqCn#qT^sJ1+ z1Aa4f$L1fmY63klU=^c>wiW%zj0Mf6P$y3;yq@H7GOoX|uly6#o0;i0fGB+(^#>S- zNpg)@1mtvYwoutR&^Sh}4Z$qdW0Q!(*O-M1l8i69_ENcsxb6wL@>quuMGmJ9^x zxEVQ%*XW(808S&a(zw$semWt4h>_IBwfmm%bMzl&Jn4gyX7PHxKkUNl_2^l=UMF42 zp~_}Hr3LKG1Wp;YP7~-}9QHyY#C@AnR2vs{kq~u0{jC!v z6Yl1&S4bItN=geh(lDC8xdK;x~)WO*4Kg zKLnWSusp*Rfy9{SG=UI69*2d$B7VfDX)br0fLx`WA0%j$%iRXeG=?Lj&E>ul0r8lx zG|%O}Lh#uET=zWr`zjA@*Jm3~Jtk7$;*t7eo^h(2L1m~6J$j2f6+jd{$P@HeW6)cD7?6z48`W*1|h(3J=YtLqGZB@eyo1*Y`%-Ub%Sw!9W-q=f32c$cHT|Q zp3S%VGG^oAcH0NhevIqD*@Uvwr`V=(JS}*{Adx4whK>>PrxIC%wj4s`f;%Qu>CSL? znX#i6dXa22lH>*Kvq|(jNVw6TVY<1?X!1gDRI%euS3F$%m2E2=+lQ)02~>&h)djgzX|+=&eEo(kGth&rm)eM}>*aA<*UjU$e#dV7thLl0 zr==U=j=f^^V}f>@JZ|)`JZ^MCfbELZ&ihx4e%L9YF!~rS2Kh=>$`E4+?%8xz2ggV6 z8S4k(T9e2^l^rNjWT+75foJ7$(=YnYcq3RUtQ0yC4AT#lxQ+|8O};_W_DVFdA+OMl z76(NsU26U5dEELVg>J*3ZXT^~5**3#(rT>V7^_Wm3`35W6trFTn7MOfLCc?3ot7OcRE zYee6>#1gbef30blm+U(SjJ2xAI?F0{a7h}4uP-4EcIVS> zAvpBSz>a{|7NrB(mx(KD=T}#nL$_!&IDch+3xMg=m0E{j;@R&;*R2b!nUZ88KYi58 zl!lhf!FPI@vgBpeNV-EXUc{9Qyah-pKEc1%6W!Z%Ns@O|L#;$m+eTzxWDCLvCLU?% zc&4vuvn20@-Pknw+#I~6ziGJq9Bd)Wt1!$yKXVd-ogK;tn8v$yPz_p{kigFML6$i* z=Txzx6O9V$$%-fBAD{@TA>Jt%eft>0kq-ocxN!P5j0;ENU=#Vcd9ArB2M68C1vA)< zmkSUA#%tVA(=<=H`0`Mb&QqDWG1>I8hiw!*CdD*cj)zjRED{4CiUj0|&3MnyEaH#z zJImgVF~dwblH3>I^9pJRgs_qBJJ+#fgsHX)nGQ8D%5%afPyoJauQ$px8Sg#Q&=0Q~ zWtt&pL;7?W0g>JAh_JUikgTE?{(Q7)hnx>7vbElF08y|V*T%L@YXizE{y$Ixt3ln-h!kCkA`s%-ETVJSbH_#P=3lwa2Lr2z5En!gf_>8n>l zl9dQIq3J!=Wfv<4fxgTqKdVWt+It?iYT`U#RVHuudAwZvZMJEy7fPL{F4vs5Ehf(6 zHN&HMCYv|Po2M>&owqFn9`636y^ce(#H8^;1@qLkuk*?UMW(gyIG}Z3^5dd(z=&W> z>#kH}XEn-Rv$`wYoYyXv&t(o5TK!OV@#ddX`h2BnPN0Y2n38WQl21YAEJd6E5XF{G zAL+@D@vkZ{RmkT6CT7>c#}t~Ll0SlAmLbl~!*>cvK62@xN)Wxo*=oq1XH5uE1j5Oy zP4m$sG3>unp3Y!m!~Po?KzdDM{~FUOgaYUD@M%0B;IZ)eON<7=XDeC{+~^`J)P0-N zG~>C=%Ql*(dNTQnjV6oSpUU7IZn78C@+i>8Gw>t`VfGz0A2-}$n(m6L zvTug4FXYAT3n75}jIG4JYv%K?Dx^GJ?7MP4x9_{#OzpjpQP@`p@tA$r5!tA>6MVLa z^}vlSVm-7ON=#|dTpP}pX)e-Hy_i>f9(Cwp-?I*(>v$3g- zgnlAYyRK%p2)j6uTkJBuj?e;iK$j_KETFFlaVkHsLu6tLF{lGy(LxBY;(I#NQ4~WM z(G_jv0-jWx8BBHSq9F^^E7}UdK4}48T=ieT7gwYo%ORZ?5Xw%U@|ZbIl|H~%v?~So zWrQkS(T><-8e9|YT%a~+4RN})bOBG1(T7Z*)kM!PP}{Px3U8;w6jc))tzyjf0FN%G zwi8NpF-zoN+AN0Jc+7~uE84Icz=NGTylOIpx=(?`W~}Z>^X3~){-;cfB2MO3t*vX7|5<{0bNH z!~$VGy{_YrQ$8{MCO2^D%U;((2%C5sEGqldWOPMUDZEiQGGxqypu=aTo{}7`ChDgl z5a%1WA8b7VjegM8S5v za^2KXlCwdhdU@cyqXG%A!3}{Bg(P`mW;gS|3%$R#En2mR&$#)Nk4w-kU&Mnh=4(?i zLi$C#qS*!UXv9ft@b&ekU_{VaLF1k^4>%8Pi@q~$3-n;Kpzlp@%IBaFn9be;5JhnE zGeD+^lKd%XRNKt?(VYGzp+nra5sJ*iI^g1z z4H$JQcOD@1ezyGD07Lr_DgWZ!=E)Z zzmMh-KJ*%&vV+n~L1R1Vg9#y8`o%5b`QoQV4)Uw#;M2ZIZ04)EauhoU17vq+=%SeME?l$ z_&UgUsoILKi@rWf9bxfiZ(r16soH?oD^Ylny|D@g;q@}#1azRx^rt>NWWXww{2vJ1Ae-1M*M9(he^Q@h+bcsp} zF(}fo0rm{a8%%alHtmAQ|I9`xNNL1kqwWX%F71VWVF zPL4zQfSj6S{v)_FTHHxpULp>;b)@{9kwL29V{#OPI1AvFsN*s|P%a%*12sZ;E)6`>MpLOdF1=$uO_>R2RRSVLmJ8Kqa`>0!UQ}$hV5X_#%XyyvdW-qhhN$Iob)Nr1 z=-g~M&+~!Hd2En=EH)lNdwI*lxhq5!4 z^8`-r?tfMbEnKcn^!X}0|3l`GT4){N;yP8906elwf^Ybnqwv87_O^&f!u094oLI{l zogP#D6hVjR!!`k`xBIg=YytUQpX4qRYC2v#Y91lUuR<>LjjZ2s0&%X;=Hpk7n&;!U z-dR&mrtnI6*vrA7SIphz3lK~TE-!+J2d_;IcI|Qf74uQ~ONh+!3pq(zh>kDk`Nf5W zD!=TlR1}E8W;gdL<3+C$pZ8nAecpEk>E-l!mVJFzaHs$Hl=(?7)NTcL`qmJSIeq;V z%;_Z`EDbh`i~JrqvTaTeZTsFN70vJ!+|`p;a94l$mU&+TG-HL@)z1oDr>)?wo=vnM z(*XI|ZX&}Fc`y~y=@}k9{q0JFaZfi0=H-Ma_4JQFF^APcM^>mkeM}vGAnL^x+|xH- zH@{g6y-m#Jy0BOVL2jf(IVK_QSsFAWpD(4DesE|ij zA0`M1R}b`H>F#&U3Es!aD+6q~XKEHW1*8Sw1H12<{~-sg1cs#fIkXXgDA?qQrLCQH z*!eTZtebRmqcy-)C+Kn^E2PH)^f4UFgu~Q=0hoPPq325OyiZX^(0R$%|FyHsogLeM zHUEat*p=LOM?o~^yS-NOgxzH&U%NqR07>Sz9@@G-B-ZRf7B|&e^Vx^y_3}n&4{FW8 zbpWF9a~S_HUzg;apiynUD7@-wh2`_{~#f0?7?{SeI7e$T8d-E8US zim%EmC)}~3c_kDwSEMIT%okp-gHx;rXQB_qAbmiYyA0C%bdVx&D=*73bW4oUO^C(D z=#m(t_r(~w=gQaD9@>&?T9${n_j9MTM{(E;M+9zO%d$)k%_mT2`e0rk1R#nQ&c6TT zUXNS(SYDDN04gu*VFO}s@m`#H$t-I{1YJ`a|;unQZA$@x53NLN^?0`7z$|k~bjGTS$MUr+t}4j)2$dl-zD$7-g*{%< z&$2^qSP1-t30n_96l}+`{+2XJ4grnodE}@N021Ky$h3i$x8-oym0c%_fe@x=cp?5a z$&%@ctJ3qhJ2q^PA!9{y+-;M8JKRv=SJ;Z$*!D4gfSNLv3 zNgTd2yreOH_0hUE=nY~5+phGwP&1ZmP6`WHM_Hbh9JfYWCP?TrVTVs3HnYQ9!VaVt zOWp3J;0sgtZB7XvPzf>eS%t$2Urdr#@yy+6g5^CFx=NjLYKS|1L8K*gOD~+iZ+jib zsfm_464I_xC!5+X$N@NcvgP^4rLR}+$?!=aah1A!Zs_cXF9efw{>=$tS~+{uKU?Bg zlZ!jaP$izuAp{K3tu&I(=Mfe(o#(CM>AYKpCFWtdm&HhCxryZS2@CFTh@4?OI1ueUv#;+if8kLd6olS=-Vn*U8BOw zU1VwPh3;3eVwn? z2D-@d0iIN9>4ASLwzQX1s&E=2I1yY{AVIp-adHgBmJ~@|MhQBzipuS7xf@jW$>2`A zEZ*eKYc+lExa&)Q7zv*`JKfuHs@yVwEK4B)=D21EVUD|V4L+^6{NjqM^1h$kG5Z(1 z?>_gwV05w#dYjm>Y-^hQ29?0Y^G*{9PHv6Bwak`v=-L`yAbbYVnA5$phC3ZWf1J|= z!a)M;60BtKeb@5A_gTv)#9W(YC~Cb{Jt6wYd=?8OE%a<&irwNs(QDOHp`QwETZJVC z^(HJ_H;(+BXgDvG%zQzF4xRaYaLO#p5E+VFoljxMvzGgE-df;N?7+{b&sjFfiy_$g zzN0CA|9Q(;l(&{AP?xT%K@Jfjx(GuDITS(^Ymz5c2(^{@3Eq@FmL;C5uj_j(J3PJT z*tpkHEFXlzvpHiQfGA8I8~0hpkk8k2@XL0R;8!P-hwY@=V!KLePUN?P` zME=vj(9iMyo0foPsAQeG6r3;AEMCV;!L39A`dV@kVNbuRHXoYE=Jp;uIG{WLx8ok7J6$vkG$6*9*evK>v`l6d=_~g zxUtCd&=wwSJ&Nv;{`5yo*7L|)8e+APkEm}@N8aZ`%{m)+2&LB@*ALyPp|)g5E6w$qz!n~OzR9+ zR8>ecsn1OgSur(2Aw*$Lp4glfR3B?Qmdr%=h=b6Q@eXC~;^9ATU?roY(QGUEi4l1t z_wYI!0Uq=4Up8dCZQ=UP|dTSqLFUor~pN<|Pk4+yht zp7n%02()plj(`xJ+cx66^Q}ExaaCrG5@v8pR#I<>16VHA@tF7<&q28O+*>9HMnz)H)zwVoO_9OjR zK4`m%PX_4e~|@2p3ly)@#5+o6@7%Z9SnxZAj!`+T=oQJZ85miZ*<@bMH0lD?Eo_ zvuCWkVzh*t6C)lKcl~q#uVLEqiYU#y|9pZ3x;#e!kG*+sYM}RVAm+ zMAgJ&p0`HHf$Cn;Cj8Cw);6x4RMFc>SPn`^5|H(P90AFxN`we^y_n4)9Ys?dy4Si; zO2T)iSjF9#{*<~)-1phc%Y^)W)~Aq^$#K~yuhJkci~YfydF+!uERlNP%3|L`Tkaui zsi#ER`~|B{E`$2BrOgfiQKTnNY?>Ix|3upz5LGsWR{u)VX?YHoh)@BP!X?W@D){vFyT1`yk=F-U79z*FfvNDAcq%*wQ{gf3T=0lp7*K`CWOhN!UC3Z6 zycnvR3Xj25c(HEq7;L2qG0qJlgQ@W1-QY2p3NOJ89)k(Il}@+RGQU)*!htH1TIMur zOa@eAx*Hd*%fPG@QK79mG-UYQ4UN{_*l?hly}QxT^5F?x>KhuGo|b`)Z(AdoH|9RF zj$jWR&R7SshlOXXgW1E|XRJfnL$i0Rqu4{ezpNA4!>qroW7$K*yVm~fVez|y&iQw( ziy36ld)EHGO046QbJjqdEZJH?;Dvhx*z>HlCVu#yHHh_V@egYc_At@;U~)cOcRsv| zY~2{npUBpeJtTVBMze>%&I*YJo)dI7pR@L2O&88t6WPNdZ(Be1F!_CJZ$%s}Zg|_; z1gF-tg+ZXy*2aL|*!R4(Ic!M_akdONZw+A-r=PcSInrv`xMdn#5OUnAC1ln5*b)^o zkvP%UMvU+QHNpjJTSn$pA6swskn@4)z4rqvSNY}#LW|D-6s$J<(>j15=hdis5$tP_WJWP_RAtq3B&yS6F(;M}lqn zM*{iNkF0z&LM{p9zhq(QeV43Up&~!qP=$FkCe{ta`Im_DQ$MygXUxOuLHk7Gf~&+y z7|P9$tuYMc)p|Cra_(ip`_N^-tvl2bNm%S z#&ktk_rVq6P}dsT`Y`63KNUFVoeu{a2{k8uCe%!94AqR~Y94HC3sH2B#d$4>?gU6G z!>hu7mRuEVXZs8P3HjXGN9h#D2Q@T64C?OB1;e|aTe(kny(S>Rfi@n$vjau690-J_ ziQ|TC(8Sh-sdebOQ1p-MR<7u^CbnJ*>v)`Yk%sVB#FTr!5b~b=0{T)s=DyU_)}E1^ z^rf)x!7qhCUKT1 z`h6#o=(6vu-C2hd-&vn#52g?sPmq(p7i{)^Z|w(2Xz4gM!2vggOFnf|^b83TJm0_R z!c!!txE}=189xY~`+g8Tx3v;HhyEyd>VI_M8OeEmev8=F_m(x7N!sz2P_{uE!T6LD zQs=fch2c!REqEDk3tstc1+SiWtVs-K>m3(fEcrCS=kF3;f84Q#GMtdRqPx^y@H%u? zaR2?T;5FnY!E4)30y*yq!ApBj@LG9K4B0#Pgs(UF+4?lFZZwbj1|4i28RPC9Y|X`XW4{V#{OeaC;Pp;Io8sRD&XwN;o6h$I zo7wlRPb;CM#fc5c)G<547K?o!SUaie!OE%;)Xsm`$+*U6QOroZdtzw6|`>ty_Qo&0y5On3DDu9G$Rf4ffZg?esLzZ_dH zcFv#L!e5Sc*+O5A4VJd>w@G1J$hP=n-;EVkZol()V|jcVTOv2n7g@!(LxMjj^ugb0 zZ5@2$GP4t6G@7VP4PJ3|eKQ;zY17uJ1mf9|wq|JK7WN(uTmYTjkiYjL=WFuG3c6*K zZ3Lv0H()~>Y^(|-yH5A>Wu)7}-nRjI3tZ_v6K#6}2yrRe7T>&5CQWzoyFOfmJw!d% zmvYOU#J2F4a;phD`ciI|FynM+MvpJ$as-tfoB6wX_iqZEFJV?SWG`W`Ezb6V{5fP$ z5N~^4z5yZ1p~US8wo&NwE&OeaOE1;inDv#y01u$AR6?s4YimP(D6wHz+Y(PNoh)5# zTSBY9chphl=h~Ncv*pOaTY(Jh{ZtD8A#LKtjngzG4RPMQ`i=3md5gUr^PjR6A-NOi zpgwqW` zVXquLaHVgvLfy9!?(9Y3+rk-oCEJDtx;G}?ooutnuRwD!>m3CUpv|Mwsfjx~>ZjZG)j@A;0KBwYsb8Iiky{H^;5JGwYh{AFwH9&GQ zKvk!!ryKEU5t8HY?Pn~o70KzaD?1D@sR)l=Xd5n1f-S1)r;j_LdY~hYp+;tun}t*7>$jNxlo&t4?PO5*%In(o*6v9yknJzOqH& zoI+b~xo)w_djo3&h%%;*pjEaONNxri)&4q8hyw}m=@mj0lK6?Ww)bQWq{xmVg|4%8 zkmDhkdAFt*TORBQcGKa`I^tmi-F29|-qyyogDM=dJjop5US=Xa3*zbI7vybmSaa*e z#(3f}k}mU#dAgiM#c-xeb|`RqF~1CSW25ayw6T~c%ykfr7YD_nI4I@`(>;HFu+u|Z z{uYuj4;S;JE{BTQ`8j-KtF4h=TzHfwR2$nRiu^wYr|E2S8*Abtv@zu1iZ(tbLYt5f zq19>}TZ?V2rJ$&}zP^!~$mnp5OSjM`qGBVW@wx4`MEq%yE#!Zg=wNiVSUp!S6QlEP zF+1aj_wTU9S7kdA_b;)vcB{~e5}W2kog(O^5Y72h+fW_l3I$QJq9m*37Ha~QWIGt+|WKgtXMbO(sZ(0Nqw`6lO zbYVU>LkNhW2_{l}hT*XBAaM$l8 zW`7Qty@K+EiA}O{v!A+_-@x(5KHG^4A{p-H zc3$j%OZgALC;!s>I6fU`kCc%24s{0kRp>2|7JATn;&#biZBX=5`oVzV3b`bfTp6T(twx6Ifm1s=QYg>d4#vT0Z``#(`P3Tyafe04e9DE?K z{*EmiAMCK*A8TH-`Qy|M+gsz%)3$}^y((kVM%A@vj(rNcQe|j5DrjtI4iiE&;}F4^ zdOE0{$GxH^ihAsvtB2vc`i9L+zHuG4)s}?nmxwEJZ`oe-K^;rfJ{TuRK2d^CAK4Y? z7=O+t*GAn+)IK;`!DByOc@o2_Zm?@!t|pu35@ULR1P`SiJv5 z%u7FWd;B}w*9Zld@|v&(#G@ILT&6BKXbVOJovoogFk=bRL))NRBw_Y1pMc#Nu-5tkB~UMjpmf9ef516TBDzAGf^So<5~rLq@b~w98U<* zm?V-gH-%F3bO|BAY%_i)>GCC^#|x$WV#?X* z`+KE)5B>}p5PC6|^k>`;P=h)Fqu@+yj_s?ZkKw+}$OtEfCxL8FdDKK;W~o=I#=f6EpMU#%Y~AeXbe#)Q7Gi@9|0i>G6--+dA++t4Q3h0JUSqdA{(Pi_}rLun|(q{{jBGSn(?uLCXoE^2nd^w$LA?BWyTGAX(y%A6k zcYbeEZC_19WK^6sA=X!m51sK3Ab)EU;vypxd?VT4bx3|v8yaFgG z1Hpf&x^)-(Nl6ac2?m%6*K8*rjb^ZgEu_|Wvv-j@LogGLbO?INzFv0eK!pR4v}(FGbJz7k zFZ(t$ZzoQF+MX#dQ1=EZwh+DN2o-YyuA%{dJyy}%{<^#cAgEu9wG_lQJcgL-`y{6b z(0I(F9S8f`Wl4Tk%`rszfuLYF%Gbul?}ht2`uDeQmE;q!GxLp0T-WFO|E53SnMi>c^=9*V*c#=D)CxX&1mx(RdHGXL{OkSTWdsS(bKz zprAVrp??B3l))rVY=P7%fSnq0d^yDamL%7Qy;a^BAryo3_+|oxC>-#v6#GKdX&2v2 zc#=|v+pwtJF20%YV3_@`H|n#CZzlADcx?MMVi(`_CirYO!2>t8o8Y0%G}dlLxx4so z!i-&fHv#OwuHU7u%0>uf*N_%v|8*A;+4b{K<5hTk|Mhvo%5_5_L&0Mk3WZFVW?rSg zNu?nu2=}Bv3Y&apdrN5-Ul~G8_(m9nD7JKtCv&#aR~|8vD&z-%&d&KsLZTru{HZxEVecK%P#fSY@Sf-Ct?`7HG7+kHr=Tp z+}Zl}Bj`^acPgd}Du3?eI~8rq`AD@Y2V1k<%hhAFOmyo?TEv!*`>olb27gA2l@7##-SYpgq)MF)v`++Q*Nqn@7FvuhyFB6K# z&a&S?2dXGuDhTf7iaW?rprH~vRYgmKf|r+PzlP3NQSccBgDLpDP;iG(5Q@t8Cm=-e zLfm~G*`M&j4ZGXL?=9ERRql0-uZ>#j)XU%_f^#$42QGsH1(BGNmWU8xc76oy?9q)5 z2$I5$q`^R(fjYhnCYxUU@ybH`1xJTM`sO8Dr}nBxf=UMAO^SX8+5UP5p@llN3;71} z8qJAEcD}R-t<$M}s42jsRcdObesyvFu)-FIh{lxcr~6l&=~qR`YMcqbv&n9jP67iQ z*YQ~TYqNa|x>QB$jzY?dq=m*($X5F==-VnvN2<_t+w6Jheifa&C}?cg>w;QmA`R0S zdQ-Lj^`O{JKJcUGdEp5?_pN?A-0u{P!U3gZV{6mTYdhec#nxtcYAM;U>h$9_vMILC z;f;^dKgo7f2fCfr6xS&un+k&$Jj0Ni;&Jp(wkh_1YRBvF&i`;dI!V28+9Z2dT-2=~ z4AhnVg&!p9#g~@!e0m@Q$d+hr^}yvl#&s`2#W_997j7_zP$e7LSlQZox#R`9O%<0A z7o$lan@f3Z8U^6l7OQuys5r9Q6v+StAwD`GJ~Gxf%K3L(TvS4gmh5ZM4rDhfHi7&Z z|NqCf)_hQmk(PaeJjE@5qA&^F-#h(TK`#c(+w@@08g0*|Hy|a^Ihl2=*8#U z^t|LG$&RJWT$nOFmYfD9WmZ=ubU0wolfQ%%RcpR4D(Qek%{Ge?587v1HKX@e%ABtle+*H6p$BsJ6d4x7wo^v^$ma*l?V9k*MeAGY?(JN zqtnx45;SSi(bmK_}zAD0~;i7lU93v~3nvud~W zIG*@WWSKT3u6mwah3*~7>W0Ke$7Cf$$EU}n#U~Kkk>|ANEKPKJwl+FGMw{SBF_-3g z2Wv88$eAZ1ai&H??3|qzM@oxqV&ViX`43LpXX2tL4i(g|^C$NyyGfON-Bn&(uUGL}?S^HBkw%8QS#BjOfVd$QZ}z?^ez7 z4tdO(E=S6f*eI>6c6g%VwXF!l0m)-04<6dP&!EZGJ7i3{D|SrvHcM+Yu@jz$HU)+} zMkAc|N?BW+f4!t;NKATGW@JoUye1<)Gdewic%LRcCQ3s$LNYV6;vHdy8*{xw;?g5C z6C#Pf#>PfQlTtA)J2oagGcBG3PHem;7GHmFmA|9GPP~bDoi<$)lO7crr_Iccj!(!= zh|12$&LD1{ofb_z8>iL5{yfG)AHzEf->z9Px;4 z-1r=E(X{l~OiC>~COSSdE?yg_)n-Sg$0lTHVi>7Du8zAu}p7T^pUAsZEcLN+(eio37Eu#wKLPI0~NMkn7!o!S|(mq!2O!8N{)(Nu-i^jn&4J4Vb1kjE&5(~g$5 z#YOm9ZyfQ+KJc-#$=~zX-}Bht^O$q)|9c+$dmj6H9{ay)9*e^fJJ-n4FkGBzp8%G1 z_uMV($d!11{8z7vqn_T&o_o6D&|`j8H4&eFXIx`^sCUKk!1x);`d3-5Vy(14(TA-t z7oBl@K5|!IsS*3D+^0s3AvrqoZ_cta_yXF087(y6SNm0TK#_Ct&3+YK&<`_l`~DTJ zLvGBfU1M{@jNF;C=g-RupFV3=_>?(mv!|BiOw1(>F*qpuc3iCvbIEfn+%o-kn}AmI zxo*~?*)!5+rOlg`JF6t;kA?X2{uObk*L>V`Kt&MxX#tKKQ1N8FpBEC;Cvs;~th5=} zoO!!d-OObamOX7&W;nis0?D2A0Tm5uomoVnE%ENG+d=rt0ToZ7!;5jNffd8hgk^Za zz=}5LLIKtftmuWB=i_SwE1IF*Yw^Q@742(j$*6`q+kFRdhJ{WhFBsNzW! zU4%Ccs_2Yz4fvHo6|upukyH7b{pZY|#qegNrH2zk%~(8l8e#G9|6}jH!>TyG$KmXN zeXyZeqJWCViu9t!-W7W^8XHwbjT$w^7^7HXutF>oV*?eC+h`ZBU9rU8jlE&-B|S0G zcgkM&?6MdAoR-#oH;W)b7tmyQa&u@eKcYXX%d#weZ~|zlMo;4M@s0pq z1AiXO-=3xy>&C}cr?*kZ#~P@q;$wYhQ0v9VGP}i7lksPckV&ufh>vAPi;sOk?G;aL z!+x1%;;B*CFEdFzH3It$;3eZYE>l0AD$0IGu#(BK)u|&+UsgYMKK(P6Z$Dqao-U4Q zO@9}%$Ej5J*hTE=IeS{no*q$4#4ce^!>KFACa|X;C(xfn_7uq6um%Z@eD2<5I(?2^ z%1U=mqCd;nQwM6J*yZf$H)^NY73}E^wN)%(PaiRVqgCv?EcPgUj9tkJ+e{_yJyZN< z*r@4ZSFw^2^m63b)%=N?FxG`#slJ3g&0471C9f#FCbeNb6CD4EtrYEy5rnv1{p7!m>FY3`nWz=HPPV_dibAk9`YK@s_DXepf(c)j&$c!A{N- z15=umWPJs_PwNNLX3$Vi_MQp0mUJQ%* z?Cv*f$(9i*erg0ZyIXT8gJq7~O}>K@G9~mVil$`A$dm+RTuW+=N?C@@kT#pguBcFu zZ_Y~RRW7EnQvovI!|0Y=IL}%1ih+$em`Aj==xI5?(96ttGA# zQ`)OxHMJt2UZY~jrrbSXiDFrMWmX|^`EkQ=t#!13hm&q=xlw^Co+9G7t3X&~D>OB8F9N7GVP<3wl^)^I%*gAxVWUN>z?;;;D;(C&p{I`jNRvTmSt8{Pz{X)7^I z2n-q8sHq-F(q>_%o3lE;4=mKXFuYI@Qc%Ppi{nxzNoN@;vERSUDJBf>0*A83BQ~F* zZPs0MH56#LUUk@!ea__13K7_-F3x7cx{NFLo2Y5mI0 zLH*pEo3b9eCsC2@jerN%_d!X4IyA6;lM?IZ;N66IDcvMGKiW10dg@eRPKZO|<}Ph7 zb#2!)-NeW60Qp0OP-3g&K=|xWo3cr%Xtc`8m zUIIu(36Zp3B{cN~E|*M;?cU87mX!|qv>;U`Sze@eKug`l$^2Csa8C_up86|p0@;a` z<7BeBMd~Qr0KU;!<*bfX_=3CP!&D3EnoI_@O#K*lhZN}Xj&(?%ZpA7R_j`%eNconj z-o)czURhGsYlH{x3qkogQ192?$IXoC;SBf;Nck1IxlEVdJ8T4BEB0mvck;Pv|VZ=34aF}@q4)EwNL#7 z{{V~IBv?8S{|>2b(09q?^A4%K)mWNpxTsSNd@!Le2bG97mFsLU(S$tdnA#8LLGH}m zKq$H|$nR2tuo1=4PO16$BrN8e5|ZlP2*DR%F?Xnw$z)8I)OtDye02Lz4}ouBP;t}giTnYR1BS6Nu7k;*7M~5GOp_j-hi&K{Ccqgpi5Y4s55H1o^Jps z(^w5l`@yR8z?QWMH4%m98vq<|)eCWB*NGCde$M zY*}u(f*1r4X3JSGi-Ryzv#QkM6#1a;(qxJ z!niIQgmI63ojMUq4M^PV6per4)FEOjkFpa&_9{?-#9Gy(|B!gV$X3sdR1j-@vM9eFC1o{qN_9a#XV0_&x~ ztLbNLs}48Tp*Yz9UvJ>q*0!1Hsqqrc=GQYoZ&^IDL2NN`Zq7oamPBmHP z>bz0p`$`*yS5Z99^#QcFL$CT®Q1kd4Bt0x4B?a7D(U)B$Bs?~U3fD>(@V>9J9G z)XHQ2v@L*R{?m<8Vl9-)!L{+*_%8nQx1tRn)am;V zN$!#>N2qjJ-PDb?)6Y}Gile=SG#x2Rwp-RT>-W^r#nIV9n$FU|ZTL6!bTM?hkfv(@ z9Mg1%tZAyODU`X$s2^S|ZL8!)UPh;OL#`<{-%6XZ5!p2|tpd5pempNE)h0e|6P(GH zrPAEU@KR}2Z3(5)c9fHvlJM@Syxq4_1_@!iWw{zNig1%i16Cl;@R3|e?>-cDPp`yA zxO@tz5{C}9MJ6jd7~PV=1s;+j{Oj`?Y12zfQ<+4CqE>fj;bWht*d~0CR<#U0IoU3F zq4qkm09N>8dH=M?(li*@5k#W}>dv(zFpapnO{IxK)6DW4>qHrnoRqC3XET`3e+oPkIVuD5x-EGRNmx(1-98ifCcUV z3!DHJcxR`4);Vn}YDsyqBg>kniV)VKYg&t7G$2(Q!j8%k^h*^XtamC8VN!Dvo=WRv zcdx|8I3)F5yllTr$sWeOl_i){iIaWX^MncgxUv5;i4nV`R9 zt$&xbzWQ%kiQ=eYnpW#vS;}&0ws7Z7vx=iSXP3z;xi16Qogrm3aT zqe3P;1K^km_X!gsDhKcS3{V?~4)dL&&D+17!k&`2-AUqHbb4-P{`+a&kozVOhETIj zTBrF{W)Mu@uwA-*2!*d zFOn__Nq*YIoruuD)6e$w&Zb`~l7}R1l>FGim{tkBEM(%JN(;L@qY|()P-rxYmoY}} zPBSTwv^!@PYoK(k@q^{%5<3MNr+P57p7l`0bZs^K0D!6ENsomQSoeph{M-mF?riePkl`sP&#f81P@&fY)23-!6ly z8MFp`DdV{rgaP|?NzcHjp+W0G738%fJKX&K>4(dpW|RvZumc17+2KgaCh5m*LIrN=Jib6#Vn@myZNoazs?5748tL7I{_G4MNdGw7Et5y|KHoO2%j#b7& zdXBb(06pi(deSR)DsK88yye7L>Mhr09j+LJx6~My9#IkfVbFTZS2E*Y4Z>Sq8ico8 zVNAP}F}#bjOqOZbgHwItyL6MhI8xUrTHK~N>DNl5Hb$+(l$4h@TN;JKR82_VSqAkn zY8|G&25#``^nImKgi#x9x&Sy9ZJIM#T8M4gRF=F>-*qly1WGw{7)d512OCEp(_f^g zC(#2Q6opsF3R?{6Z;GMpLJE(Q>1N0Zx6VqBE{^sUQaD}%*LX|%(PHRqA%!;rIHs@( zC`@J1@8vwu*)BHvIKBe%pxnMrgmYj& z%Hq^834f|)5`!j6f{XH=2^inu=iF|Yiaq@Fk_8E)RN0{E!~5w=-Owl#_a+c7Z1UQ6 z3<&zm?^O)5#UN-SuAGLne%Dnldmk%joKGPLeBIW}8PlVspDACoRO#>Zyx z-;Y>{l1Dk7{u#^H>?g1%o&)e1d*X}36WJ5>TAHypvm~3nrpaKpK{8nGYMKy;=25m^ zCk`T(6hmp>|2>=Q^op5PR-_uLxXfYP_@V%P5_w#zBDrfI7Lmv0;2qE7nwDnp!dZZx z$m6nr63UDBG?X0A<7&9ca1ieX0EDmfxu+Wj;)Af5FLEACH*`X~Eu_4`;H}2u%Uy&a zz+^7SS)4m|*kBkX;aiY0XE@Acn2sO8V$QI!*)R^>vWUIGDl82{dHkbd$QvarQIxmK z=}IPixyPGavlzzW3K_Iit_WecvY&ZL%QQ@N#`OWZFzeq| z!&le`7IQ6s%ry)~^)raqX2S$ER`O=UGTfmM!d#nSs1qemGWX7?rpD0N#Y=omL21RL zB`g8DJ=>#m$w?`;7L$4p4&13lmNQNw;5vH9J~wLZkUCa06fBSO`H}` z{qm}muZHP^QZX9+S_u6hWfJ#rX=U5V9R@Z@1yT8OvErjGbx>Ktp>5Z0!x#zgfv7zB zWk&{?n`an>cfdDH9#@5EYe95N21|KpTNywq#;|4WHDoy9d*G$e_!iYT{EBlmOdk}D z^M5o%;y+;tTc&nmz!mDvtXhl#Pb5-xOJ#EApy2~tIujssOWHv>PU4RCmB^e!h9F!+ z1xRV4TN$MCVZ%rr{@!}9osJkHwf81IRq1{nKA2mYqQNwB62g33evGochpt87B1#(whqa=BGV($Co^UH>Dcq1gs>oF-)ZV~iB@efUlh}PlA zTg2TfhVPy54v5OrAj;3Z-5>9V#XJpSN2a)8t1v>%Ik!9G^Lhwf@~QI_M!23&{p5ib z!HEKrrwht?=wR%>W$2Fo)?y$k)9BjZgfqr@jf800xp_WI< zhmFxgFg-K`su46UGQyFIjCo|ZD&biwqBInvud~R8Cx(UiYxssc&)}zqF?bm)=60tD zb)FeI=^&72hORhO523|#LxLJXBX+Eg*t{7Icws0b;k_!NOzd4*WampmGTsH>Xo!x{ zAm;{44w5RRX}`8Z3Y z-%xm-hU$PDPeavzM>+GM)+{m7KK-ZR2RHqWo5cNPxQYX^LF3?EwJ#_EdK~+kcGddt zY~5cOf+gGyAc}!a=0Ap^xGyZ`VSMPnbiCLto230qdw3O=rWTfpT7X=|Fa?$X8LPgb zwJ<$f)WVmHuc{WNWb<40mQOamK`Z1sSPG$d9n8oUb-RZ@8X@%3Q9{o0E>AW*_lo5Ivbm)5j1v5{~zrl6*o>oPh`71gc|e7_j|%F zwxK1AwIoz5M|da70rumTc_v$i!N0{aj;!We+W0+g%qZK3)S8}g_y4HcmNHbeE;*vg zJ3^7UYVC5w#fp_(j4M%utl2OK#x?7fBkG)i|3}S+moxs2H6f?;qNmUHkR0rBnh#LL(M;T1*Tmes@MS=!bQjKAVd z5S0yGn{1>dbQ+}`ouOG+yqRa8$)9>Io4YJ-8Qay$cOEhT#rEu)uAU8y-SIY9%){nJ zEBU>Fu{l;D@XGKd^*r@~f5HZ)$9;hSdmGQ;!W3jI8r9jzX1kwQ_mrA+YiPijE_T z+tPiFCJEQi1-9m&wqCg;)880^z2F-@z~h7cX0VvcP7$^Q7&~eZh9%V^jRK9|;O-EC z4+W$k<0pt>4Gp4EMa4#=aUDGc<^>x^0^`@!gW(@JwL^@3Bs>AK=lfZbLyZmbR9MXQ zo{&rGH8a}O2)yN&Zcdx_0*Js{{>kP>Z$z=)G&csQu{3IY;84WfEsXsUPKBgd*9g>W zpohzSE4h_%1=^fTLR%XL<1LUxa%e3Mtb!4AQ!fMC3ujYZH;+F z&jN*&CUNsCdy^sUjBD{NCuEtSn1n%NVU5y{(x_StGyHPV27KwkW1?wTa zylkWwg7~CmSM(3H3FCGpD_AO`-vXH+#bd+bP(SB*s>)atB0_!r_oo9 zpmEo>vWvjV;UjPlSfW%Ved5XLT}XxB^2eZMn?+}y$e62!;)^$n52Chxj1!6@^JdYd z8z3C-(pPL2T{?y5`w{fniW{#Tyc;&in1n8D7VBK+HuF_GviuWcGJ3IDEUze?U#zU} zQ~HK2uN)q1EF~eyCYDzexbbQ@GH|GI9;#py>y!%E6a|d0Q$C_vvvo=;1zol4Tn2h| z*7u3y95e!Qe7JEdYEQ|tZ^`CoVKWN-vIxZ!0>4Q(12iilv;FzUo_n? zPKRrW-_n!Mii9G)BWXuA#3t7J6v^kvk`JP)v&#ks*u-ivWzN?dTiQU&cms?U3TdR>q9|_qCRn&3?IDeG!89G>~j#euWypED64OT}~My}~Rs3~9c)6?`@ zMN=L@9r$AXv9uzkEutb{%N0q_gbboL!$kx~`?3=T{X_iygJS&YxuJpd6j1*FdIKE0 z(f6%T{Mv}>TeLNqE=yKri>S#;TSQG#?p(iDP(Oz?xk1s7UvSw~)}hlDQImI{Uhl51 z$$2KK=*C&cU6DAvL zqe)a1wlhd^*KHbdAHKZak<9pFLw*c36Sm9>H zAVpR9$f-2=Y?qC-MK;#jFO6B~Tp^nrlS!VIZIbZOye6dFSH>skZXt!wD6qA{6Wz${ z>2w6}TOnO9DPUaJ6SA&U5`MxlbW^d}0G230+lFTv+eoNqR0fmQ@qr z?)IWrPiL}txv@1ay$yH`_v%|)NrM$elNw9obHC{M9E%WdQTcCrkjss(#HZ(0FXX#T z44b@}1gc?Eqitf?RClHE6IaxAn;15Af^dA;~b- zK1EZuk*uiI5oI7JJ{p-IOY~ia@hn0KvP6p@9G7USED?o&n?!GMp+F?2wgaq2tD{Mg z*H&X1-phn2n73iqbL|EtifQetHb>ky-SnZz6GLJRTh?Zy4dF|G4*MMOBHwSNQ?~iA zn0w5nZNzh%v4IAGeGh-W&G-@i1tRb;aBbp@4lazm-CI4#Vw=%}EZk1LRn3-BIk??8 z5SQEz^yE~=?=W^kl=s#hMuQqlX(TlvmR;CdyXZHMijBs-JIXukppAG6M_RGnMhOQ( zqMFawE_$dm8hexBD^C`)W$ZEDLAWa#d{4b2arzWEG5JnxK z({?HZrk%1(AJ$D4u_N6EWt5M+ZwDwTJ|pf%y!E5;l7znj5aQ!>(E~aSuoxC|nZMai z7xd}qW{=dPWEuFD*UH|*^aC{s7Tb|}9Wi?7a9MrC*aK(lA#^xONfj3BS-mg%;Qd+z z7Y1l|w>o6pL1P^<^B8qE6#?FP?>a_1@AFy$i0Z|6x~mX0rVW!#JL~PHrFjtV+j^cb z_Hx31LSEb*dR>WYf#2H!Jf2(W&+WFzGe&w~lL|v4Lr+N#=hXr3SMoYLmisWM5tNhiWCLYXvCae&Mj5+f`s+Ro)0O$a}QxLi&19pf1M8!TpO zI#EE8Hc=R(*TG57$n7P&{Us_9`>zi(`(Bc18ZtoFE(9zuf$ z#$X);9xFf8L#Xl4=%q%`)Y?GVb`L?V-2;YEDuwWv;_=9M6X9Wym(m}OfW_Q#hV3Lf zpBj5QLYS(DaO9bBh$DmrdI)!)8(Ziglz*KNP(}~_#tUN~H9U8Up)ZXyafTiOkIX8a znH9m;%qOxHKiMhH<8fd?nk^;YxeHwtn0U!AbQagayYjypH&oG2LnujR&UOo0@tg4w zz7OSR6ULr*K#9VNKJg|tLLRW`L)o_cZmfdvYd}Ku&j0*Lr;dy7qEzgILtfplcZ!x! z7~#oZ#zDBMF2di&nraUGdgf<;)3(u24`Jae<771guRia8=x1~bJ%k(o7!%Y8topz# z{%3OaK_iGH30R^Sj|_WloFdVyOH4*_cp4tg_^LiLhU~H>zA-K@C4I%fM&hXuf)D4T z>3xUnoR}fI#JsEnUOZ7n|DC-O={0pXEd-_R5|d&Zc8Lk4lGwCT+RfO@=K?4bIO}DN zckB{#N4YMhNo4roSuTV=&6G|F)s$mR6wGuD=8m$a8Pd%Hc===x1wKoG=hG)!cZsPY zDkPsiftrcw6IcSQ>RrL~%E7matyM)+sD!KTrr>sewb(0Jxy*?Le!v3LMW3afUK zeR6gsr`9j>LgROnm#NtiWtade7meL5zJ$-bZ)%QF{BH3j{0)TTj{4bd;iwdzFCgf% z77GXt-feAQNgdEU^Jh0w9x+KJ8AveJil6MATcn{9Jb(n zg_?2@ZUGQQ#+cN?WXA1bG5?@_-NG~%wb)~u`=M#Mq(;*?owsZxD3dL*m1&5Che5KM zVHiD8nCBZnG=4&!ZCM-B6$wv*xIAR9ZfEi)-LDu+qd9cb1Y3KYw1?DfZ^u$@HNbh4IHqL<@8x zYi=03xH;glgn{Fd~2y);WFYjjRj8DO0#@LwwlBNeIdTCJD{KSIprknT{MB&xB zJWpnK>+FV@hqdl2RmB<6$$@4!feN3%zIatiaW`II$6$)SF z=VI4_CFlhVN^5^76Z_^Z#uydx1nz2TWP+1M9yrOHJCZvO&-R>(YpXBTPT?d#J z;?7V$jXO8jb7wva35h8VN1ynJstu9ic7KYZ^TY&X1Y@BJyTkHC*sV9nwAC4XP5(Nv zZe$q<#-r|tJP~y%IFGveTt(D%@NU6yQv$Ncf*2tO9)~yOi4BW2BTTWQ(UCmuve!`A z0tfTNhQ->dB)$|?waxKfFp9p7?kGxXkGQ5%2CI{yZBcDTazrz~deJ-pMdqF+xX$?Gn+ zYmiaf4KaA)UeNZ~Ouf^%z4F!s`k-_gtaSiCuP%!X8HjCRJujJvgcm?u9*M@y-xGzG z!eSnP7wjcxu9%vs5j4zd=rQ9fc#u7C`+u&|-gw(y(I9M$r>a3%X|;uK@U{)UZhD2# z*}Y;MatgxnI@lrC0fm2Ci}28wgmUI>lwNc<{@Y+O{Lrp&dN}}Z41e#ny}WHIC(+}; zlAD-DfseZuvbwJO#8|n-=y`+5^Sh>N(gzHbj;&o+wE^($HSqt8nb(NHyOUnm%a$dE z`=+V;Ww%(-AkB)&ONaFK9c30JAlf`8yi$ij8I^SVp_YZAJN3ab(Ki@N2ax& z4!#~`qttN{+s|G-GTp-C_E7?=5y}`)qOc*|pU@GC{yW?8C#E%YZWkbGGbLkWWg!8Q z|IB1YEBBFv=O!Co3$b|@LS9gBTD4EiNUegeHC@I?nK+@aU$1QAwhX`m4fs4|sh>^t z5IzVX#G2xaUrlS#KAG7*_*%nkl+0}RTbQZ)C%cF${dp$?OB7-06L;WoqE^u#rav8g z6OrIiW z;>8r%G?2CUh=C=Ah54Gb(k`U+wApo0tNkK+v|tjbqDSa{5k2}z=DIb}$NNR}_z1%B z=+S1sh~N~Sub%1i7X7LIJ6j`9^9+P%KqF`d4G(oxwbiO){uALv5RHf6j`hqTcsVTQ zCSA0jTq?W1o(@9e56pdVnl8cz=DunKO&vVe5ll>R=<7;qG%!y=CuFN1Wjs|@KO|fI ztA^&j#nFA)>USUJ*;GYzN%O7@28(g86v$nrN| zLJbdShX!u)v2P#HH*9E7Gte9+q2>p)Lj!j;9C;aJ-i^8)&<+SbP{3F?mb{oC&B&>o zSv67F10p6v!NnW~ECHrlGc2JG+4b+dy6Ecz!k?!d0Iw&sSlx|km$z%Nx6P@!d76aC z0pZTeAQ&^OG?Rp%H@TxPs0hc`baHdRuqeAWY)S2!C)>4CTs5>yHtg_L=CkN>A;Y$o zEpg$1EvvP;7d?rikWD)kfQYX0+qUMd=v5(`_Ef;QP0s`!{{ZRbjQbugzmh={f_9nEwzoBxj#MHLc#KuKZ3gGul5iy}OV28tm0Gb&cH)#+@W z>4duidg7D(R5$Y&+y@rZlxKpv{z&q>n@6ez$$&s!*Mpm z;QjZ(zUGch^;!e0ZNLzAgzOa1(6&$enYT$!=YOOJQ!Gz*b%XDeni4q}`tR)SF+sS; z^Zw??4%~yh7+^NzCs16TaQzUJ0G@cDd9<5@cZ&v^zd^+glFEb3-nhg;ie>jVZh)nO z%#q0HARCkvN+_QtTLDrQTSvxxVtyduT96vAfSLzw8AHt9NVq0^r3wFY^vLq>;Jjhx zJvbDi@-O}dpP5_XHn5oYO`!)#w{Y`9HG+oMH+sDImMb!aNL3J1BAv zc=mZ={NG2IC*$w+@INZgpzSjqB|XP|Mx-Mdt~xRdA7vhl&5#CdjU9+fthp^?&ljLn zoHaIICfgjUF24W%h&A_?@F7T=H_pjp%+v5GSj@Ffhh(``yft#Ka3nX$8)yC%zjp|<9WM5*@pPb55*D|aV4jWMJ4Ak*K*N>_ zL2=}o5Fvla(jL+wZTR_KPZIu73vH^n6InIUJi;T;FCv0o&mIvI96}SvqkKdCB0__G ze50cMXaaJOk1e_G9C~$jXm~KaJvWfvq8uI)5bP5b;p68Q85k247!w>5=;urL1=He! zcE89-dh>Q@G|gs?380srhx!Eg`v>^?1O-I+`bGwm{0|lvT+m)LZ$C0&uQ}|kytAgP z@F6by%%$9ee1ii6Lqh%hBmC&C<-wsLQBfh$K>@-30e-=uF}7Yw%f~yr`$YKqhx+=3 z&;;wqfWR0ZDr$gFWB|pCjP#@8{Y@&1%gx=xL;L~*B7^8P?g7C8AwJ>Z!7;&pejz@- z)CQ5^H+#`aTG$6A&5{9TO565EC9492pT9 zz^bIGt=FFTG)}G?D z+|BbXO8F4q8gm-Dhx(qF4EahX#fQ2Kmu;R%_OLTB#wvfe|sZ z@}puxC{$>0xNlTscvNU`sGn~%#iosCMJ1bPXW@|%(ZRk^G2!8?X@#&m0iy!^L!$g+ z0zxALLx^vef_4^NH1BBE&U$zh&Dw`#Eu7Pow=<6r+Vp*B%|(R!M+8Ls2hxT?ql14) zK#)&#xKAX>JA1Q|ZIAbyPn_LjLVQ9a{b}n74hjhHp|3+@f@t&fiT0-(RRT$czvfpH zPU;avJvSyGGSELFf_i;SbZ9_~zfVlCe`Kh?Z**v+Epg0>U6SWpScj5i+KfDl<{GIq zwr1q{GjlDEkdS~FpHLdpqS?iZQIR2$K2$;9Am1RSWTXghRH4Dn?jhk3kx@Z`Apt(Y zv<>-&M+5`}ghYq<#Dqiz1qIrC4P>|E5gtW1--O2m(}+s9ZukX7_yq;}1_nh$`$q+b zhX&a4Yp&cSy_M_BDk;96QAIQKA+?s62l)qu2KoE?d;5lhwiX>466zlwNxg>(84?&8 z>Ju6e5lx-L$2TC-C)`$Rl9`3WBDb9|FRIMi+I(q7(e)FpZai=CPEEsni@kzqQ}ZN~ z(SphzZ&8ZmRhwUzB#@iI1;s4jW{a^3)f4!R+c>Q1RRz%18f4$rP^=?ItKK_5# zyLo><7o%o}_<}c>g4(F}4M-OYDlKnfiF-?W&v$(GV);!=b2kSEiSkof`8r?0sjU33 z!l$yj44~hu3!P%ZCoGHoG=tcjEKQJiHo50y2|<&r#M9Z*1zpW0qn#}+(2i{+-PzIs z9yDWQ;W#oj{&_R9xtJvwjoL?^7qc`&|Lh};id#mMXhP?; z76y+br*|hbEf*C&DSS+L#Io3XtaKn*u<&_<6(uZwXv9GhP{QJidLAMpN>~DBFv;Sn zQ0&*6o`Mt~JBgmY5g&V%?!%6c-9dNV#K-2-bkX?OiZqWbK9-3QA3KUJI>pES!+#my zc+Mw2b_AU{h>z{bXevj@#=arkNuD51Rgy3XoDw(!c98}pt{koQKP~XF3LtV>$+!wxP0=g;!%I9kLJS(S39Ua& zhBmfD;*F3UuiR&iEk9r*Eap;dJZ!tpj&QDJDrs3=l{lHNfKS076q2^~F5LVPU* zABX(77`%y`gT-8odHE#L<@@_>Dt3w8pR(XGOTSGEu}G5ke=@|wT)#ko(qYx#S4#Fpahsy4lwVF1LTIcwVcKTK=MY|v8)aqrKgzuJVt2TQIT&j2Ey?~j*pLu^cf1z(`OuT z65-~c>Z%X5%*4sisC;2>Ehtg+u$3BSsf2I_c*)bufX#*on?Zb$`~pi9iUdbcn;nyF zb{N`1`o!2xq9$M|8lxgDL1#|5-wBO+Lz${l+fT=XRsAeBN+!>gLS4C|Z^<0!qm9D~BBun?9naSXw!w zxMMtR2aHV42x?y+v(@^_a?crkM`faWJOIQUJA~Ncu_(?`*BPxp#uIh`*dGcQ%h#DE zR2*?k&Zefe*`Cp(4AhXN@9JuJv_M0?d|hN6g_RNqZZ!SYau?zAkUn3yY_ot41g^tk zK5}cakam*ikCEJkmK|y=9xvA}vNXoOKr9|FDFPq7s@QOZ@rx}Tak1l|{_F@9mRJ_3 zIdHjXYD#HRY`!Ikl<#h?LOc^Jm2nk_&(lIE!^;VlTs6MBs|&NATnWuoWGkETon?>$NVSe(NB#;1Ct_mzs*p(#S6~1Xj_8eRph}Oy~u7aYU?n86EsKhjokmz-m zDx}fcc`od!4zkIrS|L1FHAz+_CO9O$g!-F(4-S06HtLOC~!P6JM4r|HuQw>KPnGb)|*LckDh#MfS$4o6=mNcxa5-F z=T=rC-`QxtxCzqNxT*aRFX)uqO+8?VVoCbMv*-4Z)3auEAwA8BbfX6~(h-4>FqUd8Abl8&Ugr|X*Z0B2VJR6qqk?ORQ zwhhN=3sM7XV*4Mmp<^LBKNj}RNlPfgt6(`F7k52l>47)EV$N;VN%G4XOH&;LekgIS z9>VWuEr07EyndbFhY#u@@N_AaNE&ti)>DT!L#Uu)PWr@~$$LcVyt)gS`P<4m(lg;j zkC^}}FM2>-f(;KVUbJkNNY)68J4u=n*9|+L0+8H^UdT?wFxbK3`piX2x`TH!uFyU- z;FO4wzK{bC;NGW%EZ44D-bg6ylxVD7Asm+^=oEKn$(tsr&=F!Q!_vk@NmE5%8hSEY z!@O2xe3fs8OH)YrBuXh^*W#vV(kU_a+m&w#uZ$8-X(M$FdBg9bQzBAl|6wWPhLTTd zBXy((u6@~z=9N*_Da{Zt%xH&W+H_-g-cwP&yIO?|KR?S$n#4-wi`k$aBFh+-DD`D` zfS*Znr+JlZOX_CiN%%T5qdm~`!PN8*GUD((Sj>~^deqODgsz_=`|D?1RAXuU@()>X zD1`Vruir4^vJ;k01CE+l_?I5;JNWb)u~qy8SyRdq-S~YcRzYI zIyEBO=dO%F#%hqaxvuKLI5kBi*lpEd@mNki|6P2&{CZkDkeLaHuubsCg^AEsx$dYM z+(s5?BZmW-eu|BF&#PapwxoU;8|nGzXMh9qe!_62QbV$;e})hCf$w-{QU467Hz4DP z8cWk;NCA65xd=hX&5tvtpaExuqxWMx?T&u>a~dqph#^4hK^bw*XgvLEsA*&w2*ure z;2GiOy(z$dbMvvoshcOsVyuA-xSRiQM!5N#@QkCbXvZ0?o9D`EZ#^U2eDfJG7+p^V zVk2*g&+CvtqdN3+OMwxEpYtOWU&z8eEhO9{%9PzRdNwX&Zb?$wZ6~&!iOcw|q=ZTS z0UGps^^Fe$PTO7H1zYN@2=9N)&p2E`s>xt$66K5$#mmQQ5IU{NC{=;nJV2v11(%N) zQNWi2aOTg&&k9@oELRd0H}1Tt2d_nYxOV8y9b{s($-hJJ+)5H(uMQ@ehnECPBZNYk zoo08yQD=c)iMVxEeCt)r&d8#hcc|_o@pK5q{c6-%;aA~j|Eph(vt~?@=oO^QwpjCeCLX$hstFmtC%Xjcz9l0@oDx%YOGc`6S#Z&- z!BYy22@^KDk&at4&PtC8;0smZ1qGgeTkVspFhjOS+F9YwFt~`FRZ`tI-7 zn~>cHG6sn1{rnH{XCz9aQmVTk`__9qYWj~E>yYi7wv(~%yr*EiMib77M){SjK9!OO zC|G|*)hKCsIO9CN11prTL9{tSyN)NYn6E+HIY*8i$!Mp8z?Yw1>mlquno&oMpy_KW z$eSotGQUHVs3JD9_VQj-SE@^rKg^JuX6>J}PUP{Eh!TD$GA2qb1t|Y`XbwTSAARtX z@FR-yAN{EJsf+~aQy|Z1$b|dS$e%yB zY8TXi=%|J-i1U(m0Ts3vQeg|_%Q~wmk1}SIpfQVzS19D2l*wM8vK(Ak*%tqE#xEtL z#|*YP@$s5h8}w$kHLy;vGNMaJuNZ6#k~I2TPXPNTfMq??Ia&8Ta@|qccq7P#$~)|u z4k^kP6{n6kXHG$Z=S7_IJFjsusVS*2D5I&ZVe!n-2=zEG!c;d1#@vgZP%vRwhC6C{ z{;i*;9bw!rWOmno{<5?ziE1tX-$ocNcIgLet8nF;7uS&EmC0dI@X&hxfNGJejkVSC;!^V=ZueZm?SGQ2?! z|9e@GRG##z*am)lT{**1L5N2&~kkDT0NGfcn^+jdl$~R|H+uhG$6TBz$ zoPNGYf67~(nd`{e7p}=%;s%ov6l>Xh*Je7?&3aH2))G7pfD#3qKJgajMQVNCu97Wp zUFHf2p9i4Yc2Q3@1tcd%xv-=#gT^FocT!h!v)ybj=@(Jc!_lseWf&{f80hH*(S4`^&* zJA*Qd@g6Ku%xR17l@%!AGM8wPy^b{__;IC$NRWV-E$iAR>u(8HgSdRMq1^Q)&2TMP z%;y=ZT_VLl%8JlI*mWc;1pDhD)bF1au13%d7ANRQ$NOz4uc9!SIv{I`G>Ay|?SXUv z{^k{Ha5?XUf_|XrSgdceh z&1&Q!(aWap7mnfcWtDR-317NCJ?pNAbdbRo8b;mFz;<1mRl!5Lz+ejvqXNr_ie_|4 zVmGQ1cPT2;|K?IXc4yT>*!ePWDee{-^D9>)z1$`hBf}TwRmT_ta0hX|O!9XBFiDL{ zk8=;l?mDox(fhLMN@`$@b1acHg03Kv(`p>Zx{ZS%Rlcs@_{S_i+!7Y^b^V~rWb2Pv zU3CzA4rVpRz4Q=l2eU?~5j4Uj>IugedklxN?n`(iq{x(VHJUEf{z9eNbu$p2K#tdP3 zJ6U;I1YCy0dLvjRfG!KT9{TSn6z^X)ki_FzUCGQYHZSR#5bZK#SK;5RZfw$ot)5ms zn>7SUzYEDc7wzm`210VdZpeaNc)MVpMGKZuMxO`{UW_pl4 zH)oc&jk=n3S3)sY#GoP)!g6!i+YJ zg23lZHc*nR|6D}XYPci}L(#>G6)aHq4f0kWJy*0MQ-cHCs~_t&8t)fm4j3VC5oh^CrPepyZAKATf&V1 zgmysoSmp<*h|w!7QRvz&@KQ9(q_B7|sWS<;&``i9MmsQG(A`kmt0HXlf0=bqlENA6 zNIVpRaZl@dRd^Z$XAwi6y%@hbcz5#GtXKHkB9twKMVANh#pn~300p-FP6J{JP;Why zn-4+PT@|sX`kz_ph|ZdD^|nJWu3nm~9tGzkPzMZoLvrwL+&^^W@ZhQ#Io!P}Mh+?e zW|a$+=;c)dvI>3u)t1$LeN~JcI{9bU36d%@Sp6k}vl@h#qp}|c(98}yLZKPvxh}$> zi~}2&zM{rp?TSjr+ZEJAj7wpOVrbj(r0f`kdtReOcIW0jG|j^AiU+`A-b44iW-GQa zd$y#;&~$&z1(EK1fIrt+WnXxA$Co;@x`?4A=KW&CVZ5*41)5? zo_S69@)xwjV&{lK2>{umDm&jmW!W!e$%72I)9tz@va~)iQ6tcU;`M63udM#HYhpG! zDkJ-zn24rNKT9u#272oZgVmU}Ynj;t>1CtWwNW(&z?Gnhch|%W$d9u2RLK9y2}omW zHeCz2F0Tb#2bSVWdtVndurN1!GF=O}F0TbZIBxx*>)iS@?V`WaBKoE*f9AUD*$vP}+5EU$#gCw|#H+2q$C{ z##SIkfCY$Na4H1ak zZ)K+-*PGgg@T&%_>+S41s1A*7>Y>~#1&nt&|J)Fb;DM|&6-M9co<(aal_SZw>A|Su z7cTQc{cnmO)c2-h64CGWx+#LtzI)j(B{c4)2ts2Z9It|pZwe=1@NXH;yhSjVa^gE< z_M_}w9;#tsK?h~8t%oFe?umSNs;)7+s%be;}a?vN6sxPDMLp8Z037EIKmiTT?0aYNoeIzC?nD(xgannQ(D&l^71pzv9Gv@BoS zSl*L&g)-7CLXDNx9+)q@v$w2v4<@tSSsc#OUzE90wfQW9epT6ee3?^PLPzq+plLZz z@i9o658e*tgF_mXFQ3Y?tdMF^e8`v6bJjWf1aA6u&Kr-Szq@lqW0^K1=M;Vgh2)Lp zPf!A!ZQIP8(QXdjHIK`gf~wvUE?W5(z~U}i@s@}jt7hf=DLkmS z?T#ooZz~R%v9{u&|Bf=|u{(g|ug?kQiKFO~TOxdYd`pCCpZqLO(sFi=A2~KJXD*s_ zOY4-)_T;`YGN~Ap9GjQ$vg+o8Jay_0im0S~qR2Aws{?ccSG~6m>}Nq=0cR z{ge`7UlCMT-YB7(Vk`qo6g%4nFUo1+g!eL&+MQW5yWK}-1qlczgC&6E)Wn=>621ya za{sslN)&J+EzKG2ssD~b@oI^xKqgEo=W1KGG^dF({sqtxd%*u9IW6!jSj=0^FSkg- z_c_bd2=>iJW3bC@pfsOtpa?u=Tg5^1i8M+!2b5S$_Lp3hGt(K@hg1u;4PzfwF}vTf z{%z7eDJMaVpkX#fj~PEMb$D{lx41JTs;RbddZ;`GLCHZqTwI?sMT#bEu4YHz2u9fc zDaV?kG>l9*o-NOSg>1~BvzcErPHZ&!lZOTb>+H$)jc{#I2O;RU4rxo4_3Guo0ZMVtJ^qjBoHu#3s z2Ut{^FSFQuTbx^v17Ly0_?16ZjXBGlt_h~q$zfwoGkgnxi~YPeZj+&=oZ0vWe4}By zKxTU7?M!WZ%sKrLE_nxdwpcj0LndVA)WOd14WBN^%cO!;hsC_@INu@tvvSU<5j27= zlm&b5PSMt2R}CngmfeQXBg7H0pXKCimT*fbi^i!J>s2vt57ykA9NY_{GBsSf(-Qj$ zvXNw0ZcY^Ws|s?#th^xLX&POEBPO;Zwwzvc{Q%->1pH19x2RTEdK>Kl=iU)L;4DTN zHaj%qj+iQo-JX+-(Aqnq2V4c=cn>&_)OtaCKnl)>&d|1iBp)s6zq9S!ol`=>2cT|z zNoB-=oB(_r7ITL>aEHvy%h{?%&=@lPe>FyfeL3CHvpakw3OvTDM<;IX()Q?eA=oW? zu-rrT@6Y)hm%R(>UD3}C7Bl^vC?E;H;#^IQ!CTCp&I{V(`YH@|kW1OS;wWFm(|72} z!iNTX#xC=fT969Ea|Q!Fcj>{?jrjDe&_g-?HR(q?Merr%uP$~Yr#6)K1gLxUP&q4~ zZ@2hLgSD)%eCP;t2HvTAz!JrE=o9aWE0GCfHv|)(XF0CqxoLwJ-PTNHk|(miU^Y>? z@8r9}eIp;_Tyc_?30OWAk_cgWk1_qO=rJhHfAnGU;wkOI=yg>E677Oq_>gkDEK#rL zIU7pSMKBJ_CAt7%xkUS9i6{;qSL&Na%&$9mx9+c;B;~bS zhzKPX3plVusY!d)(-A;H)j#RI(F;wuC!*G;_Y`2E=xC;>JXrV*Sv@2)|DK3k^B^oY z^2B?h+DB8d*u<~C5Jeh!Pcdr}vdTuz;zlOF7q>n~#|znbylj*svW>qeX{GbD*9+PB zb2S|KxU}^r^sJDLrz>FG#s_5^XF0O51NCg4F4oGDqpzfHWv%0Iz5CS4_8~eSPuBq@ zN)6Z=l(Sw(H~_p9gXDmU)@NYHg~6u*TIo3HQ)Ju#Kr?rN?KfSZG53 z0@*N7Mm|a=dybEGwt2c)XGu5)(&nL+AItJ7Eao!C+$VjiTKA|CG#nQ@;%Hl2%{t8q ze*>xV$j`5zUkrJdp&Egwcn7#!gK!c=;3?h|;efl z9`~>|Dg;}L)b+Hs#QXISc6nOQs}YoMnDY>Uf5T7?{2NB4uf|phdbZ-D6j)!1Pm!y2 ztd73nZ9}}QPH$VVuT?=z$StjF-Qnioq&R*oA@4j3jwR%O6+V^_m3u&L*0**=doPg2 z4Xj?pSJ5L+7FHs?H$AW9yexLaN%Cm}Yc=%cc@p2i+5&C6Kn^yr`WJ6VSC`$Xst|EKg#wl8T*t@X)N@bL{?AF z@p6hS@qmnPWF3Y)?~~JwtkE;xP~$Hw9XamP$T5>AjvDvrvdOX8^z^mq%j(CLd%zA9 z+)EP^<71h0^oT*a12I1KOPbmmAG?j0GkM};YxCdVC?g6<1&HTN<0&)t>`7U~$1+CX zV8Yt;Rcy|o8T7Xfd*p}Lc(Esb;7wij#P^-oV^2IQ`UCdF(|zl+C!WpNfIabqjfU)r z&yzM{Pkh$5F?-?@OHJ4l|JL_rPdq?3rB6<=b?%eIl9riHv_{FIFKf%^5I$*Q-BJ>@ zd%%WqgH{Av|MM|~-7U}E$jD%8S(ny~F%N$9Nt{KfDw2mCeIJOk2pzoRXAxcwv2Ma+ z0X=aRVJs-2y!a@l?*rS*P%FKvXBv1Z(iPm(4FmCPSj;!r9!xiMLen0Q_gh$7tFc%M ztl5_#uyK_AfIi5ToNi&=hBiDPi$1h2!6}e7`^a!rkmVKRGtW{oT^q z7j1h$dbY9-z&ijSPig=(x4+}1h~J$OK-wzW>dkBXov&#&HlJ5Ae(cGiUwmL5{UWmnP~K^{c^`xavKdlpos zTpOyYbYWSj>IrdRJ?I^!`H<)Xlm<2dj8@>(@A>5Z1Zw z*4_;3mcx<1tg&e&5wm6>)+(Ki)5%KOcpu%iuw13k8JrvtreV5mq+3oq9X+1tH+P{ zCxq0Hw82(-$i>seK5h=U@ihSbcXspj6hoCgk=Cy~^sB`V=|v`dxyPHtM_I?>Y0!qe zlD+^XicWUik3=OE4fF{){ny;K=(|UJMg$mnxG*xrCVWCrZ8DKTftjErYI8 zw1lNGfX$~mXa$oS=vg5)$93Sj4?=?}bwVc0woXDWkHzO~>Bry=pED@&n7lmlLsQ$y zIo7rks`ps9VI2s^KV{237N4>do`1?Z;Kpa+9K72(&$h!r4MqNr#axxl(a!ikKa zy<6m8J6?;dwed<=%)fRL>2AbD){k`%>Mf>UO-4Ng<6;`TRU99TaaVH(T#Cizt zgEVisPN1h`B(oRn}onXv7oIilQJKZ$-VHkh~?!+$H)C%L377&F6zW^xxUV zau;Wn^+~cm#*3la{OkYK>_si`3Ruj){ue(H!xt3-a|U#f8ITOd`+ ztT)~aOE@3P6Y_g1?R!nAJV#E=LP;)V~Hyn+IO`pS>pUdBT~*}Ek{1^-0ebk8LeYb z$)}=x1jqV&#RoP^3e6O~=^nMe|vzsI`Xo!*D+8$$;u z{Kyxj9^zzWYdsT*Lc4ERn|nxs3|8I=rocYZz{b6?PIQ+#Fj%n@O!-_6>n9&_Rg2_B z&>`pW)w7x)_h-D0rIMnI=aj-)<@Hf}zAHZis3b)6JOLlpqlQ&rjSp)b91 z7dX)s7Y@r;QFcLCUh9TuVsyTqnMKYmcEFjBj2yhnYLL5_W?(B)J%gP1cQ|ZFG9NjK-C9jL=gz^okO5!D$Oa|AN}gS)hdOwd+$DE1 zIwRZmWFgxgdu}`3HFroc^!T~xfgV5*=9CgWBZsMdjH=BRogDDt{^;P{<=(kTsPYRD ziYmSkIb!Ae=DtMUFSM2Ug>0`z^bN}l`^znfo@DeIH* zoI0_CcfBHVr=Z_nhyd~P|3}()z(-MhkF#?jq)dQ7NPv(Ap+iFNC84)al%~|sga85p zA_zk0kuGIGq$w7vpm2M+MiC1l0wTqNfL#zN((C`t%wG2G-d_0n`+q-QkIl^M^WK}f zvmD=$Vy|A4XCHSB-V4__6}~P#Is7_;6Y2HNH93|7c;U(cxCvJdP&aMZ-le43bty?> z%t55p2G?a;Ei!yB3n9-#4u(tJ(OAc+HBhhXGM9G0E^}$xb$L)2@P!Z7<&=GHBn}E& z<(7{%YM)<|*LsMn4i{^}EienG%xCHQ_q12zChSeMk*(Lwk!REHmwNxYOrz%~?cHP} zE|83$4%YjF!X~&vQ}>pzkt6WNk1@_lBRHN$H*2~sy)Ii}zNYIOtZTqL`cT(ZEKdYz zpVzYY-l60MvK~*IiBAv@-7DZp^hZ^LpGwGjk#Qm47wrn>wp__C1l_W>TK3* z#I;cN!OzPZvI@i1iu4sMhFA)j2#WBf5Wo_Shgr$NHZIYXRmUyZTU?>2%aT-s~Hi*vPSgM zy;bNr0|Gyf1RT~b-P_)XV9Ko>t<>SJ7=snmEfm5Qx19A1OFOkBnFReS-9`CVua~X$ zSh@?_yL|5iwx;?H%JwYZn@!>X;piK~!!f*Yo8W(?+W_9v+$P#uE_QJxq_7N4q7ImY zNMUXNl__jI+uLFc8S$?c{FzjEM!Uq2kjttA*J=Atd)-bNVWx-En09SEjF-5%vTd`4Xfurmt8NT%|~R4k6$F zYffL45FAfmA8UGU&{_cG5qhq`dIn5iAsV$OkS6(Bn04EL#Y94?Bk$izjkcc&)FqaQ zv7ZanI~OTwKS|5qMD`ccpQM|tX({`&Gzr(}{c=1iMsE6~lzlyEag%K*Z68TnAsDeF zhWdpjnu=*R)0iE;ZjmOXTDJbCA)%oG6_^1)7`bsg{( z-uP@VyBIxdF1aBj8WfH>iInm8O_?&jtz^F(t`uh3ukLLOL%{4LzBsC(N?JIOdE2Eed#h_8u{3#_f0vhw{AG~aA!LlQ2rQ`GBs@z8MpMa8R8}M(y{h%LW+`Bqn<$@UaN`(Rw*LS25^Hh~Vt z#lnU9+>!f71_aZnyPFj=(Sc(2y8Nv1H2d|ZghwHE;@k%nwz~8#n^nuk1RE#98o^2l)ZC$7C%(nlgP&Yy} zZ$J*$41)=v%-LYJ{RM@dzyw6*{A!MU0R0XZi{0Q?=i1wm6Iy#1uuPdMOJjQ!U|(C4 z9`hw4rR!!L6_L?m1%FNQF%UwB~_@@tY zoQ*Vj%ihsOrh>%A*~msC9P8Rg4N}K%vUgR~L7VKO6|(TIIn=iz6quOs_Yj3xbytM5 z8PCj&<+90{32Ga;kZG+Q*j0G@$1*O?Z?=CHXlCJh*ZvFrf?L>^9K^ccp}QgMpDUO9 zv!7BOg(&=`*Xv<$02S*^seb*wy|Y3uph_mzP1|p=H=%#xVzF*|;V!$d#a`ZsU`iS; z%|e)?oOa<7T?Tj(27t|(tLxgYs^~0Firmw@?w$@NvwJ9vCHOscJ+|8wLMq+Uybi-j zue+yt-971b)~w|Mk9D0-Ecj*_vorF{Jt;t!d$N0Jup6d3WaK@w>wW9<52)eYOY+C| zPZTosp4s(&(BXEc?TA*#?6o%ne*-SYb-Z5?9G?ge1xmbY0Xc-5Vc})hf=iJ3-g4Nt zP&YS}&w0e*uUu53L;IA6ZGdI1qu7aD`%m;s1ZmEPH#8|RH93O7B|3e!!3D|X53QMh z#my&@%f)-@3Aep%5Gin9w(uhiB3k$_t%Wawp%1*>t^|?}@!@GD!CD5Njxb}|w^6=I z4+rxyC)#VVu5GhRk&5?4l3BHRMUeXV6Z>vLTHZIec9eD(Y}$R9XukczK1Y#vFvH_A zg>=7fZuoc;%HLnw*TP5k?wcFFGJ@lYrYRS#7ne%3JJw0IJ1#*Mm~zbiZi2N>_$&Z> zLcB|U=D7W*{0|al(S^E%Td%(UqYadPvK0vnMBQ`WL_g#w&H{SD3 z+xGZA?7R1C9>tz~XFo;Dx1T3j4`j5y zfDuHrKKnrCV?Y$6fB9iqW)1hu>TJxf_CJaDfjKG%nqYtW&AyC$4a|($_yrwI4D{azLOdITI3g;s=prf; zafxn4coKcyXzhN`HGkT_rsN?M8v^R_19tE)n7Tj4PNE0Y15~WjW@|6mb7^TzOh2ww z78i?oK%=c$+i?)$BbYDK=#Mq_LfE#0;AUzdo$X`j6r~fIB9QS!NUv9 zK__aK#X70k|Jds*wike*>#Dsr9pOiLC{TWFO?{R~lrR)>lQd$P57D6ft84aPLT6zb zrbwNvp-mT5)5+9_+}Y%c1fuQ(9W4B&+xAxp{S?zM2|rCkJD>^gwHDq7#;FGuo~^lW|J!yMWS{@Qo<^@= zzC!lDtYx3B3Go}2{k@0wK?*JO2zj?j_G}H!_DG~iQs9xL;eBA7dOotxd1C)3s5-D? zk;6i((p1b?2wzpO@$;HlniLfu39nJdDC%{Ew#Voux#wsYtu?t@Sj+7L?C6cP%llQMHT_!_=SVXhP1@ zY&YB5c0Mq!i?!{n`a53&z}ZA@8r&$Xy6Gt_GH=raeZOIWCKpBx5tsC;-HWPW3jG}; zi#5GpPzlPzMj};_iADjEuVFaB`2cWLV_u&RiPYjk4afv^N zh){XU;J!!mlF64^+kTGQjJGXZ{0dgp?i?svSItq#FIxLvz_6lyzmn|>IMNuQyJ`jU zC^2-h7EtZiKy9i-8$3F1K&S3%sKzSM*5ed*v61?iCOtvM5=#zoPvFb7_b&I4M~&bw z-I#g9lf=@f*xy?5vOQS2rfNUh5P`~t?|tpxqpWdLwKUuK$F{<3y1i)_^G*yc#l}wQ z96{4DJWqu-pui5q6fI>WWg288YMy)mh8PUX;%bl*)rc*JR$lC*-$N`aok10Qv)nx4purO_iehyL5 zttnrgZP`*CWP1z5_@E_-xgJ59cXZ2XRNs6m)kSn~K6H{bI=i1j$GDg4)5&1}Wo^{g z=`qYpj3wK(RR_{DxLC9^0J5NVYC|K2shulWwX<03#GH{8tG9=A{P>AX#}7DD-*l&D z?G+uBCo&r^>Yxq{CNTwA_7L?28dV@v2NTg+pa5H@M-JNb1=UY7r%XQ>u@$)Pey!fs&)t z3v?(KC$ACs-elbDU)s^pxL8Ce0J4EgW+ho*Ec$a>9Xj0-W6}?#oDn0hBZ(e_F!a_| z8;(&IDRe!mG-tcznuETnuoErR^caR838JDo?iy_rz`veAK8M!j zp?rul_N5dN$_Esd^s6gH{bsznBb;1NWKKDU;e@{(RzyxA05AN_nz>lW4qzu%HCtUu ziV`VF1TjkzMp$-XH++(}cTQ2&GgECIMye4W@A&BKIn9!l3Abb{AC?8P3q$AEClv@w zT6(NeOfev=?feJtFQo1K18w1?g*aEA^8`Fmds<^MNMV^v&JSia9Gl9Mftuj``~-iV z$ZWWF*PHNu(^54Wws@e(nDeS>Urm}!WJ0UFLS1Jgi$E@8;;V0jV?T9_Dx`k5MjfZ9 zpRQ41C3l^$iC+$EspIh+NM4raAcKf(HxN=-pcl44z!N6rHELjinhCjs1GK2>Sf|!^Ewq?81b}LF%Np)i($Yvmy4T@pn(n2$-l`ti&Zc8+PwqNbMDE z(!rBCWkaYX!D}5n)Si1^ePAPLaL+yOzMEn=5o(ofvipWtrMju@q607!nccc>)eewj zv?fOurY}MszRt*dZ*|H}^*2It;4h=APSy0DYm=^eW4D@NBX8Qwt~xglPTjp%y+FuT zo8CR6nba~L9M?yiNzDRVK(vxEnyxR%Ix(ZdO39uCmmqu3bE?15?{N!?PWcQfLC`S|*VhdeyQ5j`rk};G+hnKg_NX-#_*UnPA?k1%5ri68G~7K+nd`FQ0`L+I7ocv< ze&~`L1@SJqqY|X|$XB38?sE`&WP8q@inJ@{EPCXOAiYP155Q*kSL2y@6$|r`!yR0r zTL+%Ra3_}?Sf@s@!H3jCfgG>tr|Jnhmy6&_q{8a6P>D{LP5Vq;M%DzeqMxh%=~@J1 z?jsLqUc!Pz9~r#@!6JI%;AqAd>Q1sNh&}p3ok>4JfO5{Z{jl1E=Hg;8+xaMnwfquB z>;?qWZ0DdR#m=Woq4qhVwjlHe%tudPzu;n#zyOdfOA0P!#4z#yMB{(vDg2G|8K3QN z8^}zBOOO>i9#@YBXkRtugqp1+SkJ?KZqi-4$q z;Y9HEE+{)nfFIY|nGuMah+b<+)V{x}pD1({QbGFT@lhEe>~7Z)McClq)uwbk1`wXP zsvvvtyE?%F^{qeD-gK80LYF_)H;f3}mC*80u=dq0EUa`2T!M^z;xF~Pr|i2PlkFb! zQ1wQO6S-OnKvcx7bYgCncPpLv%l}ro;GaORg{@iU`&ZlACSD3*y9+I-OoQR&`Gpk* zzce&+!cZ2mc57KO>7SM9j>hEBwUw_qS`zoQm7h53lh~UpA38b)7l(tw3%j!QL5^q0 zvO8>(0#lisJM4<$$ROUktObYn;x`r)%E{ttEV})o&yr| zl3wEXG>n9Dvf>JcPKSTEs5u}Q|2@rrCuWs~1F?KX|2q7cCCF-Ir-NlY_s{7K9}g7}jd9u(wHqH_!8Pa^RZ zf+t&6rGo54$zL;B(X9zp*o=t%U1=!};p@H9d%c@siw=h5{82=ddN$NiRZ%LkaZ8{@ zuWhSeo-N&$5JsV1&nvJ2P=h5T!OCIv68lTAt>F$@mHW6h?f81S@4&Hj5@i>|9o0j4 z_`pTmDy#WS;kK+Fb=073^TbLIW|6%d8J%095>0@G&!tWnJ(mABV#?q;bp}nUo0>VK zW{uiIYt(8`vwp++wTBJMtUaVbt%gJDWe#pwzh=YwgKF2R+hFkE8V%TqRWo8(#|X#E z5o!>~*hbt&SE(~g`(=7X^;U$Vx6)`Z=Qx!Ayug1(@SlBLA7h zeUUc|=}zSpIC2J=q63`_WEa@A-HrLuYivvGADrCG0{j|(mn^GY>yIk)Irtp-8L! z0dB&4oZ#X$Ge!ig+%axVtom`Hqd%cn5k6B+pHE`V%7J&@!Nr*s9W7bcSA)XH)nN5- zImZOWh<35RGb0X|YHkoE?TIC0%UXI<+0W%2zmTXx?DGnaq=@K3*f>jHoS(>6cOFXF z$*PWM_D_#)VJxhgBZ|f$Fb0BTkmy2eS4BrniU~-`3s-V9qp2nYO>)3`zmj9K5sM36 zTo+usB(E5p7KVkJ=pu-cZdw-E*il-oRK?LiAzh>{v>SqCOR74S(B8O2h~2G_I=Pwy z-qA1snn}qK>EHokjVzVFlZ3#H+)b8#T3lq zl#)i-kiR&PQMw@~)Y{VEgx%gfR)TFz^R~C0C=|*rY@gAAo-|8HjtMsPSN&NwyiA@; z#|Cogm+Cu)lFNnIcl8}3=oL)tKuj+7tvE^HFHMQx5vb9(Vp(EC#|lD1n7yH6H4O^U z!vyx43^d~<%>p6PUjx%TPD+KaUm8PP$6|6dUvMO`v?h)jv@9;Z_$x$NYzT{O3QcH0 zF!@P>=Vb1KDE&DwhG%KSce!jbo}pF^X_e z*WQsrSKwkj$1V(E?K(KxMqn&WM0W?rQu>|=EyD(oaqvs1V-Rk8w!aq*Qs2*jp%p!gD}}pV_{Y(SUckk|-Oh%v_qu>h3VXkaf#>50!fwkgW2rx-fZ zA73tK8z|y+@Z$Z~deV z%d4|jhBzkBpfD&EL-K8MY7(uW5*?TI8S2OiP^bPd6x^A{B1G;Zt!X)2BDK}YMC+OnY(SJ@s*LAw zwNRF0sX_-}swP)?(*l*J!j&`PgVYM69M=gQjnR`99!O?w$2jWJiMUu;V{{lhGse-# zh+q=+Een1kA7J72c3L&g(UGhQ6WeP@;rA`5j7xQuU;|@Uq>}gi;I~=8i%yQ;l^bD4 znuM~A?G_B7UQ{GIQ#e6z@n5@XaP^@DT_Fem4iNc9%7HS)Zhv?<*7L>UC^cfDV_q@x za~P}nmUB4Lbgw@K6CC*Gf5;6phl~Q+U3b`=BAF!M65YV?Bo@?R>@ss^d-l)wbIOs( zaJfiXI9!L5sUSRDrh<=OceoT%C0s62R>W{34HOTTX#n6w8nEUK_su#+1Pa2$#g1&4 zad6VUc;>FF8#5y|kg5SlvSmvh6UmF3awD%~zSvkrw)19^0 zuBx*_V{(C>-<~p%lm{O;GoLBPDF<7y84G5{#EWUYZ|Fd#gR`vSV2}vQo408-6xkLPg}UnP(go$xbQ*ZyN>^9?CQm0Qmpa zLmTySb!FGiEiO-f(4;ww+0;CGz9SfT(<5fi|$zkQ?oCvn74l5e|y4LXLG_6l*4R2_IO^L2C z0WyMm>1W4fIISIl%b|LvGh=qDIgSbtxHI`66@U7`DMm2Uo1 zxLCtr+5eo6Ga{r{_aw6;*BzDVA65umZaCgFA_xxA|2jUP_sj@35Jei^Ad|`PFIlN7 z%(U;Oqm4o%3nNDp-1N3Ch3mR)a(9NSY0lkt%rYXG7*4cem^VlB3xh;lqGxe<5@Uer zaC9hWeR1~9UB}bL+>7K@10URT{7O4w$@y$8x*aOf*{}!q9U}wOsZ$>~#=)uwLKI6z zsJmaP>57TVX%a3$?9M%QOoXd$uJ?BgqEk6x!>ndffX+A z*%I;>Zl~;rX53m+PPrtl_6N3w7@zzqt)?ELx$_iaDAzd|fPV?3rMRJPBLEBu;!r=e2ipT+lt#s}w^0wBH8!(t?$OT2D^8>hONNcWg zBp;ye^)k7eSZdVZ7}hW@H<2F3+KMDNH!gQJJ%NiwQa@aT4UNz3VMH(`z~2IyC)!#V zb!$Q{tgb%tV|K5I`bpW`!f=0+p$g{NX#8Hil@mMC&?WEBb^dgkPsNh>6=;Cu>r@jQNSYFdihyI}|&wO76B0WhLwSk)toN zUWj%n>KjG5_3)Y4B}K&mKKfOl>oqgqAy^ks;Y{V?$G zo*xwMC;BHvRXAq&Y7qIYsCnYjO(XPkQ8{rL(>V8&Aac8?dEzqI1ecqZTPlbIM_SHa zUeFa=wizwy0QnTUl1y+};Xp9f_#kJ3Ufu6#*oCuN6I9&tyAu3@g9W);`QnM1vb7$%}@bU2`v&CO-*h=!3%HUCoF;2qWTfI2$RCh#vyNe&GPL#pE`Z zbN%1qVZFvl#>0G4teCWCkz!_h(qeKZ?|3oyN=cFefAJ%?`pmnBb^&VDVlp5a%+Fm} znlvwF4v2*&xbE-do-9ea6tfJ7Lprbsh)TuebUvz>Y&8%{XdKGLMH*X&L}!hf77_uR zPR;S=ZX|RuCMn$i^|N%x4~1 zMZSYK){Y1?MD8t6Q0{Bw4;9QZ$Ifrh(vB`EPY!4;>*W#|BE?lqM#_7i<_;#`7n6~4 z27`%6`9!lhfd79+3JfpyzR{KKI=rO561MVUZX7$F{c)S{;%32uilbO*dpP%8gi=9( z^W7}udL=cZmn&}WJraw{aG^lkFI<4Ua2|y-M$VJZ>Q|)3$=7}GOOci5g-pBJ&T372 z`RUNTxD1=M-{)2hQCK3Nv&wnZY`Srs)Q=xi>Da=~=vlTxLC5)Hz)t6-$_V<7!4Y zcCwiB5t~yv7w-5y;PuNSb#!QvNs0o!GoGGY8j(V<k=|d0bGP>0A|98t?Sh6 zB$cQW-=E`gfZ4fhA}SDoyVu)CU$Xpu_*PMy3VsUdNH5&dGEir&zp^$e+3w( zvo(#KX9AuD{%OG8dd$AR^SFrn1@PqJ$!V3kls`W}9zu49JC!xnNZE?DB*0auL^eiscPd6TqVP(2IdmFLDi1)SLuw%EQJ2>Jcj4ET@;d747g+ zALlTdfQtpoN`0LjNlZyLv9GhK5lg5iFSf&2LNh=Z-p@HA5JDR(gn9j)os9@4oqQi5 zFf#!DYCd~@uyY5QSCWMealX!u+|3Oma0pEp_?IEh_sN`+eC8@n5XJe9XJ=fpqQ-l( z1WeywTDWPJ4|-+{b7tp%JT3$D;*hmpaGr{`euo22QT&=-Nc13i@4|_{{NIHmdrPu4 zS(}^@)|CQoKqOs8YO2v}3AsF>Q$`idTuE(@+U;6P;}3Qm`m%aD>v?JX9|4|7mHNCbk>k?FhJ{>&gvFO8)iDY(~*IYI?r#R$c;9`+=yFugdBc}!gk*5Ee>uf?d1we>m7e*EeCV*Wu z$61o?ndhuXKh77{1{~NjcdID&!hB~f`f0wv8sX;jj2TRjxqc;5QbYodRP#KpqWp`}^l z#m*Tr_sJ-xkC1U*aK51N(+T zb-A;X!j^opfU=a;)5G}Rz2Pg^rRCXColH5oOpVF#vA;aPj}0ph@RLj_2Qp$UNx%Rq zW?HxewaWEX&OLM*whr%iW2T@I9Xga9Jr!A+rEXdK8eM=OWSfZd_{(uIZxb5;%JcXJ z3^9h#^==`>Hn5fF@zdUPURB68KTEap$6yx+9vD&r37|{PQr9^rC||M~@ym&lAs8l<`1tO^sc$n>53yP)*P(a{ut<> z_xpaj-nD=a?6T_iqs|N)-H-JZ%Wrv6lTlDR2a8=TzaaSQgmWS}2YT?W+3z`FLlm5e zl~K_4r1KFWw_{}#{EOju6e#Cex7N;h0^sASA7~dK;PQz9cI^x-nI@KzOQvyU_-;~L zR{lHZEn2S(5^CI5Pd8G#jDG(N0a&pTVo+EtXyOu`gyyapaNp5sZwdCv569zMk|ve*wVjTP3R~tjW0^Y8pQ}yqO(zR&N&AL(J82sEeY9|%u4+XLz0=e zSiBcFr3~Bjvop?!ASSckvB%2N6($7jrDDJu{)_X75lg(a_8vwM9U;J8|J9ihfko0@ z>l^tS%;y{!!zWYJ@31L>F=S>M_q+20`XxpXnQ6oy&IJVc-2TJa&WI&sI*$>2GClm$ zxylGT?xZ^zZh&{Trq|5~LUq97fQSG+>D&ZQ#JM)Zec;t0}aBAKIWB z&J#8Omr2@yXVR*=l~$r#$9n1x$(rAUNFNj@BYgnpY>4!}aWc}^-E!^=Ca=cHNPh*x ziT-X#ob2xaUi5bXxQSS|u2Ty?c8(?VJ*@o2ELUeGZsm8bmh^30u1A0a7wgM8Z^yCE z6jy}^jHP+?m7~S0&@WAB8RYFabvtQ6w3{AO*Wyz zAXx7-GP+td3}3EdW4|Rq>cN7pHxzo;z=?a<%{b;L2O9yzJ5K47g2 zaXlXht4u(wO`)#8j9AydzL?CMVXksC1!IW;8we#m(jcA5BcHWWTy)$&g}e6AHU_Hv z&Dzd}5N>=@Hj+#6vJd_vUT#~?DCs%?XM_{vriVVz7^mr3AVD65 z__nmGCLvJ?eAA<0=*l<4F~^QQ99aGgvMVgSs3SfUm?i}XcI&Sp05LoP0UB} zauX9|6Ma6`L+*ay65W#UB$iB;vy1l^N3qn+?!^h#lOG>sMV9?~i4+!J)-{awO@LC| z7ywGoH(-dYG}{bJvJ%*HOz;MDLcO*!M z1bE?))@+4C##q;dvea8^nzOMna|e=tfGgikznmcVj0rW5~0ZFQ6jqySiLBP_QSM z)q>T$QzD9;uI)-KHD^WkioEY?7-TT{&Y3{I6F@CCumL2eRbapI7YBuNp?n^*>0eJr zB~fl!pZ{cV@Y-R$lwz#w`guj!&PJ}~Y;q&lx8%b_=|kHwrtqQFiPDFbCO*}N0*Q97 ziEE?s9dEOaR8l4Q0R#hLrsUc~DNm}l{82L^TI*2$wN_4BJNzb|}+h|Z()Oe;5M2glHn1EbH#U(mP2Jd=KB1vUs6U1}M zh9-zDE1TfW-mX}MG%72bpgx8ZO;E0^YyyB6O%Q;a7}*D?%j^S9Fa-GVCde!+Q?>WW zTZPp1eOkK`O8&m92o=dl`X4-RL|hPe{huC@mY8wrR!FwnE0 zE`5yYiahXZS@v4HgN=*`qW9@id0Qu1v>eFi>y&&5HAcFUjR<)n(y~?vbd;-y5kbt7 z7mspHrFAfZm?b|y+SQAITpy2iEj419^3!0gF|lDqOeEqGe^X~^FGF@6d50SWdLA1IEHxXK5B}Ioah1 zWWmTOt_}1%Yy^=3PoolD4>jRcS7{sl169hA@s?|yhS96ISa{(d@3$oj>hi?5evs?PQO5NKdcc4 zgwKc0c1?duH<2T|iTF9Np3nfZ6-KIyN|2F$nBz(#v<<36djg$tvA*2YCRr{w`C(~$ z0)zd~_?`d(wEYWQ>y6Az@wZGf0G3vIF)q>NXPp%WLa&1-;aN*G&-$m_#i>u3 zj;)asx62z`o1?9FmgVUO5q5c}AH-k&ryqjf0y`{hz#?y7Ex~qud$oMQVX)4)kfmS0 z8qe$%{*JU|^-N%g-*Kgo70GO1rHd7Vk3%wD2AR~Hr!VBsB{Rp49W`Qb=7bSrUaUT0Om(8)=BZp$>(Ho!svL!hwx{Xn8EJiPhzEecXDVNT%pRBOh4jL&9;5i>%#g`vASfld@$slF$|rtaF}+FFntN#_0S z^Q-Fb`M+FIdi_IJy+|Uq!E>eBjOq% zw~Y*3#Y)>Wm+MeO9YkGQ3w_b;I!>FQa=A}dr@Wr-5c#43$g9-rs-w`Zn2u0t^gh>2 z+8Y-OrJC<|^(I}*vo-r&n~hi|eToHO$coI_AI*L`;Hpa|mS-gnx-#e_%tdTdj4v-v zWXa7wy=AmpU=21Bx4?Gz#PtbTQl1q#1e2m=n4B04?Q90e0H<`!N@2E7T|Mb)3?MqB zWyom7b$;4~pNoVv>CvwvJmh|Gd21}2@|o*3vZp+|{~0J`M}V>;JkAdy&iLFlg?ezE zU~ac&uHD=E(bJi$v4>soJ;xs~WubT206S&;bG=I~eqSk!+4J?V3?r1r&zD+p8RPxoH$G7Mh5YAZ2hdSHcE>a*54= zAx6waH@WN56f*{is=%fkbG>F{VRBvV+E9aV{6Gjh*~ukd&1jAStE}{M46H6a;R>>m zo)!33avOI1ov=iNP{AL8&tBx=4{Snt_+wNBo|^k00^0SF22imYjZ2V!!k(vt&c~Jz zgW)--M2Cha-jjE1BQIsVaRvtYs}Q7gXK@H*JuVhLwW#RcTn$?nibR{9BJNTo?!HR*9-Y1;>(KUgb0$Q*M9{vrNRQ49^dJR`C z*0pVRDRQiWT!ydvlPlat{;41)(czbku#Ie4XDY~nH^7VSu>c(Tz&pXZ&S%siEa}PC zkxDE((a!}hBG$LJ2`^dEO0*IcRru0RHc{$G&}*Gsox*DxK|!*(ic+!?aNRur>t8tFD(7>cB)r-zheb_v2!HMDM7`ir;`4xIfmA8!(JG z<%iYeU)K}@SdM>PD~(usX1s*4L?{A+?Ut*O5y7O_41c}UO}8KjX>cXf%)(Bj68rWJ zj0gy>5z5ZG>-vb6#KoZOX#xnP?z`GXUMmQ1=~$ zT+%H2hY=Pmds4G3z>8%}YwO88XI-744ozSNTCVjB$78JeI_` z4;guwe8g$tBjRnIpGvy_C3G*QEV9$?%B)%$cLv>!YlLm~JvXWj{Tvtj5bDOc8(AQT z4&^&5g!1w3ObdjMOMw8402$-$yOm`;>g!5$qp|%x5 z$64;0Mg-v?hswEMqOCE4aFCI+-F-Nl6Z|B*p>+gS(K+rd^m#w5(7Emv!XE$7f~AdU zCQor&c#0VJ53J~(L?>d(x;sq6#ljsXR$-$Sx?33$Osw`qNp5tGg$VOPWM~ z7&&OE^w%o#rVEzhz8hwP_mkPU_huJY-)iU%3Mau;#U2fs*`AWdu~n5PJ!-Xfmx?Aa zRpstXUT>4JN81(k!F|)my`%)GSQYKg=)fzq1w{ZByE6r<%IjkO)(ik5TIbLFyONCY z?BdVMqSOiF-7g2x-c?OeMY>mItzU5uqTO+gaGrr9Mm3{ZxL7z3AdH^uu5Cn!+rqMckQKr|)7%3s5V}4C zik!AWxc{0PF5bg6CPn_lbw1OVp5d-!fi?EM(Ov0%ON4CqL?eQpB55@XZxAWcAeTT8 zDKg#)L8M3nf=G5-W-OPv}Jmuzm@RZlA5MIfFzQdr15a~pYyEk2GMz8^( zJU3{-;JG(mPX(`N7hBgAWhCVuXb3{#`YZ-IWt; z+#fKfZ@zVTwLn>1ED%`B1pLMR$pWTi?`zBU{|?uB$5od-Q0eMc(#62*jr<$D)825$ z+DJqAi(d$)x4;{kRq9oj8NTW&_beOfP~Dv2*O}nzzUfwMN3M8 zRF_>G2xXn&1DT}S2KNOzk1OauKwg52xi{DVP!5m{82SKtlNp1|tIjrVayN^>2-+kx z{B8H!^ka;{C!vCeI7^CAdF`;G^(u?z2py-g>q)NV^gNbN z>@EI?O7i?7S^eo<_eOB1HgE3tJ`4|$`rewYlg&H$vpAVHuuZ4CMGJ5)aY$+*a}r_27JBUJ(9Fa zVU2gV$Iv!r5-3KFXe3&si0k5_nPM8DFA zKKFE@YOP)F5LhJ3huTq%+SvT5@%4C=etn7=%qk{iGe2@auS6_H9C0JALgjKdX>kf$ zxW|2oVhnRM9J6W(G1A8Tb%Vl_NOq@WvfI_bRi1cKWU_N|3H(yAnj%+V4yo>Q3OSu3 zhuSBNu#k-RrN}%4@M5TK&0ns-1gOh!xi^vmsd9PXQHnfV_{GoezZ6m`)tqGi)HIJy zl}YxA*WHVdDyilq`wxQSC#26Ea36zXTd9^w_LdGTl5BAx#}7GyFb58~+fppJTzPB%@QMVY5>6YS0q+3#sxvSLEmJ(Im%DKSjH;aW3e`KjISkh5HnF(@(uZ zCa}?m-OrM(*4h=;VTE?HQe_u1CRH{aNF=%ttdr0(0hi?I;@h;%fV;nbToR?8JmQ|I z&@)_FUylN3Ydg~OxCGLZ_OjKPR95I~_bWyOF(BD7Z$y839b<_!2na)uxjjY%Q&KCX zsfY!Zw@U9k?oL){L=7aJNR^>ASoLq*RcR=$(Zxu>#X<}~Xm%3jDh32ttQbLSnqeb2 zjBobxDvLbfp32R1jk-td!mgEccXq4()+?i{9!PRH8$xJ5IYVDReNZ zlyCkYItxoPBXP0bRD)}pGvnjk&;#+yY7X zLC_mDaAquA)0`PwXm$y&i8EtDO><^!hv4+gm|D{^Gj`E|MeYaza*!F78&bo4U6)m( zSPPjQaY>$Wli5#~Av+GLDYN5%nt3%SJNB(9vt!RIZV!3QPscu*IIq@Jm;K{zq>v?k z>SgAE$OO9in!7b)*WCTd25S|E>j*-{S8B@iI0PJqf4&Vw66p~um7kjG82R~g!)e|!XgTKvJ#9^o)5$!qCkbz~t=U4?B4@rrvBX8GQ)X$udU7oZuXR9 zjY@gCvauPSXg09#%n0`KbLNV&q{N))jV{dxt@xA5gI z%+jRBKLK$sRq~WoXfHFae$p)CngwnsQ<}nyopsaxZpbcIfrKy|6A)QvC@RrgLETZ+ zGhd-Eqe=#Ar5W@!T*5Pf4PfMgi2+y)(f4hBIgB++@l>Hp&1mH1I_#4aPcX}5;Ix=PK;XHB5NObNjt<+H?YkCIQ$niQdSsXP&H6mHLteevv zPj=Ulxgr27-djcos4G(sqUL@b88vt6$f45r{XFq(Y<EVGP#T#{$9Wae!OS`4WxwaBb1W54L3Q23A| z#Qw755c^Z=B6x8uU{YP4X|&h}BoX_VLB1?Urh5+1cRA4jab8Qi72H5kjG%A{5~@r~ z&m`p_JHQPrR;y?NwVt`#=wZSy)!FkGX7rI{fhDm%0LIME-d_=}nh< zfj5!g>&ZOxixCz)=~zACNy_KaykZt=ErXneTG#pHo5SU+FJ2#4in86;-P%ArqQ3Mm zNI!)XcIz6%LDy$PruUJk**^?eBR;I#=RA&!?nOeY0P^VZwrJbcJ-N zulp6^uttaF!x5z%m#>k?N(AH+Yj;>XIX=K8{_U|I=?hm_=jl7CzHl}6WT>YFODqm< zwzR&EEzU0S>!pGJs@BVj69BhPQBQG)_r-S))S|;ZB?)zL4gvgayOqC*;lQ3O4}81p za6Y&@t#HK>O8&Ol!?OR{5Cs>Mdftw<9%Zq4qdl|eWz1WQ2L41P$ZC^c^jxC%P#v0m zC=HPEVs3D+J}WoY^N|t3)U~@c)i6W3vXnW_lcvy8n5q~|eEpKA4o$+voLK}1^o`ft zZ0$IYhuw?p9$_S4V(ztKF6@fM(e;NXkpm9N9I(IQ+VZ4b1DOL_bBXXMV`Fa^Wi*iU zl9?}i>f1#+|w@Fn!AjC>pGug$Mt9+3mV9tWqt!5`NPrzkcyr&Shbee~f%?-?*%^A%wn;OVjdFpGPkqX({z#RPNjBsqsyD$_1K3&-S z8J-#B(*}APK;6r)J}j$xom&4{2>A^Zb>CdjgVy7G z0^|bUH%+ikazcztbUEQk_?`Tw$*PLZ^5ofu((StH>Y%PCqoMS>p|5+^5i+Ww^t%y8 zSn#_ZFn;4}W&ke+G1lyb;{|fcor|G=U)4~$+VY0d)jZ3<1wy8IYBBMYGtE<+eAv+J zWkt37qqjGd9S(R|YZVYGC}cmh$zHWD>N}!Mz{1r4xHCJx+>=d?H`HAXVa4fKVgkHH zv~^Dcf{NY-D=ddGxI}LO)@&81S)h?r^AQ+dc-EI8t5(A(X4LoKSka9TxERG0Z=^dG z0UXi6VEXxTyu8NqE=}h|19(vlO*aEYF$TsZNT?ZWVGP`#jjQ9)#=w1ak&*NCZX})O z!dsq-M480lhlfuvf`ac1Y$S75Z@aDt+nJ!fIHU+4y3hS9!BrDJw6VS@Yo0V8}Ly!?_3 z%27Ri@Lao&WRGadp2~WutQZ1gh5nZu)kl11gM>GhP88Bu1t*G7SZ;Iho}|X8p@jFu zH%8tQ0)Oy>)qXq!h2^zvp6LnJeLgS}*~BSF2XAlp%n$TJOWF?4JUW1j=JP>5I!Ne? zN_4S(bhG3~bDrJli6(S30u|=~&>p<+ODdS0?E7!+@^n_{tNGyizNBKn70!=Kbm16$ zN#$9#YwNCLvbwQMohvzc++&MZp5B1w;a9gT-{UDn$nM56b?!96g8RP-+dVvW0=#&Y zApl!3{|ivp$pNbrKWWnZVC0~U+RrwYvA8|glWHS(G-+-cVL_S;nlu0}5_tfQT$-n} z-W$?OlbQ%GRp5TLexCO1$->Qr*oMQN7`FZZOf;|U^E^))H8CgjHCoWrZz99<+usviPSVY}#j##&5+zAZ}`c;6)&=7u>X^3_!AG`4qG6k!C%nne{89 zS?7{J{fz0-tn{01%+{>)S753|M|>;BMNWCzvaVlwit)0tw4Ui&Kj-;D|cyXwsNPYDBS^qwUwg-G;Gsv zpkb$J?4~poQ{6nLEyb#y1{3{#(i6gVob)_PRy8$yuJ3Cr%bVtTZfjQgG#LBuZ$0bD z`yiZgIO6-(2Oxl9Q#ps{h-z(J-*++qR#EBG|;66rB$a-y?$stH{c484so3I3VRFmbj z$+`}pL|0gZZDMvt<^x~8!7-wU?yQXvPM=`n~#94S6vu8cM-S_>rktZ0rb6SESmNxn^Y;fm+7jb6>C>6&XS z4J7kxI@b+oI@(+|U1;+>BkQ9_C7A7g%af|c-t=4zCFPsTrYma%g{CXqTsB=WJFo)Q z!#7@8TqD2s3s9%JpLh}!+KH17;GSdttByw$?<6up({Y$laM>#>gQbpDZQc(HhD}=` zonfY?>vSUu=sHrp8t&ajK5cGx z*Oi(H4mOv`EiJ~|nstrv9w(=pn_YIT3HHa5-jZxzVee$}dvi;-ecOk?mFr0M0Y&by zTcoaHpp12u17%#IYY$H%8evV1M`LuF)UY_K!6#cw4r^=1m!5$Rq*|JeC#Uh1)ASBR zDb6CdfvK(82XH3#Rg`xld0yk%3ywv@zz0kk&l01(i^%vivt3n9^|5I(4S-!sC}cLs zVeBhBMmPpGT}D=EF(70+NR9{9g7R1$z;NV?3V1=D3$3}#GV+Y`N2*o;K)Ad-}Bw&i!4-tpAK0$8o}>6mgt^ifi53i zg6#jTdtOo=G=E9cd`vnY^S~xKY;}n4+5Q>0?fi7J+s+Z(w9zFX{ip7kHL2{Km5~2w z6PS+iZ)jbw>}Ao`HwwvHq{Lh~?-nWXm;WtNWPdsS|kC%I9D5x(V5 z;u?oj{7Jk?a+*JhvpZ+_lQ`IPmOqKv@ptePlO>kXzvqQwg8c)3>f2b}3-tvoGQz_0 zZFDb`t%mpg5OP(x)ANlN_D`KKdMy9%zkg~fy`i^u#NV8q=)T~I-wTz*I)}&CV9j&Z zwu~`UYD1+b048pT3REd>h&tQIyPB42q0^SPQADE>s1swaClHVPds7b@d*KVF6%mB? z4aC;o{xlUAi}$=nwDD$;iY-{h=H7pdSbU*94#boh-FIIUW-TWAY-5_Yy{%J=P69q&c-Cf%Wp1jl!drhH_Gf5%+bbM&xi&0S|_t2pLlE2O&Cka0|?vOdYc&$#D2%X z2K(yJkF5~iYv*ljMBrvGuA3=RYBNI^F+F-3B7$0;zr3ODYwum8&{GIPw*2IdpyWAR zER?)(&P!S2KHgU3R0}q_ledi#)g(u8DaVQbL5_79-u4P5Es@viW(&i`2cEmwS!u~O zck$LV!5fWGLNb5+KQRBet9QIYt6?sB6V$=QV#|pG`nH^gu(9j*m1G;bc{A7-UAz%S zD%>8$^mftit*XSXfA6WuHrhuND}gL*Zknduy@?9#iP`fh7@}87s`$)P>G79fkhg38 zfxTUZ6t|8#;Tt80=N^yibV1YDxa15bQZ+_Aj4EsS0=i-g)UMf$-X7(`qha3s^~ zpm%Zcl0lFb3$y~_TE`<_X1d#wbsOw`$q36WiMZ6T;37T-SF#l!U-gOC9bNkf8x~0W zl+@Uv-j+5}sTI2aOGm3`!2!la;{LA)gOymfs%eSrqY>Uiv>8@LxN93j2|uF-F!GF= z0a(PixFn;u8G|%y#X?4T=b5M*4bonUiv^Qk#~bTskdFSKnn9Yp=v`wYGpr5L#UD)$ zlV^N6qcT}4*`OxspD+AIKlniw@c)BLW-+Dro)k7^f_Er&W7CN<1i7e0cW2glqIV7b z64jym(!RmPJjdDqP<}MefWbWyx!Frnd;>%I(Yz^>yhRAPB&<3d8EAq(hCEPcprMbB za;A6}Qd?^jE<6Pzf^!29Ot2>C3+jdJ;*YM8@U4KP!d|&4N8>mb->6J1N0n|ZHvuxI zd7Ii4*xKc={8$>ThhfDL_p+_!x(a-`ue29dkwSOXinbO(?&=1p>pIiBIvP7PlIbzj z(UI5|VpC{1D$${RihjVxO(;@aO_~j}KROwK%3;Q?x!xCPHZB$^{>6FT9uXYc*T=vI znr4IYSLS&O8>xsGt~B4fldi&4#Mo+bYqe&M7xv^0dyLWecsb1oU=7F^kJ=`&n@!a2~+-*pi58f?qmQJ?R-LO z=fk|6<5=3(D@qzwULwcB5mYk{qgbbg_wJ-_b#d0M$FUEkn*fl zx>6gp<~r|N3Te_tOu`YwPd*5lp`P8~{f%^LqtCn%=x=$TV&YvMXz__R$RQ@)SZ29y zgiCbe`F!k>yt!(srq1LxEb<-i+OYZ!YSe8|uR%(knr#1|H%h~0lip`>VS33oN|BX* zn%-+J2 zKJi`7o<3*JnVFrLy?di0I{9S5VCDgu>wls(|5Q1*h~GR6u{-sYoGS0$jaU@_bitqm zN!{rSI?tad-l9U4c~RYuf0U^TeoRKu&lG6*t;CsqQKQ!T>+;|Vb&rONnK?&cDdS7g zk)<>)JWoDb(2wIE8bH@>%F1IuSD~}hP;rN&Vba_U?tEa#_d$OQC$0rYv zVk1^UZYm*@;P^!h4p4?Hk+7lgCxRmt?ykh&HmdPl!73qr0EA3v+=G)>(ohCcF0fKN zaOhqj(-xs&!pHU8rP((sTG)K7(uI#!eYl9vCfoMWe{5{xc% zCNQ>@Z}z$LlU5@Nq4skFnUIlYq){?39dW3nF z^d@A9`5+FzG@CmRaUT@Cir#yxpckro4L027urkT3bhu0sGQ7Ch2?V4kv&?BvW+9R) z@Qb`2*g~77!CC!L!LD!v&UPOcd@5|ly0AGrF^7RjP6|cIX*6$7{aDYoPYO=+!afF-PB&(K zUZ4~H#e&IDao-^H%jXcfG6J#)G4y&tZ{Y=&AhZZ!;P(yk#N8-Z!pX@L!E#m%7FKOK zUSuJXA!t=GM9Ymqw3~m1CCj?`$Ajps;PYU?QP>(J#>;8QOa{Bw?m)fX$;wHp1j&Kc49jc4t;I%6V8$okip`lh7_U$_rn{I|4rcNj zs6qx^PHb~1a_4b{y;0_-toQ`7b}zPQ$irWj#R#%(4ZyK4{1L$CMbl1$r27SbaF?+v z;?_v1n1;U2_SRrp3jY|9*AZ>|vEUAO9piUJnidP492L&k{KQu)-0*#mB?V9g>i=ULDI{r+QP>IoIV1_3r zpb4p3too#C#jy~nTX;H0c*pa?rW7U!NZr{#&D&Sl!GcK!+LVGuSM@fR6Ofk}PpaU0 z22}HQUx!y=PW8!+x0}1(RsKJOmwT;@v4HPz2R<(I+w;{zM9xgL*ml&*px`J{H%; zeqya9qt5%_8Q89i3`yQ2Xi&6QK>8%_89p|ZhFVN2;~o-fzYn3I284gN;B0H=J&d=g zy;+dLcTJ@&(z^w;$fGIHA|qLmWYCn3QFW+z|Bl8OU%f#piR&!-<+b6hyiQ(NjYY_s zha{5?EEqRWG)4?9ojrjxt-(ioe$htD87P`-W4PuDli*ON_K*WkrqUd6jJ2M$&@-uY zGhc28?@^9_Lu{B=Sv=A(r&DRe0Dff+Q;DzklTO3kqb+nN)dPJ7hP2BYKYWAIQ%@f9WPqyCMnG-w_)vXQ1%O%PRWNSC>iMy`Kt? zvqH#zRmqg|YNR+Fg=u2+bq|Q|mxj{#K8rcaYTR=}X^k7)%bQb`zdDpAo_AP065lTm zrST2;mBn{BO;!)`9_D`?N=w^MLuuyeJo|2SH2z}1iq^J(0FN2QC`bal)-Wc(f$DGN zpCI!0Toa3WrFx$bx?vHrXpb4{9WL}`!6dS}4MPP(VK5>iP_*P1YRy4z?09^bw}=xa zuw11ucCz5S?_n#zFi)%D-YE(Kg|M&Gg#C$9bO&9H-7pwU*|eqwziAkaglw#VEE3ia zqml68DDOm`KQfF)LOzQ}B4Nug8VP{^cOxP22t>j=!)PSDJ&Z=eL>viw$9t`)-X)mB zma>9LBm~(=0II(g36b=!@%)M2DZEfSjR^%sM-#+b8fA5#EN5<+;@!X}rlB~S*C`~k zEXbVtlFhq@Z<;3U{9)GqYN;_L;o`S@b2-7xawFlg!U;lpuwW9K<}}pR>tcY7zusmS`kLAUpu;9#kUEl*GN?&E=~&op3KUO7^?m#|c2%1!qs z$q5v(Tu03l73Hy%4DUzbmRKw^yhnv2GClBykK-~3UPn8Uh7Qg2niRM*y{U=$46f8O z;1?OlHW6>ApY5&6p*yqZ3ZD71y|J9|Dnmujhe??_L9~$NOus5rZ>|?UBK#gpOWyc@ zDuZBs-%CS7=6h{&ToM1ZDE+iPOEvdm;irlo4gD8-_unW5XMWmWGeU}aKj4-pb5#ltVMK6#zL4Dytl<$DzqEU z#1aWdoeY9wz1?uMW2<+u9GAp8Ni%)b2)g1lBWEsuRpAa7iIsHtnTSLF+5C**G!mv^ z;j)-?4X5*h{yV(Uuxoxejmb4E9*Klm!)Z(c{@;y+KX$={?IhAR_ond2hSNYWBJUIY z8^e`>5V|V=)!}qCV8$MAJjZ`LTp0;jqFY2f6t&Nr!+$kgH4<_pTpS6UA8VpRr|TSP ziPce$hDzMK73b4>p8WmZdYn*y1QQ&JD!lV=w%|AM@-L{wxUD}nUyM@2<0JORy`Cn}Q5q7g-w ziHZPvWr|eN04Hfd>-?1WTovIZEGRT0CIz7Wac{ohW5J{Vbig0Ht$V_|Ap%I~784n* zq6|F$HyiI|RLAF?lxT9K>bnkc2`0VXX*THH2CKtha9j0um)7ofnH?Id z!)`Vq?%LY=p5jwEA9G2SNY$e|-*`t>CKcJv?b4v^x4bb48mmF8g=KraLvOHIEq05` zX>_=BW~a?))S5iD)w{t6vsPnt8tn$F*`+sV^;WyZVYg`w2A#?6bZQJ9?VwyQmk9en zv=+Bp@e632A9KSGiV$}&zVn;fc{3S#b|O^Ehe|iZgA>tb_eL{21_jl zr_1Q@XrD!(zh0|%n9O>&(dN<`G)9BPY1Lp;pf&Uc9o$MWD7S$}V_f$XSD9E8bAGor zsS>Fgl)UwX1s!VQJSq>*&(T!TkE!2EE>Jj<#rg%7PrN%wOLITi`!~) z8f|9ef4?}^8FkvT zUf@ed;1LzOtIDTV65*2VSmZzHJy!7^`qU=$>oUu#`A){EpPiy-;m91c>?|DlSNXGW zRk@LH#H}mJzxACtdcpKrvvy{vkX<106&+GZT{3cN)fQC^ix&2>o z5L#N_w?TMHUGftl$#dg;7x@=N$p8%_xjyTvDM_$yAh-pJRnI_|#k)}V+U%hWXXRz3&caumvJ<$E#WVUVBK zJ)$87jBM@OA!kFT7m^0z=WSUH#G9fwxAA2NV_8vnn{50j2EtnW?x?zrJeh5M^LQbH zL7``g+@m~0I{2b^!OcFxsxZ!|Me_nHfI6eNlMgmtz-l9kw)iFq9+o#b5Ay;8k(}rG z)Z%-eVVA2MizjQJ8|cMa_iIS+KNX{lO??>*4EC zj;cAj)Wg?CxT8uH0Wwhj9!sNgWXXsKduTLR5b6wN!lJQip;viNq5Q7Cr%-(H)> zx*NkeYDe;~NoeRGUvs|yXf%J2uca`Md5mMbHPR$;UHQJF@yebK-mi1jQPL-)Vj_l* zhR=pu>pqNj4E8muCv~_4D!$ujSL4yHwlZz;M{XJj0DHpQ1DOk)L-&faK< zZ*v6D!HzgS7F`(PdplwY{EKvXVEa_6Z-fflRzrQC3LDEYOB?1pBQa}`=KCXJAH&R; z?&~XOrtqd{j?A0n1yAH~UxDx(E03&7NsdS=-wxu=@6-{#)>V1mXlds+(eZ0zgaW}KHTWu{JoDVXeq02wK(>7`#j7#e#GM4uHb3Ju6e2vrBkTx=>zMJU z_&)4de{`%)q@K|yl2LKe${RM1spq&KWhB~`@3 zWz2GlTAMpI)x{WC1{4J+cs{A+PN4O%onw6(mC`iD5??++A1{G79tU^ugw-6c$cC z#GJU>*H#$8f{Bw-#-b;7`#Q@B;QbbSO8ooD$%0FbU=@NoE0f?yzJ9`DHC)>s7?a3w zC2exl2-5fZ9+ndj=8vo4cG>6C%5h0CmAuqh#Y^N^{qtk#8i<6dEsrYB%^U3Z-QxI* zW0~qHkr~UA;g?VJSiP)q$+3FRZwGxEPWXhihP+Ko`)o}&A;^MB^L#QE-97Ac$O)tm z=6*GRHQ3M2`7Bta9l2ROsExVqIdP1nlWx&Se~BlL6>nXE5In~v~K}-f-=RQ zb`hS%dW+?mzWsmt5&Ev#ea80*$GwhmrwJEXH1c-v)FbpYC7_eHgJA@cO$T9~-Fv~e zEs>2PNfoJek`L|Zh_0OVjTU}lT})c`J_9LFyBn?9?XRR|_oMu;;Go@|PuDl+>Z6zo z&`UHuw)L+$PGU#BQhS`I*Gs+w9E@WL7CE8Qo<$>Gi62M3QhOYI0k5thJ)#rl*~V9V zTj1t#B84>3cvcE|fjf2_J-BmvY)&0d!wbGmHMnJ%U;O;uFv$~N;0 z#*wpe@l$}UxYk(JS4~`N1kU6Y`zS0^93!H#b2v@OP%t!@6FbmRD(LK`ko{xjpq$L7(%rT%EN@#M*Ply+-hBTvtdefKy||0}++Ja-8*5YO$DWvtXH z;<1=F#?jA!YTxxWtO7Ta1Fm@dK*EieX2k`$82LZt2hzsR~X931{&Z>(o$&^M8b z9><6#L$T&)&m%C*urqKv6a!2;6k|!~=isEa7$UX>tHGbq3HHT2U(knNJ6tPT5idy??5?w*QpUy5W492UEf0f z0SJa~ItjmG+hs-Mr}4Ci)c6m~_4)V-bhAq=Ot#DLNWOe%0?n6zPc|&EEzaPQDiY=y z92D+J5C8R=Ky!6>5LfH`0HpcB_oXm~l}UE?j-0^k@dn)FeE-mzOeG;3%qofgd>Z}U zpM2{$Aq$HLB}=k+BQ@Sr;T&6ufaB=i*SRzKLldZn_p?@z8n73P#dq)L{pN#PdtMSf ze3r!{9?lm%4EUr@hw&oza3w0ejAHHwXY#j1l}cDqM5TbJ(rL~=o#P*fD*ejh5tY6a zRRa9VREi6u?%R?6JfY3R@P026{oazrAszUuD*g`y6APB6Mcr92$+@P9Xj(OYH#q^B zxumJ#rd9V3ljADV?Nv3sLK6#twU+L4WFbt4_&v&>6Q@3OLi=m@Zwpzhc6hLqw3>lP zoZuHp=Rxt>4s|Tg62X6&6ZSGJ=-8J`Z}M3%@!H;rsCsR`D;&Y|Y6RLk;5wNE;^x=X za682K*T``dZoVzLnKg$j5+UD+7LlHZ>-s zSNKtlpjn*%85M#bS;-$$cz~M*4Z*NhG;*-O!qYKJngi zb;)EvT!~hHpyYai*?hLB)q0t@!QK=YGn3PeiM^hxihfP-ui^7W%?`>?@yD$K?Tnaatw%nu+{yu!#WExJXEEWkT>ts4s&`zdfg)p+nSRu@_ z)K30we5R&0XV9P)@z7T=Ts{)<yI*Gpp3(vR21at8D&VQSmF~6u&f?&ZwF$IP35fbn{>4`P%?G z%RiGpV@Gr zb%Kww46BKDeUR0G3Au|3ilT9TxUC}DrW$9LC1et3zf7UWNI)$TU#xj_c*R1b=JZ5Q z@=xT2p*AKi6tVNkUyYq{HfXUKHX1wAFlSlpxNJ0bUbg#xg%ch&8ar!PJknybY&3QN zpNyT=4fr$lR6M8o?!UIQ;LnJ9on+;a7ClDwLT^m<&*3kLYQ4dt5w)Hd)dKX&0;!UL z=#M-K#;vs@qSr5?UO%z|v0faEQO^4YdKS#^PprYm*_BE9A#vwpJ-aeV*Rj(i{Tr|> zm!$s-k%+H=xQFHaxg`B_Ss>sf?WB4Sw$pYVU{|(tUpvXv9$5R@5XrmYU-Be9N>too zr%PP+RsQ%Y{9?N@6;GApy|~UlE0W(p{7^3aE|YLcx0pg*zz?z0SOT4h)xEH`jMeJt zH+1}K^~8!wzNcuTzdt9u!m@<5tw)55ECi2EqA^ZrBMcl5+vFdPHsp?vmeVRmAbFxm zZ1~g9;k~`Z{}LyB#!69i-5qMQIPJ%?+@yw!LY*d^ZGyIK^IxubwK_FO?@es7aP2bT zcUA*D0gL~Ifw0`)wVlmK4D(Q&ojplUFm>MHpT`NY4yKtDwmmD_#6Ym<%-`O*EkN+CS zjm4AN;9(z`uce z97`^@uKc=a@E!+UB-?-YiH>O4i~f3O)&YMUT7A&Jmpe|)lfIWJ4R0FQ8w`UaRATXeSeVgl&{F3XRyfwnTs*QuO0h>k3nNCQMPAa|`@h2rV2*K`tks8USXx;9yb;^fw~U4(Qc1>e$%?jG~MqC!BH zI~-~Rb58hI$O#l4C{go3MV;!ilQ3Y|=){G@UK5LC`xC#;NyiIaPx}KL|AZ4=O?-Kp z42^WC%}$!)0iD$4Fo8r?|J0v>V6s5;13u$urVFiCKsX-mU2@X%p})Q0-@$+3RMxWJ zM3ZkiX}9W_v7L0Q*ZCiv%6i5}(l;g{-2EQ^JieMsb(j|=;gbGS4BT-40d@XT|9SCc ze}1H3a4})4NT;!)B-S;w>ah@}ZSuVS6Jhr^)oJje32pNEw+W+JnYcK_jbI=Qzm0zX zjBw9Re0aX8r%jAq&Rcho9v_S6=lW2uH9%jiA%({?2j&vcr1g>;B(_ zy(|IQbot>M{%5e5%s2fV5F3Ma6|HS+FZo-bMVI{D zh1XfmipK1uMo)HYjeFal9`T7Q3SB*-A1K^lc@XVBgE+kG?=O5NdjfCrnWU}}xqsxs zBhFrNA27H~gOU%(EV|- z=8~VdmC13U*p45%=~Q^`4S!dT|Jtogj4l~oPt1HB|BG8njM6**)Y&0i>fzJ*2Rm`V z5OO1T0fUALtS$6C7YmWvHPrr#X#3wCv9lh^9OP-icbrOtpxsmnnYy6$R1yVfQp>`( z`2JIA5cFZui1Rz6^pXAq9HP56Pky)?hs0Rk^}xk!nu#u ze7-f-vzjmblo!m?7&j}j`7dQ`85}aAyj7*}7AN#$X{8ZmDhnn_x8F2RZuP=M4sGia z8zmcgeZ~Kqnr?r>cpl}~+)~fu5DGWK#f7X$V!(q3 z+jPPP7K{yu07R7Bqkj`Qg;Z_#Dk=EY(>yEc6h?A#3L>Lt?%9WHDhZ;oE}<#@@u0L35A2vw$kI#=wL#j ziyuB+nG@QJei%00vnH`{ILAAtE7O6#422HG(=?z@gs+9d zd21$bjul;1JwskqEL;XHD))eIxuOEBi3h*HLjPP*Nf!l$ib`6G!j^oG4C>Qv8H~4y z^41Iw6qU6R{P+xI?Bt7_#%9o$LQqc@qVKZ&wO_OpYB|s5u7y8w{LBnxJRMh%;qu~v z^3pVdUqRebZV~b&iGtLWQPd@TuMFCdR*-=gKTKGA#tZ62WuN2#GKW@=HBWAz!T>Lv zW?4#k@g){aO2O$2)N(-KUO9o3r7o!vtQuI@MNUBS=&-iOh6tal5ol(-(n3xksdPt; zVA|lqC*=gBF6GXAWrgt248~ieE{&V@$`~FDnLMO$o199KJ>M*IA;W?c(B-Lx|Kf#2 zmNhv9(|872l2$lPXv{v5l-IIg;!hyhlU~?HP9T-CK57KZh8JE`As{O+qtpnvk%gbg z2_%)Ksu64-rL;lenYYzEQ$d)auSXYNOj6&C1HL5_spLqcjXVf@$Q_5PqNM4CtK!s; zRna>Y$l7AroeJb%gF~m#(BGKWX6AB@A=*R>zh?w z0b5fxH$0!kFfr{c@V6{Ou0R%dPW+|PdB$;fYv;*wtYm#mKkW`tirC$6$_YO z4rT=Z#awbSFntc8%K?1&EghA62K$*f;3)n@_Ip2zf06A=$M7$*wtgJ{B1>lEuBO!oIvk=BQ_CRUXmN!C=tSfAZE@v0kl5-(<11?Z9 z;6cYzhl~2kaV4W3QxXsz^OCDJlv600L_82D^B~!fXx>!#tZ^_{S5!i@938P@K<2@>t zi4Hxbm!aZ>8P7tbaEn4s;_4dF*Lj6m!X4IdvK0Ca1CeOZXWOAN|HeFHPTxe%0z|PJ zBQhxhM0)y0MnMw2WOg5_woD*7eS@m)DjdK!nT4-y>A(9~YZb=U0p*Ek*OIZ3`nh&@ z;R4<|i;m4qSkX`hAY(KAEIQuJMTOV-;j`$RV;GA@#=Bi-kzo?2N9n=P;#nAhWYH?j zv!?q%nbo2)D_AK+nWdsK%N{Sh#qSZ7*~Ov}W!8wwEdAe*)g-)T)Y$nu5yhbw+sdYUQ zo-BMULP%g9(tst2u@ws@0Sk!qLv%6)9sb^czc=CUE%>_x ze{aLzW%#?|`H$zFzNh)yv&qdTajf1_$kA2PFwcV1iY^L2vIa;M?GF}Aq7e{jG|DJQ zbH>bJIskFPkF$|!Mp1t`cSWk*Sl$O>VX8K>s5Zy9ouig(bIViFT^_q;6jr3VWxyKsd!&p}J(6lvsC#H4hVfS3fh?zu(n<+zdr2TLH6&~;u>%V<_F@nrh9 zSL(GB7AnY6u}*a#EqYWghcwJE_fmtffh8af1FY%!DOLtKKgE=&9V%|4OQZ9P`f<^R z7_OpvV-^;*6P{+^^t2XWBK)mOfh9r2XXjXC;_m+rJL{_OG2irpikb?q6`Il`8au(il@j-FHA4`dRfs%A$Bg) z1Bj?Pb5YUqqBcSu_K6}391bHYQC$>>z!S%mr{E5}V>7wAbo^k!0z%`5{N1qYeJ&Y3 zc>1g=YRK^;=hE>*I*Ue%H z4C3F{!k-Wnp4zGP5{*_U5J?nn#hK%pat#PGIbPDR1_wP;#u<z@0pg2JRTRt-s>H4eNqU3lDau8&?hk6CAn+=F!mI zvb|^we{LQL-MUif-lOKei2T;V`e@;fA|HQg9*JBA=|>sT%R7s@^PkRB4P5as@Qc6# z7SQ?U;s0^qf)eV1tKK<1U+*ru$_dpTW#Wds6D!j@HA+12!^Q%F9S)s5Q}z}O<{}zB zDsFK|WSNl2Zt^Hfd%Wm#p$YqhbOkam*Ro(zhyan!%ga-cd3hftMKneX&C46ndHKJW z7uAxB#DNzpSyWTBsKKLjS4Dk>D-%p)S4G^RqVAk9oxvbeLEiN!ozA=1CsHq8&Vq?) zfQY``R69{nQo!XYk4;Y&wy09%H=Ll8Qz&c^L|beX+d_73l=pzFP06~!-6x7>3TIhe zNPj-_DDoUBYA&2%pI}v_WrEaNDuLnwrpcUeg(XwOR~;2HGWV@G52VJ?!>nIFO7p;% zScEJOls-zQdcJ3hn)7_be3}d%n$O^oWN`aYnhXG+?0#pR!r+qaZ0gSdi>${sL&0Bi zW6>RL$+EDMzT=}~jVPhnD{jGvH3=naGU?MX5J|Ep^<+^mUg*O-M9Ixc`UxpANNLGX zZa(UA21X1rR5HNadZws@Fpk2K!DAzoc;&|D!Vy+E zsZSqg!6d&OnUBuAbEAWtfQ&T@)Nmg!x-m zYav#RAoIf;tKjH7;x`4jw4I_&zdxd#+^|Kr2_%$F77ynft3BSrEpFM_e1n9IHtvTEW9@42m^14BE890w*uD)fBfHxG0-#xx0+V;i*I_`-rsr!ly7R)fxAu{s?NjYe