diff --git a/master/.buildinfo b/master/.buildinfo index f7d5c6875..65daf4956 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 9cb96115664bc677d61bbac03a5c462c +config: cf640450105409ea8d343a1d7dcfce96 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 2957a3404..a54a984d9 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 5c1e4d42b..c8e69d2d0 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index fccf1a879..7689654da 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 1e4d02e13..f06fafb29 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 2ff0339b1..7b224d6f4 100644 Binary files a/master/.doctrees/cleanlab/data_valuation.doctree and b/master/.doctrees/cleanlab/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index dc1cd9e60..45d22c3b7 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 1d5f7fb2e..2e928734f 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree and b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 25042f538..b06d788ce 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 9eb17d11d..9af99f1fe 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 168c38b82..5702a1d2b 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 86b148f13..c6cf8ca92 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 222d770b7..2a2233fdc 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/table.doctree and b/master/.doctrees/cleanlab/datalab/guide/table.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index b69d192df..8da589bc6 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 79106c55b..39a06ec42 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 86c6f521e..87b1696e9 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index c34fa4af1..26a53893c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index b4df7d617..9e02b34a3 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 9dcbded9a..5f903ca07 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index d303c1233..3f947394a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 006889c9d..bc87ec736 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 5959cd4da..d931267fe 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index a41b8ac29..f2019b6d1 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 779b470aa..85cdf6309 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 54dac4fb3..d64e6305b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 36c81ac4f..9d41cd193 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 26036ea84..e026f9493 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index a07a4a86c..65117eb9a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 7d672f7fc..c7f4a26de 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 0ac823388..f36b85e07 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index c0b57d375..c5236b436 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index dd1b42f26..6499f4959 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index fe7f68c7a..768917be3 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 258854bdc..b58ca963b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 67a7fd012..7567381c9 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree and b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index c36d2842a..582c58bd6 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index af4241573..745d75f5a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/task.doctree and b/master/.doctrees/cleanlab/datalab/internal/task.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 0eeab74e4..b7465331b 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index cf5990bed..89466f766 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 61277c5a3..1403b0ced 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index ec5204864..dbfc6b1eb 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 6e37210ea..4596b15f6 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 3449ac622..95773e815 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index a3f9fbb34..460a58f1b 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 79efdfb42..54e0e17bd 100644 Binary files a/master/.doctrees/cleanlab/experimental/span_classification.doctree and b/master/.doctrees/cleanlab/experimental/span_classification.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 59ccd26a2..dfbd58e27 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index e7692dba7..0b0be6498 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index d87d8a670..4578871d1 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index b23ea8961..19b3b4996 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 6060b1d99..0b5e7eede 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index f0ee11b4d..e0b4fac88 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 7868fba54..6b6e6ec89 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index f83f232c7..a18c32ef9 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/index.doctree and b/master/.doctrees/cleanlab/internal/neighbor/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index b29211706..6a2f1984e 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree and b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 97e127385..da45a97f2 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree and b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index 8b2faa669..529a352cc 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/search.doctree and b/master/.doctrees/cleanlab/internal/neighbor/search.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index f4e2f3f8e..9c6c3794d 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 29b4c6e18..043dcd98a 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index ea876e3d3..0e9dcfe4a 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 121f29fad..4640f563d 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index ff6afa7a7..0841e63e1 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 82b608fdb..5ca3e6357 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 139a6e05d..fb2c95f9f 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index e76375bdf..e88493bd8 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 6c1c3d3b6..6a1cd6f99 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 0af135a3d..efeb7071c 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index b90f8a3c6..2ba613247 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 7d4174e18..c70ff4db4 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 52d79598d..dd151caef 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 2a9193b15..e593a9aa1 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 427ebe2cb..e3c484218 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index c96e21f8e..548d9bef6 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index dbf6f306d..f1a038377 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index c401e0c67..7793b90f3 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index f74ef8814..552456de6 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 604f1510c..06e949c8c 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index e2047534e..fc3256396 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 9e8cc5b03..8bec5b342 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 9626df1d8..c3d9857ff 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 8e421a32a..1f0b11637 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 09435c1a7..b6470322b 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 43569b1a8..900839f52 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index b877b7d98..06822659f 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 3bdc6a500..32d07ec74 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index ee6494c10..f9884755c 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index 396903b5d..184c038b2 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 7e0f0ca37..1c66920dc 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 524ef1091..813d71348 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:00.543675Z", - "iopub.status.busy": "2024-08-08T18:53:00.543262Z", - "iopub.status.idle": "2024-08-08T18:53:02.024210Z", - "shell.execute_reply": "2024-08-08T18:53:02.023643Z" + "iopub.execute_input": "2024-08-12T10:31:00.463356Z", + "iopub.status.busy": "2024-08-12T10:31:00.462851Z", + "iopub.status.idle": "2024-08-12T10:31:02.047524Z", + "shell.execute_reply": "2024-08-12T10:31:02.046835Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:02.026764Z", - "iopub.status.busy": "2024-08-08T18:53:02.026455Z", - "iopub.status.idle": "2024-08-08T18:53:02.045763Z", - "shell.execute_reply": "2024-08-08T18:53:02.045207Z" + "iopub.execute_input": "2024-08-12T10:31:02.050367Z", + "iopub.status.busy": "2024-08-12T10:31:02.049990Z", + "iopub.status.idle": "2024-08-12T10:31:02.069900Z", + "shell.execute_reply": "2024-08-12T10:31:02.069290Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:02.048477Z", - "iopub.status.busy": "2024-08-08T18:53:02.047929Z", - "iopub.status.idle": "2024-08-08T18:53:02.259654Z", - "shell.execute_reply": "2024-08-08T18:53:02.259026Z" + "iopub.execute_input": "2024-08-12T10:31:02.072544Z", + "iopub.status.busy": "2024-08-12T10:31:02.072099Z", + "iopub.status.idle": "2024-08-12T10:31:02.302446Z", + "shell.execute_reply": "2024-08-12T10:31:02.301780Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:02.294496Z", - "iopub.status.busy": "2024-08-08T18:53:02.294073Z", - "iopub.status.idle": "2024-08-08T18:53:02.297700Z", - "shell.execute_reply": "2024-08-08T18:53:02.297264Z" + "iopub.execute_input": "2024-08-12T10:31:02.334639Z", + "iopub.status.busy": "2024-08-12T10:31:02.334107Z", + "iopub.status.idle": "2024-08-12T10:31:02.338211Z", + "shell.execute_reply": "2024-08-12T10:31:02.337651Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:02.299789Z", - "iopub.status.busy": "2024-08-08T18:53:02.299487Z", - "iopub.status.idle": "2024-08-08T18:53:02.308052Z", - "shell.execute_reply": "2024-08-08T18:53:02.307601Z" + "iopub.execute_input": "2024-08-12T10:31:02.340501Z", + "iopub.status.busy": "2024-08-12T10:31:02.340140Z", + "iopub.status.idle": "2024-08-12T10:31:02.348891Z", + "shell.execute_reply": "2024-08-12T10:31:02.348288Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:02.310321Z", - "iopub.status.busy": "2024-08-08T18:53:02.309983Z", - "iopub.status.idle": "2024-08-08T18:53:02.312486Z", - "shell.execute_reply": "2024-08-08T18:53:02.312044Z" + "iopub.execute_input": "2024-08-12T10:31:02.351479Z", + "iopub.status.busy": "2024-08-12T10:31:02.351121Z", + "iopub.status.idle": "2024-08-12T10:31:02.353720Z", + "shell.execute_reply": "2024-08-12T10:31:02.353249Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:02.314538Z", - "iopub.status.busy": "2024-08-08T18:53:02.314203Z", - "iopub.status.idle": "2024-08-08T18:53:02.834221Z", - "shell.execute_reply": "2024-08-08T18:53:02.833675Z" + "iopub.execute_input": "2024-08-12T10:31:02.355946Z", + "iopub.status.busy": "2024-08-12T10:31:02.355599Z", + "iopub.status.idle": "2024-08-12T10:31:02.883586Z", + "shell.execute_reply": "2024-08-12T10:31:02.883087Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:02.836846Z", - "iopub.status.busy": "2024-08-08T18:53:02.836453Z", - "iopub.status.idle": "2024-08-08T18:53:04.867166Z", - "shell.execute_reply": "2024-08-08T18:53:04.866464Z" + "iopub.execute_input": "2024-08-12T10:31:02.886048Z", + "iopub.status.busy": "2024-08-12T10:31:02.885693Z", + "iopub.status.idle": "2024-08-12T10:31:05.027547Z", + "shell.execute_reply": "2024-08-12T10:31:05.026915Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:04.869789Z", - "iopub.status.busy": "2024-08-08T18:53:04.869146Z", - "iopub.status.idle": "2024-08-08T18:53:04.879653Z", - "shell.execute_reply": "2024-08-08T18:53:04.879122Z" + "iopub.execute_input": "2024-08-12T10:31:05.030654Z", + "iopub.status.busy": "2024-08-12T10:31:05.029701Z", + "iopub.status.idle": "2024-08-12T10:31:05.040437Z", + "shell.execute_reply": "2024-08-12T10:31:05.039970Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:04.881845Z", - "iopub.status.busy": "2024-08-08T18:53:04.881386Z", - "iopub.status.idle": "2024-08-08T18:53:04.885661Z", - "shell.execute_reply": "2024-08-08T18:53:04.885109Z" + "iopub.execute_input": "2024-08-12T10:31:05.042737Z", + "iopub.status.busy": "2024-08-12T10:31:05.042378Z", + "iopub.status.idle": "2024-08-12T10:31:05.046796Z", + "shell.execute_reply": "2024-08-12T10:31:05.046322Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:04.888005Z", - "iopub.status.busy": "2024-08-08T18:53:04.887662Z", - "iopub.status.idle": "2024-08-08T18:53:04.894381Z", - "shell.execute_reply": "2024-08-08T18:53:04.893952Z" + "iopub.execute_input": "2024-08-12T10:31:05.048880Z", + "iopub.status.busy": "2024-08-12T10:31:05.048557Z", + "iopub.status.idle": "2024-08-12T10:31:05.056263Z", + "shell.execute_reply": "2024-08-12T10:31:05.055716Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:04.896556Z", - "iopub.status.busy": "2024-08-08T18:53:04.896226Z", - "iopub.status.idle": "2024-08-08T18:53:05.009071Z", - "shell.execute_reply": "2024-08-08T18:53:05.008556Z" + "iopub.execute_input": "2024-08-12T10:31:05.058466Z", + "iopub.status.busy": "2024-08-12T10:31:05.058117Z", + "iopub.status.idle": "2024-08-12T10:31:05.172389Z", + "shell.execute_reply": "2024-08-12T10:31:05.171830Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:05.011216Z", - "iopub.status.busy": "2024-08-08T18:53:05.010890Z", - "iopub.status.idle": "2024-08-08T18:53:05.013680Z", - "shell.execute_reply": "2024-08-08T18:53:05.013228Z" + "iopub.execute_input": "2024-08-12T10:31:05.174639Z", + "iopub.status.busy": "2024-08-12T10:31:05.174253Z", + "iopub.status.idle": "2024-08-12T10:31:05.177235Z", + "shell.execute_reply": "2024-08-12T10:31:05.176793Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:05.015527Z", - "iopub.status.busy": "2024-08-08T18:53:05.015354Z", - "iopub.status.idle": "2024-08-08T18:53:07.128537Z", - "shell.execute_reply": "2024-08-08T18:53:07.127880Z" + "iopub.execute_input": "2024-08-12T10:31:05.179303Z", + "iopub.status.busy": "2024-08-12T10:31:05.178961Z", + "iopub.status.idle": "2024-08-12T10:31:07.400050Z", + "shell.execute_reply": "2024-08-12T10:31:07.399213Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:07.131691Z", - "iopub.status.busy": "2024-08-08T18:53:07.130868Z", - "iopub.status.idle": "2024-08-08T18:53:07.142106Z", - "shell.execute_reply": "2024-08-08T18:53:07.141539Z" + "iopub.execute_input": "2024-08-12T10:31:07.403380Z", + "iopub.status.busy": "2024-08-12T10:31:07.402738Z", + "iopub.status.idle": "2024-08-12T10:31:07.414900Z", + "shell.execute_reply": "2024-08-12T10:31:07.414301Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:07.144209Z", - "iopub.status.busy": "2024-08-08T18:53:07.143893Z", - "iopub.status.idle": "2024-08-08T18:53:07.205051Z", - "shell.execute_reply": "2024-08-08T18:53:07.204457Z" + "iopub.execute_input": "2024-08-12T10:31:07.417422Z", + "iopub.status.busy": "2024-08-12T10:31:07.417172Z", + "iopub.status.idle": "2024-08-12T10:31:07.521745Z", + "shell.execute_reply": "2024-08-12T10:31:07.521237Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index 6911507a3..14bfb32ea 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:10.467009Z", - "iopub.status.busy": "2024-08-08T18:53:10.466580Z", - "iopub.status.idle": "2024-08-08T18:53:13.885731Z", - "shell.execute_reply": "2024-08-08T18:53:13.885078Z" + "iopub.execute_input": "2024-08-12T10:31:11.599918Z", + "iopub.status.busy": "2024-08-12T10:31:11.599739Z", + "iopub.status.idle": "2024-08-12T10:31:14.792390Z", + "shell.execute_reply": "2024-08-12T10:31:14.791829Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.888448Z", - "iopub.status.busy": "2024-08-08T18:53:13.887972Z", - "iopub.status.idle": "2024-08-08T18:53:13.891865Z", - "shell.execute_reply": "2024-08-08T18:53:13.891431Z" + "iopub.execute_input": "2024-08-12T10:31:14.794853Z", + "iopub.status.busy": "2024-08-12T10:31:14.794551Z", + "iopub.status.idle": "2024-08-12T10:31:14.797789Z", + "shell.execute_reply": "2024-08-12T10:31:14.797355Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.893972Z", - "iopub.status.busy": "2024-08-08T18:53:13.893556Z", - "iopub.status.idle": "2024-08-08T18:53:13.896736Z", - "shell.execute_reply": "2024-08-08T18:53:13.896267Z" + "iopub.execute_input": "2024-08-12T10:31:14.799835Z", + "iopub.status.busy": "2024-08-12T10:31:14.799654Z", + "iopub.status.idle": "2024-08-12T10:31:14.803159Z", + "shell.execute_reply": "2024-08-12T10:31:14.802724Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.898679Z", - "iopub.status.busy": "2024-08-08T18:53:13.898480Z", - "iopub.status.idle": "2024-08-08T18:53:13.961823Z", - "shell.execute_reply": "2024-08-08T18:53:13.961397Z" + "iopub.execute_input": "2024-08-12T10:31:14.805171Z", + "iopub.status.busy": "2024-08-12T10:31:14.804782Z", + "iopub.status.idle": "2024-08-12T10:31:15.011942Z", + "shell.execute_reply": "2024-08-12T10:31:15.011370Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.963939Z", - "iopub.status.busy": "2024-08-08T18:53:13.963591Z", - "iopub.status.idle": "2024-08-08T18:53:13.967158Z", - "shell.execute_reply": "2024-08-08T18:53:13.966607Z" + "iopub.execute_input": "2024-08-12T10:31:15.014170Z", + "iopub.status.busy": "2024-08-12T10:31:15.013748Z", + "iopub.status.idle": "2024-08-12T10:31:15.017471Z", + "shell.execute_reply": "2024-08-12T10:31:15.016937Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.969281Z", - "iopub.status.busy": "2024-08-08T18:53:13.968818Z", - "iopub.status.idle": "2024-08-08T18:53:13.972078Z", - "shell.execute_reply": "2024-08-08T18:53:13.971631Z" + "iopub.execute_input": "2024-08-12T10:31:15.019665Z", + "iopub.status.busy": "2024-08-12T10:31:15.019223Z", + "iopub.status.idle": "2024-08-12T10:31:15.022434Z", + "shell.execute_reply": "2024-08-12T10:31:15.021954Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'getting_spare_card', 'supported_cards_and_currencies', 'visa_or_mastercard', 'cancel_transfer'}\n" + "Classes: {'beneficiary_not_allowed', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'change_pin', 'cancel_transfer', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.974171Z", - "iopub.status.busy": "2024-08-08T18:53:13.973769Z", - "iopub.status.idle": "2024-08-08T18:53:13.976927Z", - "shell.execute_reply": "2024-08-08T18:53:13.976392Z" + "iopub.execute_input": "2024-08-12T10:31:15.024295Z", + "iopub.status.busy": "2024-08-12T10:31:15.024124Z", + "iopub.status.idle": "2024-08-12T10:31:15.027383Z", + "shell.execute_reply": "2024-08-12T10:31:15.026923Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.978883Z", - "iopub.status.busy": "2024-08-08T18:53:13.978703Z", - "iopub.status.idle": "2024-08-08T18:53:13.982149Z", - "shell.execute_reply": "2024-08-08T18:53:13.981688Z" + "iopub.execute_input": "2024-08-12T10:31:15.029211Z", + "iopub.status.busy": "2024-08-12T10:31:15.029037Z", + "iopub.status.idle": "2024-08-12T10:31:15.032408Z", + "shell.execute_reply": "2024-08-12T10:31:15.031823Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.984246Z", - "iopub.status.busy": "2024-08-08T18:53:13.983925Z", - "iopub.status.idle": "2024-08-08T18:53:18.602098Z", - "shell.execute_reply": "2024-08-08T18:53:18.601532Z" + "iopub.execute_input": "2024-08-12T10:31:15.034473Z", + "iopub.status.busy": "2024-08-12T10:31:15.034066Z", + "iopub.status.idle": "2024-08-12T10:31:20.022718Z", + "shell.execute_reply": "2024-08-12T10:31:20.022044Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a84b83317eb1464a89d98acf732e69f3", + "model_id": "b77e95d91f29458c87a8a832d9354217", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b69c87c8bab34d739f9dc8d892d1bdb9", + "model_id": "08ba8674e30e46fc930e33c52fd19cae", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9ad66530c90644829af3ff3b71de772e", + "model_id": "bcd74fc84ce94b119d8e8d4b6070122a", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6ec8b78979d74d00bc134e4f89931257", + "model_id": "cf55d71b710845d8890451acc33799c0", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b0107289a3c74150b6a63b0639f52163", + "model_id": "4ff5b7e108a64120b255afa2e1ff6f7d", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4b4e83c9680e4f2d86bb439951fa33a5", + "model_id": "f096b4fd6872467eb521cc3425e4ad77", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3b469d399c444b75afe0939d5aff9af1", + "model_id": "6757467eb2d347bdbfc65c8a3b0b752c", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:18.604936Z", - "iopub.status.busy": "2024-08-08T18:53:18.604518Z", - "iopub.status.idle": "2024-08-08T18:53:18.607571Z", - "shell.execute_reply": "2024-08-08T18:53:18.607079Z" + "iopub.execute_input": "2024-08-12T10:31:20.025603Z", + "iopub.status.busy": "2024-08-12T10:31:20.025214Z", + "iopub.status.idle": "2024-08-12T10:31:20.028239Z", + "shell.execute_reply": "2024-08-12T10:31:20.027686Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:18.609598Z", - "iopub.status.busy": "2024-08-08T18:53:18.609262Z", - "iopub.status.idle": "2024-08-08T18:53:18.611809Z", - "shell.execute_reply": "2024-08-08T18:53:18.611372Z" + "iopub.execute_input": "2024-08-12T10:31:20.030306Z", + "iopub.status.busy": "2024-08-12T10:31:20.029981Z", + "iopub.status.idle": "2024-08-12T10:31:20.033107Z", + "shell.execute_reply": "2024-08-12T10:31:20.032678Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:18.613708Z", - "iopub.status.busy": "2024-08-08T18:53:18.613439Z", - "iopub.status.idle": "2024-08-08T18:53:21.359090Z", - "shell.execute_reply": "2024-08-08T18:53:21.358391Z" + "iopub.execute_input": "2024-08-12T10:31:20.035082Z", + "iopub.status.busy": "2024-08-12T10:31:20.034747Z", + "iopub.status.idle": "2024-08-12T10:31:22.925207Z", + "shell.execute_reply": "2024-08-12T10:31:22.924551Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.362432Z", - "iopub.status.busy": "2024-08-08T18:53:21.361471Z", - "iopub.status.idle": "2024-08-08T18:53:21.369580Z", - "shell.execute_reply": "2024-08-08T18:53:21.369105Z" + "iopub.execute_input": "2024-08-12T10:31:22.928473Z", + "iopub.status.busy": "2024-08-12T10:31:22.927617Z", + "iopub.status.idle": "2024-08-12T10:31:22.935577Z", + "shell.execute_reply": "2024-08-12T10:31:22.935118Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.371955Z", - "iopub.status.busy": "2024-08-08T18:53:21.371614Z", - "iopub.status.idle": "2024-08-08T18:53:21.375479Z", - "shell.execute_reply": "2024-08-08T18:53:21.375018Z" + "iopub.execute_input": "2024-08-12T10:31:22.937626Z", + "iopub.status.busy": "2024-08-12T10:31:22.937285Z", + "iopub.status.idle": "2024-08-12T10:31:22.941357Z", + "shell.execute_reply": "2024-08-12T10:31:22.940756Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.377414Z", - "iopub.status.busy": "2024-08-08T18:53:21.377233Z", - "iopub.status.idle": "2024-08-08T18:53:21.380294Z", - "shell.execute_reply": "2024-08-08T18:53:21.379747Z" + "iopub.execute_input": "2024-08-12T10:31:22.943707Z", + "iopub.status.busy": "2024-08-12T10:31:22.943304Z", + "iopub.status.idle": "2024-08-12T10:31:22.946672Z", + "shell.execute_reply": "2024-08-12T10:31:22.946082Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.382415Z", - "iopub.status.busy": "2024-08-08T18:53:21.382083Z", - "iopub.status.idle": "2024-08-08T18:53:21.384972Z", - "shell.execute_reply": "2024-08-08T18:53:21.384500Z" + "iopub.execute_input": "2024-08-12T10:31:22.948966Z", + "iopub.status.busy": "2024-08-12T10:31:22.948462Z", + "iopub.status.idle": "2024-08-12T10:31:22.951516Z", + "shell.execute_reply": "2024-08-12T10:31:22.951066Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.386989Z", - "iopub.status.busy": "2024-08-08T18:53:21.386680Z", - "iopub.status.idle": "2024-08-08T18:53:21.393613Z", - "shell.execute_reply": "2024-08-08T18:53:21.393157Z" + "iopub.execute_input": "2024-08-12T10:31:22.953476Z", + "iopub.status.busy": "2024-08-12T10:31:22.953139Z", + "iopub.status.idle": "2024-08-12T10:31:22.959977Z", + "shell.execute_reply": "2024-08-12T10:31:22.959519Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.395679Z", - "iopub.status.busy": "2024-08-08T18:53:21.395377Z", - "iopub.status.idle": "2024-08-08T18:53:21.624069Z", - "shell.execute_reply": "2024-08-08T18:53:21.623552Z" + "iopub.execute_input": "2024-08-12T10:31:22.962107Z", + "iopub.status.busy": "2024-08-12T10:31:22.961788Z", + "iopub.status.idle": "2024-08-12T10:31:23.188303Z", + "shell.execute_reply": "2024-08-12T10:31:23.187779Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.626641Z", - "iopub.status.busy": "2024-08-08T18:53:21.626253Z", - "iopub.status.idle": "2024-08-08T18:53:21.838287Z", - "shell.execute_reply": "2024-08-08T18:53:21.837763Z" + "iopub.execute_input": "2024-08-12T10:31:23.190889Z", + "iopub.status.busy": "2024-08-12T10:31:23.190558Z", + "iopub.status.idle": "2024-08-12T10:31:23.404299Z", + "shell.execute_reply": "2024-08-12T10:31:23.403695Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.840941Z", - "iopub.status.busy": "2024-08-08T18:53:21.840563Z", - "iopub.status.idle": "2024-08-08T18:53:21.844343Z", - "shell.execute_reply": "2024-08-08T18:53:21.843842Z" + "iopub.execute_input": "2024-08-12T10:31:23.407187Z", + "iopub.status.busy": "2024-08-12T10:31:23.406748Z", + "iopub.status.idle": "2024-08-12T10:31:23.410913Z", + "shell.execute_reply": "2024-08-12T10:31:23.410344Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1120,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02f7759ffbcd47adabe3037c42e05ab9": { + "009671349a8d4cafb82eb9896ece9bee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f0a9d1777ee94c7c8c03baa6a51c46a8", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_69f0abc1e50f49f8a576b20c5da62cfa", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "01ac85c54a074f46a529412c8198c339": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1173,7 +1199,7 @@ "width": null } }, - "0727a473a7c44983888c51d55ad7ef38": { + "040c266f4fc448cd8d1cc95b158b56b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1226,30 +1252,47 @@ "width": null } }, - "09ad1a93dbd74d7da7877d856fde7e7d": { + "0594ffe3ba1a4a8096af8f4341c83041": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "08ba8674e30e46fc930e33c52fd19cae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a6996f932874def95923164062e763c", - "placeholder": "​", - "style": "IPY_MODEL_63fe7a86b21d402eb96ae91c1f2c6e5f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f720275cd00d4a9cb1737d0f4d081c2f", + "IPY_MODEL_009671349a8d4cafb82eb9896ece9bee", + "IPY_MODEL_9fdd8aba923f4e04be6bb5d963cb437c" + ], + "layout": "IPY_MODEL_9c1c9cad0461490a96b44d548117c40c", "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "tooltip": null } }, - "0a9e78a0405545eab6c26fec1fe081e9": { + "095e33092ba14246a9208dc768de2a5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1302,7 +1345,7 @@ "width": null } }, - "11c8378c39ea4285a4fd3793747dfc4d": { + "104b801834d148df9f2e3d1ed081e587": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1317,15 +1360,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_494f61a3738d4245a2af8c8d0c15853f", + "layout": "IPY_MODEL_2602df39a3fd47c39e3cc01ecfebecf5", "placeholder": "​", - "style": "IPY_MODEL_925b1478afef46eba099d9c3364dae11", + "style": "IPY_MODEL_c691589a3f7e439b968bd28de4afe7e3", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": " 232k/232k [00:00<00:00, 35.4MB/s]" } }, - "16d4c10733db42539ad0fb4b66aa86e5": { + "11edcabb6a894b66939da8220a1f7699": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1378,7 +1421,7 @@ "width": null } }, - "18205799631a4248945fe5e5eeac0c93": { + "13d19aa2b2ca4bc8813208d9c646a5c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1396,60 +1439,59 @@ "text_color": null } }, - "1a185868ec264839899c469d9eab33d2": { - "model_module": "@jupyter-widgets/base", + "13d4c34d25c74a2d8064eba1bac91c80": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c701715a58ab4f6b96498a6d2d5401d1", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8a121ad004a142589d015aacd23c1026", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 + } + }, + "1503d7b6dde84b19aaba69486d60f143": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_040c266f4fc448cd8d1cc95b158b56b8", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0594ffe3ba1a4a8096af8f4341c83041", + "tabbable": null, + "tooltip": null, + "value": 48.0 } }, - "1b96ba7d606544e3a9031ae6e330b2ad": { + "1598a44a792c4139ad6a6de76b8c1394": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1467,33 +1509,30 @@ "text_color": null } }, - "21e7d0ef3ce242c39e7cd020466e810a": { + "15997adaaba2484396878d4e38a00113": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_63dcfab593544fa0ada5f95b79dac2ba", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2933949502e54bef83f0e90694d7add7", + "layout": "IPY_MODEL_d15b782752d3445386fe22758d87080d", + "placeholder": "​", + "style": "IPY_MODEL_373e88d9309d4ec9ae5ba4a731e6df0c", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": " 391/391 [00:00<00:00, 70.3kB/s]" } }, - "24694621aa2749e5af9a69f45b256a52": { + "16bcafb20249419fafeebd286e716441": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1546,7 +1585,7 @@ "width": null } }, - "27bde07b06ed4440b3669b7154b54046": { + "1804451ec9d0462696d56dfdb7a43744": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1599,23 +1638,7 @@ "width": null } }, - "2933949502e54bef83f0e90694d7add7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2a6996f932874def95923164062e763c": { + "1bd4a18941fe41209f76d034daa9feb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1668,108 +1691,33 @@ "width": null } }, - "37173e7373d149fc9152c1d14c56ab6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3768df49a1754947a705f3d1753661c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3823eca9476948a8b2f5c37541ce8c1a": { + "1d5e484ff2f34bc5a3067a29b87a866b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c7850fe9ce34478c800cf8ae6b447b3a", - "placeholder": "​", - "style": "IPY_MODEL_3f1c976abd4b418d880a84403285d9ee", + "layout": "IPY_MODEL_095e33092ba14246a9208dc768de2a5b", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f5184540242a45978bb6e6024ab9cc50", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "3b469d399c444b75afe0939d5aff9af1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8eb15be7d3234930b81180874a757735", - "IPY_MODEL_79c7e945e5e24a10a4f40829e3d42eac", - "IPY_MODEL_9d75982bb2c04cd4bccc506f0afa5208" - ], - "layout": "IPY_MODEL_7449a3c43ea24187a0e57f5c43418598", - "tabbable": null, - "tooltip": null - } - }, - "3f1c976abd4b418d880a84403285d9ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 391.0 } }, - "3fff531f85ea4494b2e7a68db6ebf964": { + "2602df39a3fd47c39e3cc01ecfebecf5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1822,48 +1770,30 @@ "width": null } }, - "432a3f7451b743739c5833161c1a6f85": { + "291c1991a2874a05af6b04cd7d022478": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4908697be7c345ccbeaac3bd0f7e8ccb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_71babad4e07341069a5c56a8e447d5f2", + "layout": "IPY_MODEL_633b6b32b3a04c209544909dd6867676", "placeholder": "​", - "style": "IPY_MODEL_1b96ba7d606544e3a9031ae6e330b2ad", + "style": "IPY_MODEL_9c99fad70047476ead6384d84291d907", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 7.17kB/s]" + "value": "pytorch_model.bin: 100%" } }, - "494f61a3738d4245a2af8c8d0c15853f": { + "2958046e8ce44c0a917fda09c0896495": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1916,80 +1846,7 @@ "width": null } }, - "4b4d683a145e4afe9f70153e19f4c250": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0a9e78a0405545eab6c26fec1fe081e9", - "placeholder": "​", - "style": "IPY_MODEL_88f57a5169e4416fadf83c44a95af79c", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 18.3MB/s]" - } - }, - "4b4e83c9680e4f2d86bb439951fa33a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b0f080b018bf49548986351b7e336b2d", - "IPY_MODEL_6cf514bad63f48b587df8a8ad38eb782", - "IPY_MODEL_4908697be7c345ccbeaac3bd0f7e8ccb" - ], - "layout": "IPY_MODEL_b089862e871a4a7ead41f33ed939db83", - "tabbable": null, - "tooltip": null - } - }, - "53a99db74bf54f9ca07bd90499ce94a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5c9854ed0f0841d9acf76df870f40275", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9b37aa9b9f564652a5a873d46cbbe73c", - "tabbable": null, - "tooltip": null, - "value": 665.0 - } - }, - "5c9854ed0f0841d9acf76df870f40275": { + "29dc9f8f21f14db983f9c7f0306f737b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2042,7 +1899,89 @@ "width": null } }, - "5f98a159d2804cff92ac47763e60e47b": { + "2a75436a6b3f421991d9c7289964dc4e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee866f21451f41d0a2b58182ec7c2183", + "placeholder": "​", + "style": "IPY_MODEL_9a7a2e2568e84ad090ba5d7f87ec6ca2", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "2c6a5bc9f5f34b87b657eda126c73765": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_44e61a23e45d4697bfaa4992b16388ff", + "placeholder": "​", + "style": "IPY_MODEL_88907c49643c45e58b6140b32e87068b", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 131kB/s]" + } + }, + "373e88d9309d4ec9ae5ba4a731e6df0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3edae48c957b43afb31452e760c3b5ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "44881d82bfd54d3995c4d702d2ce1aee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2095,7 +2034,7 @@ "width": null } }, - "63dcfab593544fa0ada5f95b79dac2ba": { + "44e61a23e45d4697bfaa4992b16388ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2148,48 +2087,63 @@ "width": null } }, - "63fe7a86b21d402eb96ae91c1f2c6e5f": { + "4c27de6e51584e4194ad1b2a70a228e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "6511595c45b1467daf4bf56c6df57779": { + "4ff5b7e108a64120b255afa2e1ff6f7d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_02f7759ffbcd47adabe3037c42e05ab9", - "placeholder": "​", - "style": "IPY_MODEL_79d572ab86cc45ebaee29e3a83f1c926", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2a75436a6b3f421991d9c7289964dc4e", + "IPY_MODEL_92df4c3e498c4d89bc4eccdc9cf22b5b", + "IPY_MODEL_c5c2fe07487c4fdf85dc6866c5c8bc54" + ], + "layout": "IPY_MODEL_16bcafb20249419fafeebd286e716441", "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 74.6kB/s]" + "tooltip": null } }, - "6c747b7cc7a2419cbc6f07a6036ac030": { + "5d1b88d2f0c14f6f82eb35c71e1d5bbe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5f818255776c4628ab75e3864e7bea0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2242,57 +2196,7 @@ "width": null } }, - "6cf514bad63f48b587df8a8ad38eb782": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_febcb9483d7f47a9a63e9352a40893bc", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ecef027e128a4a6dbf0e39543b406ab2", - "tabbable": null, - "tooltip": null, - "value": 48.0 - } - }, - "6ec8b78979d74d00bc134e4f89931257": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_11c8378c39ea4285a4fd3793747dfc4d", - "IPY_MODEL_ea702e3f7d57483b8eaa8ed15589f780", - "IPY_MODEL_d36da988a5e74309825025df8d74eb08" - ], - "layout": "IPY_MODEL_fc29363a5568468788c56b91a3041287", - "tabbable": null, - "tooltip": null - } - }, - "71babad4e07341069a5c56a8e447d5f2": { + "633b6b32b3a04c209544909dd6867676": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2345,23 +2249,7 @@ "width": null } }, - "732ad9420a694c95b3cd2eac4ac70152": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7449a3c43ea24187a0e57f5c43418598": { + "66d0debbcb38476f9b46625cbce14c68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2414,23 +2302,104 @@ "width": null } }, - "7846fd5bbb8e4f05a8fc9474f24f159c": { + "6757467eb2d347bdbfc65c8a3b0b752c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c1f10237bfc74f0b846f31c90674066b", + "IPY_MODEL_8b4fdf859aa445be8b803b0d911aae17", + "IPY_MODEL_104b801834d148df9f2e3d1ed081e587" + ], + "layout": "IPY_MODEL_a82b1d45d3234bb0a3319301666a72d5", + "tabbable": null, + "tooltip": null + } + }, + "695e9e36ea61416893fdfcb78d0482b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_44881d82bfd54d3995c4d702d2ce1aee", + "placeholder": "​", + "style": "IPY_MODEL_e1eddcb1817246efa831d0367cbd3c91", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 9.65kB/s]" + } + }, + "69f0abc1e50f49f8a576b20c5da62cfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, - "79c7e945e5e24a10a4f40829e3d42eac": { + "88907c49643c45e58b6140b32e87068b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8a121ad004a142589d015aacd23c1026": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8b4fdf859aa445be8b803b0d911aae17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2446,17 +2415,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ed4b556aa38f4147b1891c40f2417994", + "layout": "IPY_MODEL_1bd4a18941fe41209f76d034daa9feb2", "max": 231508.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7846fd5bbb8e4f05a8fc9474f24f159c", + "style": "IPY_MODEL_b8f4445e9931496caec7a0bf0cc7dc2c", "tabbable": null, "tooltip": null, "value": 231508.0 } }, - "79d572ab86cc45ebaee29e3a83f1c926": { + "8c9f66d089754d8aa7058c6b10d0947c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2474,7 +2443,33 @@ "text_color": null } }, - "7dec4a4f5c234cee882113e235ca2fc3": { + "8e4fd7081fc8461599b9a438c3912649": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_11edcabb6a894b66939da8220a1f7699", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5d1b88d2f0c14f6f82eb35c71e1d5bbe", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "90d6fdc421254deaaac7fd3b5e8f30ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2527,59 +2522,7 @@ "width": null } }, - "7e53f60e42a541bf9d519dd8a293890a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8156bb08868841fdaa446909df26ed6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "88f57a5169e4416fadf83c44a95af79c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8d81b4f18c13487e83ce1e652e09be71": { + "92df4c3e498c4d89bc4eccdc9cf22b5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2595,40 +2538,123 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9d2cc3b9cb5a434290e3ebb078cee544", - "max": 391.0, + "layout": "IPY_MODEL_1804451ec9d0462696d56dfdb7a43744", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8156bb08868841fdaa446909df26ed6d", + "style": "IPY_MODEL_4c27de6e51584e4194ad1b2a70a228e1", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": 466062.0 } }, - "8eb15be7d3234930b81180874a757735": { - "model_module": "@jupyter-widgets/controls", + "94cde3206e854b678e1a99ec1a075bdf": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e173532a5b6b467288f4e4f9e8f883c3", - "placeholder": "​", - "style": "IPY_MODEL_3768df49a1754947a705f3d1753661c8", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "976072a3aeb542dabace008e4f08126f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "925b1478afef46eba099d9c3364dae11": { + "9a7a2e2568e84ad090ba5d7f87ec6ca2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2646,7 +2672,7 @@ "text_color": null } }, - "95bca8444bb9497ba1cb19ca9d2083ec": { + "9c1c9cad0461490a96b44d548117c40c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2699,70 +2725,25 @@ "width": null } }, - "9ad66530c90644829af3ff3b71de772e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c03ec278ce874ff28555c026a11abc5a", - "IPY_MODEL_53a99db74bf54f9ca07bd90499ce94a1", - "IPY_MODEL_c3baeaf68bc44f6bb009055a8a94d0ab" - ], - "layout": "IPY_MODEL_6c747b7cc7a2419cbc6f07a6036ac030", - "tabbable": null, - "tooltip": null - } - }, - "9b37aa9b9f564652a5a873d46cbbe73c": { + "9c99fad70047476ead6384d84291d907": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9bba8683cbe8486eb6d99b1e674dd664": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0727a473a7c44983888c51d55ad7ef38", - "placeholder": "​", - "style": "IPY_MODEL_432a3f7451b743739c5833161c1a6f85", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9d2cc3b9cb5a434290e3ebb078cee544": { + "9e8a0f70f6f9418aab1d4dc540fe0e26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2815,7 +2796,7 @@ "width": null } }, - "9d75982bb2c04cd4bccc506f0afa5208": { + "9fdd8aba923f4e04be6bb5d963cb437c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2830,39 +2811,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e2ead88df0c94314a8e9936426f85465", + "layout": "IPY_MODEL_94cde3206e854b678e1a99ec1a075bdf", "placeholder": "​", - "style": "IPY_MODEL_f6f9f22324894f3c830cb98ec7825ab9", + "style": "IPY_MODEL_ce0868eececc4e4b82469a4729e2b9c9", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 12.1MB/s]" + "value": " 2.21k/2.21k [00:00<00:00, 445kB/s]" } }, - "a84b83317eb1464a89d98acf732e69f3": { + "a3014aec64314384b3ea693f7e0d6bc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_09ad1a93dbd74d7da7877d856fde7e7d", - "IPY_MODEL_8d81b4f18c13487e83ce1e652e09be71", - "IPY_MODEL_6511595c45b1467daf4bf56c6df57779" - ], - "layout": "IPY_MODEL_7dec4a4f5c234cee882113e235ca2fc3", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9e8a0f70f6f9418aab1d4dc540fe0e26", + "placeholder": "​", + "style": "IPY_MODEL_13d19aa2b2ca4bc8813208d9c646a5c7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 265MB/s]" } }, - "a923fc4e71f54d8693b5380212d8ccbc": { + "a82b1d45d3234bb0a3319301666a72d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2915,7 +2895,7 @@ "width": null } }, - "acb87edd19a24a4699ca7f39b030fc4d": { + "b0e548065a8d43c2ac7f21ade489d7e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2930,15 +2910,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_95bca8444bb9497ba1cb19ca9d2083ec", + "layout": "IPY_MODEL_29dc9f8f21f14db983f9c7f0306f737b", "placeholder": "​", - "style": "IPY_MODEL_7e53f60e42a541bf9d519dd8a293890a", + "style": "IPY_MODEL_feb07f5788e6431f883566fdebae816c", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 441kB/s]" + "value": "config.json: 100%" } }, - "afd3a7ae3f2d47629358ffc204b899f4": { + "b77e95d91f29458c87a8a832d9354217": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c644bdb104a2459ea7a9451cb95f4c6f", + "IPY_MODEL_1d5e484ff2f34bc5a3067a29b87a866b", + "IPY_MODEL_15997adaaba2484396878d4e38a00113" + ], + "layout": "IPY_MODEL_01ac85c54a074f46a529412c8198c339", + "tabbable": null, + "tooltip": null + } + }, + "b8f4445e9931496caec7a0bf0cc7dc2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2954,7 +2958,25 @@ "description_width": "" } }, - "b0107289a3c74150b6a63b0639f52163": { + "b95ea2b32e7d4b66a2a0e2873a01046d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bcd74fc84ce94b119d8e8d4b6070122a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2969,16 +2991,126 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3823eca9476948a8b2f5c37541ce8c1a", - "IPY_MODEL_cf0787df26e34d9f91173297fabc3e7d", - "IPY_MODEL_4b4d683a145e4afe9f70153e19f4c250" + "IPY_MODEL_b0e548065a8d43c2ac7f21ade489d7e7", + "IPY_MODEL_8e4fd7081fc8461599b9a438c3912649", + "IPY_MODEL_2c6a5bc9f5f34b87b657eda126c73765" ], - "layout": "IPY_MODEL_24694621aa2749e5af9a69f45b256a52", + "layout": "IPY_MODEL_976072a3aeb542dabace008e4f08126f", "tabbable": null, "tooltip": null } }, - "b089862e871a4a7ead41f33ed939db83": { + "bf4aeb8a17c24906a9308d4192063a5d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_66d0debbcb38476f9b46625cbce14c68", + "placeholder": "​", + "style": "IPY_MODEL_cd53a231e9e84f07a9ad8e3b9992aa32", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "c1f10237bfc74f0b846f31c90674066b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_faa5822f274f41fe9ff86f1471fdd7e2", + "placeholder": "​", + "style": "IPY_MODEL_3edae48c957b43afb31452e760c3b5ee", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "c5c2fe07487c4fdf85dc6866c5c8bc54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5f818255776c4628ab75e3864e7bea0c", + "placeholder": "​", + "style": "IPY_MODEL_1598a44a792c4139ad6a6de76b8c1394", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 3.95MB/s]" + } + }, + "c644bdb104a2459ea7a9451cb95f4c6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ed62e55cc8b646ceaf9963127bbe3f10", + "placeholder": "​", + "style": "IPY_MODEL_8c9f66d089754d8aa7058c6b10d0947c", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" + } + }, + "c691589a3f7e439b968bd28de4afe7e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c701715a58ab4f6b96498a6d2d5401d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3031,54 +3163,7 @@ "width": null } }, - "b0f080b018bf49548986351b7e336b2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_16d4c10733db42539ad0fb4b66aa86e5", - "placeholder": "​", - "style": "IPY_MODEL_37173e7373d149fc9152c1d14c56ab6f", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "b69c87c8bab34d739f9dc8d892d1bdb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9bba8683cbe8486eb6d99b1e674dd664", - "IPY_MODEL_21e7d0ef3ce242c39e7cd020466e810a", - "IPY_MODEL_acb87edd19a24a4699ca7f39b030fc4d" - ], - "layout": "IPY_MODEL_3fff531f85ea4494b2e7a68db6ebf964", - "tabbable": null, - "tooltip": null - } - }, - "c0283fa2741b4e5fa018301618769d63": { + "cd53a231e9e84f07a9ad8e3b9992aa32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3096,53 +3181,49 @@ "text_color": null } }, - "c03ec278ce874ff28555c026a11abc5a": { + "ce0868eececc4e4b82469a4729e2b9c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_27bde07b06ed4440b3669b7154b54046", - "placeholder": "​", - "style": "IPY_MODEL_18205799631a4248945fe5e5eeac0c93", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c3baeaf68bc44f6bb009055a8a94d0ab": { + "cf55d71b710845d8890451acc33799c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a923fc4e71f54d8693b5380212d8ccbc", - "placeholder": "​", - "style": "IPY_MODEL_c0283fa2741b4e5fa018301618769d63", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_291c1991a2874a05af6b04cd7d022478", + "IPY_MODEL_13d4c34d25c74a2d8064eba1bac91c80", + "IPY_MODEL_a3014aec64314384b3ea693f7e0d6bc8" + ], + "layout": "IPY_MODEL_90d6fdc421254deaaac7fd3b5e8f30ec", "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 121kB/s]" + "tooltip": null } }, - "c7850fe9ce34478c800cf8ae6b447b3a": { + "d15b782752d3445386fe22758d87080d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3195,7 +3276,25 @@ "width": null } }, - "cab499513c4645338c998fbd37de09eb": { + "e1eddcb1817246efa831d0367cbd3c91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ed62e55cc8b646ceaf9963127bbe3f10": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3248,56 +3347,7 @@ "width": null } }, - "cf0787df26e34d9f91173297fabc3e7d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5f98a159d2804cff92ac47763e60e47b", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_732ad9420a694c95b3cd2eac4ac70152", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "d36da988a5e74309825025df8d74eb08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cab499513c4645338c998fbd37de09eb", - "placeholder": "​", - "style": "IPY_MODEL_f5c5069ea5b34cad85153afb4c1b28d3", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 248MB/s]" - } - }, - "e173532a5b6b467288f4e4f9e8f883c3": { + "ee866f21451f41d0a2b58182ec7c2183": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3350,7 +3400,7 @@ "width": null } }, - "e2ead88df0c94314a8e9936426f85465": { + "ef38a47462b242638331cd976aefeae2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3403,49 +3453,31 @@ "width": null } }, - "ea702e3f7d57483b8eaa8ed15589f780": { + "f096b4fd6872467eb521cc3425e4ad77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1a185868ec264839899c469d9eab33d2", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_afd3a7ae3f2d47629358ffc204b899f4", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bf4aeb8a17c24906a9308d4192063a5d", + "IPY_MODEL_1503d7b6dde84b19aaba69486d60f143", + "IPY_MODEL_695e9e36ea61416893fdfcb78d0482b4" + ], + "layout": "IPY_MODEL_2958046e8ce44c0a917fda09c0896495", "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "ecef027e128a4a6dbf0e39543b406ab2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "ed4b556aa38f4147b1891c40f2417994": { + "f0a9d1777ee94c7c8c03baa6a51c46a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3498,43 +3530,46 @@ "width": null } }, - "f5c5069ea5b34cad85153afb4c1b28d3": { + "f5184540242a45978bb6e6024ab9cc50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "f6f9f22324894f3c830cb98ec7825ab9": { + "f720275cd00d4a9cb1737d0f4d081c2f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef38a47462b242638331cd976aefeae2", + "placeholder": "​", + "style": "IPY_MODEL_b95ea2b32e7d4b66a2a0e2873a01046d", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" } }, - "fc29363a5568468788c56b91a3041287": { + "faa5822f274f41fe9ff86f1471fdd7e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3587,57 +3622,22 @@ "width": null } }, - "febcb9483d7f47a9a63e9352a40893bc": { - "model_module": "@jupyter-widgets/base", + "feb07f5788e6431f883566fdebae816c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index 65c0346d8..be2c44c4c 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:25.242952Z", - "iopub.status.busy": "2024-08-08T18:53:25.242777Z", - "iopub.status.idle": "2024-08-08T18:53:30.964482Z", - "shell.execute_reply": "2024-08-08T18:53:30.963973Z" + "iopub.execute_input": "2024-08-12T10:31:27.559918Z", + "iopub.status.busy": "2024-08-12T10:31:27.559732Z", + "iopub.status.idle": "2024-08-12T10:31:33.493498Z", + "shell.execute_reply": "2024-08-12T10:31:33.492957Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:30.967103Z", - "iopub.status.busy": "2024-08-08T18:53:30.966661Z", - "iopub.status.idle": "2024-08-08T18:53:30.969918Z", - "shell.execute_reply": "2024-08-08T18:53:30.969464Z" + "iopub.execute_input": "2024-08-12T10:31:33.496261Z", + "iopub.status.busy": "2024-08-12T10:31:33.495702Z", + "iopub.status.idle": "2024-08-12T10:31:33.498897Z", + "shell.execute_reply": "2024-08-12T10:31:33.498441Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:30.972054Z", - "iopub.status.busy": "2024-08-08T18:53:30.971718Z", - "iopub.status.idle": "2024-08-08T18:53:30.976453Z", - "shell.execute_reply": "2024-08-08T18:53:30.975893Z" + "iopub.execute_input": "2024-08-12T10:31:33.500915Z", + "iopub.status.busy": "2024-08-12T10:31:33.500569Z", + "iopub.status.idle": "2024-08-12T10:31:33.505593Z", + "shell.execute_reply": "2024-08-12T10:31:33.505157Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:30.978729Z", - "iopub.status.busy": "2024-08-08T18:53:30.978252Z", - "iopub.status.idle": "2024-08-08T18:53:32.731578Z", - "shell.execute_reply": "2024-08-08T18:53:32.730757Z" + "iopub.execute_input": "2024-08-12T10:31:33.507649Z", + "iopub.status.busy": "2024-08-12T10:31:33.507369Z", + "iopub.status.idle": "2024-08-12T10:31:35.407349Z", + "shell.execute_reply": "2024-08-12T10:31:35.406669Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:32.734459Z", - "iopub.status.busy": "2024-08-08T18:53:32.734060Z", - "iopub.status.idle": "2024-08-08T18:53:32.745297Z", - "shell.execute_reply": "2024-08-08T18:53:32.744840Z" + "iopub.execute_input": "2024-08-12T10:31:35.410188Z", + "iopub.status.busy": "2024-08-12T10:31:35.409775Z", + "iopub.status.idle": "2024-08-12T10:31:35.421192Z", + "shell.execute_reply": "2024-08-12T10:31:35.420725Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:32.747422Z", - "iopub.status.busy": "2024-08-08T18:53:32.747071Z", - "iopub.status.idle": "2024-08-08T18:53:32.752414Z", - "shell.execute_reply": "2024-08-08T18:53:32.751973Z" + "iopub.execute_input": "2024-08-12T10:31:35.423470Z", + "iopub.status.busy": "2024-08-12T10:31:35.423098Z", + "iopub.status.idle": "2024-08-12T10:31:35.428531Z", + "shell.execute_reply": "2024-08-12T10:31:35.428082Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:32.754415Z", - "iopub.status.busy": "2024-08-08T18:53:32.754141Z", - "iopub.status.idle": "2024-08-08T18:53:33.202427Z", - "shell.execute_reply": "2024-08-08T18:53:33.201827Z" + "iopub.execute_input": "2024-08-12T10:31:35.430695Z", + "iopub.status.busy": "2024-08-12T10:31:35.430312Z", + "iopub.status.idle": "2024-08-12T10:31:35.930501Z", + "shell.execute_reply": "2024-08-12T10:31:35.929981Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:33.204900Z", - "iopub.status.busy": "2024-08-08T18:53:33.204458Z", - "iopub.status.idle": "2024-08-08T18:53:34.314129Z", - "shell.execute_reply": "2024-08-08T18:53:34.313503Z" + "iopub.execute_input": "2024-08-12T10:31:35.932712Z", + "iopub.status.busy": "2024-08-12T10:31:35.932347Z", + "iopub.status.idle": "2024-08-12T10:31:39.361143Z", + "shell.execute_reply": "2024-08-12T10:31:39.360515Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:34.316841Z", - "iopub.status.busy": "2024-08-08T18:53:34.316402Z", - "iopub.status.idle": "2024-08-08T18:53:34.334728Z", - "shell.execute_reply": "2024-08-08T18:53:34.334166Z" + "iopub.execute_input": "2024-08-12T10:31:39.363821Z", + "iopub.status.busy": "2024-08-12T10:31:39.363462Z", + "iopub.status.idle": "2024-08-12T10:31:39.381626Z", + "shell.execute_reply": "2024-08-12T10:31:39.381166Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:34.336865Z", - "iopub.status.busy": "2024-08-08T18:53:34.336558Z", - "iopub.status.idle": "2024-08-08T18:53:34.339651Z", - "shell.execute_reply": "2024-08-08T18:53:34.339110Z" + "iopub.execute_input": "2024-08-12T10:31:39.383708Z", + "iopub.status.busy": "2024-08-12T10:31:39.383362Z", + "iopub.status.idle": "2024-08-12T10:31:39.386579Z", + "shell.execute_reply": "2024-08-12T10:31:39.386056Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:34.341609Z", - "iopub.status.busy": "2024-08-08T18:53:34.341314Z", - "iopub.status.idle": "2024-08-08T18:53:48.569661Z", - "shell.execute_reply": "2024-08-08T18:53:48.569040Z" + "iopub.execute_input": "2024-08-12T10:31:39.388474Z", + "iopub.status.busy": "2024-08-12T10:31:39.388295Z", + "iopub.status.idle": "2024-08-12T10:31:53.912289Z", + "shell.execute_reply": "2024-08-12T10:31:53.911735Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:48.572331Z", - "iopub.status.busy": "2024-08-08T18:53:48.572130Z", - "iopub.status.idle": "2024-08-08T18:53:48.575956Z", - "shell.execute_reply": "2024-08-08T18:53:48.575422Z" + "iopub.execute_input": "2024-08-12T10:31:53.914987Z", + "iopub.status.busy": "2024-08-12T10:31:53.914565Z", + "iopub.status.idle": "2024-08-12T10:31:53.918442Z", + "shell.execute_reply": "2024-08-12T10:31:53.917879Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:48.578169Z", - "iopub.status.busy": "2024-08-08T18:53:48.577718Z", - "iopub.status.idle": "2024-08-08T18:53:49.277921Z", - "shell.execute_reply": "2024-08-08T18:53:49.277311Z" + "iopub.execute_input": "2024-08-12T10:31:53.920671Z", + "iopub.status.busy": "2024-08-12T10:31:53.920322Z", + "iopub.status.idle": "2024-08-12T10:31:54.650629Z", + "shell.execute_reply": "2024-08-12T10:31:54.650002Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.280920Z", - "iopub.status.busy": "2024-08-08T18:53:49.280509Z", - "iopub.status.idle": "2024-08-08T18:53:49.285350Z", - "shell.execute_reply": "2024-08-08T18:53:49.284849Z" + "iopub.execute_input": "2024-08-12T10:31:54.653500Z", + "iopub.status.busy": "2024-08-12T10:31:54.653156Z", + "iopub.status.idle": "2024-08-12T10:31:54.657830Z", + "shell.execute_reply": "2024-08-12T10:31:54.657339Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.288614Z", - "iopub.status.busy": "2024-08-08T18:53:49.287662Z", - "iopub.status.idle": "2024-08-08T18:53:49.398575Z", - "shell.execute_reply": "2024-08-08T18:53:49.397975Z" + "iopub.execute_input": "2024-08-12T10:31:54.660238Z", + "iopub.status.busy": "2024-08-12T10:31:54.659917Z", + "iopub.status.idle": "2024-08-12T10:31:54.771646Z", + "shell.execute_reply": "2024-08-12T10:31:54.770906Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.401118Z", - "iopub.status.busy": "2024-08-08T18:53:49.400608Z", - "iopub.status.idle": "2024-08-08T18:53:49.413091Z", - "shell.execute_reply": "2024-08-08T18:53:49.412607Z" + "iopub.execute_input": "2024-08-12T10:31:54.774198Z", + "iopub.status.busy": "2024-08-12T10:31:54.773768Z", + "iopub.status.idle": "2024-08-12T10:31:54.786459Z", + "shell.execute_reply": "2024-08-12T10:31:54.785945Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.415334Z", - "iopub.status.busy": "2024-08-08T18:53:49.414873Z", - "iopub.status.idle": "2024-08-08T18:53:49.422628Z", - "shell.execute_reply": "2024-08-08T18:53:49.422057Z" + "iopub.execute_input": "2024-08-12T10:31:54.788774Z", + "iopub.status.busy": "2024-08-12T10:31:54.788346Z", + "iopub.status.idle": "2024-08-12T10:31:54.796268Z", + "shell.execute_reply": "2024-08-12T10:31:54.795704Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.424687Z", - "iopub.status.busy": "2024-08-08T18:53:49.424387Z", - "iopub.status.idle": "2024-08-08T18:53:49.428669Z", - "shell.execute_reply": "2024-08-08T18:53:49.428110Z" + "iopub.execute_input": "2024-08-12T10:31:54.798511Z", + "iopub.status.busy": "2024-08-12T10:31:54.798097Z", + "iopub.status.idle": "2024-08-12T10:31:54.802250Z", + "shell.execute_reply": "2024-08-12T10:31:54.801692Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.430669Z", - "iopub.status.busy": "2024-08-08T18:53:49.430346Z", - "iopub.status.idle": "2024-08-08T18:53:49.435897Z", - "shell.execute_reply": "2024-08-08T18:53:49.435457Z" + "iopub.execute_input": "2024-08-12T10:31:54.804434Z", + "iopub.status.busy": "2024-08-12T10:31:54.804110Z", + "iopub.status.idle": "2024-08-12T10:31:54.809820Z", + "shell.execute_reply": "2024-08-12T10:31:54.809216Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.438081Z", - "iopub.status.busy": "2024-08-08T18:53:49.437664Z", - "iopub.status.idle": "2024-08-08T18:53:49.551086Z", - "shell.execute_reply": "2024-08-08T18:53:49.550491Z" + "iopub.execute_input": "2024-08-12T10:31:54.812094Z", + "iopub.status.busy": "2024-08-12T10:31:54.811739Z", + "iopub.status.idle": "2024-08-12T10:31:54.923543Z", + "shell.execute_reply": "2024-08-12T10:31:54.922978Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.553278Z", - "iopub.status.busy": "2024-08-08T18:53:49.552959Z", - "iopub.status.idle": "2024-08-08T18:53:49.655649Z", - "shell.execute_reply": "2024-08-08T18:53:49.655159Z" + "iopub.execute_input": "2024-08-12T10:31:54.925854Z", + "iopub.status.busy": "2024-08-12T10:31:54.925415Z", + "iopub.status.idle": "2024-08-12T10:31:55.031344Z", + "shell.execute_reply": "2024-08-12T10:31:55.030759Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.657859Z", - "iopub.status.busy": "2024-08-08T18:53:49.657506Z", - "iopub.status.idle": "2024-08-08T18:53:49.756919Z", - "shell.execute_reply": "2024-08-08T18:53:49.756408Z" + "iopub.execute_input": "2024-08-12T10:31:55.033717Z", + "iopub.status.busy": "2024-08-12T10:31:55.033217Z", + "iopub.status.idle": "2024-08-12T10:31:55.137202Z", + "shell.execute_reply": "2024-08-12T10:31:55.136556Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.759111Z", - "iopub.status.busy": "2024-08-08T18:53:49.758830Z", - "iopub.status.idle": "2024-08-08T18:53:49.859854Z", - "shell.execute_reply": "2024-08-08T18:53:49.859288Z" + "iopub.execute_input": "2024-08-12T10:31:55.139888Z", + "iopub.status.busy": "2024-08-12T10:31:55.139384Z", + "iopub.status.idle": "2024-08-12T10:31:55.247170Z", + "shell.execute_reply": "2024-08-12T10:31:55.246562Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.862138Z", - "iopub.status.busy": "2024-08-08T18:53:49.861828Z", - "iopub.status.idle": "2024-08-08T18:53:49.865036Z", - "shell.execute_reply": "2024-08-08T18:53:49.864547Z" + "iopub.execute_input": "2024-08-12T10:31:55.249509Z", + "iopub.status.busy": "2024-08-12T10:31:55.249171Z", + "iopub.status.idle": "2024-08-12T10:31:55.252645Z", + "shell.execute_reply": "2024-08-12T10:31:55.252057Z" }, "nbsphinx": "hidden" }, @@ -1392,7 +1392,101 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0163f12b39674660a03640a1d28d352b": { + "0246673bda614057b87d1d4a071d07dc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "02a20d41840f41e593671467329b8a99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "03639896d78b4997bfa5bd4ef9dd3b73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c99dff9eb4d49c884091c0856298635", + "placeholder": "​", + "style": "IPY_MODEL_54bfa2603b3d480cb21708ef6cbb23c2", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 607kB/s]" + } + }, + "0520862119224c0dadeb77bdab0013c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1407,15 +1501,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec2e80c5d4b945f1a87577b27ebd4b5d", + "layout": "IPY_MODEL_c284236043894de7a2aeab311605060f", "placeholder": "​", - "style": "IPY_MODEL_1ba264c268404d2db3c6cc8979b6615a", + "style": "IPY_MODEL_02a20d41840f41e593671467329b8a99", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 408kB/s]" + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "03e99ca1b8d9489bb6dd0acdfd67ce66": { + "08360c1171a6493298ae9e0be537aeb1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1433,7 +1527,30 @@ "text_color": null } }, - "04ba5b3dd8c04e838a7e7cc0bfa6e753": { + "085a6252fdf04f9c8504f50efe0cddcb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7b0f7fc885b94f2fba36f99bff582ece", + "placeholder": "​", + "style": "IPY_MODEL_08360c1171a6493298ae9e0be537aeb1", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 22.7MB/s]" + } + }, + "0cc1e2ec36dd4b3585cdf8034ca0aa07": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1486,7 +1603,7 @@ "width": null } }, - "05c5119b52184525b60b8a03502decce": { + "12085fdd993b4978b67be8ceccf56834": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1539,90 +1656,7 @@ "width": null } }, - "0776a1a79f12437b822668f3b1593769": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b5d0a1652fa04933adc1ee277e1a5eea", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_854bfce357274d7896b980d6ffa4d292", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "1465e93280394675a458a36ad7072519": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1b1bd533cdc644f7a15f7e29d2f73cba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5507b68e0f544428aec43609f5ddf28c", - "placeholder": "​", - "style": "IPY_MODEL_03e99ca1b8d9489bb6dd0acdfd67ce66", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "1ba264c268404d2db3c6cc8979b6615a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "271e126154f047f8b438aa7945f56194": { + "1be4f39f14ee43cbb74596a54a9d8272": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1637,60 +1671,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8a2aae69012542859c482b05c913d007", - "IPY_MODEL_dad64a778c1448e8b079a118cd347c91", - "IPY_MODEL_ae9f130fd4de40f5b57a5480173ebb2b" + "IPY_MODEL_0520862119224c0dadeb77bdab0013c1", + "IPY_MODEL_b6235d9a1eca4733ba0221542f0d3643", + "IPY_MODEL_03639896d78b4997bfa5bd4ef9dd3b73" ], - "layout": "IPY_MODEL_3daf3adb814146d593c6349bea89d709", + "layout": "IPY_MODEL_eddc0c22a05d419fbb6a614c372acc94", "tabbable": null, "tooltip": null } }, - "3b0e94e7ec8948d1918b8007d32c3f06": { + "26dbafb5ca4e4097b6639ac5d840d91d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_05c5119b52184525b60b8a03502decce", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e52ea3436b594f9fbc1b8984e837cd9b", + "layout": "IPY_MODEL_a6994f6b25404fa090773a364b257fee", + "placeholder": "​", + "style": "IPY_MODEL_a437de4edb0b4d1c94542633e608f95c", "tabbable": null, "tooltip": null, - "value": 15856877.0 - } - }, - "3b9a00617cf14ee8ad0718af9b5d78b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "label_encoder.txt: 100%" } }, - "3daf3adb814146d593c6349bea89d709": { + "2b302faa18af4ea2b2b48d13597cc0ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1743,7 +1756,49 @@ "width": null } }, - "3f2644b73030463a8441b97daea33191": { + "2db66ec325294ef6b6c0bbcbf4ddf956": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2b302faa18af4ea2b2b48d13597cc0ce", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_36aaabf0d872419192d27b84e5bffb77", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "30b5cf292a2d4ef7917f1a528257c959": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3151034ce11c498ca70679e99c762223": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1796,7 +1851,7 @@ "width": null } }, - "3ffd2a3756b34ba782b7cee9ed1fbe6c": { + "352c03049ef34564be6b16e25fa62a97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1849,7 +1904,7 @@ "width": null } }, - "4c1fd44225be4ede888414b43fd1aae0": { + "36aaabf0d872419192d27b84e5bffb77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1865,7 +1920,7 @@ "description_width": "" } }, - "4cd4c06a93f14f1197fa29b0050ee02a": { + "45285f6718ab4536af48bcf06a0aac0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1880,65 +1935,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_92cb8577cc654e0d8e16bbae83217272", - "IPY_MODEL_4f342941e2704a1ab4f5a6573802e824", - "IPY_MODEL_8f1431a42875452aa1b8cfde25679907" + "IPY_MODEL_26dbafb5ca4e4097b6639ac5d840d91d", + "IPY_MODEL_c33c14b2a5e34ea0ae0823ec817c2bbd", + "IPY_MODEL_085a6252fdf04f9c8504f50efe0cddcb" ], - "layout": "IPY_MODEL_8648287059e74a00bf2f14680df6314f", + "layout": "IPY_MODEL_352c03049ef34564be6b16e25fa62a97", "tabbable": null, "tooltip": null } }, - "4f342941e2704a1ab4f5a6573802e824": { + "48329f782307409c919507e64a194700": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_540aae02b6ba439c971a2f1bd0372142", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9a9c0b3836a347a397e042a6c69b35b2", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "51981d23ad1b43f4bdcbbe538450da95": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ffd2a3756b34ba782b7cee9ed1fbe6c", - "placeholder": "​", - "style": "IPY_MODEL_3b9a00617cf14ee8ad0718af9b5d78b8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8f86c045b5af482e91516dd8164e57db", + "IPY_MODEL_2db66ec325294ef6b6c0bbcbf4ddf956", + "IPY_MODEL_991617589a474008aa2118e6b402fe3c" + ], + "layout": "IPY_MODEL_8d7752acd7244143a2465138cfdd0848", "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "tooltip": null } }, - "540aae02b6ba439c971a2f1bd0372142": { + "4da7e4e7f66c437b9df947311fbcabb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1991,7 +2021,66 @@ "width": null } }, - "5507b68e0f544428aec43609f5ddf28c": { + "54bfa2603b3d480cb21708ef6cbb23c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "57c1a597566543ed9f622ce49e94ab55": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5d435c65a28f416dba8acf9e9037e772": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3151034ce11c498ca70679e99c762223", + "placeholder": "​", + "style": "IPY_MODEL_d9623ce9228240f792b723b5ae5f6aea", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 17.8MB/s]" + } + }, + "7065599fb27a4c94b3a0f83176455eb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2044,7 +2133,7 @@ "width": null } }, - "5d5b3c718368482e8c3584d9f3b89134": { + "759039067d2c4508b2db8adf3602ecb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2097,109 +2186,83 @@ "width": null } }, - "6ff70f6342194a9393e623034448e79f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1b1bd533cdc644f7a15f7e29d2f73cba", - "IPY_MODEL_76e016e7178b4959b3ec56409fa8a210", - "IPY_MODEL_e13065afd10345898fa60d75d1c8c12c" - ], - "layout": "IPY_MODEL_b2348776d7944ed191a5d05c3a5832e2", - "tabbable": null, - "tooltip": null - } - }, - "76e016e7178b4959b3ec56409fa8a210": { + "771d8a9eed1f4ac980d85ec212352d9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8ae9b101e46d47f4b87f8d8ed3dd9870", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4c1fd44225be4ede888414b43fd1aae0", + "layout": "IPY_MODEL_0246673bda614057b87d1d4a071d07dc", + "placeholder": "​", + "style": "IPY_MODEL_b9575927b7ff4dc3b4f219a8058b36b9", "tabbable": null, "tooltip": null, - "value": 16887676.0 - } - }, - "78008ea5606b450fbb7053298a8e14e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7cdabc567a3a4232bff0caf92d20cccd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 2.04k/2.04k [00:00<00:00, 478kB/s]" } }, - "854bfce357274d7896b980d6ffa4d292": { - "model_module": "@jupyter-widgets/controls", + "7b0a21f462aa4c588fc88161d4aacaf7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8648287059e74a00bf2f14680df6314f": { + "7b0f7fc885b94f2fba36f99bff582ece": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2252,7 +2315,41 @@ "width": null } }, - "8a2aae69012542859c482b05c913d007": { + "7d2d458d370049b88ce3f448a6173436": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7eb78abc773d43d6b5f5ea1b3a7d118a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8815f4d0f8a1488fb6ac1517db64608e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2267,15 +2364,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3f2644b73030463a8441b97daea33191", + "layout": "IPY_MODEL_0cc1e2ec36dd4b3585cdf8034ca0aa07", "placeholder": "​", - "style": "IPY_MODEL_97be27862bcb4b0fadc3e9b38d9fa1ce", + "style": "IPY_MODEL_7d2d458d370049b88ce3f448a6173436", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": "classifier.ckpt: 100%" } }, - "8a2f58b0cab74e9d97e1f5219d682a97": { + "8c99dff9eb4d49c884091c0856298635": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2328,7 +2425,7 @@ "width": null } }, - "8ae9b101e46d47f4b87f8d8ed3dd9870": { + "8d7752acd7244143a2465138cfdd0848": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2381,7 +2478,30 @@ "width": null } }, - "8c5b691d790b47b99e214d2bce8e7685": { + "8f86c045b5af482e91516dd8164e57db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_12085fdd993b4978b67be8ceccf56834", + "placeholder": "​", + "style": "IPY_MODEL_b22538f44134499ca67768efd562ef59", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "98d46bcc8409465291c0807491bba1a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2399,7 +2519,7 @@ "text_color": null } }, - "8f1431a42875452aa1b8cfde25679907": { + "991617589a474008aa2118e6b402fe3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2414,15 +2534,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b2e2cb1f9859419987c9734f97a742c9", + "layout": "IPY_MODEL_4da7e4e7f66c437b9df947311fbcabb3", "placeholder": "​", - "style": "IPY_MODEL_a468700470b640d3bea331e703330b83", + "style": "IPY_MODEL_57c1a597566543ed9f622ce49e94ab55", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 515kB/s]" + "value": " 16.9M/16.9M [00:00<00:00, 25.8MB/s]" } }, - "910a45419bc341359f2cda7f377a91f4": { + "9bb209b5c60041e89c0b6a139baf0cf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2475,7 +2595,23 @@ "width": null } }, - "92cb8577cc654e0d8e16bbae83217272": { + "9d68db3bc2ea4e8a99fb98e4d66c9160": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9ea2756856324606b3da554c15c654d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2490,15 +2626,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_04ba5b3dd8c04e838a7e7cc0bfa6e753", + "layout": "IPY_MODEL_fbf1b34c34974d5aa871e28dbd8a00f5", "placeholder": "​", - "style": "IPY_MODEL_ea19f6e80dcf4a24abaf70d866b17930", + "style": "IPY_MODEL_98d46bcc8409465291c0807491bba1a6", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml: 100%" } }, - "97be27862bcb4b0fadc3e9b38d9fa1ce": { + "a437de4edb0b4d1c94542633e608f95c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2516,23 +2652,7 @@ "text_color": null } }, - "9a9c0b3836a347a397e042a6c69b35b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9f1114a0ebee46c89a328d3c3797d315": { + "a6994f6b25404fa090773a364b257fee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2585,48 +2705,7 @@ "width": null } }, - "a468700470b640d3bea331e703330b83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ae9f130fd4de40f5b57a5480173ebb2b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_910a45419bc341359f2cda7f377a91f4", - "placeholder": "​", - "style": "IPY_MODEL_bc2a3c7b22344d32ac51e5df8dc9d43a", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 21.2MB/s]" - } - }, - "b2348776d7944ed191a5d05c3a5832e2": { + "acffbafe17c140c5a8dd99c8acfd75bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2679,113 +2758,75 @@ "width": null } }, - "b2e2cb1f9859419987c9734f97a742c9": { - "model_module": "@jupyter-widgets/base", + "b22538f44134499ca67768efd562ef59": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b5d0a1652fa04933adc1ee277e1a5eea": { - "model_module": "@jupyter-widgets/base", + "b578372e109c4035a055c5b83ba4abec": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8815f4d0f8a1488fb6ac1517db64608e", + "IPY_MODEL_e3fad78d0a454ee18486769b1f290a04", + "IPY_MODEL_5d435c65a28f416dba8acf9e9037e772" + ], + "layout": "IPY_MODEL_de5219ece0bc4a8aa3814769270a8251", + "tabbable": null, + "tooltip": null } }, - "bc2a3c7b22344d32ac51e5df8dc9d43a": { + "b6235d9a1eca4733ba0221542f0d3643": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_acffbafe17c140c5a8dd99c8acfd75bd", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9d68db3bc2ea4e8a99fb98e4d66c9160", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "b9575927b7ff4dc3b4f219a8058b36b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2803,7 +2844,7 @@ "text_color": null } }, - "bd45a6c6b8224423b27186bc3b1d76fd": { + "c284236043894de7a2aeab311605060f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2856,7 +2897,93 @@ "width": null } }, - "c8b17a3e4f1a45208331ae52e30e604e": { + "c33c14b2a5e34ea0ae0823ec817c2bbd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9bb209b5c60041e89c0b6a139baf0cf2", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cba2fe5da4504b8bb895fbd45626e1e4", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "c944ad099e17457fa206b43284821586": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7b0a21f462aa4c588fc88161d4aacaf7", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_30b5cf292a2d4ef7917f1a528257c959", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "cba2fe5da4504b8bb895fbd45626e1e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d9623ce9228240f792b723b5ae5f6aea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "de5219ece0bc4a8aa3814769270a8251": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2909,77 +3036,7 @@ "width": null } }, - "c8efd0a0a0b843c4b66180c59d0b0aa0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9f1114a0ebee46c89a328d3c3797d315", - "placeholder": "​", - "style": "IPY_MODEL_7cdabc567a3a4232bff0caf92d20cccd", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "d2cd8781ed0546b2a786d5366cb329c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_51981d23ad1b43f4bdcbbe538450da95", - "IPY_MODEL_0776a1a79f12437b822668f3b1593769", - "IPY_MODEL_0163f12b39674660a03640a1d28d352b" - ], - "layout": "IPY_MODEL_c8b17a3e4f1a45208331ae52e30e604e", - "tabbable": null, - "tooltip": null - } - }, - "d9e09dd6f61c46c29d56a60d373a4ef1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a2f58b0cab74e9d97e1f5219d682a97", - "placeholder": "​", - "style": "IPY_MODEL_78008ea5606b450fbb7053298a8e14e3", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 277MB/s]" - } - }, - "dad64a778c1448e8b079a118cd347c91": { + "e3fad78d0a454ee18486769b1f290a04": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2995,98 +3052,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ffa6b0f9ec6a43c9ba655194d22d2e82", - "max": 128619.0, + "layout": "IPY_MODEL_7065599fb27a4c94b3a0f83176455eb3", + "max": 15856877.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1465e93280394675a458a36ad7072519", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "e13065afd10345898fa60d75d1c8c12c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bd45a6c6b8224423b27186bc3b1d76fd", - "placeholder": "​", - "style": "IPY_MODEL_8c5b691d790b47b99e214d2bce8e7685", + "style": "IPY_MODEL_7eb78abc773d43d6b5f5ea1b3a7d118a", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 225MB/s]" - } - }, - "e4305fbce0724169bdabd574de390fab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c8efd0a0a0b843c4b66180c59d0b0aa0", - "IPY_MODEL_3b0e94e7ec8948d1918b8007d32c3f06", - "IPY_MODEL_d9e09dd6f61c46c29d56a60d373a4ef1" - ], - "layout": "IPY_MODEL_5d5b3c718368482e8c3584d9f3b89134", - "tabbable": null, - "tooltip": null - } - }, - "e52ea3436b594f9fbc1b8984e837cd9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ea19f6e80dcf4a24abaf70d866b17930": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 15856877.0 } }, - "ec2e80c5d4b945f1a87577b27ebd4b5d": { + "eddc0c22a05d419fbb6a614c372acc94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3139,7 +3115,31 @@ "width": null } }, - "ffa6b0f9ec6a43c9ba655194d22d2e82": { + "f13e6c1113f74ad78e8ebb5bae8047e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9ea2756856324606b3da554c15c654d0", + "IPY_MODEL_c944ad099e17457fa206b43284821586", + "IPY_MODEL_771d8a9eed1f4ac980d85ec212352d9c" + ], + "layout": "IPY_MODEL_759039067d2c4508b2db8adf3602ecb7", + "tabbable": null, + "tooltip": null + } + }, + "fbf1b34c34974d5aa871e28dbd8a00f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 323ce22c5..3b981fe19 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:53.705625Z", - "iopub.status.busy": "2024-08-08T18:53:53.705448Z", - "iopub.status.idle": "2024-08-08T18:53:55.081486Z", - "shell.execute_reply": "2024-08-08T18:53:55.080922Z" + "iopub.execute_input": "2024-08-12T10:31:59.748865Z", + "iopub.status.busy": "2024-08-12T10:31:59.748689Z", + "iopub.status.idle": "2024-08-12T10:32:01.178381Z", + "shell.execute_reply": "2024-08-12T10:32:01.177678Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.084147Z", - "iopub.status.busy": "2024-08-08T18:53:55.083628Z", - "iopub.status.idle": "2024-08-08T18:53:55.086818Z", - "shell.execute_reply": "2024-08-08T18:53:55.086240Z" + "iopub.execute_input": "2024-08-12T10:32:01.181077Z", + "iopub.status.busy": "2024-08-12T10:32:01.180732Z", + "iopub.status.idle": "2024-08-12T10:32:01.184111Z", + "shell.execute_reply": "2024-08-12T10:32:01.183554Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.088903Z", - "iopub.status.busy": "2024-08-08T18:53:55.088603Z", - "iopub.status.idle": "2024-08-08T18:53:55.097167Z", - "shell.execute_reply": "2024-08-08T18:53:55.096595Z" + "iopub.execute_input": "2024-08-12T10:32:01.186467Z", + "iopub.status.busy": "2024-08-12T10:32:01.185987Z", + "iopub.status.idle": "2024-08-12T10:32:01.194805Z", + "shell.execute_reply": "2024-08-12T10:32:01.194325Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.099353Z", - "iopub.status.busy": "2024-08-08T18:53:55.099016Z", - "iopub.status.idle": "2024-08-08T18:53:55.103585Z", - "shell.execute_reply": "2024-08-08T18:53:55.103129Z" + "iopub.execute_input": "2024-08-12T10:32:01.196739Z", + "iopub.status.busy": "2024-08-12T10:32:01.196579Z", + "iopub.status.idle": "2024-08-12T10:32:01.201598Z", + "shell.execute_reply": "2024-08-12T10:32:01.201169Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.105649Z", - "iopub.status.busy": "2024-08-08T18:53:55.105315Z", - "iopub.status.idle": "2024-08-08T18:53:55.113136Z", - "shell.execute_reply": "2024-08-08T18:53:55.112684Z" + "iopub.execute_input": "2024-08-12T10:32:01.203716Z", + "iopub.status.busy": "2024-08-12T10:32:01.203381Z", + "iopub.status.idle": "2024-08-12T10:32:01.211227Z", + "shell.execute_reply": "2024-08-12T10:32:01.210770Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.115230Z", - "iopub.status.busy": "2024-08-08T18:53:55.114892Z", - "iopub.status.idle": "2024-08-08T18:53:55.434358Z", - "shell.execute_reply": "2024-08-08T18:53:55.433771Z" + "iopub.execute_input": "2024-08-12T10:32:01.213218Z", + "iopub.status.busy": "2024-08-12T10:32:01.212875Z", + "iopub.status.idle": "2024-08-12T10:32:01.590347Z", + "shell.execute_reply": "2024-08-12T10:32:01.589735Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.436696Z", - "iopub.status.busy": "2024-08-08T18:53:55.436355Z", - "iopub.status.idle": "2024-08-08T18:53:55.459116Z", - "shell.execute_reply": "2024-08-08T18:53:55.458661Z" + "iopub.execute_input": "2024-08-12T10:32:01.592629Z", + "iopub.status.busy": "2024-08-12T10:32:01.592298Z", + "iopub.status.idle": "2024-08-12T10:32:01.615629Z", + "shell.execute_reply": "2024-08-12T10:32:01.615067Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.461185Z", - "iopub.status.busy": "2024-08-08T18:53:55.460842Z", - "iopub.status.idle": "2024-08-08T18:53:55.543506Z", - "shell.execute_reply": "2024-08-08T18:53:55.543045Z" + "iopub.execute_input": "2024-08-12T10:32:01.617888Z", + "iopub.status.busy": "2024-08-12T10:32:01.617542Z", + "iopub.status.idle": "2024-08-12T10:32:01.706974Z", + "shell.execute_reply": "2024-08-12T10:32:01.706312Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.545976Z", - "iopub.status.busy": "2024-08-08T18:53:55.545605Z", - "iopub.status.idle": "2024-08-08T18:53:57.517193Z", - "shell.execute_reply": "2024-08-08T18:53:57.516574Z" + "iopub.execute_input": "2024-08-12T10:32:01.709728Z", + "iopub.status.busy": "2024-08-12T10:32:01.709322Z", + "iopub.status.idle": "2024-08-12T10:32:03.790772Z", + "shell.execute_reply": "2024-08-12T10:32:03.790079Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:57.519789Z", - "iopub.status.busy": "2024-08-08T18:53:57.519310Z", - "iopub.status.idle": "2024-08-08T18:53:57.541098Z", - "shell.execute_reply": "2024-08-08T18:53:57.540654Z" + "iopub.execute_input": "2024-08-12T10:32:03.793485Z", + "iopub.status.busy": "2024-08-12T10:32:03.793002Z", + "iopub.status.idle": "2024-08-12T10:32:03.815741Z", + "shell.execute_reply": "2024-08-12T10:32:03.815264Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:57.543256Z", - "iopub.status.busy": "2024-08-08T18:53:57.542917Z", - "iopub.status.idle": "2024-08-08T18:53:57.560318Z", - "shell.execute_reply": "2024-08-08T18:53:57.559875Z" + "iopub.execute_input": "2024-08-12T10:32:03.817911Z", + "iopub.status.busy": "2024-08-12T10:32:03.817557Z", + "iopub.status.idle": "2024-08-12T10:32:03.835714Z", + "shell.execute_reply": "2024-08-12T10:32:03.835233Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:57.562315Z", - "iopub.status.busy": "2024-08-08T18:53:57.561978Z", - "iopub.status.idle": "2024-08-08T18:53:57.575363Z", - "shell.execute_reply": "2024-08-08T18:53:57.574916Z" + "iopub.execute_input": "2024-08-12T10:32:03.837879Z", + "iopub.status.busy": "2024-08-12T10:32:03.837527Z", + "iopub.status.idle": "2024-08-12T10:32:03.851514Z", + "shell.execute_reply": "2024-08-12T10:32:03.851026Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:57.577486Z", - "iopub.status.busy": "2024-08-08T18:53:57.577147Z", - "iopub.status.idle": "2024-08-08T18:53:57.600081Z", - "shell.execute_reply": "2024-08-08T18:53:57.599478Z" + "iopub.execute_input": "2024-08-12T10:32:03.853602Z", + "iopub.status.busy": "2024-08-12T10:32:03.853416Z", + "iopub.status.idle": "2024-08-12T10:32:03.873168Z", + "shell.execute_reply": "2024-08-12T10:32:03.872577Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f122fc7efb194d83843b3ad7dbae4262", + "model_id": "dffb23ed5c2644778ec4c7c3f2b9f329", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:57.602468Z", - "iopub.status.busy": "2024-08-08T18:53:57.602098Z", - "iopub.status.idle": "2024-08-08T18:53:57.617143Z", - "shell.execute_reply": "2024-08-08T18:53:57.616688Z" + "iopub.execute_input": "2024-08-12T10:32:03.875189Z", + "iopub.status.busy": "2024-08-12T10:32:03.874883Z", + "iopub.status.idle": "2024-08-12T10:32:03.889632Z", + "shell.execute_reply": "2024-08-12T10:32:03.889056Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:57.619259Z", - "iopub.status.busy": "2024-08-08T18:53:57.618927Z", - "iopub.status.idle": "2024-08-08T18:53:57.624650Z", - "shell.execute_reply": "2024-08-08T18:53:57.624217Z" + "iopub.execute_input": "2024-08-12T10:32:03.891772Z", + "iopub.status.busy": "2024-08-12T10:32:03.891429Z", + "iopub.status.idle": "2024-08-12T10:32:03.897352Z", + "shell.execute_reply": "2024-08-12T10:32:03.896888Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:57.626718Z", - "iopub.status.busy": "2024-08-08T18:53:57.626297Z", - "iopub.status.idle": "2024-08-08T18:53:57.643767Z", - "shell.execute_reply": "2024-08-08T18:53:57.643226Z" + "iopub.execute_input": "2024-08-12T10:32:03.899329Z", + "iopub.status.busy": "2024-08-12T10:32:03.899153Z", + "iopub.status.idle": "2024-08-12T10:32:03.917989Z", + "shell.execute_reply": "2024-08-12T10:32:03.917520Z" } }, "outputs": [ @@ -1447,99 +1447,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "2ab80ba7ffb1486fab890f3d666bdbe5": { + "07a72d376d6e478baad0ef09f148bbf6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a119aa224e4a44978e662d8f20875db9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a5b3c2152de048a2b3299084ccc724eb": { + "3bc0dcea43a547e3a8b3ba8ba898ebc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e65e9e9a3b6546e781e534442cfee063", - "placeholder": "​", - "style": "IPY_MODEL_f6067bad19b64bdda10ff1e97e2eb459", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c65ffdbe3a2f46b2b17bdc5735ac60ee": { + "50535b3950f44374a0fd1c9724af2593": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1554,15 +1498,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f0fa1263d8404f888e39f5c9ed9134ea", + "layout": "IPY_MODEL_ff9d81d4322d4281a3537e0673a5b97d", "placeholder": "​", - "style": "IPY_MODEL_ea3dc2877c9147b3a424d5ca5973bfff", + "style": "IPY_MODEL_07a72d376d6e478baad0ef09f148bbf6", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 11354.09 examples/s]" + "value": " 132/132 [00:00<00:00, 12983.33 examples/s]" } }, - "d4a9304596a04567b2c5eab155565142": { + "54d7caf41f934968aee3eba3ea8e068b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1578,17 +1522,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a119aa224e4a44978e662d8f20875db9", + "layout": "IPY_MODEL_9ca473e51cfe4e43aa18d492518d8d5a", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2ab80ba7ffb1486fab890f3d666bdbe5", + "style": "IPY_MODEL_ffddd94db73a4ecf8ec12daa355bfab3", "tabbable": null, "tooltip": null, "value": 132.0 } }, - "e643313c24ca41cbb41ed410eee91be8": { + "8840190de80b4ad7b948b5c41cd9b9a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1641,7 +1585,7 @@ "width": null } }, - "e65e9e9a3b6546e781e534442cfee063": { + "973f5f2c9d4947229d6f499d72a6e562": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1694,25 +1638,7 @@ "width": null } }, - "ea3dc2877c9147b3a424d5ca5973bfff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f0fa1263d8404f888e39f5c9ed9134ea": { + "9ca473e51cfe4e43aa18d492518d8d5a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1765,7 +1691,30 @@ "width": null } }, - "f122fc7efb194d83843b3ad7dbae4262": { + "a3b187cf3ab34fe997d96e21abb214cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8840190de80b4ad7b948b5c41cd9b9a6", + "placeholder": "​", + "style": "IPY_MODEL_3bc0dcea43a547e3a8b3ba8ba898ebc3", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "dffb23ed5c2644778ec4c7c3f2b9f329": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1780,31 +1729,82 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a5b3c2152de048a2b3299084ccc724eb", - "IPY_MODEL_d4a9304596a04567b2c5eab155565142", - "IPY_MODEL_c65ffdbe3a2f46b2b17bdc5735ac60ee" + "IPY_MODEL_a3b187cf3ab34fe997d96e21abb214cc", + "IPY_MODEL_54d7caf41f934968aee3eba3ea8e068b", + "IPY_MODEL_50535b3950f44374a0fd1c9724af2593" ], - "layout": "IPY_MODEL_e643313c24ca41cbb41ed410eee91be8", + "layout": "IPY_MODEL_973f5f2c9d4947229d6f499d72a6e562", "tabbable": null, "tooltip": null } }, - "f6067bad19b64bdda10ff1e97e2eb459": { + "ff9d81d4322d4281a3537e0673a5b97d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ffddd94db73a4ecf8ec12daa355bfab3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 0b3e3aaf0..5a8714bfc 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:00.493275Z", - "iopub.status.busy": "2024-08-08T18:54:00.492862Z", - "iopub.status.idle": "2024-08-08T18:54:01.882693Z", - "shell.execute_reply": "2024-08-08T18:54:01.882096Z" + "iopub.execute_input": "2024-08-12T10:32:06.983365Z", + "iopub.status.busy": "2024-08-12T10:32:06.983197Z", + "iopub.status.idle": "2024-08-12T10:32:08.436869Z", + "shell.execute_reply": "2024-08-12T10:32:08.436300Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:01.885255Z", - "iopub.status.busy": "2024-08-08T18:54:01.884847Z", - "iopub.status.idle": "2024-08-08T18:54:01.888003Z", - "shell.execute_reply": "2024-08-08T18:54:01.887471Z" + "iopub.execute_input": "2024-08-12T10:32:08.439618Z", + "iopub.status.busy": "2024-08-12T10:32:08.439096Z", + "iopub.status.idle": "2024-08-12T10:32:08.442335Z", + "shell.execute_reply": "2024-08-12T10:32:08.441759Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:01.890193Z", - "iopub.status.busy": "2024-08-08T18:54:01.889847Z", - "iopub.status.idle": "2024-08-08T18:54:01.898873Z", - "shell.execute_reply": "2024-08-08T18:54:01.898405Z" + "iopub.execute_input": "2024-08-12T10:32:08.444586Z", + "iopub.status.busy": "2024-08-12T10:32:08.444261Z", + "iopub.status.idle": "2024-08-12T10:32:08.453438Z", + "shell.execute_reply": "2024-08-12T10:32:08.452952Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:01.900959Z", - "iopub.status.busy": "2024-08-08T18:54:01.900546Z", - "iopub.status.idle": "2024-08-08T18:54:01.905764Z", - "shell.execute_reply": "2024-08-08T18:54:01.905235Z" + "iopub.execute_input": "2024-08-12T10:32:08.455435Z", + "iopub.status.busy": "2024-08-12T10:32:08.455255Z", + "iopub.status.idle": "2024-08-12T10:32:08.460524Z", + "shell.execute_reply": "2024-08-12T10:32:08.460066Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:01.907941Z", - "iopub.status.busy": "2024-08-08T18:54:01.907616Z", - "iopub.status.idle": "2024-08-08T18:54:01.916237Z", - "shell.execute_reply": "2024-08-08T18:54:01.915677Z" + "iopub.execute_input": "2024-08-12T10:32:08.462593Z", + "iopub.status.busy": "2024-08-12T10:32:08.462390Z", + "iopub.status.idle": "2024-08-12T10:32:08.470920Z", + "shell.execute_reply": "2024-08-12T10:32:08.470439Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:01.918312Z", - "iopub.status.busy": "2024-08-08T18:54:01.917995Z", - "iopub.status.idle": "2024-08-08T18:54:02.293625Z", - "shell.execute_reply": "2024-08-08T18:54:02.293016Z" + "iopub.execute_input": "2024-08-12T10:32:08.472758Z", + "iopub.status.busy": "2024-08-12T10:32:08.472584Z", + "iopub.status.idle": "2024-08-12T10:32:08.850138Z", + "shell.execute_reply": "2024-08-12T10:32:08.849581Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:02.295739Z", - "iopub.status.busy": "2024-08-08T18:54:02.295554Z", - "iopub.status.idle": "2024-08-08T18:54:02.298425Z", - "shell.execute_reply": "2024-08-08T18:54:02.297956Z" + "iopub.execute_input": "2024-08-12T10:32:08.852345Z", + "iopub.status.busy": "2024-08-12T10:32:08.852165Z", + "iopub.status.idle": "2024-08-12T10:32:08.854819Z", + "shell.execute_reply": "2024-08-12T10:32:08.854355Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:02.300351Z", - "iopub.status.busy": "2024-08-08T18:54:02.300173Z", - "iopub.status.idle": "2024-08-08T18:54:02.334958Z", - "shell.execute_reply": "2024-08-08T18:54:02.334500Z" + "iopub.execute_input": "2024-08-12T10:32:08.856729Z", + "iopub.status.busy": "2024-08-12T10:32:08.856554Z", + "iopub.status.idle": "2024-08-12T10:32:08.891296Z", + "shell.execute_reply": "2024-08-12T10:32:08.890793Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:02.336850Z", - "iopub.status.busy": "2024-08-08T18:54:02.336677Z", - "iopub.status.idle": "2024-08-08T18:54:04.478350Z", - "shell.execute_reply": "2024-08-08T18:54:04.477698Z" + "iopub.execute_input": "2024-08-12T10:32:08.893906Z", + "iopub.status.busy": "2024-08-12T10:32:08.893545Z", + "iopub.status.idle": "2024-08-12T10:32:11.095965Z", + "shell.execute_reply": "2024-08-12T10:32:11.095252Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.480787Z", - "iopub.status.busy": "2024-08-08T18:54:04.480397Z", - "iopub.status.idle": "2024-08-08T18:54:04.501436Z", - "shell.execute_reply": "2024-08-08T18:54:04.500864Z" + "iopub.execute_input": "2024-08-12T10:32:11.098718Z", + "iopub.status.busy": "2024-08-12T10:32:11.098130Z", + "iopub.status.idle": "2024-08-12T10:32:11.117905Z", + "shell.execute_reply": "2024-08-12T10:32:11.117324Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.503661Z", - "iopub.status.busy": "2024-08-08T18:54:04.503340Z", - "iopub.status.idle": "2024-08-08T18:54:04.510666Z", - "shell.execute_reply": "2024-08-08T18:54:04.510198Z" + "iopub.execute_input": "2024-08-12T10:32:11.120377Z", + "iopub.status.busy": "2024-08-12T10:32:11.119904Z", + "iopub.status.idle": "2024-08-12T10:32:11.127046Z", + "shell.execute_reply": "2024-08-12T10:32:11.126456Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.512703Z", - "iopub.status.busy": "2024-08-08T18:54:04.512524Z", - "iopub.status.idle": "2024-08-08T18:54:04.518581Z", - "shell.execute_reply": "2024-08-08T18:54:04.518110Z" + "iopub.execute_input": "2024-08-12T10:32:11.129084Z", + "iopub.status.busy": "2024-08-12T10:32:11.128900Z", + "iopub.status.idle": "2024-08-12T10:32:11.136478Z", + "shell.execute_reply": "2024-08-12T10:32:11.135930Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.520503Z", - "iopub.status.busy": "2024-08-08T18:54:04.520326Z", - "iopub.status.idle": "2024-08-08T18:54:04.532165Z", - "shell.execute_reply": "2024-08-08T18:54:04.531600Z" + "iopub.execute_input": "2024-08-12T10:32:11.138541Z", + "iopub.status.busy": "2024-08-12T10:32:11.138204Z", + "iopub.status.idle": "2024-08-12T10:32:11.148788Z", + "shell.execute_reply": "2024-08-12T10:32:11.148225Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.534253Z", - "iopub.status.busy": "2024-08-08T18:54:04.533963Z", - "iopub.status.idle": "2024-08-08T18:54:04.543383Z", - "shell.execute_reply": "2024-08-08T18:54:04.542816Z" + "iopub.execute_input": "2024-08-12T10:32:11.150984Z", + "iopub.status.busy": "2024-08-12T10:32:11.150654Z", + "iopub.status.idle": "2024-08-12T10:32:11.160607Z", + "shell.execute_reply": "2024-08-12T10:32:11.160022Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.545549Z", - "iopub.status.busy": "2024-08-08T18:54:04.545231Z", - "iopub.status.idle": "2024-08-08T18:54:04.552108Z", - "shell.execute_reply": "2024-08-08T18:54:04.551568Z" + "iopub.execute_input": "2024-08-12T10:32:11.163177Z", + "iopub.status.busy": "2024-08-12T10:32:11.162777Z", + "iopub.status.idle": "2024-08-12T10:32:11.170325Z", + "shell.execute_reply": "2024-08-12T10:32:11.169691Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.554444Z", - "iopub.status.busy": "2024-08-08T18:54:04.554013Z", - "iopub.status.idle": "2024-08-08T18:54:04.563589Z", - "shell.execute_reply": "2024-08-08T18:54:04.563132Z" + "iopub.execute_input": "2024-08-12T10:32:11.172574Z", + "iopub.status.busy": "2024-08-12T10:32:11.172225Z", + "iopub.status.idle": "2024-08-12T10:32:11.182760Z", + "shell.execute_reply": "2024-08-12T10:32:11.182213Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.565603Z", - "iopub.status.busy": "2024-08-08T18:54:04.565425Z", - "iopub.status.idle": "2024-08-08T18:54:04.581683Z", - "shell.execute_reply": "2024-08-08T18:54:04.581197Z" + "iopub.execute_input": "2024-08-12T10:32:11.184974Z", + "iopub.status.busy": "2024-08-12T10:32:11.184656Z", + "iopub.status.idle": "2024-08-12T10:32:11.201470Z", + "shell.execute_reply": "2024-08-12T10:32:11.200965Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index 688ba5df2..4e6eaa9a6 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:07.617460Z", - "iopub.status.busy": "2024-08-08T18:54:07.617283Z", - "iopub.status.idle": "2024-08-08T18:54:10.626935Z", - "shell.execute_reply": "2024-08-08T18:54:10.626277Z" + "iopub.execute_input": "2024-08-12T10:32:14.108295Z", + "iopub.status.busy": "2024-08-12T10:32:14.107801Z", + "iopub.status.idle": "2024-08-12T10:32:17.199789Z", + "shell.execute_reply": "2024-08-12T10:32:17.199158Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:10.629473Z", - "iopub.status.busy": "2024-08-08T18:54:10.629174Z", - "iopub.status.idle": "2024-08-08T18:54:10.632947Z", - "shell.execute_reply": "2024-08-08T18:54:10.632379Z" + "iopub.execute_input": "2024-08-12T10:32:17.202525Z", + "iopub.status.busy": "2024-08-12T10:32:17.201957Z", + "iopub.status.idle": "2024-08-12T10:32:17.205593Z", + "shell.execute_reply": "2024-08-12T10:32:17.205132Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:10.634959Z", - "iopub.status.busy": "2024-08-08T18:54:10.634651Z", - "iopub.status.idle": "2024-08-08T18:54:13.553657Z", - "shell.execute_reply": "2024-08-08T18:54:13.553098Z" + "iopub.execute_input": "2024-08-12T10:32:17.207722Z", + "iopub.status.busy": "2024-08-12T10:32:17.207391Z", + "iopub.status.idle": "2024-08-12T10:32:22.832822Z", + "shell.execute_reply": "2024-08-12T10:32:22.832329Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c9b4b8e5c57b4261b88992e28dd46275", + "model_id": "24950e57ccc94aaaa079c9d5b86c6053", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "59635bd91eda4ec8b2813d3556942613", + "model_id": "ac8e9ae825dd46cda3caaf717ab3f457", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "67b82f58222e4b13875d5dcfacf1f02d", + "model_id": "d71df3a63bda4854a0d7e51c67182ab4", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a211a34af24a4a388a2faca04427353e", + "model_id": "df25fafe8e5749a69234408c18364b66", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3f3bb06464c540feb011d94bda7f342f", + "model_id": "659ce9293f064abe8640605a65b6aeb5", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:13.555974Z", - "iopub.status.busy": "2024-08-08T18:54:13.555571Z", - "iopub.status.idle": "2024-08-08T18:54:13.559393Z", - "shell.execute_reply": "2024-08-08T18:54:13.558864Z" + "iopub.execute_input": "2024-08-12T10:32:22.835079Z", + "iopub.status.busy": "2024-08-12T10:32:22.834720Z", + "iopub.status.idle": "2024-08-12T10:32:22.838632Z", + "shell.execute_reply": "2024-08-12T10:32:22.838043Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:13.561477Z", - "iopub.status.busy": "2024-08-08T18:54:13.561049Z", - "iopub.status.idle": "2024-08-08T18:54:25.210165Z", - "shell.execute_reply": "2024-08-08T18:54:25.209506Z" + "iopub.execute_input": "2024-08-12T10:32:22.840738Z", + "iopub.status.busy": "2024-08-12T10:32:22.840420Z", + "iopub.status.idle": "2024-08-12T10:32:34.877427Z", + "shell.execute_reply": "2024-08-12T10:32:34.876879Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "12503c89e5554d0c8b1cda02ea9c897f", + "model_id": "b7ff9d3e760d46ab9410530722e86f1c", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:25.212985Z", - "iopub.status.busy": "2024-08-08T18:54:25.212615Z", - "iopub.status.idle": "2024-08-08T18:54:43.498026Z", - "shell.execute_reply": "2024-08-08T18:54:43.497413Z" + "iopub.execute_input": "2024-08-12T10:32:34.880019Z", + "iopub.status.busy": "2024-08-12T10:32:34.879767Z", + "iopub.status.idle": "2024-08-12T10:32:53.521520Z", + "shell.execute_reply": "2024-08-12T10:32:53.520954Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:43.500729Z", - "iopub.status.busy": "2024-08-08T18:54:43.500364Z", - "iopub.status.idle": "2024-08-08T18:54:43.506138Z", - "shell.execute_reply": "2024-08-08T18:54:43.505568Z" + "iopub.execute_input": "2024-08-12T10:32:53.524328Z", + "iopub.status.busy": "2024-08-12T10:32:53.523932Z", + "iopub.status.idle": "2024-08-12T10:32:53.529696Z", + "shell.execute_reply": "2024-08-12T10:32:53.529222Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:43.508109Z", - "iopub.status.busy": "2024-08-08T18:54:43.507800Z", - "iopub.status.idle": "2024-08-08T18:54:43.512417Z", - "shell.execute_reply": "2024-08-08T18:54:43.511992Z" + "iopub.execute_input": "2024-08-12T10:32:53.531672Z", + "iopub.status.busy": "2024-08-12T10:32:53.531382Z", + "iopub.status.idle": "2024-08-12T10:32:53.535613Z", + "shell.execute_reply": "2024-08-12T10:32:53.535051Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:43.514534Z", - "iopub.status.busy": "2024-08-08T18:54:43.514357Z", - "iopub.status.idle": "2024-08-08T18:54:43.523235Z", - "shell.execute_reply": "2024-08-08T18:54:43.522721Z" + "iopub.execute_input": "2024-08-12T10:32:53.537903Z", + "iopub.status.busy": "2024-08-12T10:32:53.537489Z", + "iopub.status.idle": "2024-08-12T10:32:53.546584Z", + "shell.execute_reply": "2024-08-12T10:32:53.546030Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:43.525307Z", - "iopub.status.busy": "2024-08-08T18:54:43.525009Z", - "iopub.status.idle": "2024-08-08T18:54:43.551375Z", - "shell.execute_reply": "2024-08-08T18:54:43.550807Z" + "iopub.execute_input": "2024-08-12T10:32:53.548705Z", + "iopub.status.busy": "2024-08-12T10:32:53.548357Z", + "iopub.status.idle": "2024-08-12T10:32:53.576832Z", + "shell.execute_reply": "2024-08-12T10:32:53.576340Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:43.553582Z", - "iopub.status.busy": "2024-08-08T18:54:43.553246Z", - "iopub.status.idle": "2024-08-08T18:55:16.306900Z", - "shell.execute_reply": "2024-08-08T18:55:16.306225Z" + "iopub.execute_input": "2024-08-12T10:32:53.579268Z", + "iopub.status.busy": "2024-08-12T10:32:53.578915Z", + "iopub.status.idle": "2024-08-12T10:33:28.300304Z", + "shell.execute_reply": "2024-08-12T10:33:28.299664Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.909\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.112\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.600\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.743\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "58e473c5367e4a1b9a53bb8a96929532", + "model_id": "1bf4baa646be4ef4b42842b34d57e605", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cbce330f04ed4afbb5085ae978cdad59", + "model_id": "3f27976bac3c458aa1b2cc0fb4b52d2c", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.885\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.025\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.612\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.947\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e1fe80d24ad54c8c9915159f98eab61d", + "model_id": "791dc4f1fa2e4226ae567d555fc24805", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c9d9ed6ef9604c189eaa8d491ed7f431", + "model_id": "31a3859cc0e34abe854259d21e40f2b5", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.765\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.366\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.617\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.925\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fdc592e8c3fe4972a89cb71e5b08f902", + "model_id": "8edaf5c5759040f08cbb3efa298b00c6", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3fc7207fb2254116bfa395ff6ea6f233", + "model_id": "35bfdb221038403b86fc1c1dfba20630", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:55:16.309502Z", - "iopub.status.busy": "2024-08-08T18:55:16.309249Z", - "iopub.status.idle": "2024-08-08T18:55:16.326491Z", - "shell.execute_reply": "2024-08-08T18:55:16.326062Z" + "iopub.execute_input": "2024-08-12T10:33:28.303145Z", + "iopub.status.busy": "2024-08-12T10:33:28.302899Z", + "iopub.status.idle": "2024-08-12T10:33:28.320368Z", + "shell.execute_reply": "2024-08-12T10:33:28.319852Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:55:16.328481Z", - "iopub.status.busy": "2024-08-08T18:55:16.328173Z", - "iopub.status.idle": "2024-08-08T18:55:16.789922Z", - "shell.execute_reply": "2024-08-08T18:55:16.789362Z" + "iopub.execute_input": "2024-08-12T10:33:28.322941Z", + "iopub.status.busy": "2024-08-12T10:33:28.322755Z", + "iopub.status.idle": "2024-08-12T10:33:28.802696Z", + "shell.execute_reply": "2024-08-12T10:33:28.802112Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:55:16.792524Z", - "iopub.status.busy": "2024-08-08T18:55:16.792055Z", - "iopub.status.idle": "2024-08-08T18:57:07.453399Z", - "shell.execute_reply": "2024-08-08T18:57:07.452805Z" + "iopub.execute_input": "2024-08-12T10:33:28.805268Z", + "iopub.status.busy": "2024-08-12T10:33:28.804800Z", + "iopub.status.idle": "2024-08-12T10:35:20.178945Z", + "shell.execute_reply": "2024-08-12T10:35:20.178277Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4ee5125ee6464710b79aa17cdcd4da98", + "model_id": "34f053a0e82b47f29b9b2f6a619f4c72", "version_major": 2, "version_minor": 0 }, @@ -1108,10 +1108,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:07.456023Z", - "iopub.status.busy": "2024-08-08T18:57:07.455445Z", - "iopub.status.idle": "2024-08-08T18:57:07.930283Z", - "shell.execute_reply": "2024-08-08T18:57:07.929742Z" + "iopub.execute_input": "2024-08-12T10:35:20.181523Z", + "iopub.status.busy": "2024-08-12T10:35:20.181116Z", + "iopub.status.idle": "2024-08-12T10:35:20.637093Z", + "shell.execute_reply": "2024-08-12T10:35:20.636521Z" } }, "outputs": [ @@ -1257,10 +1257,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:07.933098Z", - "iopub.status.busy": "2024-08-08T18:57:07.932614Z", - "iopub.status.idle": "2024-08-08T18:57:07.994757Z", - "shell.execute_reply": "2024-08-08T18:57:07.994153Z" + "iopub.execute_input": "2024-08-12T10:35:20.639735Z", + "iopub.status.busy": "2024-08-12T10:35:20.639339Z", + "iopub.status.idle": "2024-08-12T10:35:20.700448Z", + "shell.execute_reply": "2024-08-12T10:35:20.699879Z" } }, "outputs": [ @@ -1364,10 +1364,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:07.996907Z", - "iopub.status.busy": "2024-08-08T18:57:07.996624Z", - "iopub.status.idle": "2024-08-08T18:57:08.005205Z", - "shell.execute_reply": "2024-08-08T18:57:08.004641Z" + "iopub.execute_input": "2024-08-12T10:35:20.702827Z", + "iopub.status.busy": "2024-08-12T10:35:20.702336Z", + "iopub.status.idle": "2024-08-12T10:35:20.711028Z", + "shell.execute_reply": "2024-08-12T10:35:20.710503Z" } }, "outputs": [ @@ -1497,10 +1497,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:08.007329Z", - "iopub.status.busy": "2024-08-08T18:57:08.006996Z", - "iopub.status.idle": "2024-08-08T18:57:08.011541Z", - "shell.execute_reply": "2024-08-08T18:57:08.011080Z" + "iopub.execute_input": "2024-08-12T10:35:20.713060Z", + "iopub.status.busy": "2024-08-12T10:35:20.712755Z", + "iopub.status.idle": "2024-08-12T10:35:20.717256Z", + "shell.execute_reply": "2024-08-12T10:35:20.716822Z" }, "nbsphinx": "hidden" }, @@ -1546,10 +1546,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:08.013602Z", - "iopub.status.busy": "2024-08-08T18:57:08.013212Z", - "iopub.status.idle": "2024-08-08T18:57:08.522025Z", - "shell.execute_reply": "2024-08-08T18:57:08.521457Z" + "iopub.execute_input": "2024-08-12T10:35:20.719137Z", + "iopub.status.busy": "2024-08-12T10:35:20.718967Z", + "iopub.status.idle": "2024-08-12T10:35:21.245859Z", + "shell.execute_reply": "2024-08-12T10:35:21.245304Z" } }, "outputs": [ @@ -1584,10 +1584,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:08.524205Z", - "iopub.status.busy": "2024-08-08T18:57:08.523883Z", - "iopub.status.idle": "2024-08-08T18:57:08.532144Z", - "shell.execute_reply": "2024-08-08T18:57:08.531618Z" + "iopub.execute_input": "2024-08-12T10:35:21.248532Z", + "iopub.status.busy": "2024-08-12T10:35:21.248103Z", + "iopub.status.idle": "2024-08-12T10:35:21.257809Z", + "shell.execute_reply": "2024-08-12T10:35:21.257321Z" } }, "outputs": [ @@ -1754,10 +1754,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:08.534346Z", - "iopub.status.busy": "2024-08-08T18:57:08.534032Z", - "iopub.status.idle": "2024-08-08T18:57:08.541169Z", - "shell.execute_reply": "2024-08-08T18:57:08.540615Z" + "iopub.execute_input": "2024-08-12T10:35:21.259908Z", + "iopub.status.busy": "2024-08-12T10:35:21.259732Z", + "iopub.status.idle": "2024-08-12T10:35:21.266967Z", + "shell.execute_reply": "2024-08-12T10:35:21.266442Z" }, "nbsphinx": "hidden" }, @@ -1833,10 +1833,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:08.543199Z", - "iopub.status.busy": "2024-08-08T18:57:08.542762Z", - "iopub.status.idle": "2024-08-08T18:57:09.289877Z", - "shell.execute_reply": "2024-08-08T18:57:09.289312Z" + "iopub.execute_input": "2024-08-12T10:35:21.269269Z", + "iopub.status.busy": "2024-08-12T10:35:21.268808Z", + "iopub.status.idle": "2024-08-12T10:35:22.015755Z", + "shell.execute_reply": "2024-08-12T10:35:22.015219Z" } }, "outputs": [ @@ -1873,10 +1873,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:09.292436Z", - "iopub.status.busy": "2024-08-08T18:57:09.292116Z", - "iopub.status.idle": "2024-08-08T18:57:09.307223Z", - "shell.execute_reply": "2024-08-08T18:57:09.306667Z" + "iopub.execute_input": "2024-08-12T10:35:22.018300Z", + "iopub.status.busy": "2024-08-12T10:35:22.017951Z", + "iopub.status.idle": "2024-08-12T10:35:22.032830Z", + "shell.execute_reply": "2024-08-12T10:35:22.032325Z" } }, "outputs": [ @@ -2033,10 +2033,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:09.309352Z", - "iopub.status.busy": "2024-08-08T18:57:09.309013Z", - "iopub.status.idle": "2024-08-08T18:57:09.314429Z", - "shell.execute_reply": "2024-08-08T18:57:09.313983Z" + "iopub.execute_input": "2024-08-12T10:35:22.035102Z", + "iopub.status.busy": "2024-08-12T10:35:22.034759Z", + "iopub.status.idle": "2024-08-12T10:35:22.040225Z", + "shell.execute_reply": "2024-08-12T10:35:22.039787Z" }, "nbsphinx": "hidden" }, @@ -2081,10 +2081,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:09.316496Z", - "iopub.status.busy": "2024-08-08T18:57:09.316173Z", - "iopub.status.idle": "2024-08-08T18:57:09.779679Z", - "shell.execute_reply": "2024-08-08T18:57:09.778921Z" + "iopub.execute_input": "2024-08-12T10:35:22.042322Z", + "iopub.status.busy": "2024-08-12T10:35:22.041997Z", + "iopub.status.idle": "2024-08-12T10:35:22.502792Z", + "shell.execute_reply": "2024-08-12T10:35:22.501808Z" } }, "outputs": [ @@ -2166,10 +2166,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:09.782265Z", - "iopub.status.busy": "2024-08-08T18:57:09.782066Z", - "iopub.status.idle": "2024-08-08T18:57:09.791894Z", - "shell.execute_reply": "2024-08-08T18:57:09.791345Z" + "iopub.execute_input": "2024-08-12T10:35:22.505357Z", + "iopub.status.busy": "2024-08-12T10:35:22.505162Z", + "iopub.status.idle": "2024-08-12T10:35:22.515712Z", + "shell.execute_reply": "2024-08-12T10:35:22.515169Z" } }, "outputs": [ @@ -2297,10 +2297,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:09.794318Z", - "iopub.status.busy": "2024-08-08T18:57:09.794124Z", - "iopub.status.idle": "2024-08-08T18:57:09.799916Z", - "shell.execute_reply": "2024-08-08T18:57:09.799352Z" + "iopub.execute_input": "2024-08-12T10:35:22.518152Z", + "iopub.status.busy": "2024-08-12T10:35:22.517960Z", + "iopub.status.idle": "2024-08-12T10:35:22.523759Z", + "shell.execute_reply": "2024-08-12T10:35:22.523192Z" }, "nbsphinx": "hidden" }, @@ -2337,10 +2337,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:09.802347Z", - "iopub.status.busy": "2024-08-08T18:57:09.802157Z", - "iopub.status.idle": "2024-08-08T18:57:10.006239Z", - "shell.execute_reply": "2024-08-08T18:57:10.005710Z" + "iopub.execute_input": "2024-08-12T10:35:22.526113Z", + "iopub.status.busy": "2024-08-12T10:35:22.525925Z", + "iopub.status.idle": "2024-08-12T10:35:22.733246Z", + "shell.execute_reply": "2024-08-12T10:35:22.732666Z" } }, "outputs": [ @@ -2382,10 +2382,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:10.008606Z", - "iopub.status.busy": "2024-08-08T18:57:10.008259Z", - "iopub.status.idle": "2024-08-08T18:57:10.015970Z", - "shell.execute_reply": "2024-08-08T18:57:10.015534Z" + "iopub.execute_input": "2024-08-12T10:35:22.735513Z", + "iopub.status.busy": "2024-08-12T10:35:22.735345Z", + "iopub.status.idle": "2024-08-12T10:35:22.743038Z", + "shell.execute_reply": "2024-08-12T10:35:22.742595Z" } }, "outputs": [ @@ -2410,47 +2410,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2471,10 +2471,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:10.018090Z", - "iopub.status.busy": "2024-08-08T18:57:10.017757Z", - "iopub.status.idle": "2024-08-08T18:57:10.212593Z", - "shell.execute_reply": "2024-08-08T18:57:10.212023Z" + "iopub.execute_input": "2024-08-12T10:35:22.744991Z", + "iopub.status.busy": "2024-08-12T10:35:22.744832Z", + "iopub.status.idle": "2024-08-12T10:35:22.937179Z", + "shell.execute_reply": "2024-08-12T10:35:22.936681Z" } }, "outputs": [ @@ -2514,10 +2514,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:10.214927Z", - "iopub.status.busy": "2024-08-08T18:57:10.214570Z", - "iopub.status.idle": "2024-08-08T18:57:10.218915Z", - "shell.execute_reply": "2024-08-08T18:57:10.218459Z" + "iopub.execute_input": "2024-08-12T10:35:22.939341Z", + "iopub.status.busy": "2024-08-12T10:35:22.939183Z", + "iopub.status.idle": "2024-08-12T10:35:22.943609Z", + "shell.execute_reply": "2024-08-12T10:35:22.943151Z" }, "nbsphinx": "hidden" }, @@ -2554,23 +2554,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0074fd3e7dc5465baf7ffbb736b2a048": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0273aef8589d4917bacb942121545fdc": { + "050f0e1e40f94f6caba3e0f41a21d9a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2623,7 +2607,7 @@ "width": null } }, - "02b24b8e6f0f4fcc8baa27311d9ecdbe": { + "061eee76a3a24a79baa0cd66b7176b98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2639,17 +2623,139 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_feec1b76bf164c76b4d6e16c6f021c54", - "max": 60000.0, + "layout": "IPY_MODEL_90df698f70f74395b78c4545a06264b4", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9764dd40f95b485f8dabd10de8543776", + "style": "IPY_MODEL_655b10b948974f7f87f81c7bfa23ce0d", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 40.0 + } + }, + "062ebfae188a4deda8cbf155c6b1e813": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8323bc18e50a44b085c885ca6b12a4a6", + "placeholder": "​", + "style": "IPY_MODEL_f5f27a9d088946cdb7ec1fbf69ccb020", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:50<00:00, 1257.10it/s]" + } + }, + "069e2f7a59ce43e49d604a293ef5ff5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "094b5a63409c4832a9280e3e77ebf8c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_693092ccb52d4ce5a63d4a2174c8f259", + "placeholder": "​", + "style": "IPY_MODEL_fc0a1aa0c6cf46cfa476b5f7e2175769", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.94it/s]" + } + }, + "09c1b0e3cfa84b0591fec49a549193c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0c7c8de3aee0459eafac0111bd69a153": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_14b738fb959149c0a77186ad6d4e2aeb", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_88890e4bba3a43c6839fa256217037ff", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "0c8cb70aa3444e7a9f2e276faba04b24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "03a9418d267a4af7a7cc815b2e4a6415": { + "0ddb4b1211904a10aa548c33caee6aed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2702,7 +2808,7 @@ "width": null } }, - "054384b2abe64f47a33113084c7b75ab": { + "14b738fb959149c0a77186ad6d4e2aeb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2755,33 +2861,30 @@ "width": null } }, - "0611029cb1544250b5205dbff93a779d": { + "170a1618ce4f40039a860ae398484c7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f8e530f9e62146a1b3da96e7282b66ae", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b8455c3957da47908f8061dd434140b5", + "layout": "IPY_MODEL_e9906144508c4f6f90da6edacecadc26", + "placeholder": "​", + "style": "IPY_MODEL_6f4e70feb4b34d5db54a97d67aff4b7f", "tabbable": null, "tooltip": null, - "value": 10000.0 + "value": " 40/40 [00:00<00:00, 61.87it/s]" } }, - "077ee51e76974fa9a8489c9bf0041068": { + "17d88d606d374f79a7f9ed8be66d62bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2834,56 +2937,75 @@ "width": null } }, - "095c66112453480e9624d9cfc21715ab": { + "1888f5ab59624b249135ca08f763d2f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e98ad085aa5240bf8038535967afcdb2", - "placeholder": "​", - "style": "IPY_MODEL_ab086fb305cc4768af645d19b69915cf", + "layout": "IPY_MODEL_050f0e1e40f94f6caba3e0f41a21d9a9", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8046a22c390a4790a21018f476e9a1f3", "tabbable": null, "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 71.8MB/s]" + "value": 9015.0 } }, - "09efd1370cc54da4a50994d669f4d152": { + "194aeb115f294dd081a7dcf4d3442b34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1bf4baa646be4ef4b42842b34d57e605": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c7125c1a247549e2b42ff703b34e1fc1", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2e70f5dc63434d57950456d994824d90", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_206cd1099952440a80fab705ba066b49", + "IPY_MODEL_0c7c8de3aee0459eafac0111bd69a153", + "IPY_MODEL_094b5a63409c4832a9280e3e77ebf8c6" + ], + "layout": "IPY_MODEL_32a281ca5f9a4e0e879c56bc4f1ae1e5", "tabbable": null, - "tooltip": null, - "value": 40.0 + "tooltip": null } }, - "0af8bebcf20a4939ac2a4c99a19c486b": { + "1c7e2745f8f7403695df2dab5d5b611a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2936,7 +3058,7 @@ "width": null } }, - "0d9d45f1bf5c4166b5b7a3abf66b43be": { + "1d1726a8bb644d8abcfe68a6e01dac4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2954,100 +3076,86 @@ "text_color": null } }, - "0e1af7ec8d1b44488fbc65b4dd7fc5cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c259c2e0eb294c8ca42e13569fd0c617", - "placeholder": "​", - "style": "IPY_MODEL_549cb314e13542f88db6960e75a19e31", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "10554e347811484fa131aed108fa7f5e": { + "1d3c4b825e3147989495a0e274377e0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6c0fcaaad127458080de589feb203b5c", - "placeholder": "​", - "style": "IPY_MODEL_b27d5b6c1e7d47f183f2b299162ecaf1", + "layout": "IPY_MODEL_c76f90aede094a2bb529e852ce14a1ef", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8b6f71a4d2174d45b5f0da5575a69f92", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 45.4MB/s]" + "value": 40.0 } }, - "12503c89e5554d0c8b1cda02ea9c897f": { - "model_module": "@jupyter-widgets/controls", + "1d3c8852cb9b4d0994b952c07bb057d8": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cd9c57f8b84b47a7963af1f6695a8d32", - "IPY_MODEL_02b24b8e6f0f4fcc8baa27311d9ecdbe", - "IPY_MODEL_6e45708d51db4608b5553f0fc1c8dcff" - ], - "layout": "IPY_MODEL_27e6b71041574941b9df2fd57f6b5eca", - "tabbable": null, - "tooltip": null - } - }, - "17b38d9bc2e7453688461e200844cac0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eaf1a047405b4e7bb57d287daefe7504", - "placeholder": "​", - "style": "IPY_MODEL_a4975a5d4325440b88803e3b2f5c0666", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.61it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1891ddeeb8e34f09ac02cfb62a42704b": { + "1f847bdb68fa4d6ca3ba027f2f973e6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3100,95 +3208,7 @@ "width": null } }, - "18b6b3db95044619bc7e97671d75032d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4656345014b540ae96397331cf092c4f", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9db8ae20199641fd85bf696a288ca4d5", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "18c7834b4b744cfcb7a4ed96a2762fed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1a8aba776b174b1383142a9f296eeed1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1dd67ff2848741198fa40d68afd7677f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_393bd1d20ea440d6ae40a18595ed8742", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36ca6928cf6c416ab0f31493a716d24e", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "1faa0770f77b4418bfe02c6c5ae337b7": { + "2024ae051e814e749e5840205c0354d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3241,30 +3261,7 @@ "width": null } }, - "2170d1a68bfb452fb4453c1677275cdb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc4212d824134d64aa41da4e68a11ce3", - "placeholder": "​", - "style": "IPY_MODEL_a302d38e608a491ba33ba5b1fa87997c", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.60it/s]" - } - }, - "25ed6de0a7704cc18de8511ec7479677": { + "206cd1099952440a80fab705ba066b49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3279,15 +3276,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec04934362fe4543863277d2dfd6a061", + "layout": "IPY_MODEL_c2c7a5fc0f0f4ed6823022c936c59d4e", "placeholder": "​", - "style": "IPY_MODEL_cd312f9c3c43405e8452c9134db3353d", + "style": "IPY_MODEL_f747d8cff30e48638ca4b6a8b62e1fc8", "tabbable": null, "tooltip": null, "value": "100%" } }, - "268e7e78ba6641b9a58b5082f31c4874": { + "211a1d0f7e994da3abdf9c87d144d826": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3340,7 +3337,39 @@ "width": null } }, - "27e6b71041574941b9df2fd57f6b5eca": { + "219f02688f1c45028f227c9b6864c6b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2261458f8c6d47aa8268533e772e4c15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "23b32b2ad0ea490eb3636fac11964542": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3393,30 +3422,31 @@ "width": null } }, - "2c5b5ee1b7614fd5ba101a1a7a7ee678": { + "24950e57ccc94aaaa079c9d5b86c6053": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d3d5ed9f069440f69dd5a9fefd795add", - "placeholder": "​", - "style": "IPY_MODEL_c40071e8d372461586ab66b43e521127", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d1946623097a4ad78743cc2dfe72c9e1", + "IPY_MODEL_1888f5ab59624b249135ca08f763d2f2", + "IPY_MODEL_4c01338a37c743ef886e2b772e01356a" + ], + "layout": "IPY_MODEL_2024ae051e814e749e5840205c0354d5", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 294375.84 examples/s]" + "tooltip": null } }, - "2c5fa4447f1d4785949c1d9417c4c4bf": { + "28db2d2bcb534e91afddd30a3b5732dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3432,33 +3462,105 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_054384b2abe64f47a33113084c7b75ab", - "max": 40.0, + "layout": "IPY_MODEL_6029339687a24aaab92f58dbb90a9a2c", + "max": 10000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_94f5b807f47446d8b6bc23175c98ec98", + "style": "IPY_MODEL_09c1b0e3cfa84b0591fec49a549193c0", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 10000.0 } }, - "2e70f5dc63434d57950456d994824d90": { + "2cbc780bf0f941f3b375c0a00bd30ee9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2ed3f07d0dc74ce382b3608ad1c61b6d": { + "2f9e64dc3c6449d4b0180bcb72af8029": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_835e200b7dbb452491f96613a3d68582", + "placeholder": "​", + "style": "IPY_MODEL_2cbc780bf0f941f3b375c0a00bd30ee9", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "2fb5148d5fd04234a5adddeecede3131": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9c86ac35d56b4cb1b9a6c8c81f2b9d73", + "placeholder": "​", + "style": "IPY_MODEL_ac59c63878b24875a6a698b3193950b4", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.59it/s]" + } + }, + "31a3859cc0e34abe854259d21e40f2b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c3ff3642d4de49349f69b03661c00aed", + "IPY_MODEL_061eee76a3a24a79baa0cd66b7176b98", + "IPY_MODEL_9d735577298140d6bd60a896468f75ac" + ], + "layout": "IPY_MODEL_55ffa8d9bd174552baa854c8a1ab0aeb", + "tabbable": null, + "tooltip": null + } + }, + "32a281ca5f9a4e0e879c56bc4f1ae1e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3511,7 +3613,7 @@ "width": null } }, - "2f212f9bea5245158964fb3092654f7f": { + "332d853f3c6d4038bce23ffbe32553e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3564,33 +3666,124 @@ "width": null } }, - "33aa34f0378c4935b1efa481c9ce8a91": { + "34f053a0e82b47f29b9b2f6a619f4c72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_80b6b9e2eef74d0bbc9cea0a03500cd3", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_998b8037b83446bf93284dbd4a2788f2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dfffc444cdb640d4a9d712253b6edfa0", + "IPY_MODEL_41ec7bae4da74af39b4e8e1a0ad11736", + "IPY_MODEL_062ebfae188a4deda8cbf155c6b1e813" + ], + "layout": "IPY_MODEL_9991e131478646aba449193d96a55a57", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null + } + }, + "35bfdb221038403b86fc1c1dfba20630": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9aea7f50b8a64c5089b63f2e59596737", + "IPY_MODEL_c927a2fd98ee422da94eb0ac1d179320", + "IPY_MODEL_a88d54dcd75443e4adf63e584faa623b" + ], + "layout": "IPY_MODEL_c81eaad18b554cdbbd128330bc9705e1", + "tabbable": null, + "tooltip": null + } + }, + "35ccdf1d9e91436fb82de63e8a8e06dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3a97ba1affa44cee81db93c6e61a8d5e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "33ee9f5915f94a6c950761dcf5d72f0f": { + "3befe646d3934a3aa08e0a70a188a153": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3643,72 +3836,54 @@ "width": null } }, - "3401118fc13146509f55662d834b629b": { + "3db3123a400c4f229af20389ad3520d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2f212f9bea5245158964fb3092654f7f", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ee414ac69e154eb0bfed44189fad8e37", + "layout": "IPY_MODEL_c486ad2141e04d7e9fe35aa3fd2474cb", + "placeholder": "​", + "style": "IPY_MODEL_ed2a70f9cbbb432781a33bb137c5fe76", "tabbable": null, "tooltip": null, - "value": 9015.0 - } - }, - "36ca6928cf6c416ab0f31493a716d24e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "Generating train split: 100%" } }, - "376f63928820493ab3ff6eda05c56897": { + "3f27976bac3c458aa1b2cc0fb4b52d2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2ed3f07d0dc74ce382b3608ad1c61b6d", - "placeholder": "​", - "style": "IPY_MODEL_48edccbb4b124aabaffa392988e697f0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4e05a30d55ad46afa6049432887d8b9a", + "IPY_MODEL_ff306473844b44168fdb05050fbaa3cd", + "IPY_MODEL_9f386e7f08b44099b26554458760f42b" + ], + "layout": "IPY_MODEL_f8117f94932241b49ad3017baa3b1708", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.08it/s]" + "tooltip": null } }, - "393bd1d20ea440d6ae40a18595ed8742": { + "40cc1a682eb84007a12d44ba00d8e59d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3761,101 +3936,33 @@ "width": null } }, - "398bb879138b40d399d0f113bd694fc5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cca28fa45d7c4860b70e5d252d598779", - "placeholder": "​", - "style": "IPY_MODEL_1a8aba776b174b1383142a9f296eeed1", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "3b7a3ad9d9f741999029b1e884e10d7f": { + "41ec7bae4da74af39b4e8e1a0ad11736": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b47787d2ca243258e66f5c0054ca32d", - "placeholder": "​", - "style": "IPY_MODEL_ff37bd60786747118fd0d7497b060680", + "layout": "IPY_MODEL_78ee05e703164da7a1242a32c2fe5888", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c3eb3db9442048f197e1a77c1097d301", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "3f3bb06464c540feb011d94bda7f342f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ad4890d19a5a43fbafc7171e1d868162", - "IPY_MODEL_0611029cb1544250b5205dbff93a779d", - "IPY_MODEL_ec80915afdb94a8299984811c0cb0c11" - ], - "layout": "IPY_MODEL_03a9418d267a4af7a7cc815b2e4a6415", - "tabbable": null, - "tooltip": null - } - }, - "3fc7207fb2254116bfa395ff6ea6f233": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b187d0d8a55d473dbac7dfa59736f376", - "IPY_MODEL_2c5fa4447f1d4785949c1d9417c4c4bf", - "IPY_MODEL_4d437acab4a847d0ab2c06d9070efce4" - ], - "layout": "IPY_MODEL_8fa971ff228b4730ba125565b22a7330", - "tabbable": null, - "tooltip": null + "value": 60000.0 } }, - "4338e7ce2b6443e98493645e832eff72": { + "42b1e7be991546bfa6284a9f6a270c5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3908,7 +4015,7 @@ "width": null } }, - "43df559ec9e84f6fbbeeb56895ac1cb3": { + "43d5c56839bb4f48bef27dd0bd134ac1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3924,33 +4031,76 @@ "description_width": "" } }, - "452a151738254c91b9ad4e9993aa05fa": { + "441f7c2b1d4140f186a4b360c9fab017": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5bd79b8a8c1b4e85ba6e80a802542158", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e16f7cc5be7a41f99cd033710d609079", + "layout": "IPY_MODEL_53d0052e73f048148debd9352ce17f64", + "placeholder": "​", + "style": "IPY_MODEL_bc8279dc52324a12b433c3eb7960a2a2", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 5.18M/5.18M [00:01<00:00, 4.37MB/s]" + } + }, + "44c54692880345f59ae3ced9048f8e20": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8b238dcab69e48aeb560ceceed894516", + "placeholder": "​", + "style": "IPY_MODEL_bfc788895f3e4ac99ff89696a72123e1", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "4656345014b540ae96397331cf092c4f": { + "4600b1651fe94c96a63f5f402ffeb0ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3befe646d3934a3aa08e0a70a188a153", + "placeholder": "​", + "style": "IPY_MODEL_bc1aed3122144934903681458e457bf8", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "4686b29b240141f7956b546c1f2e9e83": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4003,51 +4153,7 @@ "width": null } }, - "48edccbb4b124aabaffa392988e697f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4a3b41c4e2ea4d97a6bd371eaa440b40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_077ee51e76974fa9a8489c9bf0041068", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_43df559ec9e84f6fbbeeb56895ac1cb3", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "4b47787d2ca243258e66f5c0054ca32d": { + "4bc42b29769b4a4aa8b4ce01236e62d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4100,7 +4206,7 @@ "width": null } }, - "4d437acab4a847d0ab2c06d9070efce4": { + "4c01338a37c743ef886e2b772e01356a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4115,75 +4221,77 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1891ddeeb8e34f09ac02cfb62a42704b", + "layout": "IPY_MODEL_17d88d606d374f79a7f9ed8be66d62bc", "placeholder": "​", - "style": "IPY_MODEL_c896b3b9cb9a45188ed696890efa5e2e", + "style": "IPY_MODEL_52d596f308bf4f45b80e83f66d3644d7", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.55it/s]" + "value": " 9.02k/9.02k [00:00<00:00, 1.14MB/s]" } }, - "4ee5125ee6464710b79aa17cdcd4da98": { + "4e05a30d55ad46afa6049432887d8b9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_98c7aca5addf4cbb8065ab0051632514", - "IPY_MODEL_abc391898ae9407cb5205321071f0468", - "IPY_MODEL_f7452f6566e34b2f9f35c2563525fb17" - ], - "layout": "IPY_MODEL_ac12a96b92264ddbba89320eac25cc9d", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f67814f0e6b24425bdf25f7f05f08ccf", + "placeholder": "​", + "style": "IPY_MODEL_de513cdaed394180886bee1974c93ce2", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "50c4f35b30b44f3b863a24dd6179bcb7": { + "4eb3982370ac42b992966c7a96cc2a47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_541973876cde496bb6e94fa33dc55140", + "placeholder": "​", + "style": "IPY_MODEL_66b18e0944474821880d3bfb36e60114", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 274934.56 examples/s]" } }, - "520a280cc7d74e448d872f7c7271d126": { + "4eb8b10ee55a4e899df1e41b2daa3ab0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "549cb314e13542f88db6960e75a19e31": { + "52d596f308bf4f45b80e83f66d3644d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4201,33 +4309,30 @@ "text_color": null } }, - "5503b58a820e4819842e80e976d3a76f": { + "535e01c6bf504b4cb054ec6d754951fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b6658a6ead1348539758e9b43047e12e", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_85c3bef366b0445e94f67493e1b4135c", + "layout": "IPY_MODEL_1c7e2745f8f7403695df2dab5d5b611a", + "placeholder": "​", + "style": "IPY_MODEL_1d1726a8bb644d8abcfe68a6e01dac4e", "tabbable": null, "tooltip": null, - "value": 5175617.0 + "value": " 2/2 [00:00<00:00, 675.74it/s]" } }, - "5561a6ac17b24a1ead6c2035597926e5": { + "53d0052e73f048148debd9352ce17f64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4280,55 +4385,7 @@ "width": null } }, - "58e473c5367e4a1b9a53bb8a96929532": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0e1af7ec8d1b44488fbc65b4dd7fc5cf", - "IPY_MODEL_452a151738254c91b9ad4e9993aa05fa", - "IPY_MODEL_376f63928820493ab3ff6eda05c56897" - ], - "layout": "IPY_MODEL_f4e8a56c4bcc468e82d4dfb214b3caef", - "tabbable": null, - "tooltip": null - } - }, - "59635bd91eda4ec8b2813d3556942613": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7a930979e84a4050a93265e38a827e7d", - "IPY_MODEL_18b6b3db95044619bc7e97671d75032d", - "IPY_MODEL_095c66112453480e9624d9cfc21715ab" - ], - "layout": "IPY_MODEL_af1acff2f67c472c84be83c6a5cfb8a0", - "tabbable": null, - "tooltip": null - } - }, - "5bd79b8a8c1b4e85ba6e80a802542158": { + "541973876cde496bb6e94fa33dc55140": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4381,43 +4438,7 @@ "width": null } }, - "5d29aca2ccc3457a8b5ff4b641fa673b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5d644dc6e7b348f3a06e94ca47532b82": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5ed518bb96744d8abbdbc0ffbad631ae": { + "55ffa8d9bd174552baa854c8a1ab0aeb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4470,23 +4491,53 @@ "width": null } }, - "606bc0f4a41d4c5e8b2f440f908c62a0": { + "5d08f87fef9649c8a14840522a0823ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b46003cc199f415ca6fb8a875a8ec625", + "placeholder": "​", + "style": "IPY_MODEL_b89bf820b408447aaca183add33b3385", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "5fa684b3fcdd44e091e8fd2bd0c12461": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c46e51a76796424db3107165768eabeb", + "placeholder": "​", + "style": "IPY_MODEL_787c9141742943f0bf6aaf4801e00226", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 238740.02 examples/s]" } }, - "6515b01fafcc4d2e96b48a220614e3d5": { + "6029339687a24aaab92f58dbb90a9a2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4539,7 +4590,41 @@ "width": null } }, - "67b82f58222e4b13875d5dcfacf1f02d": { + "6445f463bca341038b901a4d9ca616f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "655b10b948974f7f87f81c7bfa23ce0d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "659ce9293f064abe8640605a65b6aeb5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4554,16 +4639,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3b7a3ad9d9f741999029b1e884e10d7f", - "IPY_MODEL_5503b58a820e4819842e80e976d3a76f", - "IPY_MODEL_10554e347811484fa131aed108fa7f5e" + "IPY_MODEL_fcfd3e8181d242b0badc716ec5884378", + "IPY_MODEL_28db2d2bcb534e91afddd30a3b5732dd", + "IPY_MODEL_5fa684b3fcdd44e091e8fd2bd0c12461" ], - "layout": "IPY_MODEL_dd5a2038a16c43a0ac3629f19448d20c", + "layout": "IPY_MODEL_824f74f519a34fc19f92843567a9592c", "tabbable": null, "tooltip": null } }, - "6c0fcaaad127458080de589feb203b5c": { + "6683a2f1a5804d0eac86b0226e09ce2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_40cc1a682eb84007a12d44ba00d8e59d", + "placeholder": "​", + "style": "IPY_MODEL_dd229a032b574962bf97ffe39211328c", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "66b18e0944474821880d3bfb36e60114": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "693092ccb52d4ce5a63d4a2174c8f259": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4616,53 +4742,43 @@ "width": null } }, - "6cb4ce19fc0a4dda81e4b65430e55f54": { + "6bb1bc8fb0c84a03b5e37a4b5de4e736": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_33ee9f5915f94a6c950761dcf5d72f0f", - "placeholder": "​", - "style": "IPY_MODEL_50c4f35b30b44f3b863a24dd6179bcb7", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6e45708d51db4608b5553f0fc1c8dcff": { + "6f4e70feb4b34d5db54a97d67aff4b7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c5364f9e2bfc451b9f97fb4bcc5310df", - "placeholder": "​", - "style": "IPY_MODEL_0d9d45f1bf5c4166b5b7a3abf66b43be", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5821.86 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "76c0916c6b714fbb93c3896e58ded715": { + "7550f2d102ee4b92a1572712f7261c9c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4715,48 +4831,33 @@ "width": null } }, - "7a930979e84a4050a93265e38a827e7d": { + "780e96fc62454e888f0e30931336ab5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4338e7ce2b6443e98493645e832eff72", - "placeholder": "​", - "style": "IPY_MODEL_88f90a7bee314150948a912e3a914957", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "801ab61b22704d25ac795744e7b61665": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_93ee81b92dd5469aa21e1da5e3d387b1", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_35ccdf1d9e91436fb82de63e8a8e06dd", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "80b6b9e2eef74d0bbc9cea0a03500cd3": { + "7859271f5ada491ca18d79aab57ac568": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4809,46 +4910,25 @@ "width": null } }, - "8188f3e7e5414e9d9a5d2c16a807f63f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_268e7e78ba6641b9a58b5082f31c4874", - "placeholder": "​", - "style": "IPY_MODEL_5d29aca2ccc3457a8b5ff4b641fa673b", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "85c3bef366b0445e94f67493e1b4135c": { + "787c9141742943f0bf6aaf4801e00226": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "87d2e34cd746403e8e0149f82c9c4b7a": { + "78ee05e703164da7a1242a32c2fe5888": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4901,41 +4981,49 @@ "width": null } }, - "88f90a7bee314150948a912e3a914957": { + "791dc4f1fa2e4226ae567d555fc24805": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_44c54692880345f59ae3ced9048f8e20", + "IPY_MODEL_1d3c4b825e3147989495a0e274377e0b", + "IPY_MODEL_170a1618ce4f40039a860ae398484c7f" + ], + "layout": "IPY_MODEL_1d3c8852cb9b4d0994b952c07bb057d8", + "tabbable": null, + "tooltip": null } }, - "8f9206c6d6c64a60a2580234d32e0a81": { + "7ab0569b036f42be8e24943aadcd1621": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8fa971ff228b4730ba125565b22a7330": { + "7c7fd464aadc4879ae14ae50a809b856": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4988,7 +5076,7 @@ "width": null } }, - "9431e177853c4601a4bd9865f16e42cd": { + "7fbe69e833c54364870397fb035584b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5041,62 +5129,7 @@ "width": null } }, - "94f5b807f47446d8b6bc23175c98ec98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9764dd40f95b485f8dabd10de8543776": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "98c7aca5addf4cbb8065ab0051632514": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d639d0d559dd4e6fb6e3901873333290", - "placeholder": "​", - "style": "IPY_MODEL_b1917632af694c729a36056ef09ed91f", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "998b8037b83446bf93284dbd4a2788f2": { + "8046a22c390a4790a21018f476e9a1f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5112,7 +5145,7 @@ "description_width": "" } }, - "9ae87b1292404a41be9dc9e345171229": { + "816259c1ca754349befb5d97e1185a2f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5130,47 +5163,7 @@ "text_color": null } }, - "9db8ae20199641fd85bf696a288ca4d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a211a34af24a4a388a2faca04427353e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b355a639b82d495c8b2fc25fbfc16c23", - "IPY_MODEL_33aa34f0378c4935b1efa481c9ce8a91", - "IPY_MODEL_2c5b5ee1b7614fd5ba101a1a7a7ee678" - ], - "layout": "IPY_MODEL_5ed518bb96744d8abbdbc0ffbad631ae", - "tabbable": null, - "tooltip": null - } - }, - "a242e89443f846ac981a399c957dff58": { + "824f74f519a34fc19f92843567a9592c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5223,61 +5216,7 @@ "width": null } }, - "a302d38e608a491ba33ba5b1fa87997c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a4975a5d4325440b88803e3b2f5c0666": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a62948d98c264a74b307080d5d99dcf3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a8d8a804956f4802b46c8a13ce22aff2": { + "82bb29b1154c4f96b68e22299ab1d951": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5323,58 +5262,14 @@ "object_position": null, "order": null, "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ab086fb305cc4768af645d19b69915cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "abc391898ae9407cb5205321071f0468": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fafda0c28c444f4ca06cba0b48ca4282", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_606bc0f4a41d4c5e8b2f440f908c62a0", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ac12a96b92264ddbba89320eac25cc9d": { + "8323bc18e50a44b085c885ca6b12a4a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5427,53 +5322,7 @@ "width": null } }, - "ad4890d19a5a43fbafc7171e1d868162": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6515b01fafcc4d2e96b48a220614e3d5", - "placeholder": "​", - "style": "IPY_MODEL_801ab61b22704d25ac795744e7b61665", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "ae8a9ba6a4b1459c84a9b72c6450f5c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_76c0916c6b714fbb93c3896e58ded715", - "placeholder": "​", - "style": "IPY_MODEL_5d644dc6e7b348f3a06e94ca47532b82", - "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.14MB/s]" - } - }, - "ae971a36828b4a09bb7e0dcd10dbd610": { + "835e200b7dbb452491f96613a3d68582": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5526,7 +5375,23 @@ "width": null } }, - "af1acff2f67c472c84be83c6a5cfb8a0": { + "88890e4bba3a43c6839fa256217037ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8b238dcab69e48aeb560ceceed894516": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5579,66 +5444,23 @@ "width": null } }, - "b187d0d8a55d473dbac7dfa59736f376": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fd70a6a0b5294249b17ea1c2b784b304", - "placeholder": "​", - "style": "IPY_MODEL_cf59b07551a8479baf4a889d3baa0949", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "b1917632af694c729a36056ef09ed91f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b27d5b6c1e7d47f183f2b299162ecaf1": { + "8b6f71a4d2174d45b5f0da5575a69f92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "b355a639b82d495c8b2fc25fbfc16c23": { + "8e1a4c8b07ef4bc6a844046e5c1ec2d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5653,38 +5475,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bcbfb370740c476f95b3a8fcf231f288", + "layout": "IPY_MODEL_94ea11ff873e43e6b1679e5b21455dcd", "placeholder": "​", - "style": "IPY_MODEL_ccf897372cbe4967b7ff5477dcd1d317", + "style": "IPY_MODEL_0c8cb70aa3444e7a9f2e276faba04b24", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": " 30.9M/30.9M [00:00<00:00, 41.0MB/s]" } }, - "b5d3c3c665db4760abc9fc310c910f48": { + "8edaf5c5759040f08cbb3efa298b00c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dc3819bc06b446e8813e4c9d6928ca9e", - "placeholder": "​", - "style": "IPY_MODEL_cdc4c754f5a6406ea3c2e8b8c90d749f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5d08f87fef9649c8a14840522a0823ef", + "IPY_MODEL_caddcee0c11648918da1dc284d00a733", + "IPY_MODEL_2fb5148d5fd04234a5adddeecede3131" + ], + "layout": "IPY_MODEL_4bc42b29769b4a4aa8b4ce01236e62d2", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.07it/s]" + "tooltip": null } }, - "b6658a6ead1348539758e9b43047e12e": { + "90df698f70f74395b78c4545a06264b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5737,23 +5560,7 @@ "width": null } }, - "b8455c3957da47908f8061dd434140b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b8bde2b8016d41cb940a619657518872": { + "915b2de72e934c53b5769ae4fc9767af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5771,30 +5578,7 @@ "text_color": null } }, - "bc89985b6d754809b60345d5a443a7ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c9b11aa349124007ad6dc73bd034b58b", - "placeholder": "​", - "style": "IPY_MODEL_b8bde2b8016d41cb940a619657518872", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "bcbfb370740c476f95b3a8fcf231f288": { + "92149d8be9a848bbb307f645477bd77c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5847,7 +5631,23 @@ "width": null } }, - "c1b59760f9fb4305864ad78f0ec84721": { + "93e0e54cd7c943569aa5ed63aa27d75c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "93ee81b92dd5469aa21e1da5e3d387b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5900,7 +5700,7 @@ "width": null } }, - "c259c2e0eb294c8ca42e13569fd0c617": { + "94ea11ff873e43e6b1679e5b21455dcd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5953,31 +5753,7 @@ "width": null } }, - "c2c0749853484226a8283ccd443343ad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bc89985b6d754809b60345d5a443a7ce", - "IPY_MODEL_1dd67ff2848741198fa40d68afd7677f", - "IPY_MODEL_fb86094b4168498d984fc0c735802174" - ], - "layout": "IPY_MODEL_d3b2acb4536446f2b794b4c666218cfa", - "tabbable": null, - "tooltip": null - } - }, - "c35640f855334227897b9f4c5b9fdf98": { + "99434eeea164499493fbe1c3c189f61d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5995,7 +5771,60 @@ "text_color": null } }, - "c36231f830314f42a758f73f42447b7a": { + "9991e131478646aba449193d96a55a57": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "99d2ef87ee6d4b0399d85ae87ea77234": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6048,25 +5877,30 @@ "width": null } }, - "c40071e8d372461586ab66b43e521127": { + "9aea7f50b8a64c5089b63f2e59596737": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f847bdb68fa4d6ca3ba027f2f973e6f", + "placeholder": "​", + "style": "IPY_MODEL_ecd3872c3cab43199312a7cf192fad53", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "c5364f9e2bfc451b9f97fb4bcc5310df": { + "9c86ac35d56b4cb1b9a6c8c81f2b9d73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6119,25 +5953,102 @@ "width": null } }, - "c6ad7ba41f254d7d9f66dd1ff8993505": { + "9d735577298140d6bd60a896468f75ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cdb5399c46854933aec0635ff11ee82b", + "placeholder": "​", + "style": "IPY_MODEL_816259c1ca754349befb5d97e1185a2f", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.57it/s]" + } + }, + "9e6d69b0c89145529eb34adb7f0cb591": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_211a1d0f7e994da3abdf9c87d144d826", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_069e2f7a59ce43e49d604a293ef5ff5e", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "9f386e7f08b44099b26554458760f42b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d832ccbd6cb1441bb90c6724f6a97c58", + "placeholder": "​", + "style": "IPY_MODEL_6445f463bca341038b901a4d9ca616f1", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.78it/s]" + } + }, + "a88d54dcd75443e4adf63e584faa623b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_abebc2eb21844fa397ca6871fc6ec8cf", + "placeholder": "​", + "style": "IPY_MODEL_99434eeea164499493fbe1c3c189f61d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.09it/s]" } }, - "c7125c1a247549e2b42ff703b34e1fc1": { + "abebc2eb21844fa397ca6871fc6ec8cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6190,51 +6101,49 @@ "width": null } }, - "c76490e3e2a94a30853b7713f4954fec": { + "ac59c63878b24875a6a698b3193950b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c36231f830314f42a758f73f42447b7a", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0074fd3e7dc5465baf7ffbb736b2a048", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c896b3b9cb9a45188ed696890efa5e2e": { + "ac8e9ae825dd46cda3caaf717ab3f457": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6683a2f1a5804d0eac86b0226e09ce2f", + "IPY_MODEL_e3e736649315401c81b5ead3b4d531d0", + "IPY_MODEL_8e1a4c8b07ef4bc6a844046e5c1ec2d2" + ], + "layout": "IPY_MODEL_c889901543af4b20b0f364b5a9c00552", + "tabbable": null, + "tooltip": null } }, - "c9b11aa349124007ad6dc73bd034b58b": { + "b46003cc199f415ca6fb8a875a8ec625": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6287,7 +6196,7 @@ "width": null } }, - "c9b4b8e5c57b4261b88992e28dd46275": { + "b559757c81a64cd58ea390bf437dd0ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6302,16 +6211,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6cb4ce19fc0a4dda81e4b65430e55f54", - "IPY_MODEL_3401118fc13146509f55662d834b629b", - "IPY_MODEL_ae8a9ba6a4b1459c84a9b72c6450f5c8" + "IPY_MODEL_2f9e64dc3c6449d4b0180bcb72af8029", + "IPY_MODEL_c64d89a061bf4c47a85f82310c367108", + "IPY_MODEL_535e01c6bf504b4cb054ec6d754951fc" ], - "layout": "IPY_MODEL_f6844b42137e4ef6afe18d5972a9adbe", + "layout": "IPY_MODEL_e2e91b9bdaf24cad81bd697fe523454f", "tabbable": null, "tooltip": null } }, - "c9d9ed6ef9604c189eaa8d491ed7f431": { + "b7ff9d3e760d46ab9410530722e86f1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6326,40 +6235,104 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8188f3e7e5414e9d9a5d2c16a807f63f", - "IPY_MODEL_ddf28e5539a5487a97fb0ef0dbe3d551", - "IPY_MODEL_b5d3c3c665db4760abc9fc310c910f48" + "IPY_MODEL_4600b1651fe94c96a63f5f402ffeb0ab", + "IPY_MODEL_9e6d69b0c89145529eb34adb7f0cb591", + "IPY_MODEL_d212bb43e85445ddadf2aa7399f5ad9f" ], - "layout": "IPY_MODEL_0273aef8589d4917bacb942121545fdc", + "layout": "IPY_MODEL_82bb29b1154c4f96b68e22299ab1d951", "tabbable": null, "tooltip": null } }, - "cbce330f04ed4afbb5085ae978cdad59": { + "b89bf820b408447aaca183add33b3385": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_de0cc3602a724cfb9e23caf6dd53049f", - "IPY_MODEL_c76490e3e2a94a30853b7713f4954fec", - "IPY_MODEL_d6b538e749524f4d835fd0c8afaa9e85" - ], - "layout": "IPY_MODEL_cea129ba623b4447801b1be01db46646", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bc1aed3122144934903681458e457bf8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bc8279dc52324a12b433c3eb7960a2a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bfc788895f3e4ac99ff89696a72123e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c0948aa3ed46428ab068ab823f6cd605": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "cca28fa45d7c4860b70e5d252d598779": { + "c2c7a5fc0f0f4ed6823022c936c59d4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6412,43 +6385,23 @@ "width": null } }, - "ccf897372cbe4967b7ff5477dcd1d317": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cd312f9c3c43405e8452c9134db3353d": { + "c3eb3db9442048f197e1a77c1097d301": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "cd9c57f8b84b47a7963af1f6695a8d32": { + "c3ff3642d4de49349f69b03661c00aed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6463,33 +6416,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c1b59760f9fb4305864ad78f0ec84721", + "layout": "IPY_MODEL_42b1e7be991546bfa6284a9f6a270c5e", "placeholder": "​", - "style": "IPY_MODEL_c6ad7ba41f254d7d9f66dd1ff8993505", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "cdc4c754f5a6406ea3c2e8b8c90d749f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "style": "IPY_MODEL_e42616ef8baf4635bafbb430bd804f38", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "cea129ba623b4447801b1be01db46646": { + "c46e51a76796424db3107165768eabeb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6542,25 +6477,7 @@ "width": null } }, - "cf59b07551a8479baf4a889d3baa0949": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d3b2acb4536446f2b794b4c666218cfa": { + "c486ad2141e04d7e9fe35aa3fd2474cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6613,7 +6530,59 @@ "width": null } }, - "d3d5ed9f069440f69dd5a9fefd795add": { + "c59b31b3f35548939da5226d15fe98c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_332d853f3c6d4038bce23ffbe32553e0", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4eb8b10ee55a4e899df1e41b2daa3ab0", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "c64d89a061bf4c47a85f82310c367108": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3a97ba1affa44cee81db93c6e61a8d5e", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_43d5c56839bb4f48bef27dd0bd134ac1", + "tabbable": null, + "tooltip": null, + "value": 2.0 + } + }, + "c76f90aede094a2bb529e852ce14a1ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6666,7 +6635,7 @@ "width": null } }, - "d639d0d559dd4e6fb6e3901873333290": { + "c81eaad18b554cdbbd128330bc9705e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6719,30 +6688,7 @@ "width": null } }, - "d6b538e749524f4d835fd0c8afaa9e85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5561a6ac17b24a1ead6c2035597926e5", - "placeholder": "​", - "style": "IPY_MODEL_520a280cc7d74e448d872f7c7271d126", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.81it/s]" - } - }, - "dc3819bc06b446e8813e4c9d6928ca9e": { + "c889901543af4b20b0f364b5a9c00552": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6795,7 +6741,59 @@ "width": null } }, - "dd5a2038a16c43a0ac3629f19448d20c": { + "c927a2fd98ee422da94eb0ac1d179320": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7fbe69e833c54364870397fb035584b5", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_219f02688f1c45028f227c9b6864c6b1", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "caddcee0c11648918da1dc284d00a733": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7550f2d102ee4b92a1572712f7261c9c", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2261458f8c6d47aa8268533e772e4c15", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "cdb5399c46854933aec0635ff11ee82b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6848,33 +6846,30 @@ "width": null } }, - "ddf28e5539a5487a97fb0ef0dbe3d551": { + "d1946623097a4ad78743cc2dfe72c9e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0af8bebcf20a4939ac2a4c99a19c486b", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8f9206c6d6c64a60a2580234d32e0a81", + "layout": "IPY_MODEL_0ddb4b1211904a10aa548c33caee6aed", + "placeholder": "​", + "style": "IPY_MODEL_6bb1bc8fb0c84a03b5e37a4b5de4e736", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "Downloading readme: 100%" } }, - "de0cc3602a724cfb9e23caf6dd53049f": { + "d212bb43e85445ddadf2aa7399f5ad9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6889,31 +6884,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8d8a804956f4802b46c8a13ce22aff2", + "layout": "IPY_MODEL_ec76a6f47e4e48bca8b9cbd502142648", "placeholder": "​", - "style": "IPY_MODEL_9ae87b1292404a41be9dc9e345171229", + "style": "IPY_MODEL_915b2de72e934c53b5769ae4fc9767af", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "e16f7cc5be7a41f99cd033710d609079": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 60000/60000 [00:11<00:00, 6615.19 examples/s]" } }, - "e1fe80d24ad54c8c9915159f98eab61d": { + "d71df3a63bda4854a0d7e51c67182ab4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6928,16 +6907,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_398bb879138b40d399d0f113bd694fc5", - "IPY_MODEL_4a3b41c4e2ea4d97a6bd371eaa440b40", - "IPY_MODEL_2170d1a68bfb452fb4453c1677275cdb" + "IPY_MODEL_f0fad03b316846978c8014648b821038", + "IPY_MODEL_c59b31b3f35548939da5226d15fe98c0", + "IPY_MODEL_441f7c2b1d4140f186a4b360c9fab017" ], - "layout": "IPY_MODEL_87d2e34cd746403e8e0149f82c9c4b7a", + "layout": "IPY_MODEL_7859271f5ada491ca18d79aab57ac568", "tabbable": null, "tooltip": null } }, - "e98ad085aa5240bf8038535967afcdb2": { + "d832ccbd6cb1441bb90c6724f6a97c58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6990,60 +6969,108 @@ "width": null } }, - "eaf1a047405b4e7bb57d287daefe7504": { - "model_module": "@jupyter-widgets/base", + "d87514297c6e446c988365c61fd9457a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dd229a032b574962bf97ffe39211328c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "de513cdaed394180886bee1974c93ce2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "df25fafe8e5749a69234408c18364b66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3db3123a400c4f229af20389ad3520d2", + "IPY_MODEL_780e96fc62454e888f0e30931336ab5e", + "IPY_MODEL_4eb3982370ac42b992966c7a96cc2a47" + ], + "layout": "IPY_MODEL_ec11913b1d364c338cea95b8771db6b1", + "tabbable": null, + "tooltip": null + } + }, + "dfffc444cdb640d4a9d712253b6edfa0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23b32b2ad0ea490eb3636fac11964542", + "placeholder": "​", + "style": "IPY_MODEL_7ab0569b036f42be8e24943aadcd1621", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "ec04934362fe4543863277d2dfd6a061": { + "e2e91b9bdaf24cad81bd697fe523454f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7096,46 +7123,51 @@ "width": null } }, - "ec80915afdb94a8299984811c0cb0c11": { + "e3e736649315401c81b5ead3b4d531d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a242e89443f846ac981a399c957dff58", - "placeholder": "​", - "style": "IPY_MODEL_a62948d98c264a74b307080d5d99dcf3", + "layout": "IPY_MODEL_92149d8be9a848bbb307f645477bd77c", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c0948aa3ed46428ab068ab823f6cd605", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 257043.30 examples/s]" + "value": 30931277.0 } }, - "ee414ac69e154eb0bfed44189fad8e37": { + "e42616ef8baf4635bafbb430bd804f38": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f4e8a56c4bcc468e82d4dfb214b3caef": { + "e9906144508c4f6f90da6edacecadc26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7188,7 +7220,7 @@ "width": null } }, - "f6844b42137e4ef6afe18d5972a9adbe": { + "ec11913b1d364c338cea95b8771db6b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7241,30 +7273,7 @@ "width": null } }, - "f7452f6566e34b2f9f35c2563525fb17": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ae971a36828b4a09bb7e0dcd10dbd610", - "placeholder": "​", - "style": "IPY_MODEL_18c7834b4b744cfcb7a4ed96a2762fed", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:50<00:00, 1175.17it/s]" - } - }, - "f8e530f9e62146a1b3da96e7282b66ae": { + "ec76a6f47e4e48bca8b9cbd502142648": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7317,60 +7326,43 @@ "width": null } }, - "fafda0c28c444f4ca06cba0b48ca4282": { - "model_module": "@jupyter-widgets/base", + "ecd3872c3cab43199312a7cf192fad53": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ed2a70f9cbbb432781a33bb137c5fe76": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fb86094b4168498d984fc0c735802174": { + "f0fad03b316846978c8014648b821038": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7385,68 +7377,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9431e177853c4601a4bd9865f16e42cd", + "layout": "IPY_MODEL_4686b29b240141f7956b546c1f2e9e83", "placeholder": "​", - "style": "IPY_MODEL_c35640f855334227897b9f4c5b9fdf98", + "style": "IPY_MODEL_d87514297c6e446c988365c61fd9457a", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 599.19it/s]" + "value": "Downloading data: 100%" } }, - "fc4212d824134d64aa41da4e68a11ce3": { - "model_module": "@jupyter-widgets/base", + "f5f27a9d088946cdb7ec1fbf69ccb020": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fd70a6a0b5294249b17ea1c2b784b304": { + "f67814f0e6b24425bdf25f7f05f08ccf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7499,31 +7456,25 @@ "width": null } }, - "fdc592e8c3fe4972a89cb71e5b08f902": { + "f747d8cff30e48638ca4b6a8b62e1fc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_25ed6de0a7704cc18de8511ec7479677", - "IPY_MODEL_09efd1370cc54da4a50994d669f4d152", - "IPY_MODEL_17b38d9bc2e7453688461e200844cac0" - ], - "layout": "IPY_MODEL_1faa0770f77b4418bfe02c6c5ae337b7", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "feec1b76bf164c76b4d6e16c6f021c54": { + "f8117f94932241b49ad3017baa3b1708": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7576,7 +7527,7 @@ "width": null } }, - "ff37bd60786747118fd0d7497b060680": { + "fc0a1aa0c6cf46cfa476b5f7e2175769": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7593,6 +7544,55 @@ "font_size": null, "text_color": null } + }, + "fcfd3e8181d242b0badc716ec5884378": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7c7fd464aadc4879ae14ae50a809b856", + "placeholder": "​", + "style": "IPY_MODEL_194aeb115f294dd081a7dcf4d3442b34", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "ff306473844b44168fdb05050fbaa3cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_99d2ef87ee6d4b0399d85ae87ea77234", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_93e0e54cd7c943569aa5ed63aa27d75c", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 4af7593da..4c7f899e9 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:13.932322Z", - "iopub.status.busy": "2024-08-08T18:57:13.932140Z", - "iopub.status.idle": "2024-08-08T18:57:15.344301Z", - "shell.execute_reply": "2024-08-08T18:57:15.343710Z" + "iopub.execute_input": "2024-08-12T10:35:27.600046Z", + "iopub.status.busy": "2024-08-12T10:35:27.599606Z", + "iopub.status.idle": "2024-08-12T10:35:29.050810Z", + "shell.execute_reply": "2024-08-12T10:35:29.050210Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:15.346778Z", - "iopub.status.busy": "2024-08-08T18:57:15.346464Z", - "iopub.status.idle": "2024-08-08T18:57:15.366118Z", - "shell.execute_reply": "2024-08-08T18:57:15.365638Z" + "iopub.execute_input": "2024-08-12T10:35:29.053428Z", + "iopub.status.busy": "2024-08-12T10:35:29.052999Z", + "iopub.status.idle": "2024-08-12T10:35:29.072814Z", + "shell.execute_reply": "2024-08-12T10:35:29.072235Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:15.368486Z", - "iopub.status.busy": "2024-08-08T18:57:15.368201Z", - "iopub.status.idle": "2024-08-08T18:57:15.395347Z", - "shell.execute_reply": "2024-08-08T18:57:15.394848Z" + "iopub.execute_input": "2024-08-12T10:35:29.075332Z", + "iopub.status.busy": "2024-08-12T10:35:29.074762Z", + "iopub.status.idle": "2024-08-12T10:35:29.100612Z", + "shell.execute_reply": "2024-08-12T10:35:29.100059Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:15.397532Z", - "iopub.status.busy": "2024-08-08T18:57:15.397113Z", - "iopub.status.idle": "2024-08-08T18:57:15.400666Z", - "shell.execute_reply": "2024-08-08T18:57:15.400209Z" + "iopub.execute_input": "2024-08-12T10:35:29.102602Z", + "iopub.status.busy": "2024-08-12T10:35:29.102402Z", + "iopub.status.idle": "2024-08-12T10:35:29.106001Z", + "shell.execute_reply": "2024-08-12T10:35:29.105439Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:15.402618Z", - "iopub.status.busy": "2024-08-08T18:57:15.402423Z", - "iopub.status.idle": "2024-08-08T18:57:15.409732Z", - "shell.execute_reply": "2024-08-08T18:57:15.409306Z" + "iopub.execute_input": "2024-08-12T10:35:29.108189Z", + "iopub.status.busy": "2024-08-12T10:35:29.107741Z", + "iopub.status.idle": "2024-08-12T10:35:29.115356Z", + "shell.execute_reply": "2024-08-12T10:35:29.114901Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:15.411896Z", - "iopub.status.busy": "2024-08-08T18:57:15.411574Z", - "iopub.status.idle": "2024-08-08T18:57:15.414202Z", - "shell.execute_reply": "2024-08-08T18:57:15.413669Z" + "iopub.execute_input": "2024-08-12T10:35:29.117288Z", + "iopub.status.busy": "2024-08-12T10:35:29.117111Z", + "iopub.status.idle": "2024-08-12T10:35:29.119850Z", + "shell.execute_reply": "2024-08-12T10:35:29.119384Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:15.416416Z", - "iopub.status.busy": "2024-08-08T18:57:15.415967Z", - "iopub.status.idle": "2024-08-08T18:57:18.487403Z", - "shell.execute_reply": "2024-08-08T18:57:18.486838Z" + "iopub.execute_input": "2024-08-12T10:35:29.121854Z", + "iopub.status.busy": "2024-08-12T10:35:29.121528Z", + "iopub.status.idle": "2024-08-12T10:35:32.238019Z", + "shell.execute_reply": "2024-08-12T10:35:32.237473Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:18.490087Z", - "iopub.status.busy": "2024-08-08T18:57:18.489663Z", - "iopub.status.idle": "2024-08-08T18:57:18.499795Z", - "shell.execute_reply": "2024-08-08T18:57:18.499346Z" + "iopub.execute_input": "2024-08-12T10:35:32.240723Z", + "iopub.status.busy": "2024-08-12T10:35:32.240325Z", + "iopub.status.idle": "2024-08-12T10:35:32.250121Z", + "shell.execute_reply": "2024-08-12T10:35:32.249690Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:18.501911Z", - "iopub.status.busy": "2024-08-08T18:57:18.501573Z", - "iopub.status.idle": "2024-08-08T18:57:20.601629Z", - "shell.execute_reply": "2024-08-08T18:57:20.600980Z" + "iopub.execute_input": "2024-08-12T10:35:32.252177Z", + "iopub.status.busy": "2024-08-12T10:35:32.251867Z", + "iopub.status.idle": "2024-08-12T10:35:34.432426Z", + "shell.execute_reply": "2024-08-12T10:35:34.431815Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.604183Z", - "iopub.status.busy": "2024-08-08T18:57:20.603823Z", - "iopub.status.idle": "2024-08-08T18:57:20.623367Z", - "shell.execute_reply": "2024-08-08T18:57:20.622921Z" + "iopub.execute_input": "2024-08-12T10:35:34.434892Z", + "iopub.status.busy": "2024-08-12T10:35:34.434393Z", + "iopub.status.idle": "2024-08-12T10:35:34.453921Z", + "shell.execute_reply": "2024-08-12T10:35:34.453411Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.625446Z", - "iopub.status.busy": "2024-08-08T18:57:20.625102Z", - "iopub.status.idle": "2024-08-08T18:57:20.632804Z", - "shell.execute_reply": "2024-08-08T18:57:20.632286Z" + "iopub.execute_input": "2024-08-12T10:35:34.456112Z", + "iopub.status.busy": "2024-08-12T10:35:34.455791Z", + "iopub.status.idle": "2024-08-12T10:35:34.463837Z", + "shell.execute_reply": "2024-08-12T10:35:34.463381Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.634961Z", - "iopub.status.busy": "2024-08-08T18:57:20.634501Z", - "iopub.status.idle": "2024-08-08T18:57:20.643757Z", - "shell.execute_reply": "2024-08-08T18:57:20.643303Z" + "iopub.execute_input": "2024-08-12T10:35:34.465873Z", + "iopub.status.busy": "2024-08-12T10:35:34.465530Z", + "iopub.status.idle": "2024-08-12T10:35:34.474676Z", + "shell.execute_reply": "2024-08-12T10:35:34.474217Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.645956Z", - "iopub.status.busy": "2024-08-08T18:57:20.645540Z", - "iopub.status.idle": "2024-08-08T18:57:20.653420Z", - "shell.execute_reply": "2024-08-08T18:57:20.652872Z" + "iopub.execute_input": "2024-08-12T10:35:34.476791Z", + "iopub.status.busy": "2024-08-12T10:35:34.476448Z", + "iopub.status.idle": "2024-08-12T10:35:34.484224Z", + "shell.execute_reply": "2024-08-12T10:35:34.483790Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.655435Z", - "iopub.status.busy": "2024-08-08T18:57:20.655128Z", - "iopub.status.idle": "2024-08-08T18:57:20.664041Z", - "shell.execute_reply": "2024-08-08T18:57:20.663473Z" + "iopub.execute_input": "2024-08-12T10:35:34.486280Z", + "iopub.status.busy": "2024-08-12T10:35:34.485956Z", + "iopub.status.idle": "2024-08-12T10:35:34.495143Z", + "shell.execute_reply": "2024-08-12T10:35:34.494602Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.666047Z", - "iopub.status.busy": "2024-08-08T18:57:20.665712Z", - "iopub.status.idle": "2024-08-08T18:57:20.673145Z", - "shell.execute_reply": "2024-08-08T18:57:20.672641Z" + "iopub.execute_input": "2024-08-12T10:35:34.497284Z", + "iopub.status.busy": "2024-08-12T10:35:34.496965Z", + "iopub.status.idle": "2024-08-12T10:35:34.504500Z", + "shell.execute_reply": "2024-08-12T10:35:34.503930Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.675183Z", - "iopub.status.busy": "2024-08-08T18:57:20.674905Z", - "iopub.status.idle": "2024-08-08T18:57:20.682399Z", - "shell.execute_reply": "2024-08-08T18:57:20.681836Z" + "iopub.execute_input": "2024-08-12T10:35:34.506743Z", + "iopub.status.busy": "2024-08-12T10:35:34.506276Z", + "iopub.status.idle": "2024-08-12T10:35:34.513611Z", + "shell.execute_reply": "2024-08-12T10:35:34.513168Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.684494Z", - "iopub.status.busy": "2024-08-08T18:57:20.684184Z", - "iopub.status.idle": "2024-08-08T18:57:20.692813Z", - "shell.execute_reply": "2024-08-08T18:57:20.692245Z" + "iopub.execute_input": "2024-08-12T10:35:34.515577Z", + "iopub.status.busy": "2024-08-12T10:35:34.515407Z", + "iopub.status.idle": "2024-08-12T10:35:34.524253Z", + "shell.execute_reply": "2024-08-12T10:35:34.523636Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 666762212..cb47d3b31 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:23.637597Z", - "iopub.status.busy": "2024-08-08T18:57:23.637174Z", - "iopub.status.idle": "2024-08-08T18:57:26.772389Z", - "shell.execute_reply": "2024-08-08T18:57:26.771759Z" + "iopub.execute_input": "2024-08-12T10:35:37.558577Z", + "iopub.status.busy": "2024-08-12T10:35:37.558339Z", + "iopub.status.idle": "2024-08-12T10:35:40.739470Z", + "shell.execute_reply": "2024-08-12T10:35:40.738831Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:26.775206Z", - "iopub.status.busy": "2024-08-08T18:57:26.774784Z", - "iopub.status.idle": "2024-08-08T18:57:26.778003Z", - "shell.execute_reply": "2024-08-08T18:57:26.777555Z" + "iopub.execute_input": "2024-08-12T10:35:40.742086Z", + "iopub.status.busy": "2024-08-12T10:35:40.741793Z", + "iopub.status.idle": "2024-08-12T10:35:40.745137Z", + "shell.execute_reply": "2024-08-12T10:35:40.744684Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:26.780141Z", - "iopub.status.busy": "2024-08-08T18:57:26.779785Z", - "iopub.status.idle": "2024-08-08T18:57:26.782943Z", - "shell.execute_reply": "2024-08-08T18:57:26.782441Z" + "iopub.execute_input": "2024-08-12T10:35:40.747148Z", + "iopub.status.busy": "2024-08-12T10:35:40.746882Z", + "iopub.status.idle": "2024-08-12T10:35:40.749760Z", + "shell.execute_reply": "2024-08-12T10:35:40.749330Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:26.784993Z", - "iopub.status.busy": "2024-08-08T18:57:26.784660Z", - "iopub.status.idle": "2024-08-08T18:57:26.810720Z", - "shell.execute_reply": "2024-08-08T18:57:26.810171Z" + "iopub.execute_input": "2024-08-12T10:35:40.751845Z", + "iopub.status.busy": "2024-08-12T10:35:40.751461Z", + "iopub.status.idle": "2024-08-12T10:35:40.775689Z", + "shell.execute_reply": "2024-08-12T10:35:40.775149Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:26.812844Z", - "iopub.status.busy": "2024-08-08T18:57:26.812508Z", - "iopub.status.idle": "2024-08-08T18:57:26.816017Z", - "shell.execute_reply": "2024-08-08T18:57:26.815460Z" + "iopub.execute_input": "2024-08-12T10:35:40.777762Z", + "iopub.status.busy": "2024-08-12T10:35:40.777401Z", + "iopub.status.idle": "2024-08-12T10:35:40.780895Z", + "shell.execute_reply": "2024-08-12T10:35:40.780349Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'cancel_transfer', 'card_about_to_expire', 'getting_spare_card', 'change_pin', 'supported_cards_and_currencies', 'visa_or_mastercard'}\n" + "Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'cancel_transfer', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'getting_spare_card', 'card_about_to_expire', 'apple_pay_or_google_pay'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:26.818127Z", - "iopub.status.busy": "2024-08-08T18:57:26.817789Z", - "iopub.status.idle": "2024-08-08T18:57:26.820784Z", - "shell.execute_reply": "2024-08-08T18:57:26.820238Z" + "iopub.execute_input": "2024-08-12T10:35:40.782945Z", + "iopub.status.busy": "2024-08-12T10:35:40.782612Z", + "iopub.status.idle": "2024-08-12T10:35:40.785832Z", + "shell.execute_reply": "2024-08-12T10:35:40.785363Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:26.823035Z", - "iopub.status.busy": "2024-08-08T18:57:26.822565Z", - "iopub.status.idle": "2024-08-08T18:57:30.521343Z", - "shell.execute_reply": "2024-08-08T18:57:30.520787Z" + "iopub.execute_input": "2024-08-12T10:35:40.787889Z", + "iopub.status.busy": "2024-08-12T10:35:40.787554Z", + "iopub.status.idle": "2024-08-12T10:35:44.773402Z", + "shell.execute_reply": "2024-08-12T10:35:44.772834Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:30.524114Z", - "iopub.status.busy": "2024-08-08T18:57:30.523692Z", - "iopub.status.idle": "2024-08-08T18:57:31.422700Z", - "shell.execute_reply": "2024-08-08T18:57:31.422089Z" + "iopub.execute_input": "2024-08-12T10:35:44.776274Z", + "iopub.status.busy": "2024-08-12T10:35:44.775914Z", + "iopub.status.idle": "2024-08-12T10:35:45.665358Z", + "shell.execute_reply": "2024-08-12T10:35:45.664759Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:31.425649Z", - "iopub.status.busy": "2024-08-08T18:57:31.425265Z", - "iopub.status.idle": "2024-08-08T18:57:31.428198Z", - "shell.execute_reply": "2024-08-08T18:57:31.427696Z" + "iopub.execute_input": "2024-08-12T10:35:45.668546Z", + "iopub.status.busy": "2024-08-12T10:35:45.668154Z", + "iopub.status.idle": "2024-08-12T10:35:45.671068Z", + "shell.execute_reply": "2024-08-12T10:35:45.670578Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:31.430626Z", - "iopub.status.busy": "2024-08-08T18:57:31.430243Z", - "iopub.status.idle": "2024-08-08T18:57:33.428306Z", - "shell.execute_reply": "2024-08-08T18:57:33.427582Z" + "iopub.execute_input": "2024-08-12T10:35:45.673470Z", + "iopub.status.busy": "2024-08-12T10:35:45.673092Z", + "iopub.status.idle": "2024-08-12T10:35:47.702436Z", + "shell.execute_reply": "2024-08-12T10:35:47.701696Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.431267Z", - "iopub.status.busy": "2024-08-08T18:57:33.430823Z", - "iopub.status.idle": "2024-08-08T18:57:33.454383Z", - "shell.execute_reply": "2024-08-08T18:57:33.453871Z" + "iopub.execute_input": "2024-08-12T10:35:47.705440Z", + "iopub.status.busy": "2024-08-12T10:35:47.704975Z", + "iopub.status.idle": "2024-08-12T10:35:47.729437Z", + "shell.execute_reply": "2024-08-12T10:35:47.728904Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.456573Z", - "iopub.status.busy": "2024-08-08T18:57:33.456110Z", - "iopub.status.idle": "2024-08-08T18:57:33.464348Z", - "shell.execute_reply": "2024-08-08T18:57:33.463794Z" + "iopub.execute_input": "2024-08-12T10:35:47.732155Z", + "iopub.status.busy": "2024-08-12T10:35:47.731793Z", + "iopub.status.idle": "2024-08-12T10:35:47.741250Z", + "shell.execute_reply": "2024-08-12T10:35:47.740687Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.466360Z", - "iopub.status.busy": "2024-08-08T18:57:33.466177Z", - "iopub.status.idle": "2024-08-08T18:57:33.470526Z", - "shell.execute_reply": "2024-08-08T18:57:33.470050Z" + "iopub.execute_input": "2024-08-12T10:35:47.743419Z", + "iopub.status.busy": "2024-08-12T10:35:47.743136Z", + "iopub.status.idle": "2024-08-12T10:35:47.747544Z", + "shell.execute_reply": "2024-08-12T10:35:47.747077Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.472647Z", - "iopub.status.busy": "2024-08-08T18:57:33.472321Z", - "iopub.status.idle": "2024-08-08T18:57:33.478952Z", - "shell.execute_reply": "2024-08-08T18:57:33.478375Z" + "iopub.execute_input": "2024-08-12T10:35:47.749487Z", + "iopub.status.busy": "2024-08-12T10:35:47.749326Z", + "iopub.status.idle": "2024-08-12T10:35:47.755601Z", + "shell.execute_reply": "2024-08-12T10:35:47.755155Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.481016Z", - "iopub.status.busy": "2024-08-08T18:57:33.480700Z", - "iopub.status.idle": "2024-08-08T18:57:33.487544Z", - "shell.execute_reply": "2024-08-08T18:57:33.487081Z" + "iopub.execute_input": "2024-08-12T10:35:47.757475Z", + "iopub.status.busy": "2024-08-12T10:35:47.757320Z", + "iopub.status.idle": "2024-08-12T10:35:47.763213Z", + "shell.execute_reply": "2024-08-12T10:35:47.762764Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.489500Z", - "iopub.status.busy": "2024-08-08T18:57:33.489189Z", - "iopub.status.idle": "2024-08-08T18:57:33.495048Z", - "shell.execute_reply": "2024-08-08T18:57:33.494498Z" + "iopub.execute_input": "2024-08-12T10:35:47.765090Z", + "iopub.status.busy": "2024-08-12T10:35:47.764937Z", + "iopub.status.idle": "2024-08-12T10:35:47.770514Z", + "shell.execute_reply": "2024-08-12T10:35:47.770034Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.497134Z", - "iopub.status.busy": "2024-08-08T18:57:33.496821Z", - "iopub.status.idle": "2024-08-08T18:57:33.506094Z", - "shell.execute_reply": "2024-08-08T18:57:33.505538Z" + "iopub.execute_input": "2024-08-12T10:35:47.772510Z", + "iopub.status.busy": "2024-08-12T10:35:47.772173Z", + "iopub.status.idle": "2024-08-12T10:35:47.780532Z", + "shell.execute_reply": "2024-08-12T10:35:47.780093Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.508300Z", - "iopub.status.busy": "2024-08-08T18:57:33.507977Z", - "iopub.status.idle": "2024-08-08T18:57:33.513316Z", - "shell.execute_reply": "2024-08-08T18:57:33.512767Z" + "iopub.execute_input": "2024-08-12T10:35:47.782646Z", + "iopub.status.busy": "2024-08-12T10:35:47.782223Z", + "iopub.status.idle": "2024-08-12T10:35:47.787705Z", + "shell.execute_reply": "2024-08-12T10:35:47.787156Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.515460Z", - "iopub.status.busy": "2024-08-08T18:57:33.515141Z", - "iopub.status.idle": "2024-08-08T18:57:33.520436Z", - "shell.execute_reply": "2024-08-08T18:57:33.519893Z" + "iopub.execute_input": "2024-08-12T10:35:47.789807Z", + "iopub.status.busy": "2024-08-12T10:35:47.789489Z", + "iopub.status.idle": "2024-08-12T10:35:47.794831Z", + "shell.execute_reply": "2024-08-12T10:35:47.794259Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.522522Z", - "iopub.status.busy": "2024-08-08T18:57:33.522213Z", - "iopub.status.idle": "2024-08-08T18:57:33.525898Z", - "shell.execute_reply": "2024-08-08T18:57:33.525345Z" + "iopub.execute_input": "2024-08-12T10:35:47.797007Z", + "iopub.status.busy": "2024-08-12T10:35:47.796666Z", + "iopub.status.idle": "2024-08-12T10:35:47.800304Z", + "shell.execute_reply": "2024-08-12T10:35:47.799739Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.528163Z", - "iopub.status.busy": "2024-08-08T18:57:33.527843Z", - "iopub.status.idle": "2024-08-08T18:57:33.533093Z", - "shell.execute_reply": "2024-08-08T18:57:33.532535Z" + "iopub.execute_input": "2024-08-12T10:35:47.802486Z", + "iopub.status.busy": "2024-08-12T10:35:47.802149Z", + "iopub.status.idle": "2024-08-12T10:35:47.807293Z", + "shell.execute_reply": "2024-08-12T10:35:47.806733Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 051bc17bf..045fd829a 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:37.585628Z", - "iopub.status.busy": "2024-08-08T18:57:37.585448Z", - "iopub.status.idle": "2024-08-08T18:57:38.008046Z", - "shell.execute_reply": "2024-08-08T18:57:38.007536Z" + "iopub.execute_input": "2024-08-12T10:35:51.551812Z", + "iopub.status.busy": "2024-08-12T10:35:51.551632Z", + "iopub.status.idle": "2024-08-12T10:35:51.990223Z", + "shell.execute_reply": "2024-08-12T10:35:51.989584Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:38.010508Z", - "iopub.status.busy": "2024-08-08T18:57:38.010115Z", - "iopub.status.idle": "2024-08-08T18:57:38.139496Z", - "shell.execute_reply": "2024-08-08T18:57:38.138932Z" + "iopub.execute_input": "2024-08-12T10:35:51.993008Z", + "iopub.status.busy": "2024-08-12T10:35:51.992513Z", + "iopub.status.idle": "2024-08-12T10:35:52.124109Z", + "shell.execute_reply": "2024-08-12T10:35:52.123511Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:38.141753Z", - "iopub.status.busy": "2024-08-08T18:57:38.141373Z", - "iopub.status.idle": "2024-08-08T18:57:38.164360Z", - "shell.execute_reply": "2024-08-08T18:57:38.163822Z" + "iopub.execute_input": "2024-08-12T10:35:52.126567Z", + "iopub.status.busy": "2024-08-12T10:35:52.126040Z", + "iopub.status.idle": "2024-08-12T10:35:52.149083Z", + "shell.execute_reply": "2024-08-12T10:35:52.148439Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:38.166994Z", - "iopub.status.busy": "2024-08-08T18:57:38.166790Z", - "iopub.status.idle": "2024-08-08T18:57:41.306583Z", - "shell.execute_reply": "2024-08-08T18:57:41.305998Z" + "iopub.execute_input": "2024-08-12T10:35:52.151708Z", + "iopub.status.busy": "2024-08-12T10:35:52.151230Z", + "iopub.status.idle": "2024-08-12T10:35:55.347722Z", + "shell.execute_reply": "2024-08-12T10:35:55.347134Z" } }, "outputs": [ @@ -235,7 +235,7 @@ "Finding class_imbalance issues ...\n", "Finding underperforming_group issues ...\n", "\n", - "Audit complete. 524 issues found in the dataset.\n" + "Audit complete. 523 issues found in the dataset.\n" ] }, { @@ -280,13 +280,13 @@ " \n", " 2\n", " outlier\n", - " 0.356925\n", - " 363\n", + " 0.356958\n", + " 362\n", " \n", " \n", " 3\n", " near_duplicate\n", - " 0.619581\n", + " 0.619565\n", " 108\n", " \n", " \n", @@ -315,8 +315,8 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356925 363\n", - "3 near_duplicate 0.619581 108\n", + "2 outlier 0.356958 362\n", + "3 near_duplicate 0.619565 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", "6 underperforming_group 0.651929 0" @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:41.309163Z", - "iopub.status.busy": "2024-08-08T18:57:41.308803Z", - "iopub.status.idle": "2024-08-08T18:57:54.265904Z", - "shell.execute_reply": "2024-08-08T18:57:54.265290Z" + "iopub.execute_input": "2024-08-12T10:35:55.350496Z", + "iopub.status.busy": "2024-08-12T10:35:55.349868Z", + "iopub.status.idle": "2024-08-12T10:36:05.091104Z", + "shell.execute_reply": "2024-08-12T10:36:05.090467Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:54.268343Z", - "iopub.status.busy": "2024-08-08T18:57:54.267970Z", - "iopub.status.idle": "2024-08-08T18:57:54.426559Z", - "shell.execute_reply": "2024-08-08T18:57:54.425992Z" + "iopub.execute_input": "2024-08-12T10:36:05.093209Z", + "iopub.status.busy": "2024-08-12T10:36:05.093024Z", + "iopub.status.idle": "2024-08-12T10:36:05.252383Z", + "shell.execute_reply": "2024-08-12T10:36:05.251714Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:54.429084Z", - "iopub.status.busy": "2024-08-08T18:57:54.428721Z", - "iopub.status.idle": "2024-08-08T18:57:55.776260Z", - "shell.execute_reply": "2024-08-08T18:57:55.775647Z" + "iopub.execute_input": "2024-08-12T10:36:05.254938Z", + "iopub.status.busy": "2024-08-12T10:36:05.254748Z", + "iopub.status.idle": "2024-08-12T10:36:06.582564Z", + "shell.execute_reply": "2024-08-12T10:36:06.581974Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:55.778544Z", - "iopub.status.busy": "2024-08-08T18:57:55.778210Z", - "iopub.status.idle": "2024-08-08T18:57:55.985793Z", - "shell.execute_reply": "2024-08-08T18:57:55.985202Z" + "iopub.execute_input": "2024-08-12T10:36:06.584851Z", + "iopub.status.busy": "2024-08-12T10:36:06.584491Z", + "iopub.status.idle": "2024-08-12T10:36:06.786894Z", + "shell.execute_reply": "2024-08-12T10:36:06.786302Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:55.988438Z", - "iopub.status.busy": "2024-08-08T18:57:55.987983Z", - "iopub.status.idle": "2024-08-08T18:57:56.001134Z", - "shell.execute_reply": "2024-08-08T18:57:56.000597Z" + "iopub.execute_input": "2024-08-12T10:36:06.789478Z", + "iopub.status.busy": "2024-08-12T10:36:06.788956Z", + "iopub.status.idle": "2024-08-12T10:36:06.802195Z", + "shell.execute_reply": "2024-08-12T10:36:06.801709Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.003198Z", - "iopub.status.busy": "2024-08-08T18:57:56.002796Z", - "iopub.status.idle": "2024-08-08T18:57:56.022109Z", - "shell.execute_reply": "2024-08-08T18:57:56.021522Z" + "iopub.execute_input": "2024-08-12T10:36:06.804254Z", + "iopub.status.busy": "2024-08-12T10:36:06.803919Z", + "iopub.status.idle": "2024-08-12T10:36:06.822049Z", + "shell.execute_reply": "2024-08-12T10:36:06.821624Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.024301Z", - "iopub.status.busy": "2024-08-08T18:57:56.024000Z", - "iopub.status.idle": "2024-08-08T18:57:56.239262Z", - "shell.execute_reply": "2024-08-08T18:57:56.238730Z" + "iopub.execute_input": "2024-08-12T10:36:06.824031Z", + "iopub.status.busy": "2024-08-12T10:36:06.823698Z", + "iopub.status.idle": "2024-08-12T10:36:07.035508Z", + "shell.execute_reply": "2024-08-12T10:36:07.034970Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.241832Z", - "iopub.status.busy": "2024-08-08T18:57:56.241444Z", - "iopub.status.idle": "2024-08-08T18:57:56.260656Z", - "shell.execute_reply": "2024-08-08T18:57:56.260103Z" + "iopub.execute_input": "2024-08-12T10:36:07.037963Z", + "iopub.status.busy": "2024-08-12T10:36:07.037705Z", + "iopub.status.idle": "2024-08-12T10:36:07.057870Z", + "shell.execute_reply": "2024-08-12T10:36:07.057360Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.262922Z", - "iopub.status.busy": "2024-08-08T18:57:56.262429Z", - "iopub.status.idle": "2024-08-08T18:57:56.400391Z", - "shell.execute_reply": "2024-08-08T18:57:56.399866Z" + "iopub.execute_input": "2024-08-12T10:36:07.060124Z", + "iopub.status.busy": "2024-08-12T10:36:07.059749Z", + "iopub.status.idle": "2024-08-12T10:36:07.211976Z", + "shell.execute_reply": "2024-08-12T10:36:07.211435Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.402718Z", - "iopub.status.busy": "2024-08-08T18:57:56.402358Z", - "iopub.status.idle": "2024-08-08T18:57:56.412449Z", - "shell.execute_reply": "2024-08-08T18:57:56.411889Z" + "iopub.execute_input": "2024-08-12T10:36:07.214229Z", + "iopub.status.busy": "2024-08-12T10:36:07.213870Z", + "iopub.status.idle": "2024-08-12T10:36:07.224062Z", + "shell.execute_reply": "2024-08-12T10:36:07.223486Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.414617Z", - "iopub.status.busy": "2024-08-08T18:57:56.414285Z", - "iopub.status.idle": "2024-08-08T18:57:56.424253Z", - "shell.execute_reply": "2024-08-08T18:57:56.423700Z" + "iopub.execute_input": "2024-08-12T10:36:07.226288Z", + "iopub.status.busy": "2024-08-12T10:36:07.225962Z", + "iopub.status.idle": "2024-08-12T10:36:07.235291Z", + "shell.execute_reply": "2024-08-12T10:36:07.234743Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.426316Z", - "iopub.status.busy": "2024-08-08T18:57:56.425990Z", - "iopub.status.idle": "2024-08-08T18:57:56.451770Z", - "shell.execute_reply": "2024-08-08T18:57:56.451324Z" + "iopub.execute_input": "2024-08-12T10:36:07.237432Z", + "iopub.status.busy": "2024-08-12T10:36:07.237103Z", + "iopub.status.idle": "2024-08-12T10:36:07.262730Z", + "shell.execute_reply": "2024-08-12T10:36:07.262231Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.453771Z", - "iopub.status.busy": "2024-08-08T18:57:56.453438Z", - "iopub.status.idle": "2024-08-08T18:57:56.456214Z", - "shell.execute_reply": "2024-08-08T18:57:56.455749Z" + "iopub.execute_input": "2024-08-12T10:36:07.264692Z", + "iopub.status.busy": "2024-08-12T10:36:07.264376Z", + "iopub.status.idle": "2024-08-12T10:36:07.267245Z", + "shell.execute_reply": "2024-08-12T10:36:07.266678Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.458217Z", - "iopub.status.busy": "2024-08-08T18:57:56.457884Z", - "iopub.status.idle": "2024-08-08T18:57:56.476804Z", - "shell.execute_reply": "2024-08-08T18:57:56.476348Z" + "iopub.execute_input": "2024-08-12T10:36:07.269215Z", + "iopub.status.busy": "2024-08-12T10:36:07.268903Z", + "iopub.status.idle": "2024-08-12T10:36:07.288822Z", + "shell.execute_reply": "2024-08-12T10:36:07.288343Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.478826Z", - "iopub.status.busy": "2024-08-08T18:57:56.478513Z", - "iopub.status.idle": "2024-08-08T18:57:56.482759Z", - "shell.execute_reply": "2024-08-08T18:57:56.482193Z" + "iopub.execute_input": "2024-08-12T10:36:07.290777Z", + "iopub.status.busy": "2024-08-12T10:36:07.290602Z", + "iopub.status.idle": "2024-08-12T10:36:07.294723Z", + "shell.execute_reply": "2024-08-12T10:36:07.294281Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.485049Z", - "iopub.status.busy": "2024-08-08T18:57:56.484612Z", - "iopub.status.idle": "2024-08-08T18:57:56.512202Z", - "shell.execute_reply": "2024-08-08T18:57:56.511632Z" + "iopub.execute_input": "2024-08-12T10:36:07.296561Z", + "iopub.status.busy": "2024-08-12T10:36:07.296393Z", + "iopub.status.idle": "2024-08-12T10:36:07.324069Z", + "shell.execute_reply": "2024-08-12T10:36:07.323629Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.514321Z", - "iopub.status.busy": "2024-08-08T18:57:56.513952Z", - "iopub.status.idle": "2024-08-08T18:57:56.879381Z", - "shell.execute_reply": "2024-08-08T18:57:56.878823Z" + "iopub.execute_input": "2024-08-12T10:36:07.325925Z", + "iopub.status.busy": "2024-08-12T10:36:07.325755Z", + "iopub.status.idle": "2024-08-12T10:36:07.697505Z", + "shell.execute_reply": "2024-08-12T10:36:07.696910Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.881740Z", - "iopub.status.busy": "2024-08-08T18:57:56.881364Z", - "iopub.status.idle": "2024-08-08T18:57:56.884336Z", - "shell.execute_reply": "2024-08-08T18:57:56.883795Z" + "iopub.execute_input": "2024-08-12T10:36:07.699604Z", + "iopub.status.busy": "2024-08-12T10:36:07.699417Z", + "iopub.status.idle": "2024-08-12T10:36:07.702433Z", + "shell.execute_reply": "2024-08-12T10:36:07.701866Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.886806Z", - "iopub.status.busy": "2024-08-08T18:57:56.886433Z", - "iopub.status.idle": "2024-08-08T18:57:56.900131Z", - "shell.execute_reply": "2024-08-08T18:57:56.899555Z" + "iopub.execute_input": "2024-08-12T10:36:07.704427Z", + "iopub.status.busy": "2024-08-12T10:36:07.704252Z", + "iopub.status.idle": "2024-08-12T10:36:07.717642Z", + "shell.execute_reply": "2024-08-12T10:36:07.717105Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.902610Z", - "iopub.status.busy": "2024-08-08T18:57:56.902379Z", - "iopub.status.idle": "2024-08-08T18:57:56.916171Z", - "shell.execute_reply": "2024-08-08T18:57:56.915714Z" + "iopub.execute_input": "2024-08-12T10:36:07.720309Z", + "iopub.status.busy": "2024-08-12T10:36:07.719991Z", + "iopub.status.idle": "2024-08-12T10:36:07.733571Z", + "shell.execute_reply": "2024-08-12T10:36:07.733014Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.918024Z", - "iopub.status.busy": "2024-08-08T18:57:56.917857Z", - "iopub.status.idle": "2024-08-08T18:57:56.928048Z", - "shell.execute_reply": "2024-08-08T18:57:56.927598Z" + "iopub.execute_input": "2024-08-12T10:36:07.735571Z", + "iopub.status.busy": "2024-08-12T10:36:07.735255Z", + "iopub.status.idle": "2024-08-12T10:36:07.745655Z", + "shell.execute_reply": "2024-08-12T10:36:07.745087Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.929933Z", - "iopub.status.busy": "2024-08-08T18:57:56.929764Z", - "iopub.status.idle": "2024-08-08T18:57:56.938883Z", - "shell.execute_reply": "2024-08-08T18:57:56.938301Z" + "iopub.execute_input": "2024-08-12T10:36:07.747816Z", + "iopub.status.busy": "2024-08-12T10:36:07.747483Z", + "iopub.status.idle": "2024-08-12T10:36:07.756627Z", + "shell.execute_reply": "2024-08-12T10:36:07.756169Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.941134Z", - "iopub.status.busy": "2024-08-08T18:57:56.940823Z", - "iopub.status.idle": "2024-08-08T18:57:56.944556Z", - "shell.execute_reply": "2024-08-08T18:57:56.944070Z" + "iopub.execute_input": "2024-08-12T10:36:07.758631Z", + "iopub.status.busy": "2024-08-12T10:36:07.758279Z", + "iopub.status.idle": "2024-08-12T10:36:07.762000Z", + "shell.execute_reply": "2024-08-12T10:36:07.761551Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.946638Z", - "iopub.status.busy": "2024-08-08T18:57:56.946215Z", - "iopub.status.idle": "2024-08-08T18:57:56.997907Z", - "shell.execute_reply": "2024-08-08T18:57:56.997338Z" + "iopub.execute_input": "2024-08-12T10:36:07.764123Z", + "iopub.status.busy": "2024-08-12T10:36:07.763787Z", + "iopub.status.idle": "2024-08-12T10:36:07.814348Z", + "shell.execute_reply": "2024-08-12T10:36:07.813826Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:57.000573Z", - "iopub.status.busy": "2024-08-08T18:57:56.999981Z", - "iopub.status.idle": "2024-08-08T18:57:57.007040Z", - "shell.execute_reply": "2024-08-08T18:57:57.006574Z" + "iopub.execute_input": "2024-08-12T10:36:07.816619Z", + "iopub.status.busy": "2024-08-12T10:36:07.816166Z", + "iopub.status.idle": "2024-08-12T10:36:07.822673Z", + "shell.execute_reply": "2024-08-12T10:36:07.822197Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:57.009224Z", - "iopub.status.busy": "2024-08-08T18:57:57.008781Z", - "iopub.status.idle": "2024-08-08T18:57:57.020496Z", - "shell.execute_reply": "2024-08-08T18:57:57.019934Z" + "iopub.execute_input": "2024-08-12T10:36:07.824684Z", + "iopub.status.busy": "2024-08-12T10:36:07.824371Z", + "iopub.status.idle": "2024-08-12T10:36:07.835809Z", + "shell.execute_reply": "2024-08-12T10:36:07.835239Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:57.022654Z", - "iopub.status.busy": "2024-08-08T18:57:57.022321Z", - "iopub.status.idle": "2024-08-08T18:57:57.196402Z", - "shell.execute_reply": "2024-08-08T18:57:57.195743Z" + "iopub.execute_input": "2024-08-12T10:36:07.837999Z", + "iopub.status.busy": "2024-08-12T10:36:07.837680Z", + "iopub.status.idle": "2024-08-12T10:36:08.054639Z", + "shell.execute_reply": "2024-08-12T10:36:08.053990Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:57.199045Z", - "iopub.status.busy": "2024-08-08T18:57:57.198482Z", - "iopub.status.idle": "2024-08-08T18:57:57.206576Z", - "shell.execute_reply": "2024-08-08T18:57:57.206001Z" + "iopub.execute_input": "2024-08-12T10:36:08.056912Z", + "iopub.status.busy": "2024-08-12T10:36:08.056543Z", + "iopub.status.idle": "2024-08-12T10:36:08.064093Z", + "shell.execute_reply": "2024-08-12T10:36:08.063620Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:57.208901Z", - "iopub.status.busy": "2024-08-08T18:57:57.208724Z", - "iopub.status.idle": "2024-08-08T18:57:57.657759Z", - "shell.execute_reply": "2024-08-08T18:57:57.657058Z" + "iopub.execute_input": "2024-08-12T10:36:08.066343Z", + "iopub.status.busy": "2024-08-12T10:36:08.066010Z", + "iopub.status.idle": "2024-08-12T10:36:08.546606Z", + "shell.execute_reply": "2024-08-12T10:36:08.545889Z" } }, "outputs": [ @@ -3767,9 +3767,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-08 18:57:57-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", - "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", + "--2024-08-12 10:36:08-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.109.153, 185.199.110.153, 185.199.108.153, ...\r\n", + "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.109.153|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -3783,9 +3783,9 @@ "\r\n", "\r", "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.01s \r\n", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.008s \r\n", "\r\n", - "2024-08-08 18:57:57 (62.8 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-08-12 10:36:08 (114 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:57.660260Z", - "iopub.status.busy": "2024-08-08T18:57:57.660061Z", - "iopub.status.idle": "2024-08-08T18:57:59.538203Z", - "shell.execute_reply": "2024-08-08T18:57:59.537570Z" + "iopub.execute_input": "2024-08-12T10:36:08.549381Z", + "iopub.status.busy": "2024-08-12T10:36:08.548982Z", + "iopub.status.idle": "2024-08-12T10:36:10.480188Z", + "shell.execute_reply": "2024-08-12T10:36:10.479637Z" } }, "outputs": [], @@ -3850,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:59.540816Z", - "iopub.status.busy": "2024-08-08T18:57:59.540536Z", - "iopub.status.idle": "2024-08-08T18:58:00.014207Z", - "shell.execute_reply": "2024-08-08T18:58:00.013619Z" + "iopub.execute_input": "2024-08-12T10:36:10.482794Z", + "iopub.status.busy": "2024-08-12T10:36:10.482318Z", + "iopub.status.idle": "2024-08-12T10:36:10.957321Z", + "shell.execute_reply": "2024-08-12T10:36:10.956627Z" } }, "outputs": [ @@ -3868,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e52d78cda5e340c79afc9a2f75f6b6ca", + "model_id": "198e7e813a74495796c698a5c11fff7c", "version_major": 2, "version_minor": 0 }, @@ -3950,10 +3950,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:00.018057Z", - "iopub.status.busy": "2024-08-08T18:58:00.017143Z", - "iopub.status.idle": "2024-08-08T18:58:00.030462Z", - "shell.execute_reply": "2024-08-08T18:58:00.029903Z" + "iopub.execute_input": "2024-08-12T10:36:10.961341Z", + "iopub.status.busy": "2024-08-12T10:36:10.960396Z", + "iopub.status.idle": "2024-08-12T10:36:10.978338Z", + "shell.execute_reply": "2024-08-12T10:36:10.977816Z" } }, "outputs": [ @@ -4211,10 +4211,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:00.034009Z", - "iopub.status.busy": "2024-08-08T18:58:00.033087Z", - "iopub.status.idle": "2024-08-08T18:58:00.549144Z", - "shell.execute_reply": "2024-08-08T18:58:00.548522Z" + "iopub.execute_input": "2024-08-12T10:36:10.981885Z", + "iopub.status.busy": "2024-08-12T10:36:10.980974Z", + "iopub.status.idle": "2024-08-12T10:36:11.510195Z", + "shell.execute_reply": "2024-08-12T10:36:11.509548Z" } }, "outputs": [ @@ -4229,7 +4229,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "81cf9b473fae4393b5b56b3f5ff52827", + "model_id": "f89ff9b9eb5c42518512b4ef234ab8aa", "version_major": 2, "version_minor": 0 }, @@ -4497,25 +4497,57 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "11f1ff41c6e54d8fbc5847031563c287": { + "0f53bc8810064eaab2afd661d577c62c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dbfcd9249caf4579bafa6d165af7a204", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7e9a5ebacb994e0bbde90cf0d112b32d", + "tabbable": null, + "tooltip": null, + "value": 200.0 + } + }, + "198e7e813a74495796c698a5c11fff7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dba3a943e5d149939a0071eccc1c7b19", + "IPY_MODEL_0f53bc8810064eaab2afd661d577c62c", + "IPY_MODEL_376deb7d42824cf09ccee37e80d3f2ce" + ], + "layout": "IPY_MODEL_a76dd6c6962e41f09c6c75ece448a897", + "tabbable": null, + "tooltip": null } }, - "23b4c5a860154c99a6bfca30857e2637": { + "3584f7c966b04ebdbd8acf49d20e75f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4531,17 +4563,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3fdbe192da3f4e0ca393229c7698f4e6", + "layout": "IPY_MODEL_82d08af0e9fc440a835fb28e2737645f", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5a4c78d1e34b4d73930b1c00339b680d", + "style": "IPY_MODEL_a01967b640ae4c4d8f977e456aa04abd", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "3172368898034402809ba719b131e449": { + "376deb7d42824cf09ccee37e80d3f2ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4556,15 +4588,90 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f104e06657df4b0abd57fe2df56cbb33", + "layout": "IPY_MODEL_b59bf04208dd487585084bf58a071fe6", "placeholder": "​", - "style": "IPY_MODEL_11f1ff41c6e54d8fbc5847031563c287", + "style": "IPY_MODEL_ec85262ee17f48a09708e083268d7c48", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 200/200 [00:00<00:00, 777.91it/s]" + } + }, + "47c7bda2d6bb45f2a45ed618ffea312d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "543f8ddaa6ac478f95e74bbd9cfb1ff5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3f689ddd31dc4b6d98cd516337595695": { + "60785226114e48d592cb4cbcf93c8a85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d873bd2086f247e2aeee87ed55940bb4", + "placeholder": "​", + "style": "IPY_MODEL_47c7bda2d6bb45f2a45ed618ffea312d", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 689.25it/s]" + } + }, + "7e9a5ebacb994e0bbde90cf0d112b32d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "82d08af0e9fc440a835fb28e2737645f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4617,7 +4724,41 @@ "width": null } }, - "3fdbe192da3f4e0ca393229c7698f4e6": { + "84d564647e7344fda7ea4531ad6fd6b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a01967b640ae4c4d8f977e456aa04abd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a76dd6c6962e41f09c6c75ece448a897": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4670,41 +4811,30 @@ "width": null } }, - "43ed9b5484174bda8629e680ba634076": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4aa6061bd19b434db66d32fc2146b812": { + "aaf556c48f454605a7e83e2ff17b37a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fb46f828ab8c4e03b6cc855501408887", + "placeholder": "​", + "style": "IPY_MODEL_84d564647e7344fda7ea4531ad6fd6b1", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "5a33941117ec4167b387dd1249fdaf1c": { + "b59bf04208dd487585084bf58a071fe6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4757,23 +4887,7 @@ "width": null } }, - "5a4c78d1e34b4d73930b1c00339b680d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "77896f64d04145a083153ac9e0ec38ab": { + "bfe86b5013904e0eb93edff800acee02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4826,31 +4940,7 @@ "width": null } }, - "81cf9b473fae4393b5b56b3f5ff52827": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3172368898034402809ba719b131e449", - "IPY_MODEL_a73b14557a49429b9d4037681a11f5a2", - "IPY_MODEL_cb06e8f17bc64191b59b74765e3423f4" - ], - "layout": "IPY_MODEL_5a33941117ec4167b387dd1249fdaf1c", - "tabbable": null, - "tooltip": null - } - }, - "9573783c449a423eaaf76b8846c9b964": { + "c27b0c39a9ed449ea379599286810547": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4903,92 +4993,7 @@ "width": null } }, - "9f5e6d5ea957480d8b70f2f54bc1fda7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a2e678564ca3452e9fd53e82b8930c07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a3b03415967940b9b1836ba7faad2ca7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9d33ba501654a70ab745515d7fe9e94", - "placeholder": "​", - "style": "IPY_MODEL_a2e678564ca3452e9fd53e82b8930c07", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 769.71it/s]" - } - }, - "a73b14557a49429b9d4037681a11f5a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_77896f64d04145a083153ac9e0ec38ab", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_43ed9b5484174bda8629e680ba634076", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "ac00eee7668b489eb134754032561714": { + "d873bd2086f247e2aeee87ed55940bb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5041,30 +5046,7 @@ "width": null } }, - "cb06e8f17bc64191b59b74765e3423f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9573783c449a423eaaf76b8846c9b964", - "placeholder": "​", - "style": "IPY_MODEL_4aa6061bd19b434db66d32fc2146b812", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 709.37it/s]" - } - }, - "d3ad8e582013486a8678b970988a90fe": { + "dba3a943e5d149939a0071eccc1c7b19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5079,15 +5061,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ac00eee7668b489eb134754032561714", + "layout": "IPY_MODEL_c27b0c39a9ed449ea379599286810547", "placeholder": "​", - "style": "IPY_MODEL_9f5e6d5ea957480d8b70f2f54bc1fda7", + "style": "IPY_MODEL_543f8ddaa6ac478f95e74bbd9cfb1ff5", "tabbable": null, "tooltip": null, "value": "100%" } }, - "d9d33ba501654a70ab745515d7fe9e94": { + "dbfcd9249caf4579bafa6d165af7a204": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5140,7 +5122,25 @@ "width": null } }, - "e52d78cda5e340c79afc9a2f75f6b6ca": { + "ec85262ee17f48a09708e083268d7c48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f89ff9b9eb5c42518512b4ef234ab8aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5155,16 +5155,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d3ad8e582013486a8678b970988a90fe", - "IPY_MODEL_23b4c5a860154c99a6bfca30857e2637", - "IPY_MODEL_a3b03415967940b9b1836ba7faad2ca7" + "IPY_MODEL_aaf556c48f454605a7e83e2ff17b37a0", + "IPY_MODEL_3584f7c966b04ebdbd8acf49d20e75f1", + "IPY_MODEL_60785226114e48d592cb4cbcf93c8a85" ], - "layout": "IPY_MODEL_3f689ddd31dc4b6d98cd516337595695", + "layout": "IPY_MODEL_bfe86b5013904e0eb93edff800acee02", "tabbable": null, "tooltip": null } }, - "f104e06657df4b0abd57fe2df56cbb33": { + "fb46f828ab8c4e03b6cc855501408887": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 791e9aef2..7b0b34cad 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:05.627463Z", - "iopub.status.busy": "2024-08-08T18:58:05.627290Z", - "iopub.status.idle": "2024-08-08T18:58:07.024399Z", - "shell.execute_reply": "2024-08-08T18:58:07.023847Z" + "iopub.execute_input": "2024-08-12T10:36:15.864856Z", + "iopub.status.busy": "2024-08-12T10:36:15.864680Z", + "iopub.status.idle": "2024-08-12T10:36:17.280483Z", + "shell.execute_reply": "2024-08-12T10:36:17.279892Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:07.027107Z", - "iopub.status.busy": "2024-08-08T18:58:07.026526Z", - "iopub.status.idle": "2024-08-08T18:58:07.029310Z", - "shell.execute_reply": "2024-08-08T18:58:07.028884Z" + "iopub.execute_input": "2024-08-12T10:36:17.283412Z", + "iopub.status.busy": "2024-08-12T10:36:17.282882Z", + "iopub.status.idle": "2024-08-12T10:36:17.286705Z", + "shell.execute_reply": "2024-08-12T10:36:17.286193Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:07.031435Z", - "iopub.status.busy": "2024-08-08T18:58:07.031143Z", - "iopub.status.idle": "2024-08-08T18:58:07.042949Z", - "shell.execute_reply": "2024-08-08T18:58:07.042497Z" + "iopub.execute_input": "2024-08-12T10:36:17.288880Z", + "iopub.status.busy": "2024-08-12T10:36:17.288690Z", + "iopub.status.idle": "2024-08-12T10:36:17.303362Z", + "shell.execute_reply": "2024-08-12T10:36:17.302893Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:07.045099Z", - "iopub.status.busy": "2024-08-08T18:58:07.044770Z", - "iopub.status.idle": "2024-08-08T18:58:13.668596Z", - "shell.execute_reply": "2024-08-08T18:58:13.668107Z" + "iopub.execute_input": "2024-08-12T10:36:17.305574Z", + "iopub.status.busy": "2024-08-12T10:36:17.305171Z", + "iopub.status.idle": "2024-08-12T10:36:25.907394Z", + "shell.execute_reply": "2024-08-12T10:36:25.906876Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 8f9d89feb..42fd50581 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:16.012409Z", - "iopub.status.busy": "2024-08-08T18:58:16.012233Z", - "iopub.status.idle": "2024-08-08T18:58:17.407183Z", - "shell.execute_reply": "2024-08-08T18:58:17.406630Z" + "iopub.execute_input": "2024-08-12T10:36:28.352405Z", + "iopub.status.busy": "2024-08-12T10:36:28.352234Z", + "iopub.status.idle": "2024-08-12T10:36:29.772908Z", + "shell.execute_reply": "2024-08-12T10:36:29.772267Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:17.409935Z", - "iopub.status.busy": "2024-08-08T18:58:17.409492Z", - "iopub.status.idle": "2024-08-08T18:58:17.412903Z", - "shell.execute_reply": "2024-08-08T18:58:17.412360Z" + "iopub.execute_input": "2024-08-12T10:36:29.775613Z", + "iopub.status.busy": "2024-08-12T10:36:29.775315Z", + "iopub.status.idle": "2024-08-12T10:36:29.778674Z", + "shell.execute_reply": "2024-08-12T10:36:29.778113Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:17.415168Z", - "iopub.status.busy": "2024-08-08T18:58:17.414823Z", - "iopub.status.idle": "2024-08-08T18:58:20.943064Z", - "shell.execute_reply": "2024-08-08T18:58:20.942403Z" + "iopub.execute_input": "2024-08-12T10:36:29.780891Z", + "iopub.status.busy": "2024-08-12T10:36:29.780563Z", + "iopub.status.idle": "2024-08-12T10:36:33.346280Z", + "shell.execute_reply": "2024-08-12T10:36:33.345609Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:20.946297Z", - "iopub.status.busy": "2024-08-08T18:58:20.945460Z", - "iopub.status.idle": "2024-08-08T18:58:20.987206Z", - "shell.execute_reply": "2024-08-08T18:58:20.986462Z" + "iopub.execute_input": "2024-08-12T10:36:33.349771Z", + "iopub.status.busy": "2024-08-12T10:36:33.348851Z", + "iopub.status.idle": "2024-08-12T10:36:33.396667Z", + "shell.execute_reply": "2024-08-12T10:36:33.396037Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:20.989972Z", - "iopub.status.busy": "2024-08-08T18:58:20.989575Z", - "iopub.status.idle": "2024-08-08T18:58:21.030182Z", - "shell.execute_reply": "2024-08-08T18:58:21.029453Z" + "iopub.execute_input": "2024-08-12T10:36:33.399404Z", + "iopub.status.busy": "2024-08-12T10:36:33.399007Z", + "iopub.status.idle": "2024-08-12T10:36:33.444013Z", + "shell.execute_reply": "2024-08-12T10:36:33.443221Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.032965Z", - "iopub.status.busy": "2024-08-08T18:58:21.032716Z", - "iopub.status.idle": "2024-08-08T18:58:21.035744Z", - "shell.execute_reply": "2024-08-08T18:58:21.035290Z" + "iopub.execute_input": "2024-08-12T10:36:33.446938Z", + "iopub.status.busy": "2024-08-12T10:36:33.446592Z", + "iopub.status.idle": "2024-08-12T10:36:33.449911Z", + "shell.execute_reply": "2024-08-12T10:36:33.449428Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.037735Z", - "iopub.status.busy": "2024-08-08T18:58:21.037433Z", - "iopub.status.idle": "2024-08-08T18:58:21.040150Z", - "shell.execute_reply": "2024-08-08T18:58:21.039673Z" + "iopub.execute_input": "2024-08-12T10:36:33.451993Z", + "iopub.status.busy": "2024-08-12T10:36:33.451652Z", + "iopub.status.idle": "2024-08-12T10:36:33.454282Z", + "shell.execute_reply": "2024-08-12T10:36:33.453832Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.042251Z", - "iopub.status.busy": "2024-08-08T18:58:21.041915Z", - "iopub.status.idle": "2024-08-08T18:58:21.065276Z", - "shell.execute_reply": "2024-08-08T18:58:21.064751Z" + "iopub.execute_input": "2024-08-12T10:36:33.456395Z", + "iopub.status.busy": "2024-08-12T10:36:33.456118Z", + "iopub.status.idle": "2024-08-12T10:36:33.481466Z", + "shell.execute_reply": "2024-08-12T10:36:33.480901Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fe2849d3268f429ab9a177442a64a6c5", + "model_id": "bf893ccecfea429e8cfde5bd91777d9d", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b0f6f185dde14b199effcf990e60abba", + "model_id": "0c8e651ba1af4313a9317a199ae1548d", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.070844Z", - "iopub.status.busy": "2024-08-08T18:58:21.070451Z", - "iopub.status.idle": "2024-08-08T18:58:21.077056Z", - "shell.execute_reply": "2024-08-08T18:58:21.076514Z" + "iopub.execute_input": "2024-08-12T10:36:33.488831Z", + "iopub.status.busy": "2024-08-12T10:36:33.488477Z", + "iopub.status.idle": "2024-08-12T10:36:33.495007Z", + "shell.execute_reply": "2024-08-12T10:36:33.494549Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.079310Z", - "iopub.status.busy": "2024-08-08T18:58:21.078860Z", - "iopub.status.idle": "2024-08-08T18:58:21.082284Z", - "shell.execute_reply": "2024-08-08T18:58:21.081844Z" + "iopub.execute_input": "2024-08-12T10:36:33.496972Z", + "iopub.status.busy": "2024-08-12T10:36:33.496691Z", + "iopub.status.idle": "2024-08-12T10:36:33.500096Z", + "shell.execute_reply": "2024-08-12T10:36:33.499604Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.084168Z", - "iopub.status.busy": "2024-08-08T18:58:21.084013Z", - "iopub.status.idle": "2024-08-08T18:58:21.090160Z", - "shell.execute_reply": "2024-08-08T18:58:21.089703Z" + "iopub.execute_input": "2024-08-12T10:36:33.502247Z", + "iopub.status.busy": "2024-08-12T10:36:33.501920Z", + "iopub.status.idle": "2024-08-12T10:36:33.508693Z", + "shell.execute_reply": "2024-08-12T10:36:33.508215Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.092226Z", - "iopub.status.busy": "2024-08-08T18:58:21.091895Z", - "iopub.status.idle": "2024-08-08T18:58:21.133815Z", - "shell.execute_reply": "2024-08-08T18:58:21.133207Z" + "iopub.execute_input": "2024-08-12T10:36:33.510843Z", + "iopub.status.busy": "2024-08-12T10:36:33.510491Z", + "iopub.status.idle": "2024-08-12T10:36:33.561499Z", + "shell.execute_reply": "2024-08-12T10:36:33.560758Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.136432Z", - "iopub.status.busy": "2024-08-08T18:58:21.136109Z", - "iopub.status.idle": "2024-08-08T18:58:21.178161Z", - "shell.execute_reply": "2024-08-08T18:58:21.177445Z" + "iopub.execute_input": "2024-08-12T10:36:33.564026Z", + "iopub.status.busy": "2024-08-12T10:36:33.563765Z", + "iopub.status.idle": "2024-08-12T10:36:33.612273Z", + "shell.execute_reply": "2024-08-12T10:36:33.611653Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.181055Z", - "iopub.status.busy": "2024-08-08T18:58:21.180744Z", - "iopub.status.idle": "2024-08-08T18:58:21.314736Z", - "shell.execute_reply": "2024-08-08T18:58:21.314096Z" + "iopub.execute_input": "2024-08-12T10:36:33.615254Z", + "iopub.status.busy": "2024-08-12T10:36:33.614772Z", + "iopub.status.idle": "2024-08-12T10:36:33.752925Z", + "shell.execute_reply": "2024-08-12T10:36:33.752366Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.317536Z", - "iopub.status.busy": "2024-08-08T18:58:21.316818Z", - "iopub.status.idle": "2024-08-08T18:58:24.324252Z", - "shell.execute_reply": "2024-08-08T18:58:24.323641Z" + "iopub.execute_input": "2024-08-12T10:36:33.755750Z", + "iopub.status.busy": "2024-08-12T10:36:33.754993Z", + "iopub.status.idle": "2024-08-12T10:36:36.831227Z", + "shell.execute_reply": "2024-08-12T10:36:36.830642Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:24.326451Z", - "iopub.status.busy": "2024-08-08T18:58:24.326258Z", - "iopub.status.idle": "2024-08-08T18:58:24.385260Z", - "shell.execute_reply": "2024-08-08T18:58:24.384709Z" + "iopub.execute_input": "2024-08-12T10:36:36.833500Z", + "iopub.status.busy": "2024-08-12T10:36:36.833308Z", + "iopub.status.idle": "2024-08-12T10:36:36.892690Z", + "shell.execute_reply": "2024-08-12T10:36:36.892211Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:24.387494Z", - "iopub.status.busy": "2024-08-08T18:58:24.387200Z", - "iopub.status.idle": "2024-08-08T18:58:24.429336Z", - "shell.execute_reply": "2024-08-08T18:58:24.428776Z" + "iopub.execute_input": "2024-08-12T10:36:36.894763Z", + "iopub.status.busy": "2024-08-12T10:36:36.894578Z", + "iopub.status.idle": "2024-08-12T10:36:36.937430Z", + "shell.execute_reply": "2024-08-12T10:36:36.936946Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "bd0a25b9", + "id": "e2b15791", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "be693cae", + "id": "13d6c9cb", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "9e4e33ec", + "id": "4a406eed", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "793b01c8", + "id": "879b26f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:24.431630Z", - "iopub.status.busy": "2024-08-08T18:58:24.431449Z", - "iopub.status.idle": "2024-08-08T18:58:24.438924Z", - "shell.execute_reply": "2024-08-08T18:58:24.438424Z" + "iopub.execute_input": "2024-08-12T10:36:36.939556Z", + "iopub.status.busy": "2024-08-12T10:36:36.939373Z", + "iopub.status.idle": "2024-08-12T10:36:36.947114Z", + "shell.execute_reply": "2024-08-12T10:36:36.946635Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "1786e7c5", + "id": "4369b5e2", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "a2d0a55d", + "id": "150b15ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:24.440809Z", - "iopub.status.busy": "2024-08-08T18:58:24.440635Z", - "iopub.status.idle": "2024-08-08T18:58:24.459871Z", - "shell.execute_reply": "2024-08-08T18:58:24.459426Z" + "iopub.execute_input": "2024-08-12T10:36:36.948929Z", + "iopub.status.busy": "2024-08-12T10:36:36.948750Z", + "iopub.status.idle": "2024-08-12T10:36:36.967965Z", + "shell.execute_reply": "2024-08-12T10:36:36.967525Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "4103cec5", + "id": "c14c0b83", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:24.461747Z", - "iopub.status.busy": "2024-08-08T18:58:24.461575Z", - "iopub.status.idle": "2024-08-08T18:58:24.464917Z", - "shell.execute_reply": "2024-08-08T18:58:24.464460Z" + "iopub.execute_input": "2024-08-12T10:36:36.969804Z", + "iopub.status.busy": "2024-08-12T10:36:36.969629Z", + "iopub.status.idle": "2024-08-12T10:36:36.972857Z", + "shell.execute_reply": "2024-08-12T10:36:36.972314Z" } }, "outputs": [ @@ -1622,112 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00c80dced5054881bb18d1cc1a437f3c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f0cbf3dfd3f040609fa38c055dca8957", - "placeholder": "​", - "style": "IPY_MODEL_5cc1389aff04465597448376dca03262", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "00d6b3784da34654ae77384da04f2a10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a4d3e4e2074045148bdce5afb60d78f7", - "placeholder": "​", - "style": "IPY_MODEL_13a790936a02414ba9e0aea683de0150", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1157113.22it/s]" - } - }, - "13a790936a02414ba9e0aea683de0150": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "140c785141f349a48b81af5056bca121": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1e93668e3d164fd1975ef0d2666ac8ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c790c9a649c547929ce7f4943cfa3043", - "placeholder": "​", - "style": "IPY_MODEL_55c09e89ddfa4bc38e7ce00ab5ddca4a", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1389762.76it/s]" - } - }, - "3721f33ff61d4ed79cbfd69da9600e2a": { + "049b52761beb48df99fe23cd8baeebfb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1780,59 +1675,31 @@ "width": null } }, - "4a0f4ed9a58e414f856b7d1cf3aabc1b": { + "0c8e651ba1af4313a9317a199ae1548d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "55c09e89ddfa4bc38e7ce00ab5ddca4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5cc1389aff04465597448376dca03262": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_77b09a1dcb164489bb12a039cfe3b4c1", + "IPY_MODEL_e46bbd36792e43bbb201508b8bce8a47", + "IPY_MODEL_827cdb9a53984947ae7014f9483b5bbf" + ], + "layout": "IPY_MODEL_0e9314d6bb654e358a5b655abefbce94", + "tabbable": null, + "tooltip": null } }, - "679245afbd474e628d85cc8c7472adb9": { + "0e9314d6bb654e358a5b655abefbce94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1885,60 +1752,25 @@ "width": null } }, - "6cf5993c4fdb45dcbbdcd43792239b58": { - "model_module": "@jupyter-widgets/base", + "383e13499cb54e3788bb93b9baee6cda": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7b6bc8325b664afdbafa85c66ba9704e": { + "495280da9a8c4ce295214df8980d9dd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1991,7 +1823,7 @@ "width": null } }, - "903b9095145a4f308cee40aedfeb2494": { + "4ee68ec8f5664db5a49b4d5c67236357": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2044,7 +1876,7 @@ "width": null } }, - "9cee3ae4b59548c2b4e2e65bd6794967": { + "5fea7cef55724962825cc3fc0d2f606b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2060,7 +1892,120 @@ "description_width": "" } }, - "a4d3e4e2074045148bdce5afb60d78f7": { + "731256f7397c4df989b63b1f641980e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_495280da9a8c4ce295214df8980d9dd1", + "placeholder": "​", + "style": "IPY_MODEL_c485687bf15f4420adbaf32ba3cefa12", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1014587.32it/s]" + } + }, + "77b09a1dcb164489bb12a039cfe3b4c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f04c9e1d2c1c4ccb8f63c5daf273cb1e", + "placeholder": "​", + "style": "IPY_MODEL_383e13499cb54e3788bb93b9baee6cda", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "8019ab3b21b84b569a5f1cee114d146f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4ee68ec8f5664db5a49b4d5c67236357", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d5c5f29848304634a66b93d99d0e58fc", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "827cdb9a53984947ae7014f9483b5bbf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f5c5c8359a9349638e1ec483ccda88ec", + "placeholder": "​", + "style": "IPY_MODEL_d718ad321254435985038e766b1ab7ae", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1544351.41it/s]" + } + }, + "b24365c9c78b470ca67c61e541773477": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ba8eccc77bce49db8cd963dfef9f9200": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2113,7 +2058,7 @@ "width": null } }, - "b0f6f185dde14b199effcf990e60abba": { + "bf893ccecfea429e8cfde5bd91777d9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2128,16 +2073,91 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_00c80dced5054881bb18d1cc1a437f3c", - "IPY_MODEL_f393efffa8354dae9aaf6af3837da3b9", - "IPY_MODEL_1e93668e3d164fd1975ef0d2666ac8ac" + "IPY_MODEL_c0bb7bf7365d4a35a8155eaf55a88e67", + "IPY_MODEL_8019ab3b21b84b569a5f1cee114d146f", + "IPY_MODEL_731256f7397c4df989b63b1f641980e8" ], - "layout": "IPY_MODEL_903b9095145a4f308cee40aedfeb2494", + "layout": "IPY_MODEL_ea3c5899e87b4c7281939fe595139e5a", "tabbable": null, "tooltip": null } }, - "bc74cb33b6434ccd906b689c65e009cf": { + "c0bb7bf7365d4a35a8155eaf55a88e67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_049b52761beb48df99fe23cd8baeebfb", + "placeholder": "​", + "style": "IPY_MODEL_b24365c9c78b470ca67c61e541773477", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "c485687bf15f4420adbaf32ba3cefa12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d5c5f29848304634a66b93d99d0e58fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d718ad321254435985038e766b1ab7ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e46bbd36792e43bbb201508b8bce8a47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2153,17 +2173,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b6bc8325b664afdbafa85c66ba9704e", + "layout": "IPY_MODEL_ba8eccc77bce49db8cd963dfef9f9200", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4a0f4ed9a58e414f856b7d1cf3aabc1b", + "style": "IPY_MODEL_5fea7cef55724962825cc3fc0d2f606b", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "c790c9a649c547929ce7f4943cfa3043": { + "ea3c5899e87b4c7281939fe595139e5a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2216,30 +2236,7 @@ "width": null } }, - "ca63002f70f3462383b7f120a3759252": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6cf5993c4fdb45dcbbdcd43792239b58", - "placeholder": "​", - "style": "IPY_MODEL_140c785141f349a48b81af5056bca121", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "f0cbf3dfd3f040609fa38c055dca8957": { + "f04c9e1d2c1c4ccb8f63c5daf273cb1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2292,54 +2289,57 @@ "width": null } }, - "f393efffa8354dae9aaf6af3837da3b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3721f33ff61d4ed79cbfd69da9600e2a", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9cee3ae4b59548c2b4e2e65bd6794967", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "fe2849d3268f429ab9a177442a64a6c5": { - "model_module": "@jupyter-widgets/controls", + "f5c5c8359a9349638e1ec483ccda88ec": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ca63002f70f3462383b7f120a3759252", - "IPY_MODEL_bc74cb33b6434ccd906b689c65e009cf", - "IPY_MODEL_00d6b3784da34654ae77384da04f2a10" - ], - "layout": "IPY_MODEL_679245afbd474e628d85cc8c7472adb9", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index bd11c1d97..740b12830 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:27.897370Z", - "iopub.status.busy": "2024-08-08T18:58:27.897196Z", - "iopub.status.idle": "2024-08-08T18:58:29.311040Z", - "shell.execute_reply": "2024-08-08T18:58:29.310458Z" + "iopub.execute_input": "2024-08-12T10:36:40.626370Z", + "iopub.status.busy": "2024-08-12T10:36:40.626194Z", + "iopub.status.idle": "2024-08-12T10:36:42.106598Z", + "shell.execute_reply": "2024-08-12T10:36:42.105905Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.313475Z", - "iopub.status.busy": "2024-08-08T18:58:29.313179Z", - "iopub.status.idle": "2024-08-08T18:58:29.317021Z", - "shell.execute_reply": "2024-08-08T18:58:29.316580Z" + "iopub.execute_input": "2024-08-12T10:36:42.109356Z", + "iopub.status.busy": "2024-08-12T10:36:42.108963Z", + "iopub.status.idle": "2024-08-12T10:36:42.112835Z", + "shell.execute_reply": "2024-08-12T10:36:42.112359Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.319170Z", - "iopub.status.busy": "2024-08-08T18:58:29.318831Z", - "iopub.status.idle": "2024-08-08T18:58:29.639785Z", - "shell.execute_reply": "2024-08-08T18:58:29.639210Z" + "iopub.execute_input": "2024-08-12T10:36:42.115049Z", + "iopub.status.busy": "2024-08-12T10:36:42.114626Z", + "iopub.status.idle": "2024-08-12T10:36:42.736214Z", + "shell.execute_reply": "2024-08-12T10:36:42.735738Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.641861Z", - "iopub.status.busy": "2024-08-08T18:58:29.641697Z", - "iopub.status.idle": "2024-08-08T18:58:29.647367Z", - "shell.execute_reply": "2024-08-08T18:58:29.646904Z" + "iopub.execute_input": "2024-08-12T10:36:42.738371Z", + "iopub.status.busy": "2024-08-12T10:36:42.738098Z", + "iopub.status.idle": "2024-08-12T10:36:42.744090Z", + "shell.execute_reply": "2024-08-12T10:36:42.743513Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.649371Z", - "iopub.status.busy": "2024-08-08T18:58:29.649064Z", - "iopub.status.idle": "2024-08-08T18:58:29.655782Z", - "shell.execute_reply": "2024-08-08T18:58:29.655223Z" + "iopub.execute_input": "2024-08-12T10:36:42.746252Z", + "iopub.status.busy": "2024-08-12T10:36:42.745914Z", + "iopub.status.idle": "2024-08-12T10:36:42.752617Z", + "shell.execute_reply": "2024-08-12T10:36:42.752168Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.657792Z", - "iopub.status.busy": "2024-08-08T18:58:29.657494Z", - "iopub.status.idle": "2024-08-08T18:58:29.662196Z", - "shell.execute_reply": "2024-08-08T18:58:29.661670Z" + "iopub.execute_input": "2024-08-12T10:36:42.754505Z", + "iopub.status.busy": "2024-08-12T10:36:42.754292Z", + "iopub.status.idle": "2024-08-12T10:36:42.759107Z", + "shell.execute_reply": "2024-08-12T10:36:42.758539Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.664125Z", - "iopub.status.busy": "2024-08-08T18:58:29.663830Z", - "iopub.status.idle": "2024-08-08T18:58:29.669283Z", - "shell.execute_reply": "2024-08-08T18:58:29.668851Z" + "iopub.execute_input": "2024-08-12T10:36:42.761053Z", + "iopub.status.busy": "2024-08-12T10:36:42.760745Z", + "iopub.status.idle": "2024-08-12T10:36:42.766649Z", + "shell.execute_reply": "2024-08-12T10:36:42.766061Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.671210Z", - "iopub.status.busy": "2024-08-08T18:58:29.670892Z", - "iopub.status.idle": "2024-08-08T18:58:29.675063Z", - "shell.execute_reply": "2024-08-08T18:58:29.674489Z" + "iopub.execute_input": "2024-08-12T10:36:42.768883Z", + "iopub.status.busy": "2024-08-12T10:36:42.768475Z", + "iopub.status.idle": "2024-08-12T10:36:42.772746Z", + "shell.execute_reply": "2024-08-12T10:36:42.772309Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.677002Z", - "iopub.status.busy": "2024-08-08T18:58:29.676695Z", - "iopub.status.idle": "2024-08-08T18:58:29.741575Z", - "shell.execute_reply": "2024-08-08T18:58:29.740963Z" + "iopub.execute_input": "2024-08-12T10:36:42.774665Z", + "iopub.status.busy": "2024-08-12T10:36:42.774342Z", + "iopub.status.idle": "2024-08-12T10:36:42.840283Z", + "shell.execute_reply": "2024-08-12T10:36:42.839717Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.744222Z", - "iopub.status.busy": "2024-08-08T18:58:29.744010Z", - "iopub.status.idle": "2024-08-08T18:58:29.754900Z", - "shell.execute_reply": "2024-08-08T18:58:29.754338Z" + "iopub.execute_input": "2024-08-12T10:36:42.843017Z", + "iopub.status.busy": "2024-08-12T10:36:42.842439Z", + "iopub.status.idle": "2024-08-12T10:36:42.853415Z", + "shell.execute_reply": "2024-08-12T10:36:42.852911Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.757077Z", - "iopub.status.busy": "2024-08-08T18:58:29.756872Z", - "iopub.status.idle": "2024-08-08T18:58:29.776782Z", - "shell.execute_reply": "2024-08-08T18:58:29.776262Z" + "iopub.execute_input": "2024-08-12T10:36:42.855835Z", + "iopub.status.busy": "2024-08-12T10:36:42.855510Z", + "iopub.status.idle": "2024-08-12T10:36:42.874998Z", + "shell.execute_reply": "2024-08-12T10:36:42.874495Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.779020Z", - "iopub.status.busy": "2024-08-08T18:58:29.778672Z", - "iopub.status.idle": "2024-08-08T18:58:29.782857Z", - "shell.execute_reply": "2024-08-08T18:58:29.782327Z" + "iopub.execute_input": "2024-08-12T10:36:42.877350Z", + "iopub.status.busy": "2024-08-12T10:36:42.877026Z", + "iopub.status.idle": "2024-08-12T10:36:42.880884Z", + "shell.execute_reply": "2024-08-12T10:36:42.880387Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.785076Z", - "iopub.status.busy": "2024-08-08T18:58:29.784734Z", - "iopub.status.idle": "2024-08-08T18:58:29.789112Z", - "shell.execute_reply": "2024-08-08T18:58:29.788600Z" + "iopub.execute_input": "2024-08-12T10:36:42.883257Z", + "iopub.status.busy": "2024-08-12T10:36:42.882896Z", + "iopub.status.idle": "2024-08-12T10:36:42.887060Z", + "shell.execute_reply": "2024-08-12T10:36:42.886565Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.791382Z", - "iopub.status.busy": "2024-08-08T18:58:29.791031Z", - "iopub.status.idle": "2024-08-08T18:58:29.802403Z", - "shell.execute_reply": "2024-08-08T18:58:29.801890Z" + "iopub.execute_input": "2024-08-12T10:36:42.889441Z", + "iopub.status.busy": "2024-08-12T10:36:42.889082Z", + "iopub.status.idle": "2024-08-12T10:36:42.900374Z", + "shell.execute_reply": "2024-08-12T10:36:42.899885Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.804258Z", - "iopub.status.busy": "2024-08-08T18:58:29.804085Z", - "iopub.status.idle": "2024-08-08T18:58:29.808134Z", - "shell.execute_reply": "2024-08-08T18:58:29.807717Z" + "iopub.execute_input": "2024-08-12T10:36:42.902302Z", + "iopub.status.busy": "2024-08-12T10:36:42.902009Z", + "iopub.status.idle": "2024-08-12T10:36:42.906390Z", + "shell.execute_reply": "2024-08-12T10:36:42.905809Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.809972Z", - "iopub.status.busy": "2024-08-08T18:58:29.809804Z", - "iopub.status.idle": "2024-08-08T18:58:29.920961Z", - "shell.execute_reply": "2024-08-08T18:58:29.920424Z" + "iopub.execute_input": "2024-08-12T10:36:42.908354Z", + "iopub.status.busy": "2024-08-12T10:36:42.908181Z", + "iopub.status.idle": "2024-08-12T10:36:43.022711Z", + "shell.execute_reply": "2024-08-12T10:36:43.022121Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.923264Z", - "iopub.status.busy": "2024-08-08T18:58:29.922844Z", - "iopub.status.idle": "2024-08-08T18:58:29.928931Z", - "shell.execute_reply": "2024-08-08T18:58:29.928357Z" + "iopub.execute_input": "2024-08-12T10:36:43.024780Z", + "iopub.status.busy": "2024-08-12T10:36:43.024600Z", + "iopub.status.idle": "2024-08-12T10:36:43.032352Z", + "shell.execute_reply": "2024-08-12T10:36:43.031812Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.931223Z", - "iopub.status.busy": "2024-08-08T18:58:29.931029Z", - "iopub.status.idle": "2024-08-08T18:58:32.021627Z", - "shell.execute_reply": "2024-08-08T18:58:32.020982Z" + "iopub.execute_input": "2024-08-12T10:36:43.034725Z", + "iopub.status.busy": "2024-08-12T10:36:43.034251Z", + "iopub.status.idle": "2024-08-12T10:36:45.303150Z", + "shell.execute_reply": "2024-08-12T10:36:45.302523Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.025831Z", - "iopub.status.busy": "2024-08-08T18:58:32.024721Z", - "iopub.status.idle": "2024-08-08T18:58:32.039695Z", - "shell.execute_reply": "2024-08-08T18:58:32.039193Z" + "iopub.execute_input": "2024-08-12T10:36:45.306901Z", + "iopub.status.busy": "2024-08-12T10:36:45.305628Z", + "iopub.status.idle": "2024-08-12T10:36:45.320641Z", + "shell.execute_reply": "2024-08-12T10:36:45.320130Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.043188Z", - "iopub.status.busy": "2024-08-08T18:58:32.042270Z", - "iopub.status.idle": "2024-08-08T18:58:32.046214Z", - "shell.execute_reply": "2024-08-08T18:58:32.045712Z" + "iopub.execute_input": "2024-08-12T10:36:45.324257Z", + "iopub.status.busy": "2024-08-12T10:36:45.323292Z", + "iopub.status.idle": "2024-08-12T10:36:45.327320Z", + "shell.execute_reply": "2024-08-12T10:36:45.326813Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.049590Z", - "iopub.status.busy": "2024-08-08T18:58:32.048688Z", - "iopub.status.idle": "2024-08-08T18:58:32.054180Z", - "shell.execute_reply": "2024-08-08T18:58:32.053683Z" + "iopub.execute_input": "2024-08-12T10:36:45.330800Z", + "iopub.status.busy": "2024-08-12T10:36:45.329853Z", + "iopub.status.idle": "2024-08-12T10:36:45.335401Z", + "shell.execute_reply": "2024-08-12T10:36:45.334898Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.057595Z", - "iopub.status.busy": "2024-08-08T18:58:32.056693Z", - "iopub.status.idle": "2024-08-08T18:58:32.088638Z", - "shell.execute_reply": "2024-08-08T18:58:32.088086Z" + "iopub.execute_input": "2024-08-12T10:36:45.338898Z", + "iopub.status.busy": "2024-08-12T10:36:45.337952Z", + "iopub.status.idle": "2024-08-12T10:36:45.369119Z", + "shell.execute_reply": "2024-08-12T10:36:45.368622Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.091198Z", - "iopub.status.busy": "2024-08-08T18:58:32.090774Z", - "iopub.status.idle": "2024-08-08T18:58:32.615941Z", - "shell.execute_reply": "2024-08-08T18:58:32.615377Z" + "iopub.execute_input": "2024-08-12T10:36:45.372525Z", + "iopub.status.busy": "2024-08-12T10:36:45.371632Z", + "iopub.status.idle": "2024-08-12T10:36:45.905387Z", + "shell.execute_reply": "2024-08-12T10:36:45.904814Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.618832Z", - "iopub.status.busy": "2024-08-08T18:58:32.618414Z", - "iopub.status.idle": "2024-08-08T18:58:32.750397Z", - "shell.execute_reply": "2024-08-08T18:58:32.749801Z" + "iopub.execute_input": "2024-08-12T10:36:45.909279Z", + "iopub.status.busy": "2024-08-12T10:36:45.908383Z", + "iopub.status.idle": "2024-08-12T10:36:46.041822Z", + "shell.execute_reply": "2024-08-12T10:36:46.041200Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.753200Z", - "iopub.status.busy": "2024-08-08T18:58:32.752800Z", - "iopub.status.idle": "2024-08-08T18:58:32.759482Z", - "shell.execute_reply": "2024-08-08T18:58:32.758992Z" + "iopub.execute_input": "2024-08-12T10:36:46.045278Z", + "iopub.status.busy": "2024-08-12T10:36:46.044751Z", + "iopub.status.idle": "2024-08-12T10:36:46.053676Z", + "shell.execute_reply": "2024-08-12T10:36:46.053168Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.761829Z", - "iopub.status.busy": "2024-08-08T18:58:32.761453Z", - "iopub.status.idle": "2024-08-08T18:58:32.767319Z", - "shell.execute_reply": "2024-08-08T18:58:32.766838Z" + "iopub.execute_input": "2024-08-12T10:36:46.057145Z", + "iopub.status.busy": "2024-08-12T10:36:46.056094Z", + "iopub.status.idle": "2024-08-12T10:36:46.064218Z", + "shell.execute_reply": "2024-08-12T10:36:46.063721Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.769639Z", - "iopub.status.busy": "2024-08-08T18:58:32.769261Z", - "iopub.status.idle": "2024-08-08T18:58:32.774530Z", - "shell.execute_reply": "2024-08-08T18:58:32.774052Z" + "iopub.execute_input": "2024-08-12T10:36:46.066943Z", + "iopub.status.busy": "2024-08-12T10:36:46.066574Z", + "iopub.status.idle": "2024-08-12T10:36:46.073843Z", + "shell.execute_reply": "2024-08-12T10:36:46.073350Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.776858Z", - "iopub.status.busy": "2024-08-08T18:58:32.776482Z", - "iopub.status.idle": "2024-08-08T18:58:32.780555Z", - "shell.execute_reply": "2024-08-08T18:58:32.780085Z" + "iopub.execute_input": "2024-08-12T10:36:46.077228Z", + "iopub.status.busy": "2024-08-12T10:36:46.076190Z", + "iopub.status.idle": "2024-08-12T10:36:46.082285Z", + "shell.execute_reply": "2024-08-12T10:36:46.081799Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.782857Z", - "iopub.status.busy": "2024-08-08T18:58:32.782471Z", - "iopub.status.idle": "2024-08-08T18:58:32.787154Z", - "shell.execute_reply": "2024-08-08T18:58:32.786665Z" + "iopub.execute_input": "2024-08-12T10:36:46.084361Z", + "iopub.status.busy": "2024-08-12T10:36:46.084023Z", + "iopub.status.idle": "2024-08-12T10:36:46.088860Z", + "shell.execute_reply": "2024-08-12T10:36:46.088303Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.789491Z", - "iopub.status.busy": "2024-08-08T18:58:32.789118Z", - "iopub.status.idle": "2024-08-08T18:58:32.862602Z", - "shell.execute_reply": "2024-08-08T18:58:32.862119Z" + "iopub.execute_input": "2024-08-12T10:36:46.091098Z", + "iopub.status.busy": "2024-08-12T10:36:46.090782Z", + "iopub.status.idle": "2024-08-12T10:36:46.172998Z", + "shell.execute_reply": "2024-08-12T10:36:46.172344Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.864987Z", - "iopub.status.busy": "2024-08-08T18:58:32.864621Z", - "iopub.status.idle": "2024-08-08T18:58:32.882840Z", - "shell.execute_reply": "2024-08-08T18:58:32.882338Z" + "iopub.execute_input": "2024-08-12T10:36:46.175651Z", + "iopub.status.busy": "2024-08-12T10:36:46.175429Z", + "iopub.status.idle": "2024-08-12T10:36:46.187531Z", + "shell.execute_reply": "2024-08-12T10:36:46.186972Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.884927Z", - "iopub.status.busy": "2024-08-08T18:58:32.884622Z", - "iopub.status.idle": "2024-08-08T18:58:32.886985Z", - "shell.execute_reply": "2024-08-08T18:58:32.886577Z" + "iopub.execute_input": "2024-08-12T10:36:46.190271Z", + "iopub.status.busy": "2024-08-12T10:36:46.190072Z", + "iopub.status.idle": "2024-08-12T10:36:46.193436Z", + "shell.execute_reply": "2024-08-12T10:36:46.193003Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.889018Z", - "iopub.status.busy": "2024-08-08T18:58:32.888722Z", - "iopub.status.idle": "2024-08-08T18:58:32.897201Z", - "shell.execute_reply": "2024-08-08T18:58:32.896797Z" + "iopub.execute_input": "2024-08-12T10:36:46.195626Z", + "iopub.status.busy": "2024-08-12T10:36:46.195293Z", + "iopub.status.idle": "2024-08-12T10:36:46.205150Z", + "shell.execute_reply": "2024-08-12T10:36:46.204713Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.899258Z", - "iopub.status.busy": "2024-08-08T18:58:32.898932Z", - "iopub.status.idle": "2024-08-08T18:58:32.905463Z", - "shell.execute_reply": "2024-08-08T18:58:32.905006Z" + "iopub.execute_input": "2024-08-12T10:36:46.207247Z", + "iopub.status.busy": "2024-08-12T10:36:46.206910Z", + "iopub.status.idle": "2024-08-12T10:36:46.213503Z", + "shell.execute_reply": "2024-08-12T10:36:46.213035Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.907303Z", - "iopub.status.busy": "2024-08-08T18:58:32.907129Z", - "iopub.status.idle": "2024-08-08T18:58:32.910322Z", - "shell.execute_reply": "2024-08-08T18:58:32.909870Z" + "iopub.execute_input": "2024-08-12T10:36:46.215507Z", + "iopub.status.busy": "2024-08-12T10:36:46.215170Z", + "iopub.status.idle": "2024-08-12T10:36:46.218497Z", + "shell.execute_reply": "2024-08-12T10:36:46.218007Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.912329Z", - "iopub.status.busy": "2024-08-08T18:58:32.911996Z", - "iopub.status.idle": "2024-08-08T18:58:36.955566Z", - "shell.execute_reply": "2024-08-08T18:58:36.954981Z" + "iopub.execute_input": "2024-08-12T10:36:46.220478Z", + "iopub.status.busy": "2024-08-12T10:36:46.220119Z", + "iopub.status.idle": "2024-08-12T10:36:50.293411Z", + "shell.execute_reply": "2024-08-12T10:36:50.292905Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:36.958975Z", - "iopub.status.busy": "2024-08-08T18:58:36.958461Z", - "iopub.status.idle": "2024-08-08T18:58:36.962005Z", - "shell.execute_reply": "2024-08-08T18:58:36.961425Z" + "iopub.execute_input": "2024-08-12T10:36:50.296575Z", + "iopub.status.busy": "2024-08-12T10:36:50.295692Z", + "iopub.status.idle": "2024-08-12T10:36:50.299685Z", + "shell.execute_reply": "2024-08-12T10:36:50.299227Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:36.964011Z", - "iopub.status.busy": "2024-08-08T18:58:36.963826Z", - "iopub.status.idle": "2024-08-08T18:58:36.966830Z", - "shell.execute_reply": "2024-08-08T18:58:36.966240Z" + "iopub.execute_input": "2024-08-12T10:36:50.301503Z", + "iopub.status.busy": "2024-08-12T10:36:50.301346Z", + "iopub.status.idle": "2024-08-12T10:36:50.304200Z", + "shell.execute_reply": "2024-08-12T10:36:50.303734Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 5f2e1cdf5..f91499b91 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:40.169648Z", - "iopub.status.busy": "2024-08-08T18:58:40.169491Z", - "iopub.status.idle": "2024-08-08T18:58:41.570075Z", - "shell.execute_reply": "2024-08-08T18:58:41.569517Z" + "iopub.execute_input": "2024-08-12T10:36:53.576141Z", + "iopub.status.busy": "2024-08-12T10:36:53.575962Z", + "iopub.status.idle": "2024-08-12T10:36:55.014555Z", + "shell.execute_reply": "2024-08-12T10:36:55.014010Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:41.573086Z", - "iopub.status.busy": "2024-08-08T18:58:41.572539Z", - "iopub.status.idle": "2024-08-08T18:58:41.576186Z", - "shell.execute_reply": "2024-08-08T18:58:41.575603Z" + "iopub.execute_input": "2024-08-12T10:36:55.017150Z", + "iopub.status.busy": "2024-08-12T10:36:55.016843Z", + "iopub.status.idle": "2024-08-12T10:36:55.020291Z", + "shell.execute_reply": "2024-08-12T10:36:55.019828Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:41.578314Z", - "iopub.status.busy": "2024-08-08T18:58:41.578129Z", - "iopub.status.idle": "2024-08-08T18:58:41.589902Z", - "shell.execute_reply": "2024-08-08T18:58:41.589464Z" + "iopub.execute_input": "2024-08-12T10:36:55.022265Z", + "iopub.status.busy": "2024-08-12T10:36:55.022084Z", + "iopub.status.idle": "2024-08-12T10:36:55.033553Z", + "shell.execute_reply": "2024-08-12T10:36:55.033077Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:41.592003Z", - "iopub.status.busy": "2024-08-08T18:58:41.591658Z", - "iopub.status.idle": "2024-08-08T18:58:41.829404Z", - "shell.execute_reply": "2024-08-08T18:58:41.828796Z" + "iopub.execute_input": "2024-08-12T10:36:55.035570Z", + "iopub.status.busy": "2024-08-12T10:36:55.035381Z", + "iopub.status.idle": "2024-08-12T10:36:55.275119Z", + "shell.execute_reply": "2024-08-12T10:36:55.274521Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:41.831787Z", - "iopub.status.busy": "2024-08-08T18:58:41.831455Z", - "iopub.status.idle": "2024-08-08T18:58:41.858086Z", - "shell.execute_reply": "2024-08-08T18:58:41.857629Z" + "iopub.execute_input": "2024-08-12T10:36:55.277529Z", + "iopub.status.busy": "2024-08-12T10:36:55.277197Z", + "iopub.status.idle": "2024-08-12T10:36:55.304345Z", + "shell.execute_reply": "2024-08-12T10:36:55.303759Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:41.860066Z", - "iopub.status.busy": "2024-08-08T18:58:41.859788Z", - "iopub.status.idle": "2024-08-08T18:58:43.939713Z", - "shell.execute_reply": "2024-08-08T18:58:43.939114Z" + "iopub.execute_input": "2024-08-12T10:36:55.306815Z", + "iopub.status.busy": "2024-08-12T10:36:55.306461Z", + "iopub.status.idle": "2024-08-12T10:36:57.481211Z", + "shell.execute_reply": "2024-08-12T10:36:57.480509Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:43.942304Z", - "iopub.status.busy": "2024-08-08T18:58:43.941722Z", - "iopub.status.idle": "2024-08-08T18:58:43.959479Z", - "shell.execute_reply": "2024-08-08T18:58:43.958945Z" + "iopub.execute_input": "2024-08-12T10:36:57.483792Z", + "iopub.status.busy": "2024-08-12T10:36:57.483415Z", + "iopub.status.idle": "2024-08-12T10:36:57.501958Z", + "shell.execute_reply": "2024-08-12T10:36:57.501474Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:43.961589Z", - "iopub.status.busy": "2024-08-08T18:58:43.961242Z", - "iopub.status.idle": "2024-08-08T18:58:45.508271Z", - "shell.execute_reply": "2024-08-08T18:58:45.507697Z" + "iopub.execute_input": "2024-08-12T10:36:57.504352Z", + "iopub.status.busy": "2024-08-12T10:36:57.503863Z", + "iopub.status.idle": "2024-08-12T10:36:59.103702Z", + "shell.execute_reply": "2024-08-12T10:36:59.103079Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:45.511450Z", - "iopub.status.busy": "2024-08-08T18:58:45.510466Z", - "iopub.status.idle": "2024-08-08T18:58:45.523924Z", - "shell.execute_reply": "2024-08-08T18:58:45.523433Z" + "iopub.execute_input": "2024-08-12T10:36:59.106686Z", + "iopub.status.busy": "2024-08-12T10:36:59.105759Z", + "iopub.status.idle": "2024-08-12T10:36:59.119934Z", + "shell.execute_reply": "2024-08-12T10:36:59.119452Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:45.526034Z", - "iopub.status.busy": "2024-08-08T18:58:45.525692Z", - "iopub.status.idle": "2024-08-08T18:58:45.605037Z", - "shell.execute_reply": "2024-08-08T18:58:45.604424Z" + "iopub.execute_input": "2024-08-12T10:36:59.122050Z", + "iopub.status.busy": "2024-08-12T10:36:59.121694Z", + "iopub.status.idle": "2024-08-12T10:36:59.205641Z", + "shell.execute_reply": "2024-08-12T10:36:59.205023Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:45.607493Z", - "iopub.status.busy": "2024-08-08T18:58:45.607174Z", - "iopub.status.idle": "2024-08-08T18:58:45.821727Z", - "shell.execute_reply": "2024-08-08T18:58:45.821158Z" + "iopub.execute_input": "2024-08-12T10:36:59.208167Z", + "iopub.status.busy": "2024-08-12T10:36:59.207756Z", + "iopub.status.idle": "2024-08-12T10:36:59.420275Z", + "shell.execute_reply": "2024-08-12T10:36:59.419661Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:45.824095Z", - "iopub.status.busy": "2024-08-08T18:58:45.823714Z", - "iopub.status.idle": "2024-08-08T18:58:45.841289Z", - "shell.execute_reply": "2024-08-08T18:58:45.840855Z" + "iopub.execute_input": "2024-08-12T10:36:59.422483Z", + "iopub.status.busy": "2024-08-12T10:36:59.422110Z", + "iopub.status.idle": "2024-08-12T10:36:59.439047Z", + "shell.execute_reply": "2024-08-12T10:36:59.438607Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:45.843484Z", - "iopub.status.busy": "2024-08-08T18:58:45.843146Z", - "iopub.status.idle": "2024-08-08T18:58:45.852540Z", - "shell.execute_reply": "2024-08-08T18:58:45.851965Z" + "iopub.execute_input": "2024-08-12T10:36:59.441204Z", + "iopub.status.busy": "2024-08-12T10:36:59.440871Z", + "iopub.status.idle": "2024-08-12T10:36:59.450881Z", + "shell.execute_reply": "2024-08-12T10:36:59.450435Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:45.854687Z", - "iopub.status.busy": "2024-08-08T18:58:45.854338Z", - "iopub.status.idle": "2024-08-08T18:58:45.944901Z", - "shell.execute_reply": "2024-08-08T18:58:45.944248Z" + "iopub.execute_input": "2024-08-12T10:36:59.452925Z", + "iopub.status.busy": "2024-08-12T10:36:59.452588Z", + "iopub.status.idle": "2024-08-12T10:36:59.545723Z", + "shell.execute_reply": "2024-08-12T10:36:59.545075Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:45.947262Z", - "iopub.status.busy": "2024-08-08T18:58:45.947016Z", - "iopub.status.idle": "2024-08-08T18:58:46.085125Z", - "shell.execute_reply": "2024-08-08T18:58:46.084511Z" + "iopub.execute_input": "2024-08-12T10:36:59.548352Z", + "iopub.status.busy": "2024-08-12T10:36:59.547991Z", + "iopub.status.idle": "2024-08-12T10:36:59.687429Z", + "shell.execute_reply": "2024-08-12T10:36:59.686780Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.087579Z", - "iopub.status.busy": "2024-08-08T18:58:46.087377Z", - "iopub.status.idle": "2024-08-08T18:58:46.091512Z", - "shell.execute_reply": "2024-08-08T18:58:46.090937Z" + "iopub.execute_input": "2024-08-12T10:36:59.690123Z", + "iopub.status.busy": "2024-08-12T10:36:59.689562Z", + "iopub.status.idle": "2024-08-12T10:36:59.693688Z", + "shell.execute_reply": "2024-08-12T10:36:59.693154Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.093676Z", - "iopub.status.busy": "2024-08-08T18:58:46.093272Z", - "iopub.status.idle": "2024-08-08T18:58:46.096955Z", - "shell.execute_reply": "2024-08-08T18:58:46.096384Z" + "iopub.execute_input": "2024-08-12T10:36:59.696034Z", + "iopub.status.busy": "2024-08-12T10:36:59.695722Z", + "iopub.status.idle": "2024-08-12T10:36:59.699496Z", + "shell.execute_reply": "2024-08-12T10:36:59.698951Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.099228Z", - "iopub.status.busy": "2024-08-08T18:58:46.098739Z", - "iopub.status.idle": "2024-08-08T18:58:46.135257Z", - "shell.execute_reply": "2024-08-08T18:58:46.134705Z" + "iopub.execute_input": "2024-08-12T10:36:59.701481Z", + "iopub.status.busy": "2024-08-12T10:36:59.701177Z", + "iopub.status.idle": "2024-08-12T10:36:59.738773Z", + "shell.execute_reply": "2024-08-12T10:36:59.738181Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.137248Z", - "iopub.status.busy": "2024-08-08T18:58:46.137066Z", - "iopub.status.idle": "2024-08-08T18:58:46.177483Z", - "shell.execute_reply": "2024-08-08T18:58:46.176993Z" + "iopub.execute_input": "2024-08-12T10:36:59.740888Z", + "iopub.status.busy": "2024-08-12T10:36:59.740542Z", + "iopub.status.idle": "2024-08-12T10:36:59.781556Z", + "shell.execute_reply": "2024-08-12T10:36:59.781066Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.179434Z", - "iopub.status.busy": "2024-08-08T18:58:46.179259Z", - "iopub.status.idle": "2024-08-08T18:58:46.280145Z", - "shell.execute_reply": "2024-08-08T18:58:46.279489Z" + "iopub.execute_input": "2024-08-12T10:36:59.783621Z", + "iopub.status.busy": "2024-08-12T10:36:59.783276Z", + "iopub.status.idle": "2024-08-12T10:36:59.886618Z", + "shell.execute_reply": "2024-08-12T10:36:59.885902Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.282999Z", - "iopub.status.busy": "2024-08-08T18:58:46.282518Z", - "iopub.status.idle": "2024-08-08T18:58:46.386103Z", - "shell.execute_reply": "2024-08-08T18:58:46.385438Z" + "iopub.execute_input": "2024-08-12T10:36:59.889214Z", + "iopub.status.busy": "2024-08-12T10:36:59.888964Z", + "iopub.status.idle": "2024-08-12T10:36:59.998717Z", + "shell.execute_reply": "2024-08-12T10:36:59.998068Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.388358Z", - "iopub.status.busy": "2024-08-08T18:58:46.388122Z", - "iopub.status.idle": "2024-08-08T18:58:46.601333Z", - "shell.execute_reply": "2024-08-08T18:58:46.600750Z" + "iopub.execute_input": "2024-08-12T10:37:00.001204Z", + "iopub.status.busy": "2024-08-12T10:37:00.000820Z", + "iopub.status.idle": "2024-08-12T10:37:00.213727Z", + "shell.execute_reply": "2024-08-12T10:37:00.213136Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.603589Z", - "iopub.status.busy": "2024-08-08T18:58:46.603301Z", - "iopub.status.idle": "2024-08-08T18:58:46.823679Z", - "shell.execute_reply": "2024-08-08T18:58:46.823127Z" + "iopub.execute_input": "2024-08-12T10:37:00.216034Z", + "iopub.status.busy": "2024-08-12T10:37:00.215683Z", + "iopub.status.idle": "2024-08-12T10:37:00.436763Z", + "shell.execute_reply": "2024-08-12T10:37:00.436178Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.826110Z", - "iopub.status.busy": "2024-08-08T18:58:46.825710Z", - "iopub.status.idle": "2024-08-08T18:58:46.831597Z", - "shell.execute_reply": "2024-08-08T18:58:46.831156Z" + "iopub.execute_input": "2024-08-12T10:37:00.439376Z", + "iopub.status.busy": "2024-08-12T10:37:00.438962Z", + "iopub.status.idle": "2024-08-12T10:37:00.445033Z", + "shell.execute_reply": "2024-08-12T10:37:00.444579Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.833726Z", - "iopub.status.busy": "2024-08-08T18:58:46.833396Z", - "iopub.status.idle": "2024-08-08T18:58:47.049859Z", - "shell.execute_reply": "2024-08-08T18:58:47.049267Z" + "iopub.execute_input": "2024-08-12T10:37:00.447166Z", + "iopub.status.busy": "2024-08-12T10:37:00.446833Z", + "iopub.status.idle": "2024-08-12T10:37:00.664000Z", + "shell.execute_reply": "2024-08-12T10:37:00.663425Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:47.052241Z", - "iopub.status.busy": "2024-08-08T18:58:47.051861Z", - "iopub.status.idle": "2024-08-08T18:58:48.116780Z", - "shell.execute_reply": "2024-08-08T18:58:48.116238Z" + "iopub.execute_input": "2024-08-12T10:37:00.666198Z", + "iopub.status.busy": "2024-08-12T10:37:00.665906Z", + "iopub.status.idle": "2024-08-12T10:37:01.745237Z", + "shell.execute_reply": "2024-08-12T10:37:01.744556Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index f1f03c3d7..df5a01e40 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:52.530677Z", - "iopub.status.busy": "2024-08-08T18:58:52.530239Z", - "iopub.status.idle": "2024-08-08T18:58:53.916567Z", - "shell.execute_reply": "2024-08-08T18:58:53.915917Z" + "iopub.execute_input": "2024-08-12T10:37:05.388871Z", + "iopub.status.busy": "2024-08-12T10:37:05.388693Z", + "iopub.status.idle": "2024-08-12T10:37:06.803277Z", + "shell.execute_reply": "2024-08-12T10:37:06.802643Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:53.919553Z", - "iopub.status.busy": "2024-08-08T18:58:53.919079Z", - "iopub.status.idle": "2024-08-08T18:58:53.922110Z", - "shell.execute_reply": "2024-08-08T18:58:53.921647Z" + "iopub.execute_input": "2024-08-12T10:37:06.805938Z", + "iopub.status.busy": "2024-08-12T10:37:06.805652Z", + "iopub.status.idle": "2024-08-12T10:37:06.808825Z", + "shell.execute_reply": "2024-08-12T10:37:06.808280Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:53.924266Z", - "iopub.status.busy": "2024-08-08T18:58:53.923919Z", - "iopub.status.idle": "2024-08-08T18:58:53.931725Z", - "shell.execute_reply": "2024-08-08T18:58:53.931137Z" + "iopub.execute_input": "2024-08-12T10:37:06.810942Z", + "iopub.status.busy": "2024-08-12T10:37:06.810637Z", + "iopub.status.idle": "2024-08-12T10:37:06.818311Z", + "shell.execute_reply": "2024-08-12T10:37:06.817756Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:53.933808Z", - "iopub.status.busy": "2024-08-08T18:58:53.933464Z", - "iopub.status.idle": "2024-08-08T18:58:53.981484Z", - "shell.execute_reply": "2024-08-08T18:58:53.980968Z" + "iopub.execute_input": "2024-08-12T10:37:06.820375Z", + "iopub.status.busy": "2024-08-12T10:37:06.820045Z", + "iopub.status.idle": "2024-08-12T10:37:06.867480Z", + "shell.execute_reply": "2024-08-12T10:37:06.866999Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:53.983924Z", - "iopub.status.busy": "2024-08-08T18:58:53.983536Z", - "iopub.status.idle": "2024-08-08T18:58:54.000484Z", - "shell.execute_reply": "2024-08-08T18:58:54.000037Z" + "iopub.execute_input": "2024-08-12T10:37:06.869923Z", + "iopub.status.busy": "2024-08-12T10:37:06.869561Z", + "iopub.status.idle": "2024-08-12T10:37:06.886443Z", + "shell.execute_reply": "2024-08-12T10:37:06.885835Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:54.002532Z", - "iopub.status.busy": "2024-08-08T18:58:54.002198Z", - "iopub.status.idle": "2024-08-08T18:58:54.005875Z", - "shell.execute_reply": "2024-08-08T18:58:54.005418Z" + "iopub.execute_input": "2024-08-12T10:37:06.888629Z", + "iopub.status.busy": "2024-08-12T10:37:06.888293Z", + "iopub.status.idle": "2024-08-12T10:37:06.892059Z", + "shell.execute_reply": "2024-08-12T10:37:06.891606Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:54.007910Z", - "iopub.status.busy": "2024-08-08T18:58:54.007610Z", - "iopub.status.idle": "2024-08-08T18:58:54.023712Z", - "shell.execute_reply": "2024-08-08T18:58:54.023149Z" + "iopub.execute_input": "2024-08-12T10:37:06.894154Z", + "iopub.status.busy": "2024-08-12T10:37:06.893890Z", + "iopub.status.idle": "2024-08-12T10:37:06.909322Z", + "shell.execute_reply": "2024-08-12T10:37:06.908906Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:54.025667Z", - "iopub.status.busy": "2024-08-08T18:58:54.025484Z", - "iopub.status.idle": "2024-08-08T18:58:54.051609Z", - "shell.execute_reply": "2024-08-08T18:58:54.051150Z" + "iopub.execute_input": "2024-08-12T10:37:06.911202Z", + "iopub.status.busy": "2024-08-12T10:37:06.911016Z", + "iopub.status.idle": "2024-08-12T10:37:06.937454Z", + "shell.execute_reply": "2024-08-12T10:37:06.936962Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:54.053806Z", - "iopub.status.busy": "2024-08-08T18:58:54.053349Z", - "iopub.status.idle": "2024-08-08T18:58:56.151257Z", - "shell.execute_reply": "2024-08-08T18:58:56.150640Z" + "iopub.execute_input": "2024-08-12T10:37:06.939565Z", + "iopub.status.busy": "2024-08-12T10:37:06.939384Z", + "iopub.status.idle": "2024-08-12T10:37:09.089293Z", + "shell.execute_reply": "2024-08-12T10:37:09.088628Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.154500Z", - "iopub.status.busy": "2024-08-08T18:58:56.153440Z", - "iopub.status.idle": "2024-08-08T18:58:56.160994Z", - "shell.execute_reply": "2024-08-08T18:58:56.160425Z" + "iopub.execute_input": "2024-08-12T10:37:09.092048Z", + "iopub.status.busy": "2024-08-12T10:37:09.091539Z", + "iopub.status.idle": "2024-08-12T10:37:09.098539Z", + "shell.execute_reply": "2024-08-12T10:37:09.098049Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.163094Z", - "iopub.status.busy": "2024-08-08T18:58:56.162778Z", - "iopub.status.idle": "2024-08-08T18:58:56.175018Z", - "shell.execute_reply": "2024-08-08T18:58:56.174446Z" + "iopub.execute_input": "2024-08-12T10:37:09.100427Z", + "iopub.status.busy": "2024-08-12T10:37:09.100246Z", + "iopub.status.idle": "2024-08-12T10:37:09.113060Z", + "shell.execute_reply": "2024-08-12T10:37:09.112607Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.177046Z", - "iopub.status.busy": "2024-08-08T18:58:56.176707Z", - "iopub.status.idle": "2024-08-08T18:58:56.182819Z", - "shell.execute_reply": "2024-08-08T18:58:56.182359Z" + "iopub.execute_input": "2024-08-12T10:37:09.114954Z", + "iopub.status.busy": "2024-08-12T10:37:09.114778Z", + "iopub.status.idle": "2024-08-12T10:37:09.121345Z", + "shell.execute_reply": "2024-08-12T10:37:09.120881Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.184901Z", - "iopub.status.busy": "2024-08-08T18:58:56.184580Z", - "iopub.status.idle": "2024-08-08T18:58:56.187048Z", - "shell.execute_reply": "2024-08-08T18:58:56.186544Z" + "iopub.execute_input": "2024-08-12T10:37:09.123474Z", + "iopub.status.busy": "2024-08-12T10:37:09.123132Z", + "iopub.status.idle": "2024-08-12T10:37:09.125850Z", + "shell.execute_reply": "2024-08-12T10:37:09.125398Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.189035Z", - "iopub.status.busy": "2024-08-08T18:58:56.188704Z", - "iopub.status.idle": "2024-08-08T18:58:56.192263Z", - "shell.execute_reply": "2024-08-08T18:58:56.191700Z" + "iopub.execute_input": "2024-08-12T10:37:09.127879Z", + "iopub.status.busy": "2024-08-12T10:37:09.127535Z", + "iopub.status.idle": "2024-08-12T10:37:09.131216Z", + "shell.execute_reply": "2024-08-12T10:37:09.130751Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.194433Z", - "iopub.status.busy": "2024-08-08T18:58:56.194126Z", - "iopub.status.idle": "2024-08-08T18:58:56.196817Z", - "shell.execute_reply": "2024-08-08T18:58:56.196362Z" + "iopub.execute_input": "2024-08-12T10:37:09.133188Z", + "iopub.status.busy": "2024-08-12T10:37:09.132921Z", + "iopub.status.idle": "2024-08-12T10:37:09.135464Z", + "shell.execute_reply": "2024-08-12T10:37:09.135011Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.198810Z", - "iopub.status.busy": "2024-08-08T18:58:56.198636Z", - "iopub.status.idle": "2024-08-08T18:58:56.202464Z", - "shell.execute_reply": "2024-08-08T18:58:56.201932Z" + "iopub.execute_input": "2024-08-12T10:37:09.137485Z", + "iopub.status.busy": "2024-08-12T10:37:09.137147Z", + "iopub.status.idle": "2024-08-12T10:37:09.141490Z", + "shell.execute_reply": "2024-08-12T10:37:09.140918Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.204399Z", - "iopub.status.busy": "2024-08-08T18:58:56.204228Z", - "iopub.status.idle": "2024-08-08T18:58:56.232508Z", - "shell.execute_reply": "2024-08-08T18:58:56.232078Z" + "iopub.execute_input": "2024-08-12T10:37:09.143733Z", + "iopub.status.busy": "2024-08-12T10:37:09.143297Z", + "iopub.status.idle": "2024-08-12T10:37:09.171860Z", + "shell.execute_reply": "2024-08-12T10:37:09.171290Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.234292Z", - "iopub.status.busy": "2024-08-08T18:58:56.234120Z", - "iopub.status.idle": "2024-08-08T18:58:56.238757Z", - "shell.execute_reply": "2024-08-08T18:58:56.238283Z" + "iopub.execute_input": "2024-08-12T10:37:09.174329Z", + "iopub.status.busy": "2024-08-12T10:37:09.173962Z", + "iopub.status.idle": "2024-08-12T10:37:09.179620Z", + "shell.execute_reply": "2024-08-12T10:37:09.178987Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 6d88f9061..b1134ea67 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:59.277827Z", - "iopub.status.busy": "2024-08-08T18:58:59.277653Z", - "iopub.status.idle": "2024-08-08T18:59:00.665739Z", - "shell.execute_reply": "2024-08-08T18:59:00.665184Z" + "iopub.execute_input": "2024-08-12T10:37:12.374296Z", + "iopub.status.busy": "2024-08-12T10:37:12.373799Z", + "iopub.status.idle": "2024-08-12T10:37:13.806289Z", + "shell.execute_reply": "2024-08-12T10:37:13.805637Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:00.668326Z", - "iopub.status.busy": "2024-08-08T18:59:00.667857Z", - "iopub.status.idle": "2024-08-08T18:59:00.687743Z", - "shell.execute_reply": "2024-08-08T18:59:00.687276Z" + "iopub.execute_input": "2024-08-12T10:37:13.809008Z", + "iopub.status.busy": "2024-08-12T10:37:13.808701Z", + "iopub.status.idle": "2024-08-12T10:37:13.828959Z", + "shell.execute_reply": "2024-08-12T10:37:13.828395Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:00.689905Z", - "iopub.status.busy": "2024-08-08T18:59:00.689640Z", - "iopub.status.idle": "2024-08-08T18:59:00.702726Z", - "shell.execute_reply": "2024-08-08T18:59:00.702140Z" + "iopub.execute_input": "2024-08-12T10:37:13.831637Z", + "iopub.status.busy": "2024-08-12T10:37:13.831199Z", + "iopub.status.idle": "2024-08-12T10:37:13.844329Z", + "shell.execute_reply": "2024-08-12T10:37:13.843766Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:00.704701Z", - "iopub.status.busy": "2024-08-08T18:59:00.704401Z", - "iopub.status.idle": "2024-08-08T18:59:03.352147Z", - "shell.execute_reply": "2024-08-08T18:59:03.351603Z" + "iopub.execute_input": "2024-08-12T10:37:13.846676Z", + "iopub.status.busy": "2024-08-12T10:37:13.846320Z", + "iopub.status.idle": "2024-08-12T10:37:16.510716Z", + "shell.execute_reply": "2024-08-12T10:37:16.510096Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:03.354296Z", - "iopub.status.busy": "2024-08-08T18:59:03.354113Z", - "iopub.status.idle": "2024-08-08T18:59:04.702725Z", - "shell.execute_reply": "2024-08-08T18:59:04.702120Z" + "iopub.execute_input": "2024-08-12T10:37:16.513014Z", + "iopub.status.busy": "2024-08-12T10:37:16.512642Z", + "iopub.status.idle": "2024-08-12T10:37:17.880117Z", + "shell.execute_reply": "2024-08-12T10:37:17.879556Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:04.705076Z", - "iopub.status.busy": "2024-08-08T18:59:04.704884Z", - "iopub.status.idle": "2024-08-08T18:59:04.708614Z", - "shell.execute_reply": "2024-08-08T18:59:04.708094Z" + "iopub.execute_input": "2024-08-12T10:37:17.882596Z", + "iopub.status.busy": "2024-08-12T10:37:17.882225Z", + "iopub.status.idle": "2024-08-12T10:37:17.886361Z", + "shell.execute_reply": "2024-08-12T10:37:17.885898Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:04.710624Z", - "iopub.status.busy": "2024-08-08T18:59:04.710332Z", - "iopub.status.idle": "2024-08-08T18:59:06.828165Z", - "shell.execute_reply": "2024-08-08T18:59:06.827497Z" + "iopub.execute_input": "2024-08-12T10:37:17.888349Z", + "iopub.status.busy": "2024-08-12T10:37:17.888007Z", + "iopub.status.idle": "2024-08-12T10:37:20.071756Z", + "shell.execute_reply": "2024-08-12T10:37:20.071124Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:06.830673Z", - "iopub.status.busy": "2024-08-08T18:59:06.830264Z", - "iopub.status.idle": "2024-08-08T18:59:06.839006Z", - "shell.execute_reply": "2024-08-08T18:59:06.838416Z" + "iopub.execute_input": "2024-08-12T10:37:20.074339Z", + "iopub.status.busy": "2024-08-12T10:37:20.073809Z", + "iopub.status.idle": "2024-08-12T10:37:20.082089Z", + "shell.execute_reply": "2024-08-12T10:37:20.081508Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:06.841102Z", - "iopub.status.busy": "2024-08-08T18:59:06.840785Z", - "iopub.status.idle": "2024-08-08T18:59:09.385747Z", - "shell.execute_reply": "2024-08-08T18:59:09.385192Z" + "iopub.execute_input": "2024-08-12T10:37:20.084278Z", + "iopub.status.busy": "2024-08-12T10:37:20.083850Z", + "iopub.status.idle": "2024-08-12T10:37:22.681899Z", + "shell.execute_reply": "2024-08-12T10:37:22.681336Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:09.387886Z", - "iopub.status.busy": "2024-08-08T18:59:09.387699Z", - "iopub.status.idle": "2024-08-08T18:59:09.391436Z", - "shell.execute_reply": "2024-08-08T18:59:09.390899Z" + "iopub.execute_input": "2024-08-12T10:37:22.684061Z", + "iopub.status.busy": "2024-08-12T10:37:22.683869Z", + "iopub.status.idle": "2024-08-12T10:37:22.687750Z", + "shell.execute_reply": "2024-08-12T10:37:22.687180Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:09.393413Z", - "iopub.status.busy": "2024-08-08T18:59:09.393236Z", - "iopub.status.idle": "2024-08-08T18:59:09.397257Z", - "shell.execute_reply": "2024-08-08T18:59:09.396821Z" + "iopub.execute_input": "2024-08-12T10:37:22.689932Z", + "iopub.status.busy": "2024-08-12T10:37:22.689525Z", + "iopub.status.idle": "2024-08-12T10:37:22.693276Z", + "shell.execute_reply": "2024-08-12T10:37:22.692719Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:09.399283Z", - "iopub.status.busy": "2024-08-08T18:59:09.399108Z", - "iopub.status.idle": "2024-08-08T18:59:09.402133Z", - "shell.execute_reply": "2024-08-08T18:59:09.401690Z" + "iopub.execute_input": "2024-08-12T10:37:22.695409Z", + "iopub.status.busy": "2024-08-12T10:37:22.694998Z", + "iopub.status.idle": "2024-08-12T10:37:22.698292Z", + "shell.execute_reply": "2024-08-12T10:37:22.697713Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 5bfedaafb..f65b26375 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:11.992419Z", - "iopub.status.busy": "2024-08-08T18:59:11.992245Z", - "iopub.status.idle": "2024-08-08T18:59:13.399692Z", - "shell.execute_reply": "2024-08-08T18:59:13.399131Z" + "iopub.execute_input": "2024-08-12T10:37:25.163455Z", + "iopub.status.busy": "2024-08-12T10:37:25.163026Z", + "iopub.status.idle": "2024-08-12T10:37:26.589902Z", + "shell.execute_reply": "2024-08-12T10:37:26.589214Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:13.402447Z", - "iopub.status.busy": "2024-08-08T18:59:13.401819Z", - "iopub.status.idle": "2024-08-08T18:59:15.381218Z", - "shell.execute_reply": "2024-08-08T18:59:15.380383Z" + "iopub.execute_input": "2024-08-12T10:37:26.592929Z", + "iopub.status.busy": "2024-08-12T10:37:26.592372Z", + "iopub.status.idle": "2024-08-12T10:37:29.427927Z", + "shell.execute_reply": "2024-08-12T10:37:29.427190Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:15.384065Z", - "iopub.status.busy": "2024-08-08T18:59:15.383811Z", - "iopub.status.idle": "2024-08-08T18:59:15.387408Z", - "shell.execute_reply": "2024-08-08T18:59:15.386830Z" + "iopub.execute_input": "2024-08-12T10:37:29.430776Z", + "iopub.status.busy": "2024-08-12T10:37:29.430357Z", + "iopub.status.idle": "2024-08-12T10:37:29.433637Z", + "shell.execute_reply": "2024-08-12T10:37:29.433182Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:15.389595Z", - "iopub.status.busy": "2024-08-08T18:59:15.389211Z", - "iopub.status.idle": "2024-08-08T18:59:15.397118Z", - "shell.execute_reply": "2024-08-08T18:59:15.396685Z" + "iopub.execute_input": "2024-08-12T10:37:29.435768Z", + "iopub.status.busy": "2024-08-12T10:37:29.435355Z", + "iopub.status.idle": "2024-08-12T10:37:29.442998Z", + "shell.execute_reply": "2024-08-12T10:37:29.442441Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:15.399315Z", - "iopub.status.busy": "2024-08-08T18:59:15.398921Z", - "iopub.status.idle": "2024-08-08T18:59:15.714546Z", - "shell.execute_reply": "2024-08-08T18:59:15.713924Z" + "iopub.execute_input": "2024-08-12T10:37:29.445161Z", + "iopub.status.busy": "2024-08-12T10:37:29.444815Z", + "iopub.status.idle": "2024-08-12T10:37:29.761652Z", + "shell.execute_reply": "2024-08-12T10:37:29.761027Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:15.717513Z", - "iopub.status.busy": "2024-08-08T18:59:15.717322Z", - "iopub.status.idle": "2024-08-08T18:59:15.722553Z", - "shell.execute_reply": "2024-08-08T18:59:15.722107Z" + "iopub.execute_input": "2024-08-12T10:37:29.764688Z", + "iopub.status.busy": "2024-08-12T10:37:29.764324Z", + "iopub.status.idle": "2024-08-12T10:37:29.769578Z", + "shell.execute_reply": "2024-08-12T10:37:29.769125Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:15.724466Z", - "iopub.status.busy": "2024-08-08T18:59:15.724289Z", - "iopub.status.idle": "2024-08-08T18:59:15.728681Z", - "shell.execute_reply": "2024-08-08T18:59:15.728118Z" + "iopub.execute_input": "2024-08-12T10:37:29.771585Z", + "iopub.status.busy": "2024-08-12T10:37:29.771282Z", + "iopub.status.idle": "2024-08-12T10:37:29.775247Z", + "shell.execute_reply": "2024-08-12T10:37:29.774794Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:15.730799Z", - "iopub.status.busy": "2024-08-08T18:59:15.730463Z", - "iopub.status.idle": "2024-08-08T18:59:16.764446Z", - "shell.execute_reply": "2024-08-08T18:59:16.763939Z" + "iopub.execute_input": "2024-08-12T10:37:29.777435Z", + "iopub.status.busy": "2024-08-12T10:37:29.777036Z", + "iopub.status.idle": "2024-08-12T10:37:30.784967Z", + "shell.execute_reply": "2024-08-12T10:37:30.784372Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:16.766746Z", - "iopub.status.busy": "2024-08-08T18:59:16.766361Z", - "iopub.status.idle": "2024-08-08T18:59:16.977697Z", - "shell.execute_reply": "2024-08-08T18:59:16.977110Z" + "iopub.execute_input": "2024-08-12T10:37:30.787260Z", + "iopub.status.busy": "2024-08-12T10:37:30.787051Z", + "iopub.status.idle": "2024-08-12T10:37:30.987997Z", + "shell.execute_reply": "2024-08-12T10:37:30.987390Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:16.979974Z", - "iopub.status.busy": "2024-08-08T18:59:16.979613Z", - "iopub.status.idle": "2024-08-08T18:59:16.983918Z", - "shell.execute_reply": "2024-08-08T18:59:16.983382Z" + "iopub.execute_input": "2024-08-12T10:37:30.990363Z", + "iopub.status.busy": "2024-08-12T10:37:30.989918Z", + "iopub.status.idle": "2024-08-12T10:37:30.994564Z", + "shell.execute_reply": "2024-08-12T10:37:30.993981Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:16.986020Z", - "iopub.status.busy": "2024-08-08T18:59:16.985706Z", - "iopub.status.idle": "2024-08-08T18:59:17.373647Z", - "shell.execute_reply": "2024-08-08T18:59:17.373015Z" + "iopub.execute_input": "2024-08-12T10:37:30.996807Z", + "iopub.status.busy": "2024-08-12T10:37:30.996466Z", + "iopub.status.idle": "2024-08-12T10:37:31.364226Z", + "shell.execute_reply": "2024-08-12T10:37:31.363566Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:17.377012Z", - "iopub.status.busy": "2024-08-08T18:59:17.376595Z", - "iopub.status.idle": "2024-08-08T18:59:17.708054Z", - "shell.execute_reply": "2024-08-08T18:59:17.707412Z" + "iopub.execute_input": "2024-08-12T10:37:31.367681Z", + "iopub.status.busy": "2024-08-12T10:37:31.367170Z", + "iopub.status.idle": "2024-08-12T10:37:31.706920Z", + "shell.execute_reply": "2024-08-12T10:37:31.706339Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:17.710521Z", - "iopub.status.busy": "2024-08-08T18:59:17.710104Z", - "iopub.status.idle": "2024-08-08T18:59:18.073314Z", - "shell.execute_reply": "2024-08-08T18:59:18.072691Z" + "iopub.execute_input": "2024-08-12T10:37:31.709609Z", + "iopub.status.busy": "2024-08-12T10:37:31.709409Z", + "iopub.status.idle": "2024-08-12T10:37:32.078993Z", + "shell.execute_reply": "2024-08-12T10:37:32.078441Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:18.076209Z", - "iopub.status.busy": "2024-08-08T18:59:18.075839Z", - "iopub.status.idle": "2024-08-08T18:59:18.516456Z", - "shell.execute_reply": "2024-08-08T18:59:18.515840Z" + "iopub.execute_input": "2024-08-12T10:37:32.081360Z", + "iopub.status.busy": "2024-08-12T10:37:32.081154Z", + "iopub.status.idle": "2024-08-12T10:37:32.527879Z", + "shell.execute_reply": "2024-08-12T10:37:32.527315Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:18.521014Z", - "iopub.status.busy": "2024-08-08T18:59:18.520667Z", - "iopub.status.idle": "2024-08-08T18:59:18.968706Z", - "shell.execute_reply": "2024-08-08T18:59:18.968018Z" + "iopub.execute_input": "2024-08-12T10:37:32.532540Z", + "iopub.status.busy": "2024-08-12T10:37:32.532142Z", + "iopub.status.idle": "2024-08-12T10:37:32.985799Z", + "shell.execute_reply": "2024-08-12T10:37:32.985162Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:18.971840Z", - "iopub.status.busy": "2024-08-08T18:59:18.971485Z", - "iopub.status.idle": "2024-08-08T18:59:19.185389Z", - "shell.execute_reply": "2024-08-08T18:59:19.184773Z" + "iopub.execute_input": "2024-08-12T10:37:32.989074Z", + "iopub.status.busy": "2024-08-12T10:37:32.988698Z", + "iopub.status.idle": "2024-08-12T10:37:33.208103Z", + "shell.execute_reply": "2024-08-12T10:37:33.207522Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:19.187666Z", - "iopub.status.busy": "2024-08-08T18:59:19.187313Z", - "iopub.status.idle": "2024-08-08T18:59:19.386915Z", - "shell.execute_reply": "2024-08-08T18:59:19.386349Z" + "iopub.execute_input": "2024-08-12T10:37:33.210458Z", + "iopub.status.busy": "2024-08-12T10:37:33.210088Z", + "iopub.status.idle": "2024-08-12T10:37:33.410728Z", + "shell.execute_reply": "2024-08-12T10:37:33.410096Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:19.389443Z", - "iopub.status.busy": "2024-08-08T18:59:19.389083Z", - "iopub.status.idle": "2024-08-08T18:59:19.392074Z", - "shell.execute_reply": "2024-08-08T18:59:19.391614Z" + "iopub.execute_input": "2024-08-12T10:37:33.413025Z", + "iopub.status.busy": "2024-08-12T10:37:33.412734Z", + "iopub.status.idle": "2024-08-12T10:37:33.415627Z", + "shell.execute_reply": "2024-08-12T10:37:33.415176Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:19.394077Z", - "iopub.status.busy": "2024-08-08T18:59:19.393739Z", - "iopub.status.idle": "2024-08-08T18:59:20.286334Z", - "shell.execute_reply": "2024-08-08T18:59:20.285804Z" + "iopub.execute_input": "2024-08-12T10:37:33.417482Z", + "iopub.status.busy": "2024-08-12T10:37:33.417296Z", + "iopub.status.idle": "2024-08-12T10:37:34.448180Z", + "shell.execute_reply": "2024-08-12T10:37:34.447519Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:20.289070Z", - "iopub.status.busy": "2024-08-08T18:59:20.288888Z", - "iopub.status.idle": "2024-08-08T18:59:20.420973Z", - "shell.execute_reply": "2024-08-08T18:59:20.420518Z" + "iopub.execute_input": "2024-08-12T10:37:34.451508Z", + "iopub.status.busy": "2024-08-12T10:37:34.450862Z", + "iopub.status.idle": "2024-08-12T10:37:34.573013Z", + "shell.execute_reply": "2024-08-12T10:37:34.572407Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:20.423197Z", - "iopub.status.busy": "2024-08-08T18:59:20.422855Z", - "iopub.status.idle": "2024-08-08T18:59:20.552420Z", - "shell.execute_reply": "2024-08-08T18:59:20.551991Z" + "iopub.execute_input": "2024-08-12T10:37:34.575711Z", + "iopub.status.busy": "2024-08-12T10:37:34.575257Z", + "iopub.status.idle": "2024-08-12T10:37:34.734036Z", + "shell.execute_reply": "2024-08-12T10:37:34.733425Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:20.554349Z", - "iopub.status.busy": "2024-08-08T18:59:20.554172Z", - "iopub.status.idle": "2024-08-08T18:59:21.294296Z", - "shell.execute_reply": "2024-08-08T18:59:21.293685Z" + "iopub.execute_input": "2024-08-12T10:37:34.736711Z", + "iopub.status.busy": "2024-08-12T10:37:34.736306Z", + "iopub.status.idle": "2024-08-12T10:37:35.504840Z", + "shell.execute_reply": "2024-08-12T10:37:35.504202Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:21.296708Z", - "iopub.status.busy": "2024-08-08T18:59:21.296358Z", - "iopub.status.idle": "2024-08-08T18:59:21.300182Z", - "shell.execute_reply": "2024-08-08T18:59:21.299624Z" + "iopub.execute_input": "2024-08-12T10:37:35.507164Z", + "iopub.status.busy": "2024-08-12T10:37:35.506804Z", + "iopub.status.idle": "2024-08-12T10:37:35.510605Z", + "shell.execute_reply": "2024-08-12T10:37:35.510109Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index bfae6bbd1..a766c6800 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:23.456712Z", - "iopub.status.busy": "2024-08-08T18:59:23.456530Z", - "iopub.status.idle": "2024-08-08T18:59:26.572909Z", - "shell.execute_reply": "2024-08-08T18:59:26.572274Z" + "iopub.execute_input": "2024-08-12T10:37:38.065729Z", + "iopub.status.busy": "2024-08-12T10:37:38.065301Z", + "iopub.status.idle": "2024-08-12T10:37:41.286106Z", + "shell.execute_reply": "2024-08-12T10:37:41.285531Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:26.575422Z", - "iopub.status.busy": "2024-08-08T18:59:26.575146Z", - "iopub.status.idle": "2024-08-08T18:59:26.594116Z", - "shell.execute_reply": "2024-08-08T18:59:26.593681Z" + "iopub.execute_input": "2024-08-12T10:37:41.288948Z", + "iopub.status.busy": "2024-08-12T10:37:41.288365Z", + "iopub.status.idle": "2024-08-12T10:37:41.308889Z", + "shell.execute_reply": "2024-08-12T10:37:41.308264Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:26.596226Z", - "iopub.status.busy": "2024-08-08T18:59:26.595879Z", - "iopub.status.idle": "2024-08-08T18:59:26.600088Z", - "shell.execute_reply": "2024-08-08T18:59:26.599545Z" + "iopub.execute_input": "2024-08-12T10:37:41.311645Z", + "iopub.status.busy": "2024-08-12T10:37:41.311095Z", + "iopub.status.idle": "2024-08-12T10:37:41.315091Z", + "shell.execute_reply": "2024-08-12T10:37:41.314659Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:26.602053Z", - "iopub.status.busy": "2024-08-08T18:59:26.601873Z", - "iopub.status.idle": "2024-08-08T18:59:31.196461Z", - "shell.execute_reply": "2024-08-08T18:59:31.195851Z" + "iopub.execute_input": "2024-08-12T10:37:41.317247Z", + "iopub.status.busy": "2024-08-12T10:37:41.316846Z", + "iopub.status.idle": "2024-08-12T10:37:48.393813Z", + "shell.execute_reply": "2024-08-12T10:37:48.393216Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1409024/170498071 [00:00<00:12, 14024982.08it/s]" + " 0%| | 32768/170498071 [00:00<10:21, 274108.21it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 6782976/170498071 [00:00<00:04, 37290459.14it/s]" + " 0%| | 196608/170498071 [00:00<03:07, 908944.76it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 12746752/170498071 [00:00<00:03, 47351547.04it/s]" + " 0%| | 753664/170498071 [00:00<01:05, 2576934.58it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 21168128/170498071 [00:00<00:02, 61844921.35it/s]" + " 2%|▏ | 3014656/170498071 [00:00<00:17, 9427987.53it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32243712/170498071 [00:00<00:01, 79445440.14it/s]" + " 5%|▍ | 8323072/170498071 [00:00<00:06, 23803182.24it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 43352064/170498071 [00:00<00:01, 90073271.96it/s]" + " 7%|▋ | 12124160/170498071 [00:00<00:05, 28239859.63it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 54591488/170498071 [00:00<00:01, 97356618.41it/s]" + " 11%|█ | 17989632/170498071 [00:00<00:04, 37732622.19it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 65798144/170498071 [00:00<00:01, 101972482.30it/s]" + " 13%|█▎ | 21987328/170498071 [00:00<00:03, 37894761.72it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 76906496/170498071 [00:00<00:00, 104706490.07it/s]" + " 16%|█▋ | 27721728/170498071 [00:00<00:03, 43568105.00it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 88145920/170498071 [00:01<00:00, 107058665.55it/s]" + " 19%|█▉ | 32440320/170498071 [00:01<00:03, 44642004.11it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 99155968/170498071 [00:01<00:00, 107924967.31it/s]" + " 22%|██▏ | 37289984/170498071 [00:01<00:02, 45780248.62it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 110493696/170498071 [00:01<00:00, 109534362.56it/s]" + " 25%|██▍ | 42565632/170498071 [00:01<00:02, 47872643.79it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 121470976/170498071 [00:01<00:00, 109582824.38it/s]" + " 28%|██▊ | 47415296/170498071 [00:01<00:02, 45988822.57it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 132710400/170498071 [00:01<00:00, 110380471.94it/s]" + " 31%|███▏ | 53313536/170498071 [00:01<00:02, 49526120.54it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 143884288/170498071 [00:01<00:00, 110732162.11it/s]" + " 34%|███▍ | 58327040/170498071 [00:01<00:02, 49116657.11it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 154959872/170498071 [00:01<00:00, 110629075.55it/s]" + " 37%|███▋ | 63275008/170498071 [00:01<00:02, 46949788.50it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 166068224/170498071 [00:01<00:00, 110724264.09it/s]" + " 40%|████ | 69009408/170498071 [00:01<00:02, 49782525.23it/s]" ] }, { @@ -388,7 +388,159 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 97777040.52it/s] " + " 43%|████▎ | 74055680/170498071 [00:01<00:01, 49319325.77it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 46%|████▋ | 79036416/170498071 [00:02<00:01, 47966329.96it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 50%|████▉ | 84770816/170498071 [00:02<00:01, 49856821.30it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 53%|█████▎ | 89784320/170498071 [00:02<00:01, 49255046.52it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▌ | 94732288/170498071 [00:02<00:01, 49133238.59it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 59%|█████▊ | 99876864/170498071 [00:02<00:01, 49552459.46it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▏ | 104857600/170498071 [00:02<00:01, 47815966.10it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 65%|██████▍ | 110460928/170498071 [00:02<00:01, 50063421.22it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 68%|██████▊ | 115507200/170498071 [00:02<00:01, 49809431.51it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 71%|███████ | 120520704/170498071 [00:02<00:01, 47904030.30it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 74%|███████▍ | 126255104/170498071 [00:02<00:00, 50586524.68it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 77%|███████▋ | 131366912/170498071 [00:03<00:00, 49554490.83it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 80%|███████▉ | 136347648/170498071 [00:03<00:00, 47123730.03it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 83%|████████▎ | 142049280/170498071 [00:03<00:00, 49371013.50it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▌ | 147030016/170498071 [00:03<00:00, 49389515.73it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 89%|████████▉ | 152010752/170498071 [00:03<00:00, 48630973.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▏| 157483008/170498071 [00:03<00:00, 50364282.82it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▌| 162562048/170498071 [00:03<00:00, 48565960.51it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 167870464/170498071 [00:03<00:00, 48926388.73it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:03<00:00, 43962237.05it/s]" ] }, { @@ -506,10 +658,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:31.198578Z", - "iopub.status.busy": "2024-08-08T18:59:31.198391Z", - "iopub.status.idle": "2024-08-08T18:59:31.203279Z", - "shell.execute_reply": "2024-08-08T18:59:31.202715Z" + "iopub.execute_input": "2024-08-12T10:37:48.396125Z", + "iopub.status.busy": "2024-08-12T10:37:48.395766Z", + "iopub.status.idle": "2024-08-12T10:37:48.400477Z", + "shell.execute_reply": "2024-08-12T10:37:48.400028Z" }, "nbsphinx": "hidden" }, @@ -560,10 +712,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:31.205353Z", - "iopub.status.busy": "2024-08-08T18:59:31.205009Z", - "iopub.status.idle": "2024-08-08T18:59:31.745572Z", - "shell.execute_reply": "2024-08-08T18:59:31.745103Z" + "iopub.execute_input": "2024-08-12T10:37:48.402698Z", + "iopub.status.busy": "2024-08-12T10:37:48.402218Z", + "iopub.status.idle": "2024-08-12T10:37:48.949380Z", + "shell.execute_reply": "2024-08-12T10:37:48.948822Z" } }, "outputs": [ @@ -596,10 +748,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:31.747869Z", - "iopub.status.busy": "2024-08-08T18:59:31.747528Z", - "iopub.status.idle": "2024-08-08T18:59:32.254622Z", - "shell.execute_reply": "2024-08-08T18:59:32.254008Z" + "iopub.execute_input": "2024-08-12T10:37:48.951673Z", + "iopub.status.busy": "2024-08-12T10:37:48.951322Z", + "iopub.status.idle": "2024-08-12T10:37:49.445300Z", + "shell.execute_reply": "2024-08-12T10:37:49.444702Z" } }, "outputs": [ @@ -637,10 +789,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:32.256751Z", - "iopub.status.busy": "2024-08-08T18:59:32.256460Z", - "iopub.status.idle": "2024-08-08T18:59:32.259912Z", - "shell.execute_reply": "2024-08-08T18:59:32.259424Z" + "iopub.execute_input": "2024-08-12T10:37:49.447437Z", + "iopub.status.busy": "2024-08-12T10:37:49.447249Z", + "iopub.status.idle": "2024-08-12T10:37:49.450529Z", + "shell.execute_reply": "2024-08-12T10:37:49.450053Z" } }, "outputs": [], @@ -663,17 +815,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:32.261793Z", - "iopub.status.busy": "2024-08-08T18:59:32.261618Z", - "iopub.status.idle": "2024-08-08T18:59:45.175951Z", - "shell.execute_reply": "2024-08-08T18:59:45.175357Z" + "iopub.execute_input": "2024-08-12T10:37:49.452441Z", + "iopub.status.busy": "2024-08-12T10:37:49.452265Z", + "iopub.status.idle": "2024-08-12T10:38:01.958435Z", + "shell.execute_reply": "2024-08-12T10:38:01.957792Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d9555041ab7445db869f6cd68df0ded9", + "model_id": "2509f48fd1ed4a62ad24fb1513c2d81a", "version_major": 2, "version_minor": 0 }, @@ -732,10 +884,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:45.178404Z", - "iopub.status.busy": "2024-08-08T18:59:45.178072Z", - "iopub.status.idle": "2024-08-08T18:59:47.337127Z", - "shell.execute_reply": "2024-08-08T18:59:47.336539Z" + "iopub.execute_input": "2024-08-12T10:38:01.960907Z", + "iopub.status.busy": "2024-08-12T10:38:01.960497Z", + "iopub.status.idle": "2024-08-12T10:38:04.092827Z", + "shell.execute_reply": "2024-08-12T10:38:04.092254Z" } }, "outputs": [ @@ -779,10 +931,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:47.339916Z", - "iopub.status.busy": "2024-08-08T18:59:47.339536Z", - "iopub.status.idle": "2024-08-08T18:59:47.587795Z", - "shell.execute_reply": "2024-08-08T18:59:47.587244Z" + "iopub.execute_input": "2024-08-12T10:38:04.095661Z", + "iopub.status.busy": "2024-08-12T10:38:04.095199Z", + "iopub.status.idle": "2024-08-12T10:38:04.357246Z", + "shell.execute_reply": "2024-08-12T10:38:04.356649Z" } }, "outputs": [ @@ -818,10 +970,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:47.590668Z", - "iopub.status.busy": "2024-08-08T18:59:47.590227Z", - "iopub.status.idle": "2024-08-08T18:59:48.261708Z", - "shell.execute_reply": "2024-08-08T18:59:48.261130Z" + "iopub.execute_input": "2024-08-12T10:38:04.360205Z", + "iopub.status.busy": "2024-08-12T10:38:04.359731Z", + "iopub.status.idle": "2024-08-12T10:38:05.053430Z", + "shell.execute_reply": "2024-08-12T10:38:05.052864Z" } }, "outputs": [ @@ -871,10 +1023,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:48.264752Z", - "iopub.status.busy": "2024-08-08T18:59:48.264286Z", - "iopub.status.idle": "2024-08-08T18:59:48.600984Z", - "shell.execute_reply": "2024-08-08T18:59:48.600369Z" + "iopub.execute_input": "2024-08-12T10:38:05.056495Z", + "iopub.status.busy": "2024-08-12T10:38:05.056048Z", + "iopub.status.idle": "2024-08-12T10:38:05.397275Z", + "shell.execute_reply": "2024-08-12T10:38:05.396713Z" } }, "outputs": [ @@ -922,10 +1074,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:48.603230Z", - "iopub.status.busy": "2024-08-08T18:59:48.603036Z", - "iopub.status.idle": "2024-08-08T18:59:48.831730Z", - "shell.execute_reply": "2024-08-08T18:59:48.831133Z" + "iopub.execute_input": "2024-08-12T10:38:05.399451Z", + "iopub.status.busy": "2024-08-12T10:38:05.399262Z", + "iopub.status.idle": "2024-08-12T10:38:05.651456Z", + "shell.execute_reply": "2024-08-12T10:38:05.650825Z" } }, "outputs": [ @@ -981,10 +1133,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:48.834166Z", - "iopub.status.busy": "2024-08-08T18:59:48.833985Z", - "iopub.status.idle": "2024-08-08T18:59:48.911817Z", - "shell.execute_reply": "2024-08-08T18:59:48.911195Z" + "iopub.execute_input": "2024-08-12T10:38:05.654454Z", + "iopub.status.busy": "2024-08-12T10:38:05.653989Z", + "iopub.status.idle": "2024-08-12T10:38:05.743235Z", + "shell.execute_reply": "2024-08-12T10:38:05.742733Z" } }, "outputs": [], @@ -1005,10 +1157,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:48.914580Z", - "iopub.status.busy": "2024-08-08T18:59:48.914399Z", - "iopub.status.idle": "2024-08-08T18:59:59.117219Z", - "shell.execute_reply": "2024-08-08T18:59:59.116605Z" + "iopub.execute_input": "2024-08-12T10:38:05.745752Z", + "iopub.status.busy": "2024-08-12T10:38:05.745420Z", + "iopub.status.idle": "2024-08-12T10:38:16.159454Z", + "shell.execute_reply": "2024-08-12T10:38:16.158759Z" } }, "outputs": [ @@ -1045,10 +1197,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:59.119822Z", - "iopub.status.busy": "2024-08-08T18:59:59.119356Z", - "iopub.status.idle": "2024-08-08T19:00:01.314366Z", - "shell.execute_reply": "2024-08-08T19:00:01.313804Z" + "iopub.execute_input": "2024-08-12T10:38:16.162032Z", + "iopub.status.busy": "2024-08-12T10:38:16.161608Z", + "iopub.status.idle": "2024-08-12T10:38:18.469804Z", + "shell.execute_reply": "2024-08-12T10:38:18.469284Z" } }, "outputs": [ @@ -1079,10 +1231,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:01.317133Z", - "iopub.status.busy": "2024-08-08T19:00:01.316601Z", - "iopub.status.idle": "2024-08-08T19:00:01.517421Z", - "shell.execute_reply": "2024-08-08T19:00:01.516886Z" + "iopub.execute_input": "2024-08-12T10:38:18.472461Z", + "iopub.status.busy": "2024-08-12T10:38:18.471934Z", + "iopub.status.idle": "2024-08-12T10:38:18.693678Z", + "shell.execute_reply": "2024-08-12T10:38:18.693177Z" } }, "outputs": [], @@ -1096,10 +1248,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:01.519923Z", - "iopub.status.busy": "2024-08-08T19:00:01.519582Z", - "iopub.status.idle": "2024-08-08T19:00:01.522617Z", - "shell.execute_reply": "2024-08-08T19:00:01.522161Z" + "iopub.execute_input": "2024-08-12T10:38:18.696055Z", + "iopub.status.busy": "2024-08-12T10:38:18.695868Z", + "iopub.status.idle": "2024-08-12T10:38:18.699138Z", + "shell.execute_reply": "2024-08-12T10:38:18.698703Z" } }, "outputs": [], @@ -1137,10 +1289,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:01.524692Z", - "iopub.status.busy": "2024-08-08T19:00:01.524369Z", - "iopub.status.idle": "2024-08-08T19:00:01.532809Z", - "shell.execute_reply": "2024-08-08T19:00:01.532374Z" + "iopub.execute_input": "2024-08-12T10:38:18.701265Z", + "iopub.status.busy": "2024-08-12T10:38:18.700945Z", + "iopub.status.idle": "2024-08-12T10:38:18.709241Z", + "shell.execute_reply": "2024-08-12T10:38:18.708774Z" }, "nbsphinx": "hidden" }, @@ -1185,7 +1337,54 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "068a57d185be4a04939eb0a6c7ff882c": { + "139e4e91a1484e8ba04022044c812479": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a2686af12e78443eaa75828809f5a37c", + "placeholder": "​", + "style": "IPY_MODEL_2e9fa535960e4d16aa34f1aa46aaa432", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 255MB/s]" + } + }, + "2509f48fd1ed4a62ad24fb1513c2d81a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ab049ed404064be38422d534105ce1fe", + "IPY_MODEL_cbca1c46e73540d29af597198e334466", + "IPY_MODEL_139e4e91a1484e8ba04022044c812479" + ], + "layout": "IPY_MODEL_5fc5d569f4d24463a83b8ec47acfe23e", + "tabbable": null, + "tooltip": null + } + }, + "2e9fa535960e4d16aa34f1aa46aaa432": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1203,7 +1402,7 @@ "text_color": null } }, - "0d64931283cd421db4481a77c8f0ab03": { + "5fc5d569f4d24463a83b8ec47acfe23e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1256,60 +1455,23 @@ "width": null } }, - "2e2a3f2192de4cf386c36c0028f38be3": { - "model_module": "@jupyter-widgets/base", + "8644689e0baa47239b9d96c02db45587": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "40600b3c7de94a1bbede0b5a2d793524": { + "9a42a0f001b844ad9bd9f6a36419e975": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1362,7 +1524,7 @@ "width": null } }, - "6e90cfc25336468685f00a7558167c14": { + "a2686af12e78443eaa75828809f5a37c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1415,23 +1577,7 @@ "width": null } }, - "710ee04a9d8e44d0824877353ce67585": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7d311b49ce474918bf559dc5a99e9ecf": { + "ab049ed404064be38422d534105ce1fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1446,38 +1592,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0d64931283cd421db4481a77c8f0ab03", + "layout": "IPY_MODEL_ea6e3fff8a484b4d9d66bc5738b031f3", "placeholder": "​", - "style": "IPY_MODEL_e8ad647ec4944fb6b91ec2090bccff7c", + "style": "IPY_MODEL_b79b90517fd54c8c82916c9f4f30a4b6", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "c1a2b8b452924a1ba8b220572a06ba49": { + "b79b90517fd54c8c82916c9f4f30a4b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6e90cfc25336468685f00a7558167c14", - "placeholder": "​", - "style": "IPY_MODEL_068a57d185be4a04939eb0a6c7ff882c", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 273MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c528c8d7caee4d7aa23a6681b502ae4a": { + "cbca1c46e73540d29af597198e334466": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1493,56 +1634,67 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2e2a3f2192de4cf386c36c0028f38be3", + "layout": "IPY_MODEL_9a42a0f001b844ad9bd9f6a36419e975", "max": 102469840.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_710ee04a9d8e44d0824877353ce67585", + "style": "IPY_MODEL_8644689e0baa47239b9d96c02db45587", "tabbable": null, "tooltip": null, "value": 102469840.0 } }, - "d9555041ab7445db869f6cd68df0ded9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7d311b49ce474918bf559dc5a99e9ecf", - "IPY_MODEL_c528c8d7caee4d7aa23a6681b502ae4a", - "IPY_MODEL_c1a2b8b452924a1ba8b220572a06ba49" - ], - "layout": "IPY_MODEL_40600b3c7de94a1bbede0b5a2d793524", - "tabbable": null, - "tooltip": null - } - }, - "e8ad647ec4944fb6b91ec2090bccff7c": { - "model_module": "@jupyter-widgets/controls", + "ea6e3fff8a484b4d9d66bc5738b031f3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 71530130d..6c6180b19 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:05.763507Z", - "iopub.status.busy": "2024-08-08T19:00:05.763142Z", - "iopub.status.idle": "2024-08-08T19:00:07.148034Z", - "shell.execute_reply": "2024-08-08T19:00:07.147474Z" + "iopub.execute_input": "2024-08-12T10:38:23.106311Z", + "iopub.status.busy": "2024-08-12T10:38:23.106127Z", + "iopub.status.idle": "2024-08-12T10:38:24.561027Z", + "shell.execute_reply": "2024-08-12T10:38:24.560457Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.150520Z", - "iopub.status.busy": "2024-08-08T19:00:07.150226Z", - "iopub.status.idle": "2024-08-08T19:00:07.168396Z", - "shell.execute_reply": "2024-08-08T19:00:07.167834Z" + "iopub.execute_input": "2024-08-12T10:38:24.563924Z", + "iopub.status.busy": "2024-08-12T10:38:24.563331Z", + "iopub.status.idle": "2024-08-12T10:38:24.582833Z", + "shell.execute_reply": "2024-08-12T10:38:24.582349Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.170755Z", - "iopub.status.busy": "2024-08-08T19:00:07.170331Z", - "iopub.status.idle": "2024-08-08T19:00:07.173433Z", - "shell.execute_reply": "2024-08-08T19:00:07.172889Z" + "iopub.execute_input": "2024-08-12T10:38:24.585400Z", + "iopub.status.busy": "2024-08-12T10:38:24.584732Z", + "iopub.status.idle": "2024-08-12T10:38:24.588095Z", + "shell.execute_reply": "2024-08-12T10:38:24.587528Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.175475Z", - "iopub.status.busy": "2024-08-08T19:00:07.175150Z", - "iopub.status.idle": "2024-08-08T19:00:07.293623Z", - "shell.execute_reply": "2024-08-08T19:00:07.293039Z" + "iopub.execute_input": "2024-08-12T10:38:24.590164Z", + "iopub.status.busy": "2024-08-12T10:38:24.589785Z", + "iopub.status.idle": "2024-08-12T10:38:24.804068Z", + "shell.execute_reply": "2024-08-12T10:38:24.803465Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.296065Z", - "iopub.status.busy": "2024-08-08T19:00:07.295636Z", - "iopub.status.idle": "2024-08-08T19:00:07.299885Z", - "shell.execute_reply": "2024-08-08T19:00:07.299377Z" + "iopub.execute_input": "2024-08-12T10:38:24.806521Z", + "iopub.status.busy": "2024-08-12T10:38:24.806108Z", + "iopub.status.idle": "2024-08-12T10:38:24.810570Z", + "shell.execute_reply": "2024-08-12T10:38:24.809985Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.302109Z", - "iopub.status.busy": "2024-08-08T19:00:07.301643Z", - "iopub.status.idle": "2024-08-08T19:00:07.545375Z", - "shell.execute_reply": "2024-08-08T19:00:07.544768Z" + "iopub.execute_input": "2024-08-12T10:38:24.812753Z", + "iopub.status.busy": "2024-08-12T10:38:24.812418Z", + "iopub.status.idle": "2024-08-12T10:38:25.059755Z", + "shell.execute_reply": "2024-08-12T10:38:25.059259Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.547587Z", - "iopub.status.busy": "2024-08-08T19:00:07.547269Z", - "iopub.status.idle": "2024-08-08T19:00:07.551673Z", - "shell.execute_reply": "2024-08-08T19:00:07.551108Z" + "iopub.execute_input": "2024-08-12T10:38:25.061903Z", + "iopub.status.busy": "2024-08-12T10:38:25.061709Z", + "iopub.status.idle": "2024-08-12T10:38:25.066278Z", + "shell.execute_reply": "2024-08-12T10:38:25.065794Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.553712Z", - "iopub.status.busy": "2024-08-08T19:00:07.553386Z", - "iopub.status.idle": "2024-08-08T19:00:07.559294Z", - "shell.execute_reply": "2024-08-08T19:00:07.558846Z" + "iopub.execute_input": "2024-08-12T10:38:25.068321Z", + "iopub.status.busy": "2024-08-12T10:38:25.067922Z", + "iopub.status.idle": "2024-08-12T10:38:25.074136Z", + "shell.execute_reply": "2024-08-12T10:38:25.073586Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.561503Z", - "iopub.status.busy": "2024-08-08T19:00:07.561074Z", - "iopub.status.idle": "2024-08-08T19:00:07.563833Z", - "shell.execute_reply": "2024-08-08T19:00:07.563277Z" + "iopub.execute_input": "2024-08-12T10:38:25.076256Z", + "iopub.status.busy": "2024-08-12T10:38:25.075869Z", + "iopub.status.idle": "2024-08-12T10:38:25.078496Z", + "shell.execute_reply": "2024-08-12T10:38:25.078020Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.565743Z", - "iopub.status.busy": "2024-08-08T19:00:07.565451Z", - "iopub.status.idle": "2024-08-08T19:00:16.540372Z", - "shell.execute_reply": "2024-08-08T19:00:16.539728Z" + "iopub.execute_input": "2024-08-12T10:38:25.080454Z", + "iopub.status.busy": "2024-08-12T10:38:25.080143Z", + "iopub.status.idle": "2024-08-12T10:38:34.275824Z", + "shell.execute_reply": "2024-08-12T10:38:34.275257Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.543317Z", - "iopub.status.busy": "2024-08-08T19:00:16.542777Z", - "iopub.status.idle": "2024-08-08T19:00:16.549714Z", - "shell.execute_reply": "2024-08-08T19:00:16.549170Z" + "iopub.execute_input": "2024-08-12T10:38:34.278905Z", + "iopub.status.busy": "2024-08-12T10:38:34.278220Z", + "iopub.status.idle": "2024-08-12T10:38:34.285441Z", + "shell.execute_reply": "2024-08-12T10:38:34.284934Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.551852Z", - "iopub.status.busy": "2024-08-08T19:00:16.551509Z", - "iopub.status.idle": "2024-08-08T19:00:16.554892Z", - "shell.execute_reply": "2024-08-08T19:00:16.554417Z" + "iopub.execute_input": "2024-08-12T10:38:34.287596Z", + "iopub.status.busy": "2024-08-12T10:38:34.287249Z", + "iopub.status.idle": "2024-08-12T10:38:34.290844Z", + "shell.execute_reply": "2024-08-12T10:38:34.290392Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.556952Z", - "iopub.status.busy": "2024-08-08T19:00:16.556618Z", - "iopub.status.idle": "2024-08-08T19:00:16.559658Z", - "shell.execute_reply": "2024-08-08T19:00:16.559098Z" + "iopub.execute_input": "2024-08-12T10:38:34.292807Z", + "iopub.status.busy": "2024-08-12T10:38:34.292472Z", + "iopub.status.idle": "2024-08-12T10:38:34.295505Z", + "shell.execute_reply": "2024-08-12T10:38:34.294963Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.561745Z", - "iopub.status.busy": "2024-08-08T19:00:16.561410Z", - "iopub.status.idle": "2024-08-08T19:00:16.564242Z", - "shell.execute_reply": "2024-08-08T19:00:16.563758Z" + "iopub.execute_input": "2024-08-12T10:38:34.297619Z", + "iopub.status.busy": "2024-08-12T10:38:34.297287Z", + "iopub.status.idle": "2024-08-12T10:38:34.300228Z", + "shell.execute_reply": "2024-08-12T10:38:34.299788Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.566176Z", - "iopub.status.busy": "2024-08-08T19:00:16.565861Z", - "iopub.status.idle": "2024-08-08T19:00:16.573658Z", - "shell.execute_reply": "2024-08-08T19:00:16.573109Z" + "iopub.execute_input": "2024-08-12T10:38:34.302181Z", + "iopub.status.busy": "2024-08-12T10:38:34.301846Z", + "iopub.status.idle": "2024-08-12T10:38:34.309866Z", + "shell.execute_reply": "2024-08-12T10:38:34.309401Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.575766Z", - "iopub.status.busy": "2024-08-08T19:00:16.575430Z", - "iopub.status.idle": "2024-08-08T19:00:16.577924Z", - "shell.execute_reply": "2024-08-08T19:00:16.577492Z" + "iopub.execute_input": "2024-08-12T10:38:34.311916Z", + "iopub.status.busy": "2024-08-12T10:38:34.311580Z", + "iopub.status.idle": "2024-08-12T10:38:34.314224Z", + "shell.execute_reply": "2024-08-12T10:38:34.313758Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.580066Z", - "iopub.status.busy": "2024-08-08T19:00:16.579746Z", - "iopub.status.idle": "2024-08-08T19:00:16.707283Z", - "shell.execute_reply": "2024-08-08T19:00:16.706784Z" + "iopub.execute_input": "2024-08-12T10:38:34.316300Z", + "iopub.status.busy": "2024-08-12T10:38:34.315973Z", + "iopub.status.idle": "2024-08-12T10:38:34.447434Z", + "shell.execute_reply": "2024-08-12T10:38:34.446909Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.709441Z", - "iopub.status.busy": "2024-08-08T19:00:16.709076Z", - "iopub.status.idle": "2024-08-08T19:00:16.816886Z", - "shell.execute_reply": "2024-08-08T19:00:16.816392Z" + "iopub.execute_input": "2024-08-12T10:38:34.450013Z", + "iopub.status.busy": "2024-08-12T10:38:34.449571Z", + "iopub.status.idle": "2024-08-12T10:38:34.560887Z", + "shell.execute_reply": "2024-08-12T10:38:34.560277Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.819109Z", - "iopub.status.busy": "2024-08-08T19:00:16.818784Z", - "iopub.status.idle": "2024-08-08T19:00:17.330358Z", - "shell.execute_reply": "2024-08-08T19:00:17.329721Z" + "iopub.execute_input": "2024-08-12T10:38:34.563495Z", + "iopub.status.busy": "2024-08-12T10:38:34.563083Z", + "iopub.status.idle": "2024-08-12T10:38:35.086810Z", + "shell.execute_reply": "2024-08-12T10:38:35.086226Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:17.332856Z", - "iopub.status.busy": "2024-08-08T19:00:17.332665Z", - "iopub.status.idle": "2024-08-08T19:00:17.430530Z", - "shell.execute_reply": "2024-08-08T19:00:17.429939Z" + "iopub.execute_input": "2024-08-12T10:38:35.089656Z", + "iopub.status.busy": "2024-08-12T10:38:35.089208Z", + "iopub.status.idle": "2024-08-12T10:38:35.189179Z", + "shell.execute_reply": "2024-08-12T10:38:35.188526Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:17.433014Z", - "iopub.status.busy": "2024-08-08T19:00:17.432597Z", - "iopub.status.idle": "2024-08-08T19:00:17.441335Z", - "shell.execute_reply": "2024-08-08T19:00:17.440890Z" + "iopub.execute_input": "2024-08-12T10:38:35.191757Z", + "iopub.status.busy": "2024-08-12T10:38:35.191311Z", + "iopub.status.idle": "2024-08-12T10:38:35.200051Z", + "shell.execute_reply": "2024-08-12T10:38:35.199511Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:17.443194Z", - "iopub.status.busy": "2024-08-08T19:00:17.443018Z", - "iopub.status.idle": "2024-08-08T19:00:17.445584Z", - "shell.execute_reply": "2024-08-08T19:00:17.445137Z" + "iopub.execute_input": "2024-08-12T10:38:35.202162Z", + "iopub.status.busy": "2024-08-12T10:38:35.201840Z", + "iopub.status.idle": "2024-08-12T10:38:35.204702Z", + "shell.execute_reply": "2024-08-12T10:38:35.204149Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:17.447585Z", - "iopub.status.busy": "2024-08-08T19:00:17.447411Z", - "iopub.status.idle": "2024-08-08T19:00:23.130576Z", - "shell.execute_reply": "2024-08-08T19:00:23.129994Z" + "iopub.execute_input": "2024-08-12T10:38:35.206675Z", + "iopub.status.busy": "2024-08-12T10:38:35.206390Z", + "iopub.status.idle": "2024-08-12T10:38:40.863741Z", + "shell.execute_reply": "2024-08-12T10:38:40.863149Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:23.132814Z", - "iopub.status.busy": "2024-08-08T19:00:23.132622Z", - "iopub.status.idle": "2024-08-08T19:00:23.141490Z", - "shell.execute_reply": "2024-08-08T19:00:23.141035Z" + "iopub.execute_input": "2024-08-12T10:38:40.866094Z", + "iopub.status.busy": "2024-08-12T10:38:40.865698Z", + "iopub.status.idle": "2024-08-12T10:38:40.874237Z", + "shell.execute_reply": "2024-08-12T10:38:40.873673Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:23.143503Z", - "iopub.status.busy": "2024-08-08T19:00:23.143326Z", - "iopub.status.idle": "2024-08-08T19:00:23.215775Z", - "shell.execute_reply": "2024-08-08T19:00:23.215259Z" + "iopub.execute_input": "2024-08-12T10:38:40.876578Z", + "iopub.status.busy": "2024-08-12T10:38:40.876136Z", + "iopub.status.idle": "2024-08-12T10:38:40.940208Z", + "shell.execute_reply": "2024-08-12T10:38:40.939737Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index cf027ad6c..b98e8669b 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:26.154143Z", - "iopub.status.busy": "2024-08-08T19:00:26.153969Z", - "iopub.status.idle": "2024-08-08T19:00:28.407365Z", - "shell.execute_reply": "2024-08-08T19:00:28.406608Z" + "iopub.execute_input": "2024-08-12T10:38:45.300927Z", + "iopub.status.busy": "2024-08-12T10:38:45.300755Z", + "iopub.status.idle": "2024-08-12T10:38:47.705900Z", + "shell.execute_reply": "2024-08-12T10:38:47.705194Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:28.409933Z", - "iopub.status.busy": "2024-08-08T19:00:28.409738Z", - "iopub.status.idle": "2024-08-08T19:01:42.302193Z", - "shell.execute_reply": "2024-08-08T19:01:42.301428Z" + "iopub.execute_input": "2024-08-12T10:38:47.708436Z", + "iopub.status.busy": "2024-08-12T10:38:47.708244Z", + "iopub.status.idle": "2024-08-12T10:40:01.410752Z", + "shell.execute_reply": "2024-08-12T10:40:01.410038Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:01:42.305127Z", - "iopub.status.busy": "2024-08-08T19:01:42.304733Z", - "iopub.status.idle": "2024-08-08T19:01:43.714528Z", - "shell.execute_reply": "2024-08-08T19:01:43.713969Z" + "iopub.execute_input": "2024-08-12T10:40:01.413413Z", + "iopub.status.busy": "2024-08-12T10:40:01.413181Z", + "iopub.status.idle": "2024-08-12T10:40:02.882844Z", + "shell.execute_reply": "2024-08-12T10:40:02.882249Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:01:43.717104Z", - "iopub.status.busy": "2024-08-08T19:01:43.716644Z", - "iopub.status.idle": "2024-08-08T19:01:43.719793Z", - "shell.execute_reply": "2024-08-08T19:01:43.719360Z" + "iopub.execute_input": "2024-08-12T10:40:02.885477Z", + "iopub.status.busy": "2024-08-12T10:40:02.885002Z", + "iopub.status.idle": "2024-08-12T10:40:02.888203Z", + "shell.execute_reply": "2024-08-12T10:40:02.887746Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:01:43.721875Z", - "iopub.status.busy": "2024-08-08T19:01:43.721541Z", - "iopub.status.idle": "2024-08-08T19:01:43.725287Z", - "shell.execute_reply": "2024-08-08T19:01:43.724848Z" + "iopub.execute_input": "2024-08-12T10:40:02.890475Z", + "iopub.status.busy": "2024-08-12T10:40:02.890011Z", + "iopub.status.idle": "2024-08-12T10:40:02.894575Z", + "shell.execute_reply": "2024-08-12T10:40:02.894008Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:01:43.727408Z", - "iopub.status.busy": "2024-08-08T19:01:43.727070Z", - "iopub.status.idle": "2024-08-08T19:01:43.730800Z", - "shell.execute_reply": "2024-08-08T19:01:43.730303Z" + "iopub.execute_input": "2024-08-12T10:40:02.896712Z", + "iopub.status.busy": "2024-08-12T10:40:02.896410Z", + "iopub.status.idle": "2024-08-12T10:40:02.900059Z", + "shell.execute_reply": "2024-08-12T10:40:02.899526Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:01:43.732796Z", - "iopub.status.busy": "2024-08-08T19:01:43.732464Z", - "iopub.status.idle": "2024-08-08T19:01:43.735353Z", - "shell.execute_reply": "2024-08-08T19:01:43.734883Z" + "iopub.execute_input": "2024-08-12T10:40:02.901997Z", + "iopub.status.busy": "2024-08-12T10:40:02.901691Z", + "iopub.status.idle": "2024-08-12T10:40:02.904562Z", + "shell.execute_reply": "2024-08-12T10:40:02.904109Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:01:43.737340Z", - "iopub.status.busy": "2024-08-08T19:01:43.737003Z", - "iopub.status.idle": "2024-08-08T19:02:21.756340Z", - "shell.execute_reply": "2024-08-08T19:02:21.755612Z" + "iopub.execute_input": "2024-08-12T10:40:02.906531Z", + "iopub.status.busy": "2024-08-12T10:40:02.906183Z", + "iopub.status.idle": "2024-08-12T10:40:40.641176Z", + "shell.execute_reply": "2024-08-12T10:40:40.640533Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "da314ac115984343824f5a4dd74c7ef5", + "model_id": "61e605b04d874c93b6bfbb1c76fe56ef", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e9251fdd343f461a8b61b254b3868a71", + "model_id": "f08907b075b945d98f02eb7bb46dde87", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:02:21.759238Z", - "iopub.status.busy": "2024-08-08T19:02:21.759009Z", - "iopub.status.idle": "2024-08-08T19:02:22.206641Z", - "shell.execute_reply": "2024-08-08T19:02:22.206157Z" + "iopub.execute_input": "2024-08-12T10:40:40.643965Z", + "iopub.status.busy": "2024-08-12T10:40:40.643744Z", + "iopub.status.idle": "2024-08-12T10:40:41.093555Z", + "shell.execute_reply": "2024-08-12T10:40:41.093058Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:02:22.208861Z", - "iopub.status.busy": "2024-08-08T19:02:22.208507Z", - "iopub.status.idle": "2024-08-08T19:02:25.148897Z", - "shell.execute_reply": "2024-08-08T19:02:25.148364Z" + "iopub.execute_input": "2024-08-12T10:40:41.095831Z", + "iopub.status.busy": "2024-08-12T10:40:41.095457Z", + "iopub.status.idle": "2024-08-12T10:40:44.123477Z", + "shell.execute_reply": "2024-08-12T10:40:44.122854Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:02:25.151150Z", - "iopub.status.busy": "2024-08-08T19:02:25.150799Z", - "iopub.status.idle": "2024-08-08T19:02:57.956197Z", - "shell.execute_reply": "2024-08-08T19:02:57.955716Z" + "iopub.execute_input": "2024-08-12T10:40:44.125614Z", + "iopub.status.busy": "2024-08-12T10:40:44.125421Z", + "iopub.status.idle": "2024-08-12T10:41:17.218406Z", + "shell.execute_reply": "2024-08-12T10:41:17.217894Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ff12be03ae6c41e4b821a56e16252503", + "model_id": "561557a580184250a3d202d08116c4ee", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:02:57.958202Z", - "iopub.status.busy": "2024-08-08T19:02:57.958030Z", - "iopub.status.idle": "2024-08-08T19:03:12.962268Z", - "shell.execute_reply": "2024-08-08T19:03:12.961703Z" + "iopub.execute_input": "2024-08-12T10:41:17.220681Z", + "iopub.status.busy": "2024-08-12T10:41:17.220324Z", + "iopub.status.idle": "2024-08-12T10:41:33.032204Z", + "shell.execute_reply": "2024-08-12T10:41:33.031621Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:12.964822Z", - "iopub.status.busy": "2024-08-08T19:03:12.964507Z", - "iopub.status.idle": "2024-08-08T19:03:16.627864Z", - "shell.execute_reply": "2024-08-08T19:03:16.627319Z" + "iopub.execute_input": "2024-08-12T10:41:33.034823Z", + "iopub.status.busy": "2024-08-12T10:41:33.034402Z", + "iopub.status.idle": "2024-08-12T10:41:36.912406Z", + "shell.execute_reply": "2024-08-12T10:41:36.911872Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:16.630002Z", - "iopub.status.busy": "2024-08-08T19:03:16.629822Z", - "iopub.status.idle": "2024-08-08T19:03:18.078498Z", - "shell.execute_reply": "2024-08-08T19:03:18.077862Z" + "iopub.execute_input": "2024-08-12T10:41:36.914664Z", + "iopub.status.busy": "2024-08-12T10:41:36.914293Z", + "iopub.status.idle": "2024-08-12T10:41:38.508661Z", + "shell.execute_reply": "2024-08-12T10:41:38.508099Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1aa8517b7b8e4a3881bbdffc085404a1", + "model_id": "d0e8171b866d49d29b94f359a1afd3b9", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:18.081033Z", - "iopub.status.busy": "2024-08-08T19:03:18.080838Z", - "iopub.status.idle": "2024-08-08T19:03:18.108792Z", - "shell.execute_reply": "2024-08-08T19:03:18.108146Z" + "iopub.execute_input": "2024-08-12T10:41:38.510876Z", + "iopub.status.busy": "2024-08-12T10:41:38.510569Z", + "iopub.status.idle": "2024-08-12T10:41:38.541247Z", + "shell.execute_reply": "2024-08-12T10:41:38.540581Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:18.111474Z", - "iopub.status.busy": "2024-08-08T19:03:18.111034Z", - "iopub.status.idle": "2024-08-08T19:03:24.104510Z", - "shell.execute_reply": "2024-08-08T19:03:24.103899Z" + "iopub.execute_input": "2024-08-12T10:41:38.543961Z", + "iopub.status.busy": "2024-08-12T10:41:38.543566Z", + "iopub.status.idle": "2024-08-12T10:41:44.851830Z", + "shell.execute_reply": "2024-08-12T10:41:44.851223Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:24.106830Z", - "iopub.status.busy": "2024-08-08T19:03:24.106515Z", - "iopub.status.idle": "2024-08-08T19:03:24.162875Z", - "shell.execute_reply": "2024-08-08T19:03:24.162248Z" + "iopub.execute_input": "2024-08-12T10:41:44.854065Z", + "iopub.status.busy": "2024-08-12T10:41:44.853866Z", + "iopub.status.idle": "2024-08-12T10:41:44.911138Z", + "shell.execute_reply": "2024-08-12T10:41:44.910619Z" }, "nbsphinx": "hidden" }, @@ -1038,33 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01f1adde17704dbe989ec4d4822f4176": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_244ef3e872c1469aa43aed49e1c9093c", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9e5659698a5f441285e4abbce63666ce", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 - } - }, - "049a5458af4c4c9fafd7cedae0e4b27b": { + "010e44b48d974beeb7690f8542184e1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1117,7 +1091,66 @@ "width": null } }, - "0594aad236c3452cb68cebc7066a2a10": { + "019c971db6eb4ae58639c1bdf5010f25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0416c162024a4fc381a45c2144135cc1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1563dcc38303423d9edbed3b08c05b03", + "placeholder": "​", + "style": "IPY_MODEL_0f4a5ca89bd44246a9513173bf74a65d", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "0f4a5ca89bd44246a9513173bf74a65d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1563dcc38303423d9edbed3b08c05b03": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1170,7 +1203,7 @@ "width": null } }, - "0b9b277d67d546f38a4742fe9af5165d": { + "1c4405e9f09347f69b059265ffec86fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1223,7 +1256,59 @@ "width": null } }, - "1039ae8899754fdfadf03515adac2c30": { + "2b982f6012464407b8042bc862b7ede1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3630df7de7c24e1dbde38fd5b3ec5335": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "399bc87e579745ad9a2930ba8605db78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "410bebdd912b4f52baf94752cefcdb90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1238,31 +1323,56 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dc64467fe611416db008f92087111af6", + "layout": "IPY_MODEL_640ae108c5fd43c48a63563c80f03c92", "placeholder": "​", - "style": "IPY_MODEL_47a26a317dda480ba86f51e06bf50aa6", + "style": "IPY_MODEL_019c971db6eb4ae58639c1bdf5010f25", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.17it/s]" + "value": " 30/30 [00:01<00:00, 18.13it/s]" } }, - "1395378f015d4681a0fc4e67a2dda591": { + "4cb6725acf0d4146a26d14bcab9727f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4d2a6db5bcf94f70b3a4ad24b832cd90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bafbe32ede834e3e9065c92397de6f8c", + "placeholder": "​", + "style": "IPY_MODEL_8a0fd43aebf8429ebed382e82d7f51e7", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 802.43it/s]" } }, - "19a958b1f93d4b23bb0a579030786f56": { + "51800615e4584a51830cc28b3452f7e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1315,7 +1425,30 @@ "width": null } }, - "1aa8517b7b8e4a3881bbdffc085404a1": { + "538a035bd9374f96a81b2ec775e07cd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e6c3c5326bbc4655b166d18c64e5cbd1", + "placeholder": "​", + "style": "IPY_MODEL_4cb6725acf0d4146a26d14bcab9727f0", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 151534.24it/s]" + } + }, + "561557a580184250a3d202d08116c4ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1330,42 +1463,72 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fc788218e83a4ec18d626c6db1908798", - "IPY_MODEL_1bc9e88eb40e47d38cafff9f1e4ce039", - "IPY_MODEL_60f4696eda7241428c1bcdb5b08bc225" + "IPY_MODEL_6c662917f77845909c734188e0849f3f", + "IPY_MODEL_fbe9c46e48b14c9f84f96b3a07c47b9b", + "IPY_MODEL_538a035bd9374f96a81b2ec775e07cd3" ], - "layout": "IPY_MODEL_404f0e2aadd44f0eb87b8fa614b30ff7", + "layout": "IPY_MODEL_f5b61e50c8ea418facc9fca22ce157b9", "tabbable": null, "tooltip": null } }, - "1bc9e88eb40e47d38cafff9f1e4ce039": { + "57f6c0fe38904916a9c68353b56e9d0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5a5c3be4f2994ba5a9fe278b993dff8b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "61e605b04d874c93b6bfbb1c76fe56ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19a958b1f93d4b23bb0a579030786f56", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9116a6c9ac1c4e22b4e9fee047ad24e8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0416c162024a4fc381a45c2144135cc1", + "IPY_MODEL_cd7f1bbed2b3453992c2294fb7b8f062", + "IPY_MODEL_4d2a6db5bcf94f70b3a4ad24b832cd90" + ], + "layout": "IPY_MODEL_844ec110d7c84f3fb856b6b598512108", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "244ef3e872c1469aa43aed49e1c9093c": { + "640ae108c5fd43c48a63563c80f03c92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1418,7 +1581,7 @@ "width": null } }, - "2c9ac16b50294054adbf61f9d60b42f5": { + "6583a0a60fe54eda962c904c18cf76f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1471,60 +1634,48 @@ "width": null } }, - "2e4ed5501c3a4923b226a6f0e1d4810a": { - "model_module": "@jupyter-widgets/base", + "6c662917f77845909c734188e0849f3f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e23f7a500c77422180ae8c0b19fed597", + "placeholder": "​", + "style": "IPY_MODEL_e6b0aaa7478443f8a5807573545ef4dd", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "6de6c5c76e4c4c2e977861cd171624e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "404f0e2aadd44f0eb87b8fa614b30ff7": { + "844ec110d7c84f3fb856b6b598512108": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1577,7 +1728,7 @@ "width": null } }, - "47a26a317dda480ba86f51e06bf50aa6": { + "8a0fd43aebf8429ebed382e82d7f51e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1595,71 +1746,7 @@ "text_color": null } }, - "47cc410933ae4c4898b55430d2d59963": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4a0838c46fe4438aa23d44824eb60497": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b5325c51aa5c44098c68914f7a58c2be", - "placeholder": "​", - "style": "IPY_MODEL_e14e50d60911477ebe4e5e9666a2e33a", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "52531c88ab514b73aa9c8913836850ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_91b86324356540958a20887c49ffe6af", - "placeholder": "​", - "style": "IPY_MODEL_47cc410933ae4c4898b55430d2d59963", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 816.51it/s]" - } - }, - "58e09cca0c5a4d85877ed1ee7b1c25a4": { + "91d043d8d3d34fb18e60e06a40ab070d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1712,25 +1799,7 @@ "width": null } }, - "5913476601474b8c917a05d0b727a895": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5c19d0970b3f48c7bdf258a0d2c5d12d": { + "988ac07c05a442529f798cef6e50fb3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1783,48 +1852,7 @@ "width": null } }, - "60f4696eda7241428c1bcdb5b08bc225": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa1455a7f4094c7e8908ea9fe26fff88", - "placeholder": "​", - "style": "IPY_MODEL_7b40e509d4c44f3c865bdaae0719b233", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.92it/s]" - } - }, - "7b40e509d4c44f3c865bdaae0719b233": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8d024792f7d842a3a06ec45defd2eebc": { + "9ab476bf29c7452b97de539b14f89cba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1840,33 +1868,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_58e09cca0c5a4d85877ed1ee7b1c25a4", + "layout": "IPY_MODEL_988ac07c05a442529f798cef6e50fb3b", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1395378f015d4681a0fc4e67a2dda591", + "style": "IPY_MODEL_da9d3e1909784dd798b07568fde6b3f2", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "9116a6c9ac1c4e22b4e9fee047ad24e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "91b86324356540958a20887c49ffe6af": { + "9ebd02d6b2a6471d91183ddc979dd134": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1919,80 +1931,33 @@ "width": null } }, - "91c0160df0dd44c7a41d70b5cb70ba30": { + "a936ea8d446f4dc6846eb16e30670216": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9e5659698a5f441285e4abbce63666ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9f6c054ffbd04a868ccdaa003ff82091": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a2aa09b4ae734036bb5d4e9d4913399a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5c19d0970b3f48c7bdf258a0d2c5d12d", - "placeholder": "​", - "style": "IPY_MODEL_c894645fdab043e3beb77852b38f260a", + "layout": "IPY_MODEL_1c4405e9f09347f69b059265ffec86fc", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_399bc87e579745ad9a2930ba8605db78", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": 30.0 } }, - "a32bdb7bceef4a72bafb8e7e586634ef": { + "b1eb120d532440b884214ef8eacb43b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2045,7 +2010,7 @@ "width": null } }, - "b5325c51aa5c44098c68914f7a58c2be": { + "bafbe32ede834e3e9065c92397de6f8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2098,7 +2063,7 @@ "width": null } }, - "b9ced451e2744c2cb19ada4d8c65d671": { + "bf43cbf39f1744c5b97ce89faa09ab90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2113,15 +2078,88 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0594aad236c3452cb68cebc7066a2a10", + "layout": "IPY_MODEL_91d043d8d3d34fb18e60e06a40ab070d", "placeholder": "​", - "style": "IPY_MODEL_5913476601474b8c917a05d0b727a895", + "style": "IPY_MODEL_6de6c5c76e4c4c2e977861cd171624e7", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30/30 [00:25<00:00,  1.17it/s]" + } + }, + "c5796a1d25a2402f8ac7189ad2c91f00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9ebd02d6b2a6471d91183ddc979dd134", + "placeholder": "​", + "style": "IPY_MODEL_3630df7de7c24e1dbde38fd5b3ec5335", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "cd7f1bbed2b3453992c2294fb7b8f062": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_010e44b48d974beeb7690f8542184e1b", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a5c3be4f2994ba5a9fe278b993dff8b", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "c560b8e1f4744d24aec00a0c6fc85924": { + "d0e8171b866d49d29b94f359a1afd3b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c5796a1d25a2402f8ac7189ad2c91f00", + "IPY_MODEL_9ab476bf29c7452b97de539b14f89cba", + "IPY_MODEL_410bebdd912b4f52baf94752cefcdb90" + ], + "layout": "IPY_MODEL_d5384d275afa4ecc9afe700c7fabaee9", + "tabbable": null, + "tooltip": null + } + }, + "d5384d275afa4ecc9afe700c7fabaee9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2174,25 +2212,7 @@ "width": null } }, - "c894645fdab043e3beb77852b38f260a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d7c797d006b44c62996cefee86a5731a": { + "d5abd9dbf83d4476a7edecdc934d3ecd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2207,39 +2227,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_049a5458af4c4c9fafd7cedae0e4b27b", + "layout": "IPY_MODEL_b1eb120d532440b884214ef8eacb43b4", "placeholder": "​", - "style": "IPY_MODEL_ec90a1756d5149d1885d9d68b9013615", + "style": "IPY_MODEL_2b982f6012464407b8042bc862b7ede1", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 151675.75it/s]" + "value": "number of examples processed for checking labels: 100%" } }, - "da314ac115984343824f5a4dd74c7ef5": { + "da9d3e1909784dd798b07568fde6b3f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a2aa09b4ae734036bb5d4e9d4913399a", - "IPY_MODEL_f90e290855d84ddabea8ff1e503c0db3", - "IPY_MODEL_52531c88ab514b73aa9c8913836850ff" - ], - "layout": "IPY_MODEL_0b9b277d67d546f38a4742fe9af5165d", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "dc64467fe611416db008f92087111af6": { + "e23f7a500c77422180ae8c0b19fed597": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2292,7 +2304,7 @@ "width": null } }, - "e14e50d60911477ebe4e5e9666a2e33a": { + "e6b0aaa7478443f8a5807573545ef4dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2310,75 +2322,84 @@ "text_color": null } }, - "e9251fdd343f461a8b61b254b3868a71": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4a0838c46fe4438aa23d44824eb60497", - "IPY_MODEL_8d024792f7d842a3a06ec45defd2eebc", - "IPY_MODEL_1039ae8899754fdfadf03515adac2c30" - ], - "layout": "IPY_MODEL_2c9ac16b50294054adbf61f9d60b42f5", - "tabbable": null, - "tooltip": null - } - }, - "ec90a1756d5149d1885d9d68b9013615": { - "model_module": "@jupyter-widgets/controls", + "e6c3c5326bbc4655b166d18c64e5cbd1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f90e290855d84ddabea8ff1e503c0db3": { + "f08907b075b945d98f02eb7bb46dde87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a32bdb7bceef4a72bafb8e7e586634ef", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9f6c054ffbd04a868ccdaa003ff82091", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d5abd9dbf83d4476a7edecdc934d3ecd", + "IPY_MODEL_a936ea8d446f4dc6846eb16e30670216", + "IPY_MODEL_bf43cbf39f1744c5b97ce89faa09ab90" + ], + "layout": "IPY_MODEL_6583a0a60fe54eda962c904c18cf76f1", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "fa1455a7f4094c7e8908ea9fe26fff88": { + "f5b61e50c8ea418facc9fca22ce157b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2431,51 +2452,30 @@ "width": null } }, - "fc788218e83a4ec18d626c6db1908798": { + "fbe9c46e48b14c9f84f96b3a07c47b9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c560b8e1f4744d24aec00a0c6fc85924", - "placeholder": "​", - "style": "IPY_MODEL_91c0160df0dd44c7a41d70b5cb70ba30", + "layout": "IPY_MODEL_51800615e4584a51830cc28b3452f7e9", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_57f6c0fe38904916a9c68353b56e9d0f", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "ff12be03ae6c41e4b821a56e16252503": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b9ced451e2744c2cb19ada4d8c65d671", - "IPY_MODEL_01f1adde17704dbe989ec4d4822f4176", - "IPY_MODEL_d7c797d006b44c62996cefee86a5731a" - ], - "layout": "IPY_MODEL_2e4ed5501c3a4923b226a6f0e1d4810a", - "tabbable": null, - "tooltip": null + "value": 4997683.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 8b076018d..3f733500b 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:26.412018Z", - "iopub.status.busy": "2024-08-08T19:03:26.411846Z", - "iopub.status.idle": "2024-08-08T19:03:27.765998Z", - "shell.execute_reply": "2024-08-08T19:03:27.765442Z" + "iopub.execute_input": "2024-08-12T10:41:47.559339Z", + "iopub.status.busy": "2024-08-12T10:41:47.559162Z", + "iopub.status.idle": "2024-08-12T10:41:49.515675Z", + "shell.execute_reply": "2024-08-12T10:41:49.515029Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-08 19:03:26-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-08-12 10:41:47-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,9 +94,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.246, 2400:52e0:1a00::1070:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.246|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "143.244.50.84, 2400:52e0:1a01::1109:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|143.244.50.84|:443... connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -109,9 +116,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.07s \r\n", "\r\n", - "2024-08-08 19:03:26 (7.16 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-08-12 10:41:47 (13.6 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -123,24 +130,24 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt " + " inflating: data/train.txt \r\n", + " inflating: data/valid.txt \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r\n", - " inflating: data/valid.txt \r\n" + "--2024-08-12 10:41:48-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.207.57, 3.5.25.245, 16.182.66.65, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.207.57|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-08 19:03:27-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.106.17, 52.216.24.188, 54.231.160.97, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.106.17|:443... connected.\r\n" + "connected.\r\n" ] }, { @@ -167,7 +174,23 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 64%[===========> ] 10.49M 50.2MB/s " + "pred_probs.npz 0%[ ] 151.53K 708KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 8%[> ] 1.39M 3.25MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 52%[=========> ] 8.55M 13.3MB/s " ] }, { @@ -175,9 +198,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 64.8MB/s in 0.3s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 20.3MB/s in 0.8s \r\n", "\r\n", - "2024-08-08 19:03:27 (64.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-08-12 10:41:49 (20.3 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -194,10 +217,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:27.768467Z", - "iopub.status.busy": "2024-08-08T19:03:27.768074Z", - "iopub.status.idle": "2024-08-08T19:03:29.315453Z", - "shell.execute_reply": "2024-08-08T19:03:29.314891Z" + "iopub.execute_input": "2024-08-12T10:41:49.518505Z", + "iopub.status.busy": "2024-08-12T10:41:49.518059Z", + "iopub.status.idle": "2024-08-12T10:41:51.104068Z", + "shell.execute_reply": "2024-08-12T10:41:51.103430Z" }, "nbsphinx": "hidden" }, @@ -208,7 +231,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -234,10 +257,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:29.318097Z", - "iopub.status.busy": "2024-08-08T19:03:29.317671Z", - "iopub.status.idle": "2024-08-08T19:03:29.321133Z", - "shell.execute_reply": "2024-08-08T19:03:29.320670Z" + "iopub.execute_input": "2024-08-12T10:41:51.106639Z", + "iopub.status.busy": "2024-08-12T10:41:51.106310Z", + "iopub.status.idle": "2024-08-12T10:41:51.109732Z", + "shell.execute_reply": "2024-08-12T10:41:51.109273Z" } }, "outputs": [], @@ -287,10 +310,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:29.323188Z", - "iopub.status.busy": "2024-08-08T19:03:29.322856Z", - "iopub.status.idle": "2024-08-08T19:03:29.325951Z", - "shell.execute_reply": "2024-08-08T19:03:29.325407Z" + "iopub.execute_input": "2024-08-12T10:41:51.111950Z", + "iopub.status.busy": "2024-08-12T10:41:51.111595Z", + "iopub.status.idle": "2024-08-12T10:41:51.114751Z", + "shell.execute_reply": "2024-08-12T10:41:51.114249Z" }, "nbsphinx": "hidden" }, @@ -308,10 +331,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:29.327956Z", - "iopub.status.busy": "2024-08-08T19:03:29.327656Z", - "iopub.status.idle": "2024-08-08T19:03:38.602143Z", - "shell.execute_reply": "2024-08-08T19:03:38.601526Z" + "iopub.execute_input": "2024-08-12T10:41:51.116586Z", + "iopub.status.busy": "2024-08-12T10:41:51.116411Z", + "iopub.status.idle": "2024-08-12T10:42:00.381031Z", + "shell.execute_reply": "2024-08-12T10:42:00.380471Z" } }, "outputs": [], @@ -385,10 +408,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:38.604803Z", - "iopub.status.busy": "2024-08-08T19:03:38.604610Z", - "iopub.status.idle": "2024-08-08T19:03:38.610223Z", - "shell.execute_reply": "2024-08-08T19:03:38.609654Z" + "iopub.execute_input": "2024-08-12T10:42:00.383579Z", + "iopub.status.busy": "2024-08-12T10:42:00.383224Z", + "iopub.status.idle": "2024-08-12T10:42:00.388847Z", + "shell.execute_reply": "2024-08-12T10:42:00.388389Z" }, "nbsphinx": "hidden" }, @@ -428,10 +451,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:38.612308Z", - "iopub.status.busy": "2024-08-08T19:03:38.611971Z", - "iopub.status.idle": "2024-08-08T19:03:38.977501Z", - "shell.execute_reply": "2024-08-08T19:03:38.976938Z" + "iopub.execute_input": "2024-08-12T10:42:00.390872Z", + "iopub.status.busy": "2024-08-12T10:42:00.390560Z", + "iopub.status.idle": "2024-08-12T10:42:00.760332Z", + "shell.execute_reply": "2024-08-12T10:42:00.759676Z" } }, "outputs": [], @@ -468,10 +491,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:38.980125Z", - "iopub.status.busy": "2024-08-08T19:03:38.979765Z", - "iopub.status.idle": "2024-08-08T19:03:38.983904Z", - "shell.execute_reply": "2024-08-08T19:03:38.983362Z" + "iopub.execute_input": "2024-08-12T10:42:00.762761Z", + "iopub.status.busy": "2024-08-12T10:42:00.762568Z", + "iopub.status.idle": "2024-08-12T10:42:00.767072Z", + "shell.execute_reply": "2024-08-12T10:42:00.766515Z" } }, "outputs": [ @@ -543,10 +566,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:38.985951Z", - "iopub.status.busy": "2024-08-08T19:03:38.985634Z", - "iopub.status.idle": "2024-08-08T19:03:41.635625Z", - "shell.execute_reply": "2024-08-08T19:03:41.634944Z" + "iopub.execute_input": "2024-08-12T10:42:00.769251Z", + "iopub.status.busy": "2024-08-12T10:42:00.768906Z", + "iopub.status.idle": "2024-08-12T10:42:03.524332Z", + "shell.execute_reply": "2024-08-12T10:42:03.523593Z" } }, "outputs": [], @@ -568,10 +591,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:41.639200Z", - "iopub.status.busy": "2024-08-08T19:03:41.638251Z", - "iopub.status.idle": "2024-08-08T19:03:41.642729Z", - "shell.execute_reply": "2024-08-08T19:03:41.642123Z" + "iopub.execute_input": "2024-08-12T10:42:03.527301Z", + "iopub.status.busy": "2024-08-12T10:42:03.526667Z", + "iopub.status.idle": "2024-08-12T10:42:03.531067Z", + "shell.execute_reply": "2024-08-12T10:42:03.530504Z" } }, "outputs": [ @@ -607,10 +630,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:41.644819Z", - "iopub.status.busy": "2024-08-08T19:03:41.644484Z", - "iopub.status.idle": "2024-08-08T19:03:41.650091Z", - "shell.execute_reply": "2024-08-08T19:03:41.649622Z" + "iopub.execute_input": "2024-08-12T10:42:03.533302Z", + "iopub.status.busy": "2024-08-12T10:42:03.532960Z", + "iopub.status.idle": "2024-08-12T10:42:03.538385Z", + "shell.execute_reply": "2024-08-12T10:42:03.537896Z" } }, "outputs": [ @@ -788,10 +811,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:41.652203Z", - "iopub.status.busy": "2024-08-08T19:03:41.651869Z", - "iopub.status.idle": "2024-08-08T19:03:41.678655Z", - "shell.execute_reply": "2024-08-08T19:03:41.678160Z" + "iopub.execute_input": "2024-08-12T10:42:03.540370Z", + "iopub.status.busy": "2024-08-12T10:42:03.540061Z", + "iopub.status.idle": "2024-08-12T10:42:03.566319Z", + "shell.execute_reply": "2024-08-12T10:42:03.565770Z" } }, "outputs": [ @@ -893,10 +916,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:41.680740Z", - "iopub.status.busy": "2024-08-08T19:03:41.680403Z", - "iopub.status.idle": "2024-08-08T19:03:41.684789Z", - "shell.execute_reply": "2024-08-08T19:03:41.684320Z" + "iopub.execute_input": "2024-08-12T10:42:03.568292Z", + "iopub.status.busy": "2024-08-12T10:42:03.568116Z", + "iopub.status.idle": "2024-08-12T10:42:03.572650Z", + "shell.execute_reply": "2024-08-12T10:42:03.572178Z" } }, "outputs": [ @@ -970,10 +993,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:41.686788Z", - "iopub.status.busy": "2024-08-08T19:03:41.686514Z", - "iopub.status.idle": "2024-08-08T19:03:43.157263Z", - "shell.execute_reply": "2024-08-08T19:03:43.156660Z" + "iopub.execute_input": "2024-08-12T10:42:03.574856Z", + "iopub.status.busy": "2024-08-12T10:42:03.574378Z", + "iopub.status.idle": "2024-08-12T10:42:05.062747Z", + "shell.execute_reply": "2024-08-12T10:42:05.062151Z" } }, "outputs": [ @@ -1145,10 +1168,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:43.159855Z", - "iopub.status.busy": "2024-08-08T19:03:43.159390Z", - "iopub.status.idle": "2024-08-08T19:03:43.165161Z", - "shell.execute_reply": "2024-08-08T19:03:43.164674Z" + "iopub.execute_input": "2024-08-12T10:42:05.064817Z", + "iopub.status.busy": "2024-08-12T10:42:05.064623Z", + "iopub.status.idle": "2024-08-12T10:42:05.068882Z", + "shell.execute_reply": "2024-08-12T10:42:05.068420Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index b8d42c086..b6bdf56a3 100644 Binary files a/master/.doctrees/tutorials/clean_learning/index.doctree and b/master/.doctrees/tutorials/clean_learning/index.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index c66ee9005..b1b89f1ae 100644 Binary files a/master/.doctrees/tutorials/clean_learning/tabular.doctree and b/master/.doctrees/tutorials/clean_learning/tabular.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index 74f4b52b8..c3237c0ac 100644 Binary files a/master/.doctrees/tutorials/clean_learning/text.doctree and b/master/.doctrees/tutorials/clean_learning/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index a5800b08f..1d1bbbc20 100644 Binary files a/master/.doctrees/tutorials/datalab/audio.doctree and b/master/.doctrees/tutorials/datalab/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index fd71ba00e..94d776209 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 1f69b1d3f..d180e280e 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index 48711ca55..285cc8aa0 100644 Binary files a/master/.doctrees/tutorials/datalab/image.doctree and b/master/.doctrees/tutorials/datalab/image.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 2a07e1e1e..0f6bfd91b 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 5f797c705..47585b2ea 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 7f035debf..961e80819 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index 57d83769b..e84224e54 100644 Binary files a/master/.doctrees/tutorials/datalab/workflows.doctree and b/master/.doctrees/tutorials/datalab/workflows.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index b9a9eb59b..13c97dd14 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index fa1cdcea1..66f39289f 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/improving_ml_performance.doctree b/master/.doctrees/tutorials/improving_ml_performance.doctree index 163fa0e0c..e51a72e97 100644 Binary files a/master/.doctrees/tutorials/improving_ml_performance.doctree and b/master/.doctrees/tutorials/improving_ml_performance.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index c010b5e0a..3cfe81394 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index fcb342e0b..711602b31 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index e66b5723e..b1fd964aa 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index b3b56cc63..6a02f0a01 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index 78503ed41..366eca231 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 2679dec40..ddff2a70e 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index fb81c33d3..193e616bd 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 49100d7c6..99aff3171 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 7dcf36488..f6c18be4a 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index f5a52ae41..934ff1467 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_sources/index.rst b/master/_sources/index.rst index b6b3c5826..791f87270 100644 --- a/master/_sources/index.rst +++ b/master/_sources/index.rst @@ -47,10 +47,10 @@ Quickstart pip install "git+https://github.com/cleanlab/cleanlab.git#egg=cleanlab[all]" -2. Find common issues in your data ----------------------------------- +2. Check your data for all sorts of issues +------------------------------------------ -cleanlab automatically detects various issues in *any dataset that a classifier can be trained on*. The cleanlab package *works with any ML model* by operating on model outputs (predicted class probabilities or feature embeddings) -- it doesn't require that a particular model created those outputs. For any classification dataset, use your trained model to produce `pred_probs` (predicted class probabilities) and/or `feature_embeddings` (numeric vector representations of each datapoint). Then, these few lines of code can detect common real-world issues in your dataset like label errors, outliers, near duplicates, etc: +cleanlab automatically detects various issues in *any dataset that a classifier can be trained on*. The cleanlab package *works with any ML model* by operating on model outputs (predicted class probabilities or feature embeddings) -- it doesn't require that a particular model created those outputs. For any classification dataset, use your trained model to produce `pred_probs` (predicted class probabilities) and/or `feature_embeddings` (numeric vector representations of each datapoint). To automatically check your dataset for common real-world issues (like label errors, outliers, near duplicates, IID violations, underperforming groups, ...), simply run these few lines of code: .. code-block:: python @@ -58,7 +58,9 @@ cleanlab automatically detects various issues in *any dataset that a classifier lab = Datalab(data=your_dataset, label_name="column_name_of_labels") lab.find_issues(features=feature_embeddings, pred_probs=pred_probs) - lab.report() # summarize issues in dataset, how severe they are, ... + lab.report() # summarize issues in dataset, how severe they are in each data point, ... + +While other data quality tools only catch limited types of data issues based on manually pre-defined validation rules, cleanlab applies automated data-centric AI techniques using your trained ML model to detect many more types of data issues that would otherwise be hard to catch. Don't dive into ML model improvement without first using AI to help check your data! 3. Handle label errors and train robust models with noisy labels @@ -73,7 +75,7 @@ Mislabeled data is a particularly concerning issue plaguing real-world datasets. # This works with any sklearn-compatible model - just input data + labels and cleanlab will detect label issues ツ label_issues_info = CleanLearning(clf=sklearn_compatible_model).find_label_issues(data, labels) -:py:class:`CleanLearning ` also works with models from most standard ML frameworks by wrapping the model for scikit-learn compliance, e.g. pytorch (can use `skorch `_ package), tensorflow/keras (can use our :py:class:`KerasWrapperModel `_), etc. +:py:class:`CleanLearning ` also works with models from most standard ML frameworks by wrapping the model for scikit-learn compliance, e.g. pytorch (can use `skorch `_ package), tensorflow/keras (can use our :py:class:`KerasWrapperModel `), etc. :py:meth:`find_label_issues ` returns a boolean mask flagging which examples have label issues and a numeric label quality score for each example quantifying our confidence that its label is correct. @@ -138,7 +140,7 @@ While this open-source library **finds** data issues, its utility depends on you :width: 800 :alt: Stages of modern AI pipeline that can now be automated with Cleanlab Studio -`There is no easier way `_ to turn *unreliable* raw data into *reliable* models/analytics. `Try it for free! `_ +There is no faster way to turn *unreliable* raw data into *reliable* models/analytics. `Try it for free! `_ Link to Cleanlab Studio docs: `help.cleanlab.ai `_ diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index ba15c5f48..6b23d13b2 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index d76ca3151..ac84d93ef 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index aa81a5dee..edf44cf55 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 2b24c913b..c99e613b7 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 31fca9b31..ccc818673 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 153a15b33..480583617 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index e393087f9..98aadee2c 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 95220af18..711a9abea 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/improving_ml_performance.ipynb b/master/_sources/tutorials/improving_ml_performance.ipynb index 22ae8b625..ca558980b 100644 --- a/master/_sources/tutorials/improving_ml_performance.ipynb +++ b/master/_sources/tutorials/improving_ml_performance.ipynb @@ -67,7 +67,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 2bb7943ab..653010463 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 12691bd3a..3206d064a 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 7422fb5e0..0b4faf398 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index df39e45ef..73e4b7758 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 34d63b8a8..6a1a42fcd 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 3ff6ab5ee..7740a355b 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 1dd05003a..689c75a70 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 4afd41e44..24fe22f28 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/index.html b/master/index.html index 21d79558c..9f4d72e12 100644 --- a/master/index.html +++ b/master/index.html @@ -652,16 +652,17 @@

1. Install clea -
-

2. Find common issues in your data#

-

cleanlab automatically detects various issues in any dataset that a classifier can be trained on. The cleanlab package works with any ML model by operating on model outputs (predicted class probabilities or feature embeddings) – it doesn’t require that a particular model created those outputs. For any classification dataset, use your trained model to produce pred_probs (predicted class probabilities) and/or feature_embeddings (numeric vector representations of each datapoint). Then, these few lines of code can detect common real-world issues in your dataset like label errors, outliers, near duplicates, etc:

+
+

2. Check your data for all sorts of issues#

+

cleanlab automatically detects various issues in any dataset that a classifier can be trained on. The cleanlab package works with any ML model by operating on model outputs (predicted class probabilities or feature embeddings) – it doesn’t require that a particular model created those outputs. For any classification dataset, use your trained model to produce pred_probs (predicted class probabilities) and/or feature_embeddings (numeric vector representations of each datapoint). To automatically check your dataset for common real-world issues (like label errors, outliers, near duplicates, IID violations, underperforming groups, …), simply run these few lines of code:

from cleanlab import Datalab
 
 lab = Datalab(data=your_dataset, label_name="column_name_of_labels")
 lab.find_issues(features=feature_embeddings, pred_probs=pred_probs)
-lab.report()  # summarize issues in dataset, how severe they are, ...
+lab.report()  # summarize issues in dataset, how severe they are in each data point, ...
 
+

While other data quality tools only catch limited types of data issues based on manually pre-defined validation rules, cleanlab applies automated data-centric AI techniques using your trained ML model to detect many more types of data issues that would otherwise be hard to catch. Don’t dive into ML model improvement without first using AI to help check your data!

3. Handle label errors and train robust models with noisy labels#

@@ -672,7 +673,7 @@

3. Handle label errors and train robust models with noisy labelslabel_issues_info = CleanLearning(clf=sklearn_compatible_model).find_label_issues(data, labels) -

CleanLearning also works with models from most standard ML frameworks by wrapping the model for scikit-learn compliance, e.g. pytorch (can use skorch package), tensorflow/keras (can use our :py:class:`KerasWrapperModel <cleanlab/models/keras>`_), etc.

+

CleanLearning also works with models from most standard ML frameworks by wrapping the model for scikit-learn compliance, e.g. pytorch (can use skorch package), tensorflow/keras (can use our KerasWrapperModel), etc.

find_label_issues returns a boolean mask flagging which examples have label issues and a numeric label quality score for each example quantifying our confidence that its label is correct.

Beyond standard classification tasks, cleanlab can also detect mislabeled examples in: multi-label data (e.g. image/document tagging), sequence prediction (e.g. entity recognition), and data labeled by multiple annotators (e.g. crowdsourcing).

@@ -720,7 +721,7 @@

Contributing#

While this open-source library finds data issues, its utility depends on you having a good ML model and interface to efficiently fix these issues in your dataset. Providing all these pieces, Cleanlab Studio is a no-code platform to find and fix problems in image/text/tabular datasets. Cleanlab Studio integrates the data quality algorithms from this library on top of cutting-edge AutoML & Foundation models fit to your data, and presents detected issues in a smart data editing interface.

Stages of modern AI pipeline that can now be automated with Cleanlab Studio -

There is no easier way to turn unreliable raw data into reliable models/analytics. Try it for free!

+

There is no faster way to turn unreliable raw data into reliable models/analytics. Try it for free!

Link to Cleanlab Studio docs: help.cleanlab.ai

diff --git a/master/objects.inv b/master/objects.inv index a67bbb38d..20de89e70 100644 Binary files a/master/objects.inv and b/master/objects.inv differ diff --git a/master/searchindex.js b/master/searchindex.js index 2612ac4df..d66f30c25 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 83, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 95, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69, 95], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 95, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83, 95], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 95, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 95, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 95, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94, 95], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 98], "group": [8, 9, 27, 32, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106, 108], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103, 108], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 83, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "exclud": [34, 43, 78, 82, 89, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": 37, "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "Then": [83, 86, 87, 91, 97], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "easier": [83, 95, 99], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106, 108], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "card_payment_fee_charg": [87, 94], "apple_pay_or_google_pai": [87, 94], "lost_or_stolen_phon": [87, 94], "beneficiary_not_allow": [87, 94], "change_pin": [87, 94], "card_about_to_expir": [87, 94], "getting_spare_card": [87, 94], "supported_cards_and_curr": [87, 94], "visa_or_mastercard": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107, 108], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 95, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103, 108], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103, 108], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "901562": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "909": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "600": [91, 98], "493": 91, "060": 91, "885": 91, "330": [91, 98, 103], "505": 91, "612": [91, 98], "476": [91, 98], "340": [91, 98], "765": 91, "328": [91, 103], "310": 91, "617": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103, 108], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "dive": [94, 95, 98], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106, 108], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "524": 95, "991400": 95, "356925": 95, "363": [95, 98], "619581": 95, "108": [95, 103], "500000": 95, "651929": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": [95, 108], "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "199": [95, 98, 103], "111": [95, 101, 106], "153": [95, 98, 103], "110": [95, 103], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": [95, 108], "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "blurry_scor": 95, "correlation_scor": 95, "_correlations_df": 95, "image_issu": 95, "nimag": 95, "light_scor": 95, "015": 95, "odd_aspect_ratio_scor": 95, "odd_size_scor": 95, "grayscale_scor": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "original_data_dir": 95, "original_imag": 95, "original_dataset": 95, "original_lab": 95, "original_scor": 95, "original_issu": 95, "300": [95, 98, 101, 108], "415": 95, "325": 95, "335": 95, "797509": 95, "663760": 95, "849826": 95, "773951": 95, "699518": 95, "balanc": [95, 96], "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "tool": [96, 99, 101], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102, 108], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": [98, 108], "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "978605": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9786": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "342": 98, "352": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "523": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "catch": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103], "169": 99, "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103, 108], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": [103, 108], "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": 103, "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": [103, 108], "268": 103, "273": 103, "284": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "97777040": 104, "52it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "inflat": 108, "182": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "8mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 83, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "common": [83, 84, 108], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "all": [90, 99], "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "sort": 95, "6": [95, 98, 99], "spuriou": 95, "correl": 95, "run": [95, 97], "analysi": [95, 103], "interpret": 95, "compar": [95, 101], "without": [95, 102], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "4. (Optional) Compare with a Dataset Without Spurious Correlations": [[95, "4.-(Optional)-Compare-with-a-Dataset-Without-Spurious-Correlations"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 95, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69, 95], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 83, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 83, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 83, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 95, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83, 95], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 83, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 83, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 83, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 83, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 95, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 95, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 83, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 83, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 95, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 83, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 83, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94, 95], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 83, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 83, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 83, 98], "group": [8, 9, 27, 32, 83, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106, 108], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 83, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106, 108], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "exclud": [34, 43, 78, 82, 89, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": 37, "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 83, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": [56, 91], "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 104, 108], "04": [81, 93, 95, 103], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "tool": [83, 96, 99, 101], "catch": [83, 98], "dive": [83, 94, 95, 98], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "Then": [86, 87, 91, 97], "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103, 108], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103, 108], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "beneficiary_not_allow": [87, 94], "visa_or_mastercard": [87, 94], "getting_spare_card": [87, 94], "supported_cards_and_curr": [87, 94], "change_pin": [87, 94], "card_payment_fee_charg": [87, 94], "lost_or_stolen_phon": [87, 94], "apple_pay_or_google_pai": [87, 94], "card_about_to_expir": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 95, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106, 108], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103, 108], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "901562": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "112": [91, 96, 98], "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "743": 91, "493": 91, "060": 91, "330": [91, 98, 103], "505": 91, "947": 91, "476": [91, 98], "340": [91, 98], "366": [91, 98], "328": [91, 103], "310": 91, "925": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356958": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651929": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99, 108], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103, 108], "stringio": 95, "sep": [95, 108], "easier": [95, 99], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98, 108], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "199": [95, 98, 103], "153": [95, 98, 103], "110": [95, 103], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": [95, 108], "008": 95, "114": 95, "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "blurry_scor": 95, "correlation_scor": 95, "_correlations_df": 95, "image_issu": 95, "nimag": 95, "light_scor": 95, "015": 95, "odd_aspect_ratio_scor": 95, "odd_size_scor": 95, "grayscale_scor": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "original_data_dir": 95, "original_imag": 95, "original_dataset": 95, "original_lab": 95, "original_scor": 95, "original_issu": 95, "300": [95, 98, 101, 108], "415": 95, "325": 95, "335": 95, "797509": 95, "663760": 95, "849826": 95, "773951": 95, "699518": 95, "balanc": [95, 96], "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103, 108], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106, 108], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "978605": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9786": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "342": 98, "352": 98, "363": 98, "365": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103, 108], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103], "169": 99, "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": [103, 108], "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "43962237": 104, "05it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a01": 108, "1109": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "inflat": 108, "245": 108, "182": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "3mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 83, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [83, 90, 99], "sort": [83, 95], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "common": [84, 108], "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "6": [95, 98, 99], "spuriou": 95, "correl": 95, "run": [95, 97], "analysi": [95, 103], "interpret": 95, "compar": [95, 101], "without": [95, 102], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[83, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "4. (Optional) Compare with a Dataset Without Spurious Correlations": [[95, "4.-(Optional)-Compare-with-a-Dataset-Without-Spurious-Correlations"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 524ef1091..813d71348 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:00.543675Z", - "iopub.status.busy": "2024-08-08T18:53:00.543262Z", - "iopub.status.idle": "2024-08-08T18:53:02.024210Z", - "shell.execute_reply": "2024-08-08T18:53:02.023643Z" + "iopub.execute_input": "2024-08-12T10:31:00.463356Z", + "iopub.status.busy": "2024-08-12T10:31:00.462851Z", + "iopub.status.idle": "2024-08-12T10:31:02.047524Z", + "shell.execute_reply": "2024-08-12T10:31:02.046835Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:02.026764Z", - "iopub.status.busy": "2024-08-08T18:53:02.026455Z", - "iopub.status.idle": "2024-08-08T18:53:02.045763Z", - "shell.execute_reply": "2024-08-08T18:53:02.045207Z" + "iopub.execute_input": "2024-08-12T10:31:02.050367Z", + "iopub.status.busy": "2024-08-12T10:31:02.049990Z", + "iopub.status.idle": "2024-08-12T10:31:02.069900Z", + "shell.execute_reply": "2024-08-12T10:31:02.069290Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:02.048477Z", - "iopub.status.busy": "2024-08-08T18:53:02.047929Z", - "iopub.status.idle": "2024-08-08T18:53:02.259654Z", - "shell.execute_reply": "2024-08-08T18:53:02.259026Z" + "iopub.execute_input": "2024-08-12T10:31:02.072544Z", + "iopub.status.busy": "2024-08-12T10:31:02.072099Z", + "iopub.status.idle": "2024-08-12T10:31:02.302446Z", + "shell.execute_reply": "2024-08-12T10:31:02.301780Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:02.294496Z", - "iopub.status.busy": "2024-08-08T18:53:02.294073Z", - "iopub.status.idle": "2024-08-08T18:53:02.297700Z", - "shell.execute_reply": "2024-08-08T18:53:02.297264Z" + "iopub.execute_input": "2024-08-12T10:31:02.334639Z", + "iopub.status.busy": "2024-08-12T10:31:02.334107Z", + "iopub.status.idle": "2024-08-12T10:31:02.338211Z", + "shell.execute_reply": "2024-08-12T10:31:02.337651Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:02.299789Z", - "iopub.status.busy": "2024-08-08T18:53:02.299487Z", - "iopub.status.idle": "2024-08-08T18:53:02.308052Z", - "shell.execute_reply": "2024-08-08T18:53:02.307601Z" + "iopub.execute_input": "2024-08-12T10:31:02.340501Z", + "iopub.status.busy": "2024-08-12T10:31:02.340140Z", + "iopub.status.idle": "2024-08-12T10:31:02.348891Z", + "shell.execute_reply": "2024-08-12T10:31:02.348288Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:02.310321Z", - "iopub.status.busy": "2024-08-08T18:53:02.309983Z", - "iopub.status.idle": "2024-08-08T18:53:02.312486Z", - "shell.execute_reply": "2024-08-08T18:53:02.312044Z" + "iopub.execute_input": "2024-08-12T10:31:02.351479Z", + "iopub.status.busy": "2024-08-12T10:31:02.351121Z", + "iopub.status.idle": "2024-08-12T10:31:02.353720Z", + "shell.execute_reply": "2024-08-12T10:31:02.353249Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:02.314538Z", - "iopub.status.busy": "2024-08-08T18:53:02.314203Z", - "iopub.status.idle": "2024-08-08T18:53:02.834221Z", - "shell.execute_reply": "2024-08-08T18:53:02.833675Z" + "iopub.execute_input": "2024-08-12T10:31:02.355946Z", + "iopub.status.busy": "2024-08-12T10:31:02.355599Z", + "iopub.status.idle": "2024-08-12T10:31:02.883586Z", + "shell.execute_reply": "2024-08-12T10:31:02.883087Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:02.836846Z", - "iopub.status.busy": "2024-08-08T18:53:02.836453Z", - "iopub.status.idle": "2024-08-08T18:53:04.867166Z", - "shell.execute_reply": "2024-08-08T18:53:04.866464Z" + "iopub.execute_input": "2024-08-12T10:31:02.886048Z", + "iopub.status.busy": "2024-08-12T10:31:02.885693Z", + "iopub.status.idle": "2024-08-12T10:31:05.027547Z", + "shell.execute_reply": "2024-08-12T10:31:05.026915Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:04.869789Z", - "iopub.status.busy": "2024-08-08T18:53:04.869146Z", - "iopub.status.idle": "2024-08-08T18:53:04.879653Z", - "shell.execute_reply": "2024-08-08T18:53:04.879122Z" + "iopub.execute_input": "2024-08-12T10:31:05.030654Z", + "iopub.status.busy": "2024-08-12T10:31:05.029701Z", + "iopub.status.idle": "2024-08-12T10:31:05.040437Z", + "shell.execute_reply": "2024-08-12T10:31:05.039970Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:04.881845Z", - "iopub.status.busy": "2024-08-08T18:53:04.881386Z", - "iopub.status.idle": "2024-08-08T18:53:04.885661Z", - "shell.execute_reply": "2024-08-08T18:53:04.885109Z" + "iopub.execute_input": "2024-08-12T10:31:05.042737Z", + "iopub.status.busy": "2024-08-12T10:31:05.042378Z", + "iopub.status.idle": "2024-08-12T10:31:05.046796Z", + "shell.execute_reply": "2024-08-12T10:31:05.046322Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:04.888005Z", - "iopub.status.busy": "2024-08-08T18:53:04.887662Z", - "iopub.status.idle": "2024-08-08T18:53:04.894381Z", - "shell.execute_reply": "2024-08-08T18:53:04.893952Z" + "iopub.execute_input": "2024-08-12T10:31:05.048880Z", + "iopub.status.busy": "2024-08-12T10:31:05.048557Z", + "iopub.status.idle": "2024-08-12T10:31:05.056263Z", + "shell.execute_reply": "2024-08-12T10:31:05.055716Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:04.896556Z", - "iopub.status.busy": "2024-08-08T18:53:04.896226Z", - "iopub.status.idle": "2024-08-08T18:53:05.009071Z", - "shell.execute_reply": "2024-08-08T18:53:05.008556Z" + "iopub.execute_input": "2024-08-12T10:31:05.058466Z", + "iopub.status.busy": "2024-08-12T10:31:05.058117Z", + "iopub.status.idle": "2024-08-12T10:31:05.172389Z", + "shell.execute_reply": "2024-08-12T10:31:05.171830Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:05.011216Z", - "iopub.status.busy": "2024-08-08T18:53:05.010890Z", - "iopub.status.idle": "2024-08-08T18:53:05.013680Z", - "shell.execute_reply": "2024-08-08T18:53:05.013228Z" + "iopub.execute_input": "2024-08-12T10:31:05.174639Z", + "iopub.status.busy": "2024-08-12T10:31:05.174253Z", + "iopub.status.idle": "2024-08-12T10:31:05.177235Z", + "shell.execute_reply": "2024-08-12T10:31:05.176793Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:05.015527Z", - "iopub.status.busy": "2024-08-08T18:53:05.015354Z", - "iopub.status.idle": "2024-08-08T18:53:07.128537Z", - "shell.execute_reply": "2024-08-08T18:53:07.127880Z" + "iopub.execute_input": "2024-08-12T10:31:05.179303Z", + "iopub.status.busy": "2024-08-12T10:31:05.178961Z", + "iopub.status.idle": "2024-08-12T10:31:07.400050Z", + "shell.execute_reply": "2024-08-12T10:31:07.399213Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:07.131691Z", - "iopub.status.busy": "2024-08-08T18:53:07.130868Z", - "iopub.status.idle": "2024-08-08T18:53:07.142106Z", - "shell.execute_reply": "2024-08-08T18:53:07.141539Z" + "iopub.execute_input": "2024-08-12T10:31:07.403380Z", + "iopub.status.busy": "2024-08-12T10:31:07.402738Z", + "iopub.status.idle": "2024-08-12T10:31:07.414900Z", + "shell.execute_reply": "2024-08-12T10:31:07.414301Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:07.144209Z", - "iopub.status.busy": "2024-08-08T18:53:07.143893Z", - "iopub.status.idle": "2024-08-08T18:53:07.205051Z", - "shell.execute_reply": "2024-08-08T18:53:07.204457Z" + "iopub.execute_input": "2024-08-12T10:31:07.417422Z", + "iopub.status.busy": "2024-08-12T10:31:07.417172Z", + "iopub.status.idle": "2024-08-12T10:31:07.521745Z", + "shell.execute_reply": "2024-08-12T10:31:07.521237Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index cfe4a8783..61cf69bbc 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -817,7 +817,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'card_payment_fee_charged', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'getting_spare_card', 'supported_cards_and_currencies', 'visa_or_mastercard', 'cancel_transfer'}
+Classes: {'beneficiary_not_allowed', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'change_pin', 'cancel_transfer', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire'}
 

Let’s print the first example in the train set.

@@ -880,43 +880,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1219,7 +1219,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 6911507a3..14bfb32ea 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:10.467009Z", - "iopub.status.busy": "2024-08-08T18:53:10.466580Z", - "iopub.status.idle": "2024-08-08T18:53:13.885731Z", - "shell.execute_reply": "2024-08-08T18:53:13.885078Z" + "iopub.execute_input": "2024-08-12T10:31:11.599918Z", + "iopub.status.busy": "2024-08-12T10:31:11.599739Z", + "iopub.status.idle": "2024-08-12T10:31:14.792390Z", + "shell.execute_reply": "2024-08-12T10:31:14.791829Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.888448Z", - "iopub.status.busy": "2024-08-08T18:53:13.887972Z", - "iopub.status.idle": "2024-08-08T18:53:13.891865Z", - "shell.execute_reply": "2024-08-08T18:53:13.891431Z" + "iopub.execute_input": "2024-08-12T10:31:14.794853Z", + "iopub.status.busy": "2024-08-12T10:31:14.794551Z", + "iopub.status.idle": "2024-08-12T10:31:14.797789Z", + "shell.execute_reply": "2024-08-12T10:31:14.797355Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.893972Z", - "iopub.status.busy": "2024-08-08T18:53:13.893556Z", - "iopub.status.idle": "2024-08-08T18:53:13.896736Z", - "shell.execute_reply": "2024-08-08T18:53:13.896267Z" + "iopub.execute_input": "2024-08-12T10:31:14.799835Z", + "iopub.status.busy": "2024-08-12T10:31:14.799654Z", + "iopub.status.idle": "2024-08-12T10:31:14.803159Z", + "shell.execute_reply": "2024-08-12T10:31:14.802724Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.898679Z", - "iopub.status.busy": "2024-08-08T18:53:13.898480Z", - "iopub.status.idle": "2024-08-08T18:53:13.961823Z", - "shell.execute_reply": "2024-08-08T18:53:13.961397Z" + "iopub.execute_input": "2024-08-12T10:31:14.805171Z", + "iopub.status.busy": "2024-08-12T10:31:14.804782Z", + "iopub.status.idle": "2024-08-12T10:31:15.011942Z", + "shell.execute_reply": "2024-08-12T10:31:15.011370Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.963939Z", - "iopub.status.busy": "2024-08-08T18:53:13.963591Z", - "iopub.status.idle": "2024-08-08T18:53:13.967158Z", - "shell.execute_reply": "2024-08-08T18:53:13.966607Z" + "iopub.execute_input": "2024-08-12T10:31:15.014170Z", + "iopub.status.busy": "2024-08-12T10:31:15.013748Z", + "iopub.status.idle": "2024-08-12T10:31:15.017471Z", + "shell.execute_reply": "2024-08-12T10:31:15.016937Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.969281Z", - "iopub.status.busy": "2024-08-08T18:53:13.968818Z", - "iopub.status.idle": "2024-08-08T18:53:13.972078Z", - "shell.execute_reply": "2024-08-08T18:53:13.971631Z" + "iopub.execute_input": "2024-08-12T10:31:15.019665Z", + "iopub.status.busy": "2024-08-12T10:31:15.019223Z", + "iopub.status.idle": "2024-08-12T10:31:15.022434Z", + "shell.execute_reply": "2024-08-12T10:31:15.021954Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'getting_spare_card', 'supported_cards_and_currencies', 'visa_or_mastercard', 'cancel_transfer'}\n" + "Classes: {'beneficiary_not_allowed', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'change_pin', 'cancel_transfer', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.974171Z", - "iopub.status.busy": "2024-08-08T18:53:13.973769Z", - "iopub.status.idle": "2024-08-08T18:53:13.976927Z", - "shell.execute_reply": "2024-08-08T18:53:13.976392Z" + "iopub.execute_input": "2024-08-12T10:31:15.024295Z", + "iopub.status.busy": "2024-08-12T10:31:15.024124Z", + "iopub.status.idle": "2024-08-12T10:31:15.027383Z", + "shell.execute_reply": "2024-08-12T10:31:15.026923Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.978883Z", - "iopub.status.busy": "2024-08-08T18:53:13.978703Z", - "iopub.status.idle": "2024-08-08T18:53:13.982149Z", - "shell.execute_reply": "2024-08-08T18:53:13.981688Z" + "iopub.execute_input": "2024-08-12T10:31:15.029211Z", + "iopub.status.busy": "2024-08-12T10:31:15.029037Z", + "iopub.status.idle": "2024-08-12T10:31:15.032408Z", + "shell.execute_reply": "2024-08-12T10:31:15.031823Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:13.984246Z", - "iopub.status.busy": "2024-08-08T18:53:13.983925Z", - "iopub.status.idle": "2024-08-08T18:53:18.602098Z", - "shell.execute_reply": "2024-08-08T18:53:18.601532Z" + "iopub.execute_input": "2024-08-12T10:31:15.034473Z", + "iopub.status.busy": "2024-08-12T10:31:15.034066Z", + "iopub.status.idle": "2024-08-12T10:31:20.022718Z", + "shell.execute_reply": "2024-08-12T10:31:20.022044Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a84b83317eb1464a89d98acf732e69f3", + "model_id": "b77e95d91f29458c87a8a832d9354217", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b69c87c8bab34d739f9dc8d892d1bdb9", + "model_id": "08ba8674e30e46fc930e33c52fd19cae", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9ad66530c90644829af3ff3b71de772e", + "model_id": "bcd74fc84ce94b119d8e8d4b6070122a", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6ec8b78979d74d00bc134e4f89931257", + "model_id": "cf55d71b710845d8890451acc33799c0", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b0107289a3c74150b6a63b0639f52163", + "model_id": "4ff5b7e108a64120b255afa2e1ff6f7d", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4b4e83c9680e4f2d86bb439951fa33a5", + "model_id": "f096b4fd6872467eb521cc3425e4ad77", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3b469d399c444b75afe0939d5aff9af1", + "model_id": "6757467eb2d347bdbfc65c8a3b0b752c", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:18.604936Z", - "iopub.status.busy": "2024-08-08T18:53:18.604518Z", - "iopub.status.idle": "2024-08-08T18:53:18.607571Z", - "shell.execute_reply": "2024-08-08T18:53:18.607079Z" + "iopub.execute_input": "2024-08-12T10:31:20.025603Z", + "iopub.status.busy": "2024-08-12T10:31:20.025214Z", + "iopub.status.idle": "2024-08-12T10:31:20.028239Z", + "shell.execute_reply": "2024-08-12T10:31:20.027686Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:18.609598Z", - "iopub.status.busy": "2024-08-08T18:53:18.609262Z", - "iopub.status.idle": "2024-08-08T18:53:18.611809Z", - "shell.execute_reply": "2024-08-08T18:53:18.611372Z" + "iopub.execute_input": "2024-08-12T10:31:20.030306Z", + "iopub.status.busy": "2024-08-12T10:31:20.029981Z", + "iopub.status.idle": "2024-08-12T10:31:20.033107Z", + "shell.execute_reply": "2024-08-12T10:31:20.032678Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:18.613708Z", - "iopub.status.busy": "2024-08-08T18:53:18.613439Z", - "iopub.status.idle": "2024-08-08T18:53:21.359090Z", - "shell.execute_reply": "2024-08-08T18:53:21.358391Z" + "iopub.execute_input": "2024-08-12T10:31:20.035082Z", + "iopub.status.busy": "2024-08-12T10:31:20.034747Z", + "iopub.status.idle": "2024-08-12T10:31:22.925207Z", + "shell.execute_reply": "2024-08-12T10:31:22.924551Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.362432Z", - "iopub.status.busy": "2024-08-08T18:53:21.361471Z", - "iopub.status.idle": "2024-08-08T18:53:21.369580Z", - "shell.execute_reply": "2024-08-08T18:53:21.369105Z" + "iopub.execute_input": "2024-08-12T10:31:22.928473Z", + "iopub.status.busy": "2024-08-12T10:31:22.927617Z", + "iopub.status.idle": "2024-08-12T10:31:22.935577Z", + "shell.execute_reply": "2024-08-12T10:31:22.935118Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.371955Z", - "iopub.status.busy": "2024-08-08T18:53:21.371614Z", - "iopub.status.idle": "2024-08-08T18:53:21.375479Z", - "shell.execute_reply": "2024-08-08T18:53:21.375018Z" + "iopub.execute_input": "2024-08-12T10:31:22.937626Z", + "iopub.status.busy": "2024-08-12T10:31:22.937285Z", + "iopub.status.idle": "2024-08-12T10:31:22.941357Z", + "shell.execute_reply": "2024-08-12T10:31:22.940756Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.377414Z", - "iopub.status.busy": "2024-08-08T18:53:21.377233Z", - "iopub.status.idle": "2024-08-08T18:53:21.380294Z", - "shell.execute_reply": "2024-08-08T18:53:21.379747Z" + "iopub.execute_input": "2024-08-12T10:31:22.943707Z", + "iopub.status.busy": "2024-08-12T10:31:22.943304Z", + "iopub.status.idle": "2024-08-12T10:31:22.946672Z", + "shell.execute_reply": "2024-08-12T10:31:22.946082Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.382415Z", - "iopub.status.busy": "2024-08-08T18:53:21.382083Z", - "iopub.status.idle": "2024-08-08T18:53:21.384972Z", - "shell.execute_reply": "2024-08-08T18:53:21.384500Z" + "iopub.execute_input": "2024-08-12T10:31:22.948966Z", + "iopub.status.busy": "2024-08-12T10:31:22.948462Z", + "iopub.status.idle": "2024-08-12T10:31:22.951516Z", + "shell.execute_reply": "2024-08-12T10:31:22.951066Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.386989Z", - "iopub.status.busy": "2024-08-08T18:53:21.386680Z", - "iopub.status.idle": "2024-08-08T18:53:21.393613Z", - "shell.execute_reply": "2024-08-08T18:53:21.393157Z" + "iopub.execute_input": "2024-08-12T10:31:22.953476Z", + "iopub.status.busy": "2024-08-12T10:31:22.953139Z", + "iopub.status.idle": "2024-08-12T10:31:22.959977Z", + "shell.execute_reply": "2024-08-12T10:31:22.959519Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.395679Z", - "iopub.status.busy": "2024-08-08T18:53:21.395377Z", - "iopub.status.idle": "2024-08-08T18:53:21.624069Z", - "shell.execute_reply": "2024-08-08T18:53:21.623552Z" + "iopub.execute_input": "2024-08-12T10:31:22.962107Z", + "iopub.status.busy": "2024-08-12T10:31:22.961788Z", + "iopub.status.idle": "2024-08-12T10:31:23.188303Z", + "shell.execute_reply": "2024-08-12T10:31:23.187779Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.626641Z", - "iopub.status.busy": "2024-08-08T18:53:21.626253Z", - "iopub.status.idle": "2024-08-08T18:53:21.838287Z", - "shell.execute_reply": "2024-08-08T18:53:21.837763Z" + "iopub.execute_input": "2024-08-12T10:31:23.190889Z", + "iopub.status.busy": "2024-08-12T10:31:23.190558Z", + "iopub.status.idle": "2024-08-12T10:31:23.404299Z", + "shell.execute_reply": "2024-08-12T10:31:23.403695Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:21.840941Z", - "iopub.status.busy": "2024-08-08T18:53:21.840563Z", - "iopub.status.idle": "2024-08-08T18:53:21.844343Z", - "shell.execute_reply": "2024-08-08T18:53:21.843842Z" + "iopub.execute_input": "2024-08-12T10:31:23.407187Z", + "iopub.status.busy": "2024-08-12T10:31:23.406748Z", + "iopub.status.idle": "2024-08-12T10:31:23.410913Z", + "shell.execute_reply": "2024-08-12T10:31:23.410344Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1120,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02f7759ffbcd47adabe3037c42e05ab9": { + "009671349a8d4cafb82eb9896ece9bee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f0a9d1777ee94c7c8c03baa6a51c46a8", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_69f0abc1e50f49f8a576b20c5da62cfa", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "01ac85c54a074f46a529412c8198c339": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1173,7 +1199,7 @@ "width": null } }, - "0727a473a7c44983888c51d55ad7ef38": { + "040c266f4fc448cd8d1cc95b158b56b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1226,30 +1252,47 @@ "width": null } }, - "09ad1a93dbd74d7da7877d856fde7e7d": { + "0594ffe3ba1a4a8096af8f4341c83041": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "08ba8674e30e46fc930e33c52fd19cae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a6996f932874def95923164062e763c", - "placeholder": "​", - "style": "IPY_MODEL_63fe7a86b21d402eb96ae91c1f2c6e5f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f720275cd00d4a9cb1737d0f4d081c2f", + "IPY_MODEL_009671349a8d4cafb82eb9896ece9bee", + "IPY_MODEL_9fdd8aba923f4e04be6bb5d963cb437c" + ], + "layout": "IPY_MODEL_9c1c9cad0461490a96b44d548117c40c", "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "tooltip": null } }, - "0a9e78a0405545eab6c26fec1fe081e9": { + "095e33092ba14246a9208dc768de2a5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1302,7 +1345,7 @@ "width": null } }, - "11c8378c39ea4285a4fd3793747dfc4d": { + "104b801834d148df9f2e3d1ed081e587": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1317,15 +1360,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_494f61a3738d4245a2af8c8d0c15853f", + "layout": "IPY_MODEL_2602df39a3fd47c39e3cc01ecfebecf5", "placeholder": "​", - "style": "IPY_MODEL_925b1478afef46eba099d9c3364dae11", + "style": "IPY_MODEL_c691589a3f7e439b968bd28de4afe7e3", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": " 232k/232k [00:00<00:00, 35.4MB/s]" } }, - "16d4c10733db42539ad0fb4b66aa86e5": { + "11edcabb6a894b66939da8220a1f7699": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1378,7 +1421,7 @@ "width": null } }, - "18205799631a4248945fe5e5eeac0c93": { + "13d19aa2b2ca4bc8813208d9c646a5c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1396,60 +1439,59 @@ "text_color": null } }, - "1a185868ec264839899c469d9eab33d2": { - "model_module": "@jupyter-widgets/base", + "13d4c34d25c74a2d8064eba1bac91c80": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c701715a58ab4f6b96498a6d2d5401d1", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8a121ad004a142589d015aacd23c1026", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 + } + }, + "1503d7b6dde84b19aaba69486d60f143": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_040c266f4fc448cd8d1cc95b158b56b8", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0594ffe3ba1a4a8096af8f4341c83041", + "tabbable": null, + "tooltip": null, + "value": 48.0 } }, - "1b96ba7d606544e3a9031ae6e330b2ad": { + "1598a44a792c4139ad6a6de76b8c1394": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1467,33 +1509,30 @@ "text_color": null } }, - "21e7d0ef3ce242c39e7cd020466e810a": { + "15997adaaba2484396878d4e38a00113": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_63dcfab593544fa0ada5f95b79dac2ba", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2933949502e54bef83f0e90694d7add7", + "layout": "IPY_MODEL_d15b782752d3445386fe22758d87080d", + "placeholder": "​", + "style": "IPY_MODEL_373e88d9309d4ec9ae5ba4a731e6df0c", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": " 391/391 [00:00<00:00, 70.3kB/s]" } }, - "24694621aa2749e5af9a69f45b256a52": { + "16bcafb20249419fafeebd286e716441": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1546,7 +1585,7 @@ "width": null } }, - "27bde07b06ed4440b3669b7154b54046": { + "1804451ec9d0462696d56dfdb7a43744": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1599,23 +1638,7 @@ "width": null } }, - "2933949502e54bef83f0e90694d7add7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2a6996f932874def95923164062e763c": { + "1bd4a18941fe41209f76d034daa9feb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1668,108 +1691,33 @@ "width": null } }, - "37173e7373d149fc9152c1d14c56ab6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3768df49a1754947a705f3d1753661c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3823eca9476948a8b2f5c37541ce8c1a": { + "1d5e484ff2f34bc5a3067a29b87a866b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c7850fe9ce34478c800cf8ae6b447b3a", - "placeholder": "​", - "style": "IPY_MODEL_3f1c976abd4b418d880a84403285d9ee", + "layout": "IPY_MODEL_095e33092ba14246a9208dc768de2a5b", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f5184540242a45978bb6e6024ab9cc50", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "3b469d399c444b75afe0939d5aff9af1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8eb15be7d3234930b81180874a757735", - "IPY_MODEL_79c7e945e5e24a10a4f40829e3d42eac", - "IPY_MODEL_9d75982bb2c04cd4bccc506f0afa5208" - ], - "layout": "IPY_MODEL_7449a3c43ea24187a0e57f5c43418598", - "tabbable": null, - "tooltip": null - } - }, - "3f1c976abd4b418d880a84403285d9ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 391.0 } }, - "3fff531f85ea4494b2e7a68db6ebf964": { + "2602df39a3fd47c39e3cc01ecfebecf5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1822,48 +1770,30 @@ "width": null } }, - "432a3f7451b743739c5833161c1a6f85": { + "291c1991a2874a05af6b04cd7d022478": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4908697be7c345ccbeaac3bd0f7e8ccb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_71babad4e07341069a5c56a8e447d5f2", + "layout": "IPY_MODEL_633b6b32b3a04c209544909dd6867676", "placeholder": "​", - "style": "IPY_MODEL_1b96ba7d606544e3a9031ae6e330b2ad", + "style": "IPY_MODEL_9c99fad70047476ead6384d84291d907", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 7.17kB/s]" + "value": "pytorch_model.bin: 100%" } }, - "494f61a3738d4245a2af8c8d0c15853f": { + "2958046e8ce44c0a917fda09c0896495": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1916,80 +1846,7 @@ "width": null } }, - "4b4d683a145e4afe9f70153e19f4c250": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0a9e78a0405545eab6c26fec1fe081e9", - "placeholder": "​", - "style": "IPY_MODEL_88f57a5169e4416fadf83c44a95af79c", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 18.3MB/s]" - } - }, - "4b4e83c9680e4f2d86bb439951fa33a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b0f080b018bf49548986351b7e336b2d", - "IPY_MODEL_6cf514bad63f48b587df8a8ad38eb782", - "IPY_MODEL_4908697be7c345ccbeaac3bd0f7e8ccb" - ], - "layout": "IPY_MODEL_b089862e871a4a7ead41f33ed939db83", - "tabbable": null, - "tooltip": null - } - }, - "53a99db74bf54f9ca07bd90499ce94a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5c9854ed0f0841d9acf76df870f40275", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9b37aa9b9f564652a5a873d46cbbe73c", - "tabbable": null, - "tooltip": null, - "value": 665.0 - } - }, - "5c9854ed0f0841d9acf76df870f40275": { + "29dc9f8f21f14db983f9c7f0306f737b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2042,7 +1899,89 @@ "width": null } }, - "5f98a159d2804cff92ac47763e60e47b": { + "2a75436a6b3f421991d9c7289964dc4e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee866f21451f41d0a2b58182ec7c2183", + "placeholder": "​", + "style": "IPY_MODEL_9a7a2e2568e84ad090ba5d7f87ec6ca2", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "2c6a5bc9f5f34b87b657eda126c73765": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_44e61a23e45d4697bfaa4992b16388ff", + "placeholder": "​", + "style": "IPY_MODEL_88907c49643c45e58b6140b32e87068b", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 131kB/s]" + } + }, + "373e88d9309d4ec9ae5ba4a731e6df0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3edae48c957b43afb31452e760c3b5ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "44881d82bfd54d3995c4d702d2ce1aee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2095,7 +2034,7 @@ "width": null } }, - "63dcfab593544fa0ada5f95b79dac2ba": { + "44e61a23e45d4697bfaa4992b16388ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2148,48 +2087,63 @@ "width": null } }, - "63fe7a86b21d402eb96ae91c1f2c6e5f": { + "4c27de6e51584e4194ad1b2a70a228e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "6511595c45b1467daf4bf56c6df57779": { + "4ff5b7e108a64120b255afa2e1ff6f7d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_02f7759ffbcd47adabe3037c42e05ab9", - "placeholder": "​", - "style": "IPY_MODEL_79d572ab86cc45ebaee29e3a83f1c926", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2a75436a6b3f421991d9c7289964dc4e", + "IPY_MODEL_92df4c3e498c4d89bc4eccdc9cf22b5b", + "IPY_MODEL_c5c2fe07487c4fdf85dc6866c5c8bc54" + ], + "layout": "IPY_MODEL_16bcafb20249419fafeebd286e716441", "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 74.6kB/s]" + "tooltip": null } }, - "6c747b7cc7a2419cbc6f07a6036ac030": { + "5d1b88d2f0c14f6f82eb35c71e1d5bbe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5f818255776c4628ab75e3864e7bea0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2242,57 +2196,7 @@ "width": null } }, - "6cf514bad63f48b587df8a8ad38eb782": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_febcb9483d7f47a9a63e9352a40893bc", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ecef027e128a4a6dbf0e39543b406ab2", - "tabbable": null, - "tooltip": null, - "value": 48.0 - } - }, - "6ec8b78979d74d00bc134e4f89931257": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_11c8378c39ea4285a4fd3793747dfc4d", - "IPY_MODEL_ea702e3f7d57483b8eaa8ed15589f780", - "IPY_MODEL_d36da988a5e74309825025df8d74eb08" - ], - "layout": "IPY_MODEL_fc29363a5568468788c56b91a3041287", - "tabbable": null, - "tooltip": null - } - }, - "71babad4e07341069a5c56a8e447d5f2": { + "633b6b32b3a04c209544909dd6867676": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2345,23 +2249,7 @@ "width": null } }, - "732ad9420a694c95b3cd2eac4ac70152": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7449a3c43ea24187a0e57f5c43418598": { + "66d0debbcb38476f9b46625cbce14c68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2414,23 +2302,104 @@ "width": null } }, - "7846fd5bbb8e4f05a8fc9474f24f159c": { + "6757467eb2d347bdbfc65c8a3b0b752c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c1f10237bfc74f0b846f31c90674066b", + "IPY_MODEL_8b4fdf859aa445be8b803b0d911aae17", + "IPY_MODEL_104b801834d148df9f2e3d1ed081e587" + ], + "layout": "IPY_MODEL_a82b1d45d3234bb0a3319301666a72d5", + "tabbable": null, + "tooltip": null + } + }, + "695e9e36ea61416893fdfcb78d0482b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_44881d82bfd54d3995c4d702d2ce1aee", + "placeholder": "​", + "style": "IPY_MODEL_e1eddcb1817246efa831d0367cbd3c91", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 9.65kB/s]" + } + }, + "69f0abc1e50f49f8a576b20c5da62cfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, - "79c7e945e5e24a10a4f40829e3d42eac": { + "88907c49643c45e58b6140b32e87068b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8a121ad004a142589d015aacd23c1026": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8b4fdf859aa445be8b803b0d911aae17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2446,17 +2415,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ed4b556aa38f4147b1891c40f2417994", + "layout": "IPY_MODEL_1bd4a18941fe41209f76d034daa9feb2", "max": 231508.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7846fd5bbb8e4f05a8fc9474f24f159c", + "style": "IPY_MODEL_b8f4445e9931496caec7a0bf0cc7dc2c", "tabbable": null, "tooltip": null, "value": 231508.0 } }, - "79d572ab86cc45ebaee29e3a83f1c926": { + "8c9f66d089754d8aa7058c6b10d0947c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2474,7 +2443,33 @@ "text_color": null } }, - "7dec4a4f5c234cee882113e235ca2fc3": { + "8e4fd7081fc8461599b9a438c3912649": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_11edcabb6a894b66939da8220a1f7699", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5d1b88d2f0c14f6f82eb35c71e1d5bbe", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "90d6fdc421254deaaac7fd3b5e8f30ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2527,59 +2522,7 @@ "width": null } }, - "7e53f60e42a541bf9d519dd8a293890a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8156bb08868841fdaa446909df26ed6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "88f57a5169e4416fadf83c44a95af79c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8d81b4f18c13487e83ce1e652e09be71": { + "92df4c3e498c4d89bc4eccdc9cf22b5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2595,40 +2538,123 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9d2cc3b9cb5a434290e3ebb078cee544", - "max": 391.0, + "layout": "IPY_MODEL_1804451ec9d0462696d56dfdb7a43744", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8156bb08868841fdaa446909df26ed6d", + "style": "IPY_MODEL_4c27de6e51584e4194ad1b2a70a228e1", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": 466062.0 } }, - "8eb15be7d3234930b81180874a757735": { - "model_module": "@jupyter-widgets/controls", + "94cde3206e854b678e1a99ec1a075bdf": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e173532a5b6b467288f4e4f9e8f883c3", - "placeholder": "​", - "style": "IPY_MODEL_3768df49a1754947a705f3d1753661c8", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "976072a3aeb542dabace008e4f08126f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "925b1478afef46eba099d9c3364dae11": { + "9a7a2e2568e84ad090ba5d7f87ec6ca2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2646,7 +2672,7 @@ "text_color": null } }, - "95bca8444bb9497ba1cb19ca9d2083ec": { + "9c1c9cad0461490a96b44d548117c40c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2699,70 +2725,25 @@ "width": null } }, - "9ad66530c90644829af3ff3b71de772e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c03ec278ce874ff28555c026a11abc5a", - "IPY_MODEL_53a99db74bf54f9ca07bd90499ce94a1", - "IPY_MODEL_c3baeaf68bc44f6bb009055a8a94d0ab" - ], - "layout": "IPY_MODEL_6c747b7cc7a2419cbc6f07a6036ac030", - "tabbable": null, - "tooltip": null - } - }, - "9b37aa9b9f564652a5a873d46cbbe73c": { + "9c99fad70047476ead6384d84291d907": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9bba8683cbe8486eb6d99b1e674dd664": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0727a473a7c44983888c51d55ad7ef38", - "placeholder": "​", - "style": "IPY_MODEL_432a3f7451b743739c5833161c1a6f85", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9d2cc3b9cb5a434290e3ebb078cee544": { + "9e8a0f70f6f9418aab1d4dc540fe0e26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2815,7 +2796,7 @@ "width": null } }, - "9d75982bb2c04cd4bccc506f0afa5208": { + "9fdd8aba923f4e04be6bb5d963cb437c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2830,39 +2811,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e2ead88df0c94314a8e9936426f85465", + "layout": "IPY_MODEL_94cde3206e854b678e1a99ec1a075bdf", "placeholder": "​", - "style": "IPY_MODEL_f6f9f22324894f3c830cb98ec7825ab9", + "style": "IPY_MODEL_ce0868eececc4e4b82469a4729e2b9c9", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 12.1MB/s]" + "value": " 2.21k/2.21k [00:00<00:00, 445kB/s]" } }, - "a84b83317eb1464a89d98acf732e69f3": { + "a3014aec64314384b3ea693f7e0d6bc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_09ad1a93dbd74d7da7877d856fde7e7d", - "IPY_MODEL_8d81b4f18c13487e83ce1e652e09be71", - "IPY_MODEL_6511595c45b1467daf4bf56c6df57779" - ], - "layout": "IPY_MODEL_7dec4a4f5c234cee882113e235ca2fc3", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9e8a0f70f6f9418aab1d4dc540fe0e26", + "placeholder": "​", + "style": "IPY_MODEL_13d19aa2b2ca4bc8813208d9c646a5c7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 265MB/s]" } }, - "a923fc4e71f54d8693b5380212d8ccbc": { + "a82b1d45d3234bb0a3319301666a72d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2915,7 +2895,7 @@ "width": null } }, - "acb87edd19a24a4699ca7f39b030fc4d": { + "b0e548065a8d43c2ac7f21ade489d7e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2930,15 +2910,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_95bca8444bb9497ba1cb19ca9d2083ec", + "layout": "IPY_MODEL_29dc9f8f21f14db983f9c7f0306f737b", "placeholder": "​", - "style": "IPY_MODEL_7e53f60e42a541bf9d519dd8a293890a", + "style": "IPY_MODEL_feb07f5788e6431f883566fdebae816c", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 441kB/s]" + "value": "config.json: 100%" } }, - "afd3a7ae3f2d47629358ffc204b899f4": { + "b77e95d91f29458c87a8a832d9354217": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c644bdb104a2459ea7a9451cb95f4c6f", + "IPY_MODEL_1d5e484ff2f34bc5a3067a29b87a866b", + "IPY_MODEL_15997adaaba2484396878d4e38a00113" + ], + "layout": "IPY_MODEL_01ac85c54a074f46a529412c8198c339", + "tabbable": null, + "tooltip": null + } + }, + "b8f4445e9931496caec7a0bf0cc7dc2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2954,7 +2958,25 @@ "description_width": "" } }, - "b0107289a3c74150b6a63b0639f52163": { + "b95ea2b32e7d4b66a2a0e2873a01046d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bcd74fc84ce94b119d8e8d4b6070122a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2969,16 +2991,126 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3823eca9476948a8b2f5c37541ce8c1a", - "IPY_MODEL_cf0787df26e34d9f91173297fabc3e7d", - "IPY_MODEL_4b4d683a145e4afe9f70153e19f4c250" + "IPY_MODEL_b0e548065a8d43c2ac7f21ade489d7e7", + "IPY_MODEL_8e4fd7081fc8461599b9a438c3912649", + "IPY_MODEL_2c6a5bc9f5f34b87b657eda126c73765" ], - "layout": "IPY_MODEL_24694621aa2749e5af9a69f45b256a52", + "layout": "IPY_MODEL_976072a3aeb542dabace008e4f08126f", "tabbable": null, "tooltip": null } }, - "b089862e871a4a7ead41f33ed939db83": { + "bf4aeb8a17c24906a9308d4192063a5d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_66d0debbcb38476f9b46625cbce14c68", + "placeholder": "​", + "style": "IPY_MODEL_cd53a231e9e84f07a9ad8e3b9992aa32", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "c1f10237bfc74f0b846f31c90674066b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_faa5822f274f41fe9ff86f1471fdd7e2", + "placeholder": "​", + "style": "IPY_MODEL_3edae48c957b43afb31452e760c3b5ee", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "c5c2fe07487c4fdf85dc6866c5c8bc54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5f818255776c4628ab75e3864e7bea0c", + "placeholder": "​", + "style": "IPY_MODEL_1598a44a792c4139ad6a6de76b8c1394", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 3.95MB/s]" + } + }, + "c644bdb104a2459ea7a9451cb95f4c6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ed62e55cc8b646ceaf9963127bbe3f10", + "placeholder": "​", + "style": "IPY_MODEL_8c9f66d089754d8aa7058c6b10d0947c", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" + } + }, + "c691589a3f7e439b968bd28de4afe7e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c701715a58ab4f6b96498a6d2d5401d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3031,54 +3163,7 @@ "width": null } }, - "b0f080b018bf49548986351b7e336b2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_16d4c10733db42539ad0fb4b66aa86e5", - "placeholder": "​", - "style": "IPY_MODEL_37173e7373d149fc9152c1d14c56ab6f", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "b69c87c8bab34d739f9dc8d892d1bdb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9bba8683cbe8486eb6d99b1e674dd664", - "IPY_MODEL_21e7d0ef3ce242c39e7cd020466e810a", - "IPY_MODEL_acb87edd19a24a4699ca7f39b030fc4d" - ], - "layout": "IPY_MODEL_3fff531f85ea4494b2e7a68db6ebf964", - "tabbable": null, - "tooltip": null - } - }, - "c0283fa2741b4e5fa018301618769d63": { + "cd53a231e9e84f07a9ad8e3b9992aa32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3096,53 +3181,49 @@ "text_color": null } }, - "c03ec278ce874ff28555c026a11abc5a": { + "ce0868eececc4e4b82469a4729e2b9c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_27bde07b06ed4440b3669b7154b54046", - "placeholder": "​", - "style": "IPY_MODEL_18205799631a4248945fe5e5eeac0c93", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c3baeaf68bc44f6bb009055a8a94d0ab": { + "cf55d71b710845d8890451acc33799c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a923fc4e71f54d8693b5380212d8ccbc", - "placeholder": "​", - "style": "IPY_MODEL_c0283fa2741b4e5fa018301618769d63", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_291c1991a2874a05af6b04cd7d022478", + "IPY_MODEL_13d4c34d25c74a2d8064eba1bac91c80", + "IPY_MODEL_a3014aec64314384b3ea693f7e0d6bc8" + ], + "layout": "IPY_MODEL_90d6fdc421254deaaac7fd3b5e8f30ec", "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 121kB/s]" + "tooltip": null } }, - "c7850fe9ce34478c800cf8ae6b447b3a": { + "d15b782752d3445386fe22758d87080d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3195,7 +3276,25 @@ "width": null } }, - "cab499513c4645338c998fbd37de09eb": { + "e1eddcb1817246efa831d0367cbd3c91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ed62e55cc8b646ceaf9963127bbe3f10": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3248,56 +3347,7 @@ "width": null } }, - "cf0787df26e34d9f91173297fabc3e7d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5f98a159d2804cff92ac47763e60e47b", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_732ad9420a694c95b3cd2eac4ac70152", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "d36da988a5e74309825025df8d74eb08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cab499513c4645338c998fbd37de09eb", - "placeholder": "​", - "style": "IPY_MODEL_f5c5069ea5b34cad85153afb4c1b28d3", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 248MB/s]" - } - }, - "e173532a5b6b467288f4e4f9e8f883c3": { + "ee866f21451f41d0a2b58182ec7c2183": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3350,7 +3400,7 @@ "width": null } }, - "e2ead88df0c94314a8e9936426f85465": { + "ef38a47462b242638331cd976aefeae2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3403,49 +3453,31 @@ "width": null } }, - "ea702e3f7d57483b8eaa8ed15589f780": { + "f096b4fd6872467eb521cc3425e4ad77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1a185868ec264839899c469d9eab33d2", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_afd3a7ae3f2d47629358ffc204b899f4", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bf4aeb8a17c24906a9308d4192063a5d", + "IPY_MODEL_1503d7b6dde84b19aaba69486d60f143", + "IPY_MODEL_695e9e36ea61416893fdfcb78d0482b4" + ], + "layout": "IPY_MODEL_2958046e8ce44c0a917fda09c0896495", "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "ecef027e128a4a6dbf0e39543b406ab2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "ed4b556aa38f4147b1891c40f2417994": { + "f0a9d1777ee94c7c8c03baa6a51c46a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3498,43 +3530,46 @@ "width": null } }, - "f5c5069ea5b34cad85153afb4c1b28d3": { + "f5184540242a45978bb6e6024ab9cc50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "f6f9f22324894f3c830cb98ec7825ab9": { + "f720275cd00d4a9cb1737d0f4d081c2f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef38a47462b242638331cd976aefeae2", + "placeholder": "​", + "style": "IPY_MODEL_b95ea2b32e7d4b66a2a0e2873a01046d", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" } }, - "fc29363a5568468788c56b91a3041287": { + "faa5822f274f41fe9ff86f1471fdd7e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3587,57 +3622,22 @@ "width": null } }, - "febcb9483d7f47a9a63e9352a40893bc": { - "model_module": "@jupyter-widgets/base", + "feb07f5788e6431f883566fdebae816c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index ebb6918a8..3aeb84c24 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1347,7 +1347,7 @@

5. Use cleanlab to find label issues -{"state": {"540aae02b6ba439c971a2f1bd0372142": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9a9c0b3836a347a397e042a6c69b35b2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4f342941e2704a1ab4f5a6573802e824": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_540aae02b6ba439c971a2f1bd0372142", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9a9c0b3836a347a397e042a6c69b35b2", "tabbable": null, "tooltip": null, "value": 2041.0}}, "04ba5b3dd8c04e838a7e7cc0bfa6e753": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea19f6e80dcf4a24abaf70d866b17930": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "92cb8577cc654e0d8e16bbae83217272": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_04ba5b3dd8c04e838a7e7cc0bfa6e753", "placeholder": "\u200b", "style": "IPY_MODEL_ea19f6e80dcf4a24abaf70d866b17930", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "b2e2cb1f9859419987c9734f97a742c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a468700470b640d3bea331e703330b83": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8f1431a42875452aa1b8cfde25679907": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b2e2cb1f9859419987c9734f97a742c9", "placeholder": "\u200b", "style": "IPY_MODEL_a468700470b640d3bea331e703330b83", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007515kB/s]"}}, "8648287059e74a00bf2f14680df6314f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4cd4c06a93f14f1197fa29b0050ee02a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_92cb8577cc654e0d8e16bbae83217272", "IPY_MODEL_4f342941e2704a1ab4f5a6573802e824", "IPY_MODEL_8f1431a42875452aa1b8cfde25679907"], "layout": "IPY_MODEL_8648287059e74a00bf2f14680df6314f", "tabbable": null, "tooltip": null}}, "8ae9b101e46d47f4b87f8d8ed3dd9870": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c1fd44225be4ede888414b43fd1aae0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "76e016e7178b4959b3ec56409fa8a210": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8ae9b101e46d47f4b87f8d8ed3dd9870", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4c1fd44225be4ede888414b43fd1aae0", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "5507b68e0f544428aec43609f5ddf28c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "03e99ca1b8d9489bb6dd0acdfd67ce66": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1b1bd533cdc644f7a15f7e29d2f73cba": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5507b68e0f544428aec43609f5ddf28c", "placeholder": "\u200b", "style": "IPY_MODEL_03e99ca1b8d9489bb6dd0acdfd67ce66", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "bd45a6c6b8224423b27186bc3b1d76fd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8c5b691d790b47b99e214d2bce8e7685": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e13065afd10345898fa60d75d1c8c12c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bd45a6c6b8224423b27186bc3b1d76fd", "placeholder": "\u200b", "style": "IPY_MODEL_8c5b691d790b47b99e214d2bce8e7685", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007225MB/s]"}}, "b2348776d7944ed191a5d05c3a5832e2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6ff70f6342194a9393e623034448e79f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1b1bd533cdc644f7a15f7e29d2f73cba", "IPY_MODEL_76e016e7178b4959b3ec56409fa8a210", "IPY_MODEL_e13065afd10345898fa60d75d1c8c12c"], "layout": "IPY_MODEL_b2348776d7944ed191a5d05c3a5832e2", "tabbable": null, "tooltip": null}}, "b5d0a1652fa04933adc1ee277e1a5eea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "854bfce357274d7896b980d6ffa4d292": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0776a1a79f12437b822668f3b1593769": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b5d0a1652fa04933adc1ee277e1a5eea", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_854bfce357274d7896b980d6ffa4d292", "tabbable": null, "tooltip": null, "value": 3201.0}}, "3ffd2a3756b34ba782b7cee9ed1fbe6c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3b9a00617cf14ee8ad0718af9b5d78b8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "51981d23ad1b43f4bdcbbe538450da95": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3ffd2a3756b34ba782b7cee9ed1fbe6c", "placeholder": "\u200b", "style": "IPY_MODEL_3b9a00617cf14ee8ad0718af9b5d78b8", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "ec2e80c5d4b945f1a87577b27ebd4b5d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1ba264c268404d2db3c6cc8979b6615a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0163f12b39674660a03640a1d28d352b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ec2e80c5d4b945f1a87577b27ebd4b5d", "placeholder": "\u200b", "style": "IPY_MODEL_1ba264c268404d2db3c6cc8979b6615a", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007408kB/s]"}}, "c8b17a3e4f1a45208331ae52e30e604e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d2cd8781ed0546b2a786d5366cb329c0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_51981d23ad1b43f4bdcbbe538450da95", "IPY_MODEL_0776a1a79f12437b822668f3b1593769", "IPY_MODEL_0163f12b39674660a03640a1d28d352b"], "layout": "IPY_MODEL_c8b17a3e4f1a45208331ae52e30e604e", "tabbable": null, "tooltip": null}}, "05c5119b52184525b60b8a03502decce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e52ea3436b594f9fbc1b8984e837cd9b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3b0e94e7ec8948d1918b8007d32c3f06": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_05c5119b52184525b60b8a03502decce", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e52ea3436b594f9fbc1b8984e837cd9b", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "9f1114a0ebee46c89a328d3c3797d315": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7cdabc567a3a4232bff0caf92d20cccd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c8efd0a0a0b843c4b66180c59d0b0aa0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9f1114a0ebee46c89a328d3c3797d315", "placeholder": "\u200b", "style": "IPY_MODEL_7cdabc567a3a4232bff0caf92d20cccd", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "8a2f58b0cab74e9d97e1f5219d682a97": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "78008ea5606b450fbb7053298a8e14e3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d9e09dd6f61c46c29d56a60d373a4ef1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8a2f58b0cab74e9d97e1f5219d682a97", "placeholder": "\u200b", "style": "IPY_MODEL_78008ea5606b450fbb7053298a8e14e3", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007277MB/s]"}}, "5d5b3c718368482e8c3584d9f3b89134": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e4305fbce0724169bdabd574de390fab": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c8efd0a0a0b843c4b66180c59d0b0aa0", "IPY_MODEL_3b0e94e7ec8948d1918b8007d32c3f06", "IPY_MODEL_d9e09dd6f61c46c29d56a60d373a4ef1"], "layout": "IPY_MODEL_5d5b3c718368482e8c3584d9f3b89134", "tabbable": null, "tooltip": null}}, "ffa6b0f9ec6a43c9ba655194d22d2e82": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1465e93280394675a458a36ad7072519": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "dad64a778c1448e8b079a118cd347c91": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ffa6b0f9ec6a43c9ba655194d22d2e82", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1465e93280394675a458a36ad7072519", "tabbable": null, "tooltip": null, "value": 128619.0}}, "3f2644b73030463a8441b97daea33191": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "97be27862bcb4b0fadc3e9b38d9fa1ce": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8a2aae69012542859c482b05c913d007": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3f2644b73030463a8441b97daea33191", "placeholder": "\u200b", "style": "IPY_MODEL_97be27862bcb4b0fadc3e9b38d9fa1ce", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "910a45419bc341359f2cda7f377a91f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc2a3c7b22344d32ac51e5df8dc9d43a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ae9f130fd4de40f5b57a5480173ebb2b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_910a45419bc341359f2cda7f377a91f4", "placeholder": "\u200b", "style": "IPY_MODEL_bc2a3c7b22344d32ac51e5df8dc9d43a", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200721.2MB/s]"}}, "3daf3adb814146d593c6349bea89d709": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "271e126154f047f8b438aa7945f56194": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8a2aae69012542859c482b05c913d007", "IPY_MODEL_dad64a778c1448e8b079a118cd347c91", "IPY_MODEL_ae9f130fd4de40f5b57a5480173ebb2b"], "layout": "IPY_MODEL_3daf3adb814146d593c6349bea89d709", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"7b0a21f462aa4c588fc88161d4aacaf7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "30b5cf292a2d4ef7917f1a528257c959": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c944ad099e17457fa206b43284821586": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b0a21f462aa4c588fc88161d4aacaf7", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_30b5cf292a2d4ef7917f1a528257c959", "tabbable": null, "tooltip": null, "value": 2041.0}}, "fbf1b34c34974d5aa871e28dbd8a00f5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "98d46bcc8409465291c0807491bba1a6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9ea2756856324606b3da554c15c654d0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fbf1b34c34974d5aa871e28dbd8a00f5", "placeholder": "\u200b", "style": "IPY_MODEL_98d46bcc8409465291c0807491bba1a6", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "0246673bda614057b87d1d4a071d07dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b9575927b7ff4dc3b4f219a8058b36b9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "771d8a9eed1f4ac980d85ec212352d9c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0246673bda614057b87d1d4a071d07dc", "placeholder": "\u200b", "style": "IPY_MODEL_b9575927b7ff4dc3b4f219a8058b36b9", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007478kB/s]"}}, "759039067d2c4508b2db8adf3602ecb7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f13e6c1113f74ad78e8ebb5bae8047e9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9ea2756856324606b3da554c15c654d0", "IPY_MODEL_c944ad099e17457fa206b43284821586", "IPY_MODEL_771d8a9eed1f4ac980d85ec212352d9c"], "layout": "IPY_MODEL_759039067d2c4508b2db8adf3602ecb7", "tabbable": null, "tooltip": null}}, "2b302faa18af4ea2b2b48d13597cc0ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "36aaabf0d872419192d27b84e5bffb77": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2db66ec325294ef6b6c0bbcbf4ddf956": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2b302faa18af4ea2b2b48d13597cc0ce", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_36aaabf0d872419192d27b84e5bffb77", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "12085fdd993b4978b67be8ceccf56834": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b22538f44134499ca67768efd562ef59": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8f86c045b5af482e91516dd8164e57db": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_12085fdd993b4978b67be8ceccf56834", "placeholder": "\u200b", "style": "IPY_MODEL_b22538f44134499ca67768efd562ef59", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "4da7e4e7f66c437b9df947311fbcabb3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57c1a597566543ed9f622ce49e94ab55": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "991617589a474008aa2118e6b402fe3c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4da7e4e7f66c437b9df947311fbcabb3", "placeholder": "\u200b", "style": "IPY_MODEL_57c1a597566543ed9f622ce49e94ab55", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200725.8MB/s]"}}, "8d7752acd7244143a2465138cfdd0848": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48329f782307409c919507e64a194700": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8f86c045b5af482e91516dd8164e57db", "IPY_MODEL_2db66ec325294ef6b6c0bbcbf4ddf956", "IPY_MODEL_991617589a474008aa2118e6b402fe3c"], "layout": "IPY_MODEL_8d7752acd7244143a2465138cfdd0848", "tabbable": null, "tooltip": null}}, "acffbafe17c140c5a8dd99c8acfd75bd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d68db3bc2ea4e8a99fb98e4d66c9160": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b6235d9a1eca4733ba0221542f0d3643": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_acffbafe17c140c5a8dd99c8acfd75bd", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9d68db3bc2ea4e8a99fb98e4d66c9160", "tabbable": null, "tooltip": null, "value": 3201.0}}, "c284236043894de7a2aeab311605060f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "02a20d41840f41e593671467329b8a99": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0520862119224c0dadeb77bdab0013c1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c284236043894de7a2aeab311605060f", "placeholder": "\u200b", "style": "IPY_MODEL_02a20d41840f41e593671467329b8a99", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "8c99dff9eb4d49c884091c0856298635": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "54bfa2603b3d480cb21708ef6cbb23c2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "03639896d78b4997bfa5bd4ef9dd3b73": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c99dff9eb4d49c884091c0856298635", "placeholder": "\u200b", "style": "IPY_MODEL_54bfa2603b3d480cb21708ef6cbb23c2", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007607kB/s]"}}, "eddc0c22a05d419fbb6a614c372acc94": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1be4f39f14ee43cbb74596a54a9d8272": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0520862119224c0dadeb77bdab0013c1", "IPY_MODEL_b6235d9a1eca4733ba0221542f0d3643", "IPY_MODEL_03639896d78b4997bfa5bd4ef9dd3b73"], "layout": "IPY_MODEL_eddc0c22a05d419fbb6a614c372acc94", "tabbable": null, "tooltip": null}}, "7065599fb27a4c94b3a0f83176455eb3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7eb78abc773d43d6b5f5ea1b3a7d118a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e3fad78d0a454ee18486769b1f290a04": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7065599fb27a4c94b3a0f83176455eb3", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7eb78abc773d43d6b5f5ea1b3a7d118a", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "0cc1e2ec36dd4b3585cdf8034ca0aa07": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7d2d458d370049b88ce3f448a6173436": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8815f4d0f8a1488fb6ac1517db64608e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0cc1e2ec36dd4b3585cdf8034ca0aa07", "placeholder": "\u200b", "style": "IPY_MODEL_7d2d458d370049b88ce3f448a6173436", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "3151034ce11c498ca70679e99c762223": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d9623ce9228240f792b723b5ae5f6aea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5d435c65a28f416dba8acf9e9037e772": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3151034ce11c498ca70679e99c762223", "placeholder": "\u200b", "style": "IPY_MODEL_d9623ce9228240f792b723b5ae5f6aea", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200717.8MB/s]"}}, "de5219ece0bc4a8aa3814769270a8251": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b578372e109c4035a055c5b83ba4abec": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8815f4d0f8a1488fb6ac1517db64608e", "IPY_MODEL_e3fad78d0a454ee18486769b1f290a04", "IPY_MODEL_5d435c65a28f416dba8acf9e9037e772"], "layout": "IPY_MODEL_de5219ece0bc4a8aa3814769270a8251", "tabbable": null, "tooltip": null}}, "9bb209b5c60041e89c0b6a139baf0cf2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cba2fe5da4504b8bb895fbd45626e1e4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c33c14b2a5e34ea0ae0823ec817c2bbd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9bb209b5c60041e89c0b6a139baf0cf2", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cba2fe5da4504b8bb895fbd45626e1e4", "tabbable": null, "tooltip": null, "value": 128619.0}}, "a6994f6b25404fa090773a364b257fee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a437de4edb0b4d1c94542633e608f95c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "26dbafb5ca4e4097b6639ac5d840d91d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a6994f6b25404fa090773a364b257fee", "placeholder": "\u200b", "style": "IPY_MODEL_a437de4edb0b4d1c94542633e608f95c", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "7b0f7fc885b94f2fba36f99bff582ece": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "08360c1171a6493298ae9e0be537aeb1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "085a6252fdf04f9c8504f50efe0cddcb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b0f7fc885b94f2fba36f99bff582ece", "placeholder": "\u200b", "style": "IPY_MODEL_08360c1171a6493298ae9e0be537aeb1", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200722.7MB/s]"}}, "352c03049ef34564be6b16e25fa62a97": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "45285f6718ab4536af48bcf06a0aac0b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_26dbafb5ca4e4097b6639ac5d840d91d", "IPY_MODEL_c33c14b2a5e34ea0ae0823ec817c2bbd", "IPY_MODEL_085a6252fdf04f9c8504f50efe0cddcb"], "layout": "IPY_MODEL_352c03049ef34564be6b16e25fa62a97", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 65c0346d8..be2c44c4c 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:25.242952Z", - "iopub.status.busy": "2024-08-08T18:53:25.242777Z", - "iopub.status.idle": "2024-08-08T18:53:30.964482Z", - "shell.execute_reply": "2024-08-08T18:53:30.963973Z" + "iopub.execute_input": "2024-08-12T10:31:27.559918Z", + "iopub.status.busy": "2024-08-12T10:31:27.559732Z", + "iopub.status.idle": "2024-08-12T10:31:33.493498Z", + "shell.execute_reply": "2024-08-12T10:31:33.492957Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:30.967103Z", - "iopub.status.busy": "2024-08-08T18:53:30.966661Z", - "iopub.status.idle": "2024-08-08T18:53:30.969918Z", - "shell.execute_reply": "2024-08-08T18:53:30.969464Z" + "iopub.execute_input": "2024-08-12T10:31:33.496261Z", + "iopub.status.busy": "2024-08-12T10:31:33.495702Z", + "iopub.status.idle": "2024-08-12T10:31:33.498897Z", + "shell.execute_reply": "2024-08-12T10:31:33.498441Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:30.972054Z", - "iopub.status.busy": "2024-08-08T18:53:30.971718Z", - "iopub.status.idle": "2024-08-08T18:53:30.976453Z", - "shell.execute_reply": "2024-08-08T18:53:30.975893Z" + "iopub.execute_input": "2024-08-12T10:31:33.500915Z", + "iopub.status.busy": "2024-08-12T10:31:33.500569Z", + "iopub.status.idle": "2024-08-12T10:31:33.505593Z", + "shell.execute_reply": "2024-08-12T10:31:33.505157Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:30.978729Z", - "iopub.status.busy": "2024-08-08T18:53:30.978252Z", - "iopub.status.idle": "2024-08-08T18:53:32.731578Z", - "shell.execute_reply": "2024-08-08T18:53:32.730757Z" + "iopub.execute_input": "2024-08-12T10:31:33.507649Z", + "iopub.status.busy": "2024-08-12T10:31:33.507369Z", + "iopub.status.idle": "2024-08-12T10:31:35.407349Z", + "shell.execute_reply": "2024-08-12T10:31:35.406669Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:32.734459Z", - "iopub.status.busy": "2024-08-08T18:53:32.734060Z", - "iopub.status.idle": "2024-08-08T18:53:32.745297Z", - "shell.execute_reply": "2024-08-08T18:53:32.744840Z" + "iopub.execute_input": "2024-08-12T10:31:35.410188Z", + "iopub.status.busy": "2024-08-12T10:31:35.409775Z", + "iopub.status.idle": "2024-08-12T10:31:35.421192Z", + "shell.execute_reply": "2024-08-12T10:31:35.420725Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:32.747422Z", - "iopub.status.busy": "2024-08-08T18:53:32.747071Z", - "iopub.status.idle": "2024-08-08T18:53:32.752414Z", - "shell.execute_reply": "2024-08-08T18:53:32.751973Z" + "iopub.execute_input": "2024-08-12T10:31:35.423470Z", + "iopub.status.busy": "2024-08-12T10:31:35.423098Z", + "iopub.status.idle": "2024-08-12T10:31:35.428531Z", + "shell.execute_reply": "2024-08-12T10:31:35.428082Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:32.754415Z", - "iopub.status.busy": "2024-08-08T18:53:32.754141Z", - "iopub.status.idle": "2024-08-08T18:53:33.202427Z", - "shell.execute_reply": "2024-08-08T18:53:33.201827Z" + "iopub.execute_input": "2024-08-12T10:31:35.430695Z", + "iopub.status.busy": "2024-08-12T10:31:35.430312Z", + "iopub.status.idle": "2024-08-12T10:31:35.930501Z", + "shell.execute_reply": "2024-08-12T10:31:35.929981Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:33.204900Z", - "iopub.status.busy": "2024-08-08T18:53:33.204458Z", - "iopub.status.idle": "2024-08-08T18:53:34.314129Z", - "shell.execute_reply": "2024-08-08T18:53:34.313503Z" + "iopub.execute_input": "2024-08-12T10:31:35.932712Z", + "iopub.status.busy": "2024-08-12T10:31:35.932347Z", + "iopub.status.idle": "2024-08-12T10:31:39.361143Z", + "shell.execute_reply": "2024-08-12T10:31:39.360515Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:34.316841Z", - "iopub.status.busy": "2024-08-08T18:53:34.316402Z", - "iopub.status.idle": "2024-08-08T18:53:34.334728Z", - "shell.execute_reply": "2024-08-08T18:53:34.334166Z" + "iopub.execute_input": "2024-08-12T10:31:39.363821Z", + "iopub.status.busy": "2024-08-12T10:31:39.363462Z", + "iopub.status.idle": "2024-08-12T10:31:39.381626Z", + "shell.execute_reply": "2024-08-12T10:31:39.381166Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:34.336865Z", - "iopub.status.busy": "2024-08-08T18:53:34.336558Z", - "iopub.status.idle": "2024-08-08T18:53:34.339651Z", - "shell.execute_reply": "2024-08-08T18:53:34.339110Z" + "iopub.execute_input": "2024-08-12T10:31:39.383708Z", + "iopub.status.busy": "2024-08-12T10:31:39.383362Z", + "iopub.status.idle": "2024-08-12T10:31:39.386579Z", + "shell.execute_reply": "2024-08-12T10:31:39.386056Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:34.341609Z", - "iopub.status.busy": "2024-08-08T18:53:34.341314Z", - "iopub.status.idle": "2024-08-08T18:53:48.569661Z", - "shell.execute_reply": "2024-08-08T18:53:48.569040Z" + "iopub.execute_input": "2024-08-12T10:31:39.388474Z", + "iopub.status.busy": "2024-08-12T10:31:39.388295Z", + "iopub.status.idle": "2024-08-12T10:31:53.912289Z", + "shell.execute_reply": "2024-08-12T10:31:53.911735Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:48.572331Z", - "iopub.status.busy": "2024-08-08T18:53:48.572130Z", - "iopub.status.idle": "2024-08-08T18:53:48.575956Z", - "shell.execute_reply": "2024-08-08T18:53:48.575422Z" + "iopub.execute_input": "2024-08-12T10:31:53.914987Z", + "iopub.status.busy": "2024-08-12T10:31:53.914565Z", + "iopub.status.idle": "2024-08-12T10:31:53.918442Z", + "shell.execute_reply": "2024-08-12T10:31:53.917879Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:48.578169Z", - "iopub.status.busy": "2024-08-08T18:53:48.577718Z", - "iopub.status.idle": "2024-08-08T18:53:49.277921Z", - "shell.execute_reply": "2024-08-08T18:53:49.277311Z" + "iopub.execute_input": "2024-08-12T10:31:53.920671Z", + "iopub.status.busy": "2024-08-12T10:31:53.920322Z", + "iopub.status.idle": "2024-08-12T10:31:54.650629Z", + "shell.execute_reply": "2024-08-12T10:31:54.650002Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.280920Z", - "iopub.status.busy": "2024-08-08T18:53:49.280509Z", - "iopub.status.idle": "2024-08-08T18:53:49.285350Z", - "shell.execute_reply": "2024-08-08T18:53:49.284849Z" + "iopub.execute_input": "2024-08-12T10:31:54.653500Z", + "iopub.status.busy": "2024-08-12T10:31:54.653156Z", + "iopub.status.idle": "2024-08-12T10:31:54.657830Z", + "shell.execute_reply": "2024-08-12T10:31:54.657339Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.288614Z", - "iopub.status.busy": "2024-08-08T18:53:49.287662Z", - "iopub.status.idle": "2024-08-08T18:53:49.398575Z", - "shell.execute_reply": "2024-08-08T18:53:49.397975Z" + "iopub.execute_input": "2024-08-12T10:31:54.660238Z", + "iopub.status.busy": "2024-08-12T10:31:54.659917Z", + "iopub.status.idle": "2024-08-12T10:31:54.771646Z", + "shell.execute_reply": "2024-08-12T10:31:54.770906Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.401118Z", - "iopub.status.busy": "2024-08-08T18:53:49.400608Z", - "iopub.status.idle": "2024-08-08T18:53:49.413091Z", - "shell.execute_reply": "2024-08-08T18:53:49.412607Z" + "iopub.execute_input": "2024-08-12T10:31:54.774198Z", + "iopub.status.busy": "2024-08-12T10:31:54.773768Z", + "iopub.status.idle": "2024-08-12T10:31:54.786459Z", + "shell.execute_reply": "2024-08-12T10:31:54.785945Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.415334Z", - "iopub.status.busy": "2024-08-08T18:53:49.414873Z", - "iopub.status.idle": "2024-08-08T18:53:49.422628Z", - "shell.execute_reply": "2024-08-08T18:53:49.422057Z" + "iopub.execute_input": "2024-08-12T10:31:54.788774Z", + "iopub.status.busy": "2024-08-12T10:31:54.788346Z", + "iopub.status.idle": "2024-08-12T10:31:54.796268Z", + "shell.execute_reply": "2024-08-12T10:31:54.795704Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.424687Z", - "iopub.status.busy": "2024-08-08T18:53:49.424387Z", - "iopub.status.idle": "2024-08-08T18:53:49.428669Z", - "shell.execute_reply": "2024-08-08T18:53:49.428110Z" + "iopub.execute_input": "2024-08-12T10:31:54.798511Z", + "iopub.status.busy": "2024-08-12T10:31:54.798097Z", + "iopub.status.idle": "2024-08-12T10:31:54.802250Z", + "shell.execute_reply": "2024-08-12T10:31:54.801692Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.430669Z", - "iopub.status.busy": "2024-08-08T18:53:49.430346Z", - "iopub.status.idle": "2024-08-08T18:53:49.435897Z", - "shell.execute_reply": "2024-08-08T18:53:49.435457Z" + "iopub.execute_input": "2024-08-12T10:31:54.804434Z", + "iopub.status.busy": "2024-08-12T10:31:54.804110Z", + "iopub.status.idle": "2024-08-12T10:31:54.809820Z", + "shell.execute_reply": "2024-08-12T10:31:54.809216Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.438081Z", - "iopub.status.busy": "2024-08-08T18:53:49.437664Z", - "iopub.status.idle": "2024-08-08T18:53:49.551086Z", - "shell.execute_reply": "2024-08-08T18:53:49.550491Z" + "iopub.execute_input": "2024-08-12T10:31:54.812094Z", + "iopub.status.busy": "2024-08-12T10:31:54.811739Z", + "iopub.status.idle": "2024-08-12T10:31:54.923543Z", + "shell.execute_reply": "2024-08-12T10:31:54.922978Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.553278Z", - "iopub.status.busy": "2024-08-08T18:53:49.552959Z", - "iopub.status.idle": "2024-08-08T18:53:49.655649Z", - "shell.execute_reply": "2024-08-08T18:53:49.655159Z" + "iopub.execute_input": "2024-08-12T10:31:54.925854Z", + "iopub.status.busy": "2024-08-12T10:31:54.925415Z", + "iopub.status.idle": "2024-08-12T10:31:55.031344Z", + "shell.execute_reply": "2024-08-12T10:31:55.030759Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.657859Z", - "iopub.status.busy": "2024-08-08T18:53:49.657506Z", - "iopub.status.idle": "2024-08-08T18:53:49.756919Z", - "shell.execute_reply": "2024-08-08T18:53:49.756408Z" + "iopub.execute_input": "2024-08-12T10:31:55.033717Z", + "iopub.status.busy": "2024-08-12T10:31:55.033217Z", + "iopub.status.idle": "2024-08-12T10:31:55.137202Z", + "shell.execute_reply": "2024-08-12T10:31:55.136556Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.759111Z", - "iopub.status.busy": "2024-08-08T18:53:49.758830Z", - "iopub.status.idle": "2024-08-08T18:53:49.859854Z", - "shell.execute_reply": "2024-08-08T18:53:49.859288Z" + "iopub.execute_input": "2024-08-12T10:31:55.139888Z", + "iopub.status.busy": "2024-08-12T10:31:55.139384Z", + "iopub.status.idle": "2024-08-12T10:31:55.247170Z", + "shell.execute_reply": "2024-08-12T10:31:55.246562Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:49.862138Z", - "iopub.status.busy": "2024-08-08T18:53:49.861828Z", - "iopub.status.idle": "2024-08-08T18:53:49.865036Z", - "shell.execute_reply": "2024-08-08T18:53:49.864547Z" + "iopub.execute_input": "2024-08-12T10:31:55.249509Z", + "iopub.status.busy": "2024-08-12T10:31:55.249171Z", + "iopub.status.idle": "2024-08-12T10:31:55.252645Z", + "shell.execute_reply": "2024-08-12T10:31:55.252057Z" }, "nbsphinx": "hidden" }, @@ -1392,7 +1392,101 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0163f12b39674660a03640a1d28d352b": { + "0246673bda614057b87d1d4a071d07dc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "02a20d41840f41e593671467329b8a99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "03639896d78b4997bfa5bd4ef9dd3b73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c99dff9eb4d49c884091c0856298635", + "placeholder": "​", + "style": "IPY_MODEL_54bfa2603b3d480cb21708ef6cbb23c2", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 607kB/s]" + } + }, + "0520862119224c0dadeb77bdab0013c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1407,15 +1501,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec2e80c5d4b945f1a87577b27ebd4b5d", + "layout": "IPY_MODEL_c284236043894de7a2aeab311605060f", "placeholder": "​", - "style": "IPY_MODEL_1ba264c268404d2db3c6cc8979b6615a", + "style": "IPY_MODEL_02a20d41840f41e593671467329b8a99", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 408kB/s]" + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "03e99ca1b8d9489bb6dd0acdfd67ce66": { + "08360c1171a6493298ae9e0be537aeb1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1433,7 +1527,30 @@ "text_color": null } }, - "04ba5b3dd8c04e838a7e7cc0bfa6e753": { + "085a6252fdf04f9c8504f50efe0cddcb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7b0f7fc885b94f2fba36f99bff582ece", + "placeholder": "​", + "style": "IPY_MODEL_08360c1171a6493298ae9e0be537aeb1", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 22.7MB/s]" + } + }, + "0cc1e2ec36dd4b3585cdf8034ca0aa07": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1486,7 +1603,7 @@ "width": null } }, - "05c5119b52184525b60b8a03502decce": { + "12085fdd993b4978b67be8ceccf56834": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1539,90 +1656,7 @@ "width": null } }, - "0776a1a79f12437b822668f3b1593769": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b5d0a1652fa04933adc1ee277e1a5eea", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_854bfce357274d7896b980d6ffa4d292", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "1465e93280394675a458a36ad7072519": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1b1bd533cdc644f7a15f7e29d2f73cba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5507b68e0f544428aec43609f5ddf28c", - "placeholder": "​", - "style": "IPY_MODEL_03e99ca1b8d9489bb6dd0acdfd67ce66", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "1ba264c268404d2db3c6cc8979b6615a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "271e126154f047f8b438aa7945f56194": { + "1be4f39f14ee43cbb74596a54a9d8272": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1637,60 +1671,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8a2aae69012542859c482b05c913d007", - "IPY_MODEL_dad64a778c1448e8b079a118cd347c91", - "IPY_MODEL_ae9f130fd4de40f5b57a5480173ebb2b" + "IPY_MODEL_0520862119224c0dadeb77bdab0013c1", + "IPY_MODEL_b6235d9a1eca4733ba0221542f0d3643", + "IPY_MODEL_03639896d78b4997bfa5bd4ef9dd3b73" ], - "layout": "IPY_MODEL_3daf3adb814146d593c6349bea89d709", + "layout": "IPY_MODEL_eddc0c22a05d419fbb6a614c372acc94", "tabbable": null, "tooltip": null } }, - "3b0e94e7ec8948d1918b8007d32c3f06": { + "26dbafb5ca4e4097b6639ac5d840d91d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_05c5119b52184525b60b8a03502decce", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e52ea3436b594f9fbc1b8984e837cd9b", + "layout": "IPY_MODEL_a6994f6b25404fa090773a364b257fee", + "placeholder": "​", + "style": "IPY_MODEL_a437de4edb0b4d1c94542633e608f95c", "tabbable": null, "tooltip": null, - "value": 15856877.0 - } - }, - "3b9a00617cf14ee8ad0718af9b5d78b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "label_encoder.txt: 100%" } }, - "3daf3adb814146d593c6349bea89d709": { + "2b302faa18af4ea2b2b48d13597cc0ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1743,7 +1756,49 @@ "width": null } }, - "3f2644b73030463a8441b97daea33191": { + "2db66ec325294ef6b6c0bbcbf4ddf956": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2b302faa18af4ea2b2b48d13597cc0ce", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_36aaabf0d872419192d27b84e5bffb77", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "30b5cf292a2d4ef7917f1a528257c959": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3151034ce11c498ca70679e99c762223": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1796,7 +1851,7 @@ "width": null } }, - "3ffd2a3756b34ba782b7cee9ed1fbe6c": { + "352c03049ef34564be6b16e25fa62a97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1849,7 +1904,7 @@ "width": null } }, - "4c1fd44225be4ede888414b43fd1aae0": { + "36aaabf0d872419192d27b84e5bffb77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1865,7 +1920,7 @@ "description_width": "" } }, - "4cd4c06a93f14f1197fa29b0050ee02a": { + "45285f6718ab4536af48bcf06a0aac0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1880,65 +1935,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_92cb8577cc654e0d8e16bbae83217272", - "IPY_MODEL_4f342941e2704a1ab4f5a6573802e824", - "IPY_MODEL_8f1431a42875452aa1b8cfde25679907" + "IPY_MODEL_26dbafb5ca4e4097b6639ac5d840d91d", + "IPY_MODEL_c33c14b2a5e34ea0ae0823ec817c2bbd", + "IPY_MODEL_085a6252fdf04f9c8504f50efe0cddcb" ], - "layout": "IPY_MODEL_8648287059e74a00bf2f14680df6314f", + "layout": "IPY_MODEL_352c03049ef34564be6b16e25fa62a97", "tabbable": null, "tooltip": null } }, - "4f342941e2704a1ab4f5a6573802e824": { + "48329f782307409c919507e64a194700": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_540aae02b6ba439c971a2f1bd0372142", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9a9c0b3836a347a397e042a6c69b35b2", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "51981d23ad1b43f4bdcbbe538450da95": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ffd2a3756b34ba782b7cee9ed1fbe6c", - "placeholder": "​", - "style": "IPY_MODEL_3b9a00617cf14ee8ad0718af9b5d78b8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8f86c045b5af482e91516dd8164e57db", + "IPY_MODEL_2db66ec325294ef6b6c0bbcbf4ddf956", + "IPY_MODEL_991617589a474008aa2118e6b402fe3c" + ], + "layout": "IPY_MODEL_8d7752acd7244143a2465138cfdd0848", "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "tooltip": null } }, - "540aae02b6ba439c971a2f1bd0372142": { + "4da7e4e7f66c437b9df947311fbcabb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1991,7 +2021,66 @@ "width": null } }, - "5507b68e0f544428aec43609f5ddf28c": { + "54bfa2603b3d480cb21708ef6cbb23c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "57c1a597566543ed9f622ce49e94ab55": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5d435c65a28f416dba8acf9e9037e772": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3151034ce11c498ca70679e99c762223", + "placeholder": "​", + "style": "IPY_MODEL_d9623ce9228240f792b723b5ae5f6aea", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 17.8MB/s]" + } + }, + "7065599fb27a4c94b3a0f83176455eb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2044,7 +2133,7 @@ "width": null } }, - "5d5b3c718368482e8c3584d9f3b89134": { + "759039067d2c4508b2db8adf3602ecb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2097,109 +2186,83 @@ "width": null } }, - "6ff70f6342194a9393e623034448e79f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1b1bd533cdc644f7a15f7e29d2f73cba", - "IPY_MODEL_76e016e7178b4959b3ec56409fa8a210", - "IPY_MODEL_e13065afd10345898fa60d75d1c8c12c" - ], - "layout": "IPY_MODEL_b2348776d7944ed191a5d05c3a5832e2", - "tabbable": null, - "tooltip": null - } - }, - "76e016e7178b4959b3ec56409fa8a210": { + "771d8a9eed1f4ac980d85ec212352d9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8ae9b101e46d47f4b87f8d8ed3dd9870", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4c1fd44225be4ede888414b43fd1aae0", + "layout": "IPY_MODEL_0246673bda614057b87d1d4a071d07dc", + "placeholder": "​", + "style": "IPY_MODEL_b9575927b7ff4dc3b4f219a8058b36b9", "tabbable": null, "tooltip": null, - "value": 16887676.0 - } - }, - "78008ea5606b450fbb7053298a8e14e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7cdabc567a3a4232bff0caf92d20cccd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 2.04k/2.04k [00:00<00:00, 478kB/s]" } }, - "854bfce357274d7896b980d6ffa4d292": { - "model_module": "@jupyter-widgets/controls", + "7b0a21f462aa4c588fc88161d4aacaf7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8648287059e74a00bf2f14680df6314f": { + "7b0f7fc885b94f2fba36f99bff582ece": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2252,7 +2315,41 @@ "width": null } }, - "8a2aae69012542859c482b05c913d007": { + "7d2d458d370049b88ce3f448a6173436": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7eb78abc773d43d6b5f5ea1b3a7d118a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8815f4d0f8a1488fb6ac1517db64608e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2267,15 +2364,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3f2644b73030463a8441b97daea33191", + "layout": "IPY_MODEL_0cc1e2ec36dd4b3585cdf8034ca0aa07", "placeholder": "​", - "style": "IPY_MODEL_97be27862bcb4b0fadc3e9b38d9fa1ce", + "style": "IPY_MODEL_7d2d458d370049b88ce3f448a6173436", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": "classifier.ckpt: 100%" } }, - "8a2f58b0cab74e9d97e1f5219d682a97": { + "8c99dff9eb4d49c884091c0856298635": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2328,7 +2425,7 @@ "width": null } }, - "8ae9b101e46d47f4b87f8d8ed3dd9870": { + "8d7752acd7244143a2465138cfdd0848": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2381,7 +2478,30 @@ "width": null } }, - "8c5b691d790b47b99e214d2bce8e7685": { + "8f86c045b5af482e91516dd8164e57db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_12085fdd993b4978b67be8ceccf56834", + "placeholder": "​", + "style": "IPY_MODEL_b22538f44134499ca67768efd562ef59", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "98d46bcc8409465291c0807491bba1a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2399,7 +2519,7 @@ "text_color": null } }, - "8f1431a42875452aa1b8cfde25679907": { + "991617589a474008aa2118e6b402fe3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2414,15 +2534,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b2e2cb1f9859419987c9734f97a742c9", + "layout": "IPY_MODEL_4da7e4e7f66c437b9df947311fbcabb3", "placeholder": "​", - "style": "IPY_MODEL_a468700470b640d3bea331e703330b83", + "style": "IPY_MODEL_57c1a597566543ed9f622ce49e94ab55", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 515kB/s]" + "value": " 16.9M/16.9M [00:00<00:00, 25.8MB/s]" } }, - "910a45419bc341359f2cda7f377a91f4": { + "9bb209b5c60041e89c0b6a139baf0cf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2475,7 +2595,23 @@ "width": null } }, - "92cb8577cc654e0d8e16bbae83217272": { + "9d68db3bc2ea4e8a99fb98e4d66c9160": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9ea2756856324606b3da554c15c654d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2490,15 +2626,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_04ba5b3dd8c04e838a7e7cc0bfa6e753", + "layout": "IPY_MODEL_fbf1b34c34974d5aa871e28dbd8a00f5", "placeholder": "​", - "style": "IPY_MODEL_ea19f6e80dcf4a24abaf70d866b17930", + "style": "IPY_MODEL_98d46bcc8409465291c0807491bba1a6", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml: 100%" } }, - "97be27862bcb4b0fadc3e9b38d9fa1ce": { + "a437de4edb0b4d1c94542633e608f95c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2516,23 +2652,7 @@ "text_color": null } }, - "9a9c0b3836a347a397e042a6c69b35b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9f1114a0ebee46c89a328d3c3797d315": { + "a6994f6b25404fa090773a364b257fee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2585,48 +2705,7 @@ "width": null } }, - "a468700470b640d3bea331e703330b83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ae9f130fd4de40f5b57a5480173ebb2b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_910a45419bc341359f2cda7f377a91f4", - "placeholder": "​", - "style": "IPY_MODEL_bc2a3c7b22344d32ac51e5df8dc9d43a", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 21.2MB/s]" - } - }, - "b2348776d7944ed191a5d05c3a5832e2": { + "acffbafe17c140c5a8dd99c8acfd75bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2679,113 +2758,75 @@ "width": null } }, - "b2e2cb1f9859419987c9734f97a742c9": { - "model_module": "@jupyter-widgets/base", + "b22538f44134499ca67768efd562ef59": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b5d0a1652fa04933adc1ee277e1a5eea": { - "model_module": "@jupyter-widgets/base", + "b578372e109c4035a055c5b83ba4abec": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8815f4d0f8a1488fb6ac1517db64608e", + "IPY_MODEL_e3fad78d0a454ee18486769b1f290a04", + "IPY_MODEL_5d435c65a28f416dba8acf9e9037e772" + ], + "layout": "IPY_MODEL_de5219ece0bc4a8aa3814769270a8251", + "tabbable": null, + "tooltip": null } }, - "bc2a3c7b22344d32ac51e5df8dc9d43a": { + "b6235d9a1eca4733ba0221542f0d3643": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_acffbafe17c140c5a8dd99c8acfd75bd", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9d68db3bc2ea4e8a99fb98e4d66c9160", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "b9575927b7ff4dc3b4f219a8058b36b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2803,7 +2844,7 @@ "text_color": null } }, - "bd45a6c6b8224423b27186bc3b1d76fd": { + "c284236043894de7a2aeab311605060f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2856,7 +2897,93 @@ "width": null } }, - "c8b17a3e4f1a45208331ae52e30e604e": { + "c33c14b2a5e34ea0ae0823ec817c2bbd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9bb209b5c60041e89c0b6a139baf0cf2", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cba2fe5da4504b8bb895fbd45626e1e4", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "c944ad099e17457fa206b43284821586": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7b0a21f462aa4c588fc88161d4aacaf7", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_30b5cf292a2d4ef7917f1a528257c959", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "cba2fe5da4504b8bb895fbd45626e1e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d9623ce9228240f792b723b5ae5f6aea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "de5219ece0bc4a8aa3814769270a8251": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2909,77 +3036,7 @@ "width": null } }, - "c8efd0a0a0b843c4b66180c59d0b0aa0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9f1114a0ebee46c89a328d3c3797d315", - "placeholder": "​", - "style": "IPY_MODEL_7cdabc567a3a4232bff0caf92d20cccd", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "d2cd8781ed0546b2a786d5366cb329c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_51981d23ad1b43f4bdcbbe538450da95", - "IPY_MODEL_0776a1a79f12437b822668f3b1593769", - "IPY_MODEL_0163f12b39674660a03640a1d28d352b" - ], - "layout": "IPY_MODEL_c8b17a3e4f1a45208331ae52e30e604e", - "tabbable": null, - "tooltip": null - } - }, - "d9e09dd6f61c46c29d56a60d373a4ef1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a2f58b0cab74e9d97e1f5219d682a97", - "placeholder": "​", - "style": "IPY_MODEL_78008ea5606b450fbb7053298a8e14e3", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 277MB/s]" - } - }, - "dad64a778c1448e8b079a118cd347c91": { + "e3fad78d0a454ee18486769b1f290a04": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2995,98 +3052,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ffa6b0f9ec6a43c9ba655194d22d2e82", - "max": 128619.0, + "layout": "IPY_MODEL_7065599fb27a4c94b3a0f83176455eb3", + "max": 15856877.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1465e93280394675a458a36ad7072519", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "e13065afd10345898fa60d75d1c8c12c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bd45a6c6b8224423b27186bc3b1d76fd", - "placeholder": "​", - "style": "IPY_MODEL_8c5b691d790b47b99e214d2bce8e7685", + "style": "IPY_MODEL_7eb78abc773d43d6b5f5ea1b3a7d118a", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 225MB/s]" - } - }, - "e4305fbce0724169bdabd574de390fab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c8efd0a0a0b843c4b66180c59d0b0aa0", - "IPY_MODEL_3b0e94e7ec8948d1918b8007d32c3f06", - "IPY_MODEL_d9e09dd6f61c46c29d56a60d373a4ef1" - ], - "layout": "IPY_MODEL_5d5b3c718368482e8c3584d9f3b89134", - "tabbable": null, - "tooltip": null - } - }, - "e52ea3436b594f9fbc1b8984e837cd9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ea19f6e80dcf4a24abaf70d866b17930": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 15856877.0 } }, - "ec2e80c5d4b945f1a87577b27ebd4b5d": { + "eddc0c22a05d419fbb6a614c372acc94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3139,7 +3115,31 @@ "width": null } }, - "ffa6b0f9ec6a43c9ba655194d22d2e82": { + "f13e6c1113f74ad78e8ebb5bae8047e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9ea2756856324606b3da554c15c654d0", + "IPY_MODEL_c944ad099e17457fa206b43284821586", + "IPY_MODEL_771d8a9eed1f4ac980d85ec212352d9c" + ], + "layout": "IPY_MODEL_759039067d2c4508b2db8adf3602ecb7", + "tabbable": null, + "tooltip": null + } + }, + "fbf1b34c34974d5aa871e28dbd8a00f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 478c0aca3..749518eec 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1291,7 +1291,7 @@

Functionality 3: Save and load Datalab objects
-
+
@@ -1566,7 +1566,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"a119aa224e4a44978e662d8f20875db9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ab80ba7ffb1486fab890f3d666bdbe5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d4a9304596a04567b2c5eab155565142": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a119aa224e4a44978e662d8f20875db9", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2ab80ba7ffb1486fab890f3d666bdbe5", "tabbable": null, "tooltip": null, "value": 132.0}}, "e65e9e9a3b6546e781e534442cfee063": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f6067bad19b64bdda10ff1e97e2eb459": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a5b3c2152de048a2b3299084ccc724eb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e65e9e9a3b6546e781e534442cfee063", "placeholder": "\u200b", "style": "IPY_MODEL_f6067bad19b64bdda10ff1e97e2eb459", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "f0fa1263d8404f888e39f5c9ed9134ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea3dc2877c9147b3a424d5ca5973bfff": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c65ffdbe3a2f46b2b17bdc5735ac60ee": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f0fa1263d8404f888e39f5c9ed9134ea", "placeholder": "\u200b", "style": "IPY_MODEL_ea3dc2877c9147b3a424d5ca5973bfff", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200711354.09\u2007examples/s]"}}, "e643313c24ca41cbb41ed410eee91be8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f122fc7efb194d83843b3ad7dbae4262": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a5b3c2152de048a2b3299084ccc724eb", "IPY_MODEL_d4a9304596a04567b2c5eab155565142", "IPY_MODEL_c65ffdbe3a2f46b2b17bdc5735ac60ee"], "layout": "IPY_MODEL_e643313c24ca41cbb41ed410eee91be8", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"9ca473e51cfe4e43aa18d492518d8d5a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ffddd94db73a4ecf8ec12daa355bfab3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "54d7caf41f934968aee3eba3ea8e068b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9ca473e51cfe4e43aa18d492518d8d5a", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ffddd94db73a4ecf8ec12daa355bfab3", "tabbable": null, "tooltip": null, "value": 132.0}}, "8840190de80b4ad7b948b5c41cd9b9a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3bc0dcea43a547e3a8b3ba8ba898ebc3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a3b187cf3ab34fe997d96e21abb214cc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8840190de80b4ad7b948b5c41cd9b9a6", "placeholder": "\u200b", "style": "IPY_MODEL_3bc0dcea43a547e3a8b3ba8ba898ebc3", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "ff9d81d4322d4281a3537e0673a5b97d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "07a72d376d6e478baad0ef09f148bbf6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "50535b3950f44374a0fd1c9724af2593": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ff9d81d4322d4281a3537e0673a5b97d", "placeholder": "\u200b", "style": "IPY_MODEL_07a72d376d6e478baad0ef09f148bbf6", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712983.33\u2007examples/s]"}}, "973f5f2c9d4947229d6f499d72a6e562": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dffb23ed5c2644778ec4c7c3f2b9f329": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a3b187cf3ab34fe997d96e21abb214cc", "IPY_MODEL_54d7caf41f934968aee3eba3ea8e068b", "IPY_MODEL_50535b3950f44374a0fd1c9724af2593"], "layout": "IPY_MODEL_973f5f2c9d4947229d6f499d72a6e562", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 323ce22c5..3b981fe19 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:53.705625Z", - "iopub.status.busy": "2024-08-08T18:53:53.705448Z", - "iopub.status.idle": "2024-08-08T18:53:55.081486Z", - "shell.execute_reply": "2024-08-08T18:53:55.080922Z" + "iopub.execute_input": "2024-08-12T10:31:59.748865Z", + "iopub.status.busy": "2024-08-12T10:31:59.748689Z", + "iopub.status.idle": "2024-08-12T10:32:01.178381Z", + "shell.execute_reply": "2024-08-12T10:32:01.177678Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.084147Z", - "iopub.status.busy": "2024-08-08T18:53:55.083628Z", - "iopub.status.idle": "2024-08-08T18:53:55.086818Z", - "shell.execute_reply": "2024-08-08T18:53:55.086240Z" + "iopub.execute_input": "2024-08-12T10:32:01.181077Z", + "iopub.status.busy": "2024-08-12T10:32:01.180732Z", + "iopub.status.idle": "2024-08-12T10:32:01.184111Z", + "shell.execute_reply": "2024-08-12T10:32:01.183554Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.088903Z", - "iopub.status.busy": "2024-08-08T18:53:55.088603Z", - "iopub.status.idle": "2024-08-08T18:53:55.097167Z", - "shell.execute_reply": "2024-08-08T18:53:55.096595Z" + "iopub.execute_input": "2024-08-12T10:32:01.186467Z", + "iopub.status.busy": "2024-08-12T10:32:01.185987Z", + "iopub.status.idle": "2024-08-12T10:32:01.194805Z", + "shell.execute_reply": "2024-08-12T10:32:01.194325Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.099353Z", - "iopub.status.busy": "2024-08-08T18:53:55.099016Z", - "iopub.status.idle": "2024-08-08T18:53:55.103585Z", - "shell.execute_reply": "2024-08-08T18:53:55.103129Z" + "iopub.execute_input": "2024-08-12T10:32:01.196739Z", + "iopub.status.busy": "2024-08-12T10:32:01.196579Z", + "iopub.status.idle": "2024-08-12T10:32:01.201598Z", + "shell.execute_reply": "2024-08-12T10:32:01.201169Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.105649Z", - "iopub.status.busy": "2024-08-08T18:53:55.105315Z", - "iopub.status.idle": "2024-08-08T18:53:55.113136Z", - "shell.execute_reply": "2024-08-08T18:53:55.112684Z" + "iopub.execute_input": "2024-08-12T10:32:01.203716Z", + "iopub.status.busy": "2024-08-12T10:32:01.203381Z", + "iopub.status.idle": "2024-08-12T10:32:01.211227Z", + "shell.execute_reply": "2024-08-12T10:32:01.210770Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.115230Z", - "iopub.status.busy": "2024-08-08T18:53:55.114892Z", - "iopub.status.idle": "2024-08-08T18:53:55.434358Z", - "shell.execute_reply": "2024-08-08T18:53:55.433771Z" + "iopub.execute_input": "2024-08-12T10:32:01.213218Z", + "iopub.status.busy": "2024-08-12T10:32:01.212875Z", + "iopub.status.idle": "2024-08-12T10:32:01.590347Z", + "shell.execute_reply": "2024-08-12T10:32:01.589735Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.436696Z", - "iopub.status.busy": "2024-08-08T18:53:55.436355Z", - "iopub.status.idle": "2024-08-08T18:53:55.459116Z", - "shell.execute_reply": "2024-08-08T18:53:55.458661Z" + "iopub.execute_input": "2024-08-12T10:32:01.592629Z", + "iopub.status.busy": "2024-08-12T10:32:01.592298Z", + "iopub.status.idle": "2024-08-12T10:32:01.615629Z", + "shell.execute_reply": "2024-08-12T10:32:01.615067Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.461185Z", - "iopub.status.busy": "2024-08-08T18:53:55.460842Z", - "iopub.status.idle": "2024-08-08T18:53:55.543506Z", - "shell.execute_reply": "2024-08-08T18:53:55.543045Z" + "iopub.execute_input": "2024-08-12T10:32:01.617888Z", + "iopub.status.busy": "2024-08-12T10:32:01.617542Z", + "iopub.status.idle": "2024-08-12T10:32:01.706974Z", + "shell.execute_reply": "2024-08-12T10:32:01.706312Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:55.545976Z", - "iopub.status.busy": "2024-08-08T18:53:55.545605Z", - "iopub.status.idle": "2024-08-08T18:53:57.517193Z", - "shell.execute_reply": "2024-08-08T18:53:57.516574Z" + "iopub.execute_input": "2024-08-12T10:32:01.709728Z", + "iopub.status.busy": "2024-08-12T10:32:01.709322Z", + "iopub.status.idle": "2024-08-12T10:32:03.790772Z", + "shell.execute_reply": "2024-08-12T10:32:03.790079Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:57.519789Z", - "iopub.status.busy": "2024-08-08T18:53:57.519310Z", - "iopub.status.idle": "2024-08-08T18:53:57.541098Z", - "shell.execute_reply": "2024-08-08T18:53:57.540654Z" + "iopub.execute_input": "2024-08-12T10:32:03.793485Z", + "iopub.status.busy": "2024-08-12T10:32:03.793002Z", + "iopub.status.idle": "2024-08-12T10:32:03.815741Z", + "shell.execute_reply": "2024-08-12T10:32:03.815264Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:57.543256Z", - "iopub.status.busy": "2024-08-08T18:53:57.542917Z", - "iopub.status.idle": "2024-08-08T18:53:57.560318Z", - "shell.execute_reply": "2024-08-08T18:53:57.559875Z" + "iopub.execute_input": "2024-08-12T10:32:03.817911Z", + "iopub.status.busy": "2024-08-12T10:32:03.817557Z", + "iopub.status.idle": "2024-08-12T10:32:03.835714Z", + "shell.execute_reply": "2024-08-12T10:32:03.835233Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:57.562315Z", - "iopub.status.busy": "2024-08-08T18:53:57.561978Z", - "iopub.status.idle": "2024-08-08T18:53:57.575363Z", - "shell.execute_reply": "2024-08-08T18:53:57.574916Z" + "iopub.execute_input": "2024-08-12T10:32:03.837879Z", + "iopub.status.busy": "2024-08-12T10:32:03.837527Z", + "iopub.status.idle": "2024-08-12T10:32:03.851514Z", + "shell.execute_reply": "2024-08-12T10:32:03.851026Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:57.577486Z", - "iopub.status.busy": "2024-08-08T18:53:57.577147Z", - "iopub.status.idle": "2024-08-08T18:53:57.600081Z", - "shell.execute_reply": "2024-08-08T18:53:57.599478Z" + "iopub.execute_input": "2024-08-12T10:32:03.853602Z", + "iopub.status.busy": "2024-08-12T10:32:03.853416Z", + "iopub.status.idle": "2024-08-12T10:32:03.873168Z", + "shell.execute_reply": "2024-08-12T10:32:03.872577Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f122fc7efb194d83843b3ad7dbae4262", + "model_id": "dffb23ed5c2644778ec4c7c3f2b9f329", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:57.602468Z", - "iopub.status.busy": "2024-08-08T18:53:57.602098Z", - "iopub.status.idle": "2024-08-08T18:53:57.617143Z", - "shell.execute_reply": "2024-08-08T18:53:57.616688Z" + "iopub.execute_input": "2024-08-12T10:32:03.875189Z", + "iopub.status.busy": "2024-08-12T10:32:03.874883Z", + "iopub.status.idle": "2024-08-12T10:32:03.889632Z", + "shell.execute_reply": "2024-08-12T10:32:03.889056Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:57.619259Z", - "iopub.status.busy": "2024-08-08T18:53:57.618927Z", - "iopub.status.idle": "2024-08-08T18:53:57.624650Z", - "shell.execute_reply": "2024-08-08T18:53:57.624217Z" + "iopub.execute_input": "2024-08-12T10:32:03.891772Z", + "iopub.status.busy": "2024-08-12T10:32:03.891429Z", + "iopub.status.idle": "2024-08-12T10:32:03.897352Z", + "shell.execute_reply": "2024-08-12T10:32:03.896888Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:53:57.626718Z", - "iopub.status.busy": "2024-08-08T18:53:57.626297Z", - "iopub.status.idle": "2024-08-08T18:53:57.643767Z", - "shell.execute_reply": "2024-08-08T18:53:57.643226Z" + "iopub.execute_input": "2024-08-12T10:32:03.899329Z", + "iopub.status.busy": "2024-08-12T10:32:03.899153Z", + "iopub.status.idle": "2024-08-12T10:32:03.917989Z", + "shell.execute_reply": "2024-08-12T10:32:03.917520Z" } }, "outputs": [ @@ -1447,99 +1447,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "2ab80ba7ffb1486fab890f3d666bdbe5": { + "07a72d376d6e478baad0ef09f148bbf6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a119aa224e4a44978e662d8f20875db9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a5b3c2152de048a2b3299084ccc724eb": { + "3bc0dcea43a547e3a8b3ba8ba898ebc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e65e9e9a3b6546e781e534442cfee063", - "placeholder": "​", - "style": "IPY_MODEL_f6067bad19b64bdda10ff1e97e2eb459", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c65ffdbe3a2f46b2b17bdc5735ac60ee": { + "50535b3950f44374a0fd1c9724af2593": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1554,15 +1498,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f0fa1263d8404f888e39f5c9ed9134ea", + "layout": "IPY_MODEL_ff9d81d4322d4281a3537e0673a5b97d", "placeholder": "​", - "style": "IPY_MODEL_ea3dc2877c9147b3a424d5ca5973bfff", + "style": "IPY_MODEL_07a72d376d6e478baad0ef09f148bbf6", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 11354.09 examples/s]" + "value": " 132/132 [00:00<00:00, 12983.33 examples/s]" } }, - "d4a9304596a04567b2c5eab155565142": { + "54d7caf41f934968aee3eba3ea8e068b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1578,17 +1522,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a119aa224e4a44978e662d8f20875db9", + "layout": "IPY_MODEL_9ca473e51cfe4e43aa18d492518d8d5a", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2ab80ba7ffb1486fab890f3d666bdbe5", + "style": "IPY_MODEL_ffddd94db73a4ecf8ec12daa355bfab3", "tabbable": null, "tooltip": null, "value": 132.0 } }, - "e643313c24ca41cbb41ed410eee91be8": { + "8840190de80b4ad7b948b5c41cd9b9a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1641,7 +1585,7 @@ "width": null } }, - "e65e9e9a3b6546e781e534442cfee063": { + "973f5f2c9d4947229d6f499d72a6e562": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1694,25 +1638,7 @@ "width": null } }, - "ea3dc2877c9147b3a424d5ca5973bfff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f0fa1263d8404f888e39f5c9ed9134ea": { + "9ca473e51cfe4e43aa18d492518d8d5a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1765,7 +1691,30 @@ "width": null } }, - "f122fc7efb194d83843b3ad7dbae4262": { + "a3b187cf3ab34fe997d96e21abb214cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8840190de80b4ad7b948b5c41cd9b9a6", + "placeholder": "​", + "style": "IPY_MODEL_3bc0dcea43a547e3a8b3ba8ba898ebc3", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "dffb23ed5c2644778ec4c7c3f2b9f329": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1780,31 +1729,82 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a5b3c2152de048a2b3299084ccc724eb", - "IPY_MODEL_d4a9304596a04567b2c5eab155565142", - "IPY_MODEL_c65ffdbe3a2f46b2b17bdc5735ac60ee" + "IPY_MODEL_a3b187cf3ab34fe997d96e21abb214cc", + "IPY_MODEL_54d7caf41f934968aee3eba3ea8e068b", + "IPY_MODEL_50535b3950f44374a0fd1c9724af2593" ], - "layout": "IPY_MODEL_e643313c24ca41cbb41ed410eee91be8", + "layout": "IPY_MODEL_973f5f2c9d4947229d6f499d72a6e562", "tabbable": null, "tooltip": null } }, - "f6067bad19b64bdda10ff1e97e2eb459": { + "ff9d81d4322d4281a3537e0673a5b97d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ffddd94db73a4ecf8ec12daa355bfab3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 0b3e3aaf0..5a8714bfc 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:00.493275Z", - "iopub.status.busy": "2024-08-08T18:54:00.492862Z", - "iopub.status.idle": "2024-08-08T18:54:01.882693Z", - "shell.execute_reply": "2024-08-08T18:54:01.882096Z" + "iopub.execute_input": "2024-08-12T10:32:06.983365Z", + "iopub.status.busy": "2024-08-12T10:32:06.983197Z", + "iopub.status.idle": "2024-08-12T10:32:08.436869Z", + "shell.execute_reply": "2024-08-12T10:32:08.436300Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:01.885255Z", - "iopub.status.busy": "2024-08-08T18:54:01.884847Z", - "iopub.status.idle": "2024-08-08T18:54:01.888003Z", - "shell.execute_reply": "2024-08-08T18:54:01.887471Z" + "iopub.execute_input": "2024-08-12T10:32:08.439618Z", + "iopub.status.busy": "2024-08-12T10:32:08.439096Z", + "iopub.status.idle": "2024-08-12T10:32:08.442335Z", + "shell.execute_reply": "2024-08-12T10:32:08.441759Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:01.890193Z", - "iopub.status.busy": "2024-08-08T18:54:01.889847Z", - "iopub.status.idle": "2024-08-08T18:54:01.898873Z", - "shell.execute_reply": "2024-08-08T18:54:01.898405Z" + "iopub.execute_input": "2024-08-12T10:32:08.444586Z", + "iopub.status.busy": "2024-08-12T10:32:08.444261Z", + "iopub.status.idle": "2024-08-12T10:32:08.453438Z", + "shell.execute_reply": "2024-08-12T10:32:08.452952Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:01.900959Z", - "iopub.status.busy": "2024-08-08T18:54:01.900546Z", - "iopub.status.idle": "2024-08-08T18:54:01.905764Z", - "shell.execute_reply": "2024-08-08T18:54:01.905235Z" + "iopub.execute_input": "2024-08-12T10:32:08.455435Z", + "iopub.status.busy": "2024-08-12T10:32:08.455255Z", + "iopub.status.idle": "2024-08-12T10:32:08.460524Z", + "shell.execute_reply": "2024-08-12T10:32:08.460066Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:01.907941Z", - "iopub.status.busy": "2024-08-08T18:54:01.907616Z", - "iopub.status.idle": "2024-08-08T18:54:01.916237Z", - "shell.execute_reply": "2024-08-08T18:54:01.915677Z" + "iopub.execute_input": "2024-08-12T10:32:08.462593Z", + "iopub.status.busy": "2024-08-12T10:32:08.462390Z", + "iopub.status.idle": "2024-08-12T10:32:08.470920Z", + "shell.execute_reply": "2024-08-12T10:32:08.470439Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:01.918312Z", - "iopub.status.busy": "2024-08-08T18:54:01.917995Z", - "iopub.status.idle": "2024-08-08T18:54:02.293625Z", - "shell.execute_reply": "2024-08-08T18:54:02.293016Z" + "iopub.execute_input": "2024-08-12T10:32:08.472758Z", + "iopub.status.busy": "2024-08-12T10:32:08.472584Z", + "iopub.status.idle": "2024-08-12T10:32:08.850138Z", + "shell.execute_reply": "2024-08-12T10:32:08.849581Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:02.295739Z", - "iopub.status.busy": "2024-08-08T18:54:02.295554Z", - "iopub.status.idle": "2024-08-08T18:54:02.298425Z", - "shell.execute_reply": "2024-08-08T18:54:02.297956Z" + "iopub.execute_input": "2024-08-12T10:32:08.852345Z", + "iopub.status.busy": "2024-08-12T10:32:08.852165Z", + "iopub.status.idle": "2024-08-12T10:32:08.854819Z", + "shell.execute_reply": "2024-08-12T10:32:08.854355Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:02.300351Z", - "iopub.status.busy": "2024-08-08T18:54:02.300173Z", - "iopub.status.idle": "2024-08-08T18:54:02.334958Z", - "shell.execute_reply": "2024-08-08T18:54:02.334500Z" + "iopub.execute_input": "2024-08-12T10:32:08.856729Z", + "iopub.status.busy": "2024-08-12T10:32:08.856554Z", + "iopub.status.idle": "2024-08-12T10:32:08.891296Z", + "shell.execute_reply": "2024-08-12T10:32:08.890793Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:02.336850Z", - "iopub.status.busy": "2024-08-08T18:54:02.336677Z", - "iopub.status.idle": "2024-08-08T18:54:04.478350Z", - "shell.execute_reply": "2024-08-08T18:54:04.477698Z" + "iopub.execute_input": "2024-08-12T10:32:08.893906Z", + "iopub.status.busy": "2024-08-12T10:32:08.893545Z", + "iopub.status.idle": "2024-08-12T10:32:11.095965Z", + "shell.execute_reply": "2024-08-12T10:32:11.095252Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.480787Z", - "iopub.status.busy": "2024-08-08T18:54:04.480397Z", - "iopub.status.idle": "2024-08-08T18:54:04.501436Z", - "shell.execute_reply": "2024-08-08T18:54:04.500864Z" + "iopub.execute_input": "2024-08-12T10:32:11.098718Z", + "iopub.status.busy": "2024-08-12T10:32:11.098130Z", + "iopub.status.idle": "2024-08-12T10:32:11.117905Z", + "shell.execute_reply": "2024-08-12T10:32:11.117324Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.503661Z", - "iopub.status.busy": "2024-08-08T18:54:04.503340Z", - "iopub.status.idle": "2024-08-08T18:54:04.510666Z", - "shell.execute_reply": "2024-08-08T18:54:04.510198Z" + "iopub.execute_input": "2024-08-12T10:32:11.120377Z", + "iopub.status.busy": "2024-08-12T10:32:11.119904Z", + "iopub.status.idle": "2024-08-12T10:32:11.127046Z", + "shell.execute_reply": "2024-08-12T10:32:11.126456Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.512703Z", - "iopub.status.busy": "2024-08-08T18:54:04.512524Z", - "iopub.status.idle": "2024-08-08T18:54:04.518581Z", - "shell.execute_reply": "2024-08-08T18:54:04.518110Z" + "iopub.execute_input": "2024-08-12T10:32:11.129084Z", + "iopub.status.busy": "2024-08-12T10:32:11.128900Z", + "iopub.status.idle": "2024-08-12T10:32:11.136478Z", + "shell.execute_reply": "2024-08-12T10:32:11.135930Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.520503Z", - "iopub.status.busy": "2024-08-08T18:54:04.520326Z", - "iopub.status.idle": "2024-08-08T18:54:04.532165Z", - "shell.execute_reply": "2024-08-08T18:54:04.531600Z" + "iopub.execute_input": "2024-08-12T10:32:11.138541Z", + "iopub.status.busy": "2024-08-12T10:32:11.138204Z", + "iopub.status.idle": "2024-08-12T10:32:11.148788Z", + "shell.execute_reply": "2024-08-12T10:32:11.148225Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.534253Z", - "iopub.status.busy": "2024-08-08T18:54:04.533963Z", - "iopub.status.idle": "2024-08-08T18:54:04.543383Z", - "shell.execute_reply": "2024-08-08T18:54:04.542816Z" + "iopub.execute_input": "2024-08-12T10:32:11.150984Z", + "iopub.status.busy": "2024-08-12T10:32:11.150654Z", + "iopub.status.idle": "2024-08-12T10:32:11.160607Z", + "shell.execute_reply": "2024-08-12T10:32:11.160022Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.545549Z", - "iopub.status.busy": "2024-08-08T18:54:04.545231Z", - "iopub.status.idle": "2024-08-08T18:54:04.552108Z", - "shell.execute_reply": "2024-08-08T18:54:04.551568Z" + "iopub.execute_input": "2024-08-12T10:32:11.163177Z", + "iopub.status.busy": "2024-08-12T10:32:11.162777Z", + "iopub.status.idle": "2024-08-12T10:32:11.170325Z", + "shell.execute_reply": "2024-08-12T10:32:11.169691Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.554444Z", - "iopub.status.busy": "2024-08-08T18:54:04.554013Z", - "iopub.status.idle": "2024-08-08T18:54:04.563589Z", - "shell.execute_reply": "2024-08-08T18:54:04.563132Z" + "iopub.execute_input": "2024-08-12T10:32:11.172574Z", + "iopub.status.busy": "2024-08-12T10:32:11.172225Z", + "iopub.status.idle": "2024-08-12T10:32:11.182760Z", + "shell.execute_reply": "2024-08-12T10:32:11.182213Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:04.565603Z", - "iopub.status.busy": "2024-08-08T18:54:04.565425Z", - "iopub.status.idle": "2024-08-08T18:54:04.581683Z", - "shell.execute_reply": "2024-08-08T18:54:04.581197Z" + "iopub.execute_input": "2024-08-12T10:32:11.184974Z", + "iopub.status.busy": "2024-08-12T10:32:11.184656Z", + "iopub.status.idle": "2024-08-12T10:32:11.201470Z", + "shell.execute_reply": "2024-08-12T10:32:11.200965Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 7c49d81e7..ab8e80b79 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -727,31 +727,31 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1064,7 +1064,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1096,7 +1096,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1128,7 +1128,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -2041,35 +2041,35 @@

Low information images - is_low_information_issue low_information_score + is_low_information_issue 53050 - True 0.067975 + True 40875 - True 0.089929 + True 9594 - True 0.092601 + True 34825 - True 0.107744 + True 37530 - True 0.108516 + True @@ -2097,7 +2097,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 688ba5df2..4e6eaa9a6 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:07.617460Z", - "iopub.status.busy": "2024-08-08T18:54:07.617283Z", - "iopub.status.idle": "2024-08-08T18:54:10.626935Z", - "shell.execute_reply": "2024-08-08T18:54:10.626277Z" + "iopub.execute_input": "2024-08-12T10:32:14.108295Z", + "iopub.status.busy": "2024-08-12T10:32:14.107801Z", + "iopub.status.idle": "2024-08-12T10:32:17.199789Z", + "shell.execute_reply": "2024-08-12T10:32:17.199158Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:10.629473Z", - "iopub.status.busy": "2024-08-08T18:54:10.629174Z", - "iopub.status.idle": "2024-08-08T18:54:10.632947Z", - "shell.execute_reply": "2024-08-08T18:54:10.632379Z" + "iopub.execute_input": "2024-08-12T10:32:17.202525Z", + "iopub.status.busy": "2024-08-12T10:32:17.201957Z", + "iopub.status.idle": "2024-08-12T10:32:17.205593Z", + "shell.execute_reply": "2024-08-12T10:32:17.205132Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:10.634959Z", - "iopub.status.busy": "2024-08-08T18:54:10.634651Z", - "iopub.status.idle": "2024-08-08T18:54:13.553657Z", - "shell.execute_reply": "2024-08-08T18:54:13.553098Z" + "iopub.execute_input": "2024-08-12T10:32:17.207722Z", + "iopub.status.busy": "2024-08-12T10:32:17.207391Z", + "iopub.status.idle": "2024-08-12T10:32:22.832822Z", + "shell.execute_reply": "2024-08-12T10:32:22.832329Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c9b4b8e5c57b4261b88992e28dd46275", + "model_id": "24950e57ccc94aaaa079c9d5b86c6053", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "59635bd91eda4ec8b2813d3556942613", + "model_id": "ac8e9ae825dd46cda3caaf717ab3f457", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "67b82f58222e4b13875d5dcfacf1f02d", + "model_id": "d71df3a63bda4854a0d7e51c67182ab4", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a211a34af24a4a388a2faca04427353e", + "model_id": "df25fafe8e5749a69234408c18364b66", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3f3bb06464c540feb011d94bda7f342f", + "model_id": "659ce9293f064abe8640605a65b6aeb5", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:13.555974Z", - "iopub.status.busy": "2024-08-08T18:54:13.555571Z", - "iopub.status.idle": "2024-08-08T18:54:13.559393Z", - "shell.execute_reply": "2024-08-08T18:54:13.558864Z" + "iopub.execute_input": "2024-08-12T10:32:22.835079Z", + "iopub.status.busy": "2024-08-12T10:32:22.834720Z", + "iopub.status.idle": "2024-08-12T10:32:22.838632Z", + "shell.execute_reply": "2024-08-12T10:32:22.838043Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:13.561477Z", - "iopub.status.busy": "2024-08-08T18:54:13.561049Z", - "iopub.status.idle": "2024-08-08T18:54:25.210165Z", - "shell.execute_reply": "2024-08-08T18:54:25.209506Z" + "iopub.execute_input": "2024-08-12T10:32:22.840738Z", + "iopub.status.busy": "2024-08-12T10:32:22.840420Z", + "iopub.status.idle": "2024-08-12T10:32:34.877427Z", + "shell.execute_reply": "2024-08-12T10:32:34.876879Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "12503c89e5554d0c8b1cda02ea9c897f", + "model_id": "b7ff9d3e760d46ab9410530722e86f1c", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:25.212985Z", - "iopub.status.busy": "2024-08-08T18:54:25.212615Z", - "iopub.status.idle": "2024-08-08T18:54:43.498026Z", - "shell.execute_reply": "2024-08-08T18:54:43.497413Z" + "iopub.execute_input": "2024-08-12T10:32:34.880019Z", + "iopub.status.busy": "2024-08-12T10:32:34.879767Z", + "iopub.status.idle": "2024-08-12T10:32:53.521520Z", + "shell.execute_reply": "2024-08-12T10:32:53.520954Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:43.500729Z", - "iopub.status.busy": "2024-08-08T18:54:43.500364Z", - "iopub.status.idle": "2024-08-08T18:54:43.506138Z", - "shell.execute_reply": "2024-08-08T18:54:43.505568Z" + "iopub.execute_input": "2024-08-12T10:32:53.524328Z", + "iopub.status.busy": "2024-08-12T10:32:53.523932Z", + "iopub.status.idle": "2024-08-12T10:32:53.529696Z", + "shell.execute_reply": "2024-08-12T10:32:53.529222Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:43.508109Z", - "iopub.status.busy": "2024-08-08T18:54:43.507800Z", - "iopub.status.idle": "2024-08-08T18:54:43.512417Z", - "shell.execute_reply": "2024-08-08T18:54:43.511992Z" + "iopub.execute_input": "2024-08-12T10:32:53.531672Z", + "iopub.status.busy": "2024-08-12T10:32:53.531382Z", + "iopub.status.idle": "2024-08-12T10:32:53.535613Z", + "shell.execute_reply": "2024-08-12T10:32:53.535051Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:43.514534Z", - "iopub.status.busy": "2024-08-08T18:54:43.514357Z", - "iopub.status.idle": "2024-08-08T18:54:43.523235Z", - "shell.execute_reply": "2024-08-08T18:54:43.522721Z" + "iopub.execute_input": "2024-08-12T10:32:53.537903Z", + "iopub.status.busy": "2024-08-12T10:32:53.537489Z", + "iopub.status.idle": "2024-08-12T10:32:53.546584Z", + "shell.execute_reply": "2024-08-12T10:32:53.546030Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:43.525307Z", - "iopub.status.busy": "2024-08-08T18:54:43.525009Z", - "iopub.status.idle": "2024-08-08T18:54:43.551375Z", - "shell.execute_reply": "2024-08-08T18:54:43.550807Z" + "iopub.execute_input": "2024-08-12T10:32:53.548705Z", + "iopub.status.busy": "2024-08-12T10:32:53.548357Z", + "iopub.status.idle": "2024-08-12T10:32:53.576832Z", + "shell.execute_reply": "2024-08-12T10:32:53.576340Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:54:43.553582Z", - "iopub.status.busy": "2024-08-08T18:54:43.553246Z", - "iopub.status.idle": "2024-08-08T18:55:16.306900Z", - "shell.execute_reply": "2024-08-08T18:55:16.306225Z" + "iopub.execute_input": "2024-08-12T10:32:53.579268Z", + "iopub.status.busy": "2024-08-12T10:32:53.578915Z", + "iopub.status.idle": "2024-08-12T10:33:28.300304Z", + "shell.execute_reply": "2024-08-12T10:33:28.299664Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.909\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.112\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.600\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.743\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "58e473c5367e4a1b9a53bb8a96929532", + "model_id": "1bf4baa646be4ef4b42842b34d57e605", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cbce330f04ed4afbb5085ae978cdad59", + "model_id": "3f27976bac3c458aa1b2cc0fb4b52d2c", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.885\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.025\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.612\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.947\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e1fe80d24ad54c8c9915159f98eab61d", + "model_id": "791dc4f1fa2e4226ae567d555fc24805", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c9d9ed6ef9604c189eaa8d491ed7f431", + "model_id": "31a3859cc0e34abe854259d21e40f2b5", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.765\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.366\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.617\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.925\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fdc592e8c3fe4972a89cb71e5b08f902", + "model_id": "8edaf5c5759040f08cbb3efa298b00c6", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3fc7207fb2254116bfa395ff6ea6f233", + "model_id": "35bfdb221038403b86fc1c1dfba20630", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:55:16.309502Z", - "iopub.status.busy": "2024-08-08T18:55:16.309249Z", - "iopub.status.idle": "2024-08-08T18:55:16.326491Z", - "shell.execute_reply": "2024-08-08T18:55:16.326062Z" + "iopub.execute_input": "2024-08-12T10:33:28.303145Z", + "iopub.status.busy": "2024-08-12T10:33:28.302899Z", + "iopub.status.idle": "2024-08-12T10:33:28.320368Z", + "shell.execute_reply": "2024-08-12T10:33:28.319852Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:55:16.328481Z", - "iopub.status.busy": "2024-08-08T18:55:16.328173Z", - "iopub.status.idle": "2024-08-08T18:55:16.789922Z", - "shell.execute_reply": "2024-08-08T18:55:16.789362Z" + "iopub.execute_input": "2024-08-12T10:33:28.322941Z", + "iopub.status.busy": "2024-08-12T10:33:28.322755Z", + "iopub.status.idle": "2024-08-12T10:33:28.802696Z", + "shell.execute_reply": "2024-08-12T10:33:28.802112Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:55:16.792524Z", - "iopub.status.busy": "2024-08-08T18:55:16.792055Z", - "iopub.status.idle": "2024-08-08T18:57:07.453399Z", - "shell.execute_reply": "2024-08-08T18:57:07.452805Z" + "iopub.execute_input": "2024-08-12T10:33:28.805268Z", + "iopub.status.busy": "2024-08-12T10:33:28.804800Z", + "iopub.status.idle": "2024-08-12T10:35:20.178945Z", + "shell.execute_reply": "2024-08-12T10:35:20.178277Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4ee5125ee6464710b79aa17cdcd4da98", + "model_id": "34f053a0e82b47f29b9b2f6a619f4c72", "version_major": 2, "version_minor": 0 }, @@ -1108,10 +1108,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:07.456023Z", - "iopub.status.busy": "2024-08-08T18:57:07.455445Z", - "iopub.status.idle": "2024-08-08T18:57:07.930283Z", - "shell.execute_reply": "2024-08-08T18:57:07.929742Z" + "iopub.execute_input": "2024-08-12T10:35:20.181523Z", + "iopub.status.busy": "2024-08-12T10:35:20.181116Z", + "iopub.status.idle": "2024-08-12T10:35:20.637093Z", + "shell.execute_reply": "2024-08-12T10:35:20.636521Z" } }, "outputs": [ @@ -1257,10 +1257,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:07.933098Z", - "iopub.status.busy": "2024-08-08T18:57:07.932614Z", - "iopub.status.idle": "2024-08-08T18:57:07.994757Z", - "shell.execute_reply": "2024-08-08T18:57:07.994153Z" + "iopub.execute_input": "2024-08-12T10:35:20.639735Z", + "iopub.status.busy": "2024-08-12T10:35:20.639339Z", + "iopub.status.idle": "2024-08-12T10:35:20.700448Z", + "shell.execute_reply": "2024-08-12T10:35:20.699879Z" } }, "outputs": [ @@ -1364,10 +1364,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:07.996907Z", - "iopub.status.busy": "2024-08-08T18:57:07.996624Z", - "iopub.status.idle": "2024-08-08T18:57:08.005205Z", - "shell.execute_reply": "2024-08-08T18:57:08.004641Z" + "iopub.execute_input": "2024-08-12T10:35:20.702827Z", + "iopub.status.busy": "2024-08-12T10:35:20.702336Z", + "iopub.status.idle": "2024-08-12T10:35:20.711028Z", + "shell.execute_reply": "2024-08-12T10:35:20.710503Z" } }, "outputs": [ @@ -1497,10 +1497,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:08.007329Z", - "iopub.status.busy": "2024-08-08T18:57:08.006996Z", - "iopub.status.idle": "2024-08-08T18:57:08.011541Z", - "shell.execute_reply": "2024-08-08T18:57:08.011080Z" + "iopub.execute_input": "2024-08-12T10:35:20.713060Z", + "iopub.status.busy": "2024-08-12T10:35:20.712755Z", + "iopub.status.idle": "2024-08-12T10:35:20.717256Z", + "shell.execute_reply": "2024-08-12T10:35:20.716822Z" }, "nbsphinx": "hidden" }, @@ -1546,10 +1546,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:08.013602Z", - "iopub.status.busy": "2024-08-08T18:57:08.013212Z", - "iopub.status.idle": "2024-08-08T18:57:08.522025Z", - "shell.execute_reply": "2024-08-08T18:57:08.521457Z" + "iopub.execute_input": "2024-08-12T10:35:20.719137Z", + "iopub.status.busy": "2024-08-12T10:35:20.718967Z", + "iopub.status.idle": "2024-08-12T10:35:21.245859Z", + "shell.execute_reply": "2024-08-12T10:35:21.245304Z" } }, "outputs": [ @@ -1584,10 +1584,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:08.524205Z", - "iopub.status.busy": "2024-08-08T18:57:08.523883Z", - "iopub.status.idle": "2024-08-08T18:57:08.532144Z", - "shell.execute_reply": "2024-08-08T18:57:08.531618Z" + "iopub.execute_input": "2024-08-12T10:35:21.248532Z", + "iopub.status.busy": "2024-08-12T10:35:21.248103Z", + "iopub.status.idle": "2024-08-12T10:35:21.257809Z", + "shell.execute_reply": "2024-08-12T10:35:21.257321Z" } }, "outputs": [ @@ -1754,10 +1754,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:08.534346Z", - "iopub.status.busy": "2024-08-08T18:57:08.534032Z", - "iopub.status.idle": "2024-08-08T18:57:08.541169Z", - "shell.execute_reply": "2024-08-08T18:57:08.540615Z" + "iopub.execute_input": "2024-08-12T10:35:21.259908Z", + "iopub.status.busy": "2024-08-12T10:35:21.259732Z", + "iopub.status.idle": "2024-08-12T10:35:21.266967Z", + "shell.execute_reply": "2024-08-12T10:35:21.266442Z" }, "nbsphinx": "hidden" }, @@ -1833,10 +1833,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:08.543199Z", - "iopub.status.busy": "2024-08-08T18:57:08.542762Z", - "iopub.status.idle": "2024-08-08T18:57:09.289877Z", - "shell.execute_reply": "2024-08-08T18:57:09.289312Z" + "iopub.execute_input": "2024-08-12T10:35:21.269269Z", + "iopub.status.busy": "2024-08-12T10:35:21.268808Z", + "iopub.status.idle": "2024-08-12T10:35:22.015755Z", + "shell.execute_reply": "2024-08-12T10:35:22.015219Z" } }, "outputs": [ @@ -1873,10 +1873,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:09.292436Z", - "iopub.status.busy": "2024-08-08T18:57:09.292116Z", - "iopub.status.idle": "2024-08-08T18:57:09.307223Z", - "shell.execute_reply": "2024-08-08T18:57:09.306667Z" + "iopub.execute_input": "2024-08-12T10:35:22.018300Z", + "iopub.status.busy": "2024-08-12T10:35:22.017951Z", + "iopub.status.idle": "2024-08-12T10:35:22.032830Z", + "shell.execute_reply": "2024-08-12T10:35:22.032325Z" } }, "outputs": [ @@ -2033,10 +2033,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:09.309352Z", - "iopub.status.busy": "2024-08-08T18:57:09.309013Z", - "iopub.status.idle": "2024-08-08T18:57:09.314429Z", - "shell.execute_reply": "2024-08-08T18:57:09.313983Z" + "iopub.execute_input": "2024-08-12T10:35:22.035102Z", + "iopub.status.busy": "2024-08-12T10:35:22.034759Z", + "iopub.status.idle": "2024-08-12T10:35:22.040225Z", + "shell.execute_reply": "2024-08-12T10:35:22.039787Z" }, "nbsphinx": "hidden" }, @@ -2081,10 +2081,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:09.316496Z", - "iopub.status.busy": "2024-08-08T18:57:09.316173Z", - "iopub.status.idle": "2024-08-08T18:57:09.779679Z", - "shell.execute_reply": "2024-08-08T18:57:09.778921Z" + "iopub.execute_input": "2024-08-12T10:35:22.042322Z", + "iopub.status.busy": "2024-08-12T10:35:22.041997Z", + "iopub.status.idle": "2024-08-12T10:35:22.502792Z", + "shell.execute_reply": "2024-08-12T10:35:22.501808Z" } }, "outputs": [ @@ -2166,10 +2166,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:09.782265Z", - "iopub.status.busy": "2024-08-08T18:57:09.782066Z", - "iopub.status.idle": "2024-08-08T18:57:09.791894Z", - "shell.execute_reply": "2024-08-08T18:57:09.791345Z" + "iopub.execute_input": "2024-08-12T10:35:22.505357Z", + "iopub.status.busy": "2024-08-12T10:35:22.505162Z", + "iopub.status.idle": "2024-08-12T10:35:22.515712Z", + "shell.execute_reply": "2024-08-12T10:35:22.515169Z" } }, "outputs": [ @@ -2297,10 +2297,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:09.794318Z", - "iopub.status.busy": "2024-08-08T18:57:09.794124Z", - "iopub.status.idle": "2024-08-08T18:57:09.799916Z", - "shell.execute_reply": "2024-08-08T18:57:09.799352Z" + "iopub.execute_input": "2024-08-12T10:35:22.518152Z", + "iopub.status.busy": "2024-08-12T10:35:22.517960Z", + "iopub.status.idle": "2024-08-12T10:35:22.523759Z", + "shell.execute_reply": "2024-08-12T10:35:22.523192Z" }, "nbsphinx": "hidden" }, @@ -2337,10 +2337,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:09.802347Z", - "iopub.status.busy": "2024-08-08T18:57:09.802157Z", - "iopub.status.idle": "2024-08-08T18:57:10.006239Z", - "shell.execute_reply": "2024-08-08T18:57:10.005710Z" + "iopub.execute_input": "2024-08-12T10:35:22.526113Z", + "iopub.status.busy": "2024-08-12T10:35:22.525925Z", + "iopub.status.idle": "2024-08-12T10:35:22.733246Z", + "shell.execute_reply": "2024-08-12T10:35:22.732666Z" } }, "outputs": [ @@ -2382,10 +2382,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:10.008606Z", - "iopub.status.busy": "2024-08-08T18:57:10.008259Z", - "iopub.status.idle": "2024-08-08T18:57:10.015970Z", - "shell.execute_reply": "2024-08-08T18:57:10.015534Z" + "iopub.execute_input": "2024-08-12T10:35:22.735513Z", + "iopub.status.busy": "2024-08-12T10:35:22.735345Z", + "iopub.status.idle": "2024-08-12T10:35:22.743038Z", + "shell.execute_reply": "2024-08-12T10:35:22.742595Z" } }, "outputs": [ @@ -2410,47 +2410,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2471,10 +2471,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:10.018090Z", - "iopub.status.busy": "2024-08-08T18:57:10.017757Z", - "iopub.status.idle": "2024-08-08T18:57:10.212593Z", - "shell.execute_reply": "2024-08-08T18:57:10.212023Z" + "iopub.execute_input": "2024-08-12T10:35:22.744991Z", + "iopub.status.busy": "2024-08-12T10:35:22.744832Z", + "iopub.status.idle": "2024-08-12T10:35:22.937179Z", + "shell.execute_reply": "2024-08-12T10:35:22.936681Z" } }, "outputs": [ @@ -2514,10 +2514,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:10.214927Z", - "iopub.status.busy": "2024-08-08T18:57:10.214570Z", - "iopub.status.idle": "2024-08-08T18:57:10.218915Z", - "shell.execute_reply": "2024-08-08T18:57:10.218459Z" + "iopub.execute_input": "2024-08-12T10:35:22.939341Z", + "iopub.status.busy": "2024-08-12T10:35:22.939183Z", + "iopub.status.idle": "2024-08-12T10:35:22.943609Z", + "shell.execute_reply": "2024-08-12T10:35:22.943151Z" }, "nbsphinx": "hidden" }, @@ -2554,23 +2554,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0074fd3e7dc5465baf7ffbb736b2a048": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0273aef8589d4917bacb942121545fdc": { + "050f0e1e40f94f6caba3e0f41a21d9a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2623,7 +2607,7 @@ "width": null } }, - "02b24b8e6f0f4fcc8baa27311d9ecdbe": { + "061eee76a3a24a79baa0cd66b7176b98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2639,17 +2623,139 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_feec1b76bf164c76b4d6e16c6f021c54", - "max": 60000.0, + "layout": "IPY_MODEL_90df698f70f74395b78c4545a06264b4", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9764dd40f95b485f8dabd10de8543776", + "style": "IPY_MODEL_655b10b948974f7f87f81c7bfa23ce0d", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 40.0 + } + }, + "062ebfae188a4deda8cbf155c6b1e813": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8323bc18e50a44b085c885ca6b12a4a6", + "placeholder": "​", + "style": "IPY_MODEL_f5f27a9d088946cdb7ec1fbf69ccb020", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:50<00:00, 1257.10it/s]" + } + }, + "069e2f7a59ce43e49d604a293ef5ff5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "094b5a63409c4832a9280e3e77ebf8c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_693092ccb52d4ce5a63d4a2174c8f259", + "placeholder": "​", + "style": "IPY_MODEL_fc0a1aa0c6cf46cfa476b5f7e2175769", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.94it/s]" + } + }, + "09c1b0e3cfa84b0591fec49a549193c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0c7c8de3aee0459eafac0111bd69a153": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_14b738fb959149c0a77186ad6d4e2aeb", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_88890e4bba3a43c6839fa256217037ff", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "0c8cb70aa3444e7a9f2e276faba04b24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "03a9418d267a4af7a7cc815b2e4a6415": { + "0ddb4b1211904a10aa548c33caee6aed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2702,7 +2808,7 @@ "width": null } }, - "054384b2abe64f47a33113084c7b75ab": { + "14b738fb959149c0a77186ad6d4e2aeb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2755,33 +2861,30 @@ "width": null } }, - "0611029cb1544250b5205dbff93a779d": { + "170a1618ce4f40039a860ae398484c7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f8e530f9e62146a1b3da96e7282b66ae", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b8455c3957da47908f8061dd434140b5", + "layout": "IPY_MODEL_e9906144508c4f6f90da6edacecadc26", + "placeholder": "​", + "style": "IPY_MODEL_6f4e70feb4b34d5db54a97d67aff4b7f", "tabbable": null, "tooltip": null, - "value": 10000.0 + "value": " 40/40 [00:00<00:00, 61.87it/s]" } }, - "077ee51e76974fa9a8489c9bf0041068": { + "17d88d606d374f79a7f9ed8be66d62bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2834,56 +2937,75 @@ "width": null } }, - "095c66112453480e9624d9cfc21715ab": { + "1888f5ab59624b249135ca08f763d2f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e98ad085aa5240bf8038535967afcdb2", - "placeholder": "​", - "style": "IPY_MODEL_ab086fb305cc4768af645d19b69915cf", + "layout": "IPY_MODEL_050f0e1e40f94f6caba3e0f41a21d9a9", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8046a22c390a4790a21018f476e9a1f3", "tabbable": null, "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 71.8MB/s]" + "value": 9015.0 } }, - "09efd1370cc54da4a50994d669f4d152": { + "194aeb115f294dd081a7dcf4d3442b34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1bf4baa646be4ef4b42842b34d57e605": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c7125c1a247549e2b42ff703b34e1fc1", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2e70f5dc63434d57950456d994824d90", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_206cd1099952440a80fab705ba066b49", + "IPY_MODEL_0c7c8de3aee0459eafac0111bd69a153", + "IPY_MODEL_094b5a63409c4832a9280e3e77ebf8c6" + ], + "layout": "IPY_MODEL_32a281ca5f9a4e0e879c56bc4f1ae1e5", "tabbable": null, - "tooltip": null, - "value": 40.0 + "tooltip": null } }, - "0af8bebcf20a4939ac2a4c99a19c486b": { + "1c7e2745f8f7403695df2dab5d5b611a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2936,7 +3058,7 @@ "width": null } }, - "0d9d45f1bf5c4166b5b7a3abf66b43be": { + "1d1726a8bb644d8abcfe68a6e01dac4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2954,100 +3076,86 @@ "text_color": null } }, - "0e1af7ec8d1b44488fbc65b4dd7fc5cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c259c2e0eb294c8ca42e13569fd0c617", - "placeholder": "​", - "style": "IPY_MODEL_549cb314e13542f88db6960e75a19e31", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "10554e347811484fa131aed108fa7f5e": { + "1d3c4b825e3147989495a0e274377e0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6c0fcaaad127458080de589feb203b5c", - "placeholder": "​", - "style": "IPY_MODEL_b27d5b6c1e7d47f183f2b299162ecaf1", + "layout": "IPY_MODEL_c76f90aede094a2bb529e852ce14a1ef", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8b6f71a4d2174d45b5f0da5575a69f92", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 45.4MB/s]" + "value": 40.0 } }, - "12503c89e5554d0c8b1cda02ea9c897f": { - "model_module": "@jupyter-widgets/controls", + "1d3c8852cb9b4d0994b952c07bb057d8": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cd9c57f8b84b47a7963af1f6695a8d32", - "IPY_MODEL_02b24b8e6f0f4fcc8baa27311d9ecdbe", - "IPY_MODEL_6e45708d51db4608b5553f0fc1c8dcff" - ], - "layout": "IPY_MODEL_27e6b71041574941b9df2fd57f6b5eca", - "tabbable": null, - "tooltip": null - } - }, - "17b38d9bc2e7453688461e200844cac0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eaf1a047405b4e7bb57d287daefe7504", - "placeholder": "​", - "style": "IPY_MODEL_a4975a5d4325440b88803e3b2f5c0666", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.61it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1891ddeeb8e34f09ac02cfb62a42704b": { + "1f847bdb68fa4d6ca3ba027f2f973e6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3100,95 +3208,7 @@ "width": null } }, - "18b6b3db95044619bc7e97671d75032d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4656345014b540ae96397331cf092c4f", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9db8ae20199641fd85bf696a288ca4d5", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "18c7834b4b744cfcb7a4ed96a2762fed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1a8aba776b174b1383142a9f296eeed1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1dd67ff2848741198fa40d68afd7677f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_393bd1d20ea440d6ae40a18595ed8742", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36ca6928cf6c416ab0f31493a716d24e", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "1faa0770f77b4418bfe02c6c5ae337b7": { + "2024ae051e814e749e5840205c0354d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3241,30 +3261,7 @@ "width": null } }, - "2170d1a68bfb452fb4453c1677275cdb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc4212d824134d64aa41da4e68a11ce3", - "placeholder": "​", - "style": "IPY_MODEL_a302d38e608a491ba33ba5b1fa87997c", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.60it/s]" - } - }, - "25ed6de0a7704cc18de8511ec7479677": { + "206cd1099952440a80fab705ba066b49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3279,15 +3276,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec04934362fe4543863277d2dfd6a061", + "layout": "IPY_MODEL_c2c7a5fc0f0f4ed6823022c936c59d4e", "placeholder": "​", - "style": "IPY_MODEL_cd312f9c3c43405e8452c9134db3353d", + "style": "IPY_MODEL_f747d8cff30e48638ca4b6a8b62e1fc8", "tabbable": null, "tooltip": null, "value": "100%" } }, - "268e7e78ba6641b9a58b5082f31c4874": { + "211a1d0f7e994da3abdf9c87d144d826": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3340,7 +3337,39 @@ "width": null } }, - "27e6b71041574941b9df2fd57f6b5eca": { + "219f02688f1c45028f227c9b6864c6b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2261458f8c6d47aa8268533e772e4c15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "23b32b2ad0ea490eb3636fac11964542": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3393,30 +3422,31 @@ "width": null } }, - "2c5b5ee1b7614fd5ba101a1a7a7ee678": { + "24950e57ccc94aaaa079c9d5b86c6053": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d3d5ed9f069440f69dd5a9fefd795add", - "placeholder": "​", - "style": "IPY_MODEL_c40071e8d372461586ab66b43e521127", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d1946623097a4ad78743cc2dfe72c9e1", + "IPY_MODEL_1888f5ab59624b249135ca08f763d2f2", + "IPY_MODEL_4c01338a37c743ef886e2b772e01356a" + ], + "layout": "IPY_MODEL_2024ae051e814e749e5840205c0354d5", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 294375.84 examples/s]" + "tooltip": null } }, - "2c5fa4447f1d4785949c1d9417c4c4bf": { + "28db2d2bcb534e91afddd30a3b5732dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3432,33 +3462,105 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_054384b2abe64f47a33113084c7b75ab", - "max": 40.0, + "layout": "IPY_MODEL_6029339687a24aaab92f58dbb90a9a2c", + "max": 10000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_94f5b807f47446d8b6bc23175c98ec98", + "style": "IPY_MODEL_09c1b0e3cfa84b0591fec49a549193c0", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 10000.0 } }, - "2e70f5dc63434d57950456d994824d90": { + "2cbc780bf0f941f3b375c0a00bd30ee9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2ed3f07d0dc74ce382b3608ad1c61b6d": { + "2f9e64dc3c6449d4b0180bcb72af8029": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_835e200b7dbb452491f96613a3d68582", + "placeholder": "​", + "style": "IPY_MODEL_2cbc780bf0f941f3b375c0a00bd30ee9", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "2fb5148d5fd04234a5adddeecede3131": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9c86ac35d56b4cb1b9a6c8c81f2b9d73", + "placeholder": "​", + "style": "IPY_MODEL_ac59c63878b24875a6a698b3193950b4", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.59it/s]" + } + }, + "31a3859cc0e34abe854259d21e40f2b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c3ff3642d4de49349f69b03661c00aed", + "IPY_MODEL_061eee76a3a24a79baa0cd66b7176b98", + "IPY_MODEL_9d735577298140d6bd60a896468f75ac" + ], + "layout": "IPY_MODEL_55ffa8d9bd174552baa854c8a1ab0aeb", + "tabbable": null, + "tooltip": null + } + }, + "32a281ca5f9a4e0e879c56bc4f1ae1e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3511,7 +3613,7 @@ "width": null } }, - "2f212f9bea5245158964fb3092654f7f": { + "332d853f3c6d4038bce23ffbe32553e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3564,33 +3666,124 @@ "width": null } }, - "33aa34f0378c4935b1efa481c9ce8a91": { + "34f053a0e82b47f29b9b2f6a619f4c72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_80b6b9e2eef74d0bbc9cea0a03500cd3", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_998b8037b83446bf93284dbd4a2788f2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dfffc444cdb640d4a9d712253b6edfa0", + "IPY_MODEL_41ec7bae4da74af39b4e8e1a0ad11736", + "IPY_MODEL_062ebfae188a4deda8cbf155c6b1e813" + ], + "layout": "IPY_MODEL_9991e131478646aba449193d96a55a57", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null + } + }, + "35bfdb221038403b86fc1c1dfba20630": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9aea7f50b8a64c5089b63f2e59596737", + "IPY_MODEL_c927a2fd98ee422da94eb0ac1d179320", + "IPY_MODEL_a88d54dcd75443e4adf63e584faa623b" + ], + "layout": "IPY_MODEL_c81eaad18b554cdbbd128330bc9705e1", + "tabbable": null, + "tooltip": null + } + }, + "35ccdf1d9e91436fb82de63e8a8e06dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3a97ba1affa44cee81db93c6e61a8d5e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "33ee9f5915f94a6c950761dcf5d72f0f": { + "3befe646d3934a3aa08e0a70a188a153": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3643,72 +3836,54 @@ "width": null } }, - "3401118fc13146509f55662d834b629b": { + "3db3123a400c4f229af20389ad3520d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2f212f9bea5245158964fb3092654f7f", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ee414ac69e154eb0bfed44189fad8e37", + "layout": "IPY_MODEL_c486ad2141e04d7e9fe35aa3fd2474cb", + "placeholder": "​", + "style": "IPY_MODEL_ed2a70f9cbbb432781a33bb137c5fe76", "tabbable": null, "tooltip": null, - "value": 9015.0 - } - }, - "36ca6928cf6c416ab0f31493a716d24e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "Generating train split: 100%" } }, - "376f63928820493ab3ff6eda05c56897": { + "3f27976bac3c458aa1b2cc0fb4b52d2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2ed3f07d0dc74ce382b3608ad1c61b6d", - "placeholder": "​", - "style": "IPY_MODEL_48edccbb4b124aabaffa392988e697f0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4e05a30d55ad46afa6049432887d8b9a", + "IPY_MODEL_ff306473844b44168fdb05050fbaa3cd", + "IPY_MODEL_9f386e7f08b44099b26554458760f42b" + ], + "layout": "IPY_MODEL_f8117f94932241b49ad3017baa3b1708", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.08it/s]" + "tooltip": null } }, - "393bd1d20ea440d6ae40a18595ed8742": { + "40cc1a682eb84007a12d44ba00d8e59d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3761,101 +3936,33 @@ "width": null } }, - "398bb879138b40d399d0f113bd694fc5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cca28fa45d7c4860b70e5d252d598779", - "placeholder": "​", - "style": "IPY_MODEL_1a8aba776b174b1383142a9f296eeed1", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "3b7a3ad9d9f741999029b1e884e10d7f": { + "41ec7bae4da74af39b4e8e1a0ad11736": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b47787d2ca243258e66f5c0054ca32d", - "placeholder": "​", - "style": "IPY_MODEL_ff37bd60786747118fd0d7497b060680", + "layout": "IPY_MODEL_78ee05e703164da7a1242a32c2fe5888", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c3eb3db9442048f197e1a77c1097d301", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "3f3bb06464c540feb011d94bda7f342f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ad4890d19a5a43fbafc7171e1d868162", - "IPY_MODEL_0611029cb1544250b5205dbff93a779d", - "IPY_MODEL_ec80915afdb94a8299984811c0cb0c11" - ], - "layout": "IPY_MODEL_03a9418d267a4af7a7cc815b2e4a6415", - "tabbable": null, - "tooltip": null - } - }, - "3fc7207fb2254116bfa395ff6ea6f233": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b187d0d8a55d473dbac7dfa59736f376", - "IPY_MODEL_2c5fa4447f1d4785949c1d9417c4c4bf", - "IPY_MODEL_4d437acab4a847d0ab2c06d9070efce4" - ], - "layout": "IPY_MODEL_8fa971ff228b4730ba125565b22a7330", - "tabbable": null, - "tooltip": null + "value": 60000.0 } }, - "4338e7ce2b6443e98493645e832eff72": { + "42b1e7be991546bfa6284a9f6a270c5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3908,7 +4015,7 @@ "width": null } }, - "43df559ec9e84f6fbbeeb56895ac1cb3": { + "43d5c56839bb4f48bef27dd0bd134ac1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3924,33 +4031,76 @@ "description_width": "" } }, - "452a151738254c91b9ad4e9993aa05fa": { + "441f7c2b1d4140f186a4b360c9fab017": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5bd79b8a8c1b4e85ba6e80a802542158", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e16f7cc5be7a41f99cd033710d609079", + "layout": "IPY_MODEL_53d0052e73f048148debd9352ce17f64", + "placeholder": "​", + "style": "IPY_MODEL_bc8279dc52324a12b433c3eb7960a2a2", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 5.18M/5.18M [00:01<00:00, 4.37MB/s]" + } + }, + "44c54692880345f59ae3ced9048f8e20": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8b238dcab69e48aeb560ceceed894516", + "placeholder": "​", + "style": "IPY_MODEL_bfc788895f3e4ac99ff89696a72123e1", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "4656345014b540ae96397331cf092c4f": { + "4600b1651fe94c96a63f5f402ffeb0ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3befe646d3934a3aa08e0a70a188a153", + "placeholder": "​", + "style": "IPY_MODEL_bc1aed3122144934903681458e457bf8", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "4686b29b240141f7956b546c1f2e9e83": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4003,51 +4153,7 @@ "width": null } }, - "48edccbb4b124aabaffa392988e697f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4a3b41c4e2ea4d97a6bd371eaa440b40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_077ee51e76974fa9a8489c9bf0041068", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_43df559ec9e84f6fbbeeb56895ac1cb3", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "4b47787d2ca243258e66f5c0054ca32d": { + "4bc42b29769b4a4aa8b4ce01236e62d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4100,7 +4206,7 @@ "width": null } }, - "4d437acab4a847d0ab2c06d9070efce4": { + "4c01338a37c743ef886e2b772e01356a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4115,75 +4221,77 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1891ddeeb8e34f09ac02cfb62a42704b", + "layout": "IPY_MODEL_17d88d606d374f79a7f9ed8be66d62bc", "placeholder": "​", - "style": "IPY_MODEL_c896b3b9cb9a45188ed696890efa5e2e", + "style": "IPY_MODEL_52d596f308bf4f45b80e83f66d3644d7", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.55it/s]" + "value": " 9.02k/9.02k [00:00<00:00, 1.14MB/s]" } }, - "4ee5125ee6464710b79aa17cdcd4da98": { + "4e05a30d55ad46afa6049432887d8b9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_98c7aca5addf4cbb8065ab0051632514", - "IPY_MODEL_abc391898ae9407cb5205321071f0468", - "IPY_MODEL_f7452f6566e34b2f9f35c2563525fb17" - ], - "layout": "IPY_MODEL_ac12a96b92264ddbba89320eac25cc9d", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f67814f0e6b24425bdf25f7f05f08ccf", + "placeholder": "​", + "style": "IPY_MODEL_de513cdaed394180886bee1974c93ce2", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "50c4f35b30b44f3b863a24dd6179bcb7": { + "4eb3982370ac42b992966c7a96cc2a47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_541973876cde496bb6e94fa33dc55140", + "placeholder": "​", + "style": "IPY_MODEL_66b18e0944474821880d3bfb36e60114", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 274934.56 examples/s]" } }, - "520a280cc7d74e448d872f7c7271d126": { + "4eb8b10ee55a4e899df1e41b2daa3ab0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "549cb314e13542f88db6960e75a19e31": { + "52d596f308bf4f45b80e83f66d3644d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4201,33 +4309,30 @@ "text_color": null } }, - "5503b58a820e4819842e80e976d3a76f": { + "535e01c6bf504b4cb054ec6d754951fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b6658a6ead1348539758e9b43047e12e", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_85c3bef366b0445e94f67493e1b4135c", + "layout": "IPY_MODEL_1c7e2745f8f7403695df2dab5d5b611a", + "placeholder": "​", + "style": "IPY_MODEL_1d1726a8bb644d8abcfe68a6e01dac4e", "tabbable": null, "tooltip": null, - "value": 5175617.0 + "value": " 2/2 [00:00<00:00, 675.74it/s]" } }, - "5561a6ac17b24a1ead6c2035597926e5": { + "53d0052e73f048148debd9352ce17f64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4280,55 +4385,7 @@ "width": null } }, - "58e473c5367e4a1b9a53bb8a96929532": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0e1af7ec8d1b44488fbc65b4dd7fc5cf", - "IPY_MODEL_452a151738254c91b9ad4e9993aa05fa", - "IPY_MODEL_376f63928820493ab3ff6eda05c56897" - ], - "layout": "IPY_MODEL_f4e8a56c4bcc468e82d4dfb214b3caef", - "tabbable": null, - "tooltip": null - } - }, - "59635bd91eda4ec8b2813d3556942613": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7a930979e84a4050a93265e38a827e7d", - "IPY_MODEL_18b6b3db95044619bc7e97671d75032d", - "IPY_MODEL_095c66112453480e9624d9cfc21715ab" - ], - "layout": "IPY_MODEL_af1acff2f67c472c84be83c6a5cfb8a0", - "tabbable": null, - "tooltip": null - } - }, - "5bd79b8a8c1b4e85ba6e80a802542158": { + "541973876cde496bb6e94fa33dc55140": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4381,43 +4438,7 @@ "width": null } }, - "5d29aca2ccc3457a8b5ff4b641fa673b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5d644dc6e7b348f3a06e94ca47532b82": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5ed518bb96744d8abbdbc0ffbad631ae": { + "55ffa8d9bd174552baa854c8a1ab0aeb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4470,23 +4491,53 @@ "width": null } }, - "606bc0f4a41d4c5e8b2f440f908c62a0": { + "5d08f87fef9649c8a14840522a0823ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b46003cc199f415ca6fb8a875a8ec625", + "placeholder": "​", + "style": "IPY_MODEL_b89bf820b408447aaca183add33b3385", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "5fa684b3fcdd44e091e8fd2bd0c12461": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c46e51a76796424db3107165768eabeb", + "placeholder": "​", + "style": "IPY_MODEL_787c9141742943f0bf6aaf4801e00226", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 238740.02 examples/s]" } }, - "6515b01fafcc4d2e96b48a220614e3d5": { + "6029339687a24aaab92f58dbb90a9a2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4539,7 +4590,41 @@ "width": null } }, - "67b82f58222e4b13875d5dcfacf1f02d": { + "6445f463bca341038b901a4d9ca616f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "655b10b948974f7f87f81c7bfa23ce0d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "659ce9293f064abe8640605a65b6aeb5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4554,16 +4639,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3b7a3ad9d9f741999029b1e884e10d7f", - "IPY_MODEL_5503b58a820e4819842e80e976d3a76f", - "IPY_MODEL_10554e347811484fa131aed108fa7f5e" + "IPY_MODEL_fcfd3e8181d242b0badc716ec5884378", + "IPY_MODEL_28db2d2bcb534e91afddd30a3b5732dd", + "IPY_MODEL_5fa684b3fcdd44e091e8fd2bd0c12461" ], - "layout": "IPY_MODEL_dd5a2038a16c43a0ac3629f19448d20c", + "layout": "IPY_MODEL_824f74f519a34fc19f92843567a9592c", "tabbable": null, "tooltip": null } }, - "6c0fcaaad127458080de589feb203b5c": { + "6683a2f1a5804d0eac86b0226e09ce2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_40cc1a682eb84007a12d44ba00d8e59d", + "placeholder": "​", + "style": "IPY_MODEL_dd229a032b574962bf97ffe39211328c", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "66b18e0944474821880d3bfb36e60114": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "693092ccb52d4ce5a63d4a2174c8f259": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4616,53 +4742,43 @@ "width": null } }, - "6cb4ce19fc0a4dda81e4b65430e55f54": { + "6bb1bc8fb0c84a03b5e37a4b5de4e736": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_33ee9f5915f94a6c950761dcf5d72f0f", - "placeholder": "​", - "style": "IPY_MODEL_50c4f35b30b44f3b863a24dd6179bcb7", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6e45708d51db4608b5553f0fc1c8dcff": { + "6f4e70feb4b34d5db54a97d67aff4b7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c5364f9e2bfc451b9f97fb4bcc5310df", - "placeholder": "​", - "style": "IPY_MODEL_0d9d45f1bf5c4166b5b7a3abf66b43be", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5821.86 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "76c0916c6b714fbb93c3896e58ded715": { + "7550f2d102ee4b92a1572712f7261c9c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4715,48 +4831,33 @@ "width": null } }, - "7a930979e84a4050a93265e38a827e7d": { + "780e96fc62454e888f0e30931336ab5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4338e7ce2b6443e98493645e832eff72", - "placeholder": "​", - "style": "IPY_MODEL_88f90a7bee314150948a912e3a914957", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "801ab61b22704d25ac795744e7b61665": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_93ee81b92dd5469aa21e1da5e3d387b1", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_35ccdf1d9e91436fb82de63e8a8e06dd", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "80b6b9e2eef74d0bbc9cea0a03500cd3": { + "7859271f5ada491ca18d79aab57ac568": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4809,46 +4910,25 @@ "width": null } }, - "8188f3e7e5414e9d9a5d2c16a807f63f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_268e7e78ba6641b9a58b5082f31c4874", - "placeholder": "​", - "style": "IPY_MODEL_5d29aca2ccc3457a8b5ff4b641fa673b", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "85c3bef366b0445e94f67493e1b4135c": { + "787c9141742943f0bf6aaf4801e00226": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "87d2e34cd746403e8e0149f82c9c4b7a": { + "78ee05e703164da7a1242a32c2fe5888": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4901,41 +4981,49 @@ "width": null } }, - "88f90a7bee314150948a912e3a914957": { + "791dc4f1fa2e4226ae567d555fc24805": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_44c54692880345f59ae3ced9048f8e20", + "IPY_MODEL_1d3c4b825e3147989495a0e274377e0b", + "IPY_MODEL_170a1618ce4f40039a860ae398484c7f" + ], + "layout": "IPY_MODEL_1d3c8852cb9b4d0994b952c07bb057d8", + "tabbable": null, + "tooltip": null } }, - "8f9206c6d6c64a60a2580234d32e0a81": { + "7ab0569b036f42be8e24943aadcd1621": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8fa971ff228b4730ba125565b22a7330": { + "7c7fd464aadc4879ae14ae50a809b856": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4988,7 +5076,7 @@ "width": null } }, - "9431e177853c4601a4bd9865f16e42cd": { + "7fbe69e833c54364870397fb035584b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5041,62 +5129,7 @@ "width": null } }, - "94f5b807f47446d8b6bc23175c98ec98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9764dd40f95b485f8dabd10de8543776": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "98c7aca5addf4cbb8065ab0051632514": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d639d0d559dd4e6fb6e3901873333290", - "placeholder": "​", - "style": "IPY_MODEL_b1917632af694c729a36056ef09ed91f", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "998b8037b83446bf93284dbd4a2788f2": { + "8046a22c390a4790a21018f476e9a1f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5112,7 +5145,7 @@ "description_width": "" } }, - "9ae87b1292404a41be9dc9e345171229": { + "816259c1ca754349befb5d97e1185a2f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5130,47 +5163,7 @@ "text_color": null } }, - "9db8ae20199641fd85bf696a288ca4d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a211a34af24a4a388a2faca04427353e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b355a639b82d495c8b2fc25fbfc16c23", - "IPY_MODEL_33aa34f0378c4935b1efa481c9ce8a91", - "IPY_MODEL_2c5b5ee1b7614fd5ba101a1a7a7ee678" - ], - "layout": "IPY_MODEL_5ed518bb96744d8abbdbc0ffbad631ae", - "tabbable": null, - "tooltip": null - } - }, - "a242e89443f846ac981a399c957dff58": { + "824f74f519a34fc19f92843567a9592c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5223,61 +5216,7 @@ "width": null } }, - "a302d38e608a491ba33ba5b1fa87997c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a4975a5d4325440b88803e3b2f5c0666": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a62948d98c264a74b307080d5d99dcf3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a8d8a804956f4802b46c8a13ce22aff2": { + "82bb29b1154c4f96b68e22299ab1d951": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5323,58 +5262,14 @@ "object_position": null, "order": null, "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ab086fb305cc4768af645d19b69915cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "abc391898ae9407cb5205321071f0468": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fafda0c28c444f4ca06cba0b48ca4282", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_606bc0f4a41d4c5e8b2f440f908c62a0", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ac12a96b92264ddbba89320eac25cc9d": { + "8323bc18e50a44b085c885ca6b12a4a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5427,53 +5322,7 @@ "width": null } }, - "ad4890d19a5a43fbafc7171e1d868162": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6515b01fafcc4d2e96b48a220614e3d5", - "placeholder": "​", - "style": "IPY_MODEL_801ab61b22704d25ac795744e7b61665", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "ae8a9ba6a4b1459c84a9b72c6450f5c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_76c0916c6b714fbb93c3896e58ded715", - "placeholder": "​", - "style": "IPY_MODEL_5d644dc6e7b348f3a06e94ca47532b82", - "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.14MB/s]" - } - }, - "ae971a36828b4a09bb7e0dcd10dbd610": { + "835e200b7dbb452491f96613a3d68582": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5526,7 +5375,23 @@ "width": null } }, - "af1acff2f67c472c84be83c6a5cfb8a0": { + "88890e4bba3a43c6839fa256217037ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8b238dcab69e48aeb560ceceed894516": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5579,66 +5444,23 @@ "width": null } }, - "b187d0d8a55d473dbac7dfa59736f376": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fd70a6a0b5294249b17ea1c2b784b304", - "placeholder": "​", - "style": "IPY_MODEL_cf59b07551a8479baf4a889d3baa0949", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "b1917632af694c729a36056ef09ed91f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b27d5b6c1e7d47f183f2b299162ecaf1": { + "8b6f71a4d2174d45b5f0da5575a69f92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "b355a639b82d495c8b2fc25fbfc16c23": { + "8e1a4c8b07ef4bc6a844046e5c1ec2d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5653,38 +5475,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bcbfb370740c476f95b3a8fcf231f288", + "layout": "IPY_MODEL_94ea11ff873e43e6b1679e5b21455dcd", "placeholder": "​", - "style": "IPY_MODEL_ccf897372cbe4967b7ff5477dcd1d317", + "style": "IPY_MODEL_0c8cb70aa3444e7a9f2e276faba04b24", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": " 30.9M/30.9M [00:00<00:00, 41.0MB/s]" } }, - "b5d3c3c665db4760abc9fc310c910f48": { + "8edaf5c5759040f08cbb3efa298b00c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dc3819bc06b446e8813e4c9d6928ca9e", - "placeholder": "​", - "style": "IPY_MODEL_cdc4c754f5a6406ea3c2e8b8c90d749f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5d08f87fef9649c8a14840522a0823ef", + "IPY_MODEL_caddcee0c11648918da1dc284d00a733", + "IPY_MODEL_2fb5148d5fd04234a5adddeecede3131" + ], + "layout": "IPY_MODEL_4bc42b29769b4a4aa8b4ce01236e62d2", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.07it/s]" + "tooltip": null } }, - "b6658a6ead1348539758e9b43047e12e": { + "90df698f70f74395b78c4545a06264b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5737,23 +5560,7 @@ "width": null } }, - "b8455c3957da47908f8061dd434140b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b8bde2b8016d41cb940a619657518872": { + "915b2de72e934c53b5769ae4fc9767af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5771,30 +5578,7 @@ "text_color": null } }, - "bc89985b6d754809b60345d5a443a7ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c9b11aa349124007ad6dc73bd034b58b", - "placeholder": "​", - "style": "IPY_MODEL_b8bde2b8016d41cb940a619657518872", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "bcbfb370740c476f95b3a8fcf231f288": { + "92149d8be9a848bbb307f645477bd77c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5847,7 +5631,23 @@ "width": null } }, - "c1b59760f9fb4305864ad78f0ec84721": { + "93e0e54cd7c943569aa5ed63aa27d75c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "93ee81b92dd5469aa21e1da5e3d387b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5900,7 +5700,7 @@ "width": null } }, - "c259c2e0eb294c8ca42e13569fd0c617": { + "94ea11ff873e43e6b1679e5b21455dcd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5953,31 +5753,7 @@ "width": null } }, - "c2c0749853484226a8283ccd443343ad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bc89985b6d754809b60345d5a443a7ce", - "IPY_MODEL_1dd67ff2848741198fa40d68afd7677f", - "IPY_MODEL_fb86094b4168498d984fc0c735802174" - ], - "layout": "IPY_MODEL_d3b2acb4536446f2b794b4c666218cfa", - "tabbable": null, - "tooltip": null - } - }, - "c35640f855334227897b9f4c5b9fdf98": { + "99434eeea164499493fbe1c3c189f61d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5995,7 +5771,60 @@ "text_color": null } }, - "c36231f830314f42a758f73f42447b7a": { + "9991e131478646aba449193d96a55a57": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "99d2ef87ee6d4b0399d85ae87ea77234": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6048,25 +5877,30 @@ "width": null } }, - "c40071e8d372461586ab66b43e521127": { + "9aea7f50b8a64c5089b63f2e59596737": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f847bdb68fa4d6ca3ba027f2f973e6f", + "placeholder": "​", + "style": "IPY_MODEL_ecd3872c3cab43199312a7cf192fad53", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "c5364f9e2bfc451b9f97fb4bcc5310df": { + "9c86ac35d56b4cb1b9a6c8c81f2b9d73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6119,25 +5953,102 @@ "width": null } }, - "c6ad7ba41f254d7d9f66dd1ff8993505": { + "9d735577298140d6bd60a896468f75ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cdb5399c46854933aec0635ff11ee82b", + "placeholder": "​", + "style": "IPY_MODEL_816259c1ca754349befb5d97e1185a2f", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.57it/s]" + } + }, + "9e6d69b0c89145529eb34adb7f0cb591": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_211a1d0f7e994da3abdf9c87d144d826", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_069e2f7a59ce43e49d604a293ef5ff5e", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "9f386e7f08b44099b26554458760f42b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d832ccbd6cb1441bb90c6724f6a97c58", + "placeholder": "​", + "style": "IPY_MODEL_6445f463bca341038b901a4d9ca616f1", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.78it/s]" + } + }, + "a88d54dcd75443e4adf63e584faa623b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_abebc2eb21844fa397ca6871fc6ec8cf", + "placeholder": "​", + "style": "IPY_MODEL_99434eeea164499493fbe1c3c189f61d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.09it/s]" } }, - "c7125c1a247549e2b42ff703b34e1fc1": { + "abebc2eb21844fa397ca6871fc6ec8cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6190,51 +6101,49 @@ "width": null } }, - "c76490e3e2a94a30853b7713f4954fec": { + "ac59c63878b24875a6a698b3193950b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c36231f830314f42a758f73f42447b7a", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0074fd3e7dc5465baf7ffbb736b2a048", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c896b3b9cb9a45188ed696890efa5e2e": { + "ac8e9ae825dd46cda3caaf717ab3f457": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6683a2f1a5804d0eac86b0226e09ce2f", + "IPY_MODEL_e3e736649315401c81b5ead3b4d531d0", + "IPY_MODEL_8e1a4c8b07ef4bc6a844046e5c1ec2d2" + ], + "layout": "IPY_MODEL_c889901543af4b20b0f364b5a9c00552", + "tabbable": null, + "tooltip": null } }, - "c9b11aa349124007ad6dc73bd034b58b": { + "b46003cc199f415ca6fb8a875a8ec625": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6287,7 +6196,7 @@ "width": null } }, - "c9b4b8e5c57b4261b88992e28dd46275": { + "b559757c81a64cd58ea390bf437dd0ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6302,16 +6211,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6cb4ce19fc0a4dda81e4b65430e55f54", - "IPY_MODEL_3401118fc13146509f55662d834b629b", - "IPY_MODEL_ae8a9ba6a4b1459c84a9b72c6450f5c8" + "IPY_MODEL_2f9e64dc3c6449d4b0180bcb72af8029", + "IPY_MODEL_c64d89a061bf4c47a85f82310c367108", + "IPY_MODEL_535e01c6bf504b4cb054ec6d754951fc" ], - "layout": "IPY_MODEL_f6844b42137e4ef6afe18d5972a9adbe", + "layout": "IPY_MODEL_e2e91b9bdaf24cad81bd697fe523454f", "tabbable": null, "tooltip": null } }, - "c9d9ed6ef9604c189eaa8d491ed7f431": { + "b7ff9d3e760d46ab9410530722e86f1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6326,40 +6235,104 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8188f3e7e5414e9d9a5d2c16a807f63f", - "IPY_MODEL_ddf28e5539a5487a97fb0ef0dbe3d551", - "IPY_MODEL_b5d3c3c665db4760abc9fc310c910f48" + "IPY_MODEL_4600b1651fe94c96a63f5f402ffeb0ab", + "IPY_MODEL_9e6d69b0c89145529eb34adb7f0cb591", + "IPY_MODEL_d212bb43e85445ddadf2aa7399f5ad9f" ], - "layout": "IPY_MODEL_0273aef8589d4917bacb942121545fdc", + "layout": "IPY_MODEL_82bb29b1154c4f96b68e22299ab1d951", "tabbable": null, "tooltip": null } }, - "cbce330f04ed4afbb5085ae978cdad59": { + "b89bf820b408447aaca183add33b3385": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_de0cc3602a724cfb9e23caf6dd53049f", - "IPY_MODEL_c76490e3e2a94a30853b7713f4954fec", - "IPY_MODEL_d6b538e749524f4d835fd0c8afaa9e85" - ], - "layout": "IPY_MODEL_cea129ba623b4447801b1be01db46646", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bc1aed3122144934903681458e457bf8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bc8279dc52324a12b433c3eb7960a2a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bfc788895f3e4ac99ff89696a72123e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c0948aa3ed46428ab068ab823f6cd605": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "cca28fa45d7c4860b70e5d252d598779": { + "c2c7a5fc0f0f4ed6823022c936c59d4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6412,43 +6385,23 @@ "width": null } }, - "ccf897372cbe4967b7ff5477dcd1d317": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cd312f9c3c43405e8452c9134db3353d": { + "c3eb3db9442048f197e1a77c1097d301": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "cd9c57f8b84b47a7963af1f6695a8d32": { + "c3ff3642d4de49349f69b03661c00aed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6463,33 +6416,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c1b59760f9fb4305864ad78f0ec84721", + "layout": "IPY_MODEL_42b1e7be991546bfa6284a9f6a270c5e", "placeholder": "​", - "style": "IPY_MODEL_c6ad7ba41f254d7d9f66dd1ff8993505", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "cdc4c754f5a6406ea3c2e8b8c90d749f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "style": "IPY_MODEL_e42616ef8baf4635bafbb430bd804f38", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "cea129ba623b4447801b1be01db46646": { + "c46e51a76796424db3107165768eabeb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6542,25 +6477,7 @@ "width": null } }, - "cf59b07551a8479baf4a889d3baa0949": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d3b2acb4536446f2b794b4c666218cfa": { + "c486ad2141e04d7e9fe35aa3fd2474cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6613,7 +6530,59 @@ "width": null } }, - "d3d5ed9f069440f69dd5a9fefd795add": { + "c59b31b3f35548939da5226d15fe98c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_332d853f3c6d4038bce23ffbe32553e0", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4eb8b10ee55a4e899df1e41b2daa3ab0", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "c64d89a061bf4c47a85f82310c367108": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3a97ba1affa44cee81db93c6e61a8d5e", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_43d5c56839bb4f48bef27dd0bd134ac1", + "tabbable": null, + "tooltip": null, + "value": 2.0 + } + }, + "c76f90aede094a2bb529e852ce14a1ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6666,7 +6635,7 @@ "width": null } }, - "d639d0d559dd4e6fb6e3901873333290": { + "c81eaad18b554cdbbd128330bc9705e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6719,30 +6688,7 @@ "width": null } }, - "d6b538e749524f4d835fd0c8afaa9e85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5561a6ac17b24a1ead6c2035597926e5", - "placeholder": "​", - "style": "IPY_MODEL_520a280cc7d74e448d872f7c7271d126", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.81it/s]" - } - }, - "dc3819bc06b446e8813e4c9d6928ca9e": { + "c889901543af4b20b0f364b5a9c00552": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6795,7 +6741,59 @@ "width": null } }, - "dd5a2038a16c43a0ac3629f19448d20c": { + "c927a2fd98ee422da94eb0ac1d179320": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7fbe69e833c54364870397fb035584b5", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_219f02688f1c45028f227c9b6864c6b1", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "caddcee0c11648918da1dc284d00a733": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7550f2d102ee4b92a1572712f7261c9c", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2261458f8c6d47aa8268533e772e4c15", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "cdb5399c46854933aec0635ff11ee82b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6848,33 +6846,30 @@ "width": null } }, - "ddf28e5539a5487a97fb0ef0dbe3d551": { + "d1946623097a4ad78743cc2dfe72c9e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0af8bebcf20a4939ac2a4c99a19c486b", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8f9206c6d6c64a60a2580234d32e0a81", + "layout": "IPY_MODEL_0ddb4b1211904a10aa548c33caee6aed", + "placeholder": "​", + "style": "IPY_MODEL_6bb1bc8fb0c84a03b5e37a4b5de4e736", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "Downloading readme: 100%" } }, - "de0cc3602a724cfb9e23caf6dd53049f": { + "d212bb43e85445ddadf2aa7399f5ad9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6889,31 +6884,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8d8a804956f4802b46c8a13ce22aff2", + "layout": "IPY_MODEL_ec76a6f47e4e48bca8b9cbd502142648", "placeholder": "​", - "style": "IPY_MODEL_9ae87b1292404a41be9dc9e345171229", + "style": "IPY_MODEL_915b2de72e934c53b5769ae4fc9767af", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "e16f7cc5be7a41f99cd033710d609079": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 60000/60000 [00:11<00:00, 6615.19 examples/s]" } }, - "e1fe80d24ad54c8c9915159f98eab61d": { + "d71df3a63bda4854a0d7e51c67182ab4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6928,16 +6907,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_398bb879138b40d399d0f113bd694fc5", - "IPY_MODEL_4a3b41c4e2ea4d97a6bd371eaa440b40", - "IPY_MODEL_2170d1a68bfb452fb4453c1677275cdb" + "IPY_MODEL_f0fad03b316846978c8014648b821038", + "IPY_MODEL_c59b31b3f35548939da5226d15fe98c0", + "IPY_MODEL_441f7c2b1d4140f186a4b360c9fab017" ], - "layout": "IPY_MODEL_87d2e34cd746403e8e0149f82c9c4b7a", + "layout": "IPY_MODEL_7859271f5ada491ca18d79aab57ac568", "tabbable": null, "tooltip": null } }, - "e98ad085aa5240bf8038535967afcdb2": { + "d832ccbd6cb1441bb90c6724f6a97c58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6990,60 +6969,108 @@ "width": null } }, - "eaf1a047405b4e7bb57d287daefe7504": { - "model_module": "@jupyter-widgets/base", + "d87514297c6e446c988365c61fd9457a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dd229a032b574962bf97ffe39211328c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "de513cdaed394180886bee1974c93ce2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "df25fafe8e5749a69234408c18364b66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3db3123a400c4f229af20389ad3520d2", + "IPY_MODEL_780e96fc62454e888f0e30931336ab5e", + "IPY_MODEL_4eb3982370ac42b992966c7a96cc2a47" + ], + "layout": "IPY_MODEL_ec11913b1d364c338cea95b8771db6b1", + "tabbable": null, + "tooltip": null + } + }, + "dfffc444cdb640d4a9d712253b6edfa0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23b32b2ad0ea490eb3636fac11964542", + "placeholder": "​", + "style": "IPY_MODEL_7ab0569b036f42be8e24943aadcd1621", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "ec04934362fe4543863277d2dfd6a061": { + "e2e91b9bdaf24cad81bd697fe523454f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7096,46 +7123,51 @@ "width": null } }, - "ec80915afdb94a8299984811c0cb0c11": { + "e3e736649315401c81b5ead3b4d531d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a242e89443f846ac981a399c957dff58", - "placeholder": "​", - "style": "IPY_MODEL_a62948d98c264a74b307080d5d99dcf3", + "layout": "IPY_MODEL_92149d8be9a848bbb307f645477bd77c", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c0948aa3ed46428ab068ab823f6cd605", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 257043.30 examples/s]" + "value": 30931277.0 } }, - "ee414ac69e154eb0bfed44189fad8e37": { + "e42616ef8baf4635bafbb430bd804f38": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f4e8a56c4bcc468e82d4dfb214b3caef": { + "e9906144508c4f6f90da6edacecadc26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7188,7 +7220,7 @@ "width": null } }, - "f6844b42137e4ef6afe18d5972a9adbe": { + "ec11913b1d364c338cea95b8771db6b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7241,30 +7273,7 @@ "width": null } }, - "f7452f6566e34b2f9f35c2563525fb17": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ae971a36828b4a09bb7e0dcd10dbd610", - "placeholder": "​", - "style": "IPY_MODEL_18c7834b4b744cfcb7a4ed96a2762fed", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:50<00:00, 1175.17it/s]" - } - }, - "f8e530f9e62146a1b3da96e7282b66ae": { + "ec76a6f47e4e48bca8b9cbd502142648": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7317,60 +7326,43 @@ "width": null } }, - "fafda0c28c444f4ca06cba0b48ca4282": { - "model_module": "@jupyter-widgets/base", + "ecd3872c3cab43199312a7cf192fad53": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ed2a70f9cbbb432781a33bb137c5fe76": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fb86094b4168498d984fc0c735802174": { + "f0fad03b316846978c8014648b821038": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7385,68 +7377,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9431e177853c4601a4bd9865f16e42cd", + "layout": "IPY_MODEL_4686b29b240141f7956b546c1f2e9e83", "placeholder": "​", - "style": "IPY_MODEL_c35640f855334227897b9f4c5b9fdf98", + "style": "IPY_MODEL_d87514297c6e446c988365c61fd9457a", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 599.19it/s]" + "value": "Downloading data: 100%" } }, - "fc4212d824134d64aa41da4e68a11ce3": { - "model_module": "@jupyter-widgets/base", + "f5f27a9d088946cdb7ec1fbf69ccb020": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fd70a6a0b5294249b17ea1c2b784b304": { + "f67814f0e6b24425bdf25f7f05f08ccf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7499,31 +7456,25 @@ "width": null } }, - "fdc592e8c3fe4972a89cb71e5b08f902": { + "f747d8cff30e48638ca4b6a8b62e1fc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_25ed6de0a7704cc18de8511ec7479677", - "IPY_MODEL_09efd1370cc54da4a50994d669f4d152", - "IPY_MODEL_17b38d9bc2e7453688461e200844cac0" - ], - "layout": "IPY_MODEL_1faa0770f77b4418bfe02c6c5ae337b7", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "feec1b76bf164c76b4d6e16c6f021c54": { + "f8117f94932241b49ad3017baa3b1708": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7576,7 +7527,7 @@ "width": null } }, - "ff37bd60786747118fd0d7497b060680": { + "fc0a1aa0c6cf46cfa476b5f7e2175769": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7593,6 +7544,55 @@ "font_size": null, "text_color": null } + }, + "fcfd3e8181d242b0badc716ec5884378": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7c7fd464aadc4879ae14ae50a809b856", + "placeholder": "​", + "style": "IPY_MODEL_194aeb115f294dd081a7dcf4d3442b34", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "ff306473844b44168fdb05050fbaa3cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_99d2ef87ee6d4b0399d85ae87ea77234", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_93e0e54cd7c943569aa5ed63aa27d75c", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 4af7593da..4c7f899e9 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:13.932322Z", - "iopub.status.busy": "2024-08-08T18:57:13.932140Z", - "iopub.status.idle": "2024-08-08T18:57:15.344301Z", - "shell.execute_reply": "2024-08-08T18:57:15.343710Z" + "iopub.execute_input": "2024-08-12T10:35:27.600046Z", + "iopub.status.busy": "2024-08-12T10:35:27.599606Z", + "iopub.status.idle": "2024-08-12T10:35:29.050810Z", + "shell.execute_reply": "2024-08-12T10:35:29.050210Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:15.346778Z", - "iopub.status.busy": "2024-08-08T18:57:15.346464Z", - "iopub.status.idle": "2024-08-08T18:57:15.366118Z", - "shell.execute_reply": "2024-08-08T18:57:15.365638Z" + "iopub.execute_input": "2024-08-12T10:35:29.053428Z", + "iopub.status.busy": "2024-08-12T10:35:29.052999Z", + "iopub.status.idle": "2024-08-12T10:35:29.072814Z", + "shell.execute_reply": "2024-08-12T10:35:29.072235Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:15.368486Z", - "iopub.status.busy": "2024-08-08T18:57:15.368201Z", - "iopub.status.idle": "2024-08-08T18:57:15.395347Z", - "shell.execute_reply": "2024-08-08T18:57:15.394848Z" + "iopub.execute_input": "2024-08-12T10:35:29.075332Z", + "iopub.status.busy": "2024-08-12T10:35:29.074762Z", + "iopub.status.idle": "2024-08-12T10:35:29.100612Z", + "shell.execute_reply": "2024-08-12T10:35:29.100059Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:15.397532Z", - "iopub.status.busy": "2024-08-08T18:57:15.397113Z", - "iopub.status.idle": "2024-08-08T18:57:15.400666Z", - "shell.execute_reply": "2024-08-08T18:57:15.400209Z" + "iopub.execute_input": "2024-08-12T10:35:29.102602Z", + "iopub.status.busy": "2024-08-12T10:35:29.102402Z", + "iopub.status.idle": "2024-08-12T10:35:29.106001Z", + "shell.execute_reply": "2024-08-12T10:35:29.105439Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:15.402618Z", - "iopub.status.busy": "2024-08-08T18:57:15.402423Z", - "iopub.status.idle": "2024-08-08T18:57:15.409732Z", - "shell.execute_reply": "2024-08-08T18:57:15.409306Z" + "iopub.execute_input": "2024-08-12T10:35:29.108189Z", + "iopub.status.busy": "2024-08-12T10:35:29.107741Z", + "iopub.status.idle": "2024-08-12T10:35:29.115356Z", + "shell.execute_reply": "2024-08-12T10:35:29.114901Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:15.411896Z", - "iopub.status.busy": "2024-08-08T18:57:15.411574Z", - "iopub.status.idle": "2024-08-08T18:57:15.414202Z", - "shell.execute_reply": "2024-08-08T18:57:15.413669Z" + "iopub.execute_input": "2024-08-12T10:35:29.117288Z", + "iopub.status.busy": "2024-08-12T10:35:29.117111Z", + "iopub.status.idle": "2024-08-12T10:35:29.119850Z", + "shell.execute_reply": "2024-08-12T10:35:29.119384Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:15.416416Z", - "iopub.status.busy": "2024-08-08T18:57:15.415967Z", - "iopub.status.idle": "2024-08-08T18:57:18.487403Z", - "shell.execute_reply": "2024-08-08T18:57:18.486838Z" + "iopub.execute_input": "2024-08-12T10:35:29.121854Z", + "iopub.status.busy": "2024-08-12T10:35:29.121528Z", + "iopub.status.idle": "2024-08-12T10:35:32.238019Z", + "shell.execute_reply": "2024-08-12T10:35:32.237473Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:18.490087Z", - "iopub.status.busy": "2024-08-08T18:57:18.489663Z", - "iopub.status.idle": "2024-08-08T18:57:18.499795Z", - "shell.execute_reply": "2024-08-08T18:57:18.499346Z" + "iopub.execute_input": "2024-08-12T10:35:32.240723Z", + "iopub.status.busy": "2024-08-12T10:35:32.240325Z", + "iopub.status.idle": "2024-08-12T10:35:32.250121Z", + "shell.execute_reply": "2024-08-12T10:35:32.249690Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:18.501911Z", - "iopub.status.busy": "2024-08-08T18:57:18.501573Z", - "iopub.status.idle": "2024-08-08T18:57:20.601629Z", - "shell.execute_reply": "2024-08-08T18:57:20.600980Z" + "iopub.execute_input": "2024-08-12T10:35:32.252177Z", + "iopub.status.busy": "2024-08-12T10:35:32.251867Z", + "iopub.status.idle": "2024-08-12T10:35:34.432426Z", + "shell.execute_reply": "2024-08-12T10:35:34.431815Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.604183Z", - "iopub.status.busy": "2024-08-08T18:57:20.603823Z", - "iopub.status.idle": "2024-08-08T18:57:20.623367Z", - "shell.execute_reply": "2024-08-08T18:57:20.622921Z" + "iopub.execute_input": "2024-08-12T10:35:34.434892Z", + "iopub.status.busy": "2024-08-12T10:35:34.434393Z", + "iopub.status.idle": "2024-08-12T10:35:34.453921Z", + "shell.execute_reply": "2024-08-12T10:35:34.453411Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.625446Z", - "iopub.status.busy": "2024-08-08T18:57:20.625102Z", - "iopub.status.idle": "2024-08-08T18:57:20.632804Z", - "shell.execute_reply": "2024-08-08T18:57:20.632286Z" + "iopub.execute_input": "2024-08-12T10:35:34.456112Z", + "iopub.status.busy": "2024-08-12T10:35:34.455791Z", + "iopub.status.idle": "2024-08-12T10:35:34.463837Z", + "shell.execute_reply": "2024-08-12T10:35:34.463381Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.634961Z", - "iopub.status.busy": "2024-08-08T18:57:20.634501Z", - "iopub.status.idle": "2024-08-08T18:57:20.643757Z", - "shell.execute_reply": "2024-08-08T18:57:20.643303Z" + "iopub.execute_input": "2024-08-12T10:35:34.465873Z", + "iopub.status.busy": "2024-08-12T10:35:34.465530Z", + "iopub.status.idle": "2024-08-12T10:35:34.474676Z", + "shell.execute_reply": "2024-08-12T10:35:34.474217Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.645956Z", - "iopub.status.busy": "2024-08-08T18:57:20.645540Z", - "iopub.status.idle": "2024-08-08T18:57:20.653420Z", - "shell.execute_reply": "2024-08-08T18:57:20.652872Z" + "iopub.execute_input": "2024-08-12T10:35:34.476791Z", + "iopub.status.busy": "2024-08-12T10:35:34.476448Z", + "iopub.status.idle": "2024-08-12T10:35:34.484224Z", + "shell.execute_reply": "2024-08-12T10:35:34.483790Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.655435Z", - "iopub.status.busy": "2024-08-08T18:57:20.655128Z", - "iopub.status.idle": "2024-08-08T18:57:20.664041Z", - "shell.execute_reply": "2024-08-08T18:57:20.663473Z" + "iopub.execute_input": "2024-08-12T10:35:34.486280Z", + "iopub.status.busy": "2024-08-12T10:35:34.485956Z", + "iopub.status.idle": "2024-08-12T10:35:34.495143Z", + "shell.execute_reply": "2024-08-12T10:35:34.494602Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.666047Z", - "iopub.status.busy": "2024-08-08T18:57:20.665712Z", - "iopub.status.idle": "2024-08-08T18:57:20.673145Z", - "shell.execute_reply": "2024-08-08T18:57:20.672641Z" + "iopub.execute_input": "2024-08-12T10:35:34.497284Z", + "iopub.status.busy": "2024-08-12T10:35:34.496965Z", + "iopub.status.idle": "2024-08-12T10:35:34.504500Z", + "shell.execute_reply": "2024-08-12T10:35:34.503930Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.675183Z", - "iopub.status.busy": "2024-08-08T18:57:20.674905Z", - "iopub.status.idle": "2024-08-08T18:57:20.682399Z", - "shell.execute_reply": "2024-08-08T18:57:20.681836Z" + "iopub.execute_input": "2024-08-12T10:35:34.506743Z", + "iopub.status.busy": "2024-08-12T10:35:34.506276Z", + "iopub.status.idle": "2024-08-12T10:35:34.513611Z", + "shell.execute_reply": "2024-08-12T10:35:34.513168Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:20.684494Z", - "iopub.status.busy": "2024-08-08T18:57:20.684184Z", - "iopub.status.idle": "2024-08-08T18:57:20.692813Z", - "shell.execute_reply": "2024-08-08T18:57:20.692245Z" + "iopub.execute_input": "2024-08-12T10:35:34.515577Z", + "iopub.status.busy": "2024-08-12T10:35:34.515407Z", + "iopub.status.idle": "2024-08-12T10:35:34.524253Z", + "shell.execute_reply": "2024-08-12T10:35:34.523636Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index b8262360a..e4c11f4d4 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'card_payment_fee_charged', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'cancel_transfer', 'card_about_to_expire', 'getting_spare_card', 'change_pin', 'supported_cards_and_currencies', 'visa_or_mastercard'}
+Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'cancel_transfer', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'getting_spare_card', 'card_about_to_expire', 'apple_pay_or_google_pay'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 666762212..cb47d3b31 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:23.637597Z", - "iopub.status.busy": "2024-08-08T18:57:23.637174Z", - "iopub.status.idle": "2024-08-08T18:57:26.772389Z", - "shell.execute_reply": "2024-08-08T18:57:26.771759Z" + "iopub.execute_input": "2024-08-12T10:35:37.558577Z", + "iopub.status.busy": "2024-08-12T10:35:37.558339Z", + "iopub.status.idle": "2024-08-12T10:35:40.739470Z", + "shell.execute_reply": "2024-08-12T10:35:40.738831Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:26.775206Z", - "iopub.status.busy": "2024-08-08T18:57:26.774784Z", - "iopub.status.idle": "2024-08-08T18:57:26.778003Z", - "shell.execute_reply": "2024-08-08T18:57:26.777555Z" + "iopub.execute_input": "2024-08-12T10:35:40.742086Z", + "iopub.status.busy": "2024-08-12T10:35:40.741793Z", + "iopub.status.idle": "2024-08-12T10:35:40.745137Z", + "shell.execute_reply": "2024-08-12T10:35:40.744684Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:26.780141Z", - "iopub.status.busy": "2024-08-08T18:57:26.779785Z", - "iopub.status.idle": "2024-08-08T18:57:26.782943Z", - "shell.execute_reply": "2024-08-08T18:57:26.782441Z" + "iopub.execute_input": "2024-08-12T10:35:40.747148Z", + "iopub.status.busy": "2024-08-12T10:35:40.746882Z", + "iopub.status.idle": "2024-08-12T10:35:40.749760Z", + "shell.execute_reply": "2024-08-12T10:35:40.749330Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:26.784993Z", - "iopub.status.busy": "2024-08-08T18:57:26.784660Z", - "iopub.status.idle": "2024-08-08T18:57:26.810720Z", - "shell.execute_reply": "2024-08-08T18:57:26.810171Z" + "iopub.execute_input": "2024-08-12T10:35:40.751845Z", + "iopub.status.busy": "2024-08-12T10:35:40.751461Z", + "iopub.status.idle": "2024-08-12T10:35:40.775689Z", + "shell.execute_reply": "2024-08-12T10:35:40.775149Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:26.812844Z", - "iopub.status.busy": "2024-08-08T18:57:26.812508Z", - "iopub.status.idle": "2024-08-08T18:57:26.816017Z", - "shell.execute_reply": "2024-08-08T18:57:26.815460Z" + "iopub.execute_input": "2024-08-12T10:35:40.777762Z", + "iopub.status.busy": "2024-08-12T10:35:40.777401Z", + "iopub.status.idle": "2024-08-12T10:35:40.780895Z", + "shell.execute_reply": "2024-08-12T10:35:40.780349Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'cancel_transfer', 'card_about_to_expire', 'getting_spare_card', 'change_pin', 'supported_cards_and_currencies', 'visa_or_mastercard'}\n" + "Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'cancel_transfer', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'getting_spare_card', 'card_about_to_expire', 'apple_pay_or_google_pay'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:26.818127Z", - "iopub.status.busy": "2024-08-08T18:57:26.817789Z", - "iopub.status.idle": "2024-08-08T18:57:26.820784Z", - "shell.execute_reply": "2024-08-08T18:57:26.820238Z" + "iopub.execute_input": "2024-08-12T10:35:40.782945Z", + "iopub.status.busy": "2024-08-12T10:35:40.782612Z", + "iopub.status.idle": "2024-08-12T10:35:40.785832Z", + "shell.execute_reply": "2024-08-12T10:35:40.785363Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:26.823035Z", - "iopub.status.busy": "2024-08-08T18:57:26.822565Z", - "iopub.status.idle": "2024-08-08T18:57:30.521343Z", - "shell.execute_reply": "2024-08-08T18:57:30.520787Z" + "iopub.execute_input": "2024-08-12T10:35:40.787889Z", + "iopub.status.busy": "2024-08-12T10:35:40.787554Z", + "iopub.status.idle": "2024-08-12T10:35:44.773402Z", + "shell.execute_reply": "2024-08-12T10:35:44.772834Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:30.524114Z", - "iopub.status.busy": "2024-08-08T18:57:30.523692Z", - "iopub.status.idle": "2024-08-08T18:57:31.422700Z", - "shell.execute_reply": "2024-08-08T18:57:31.422089Z" + "iopub.execute_input": "2024-08-12T10:35:44.776274Z", + "iopub.status.busy": "2024-08-12T10:35:44.775914Z", + "iopub.status.idle": "2024-08-12T10:35:45.665358Z", + "shell.execute_reply": "2024-08-12T10:35:45.664759Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:31.425649Z", - "iopub.status.busy": "2024-08-08T18:57:31.425265Z", - "iopub.status.idle": "2024-08-08T18:57:31.428198Z", - "shell.execute_reply": "2024-08-08T18:57:31.427696Z" + "iopub.execute_input": "2024-08-12T10:35:45.668546Z", + "iopub.status.busy": "2024-08-12T10:35:45.668154Z", + "iopub.status.idle": "2024-08-12T10:35:45.671068Z", + "shell.execute_reply": "2024-08-12T10:35:45.670578Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:31.430626Z", - "iopub.status.busy": "2024-08-08T18:57:31.430243Z", - "iopub.status.idle": "2024-08-08T18:57:33.428306Z", - "shell.execute_reply": "2024-08-08T18:57:33.427582Z" + "iopub.execute_input": "2024-08-12T10:35:45.673470Z", + "iopub.status.busy": "2024-08-12T10:35:45.673092Z", + "iopub.status.idle": "2024-08-12T10:35:47.702436Z", + "shell.execute_reply": "2024-08-12T10:35:47.701696Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.431267Z", - "iopub.status.busy": "2024-08-08T18:57:33.430823Z", - "iopub.status.idle": "2024-08-08T18:57:33.454383Z", - "shell.execute_reply": "2024-08-08T18:57:33.453871Z" + "iopub.execute_input": "2024-08-12T10:35:47.705440Z", + "iopub.status.busy": "2024-08-12T10:35:47.704975Z", + "iopub.status.idle": "2024-08-12T10:35:47.729437Z", + "shell.execute_reply": "2024-08-12T10:35:47.728904Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.456573Z", - "iopub.status.busy": "2024-08-08T18:57:33.456110Z", - "iopub.status.idle": "2024-08-08T18:57:33.464348Z", - "shell.execute_reply": "2024-08-08T18:57:33.463794Z" + "iopub.execute_input": "2024-08-12T10:35:47.732155Z", + "iopub.status.busy": "2024-08-12T10:35:47.731793Z", + "iopub.status.idle": "2024-08-12T10:35:47.741250Z", + "shell.execute_reply": "2024-08-12T10:35:47.740687Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.466360Z", - "iopub.status.busy": "2024-08-08T18:57:33.466177Z", - "iopub.status.idle": "2024-08-08T18:57:33.470526Z", - "shell.execute_reply": "2024-08-08T18:57:33.470050Z" + "iopub.execute_input": "2024-08-12T10:35:47.743419Z", + "iopub.status.busy": "2024-08-12T10:35:47.743136Z", + "iopub.status.idle": "2024-08-12T10:35:47.747544Z", + "shell.execute_reply": "2024-08-12T10:35:47.747077Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.472647Z", - "iopub.status.busy": "2024-08-08T18:57:33.472321Z", - "iopub.status.idle": "2024-08-08T18:57:33.478952Z", - "shell.execute_reply": "2024-08-08T18:57:33.478375Z" + "iopub.execute_input": "2024-08-12T10:35:47.749487Z", + "iopub.status.busy": "2024-08-12T10:35:47.749326Z", + "iopub.status.idle": "2024-08-12T10:35:47.755601Z", + "shell.execute_reply": "2024-08-12T10:35:47.755155Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.481016Z", - "iopub.status.busy": "2024-08-08T18:57:33.480700Z", - "iopub.status.idle": "2024-08-08T18:57:33.487544Z", - "shell.execute_reply": "2024-08-08T18:57:33.487081Z" + "iopub.execute_input": "2024-08-12T10:35:47.757475Z", + "iopub.status.busy": "2024-08-12T10:35:47.757320Z", + "iopub.status.idle": "2024-08-12T10:35:47.763213Z", + "shell.execute_reply": "2024-08-12T10:35:47.762764Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.489500Z", - "iopub.status.busy": "2024-08-08T18:57:33.489189Z", - "iopub.status.idle": "2024-08-08T18:57:33.495048Z", - "shell.execute_reply": "2024-08-08T18:57:33.494498Z" + "iopub.execute_input": "2024-08-12T10:35:47.765090Z", + "iopub.status.busy": "2024-08-12T10:35:47.764937Z", + "iopub.status.idle": "2024-08-12T10:35:47.770514Z", + "shell.execute_reply": "2024-08-12T10:35:47.770034Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.497134Z", - "iopub.status.busy": "2024-08-08T18:57:33.496821Z", - "iopub.status.idle": "2024-08-08T18:57:33.506094Z", - "shell.execute_reply": "2024-08-08T18:57:33.505538Z" + "iopub.execute_input": "2024-08-12T10:35:47.772510Z", + "iopub.status.busy": "2024-08-12T10:35:47.772173Z", + "iopub.status.idle": "2024-08-12T10:35:47.780532Z", + "shell.execute_reply": "2024-08-12T10:35:47.780093Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.508300Z", - "iopub.status.busy": "2024-08-08T18:57:33.507977Z", - "iopub.status.idle": "2024-08-08T18:57:33.513316Z", - "shell.execute_reply": "2024-08-08T18:57:33.512767Z" + "iopub.execute_input": "2024-08-12T10:35:47.782646Z", + "iopub.status.busy": "2024-08-12T10:35:47.782223Z", + "iopub.status.idle": "2024-08-12T10:35:47.787705Z", + "shell.execute_reply": "2024-08-12T10:35:47.787156Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.515460Z", - "iopub.status.busy": "2024-08-08T18:57:33.515141Z", - "iopub.status.idle": "2024-08-08T18:57:33.520436Z", - "shell.execute_reply": "2024-08-08T18:57:33.519893Z" + "iopub.execute_input": "2024-08-12T10:35:47.789807Z", + "iopub.status.busy": "2024-08-12T10:35:47.789489Z", + "iopub.status.idle": "2024-08-12T10:35:47.794831Z", + "shell.execute_reply": "2024-08-12T10:35:47.794259Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.522522Z", - "iopub.status.busy": "2024-08-08T18:57:33.522213Z", - "iopub.status.idle": "2024-08-08T18:57:33.525898Z", - "shell.execute_reply": "2024-08-08T18:57:33.525345Z" + "iopub.execute_input": "2024-08-12T10:35:47.797007Z", + "iopub.status.busy": "2024-08-12T10:35:47.796666Z", + "iopub.status.idle": "2024-08-12T10:35:47.800304Z", + "shell.execute_reply": "2024-08-12T10:35:47.799739Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:33.528163Z", - "iopub.status.busy": "2024-08-08T18:57:33.527843Z", - "iopub.status.idle": "2024-08-08T18:57:33.533093Z", - "shell.execute_reply": "2024-08-08T18:57:33.532535Z" + "iopub.execute_input": "2024-08-12T10:35:47.802486Z", + "iopub.status.busy": "2024-08-12T10:35:47.802149Z", + "iopub.status.idle": "2024-08-12T10:35:47.807293Z", + "shell.execute_reply": "2024-08-12T10:35:47.806733Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index 9e2af5fcc..2a6bcd14f 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -833,7 +833,7 @@

4. Identify Data Issues Using Datalab @@ -879,13 +879,13 @@

4. Identify Data Issues Using Datalab - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3503,16 +3503,16 @@

1. Load the Dataset
---2024-08-08 18:57:57--  https://s.cleanlab.ai/CIFAR-10-subset.zip
-Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...
-Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.
+--2024-08-12 10:36:08--  https://s.cleanlab.ai/CIFAR-10-subset.zip
+Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.109.153, 185.199.110.153, 185.199.108.153, ...
+Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.109.153|:443... connected.
 HTTP request sent, awaiting response... 200 OK
 Length: 986707 (964K) [application/zip]
 Saving to: ‘CIFAR-10-subset.zip’
 
-CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.01s
+CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.008s
 
-2024-08-08 18:57:57 (62.8 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
+2024-08-12 10:36:08 (114 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
 
 
@@ -3582,7 +3582,7 @@

2. Run Datalab Analysis
-
+
@@ -4058,7 +4058,7 @@

4. (Optional) Compare with a Dataset Without Spurious CorrelationsDatalab.

diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 051bc17bf..045fd829a 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:37.585628Z", - "iopub.status.busy": "2024-08-08T18:57:37.585448Z", - "iopub.status.idle": "2024-08-08T18:57:38.008046Z", - "shell.execute_reply": "2024-08-08T18:57:38.007536Z" + "iopub.execute_input": "2024-08-12T10:35:51.551812Z", + "iopub.status.busy": "2024-08-12T10:35:51.551632Z", + "iopub.status.idle": "2024-08-12T10:35:51.990223Z", + "shell.execute_reply": "2024-08-12T10:35:51.989584Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:38.010508Z", - "iopub.status.busy": "2024-08-08T18:57:38.010115Z", - "iopub.status.idle": "2024-08-08T18:57:38.139496Z", - "shell.execute_reply": "2024-08-08T18:57:38.138932Z" + "iopub.execute_input": "2024-08-12T10:35:51.993008Z", + "iopub.status.busy": "2024-08-12T10:35:51.992513Z", + "iopub.status.idle": "2024-08-12T10:35:52.124109Z", + "shell.execute_reply": "2024-08-12T10:35:52.123511Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:38.141753Z", - "iopub.status.busy": "2024-08-08T18:57:38.141373Z", - "iopub.status.idle": "2024-08-08T18:57:38.164360Z", - "shell.execute_reply": "2024-08-08T18:57:38.163822Z" + "iopub.execute_input": "2024-08-12T10:35:52.126567Z", + "iopub.status.busy": "2024-08-12T10:35:52.126040Z", + "iopub.status.idle": "2024-08-12T10:35:52.149083Z", + "shell.execute_reply": "2024-08-12T10:35:52.148439Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:38.166994Z", - "iopub.status.busy": "2024-08-08T18:57:38.166790Z", - "iopub.status.idle": "2024-08-08T18:57:41.306583Z", - "shell.execute_reply": "2024-08-08T18:57:41.305998Z" + "iopub.execute_input": "2024-08-12T10:35:52.151708Z", + "iopub.status.busy": "2024-08-12T10:35:52.151230Z", + "iopub.status.idle": "2024-08-12T10:35:55.347722Z", + "shell.execute_reply": "2024-08-12T10:35:55.347134Z" } }, "outputs": [ @@ -235,7 +235,7 @@ "Finding class_imbalance issues ...\n", "Finding underperforming_group issues ...\n", "\n", - "Audit complete. 524 issues found in the dataset.\n" + "Audit complete. 523 issues found in the dataset.\n" ] }, { @@ -280,13 +280,13 @@ " \n", " 2\n", " outlier\n", - " 0.356925\n", - " 363\n", + " 0.356958\n", + " 362\n", " \n", " \n", " 3\n", " near_duplicate\n", - " 0.619581\n", + " 0.619565\n", " 108\n", " \n", " \n", @@ -315,8 +315,8 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356925 363\n", - "3 near_duplicate 0.619581 108\n", + "2 outlier 0.356958 362\n", + "3 near_duplicate 0.619565 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", "6 underperforming_group 0.651929 0" @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:41.309163Z", - "iopub.status.busy": "2024-08-08T18:57:41.308803Z", - "iopub.status.idle": "2024-08-08T18:57:54.265904Z", - "shell.execute_reply": "2024-08-08T18:57:54.265290Z" + "iopub.execute_input": "2024-08-12T10:35:55.350496Z", + "iopub.status.busy": "2024-08-12T10:35:55.349868Z", + "iopub.status.idle": "2024-08-12T10:36:05.091104Z", + "shell.execute_reply": "2024-08-12T10:36:05.090467Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:54.268343Z", - "iopub.status.busy": "2024-08-08T18:57:54.267970Z", - "iopub.status.idle": "2024-08-08T18:57:54.426559Z", - "shell.execute_reply": "2024-08-08T18:57:54.425992Z" + "iopub.execute_input": "2024-08-12T10:36:05.093209Z", + "iopub.status.busy": "2024-08-12T10:36:05.093024Z", + "iopub.status.idle": "2024-08-12T10:36:05.252383Z", + "shell.execute_reply": "2024-08-12T10:36:05.251714Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:54.429084Z", - "iopub.status.busy": "2024-08-08T18:57:54.428721Z", - "iopub.status.idle": "2024-08-08T18:57:55.776260Z", - "shell.execute_reply": "2024-08-08T18:57:55.775647Z" + "iopub.execute_input": "2024-08-12T10:36:05.254938Z", + "iopub.status.busy": "2024-08-12T10:36:05.254748Z", + "iopub.status.idle": "2024-08-12T10:36:06.582564Z", + "shell.execute_reply": "2024-08-12T10:36:06.581974Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:55.778544Z", - "iopub.status.busy": "2024-08-08T18:57:55.778210Z", - "iopub.status.idle": "2024-08-08T18:57:55.985793Z", - "shell.execute_reply": "2024-08-08T18:57:55.985202Z" + "iopub.execute_input": "2024-08-12T10:36:06.584851Z", + "iopub.status.busy": "2024-08-12T10:36:06.584491Z", + "iopub.status.idle": "2024-08-12T10:36:06.786894Z", + "shell.execute_reply": "2024-08-12T10:36:06.786302Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:55.988438Z", - "iopub.status.busy": "2024-08-08T18:57:55.987983Z", - "iopub.status.idle": "2024-08-08T18:57:56.001134Z", - "shell.execute_reply": "2024-08-08T18:57:56.000597Z" + "iopub.execute_input": "2024-08-12T10:36:06.789478Z", + "iopub.status.busy": "2024-08-12T10:36:06.788956Z", + "iopub.status.idle": "2024-08-12T10:36:06.802195Z", + "shell.execute_reply": "2024-08-12T10:36:06.801709Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.003198Z", - "iopub.status.busy": "2024-08-08T18:57:56.002796Z", - "iopub.status.idle": "2024-08-08T18:57:56.022109Z", - "shell.execute_reply": "2024-08-08T18:57:56.021522Z" + "iopub.execute_input": "2024-08-12T10:36:06.804254Z", + "iopub.status.busy": "2024-08-12T10:36:06.803919Z", + "iopub.status.idle": "2024-08-12T10:36:06.822049Z", + "shell.execute_reply": "2024-08-12T10:36:06.821624Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.024301Z", - "iopub.status.busy": "2024-08-08T18:57:56.024000Z", - "iopub.status.idle": "2024-08-08T18:57:56.239262Z", - "shell.execute_reply": "2024-08-08T18:57:56.238730Z" + "iopub.execute_input": "2024-08-12T10:36:06.824031Z", + "iopub.status.busy": "2024-08-12T10:36:06.823698Z", + "iopub.status.idle": "2024-08-12T10:36:07.035508Z", + "shell.execute_reply": "2024-08-12T10:36:07.034970Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.241832Z", - "iopub.status.busy": "2024-08-08T18:57:56.241444Z", - "iopub.status.idle": "2024-08-08T18:57:56.260656Z", - "shell.execute_reply": "2024-08-08T18:57:56.260103Z" + "iopub.execute_input": "2024-08-12T10:36:07.037963Z", + "iopub.status.busy": "2024-08-12T10:36:07.037705Z", + "iopub.status.idle": "2024-08-12T10:36:07.057870Z", + "shell.execute_reply": "2024-08-12T10:36:07.057360Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.262922Z", - "iopub.status.busy": "2024-08-08T18:57:56.262429Z", - "iopub.status.idle": "2024-08-08T18:57:56.400391Z", - "shell.execute_reply": "2024-08-08T18:57:56.399866Z" + "iopub.execute_input": "2024-08-12T10:36:07.060124Z", + "iopub.status.busy": "2024-08-12T10:36:07.059749Z", + "iopub.status.idle": "2024-08-12T10:36:07.211976Z", + "shell.execute_reply": "2024-08-12T10:36:07.211435Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.402718Z", - "iopub.status.busy": "2024-08-08T18:57:56.402358Z", - "iopub.status.idle": "2024-08-08T18:57:56.412449Z", - "shell.execute_reply": "2024-08-08T18:57:56.411889Z" + "iopub.execute_input": "2024-08-12T10:36:07.214229Z", + "iopub.status.busy": "2024-08-12T10:36:07.213870Z", + "iopub.status.idle": "2024-08-12T10:36:07.224062Z", + "shell.execute_reply": "2024-08-12T10:36:07.223486Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.414617Z", - "iopub.status.busy": "2024-08-08T18:57:56.414285Z", - "iopub.status.idle": "2024-08-08T18:57:56.424253Z", - "shell.execute_reply": "2024-08-08T18:57:56.423700Z" + "iopub.execute_input": "2024-08-12T10:36:07.226288Z", + "iopub.status.busy": "2024-08-12T10:36:07.225962Z", + "iopub.status.idle": "2024-08-12T10:36:07.235291Z", + "shell.execute_reply": "2024-08-12T10:36:07.234743Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.426316Z", - "iopub.status.busy": "2024-08-08T18:57:56.425990Z", - "iopub.status.idle": "2024-08-08T18:57:56.451770Z", - "shell.execute_reply": "2024-08-08T18:57:56.451324Z" + "iopub.execute_input": "2024-08-12T10:36:07.237432Z", + "iopub.status.busy": "2024-08-12T10:36:07.237103Z", + "iopub.status.idle": "2024-08-12T10:36:07.262730Z", + "shell.execute_reply": "2024-08-12T10:36:07.262231Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.453771Z", - "iopub.status.busy": "2024-08-08T18:57:56.453438Z", - "iopub.status.idle": "2024-08-08T18:57:56.456214Z", - "shell.execute_reply": "2024-08-08T18:57:56.455749Z" + "iopub.execute_input": "2024-08-12T10:36:07.264692Z", + "iopub.status.busy": "2024-08-12T10:36:07.264376Z", + "iopub.status.idle": "2024-08-12T10:36:07.267245Z", + "shell.execute_reply": "2024-08-12T10:36:07.266678Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.458217Z", - "iopub.status.busy": "2024-08-08T18:57:56.457884Z", - "iopub.status.idle": "2024-08-08T18:57:56.476804Z", - "shell.execute_reply": "2024-08-08T18:57:56.476348Z" + "iopub.execute_input": "2024-08-12T10:36:07.269215Z", + "iopub.status.busy": "2024-08-12T10:36:07.268903Z", + "iopub.status.idle": "2024-08-12T10:36:07.288822Z", + "shell.execute_reply": "2024-08-12T10:36:07.288343Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.478826Z", - "iopub.status.busy": "2024-08-08T18:57:56.478513Z", - "iopub.status.idle": "2024-08-08T18:57:56.482759Z", - "shell.execute_reply": "2024-08-08T18:57:56.482193Z" + "iopub.execute_input": "2024-08-12T10:36:07.290777Z", + "iopub.status.busy": "2024-08-12T10:36:07.290602Z", + "iopub.status.idle": "2024-08-12T10:36:07.294723Z", + "shell.execute_reply": "2024-08-12T10:36:07.294281Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.485049Z", - "iopub.status.busy": "2024-08-08T18:57:56.484612Z", - "iopub.status.idle": "2024-08-08T18:57:56.512202Z", - "shell.execute_reply": "2024-08-08T18:57:56.511632Z" + "iopub.execute_input": "2024-08-12T10:36:07.296561Z", + "iopub.status.busy": "2024-08-12T10:36:07.296393Z", + "iopub.status.idle": "2024-08-12T10:36:07.324069Z", + "shell.execute_reply": "2024-08-12T10:36:07.323629Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.514321Z", - "iopub.status.busy": "2024-08-08T18:57:56.513952Z", - "iopub.status.idle": "2024-08-08T18:57:56.879381Z", - "shell.execute_reply": "2024-08-08T18:57:56.878823Z" + "iopub.execute_input": "2024-08-12T10:36:07.325925Z", + "iopub.status.busy": "2024-08-12T10:36:07.325755Z", + "iopub.status.idle": "2024-08-12T10:36:07.697505Z", + "shell.execute_reply": "2024-08-12T10:36:07.696910Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.881740Z", - "iopub.status.busy": "2024-08-08T18:57:56.881364Z", - "iopub.status.idle": "2024-08-08T18:57:56.884336Z", - "shell.execute_reply": "2024-08-08T18:57:56.883795Z" + "iopub.execute_input": "2024-08-12T10:36:07.699604Z", + "iopub.status.busy": "2024-08-12T10:36:07.699417Z", + "iopub.status.idle": "2024-08-12T10:36:07.702433Z", + "shell.execute_reply": "2024-08-12T10:36:07.701866Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.886806Z", - "iopub.status.busy": "2024-08-08T18:57:56.886433Z", - "iopub.status.idle": "2024-08-08T18:57:56.900131Z", - "shell.execute_reply": "2024-08-08T18:57:56.899555Z" + "iopub.execute_input": "2024-08-12T10:36:07.704427Z", + "iopub.status.busy": "2024-08-12T10:36:07.704252Z", + "iopub.status.idle": "2024-08-12T10:36:07.717642Z", + "shell.execute_reply": "2024-08-12T10:36:07.717105Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.902610Z", - "iopub.status.busy": "2024-08-08T18:57:56.902379Z", - "iopub.status.idle": "2024-08-08T18:57:56.916171Z", - "shell.execute_reply": "2024-08-08T18:57:56.915714Z" + "iopub.execute_input": "2024-08-12T10:36:07.720309Z", + "iopub.status.busy": "2024-08-12T10:36:07.719991Z", + "iopub.status.idle": "2024-08-12T10:36:07.733571Z", + "shell.execute_reply": "2024-08-12T10:36:07.733014Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.918024Z", - "iopub.status.busy": "2024-08-08T18:57:56.917857Z", - "iopub.status.idle": "2024-08-08T18:57:56.928048Z", - "shell.execute_reply": "2024-08-08T18:57:56.927598Z" + "iopub.execute_input": "2024-08-12T10:36:07.735571Z", + "iopub.status.busy": "2024-08-12T10:36:07.735255Z", + "iopub.status.idle": "2024-08-12T10:36:07.745655Z", + "shell.execute_reply": "2024-08-12T10:36:07.745087Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.929933Z", - "iopub.status.busy": "2024-08-08T18:57:56.929764Z", - "iopub.status.idle": "2024-08-08T18:57:56.938883Z", - "shell.execute_reply": "2024-08-08T18:57:56.938301Z" + "iopub.execute_input": "2024-08-12T10:36:07.747816Z", + "iopub.status.busy": "2024-08-12T10:36:07.747483Z", + "iopub.status.idle": "2024-08-12T10:36:07.756627Z", + "shell.execute_reply": "2024-08-12T10:36:07.756169Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.941134Z", - "iopub.status.busy": "2024-08-08T18:57:56.940823Z", - "iopub.status.idle": "2024-08-08T18:57:56.944556Z", - "shell.execute_reply": "2024-08-08T18:57:56.944070Z" + "iopub.execute_input": "2024-08-12T10:36:07.758631Z", + "iopub.status.busy": "2024-08-12T10:36:07.758279Z", + "iopub.status.idle": "2024-08-12T10:36:07.762000Z", + "shell.execute_reply": "2024-08-12T10:36:07.761551Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:56.946638Z", - "iopub.status.busy": "2024-08-08T18:57:56.946215Z", - "iopub.status.idle": "2024-08-08T18:57:56.997907Z", - "shell.execute_reply": "2024-08-08T18:57:56.997338Z" + "iopub.execute_input": "2024-08-12T10:36:07.764123Z", + "iopub.status.busy": "2024-08-12T10:36:07.763787Z", + "iopub.status.idle": "2024-08-12T10:36:07.814348Z", + "shell.execute_reply": "2024-08-12T10:36:07.813826Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:57.000573Z", - "iopub.status.busy": "2024-08-08T18:57:56.999981Z", - "iopub.status.idle": "2024-08-08T18:57:57.007040Z", - "shell.execute_reply": "2024-08-08T18:57:57.006574Z" + "iopub.execute_input": "2024-08-12T10:36:07.816619Z", + "iopub.status.busy": "2024-08-12T10:36:07.816166Z", + "iopub.status.idle": "2024-08-12T10:36:07.822673Z", + "shell.execute_reply": "2024-08-12T10:36:07.822197Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:57.009224Z", - "iopub.status.busy": "2024-08-08T18:57:57.008781Z", - "iopub.status.idle": "2024-08-08T18:57:57.020496Z", - "shell.execute_reply": "2024-08-08T18:57:57.019934Z" + "iopub.execute_input": "2024-08-12T10:36:07.824684Z", + "iopub.status.busy": "2024-08-12T10:36:07.824371Z", + "iopub.status.idle": "2024-08-12T10:36:07.835809Z", + "shell.execute_reply": "2024-08-12T10:36:07.835239Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:57.022654Z", - "iopub.status.busy": "2024-08-08T18:57:57.022321Z", - "iopub.status.idle": "2024-08-08T18:57:57.196402Z", - "shell.execute_reply": "2024-08-08T18:57:57.195743Z" + "iopub.execute_input": "2024-08-12T10:36:07.837999Z", + "iopub.status.busy": "2024-08-12T10:36:07.837680Z", + "iopub.status.idle": "2024-08-12T10:36:08.054639Z", + "shell.execute_reply": "2024-08-12T10:36:08.053990Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:57.199045Z", - "iopub.status.busy": "2024-08-08T18:57:57.198482Z", - "iopub.status.idle": "2024-08-08T18:57:57.206576Z", - "shell.execute_reply": "2024-08-08T18:57:57.206001Z" + "iopub.execute_input": "2024-08-12T10:36:08.056912Z", + "iopub.status.busy": "2024-08-12T10:36:08.056543Z", + "iopub.status.idle": "2024-08-12T10:36:08.064093Z", + "shell.execute_reply": "2024-08-12T10:36:08.063620Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:57.208901Z", - "iopub.status.busy": "2024-08-08T18:57:57.208724Z", - "iopub.status.idle": "2024-08-08T18:57:57.657759Z", - "shell.execute_reply": "2024-08-08T18:57:57.657058Z" + "iopub.execute_input": "2024-08-12T10:36:08.066343Z", + "iopub.status.busy": "2024-08-12T10:36:08.066010Z", + "iopub.status.idle": "2024-08-12T10:36:08.546606Z", + "shell.execute_reply": "2024-08-12T10:36:08.545889Z" } }, "outputs": [ @@ -3767,9 +3767,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-08 18:57:57-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", - "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", + "--2024-08-12 10:36:08-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.109.153, 185.199.110.153, 185.199.108.153, ...\r\n", + "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.109.153|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -3783,9 +3783,9 @@ "\r\n", "\r", "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.01s \r\n", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.008s \r\n", "\r\n", - "2024-08-08 18:57:57 (62.8 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-08-12 10:36:08 (114 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:57.660260Z", - "iopub.status.busy": "2024-08-08T18:57:57.660061Z", - "iopub.status.idle": "2024-08-08T18:57:59.538203Z", - "shell.execute_reply": "2024-08-08T18:57:59.537570Z" + "iopub.execute_input": "2024-08-12T10:36:08.549381Z", + "iopub.status.busy": "2024-08-12T10:36:08.548982Z", + "iopub.status.idle": "2024-08-12T10:36:10.480188Z", + "shell.execute_reply": "2024-08-12T10:36:10.479637Z" } }, "outputs": [], @@ -3850,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:57:59.540816Z", - "iopub.status.busy": "2024-08-08T18:57:59.540536Z", - "iopub.status.idle": "2024-08-08T18:58:00.014207Z", - "shell.execute_reply": "2024-08-08T18:58:00.013619Z" + "iopub.execute_input": "2024-08-12T10:36:10.482794Z", + "iopub.status.busy": "2024-08-12T10:36:10.482318Z", + "iopub.status.idle": "2024-08-12T10:36:10.957321Z", + "shell.execute_reply": "2024-08-12T10:36:10.956627Z" } }, "outputs": [ @@ -3868,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e52d78cda5e340c79afc9a2f75f6b6ca", + "model_id": "198e7e813a74495796c698a5c11fff7c", "version_major": 2, "version_minor": 0 }, @@ -3950,10 +3950,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:00.018057Z", - "iopub.status.busy": "2024-08-08T18:58:00.017143Z", - "iopub.status.idle": "2024-08-08T18:58:00.030462Z", - "shell.execute_reply": "2024-08-08T18:58:00.029903Z" + "iopub.execute_input": "2024-08-12T10:36:10.961341Z", + "iopub.status.busy": "2024-08-12T10:36:10.960396Z", + "iopub.status.idle": "2024-08-12T10:36:10.978338Z", + "shell.execute_reply": "2024-08-12T10:36:10.977816Z" } }, "outputs": [ @@ -4211,10 +4211,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:00.034009Z", - "iopub.status.busy": "2024-08-08T18:58:00.033087Z", - "iopub.status.idle": "2024-08-08T18:58:00.549144Z", - "shell.execute_reply": "2024-08-08T18:58:00.548522Z" + "iopub.execute_input": "2024-08-12T10:36:10.981885Z", + "iopub.status.busy": "2024-08-12T10:36:10.980974Z", + "iopub.status.idle": "2024-08-12T10:36:11.510195Z", + "shell.execute_reply": "2024-08-12T10:36:11.509548Z" } }, "outputs": [ @@ -4229,7 +4229,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "81cf9b473fae4393b5b56b3f5ff52827", + "model_id": "f89ff9b9eb5c42518512b4ef234ab8aa", "version_major": 2, "version_minor": 0 }, @@ -4497,25 +4497,57 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "11f1ff41c6e54d8fbc5847031563c287": { + "0f53bc8810064eaab2afd661d577c62c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dbfcd9249caf4579bafa6d165af7a204", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7e9a5ebacb994e0bbde90cf0d112b32d", + "tabbable": null, + "tooltip": null, + "value": 200.0 + } + }, + "198e7e813a74495796c698a5c11fff7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dba3a943e5d149939a0071eccc1c7b19", + "IPY_MODEL_0f53bc8810064eaab2afd661d577c62c", + "IPY_MODEL_376deb7d42824cf09ccee37e80d3f2ce" + ], + "layout": "IPY_MODEL_a76dd6c6962e41f09c6c75ece448a897", + "tabbable": null, + "tooltip": null } }, - "23b4c5a860154c99a6bfca30857e2637": { + "3584f7c966b04ebdbd8acf49d20e75f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4531,17 +4563,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3fdbe192da3f4e0ca393229c7698f4e6", + "layout": "IPY_MODEL_82d08af0e9fc440a835fb28e2737645f", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5a4c78d1e34b4d73930b1c00339b680d", + "style": "IPY_MODEL_a01967b640ae4c4d8f977e456aa04abd", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "3172368898034402809ba719b131e449": { + "376deb7d42824cf09ccee37e80d3f2ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4556,15 +4588,90 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f104e06657df4b0abd57fe2df56cbb33", + "layout": "IPY_MODEL_b59bf04208dd487585084bf58a071fe6", "placeholder": "​", - "style": "IPY_MODEL_11f1ff41c6e54d8fbc5847031563c287", + "style": "IPY_MODEL_ec85262ee17f48a09708e083268d7c48", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 200/200 [00:00<00:00, 777.91it/s]" + } + }, + "47c7bda2d6bb45f2a45ed618ffea312d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "543f8ddaa6ac478f95e74bbd9cfb1ff5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3f689ddd31dc4b6d98cd516337595695": { + "60785226114e48d592cb4cbcf93c8a85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d873bd2086f247e2aeee87ed55940bb4", + "placeholder": "​", + "style": "IPY_MODEL_47c7bda2d6bb45f2a45ed618ffea312d", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 689.25it/s]" + } + }, + "7e9a5ebacb994e0bbde90cf0d112b32d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "82d08af0e9fc440a835fb28e2737645f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4617,7 +4724,41 @@ "width": null } }, - "3fdbe192da3f4e0ca393229c7698f4e6": { + "84d564647e7344fda7ea4531ad6fd6b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a01967b640ae4c4d8f977e456aa04abd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a76dd6c6962e41f09c6c75ece448a897": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4670,41 +4811,30 @@ "width": null } }, - "43ed9b5484174bda8629e680ba634076": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4aa6061bd19b434db66d32fc2146b812": { + "aaf556c48f454605a7e83e2ff17b37a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fb46f828ab8c4e03b6cc855501408887", + "placeholder": "​", + "style": "IPY_MODEL_84d564647e7344fda7ea4531ad6fd6b1", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "5a33941117ec4167b387dd1249fdaf1c": { + "b59bf04208dd487585084bf58a071fe6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4757,23 +4887,7 @@ "width": null } }, - "5a4c78d1e34b4d73930b1c00339b680d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "77896f64d04145a083153ac9e0ec38ab": { + "bfe86b5013904e0eb93edff800acee02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4826,31 +4940,7 @@ "width": null } }, - "81cf9b473fae4393b5b56b3f5ff52827": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3172368898034402809ba719b131e449", - "IPY_MODEL_a73b14557a49429b9d4037681a11f5a2", - "IPY_MODEL_cb06e8f17bc64191b59b74765e3423f4" - ], - "layout": "IPY_MODEL_5a33941117ec4167b387dd1249fdaf1c", - "tabbable": null, - "tooltip": null - } - }, - "9573783c449a423eaaf76b8846c9b964": { + "c27b0c39a9ed449ea379599286810547": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4903,92 +4993,7 @@ "width": null } }, - "9f5e6d5ea957480d8b70f2f54bc1fda7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a2e678564ca3452e9fd53e82b8930c07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a3b03415967940b9b1836ba7faad2ca7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9d33ba501654a70ab745515d7fe9e94", - "placeholder": "​", - "style": "IPY_MODEL_a2e678564ca3452e9fd53e82b8930c07", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 769.71it/s]" - } - }, - "a73b14557a49429b9d4037681a11f5a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_77896f64d04145a083153ac9e0ec38ab", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_43ed9b5484174bda8629e680ba634076", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "ac00eee7668b489eb134754032561714": { + "d873bd2086f247e2aeee87ed55940bb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5041,30 +5046,7 @@ "width": null } }, - "cb06e8f17bc64191b59b74765e3423f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9573783c449a423eaaf76b8846c9b964", - "placeholder": "​", - "style": "IPY_MODEL_4aa6061bd19b434db66d32fc2146b812", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 709.37it/s]" - } - }, - "d3ad8e582013486a8678b970988a90fe": { + "dba3a943e5d149939a0071eccc1c7b19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5079,15 +5061,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ac00eee7668b489eb134754032561714", + "layout": "IPY_MODEL_c27b0c39a9ed449ea379599286810547", "placeholder": "​", - "style": "IPY_MODEL_9f5e6d5ea957480d8b70f2f54bc1fda7", + "style": "IPY_MODEL_543f8ddaa6ac478f95e74bbd9cfb1ff5", "tabbable": null, "tooltip": null, "value": "100%" } }, - "d9d33ba501654a70ab745515d7fe9e94": { + "dbfcd9249caf4579bafa6d165af7a204": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5140,7 +5122,25 @@ "width": null } }, - "e52d78cda5e340c79afc9a2f75f6b6ca": { + "ec85262ee17f48a09708e083268d7c48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f89ff9b9eb5c42518512b4ef234ab8aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5155,16 +5155,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d3ad8e582013486a8678b970988a90fe", - "IPY_MODEL_23b4c5a860154c99a6bfca30857e2637", - "IPY_MODEL_a3b03415967940b9b1836ba7faad2ca7" + "IPY_MODEL_aaf556c48f454605a7e83e2ff17b37a0", + "IPY_MODEL_3584f7c966b04ebdbd8acf49d20e75f1", + "IPY_MODEL_60785226114e48d592cb4cbcf93c8a85" ], - "layout": "IPY_MODEL_3f689ddd31dc4b6d98cd516337595695", + "layout": "IPY_MODEL_bfe86b5013904e0eb93edff800acee02", "tabbable": null, "tooltip": null } }, - "f104e06657df4b0abd57fe2df56cbb33": { + "fb46f828ab8c4e03b6cc855501408887": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 791e9aef2..7b0b34cad 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:05.627463Z", - "iopub.status.busy": "2024-08-08T18:58:05.627290Z", - "iopub.status.idle": "2024-08-08T18:58:07.024399Z", - "shell.execute_reply": "2024-08-08T18:58:07.023847Z" + "iopub.execute_input": "2024-08-12T10:36:15.864856Z", + "iopub.status.busy": "2024-08-12T10:36:15.864680Z", + "iopub.status.idle": "2024-08-12T10:36:17.280483Z", + "shell.execute_reply": "2024-08-12T10:36:17.279892Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:07.027107Z", - "iopub.status.busy": "2024-08-08T18:58:07.026526Z", - "iopub.status.idle": "2024-08-08T18:58:07.029310Z", - "shell.execute_reply": "2024-08-08T18:58:07.028884Z" + "iopub.execute_input": "2024-08-12T10:36:17.283412Z", + "iopub.status.busy": "2024-08-12T10:36:17.282882Z", + "iopub.status.idle": "2024-08-12T10:36:17.286705Z", + "shell.execute_reply": "2024-08-12T10:36:17.286193Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:07.031435Z", - "iopub.status.busy": "2024-08-08T18:58:07.031143Z", - "iopub.status.idle": "2024-08-08T18:58:07.042949Z", - "shell.execute_reply": "2024-08-08T18:58:07.042497Z" + "iopub.execute_input": "2024-08-12T10:36:17.288880Z", + "iopub.status.busy": "2024-08-12T10:36:17.288690Z", + "iopub.status.idle": "2024-08-12T10:36:17.303362Z", + "shell.execute_reply": "2024-08-12T10:36:17.302893Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:07.045099Z", - "iopub.status.busy": "2024-08-08T18:58:07.044770Z", - "iopub.status.idle": "2024-08-08T18:58:13.668596Z", - "shell.execute_reply": "2024-08-08T18:58:13.668107Z" + "iopub.execute_input": "2024-08-12T10:36:17.305574Z", + "iopub.status.busy": "2024-08-12T10:36:17.305171Z", + "iopub.status.idle": "2024-08-12T10:36:25.907394Z", + "shell.execute_reply": "2024-08-12T10:36:25.906876Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index fd4e2af7d..574155af9 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -831,13 +831,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1702,7 +1702,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 8f9d89feb..42fd50581 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:16.012409Z", - "iopub.status.busy": "2024-08-08T18:58:16.012233Z", - "iopub.status.idle": "2024-08-08T18:58:17.407183Z", - "shell.execute_reply": "2024-08-08T18:58:17.406630Z" + "iopub.execute_input": "2024-08-12T10:36:28.352405Z", + "iopub.status.busy": "2024-08-12T10:36:28.352234Z", + "iopub.status.idle": "2024-08-12T10:36:29.772908Z", + "shell.execute_reply": "2024-08-12T10:36:29.772267Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:17.409935Z", - "iopub.status.busy": "2024-08-08T18:58:17.409492Z", - "iopub.status.idle": "2024-08-08T18:58:17.412903Z", - "shell.execute_reply": "2024-08-08T18:58:17.412360Z" + "iopub.execute_input": "2024-08-12T10:36:29.775613Z", + "iopub.status.busy": "2024-08-12T10:36:29.775315Z", + "iopub.status.idle": "2024-08-12T10:36:29.778674Z", + "shell.execute_reply": "2024-08-12T10:36:29.778113Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:17.415168Z", - "iopub.status.busy": "2024-08-08T18:58:17.414823Z", - "iopub.status.idle": "2024-08-08T18:58:20.943064Z", - "shell.execute_reply": "2024-08-08T18:58:20.942403Z" + "iopub.execute_input": "2024-08-12T10:36:29.780891Z", + "iopub.status.busy": "2024-08-12T10:36:29.780563Z", + "iopub.status.idle": "2024-08-12T10:36:33.346280Z", + "shell.execute_reply": "2024-08-12T10:36:33.345609Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:20.946297Z", - "iopub.status.busy": "2024-08-08T18:58:20.945460Z", - "iopub.status.idle": "2024-08-08T18:58:20.987206Z", - "shell.execute_reply": "2024-08-08T18:58:20.986462Z" + "iopub.execute_input": "2024-08-12T10:36:33.349771Z", + "iopub.status.busy": "2024-08-12T10:36:33.348851Z", + "iopub.status.idle": "2024-08-12T10:36:33.396667Z", + "shell.execute_reply": "2024-08-12T10:36:33.396037Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:20.989972Z", - "iopub.status.busy": "2024-08-08T18:58:20.989575Z", - "iopub.status.idle": "2024-08-08T18:58:21.030182Z", - "shell.execute_reply": "2024-08-08T18:58:21.029453Z" + "iopub.execute_input": "2024-08-12T10:36:33.399404Z", + "iopub.status.busy": "2024-08-12T10:36:33.399007Z", + "iopub.status.idle": "2024-08-12T10:36:33.444013Z", + "shell.execute_reply": "2024-08-12T10:36:33.443221Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.032965Z", - "iopub.status.busy": "2024-08-08T18:58:21.032716Z", - "iopub.status.idle": "2024-08-08T18:58:21.035744Z", - "shell.execute_reply": "2024-08-08T18:58:21.035290Z" + "iopub.execute_input": "2024-08-12T10:36:33.446938Z", + "iopub.status.busy": "2024-08-12T10:36:33.446592Z", + "iopub.status.idle": "2024-08-12T10:36:33.449911Z", + "shell.execute_reply": "2024-08-12T10:36:33.449428Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.037735Z", - "iopub.status.busy": "2024-08-08T18:58:21.037433Z", - "iopub.status.idle": "2024-08-08T18:58:21.040150Z", - "shell.execute_reply": "2024-08-08T18:58:21.039673Z" + "iopub.execute_input": "2024-08-12T10:36:33.451993Z", + "iopub.status.busy": "2024-08-12T10:36:33.451652Z", + "iopub.status.idle": "2024-08-12T10:36:33.454282Z", + "shell.execute_reply": "2024-08-12T10:36:33.453832Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.042251Z", - "iopub.status.busy": "2024-08-08T18:58:21.041915Z", - "iopub.status.idle": "2024-08-08T18:58:21.065276Z", - "shell.execute_reply": "2024-08-08T18:58:21.064751Z" + "iopub.execute_input": "2024-08-12T10:36:33.456395Z", + "iopub.status.busy": "2024-08-12T10:36:33.456118Z", + "iopub.status.idle": "2024-08-12T10:36:33.481466Z", + "shell.execute_reply": "2024-08-12T10:36:33.480901Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fe2849d3268f429ab9a177442a64a6c5", + "model_id": "bf893ccecfea429e8cfde5bd91777d9d", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b0f6f185dde14b199effcf990e60abba", + "model_id": "0c8e651ba1af4313a9317a199ae1548d", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.070844Z", - "iopub.status.busy": "2024-08-08T18:58:21.070451Z", - "iopub.status.idle": "2024-08-08T18:58:21.077056Z", - "shell.execute_reply": "2024-08-08T18:58:21.076514Z" + "iopub.execute_input": "2024-08-12T10:36:33.488831Z", + "iopub.status.busy": "2024-08-12T10:36:33.488477Z", + "iopub.status.idle": "2024-08-12T10:36:33.495007Z", + "shell.execute_reply": "2024-08-12T10:36:33.494549Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.079310Z", - "iopub.status.busy": "2024-08-08T18:58:21.078860Z", - "iopub.status.idle": "2024-08-08T18:58:21.082284Z", - "shell.execute_reply": "2024-08-08T18:58:21.081844Z" + "iopub.execute_input": "2024-08-12T10:36:33.496972Z", + "iopub.status.busy": "2024-08-12T10:36:33.496691Z", + "iopub.status.idle": "2024-08-12T10:36:33.500096Z", + "shell.execute_reply": "2024-08-12T10:36:33.499604Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.084168Z", - "iopub.status.busy": "2024-08-08T18:58:21.084013Z", - "iopub.status.idle": "2024-08-08T18:58:21.090160Z", - "shell.execute_reply": "2024-08-08T18:58:21.089703Z" + "iopub.execute_input": "2024-08-12T10:36:33.502247Z", + "iopub.status.busy": "2024-08-12T10:36:33.501920Z", + "iopub.status.idle": "2024-08-12T10:36:33.508693Z", + "shell.execute_reply": "2024-08-12T10:36:33.508215Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.092226Z", - "iopub.status.busy": "2024-08-08T18:58:21.091895Z", - "iopub.status.idle": "2024-08-08T18:58:21.133815Z", - "shell.execute_reply": "2024-08-08T18:58:21.133207Z" + "iopub.execute_input": "2024-08-12T10:36:33.510843Z", + "iopub.status.busy": "2024-08-12T10:36:33.510491Z", + "iopub.status.idle": "2024-08-12T10:36:33.561499Z", + "shell.execute_reply": "2024-08-12T10:36:33.560758Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.136432Z", - "iopub.status.busy": "2024-08-08T18:58:21.136109Z", - "iopub.status.idle": "2024-08-08T18:58:21.178161Z", - "shell.execute_reply": "2024-08-08T18:58:21.177445Z" + "iopub.execute_input": "2024-08-12T10:36:33.564026Z", + "iopub.status.busy": "2024-08-12T10:36:33.563765Z", + "iopub.status.idle": "2024-08-12T10:36:33.612273Z", + "shell.execute_reply": "2024-08-12T10:36:33.611653Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.181055Z", - "iopub.status.busy": "2024-08-08T18:58:21.180744Z", - "iopub.status.idle": "2024-08-08T18:58:21.314736Z", - "shell.execute_reply": "2024-08-08T18:58:21.314096Z" + "iopub.execute_input": "2024-08-12T10:36:33.615254Z", + "iopub.status.busy": "2024-08-12T10:36:33.614772Z", + "iopub.status.idle": "2024-08-12T10:36:33.752925Z", + "shell.execute_reply": "2024-08-12T10:36:33.752366Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:21.317536Z", - "iopub.status.busy": "2024-08-08T18:58:21.316818Z", - "iopub.status.idle": "2024-08-08T18:58:24.324252Z", - "shell.execute_reply": "2024-08-08T18:58:24.323641Z" + "iopub.execute_input": "2024-08-12T10:36:33.755750Z", + "iopub.status.busy": "2024-08-12T10:36:33.754993Z", + "iopub.status.idle": "2024-08-12T10:36:36.831227Z", + "shell.execute_reply": "2024-08-12T10:36:36.830642Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:24.326451Z", - "iopub.status.busy": "2024-08-08T18:58:24.326258Z", - "iopub.status.idle": "2024-08-08T18:58:24.385260Z", - "shell.execute_reply": "2024-08-08T18:58:24.384709Z" + "iopub.execute_input": "2024-08-12T10:36:36.833500Z", + "iopub.status.busy": "2024-08-12T10:36:36.833308Z", + "iopub.status.idle": "2024-08-12T10:36:36.892690Z", + "shell.execute_reply": "2024-08-12T10:36:36.892211Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:24.387494Z", - "iopub.status.busy": "2024-08-08T18:58:24.387200Z", - "iopub.status.idle": "2024-08-08T18:58:24.429336Z", - "shell.execute_reply": "2024-08-08T18:58:24.428776Z" + "iopub.execute_input": "2024-08-12T10:36:36.894763Z", + "iopub.status.busy": "2024-08-12T10:36:36.894578Z", + "iopub.status.idle": "2024-08-12T10:36:36.937430Z", + "shell.execute_reply": "2024-08-12T10:36:36.936946Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "bd0a25b9", + "id": "e2b15791", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "be693cae", + "id": "13d6c9cb", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "9e4e33ec", + "id": "4a406eed", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "793b01c8", + "id": "879b26f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:24.431630Z", - "iopub.status.busy": "2024-08-08T18:58:24.431449Z", - "iopub.status.idle": "2024-08-08T18:58:24.438924Z", - "shell.execute_reply": "2024-08-08T18:58:24.438424Z" + "iopub.execute_input": "2024-08-12T10:36:36.939556Z", + "iopub.status.busy": "2024-08-12T10:36:36.939373Z", + "iopub.status.idle": "2024-08-12T10:36:36.947114Z", + "shell.execute_reply": "2024-08-12T10:36:36.946635Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "1786e7c5", + "id": "4369b5e2", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "a2d0a55d", + "id": "150b15ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:24.440809Z", - "iopub.status.busy": "2024-08-08T18:58:24.440635Z", - "iopub.status.idle": "2024-08-08T18:58:24.459871Z", - "shell.execute_reply": "2024-08-08T18:58:24.459426Z" + "iopub.execute_input": "2024-08-12T10:36:36.948929Z", + "iopub.status.busy": "2024-08-12T10:36:36.948750Z", + "iopub.status.idle": "2024-08-12T10:36:36.967965Z", + "shell.execute_reply": "2024-08-12T10:36:36.967525Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "4103cec5", + "id": "c14c0b83", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:24.461747Z", - "iopub.status.busy": "2024-08-08T18:58:24.461575Z", - "iopub.status.idle": "2024-08-08T18:58:24.464917Z", - "shell.execute_reply": "2024-08-08T18:58:24.464460Z" + "iopub.execute_input": "2024-08-12T10:36:36.969804Z", + "iopub.status.busy": "2024-08-12T10:36:36.969629Z", + "iopub.status.idle": "2024-08-12T10:36:36.972857Z", + "shell.execute_reply": "2024-08-12T10:36:36.972314Z" } }, "outputs": [ @@ -1622,112 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00c80dced5054881bb18d1cc1a437f3c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f0cbf3dfd3f040609fa38c055dca8957", - "placeholder": "​", - "style": "IPY_MODEL_5cc1389aff04465597448376dca03262", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "00d6b3784da34654ae77384da04f2a10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a4d3e4e2074045148bdce5afb60d78f7", - "placeholder": "​", - "style": "IPY_MODEL_13a790936a02414ba9e0aea683de0150", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1157113.22it/s]" - } - }, - "13a790936a02414ba9e0aea683de0150": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "140c785141f349a48b81af5056bca121": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1e93668e3d164fd1975ef0d2666ac8ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c790c9a649c547929ce7f4943cfa3043", - "placeholder": "​", - "style": "IPY_MODEL_55c09e89ddfa4bc38e7ce00ab5ddca4a", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1389762.76it/s]" - } - }, - "3721f33ff61d4ed79cbfd69da9600e2a": { + "049b52761beb48df99fe23cd8baeebfb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1780,59 +1675,31 @@ "width": null } }, - "4a0f4ed9a58e414f856b7d1cf3aabc1b": { + "0c8e651ba1af4313a9317a199ae1548d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "55c09e89ddfa4bc38e7ce00ab5ddca4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5cc1389aff04465597448376dca03262": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_77b09a1dcb164489bb12a039cfe3b4c1", + "IPY_MODEL_e46bbd36792e43bbb201508b8bce8a47", + "IPY_MODEL_827cdb9a53984947ae7014f9483b5bbf" + ], + "layout": "IPY_MODEL_0e9314d6bb654e358a5b655abefbce94", + "tabbable": null, + "tooltip": null } }, - "679245afbd474e628d85cc8c7472adb9": { + "0e9314d6bb654e358a5b655abefbce94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1885,60 +1752,25 @@ "width": null } }, - "6cf5993c4fdb45dcbbdcd43792239b58": { - "model_module": "@jupyter-widgets/base", + "383e13499cb54e3788bb93b9baee6cda": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7b6bc8325b664afdbafa85c66ba9704e": { + "495280da9a8c4ce295214df8980d9dd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1991,7 +1823,7 @@ "width": null } }, - "903b9095145a4f308cee40aedfeb2494": { + "4ee68ec8f5664db5a49b4d5c67236357": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2044,7 +1876,7 @@ "width": null } }, - "9cee3ae4b59548c2b4e2e65bd6794967": { + "5fea7cef55724962825cc3fc0d2f606b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2060,7 +1892,120 @@ "description_width": "" } }, - "a4d3e4e2074045148bdce5afb60d78f7": { + "731256f7397c4df989b63b1f641980e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_495280da9a8c4ce295214df8980d9dd1", + "placeholder": "​", + "style": "IPY_MODEL_c485687bf15f4420adbaf32ba3cefa12", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1014587.32it/s]" + } + }, + "77b09a1dcb164489bb12a039cfe3b4c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f04c9e1d2c1c4ccb8f63c5daf273cb1e", + "placeholder": "​", + "style": "IPY_MODEL_383e13499cb54e3788bb93b9baee6cda", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "8019ab3b21b84b569a5f1cee114d146f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4ee68ec8f5664db5a49b4d5c67236357", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d5c5f29848304634a66b93d99d0e58fc", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "827cdb9a53984947ae7014f9483b5bbf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f5c5c8359a9349638e1ec483ccda88ec", + "placeholder": "​", + "style": "IPY_MODEL_d718ad321254435985038e766b1ab7ae", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1544351.41it/s]" + } + }, + "b24365c9c78b470ca67c61e541773477": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ba8eccc77bce49db8cd963dfef9f9200": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2113,7 +2058,7 @@ "width": null } }, - "b0f6f185dde14b199effcf990e60abba": { + "bf893ccecfea429e8cfde5bd91777d9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2128,16 +2073,91 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_00c80dced5054881bb18d1cc1a437f3c", - "IPY_MODEL_f393efffa8354dae9aaf6af3837da3b9", - "IPY_MODEL_1e93668e3d164fd1975ef0d2666ac8ac" + "IPY_MODEL_c0bb7bf7365d4a35a8155eaf55a88e67", + "IPY_MODEL_8019ab3b21b84b569a5f1cee114d146f", + "IPY_MODEL_731256f7397c4df989b63b1f641980e8" ], - "layout": "IPY_MODEL_903b9095145a4f308cee40aedfeb2494", + "layout": "IPY_MODEL_ea3c5899e87b4c7281939fe595139e5a", "tabbable": null, "tooltip": null } }, - "bc74cb33b6434ccd906b689c65e009cf": { + "c0bb7bf7365d4a35a8155eaf55a88e67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_049b52761beb48df99fe23cd8baeebfb", + "placeholder": "​", + "style": "IPY_MODEL_b24365c9c78b470ca67c61e541773477", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "c485687bf15f4420adbaf32ba3cefa12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d5c5f29848304634a66b93d99d0e58fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d718ad321254435985038e766b1ab7ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e46bbd36792e43bbb201508b8bce8a47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2153,17 +2173,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b6bc8325b664afdbafa85c66ba9704e", + "layout": "IPY_MODEL_ba8eccc77bce49db8cd963dfef9f9200", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4a0f4ed9a58e414f856b7d1cf3aabc1b", + "style": "IPY_MODEL_5fea7cef55724962825cc3fc0d2f606b", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "c790c9a649c547929ce7f4943cfa3043": { + "ea3c5899e87b4c7281939fe595139e5a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2216,30 +2236,7 @@ "width": null } }, - "ca63002f70f3462383b7f120a3759252": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6cf5993c4fdb45dcbbdcd43792239b58", - "placeholder": "​", - "style": "IPY_MODEL_140c785141f349a48b81af5056bca121", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "f0cbf3dfd3f040609fa38c055dca8957": { + "f04c9e1d2c1c4ccb8f63c5daf273cb1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2292,54 +2289,57 @@ "width": null } }, - "f393efffa8354dae9aaf6af3837da3b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3721f33ff61d4ed79cbfd69da9600e2a", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9cee3ae4b59548c2b4e2e65bd6794967", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "fe2849d3268f429ab9a177442a64a6c5": { - "model_module": "@jupyter-widgets/controls", + "f5c5c8359a9349638e1ec483ccda88ec": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ca63002f70f3462383b7f120a3759252", - "IPY_MODEL_bc74cb33b6434ccd906b689c65e009cf", - "IPY_MODEL_00d6b3784da34654ae77384da04f2a10" - ], - "layout": "IPY_MODEL_679245afbd474e628d85cc8c7472adb9", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index bd11c1d97..740b12830 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:27.897370Z", - "iopub.status.busy": "2024-08-08T18:58:27.897196Z", - "iopub.status.idle": "2024-08-08T18:58:29.311040Z", - "shell.execute_reply": "2024-08-08T18:58:29.310458Z" + "iopub.execute_input": "2024-08-12T10:36:40.626370Z", + "iopub.status.busy": "2024-08-12T10:36:40.626194Z", + "iopub.status.idle": "2024-08-12T10:36:42.106598Z", + "shell.execute_reply": "2024-08-12T10:36:42.105905Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.313475Z", - "iopub.status.busy": "2024-08-08T18:58:29.313179Z", - "iopub.status.idle": "2024-08-08T18:58:29.317021Z", - "shell.execute_reply": "2024-08-08T18:58:29.316580Z" + "iopub.execute_input": "2024-08-12T10:36:42.109356Z", + "iopub.status.busy": "2024-08-12T10:36:42.108963Z", + "iopub.status.idle": "2024-08-12T10:36:42.112835Z", + "shell.execute_reply": "2024-08-12T10:36:42.112359Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.319170Z", - "iopub.status.busy": "2024-08-08T18:58:29.318831Z", - "iopub.status.idle": "2024-08-08T18:58:29.639785Z", - "shell.execute_reply": "2024-08-08T18:58:29.639210Z" + "iopub.execute_input": "2024-08-12T10:36:42.115049Z", + "iopub.status.busy": "2024-08-12T10:36:42.114626Z", + "iopub.status.idle": "2024-08-12T10:36:42.736214Z", + "shell.execute_reply": "2024-08-12T10:36:42.735738Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.641861Z", - "iopub.status.busy": "2024-08-08T18:58:29.641697Z", - "iopub.status.idle": "2024-08-08T18:58:29.647367Z", - "shell.execute_reply": "2024-08-08T18:58:29.646904Z" + "iopub.execute_input": "2024-08-12T10:36:42.738371Z", + "iopub.status.busy": "2024-08-12T10:36:42.738098Z", + "iopub.status.idle": "2024-08-12T10:36:42.744090Z", + "shell.execute_reply": "2024-08-12T10:36:42.743513Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.649371Z", - "iopub.status.busy": "2024-08-08T18:58:29.649064Z", - "iopub.status.idle": "2024-08-08T18:58:29.655782Z", - "shell.execute_reply": "2024-08-08T18:58:29.655223Z" + "iopub.execute_input": "2024-08-12T10:36:42.746252Z", + "iopub.status.busy": "2024-08-12T10:36:42.745914Z", + "iopub.status.idle": "2024-08-12T10:36:42.752617Z", + "shell.execute_reply": "2024-08-12T10:36:42.752168Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.657792Z", - "iopub.status.busy": "2024-08-08T18:58:29.657494Z", - "iopub.status.idle": "2024-08-08T18:58:29.662196Z", - "shell.execute_reply": "2024-08-08T18:58:29.661670Z" + "iopub.execute_input": "2024-08-12T10:36:42.754505Z", + "iopub.status.busy": "2024-08-12T10:36:42.754292Z", + "iopub.status.idle": "2024-08-12T10:36:42.759107Z", + "shell.execute_reply": "2024-08-12T10:36:42.758539Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.664125Z", - "iopub.status.busy": "2024-08-08T18:58:29.663830Z", - "iopub.status.idle": "2024-08-08T18:58:29.669283Z", - "shell.execute_reply": "2024-08-08T18:58:29.668851Z" + "iopub.execute_input": "2024-08-12T10:36:42.761053Z", + "iopub.status.busy": "2024-08-12T10:36:42.760745Z", + "iopub.status.idle": "2024-08-12T10:36:42.766649Z", + "shell.execute_reply": "2024-08-12T10:36:42.766061Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.671210Z", - "iopub.status.busy": "2024-08-08T18:58:29.670892Z", - "iopub.status.idle": "2024-08-08T18:58:29.675063Z", - "shell.execute_reply": "2024-08-08T18:58:29.674489Z" + "iopub.execute_input": "2024-08-12T10:36:42.768883Z", + "iopub.status.busy": "2024-08-12T10:36:42.768475Z", + "iopub.status.idle": "2024-08-12T10:36:42.772746Z", + "shell.execute_reply": "2024-08-12T10:36:42.772309Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.677002Z", - "iopub.status.busy": "2024-08-08T18:58:29.676695Z", - "iopub.status.idle": "2024-08-08T18:58:29.741575Z", - "shell.execute_reply": "2024-08-08T18:58:29.740963Z" + "iopub.execute_input": "2024-08-12T10:36:42.774665Z", + "iopub.status.busy": "2024-08-12T10:36:42.774342Z", + "iopub.status.idle": "2024-08-12T10:36:42.840283Z", + "shell.execute_reply": "2024-08-12T10:36:42.839717Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.744222Z", - "iopub.status.busy": "2024-08-08T18:58:29.744010Z", - "iopub.status.idle": "2024-08-08T18:58:29.754900Z", - "shell.execute_reply": "2024-08-08T18:58:29.754338Z" + "iopub.execute_input": "2024-08-12T10:36:42.843017Z", + "iopub.status.busy": "2024-08-12T10:36:42.842439Z", + "iopub.status.idle": "2024-08-12T10:36:42.853415Z", + "shell.execute_reply": "2024-08-12T10:36:42.852911Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.757077Z", - "iopub.status.busy": "2024-08-08T18:58:29.756872Z", - "iopub.status.idle": "2024-08-08T18:58:29.776782Z", - "shell.execute_reply": "2024-08-08T18:58:29.776262Z" + "iopub.execute_input": "2024-08-12T10:36:42.855835Z", + "iopub.status.busy": "2024-08-12T10:36:42.855510Z", + "iopub.status.idle": "2024-08-12T10:36:42.874998Z", + "shell.execute_reply": "2024-08-12T10:36:42.874495Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.779020Z", - "iopub.status.busy": "2024-08-08T18:58:29.778672Z", - "iopub.status.idle": "2024-08-08T18:58:29.782857Z", - "shell.execute_reply": "2024-08-08T18:58:29.782327Z" + "iopub.execute_input": "2024-08-12T10:36:42.877350Z", + "iopub.status.busy": "2024-08-12T10:36:42.877026Z", + "iopub.status.idle": "2024-08-12T10:36:42.880884Z", + "shell.execute_reply": "2024-08-12T10:36:42.880387Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.785076Z", - "iopub.status.busy": "2024-08-08T18:58:29.784734Z", - "iopub.status.idle": "2024-08-08T18:58:29.789112Z", - "shell.execute_reply": "2024-08-08T18:58:29.788600Z" + "iopub.execute_input": "2024-08-12T10:36:42.883257Z", + "iopub.status.busy": "2024-08-12T10:36:42.882896Z", + "iopub.status.idle": "2024-08-12T10:36:42.887060Z", + "shell.execute_reply": "2024-08-12T10:36:42.886565Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.791382Z", - "iopub.status.busy": "2024-08-08T18:58:29.791031Z", - "iopub.status.idle": "2024-08-08T18:58:29.802403Z", - "shell.execute_reply": "2024-08-08T18:58:29.801890Z" + "iopub.execute_input": "2024-08-12T10:36:42.889441Z", + "iopub.status.busy": "2024-08-12T10:36:42.889082Z", + "iopub.status.idle": "2024-08-12T10:36:42.900374Z", + "shell.execute_reply": "2024-08-12T10:36:42.899885Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.804258Z", - "iopub.status.busy": "2024-08-08T18:58:29.804085Z", - "iopub.status.idle": "2024-08-08T18:58:29.808134Z", - "shell.execute_reply": "2024-08-08T18:58:29.807717Z" + "iopub.execute_input": "2024-08-12T10:36:42.902302Z", + "iopub.status.busy": "2024-08-12T10:36:42.902009Z", + "iopub.status.idle": "2024-08-12T10:36:42.906390Z", + "shell.execute_reply": "2024-08-12T10:36:42.905809Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.809972Z", - "iopub.status.busy": "2024-08-08T18:58:29.809804Z", - "iopub.status.idle": "2024-08-08T18:58:29.920961Z", - "shell.execute_reply": "2024-08-08T18:58:29.920424Z" + "iopub.execute_input": "2024-08-12T10:36:42.908354Z", + "iopub.status.busy": "2024-08-12T10:36:42.908181Z", + "iopub.status.idle": "2024-08-12T10:36:43.022711Z", + "shell.execute_reply": "2024-08-12T10:36:43.022121Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.923264Z", - "iopub.status.busy": "2024-08-08T18:58:29.922844Z", - "iopub.status.idle": "2024-08-08T18:58:29.928931Z", - "shell.execute_reply": "2024-08-08T18:58:29.928357Z" + "iopub.execute_input": "2024-08-12T10:36:43.024780Z", + "iopub.status.busy": "2024-08-12T10:36:43.024600Z", + "iopub.status.idle": "2024-08-12T10:36:43.032352Z", + "shell.execute_reply": "2024-08-12T10:36:43.031812Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:29.931223Z", - "iopub.status.busy": "2024-08-08T18:58:29.931029Z", - "iopub.status.idle": "2024-08-08T18:58:32.021627Z", - "shell.execute_reply": "2024-08-08T18:58:32.020982Z" + "iopub.execute_input": "2024-08-12T10:36:43.034725Z", + "iopub.status.busy": "2024-08-12T10:36:43.034251Z", + "iopub.status.idle": "2024-08-12T10:36:45.303150Z", + "shell.execute_reply": "2024-08-12T10:36:45.302523Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.025831Z", - "iopub.status.busy": "2024-08-08T18:58:32.024721Z", - "iopub.status.idle": "2024-08-08T18:58:32.039695Z", - "shell.execute_reply": "2024-08-08T18:58:32.039193Z" + "iopub.execute_input": "2024-08-12T10:36:45.306901Z", + "iopub.status.busy": "2024-08-12T10:36:45.305628Z", + "iopub.status.idle": "2024-08-12T10:36:45.320641Z", + "shell.execute_reply": "2024-08-12T10:36:45.320130Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.043188Z", - "iopub.status.busy": "2024-08-08T18:58:32.042270Z", - "iopub.status.idle": "2024-08-08T18:58:32.046214Z", - "shell.execute_reply": "2024-08-08T18:58:32.045712Z" + "iopub.execute_input": "2024-08-12T10:36:45.324257Z", + "iopub.status.busy": "2024-08-12T10:36:45.323292Z", + "iopub.status.idle": "2024-08-12T10:36:45.327320Z", + "shell.execute_reply": "2024-08-12T10:36:45.326813Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.049590Z", - "iopub.status.busy": "2024-08-08T18:58:32.048688Z", - "iopub.status.idle": "2024-08-08T18:58:32.054180Z", - "shell.execute_reply": "2024-08-08T18:58:32.053683Z" + "iopub.execute_input": "2024-08-12T10:36:45.330800Z", + "iopub.status.busy": "2024-08-12T10:36:45.329853Z", + "iopub.status.idle": "2024-08-12T10:36:45.335401Z", + "shell.execute_reply": "2024-08-12T10:36:45.334898Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.057595Z", - "iopub.status.busy": "2024-08-08T18:58:32.056693Z", - "iopub.status.idle": "2024-08-08T18:58:32.088638Z", - "shell.execute_reply": "2024-08-08T18:58:32.088086Z" + "iopub.execute_input": "2024-08-12T10:36:45.338898Z", + "iopub.status.busy": "2024-08-12T10:36:45.337952Z", + "iopub.status.idle": "2024-08-12T10:36:45.369119Z", + "shell.execute_reply": "2024-08-12T10:36:45.368622Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.091198Z", - "iopub.status.busy": "2024-08-08T18:58:32.090774Z", - "iopub.status.idle": "2024-08-08T18:58:32.615941Z", - "shell.execute_reply": "2024-08-08T18:58:32.615377Z" + "iopub.execute_input": "2024-08-12T10:36:45.372525Z", + "iopub.status.busy": "2024-08-12T10:36:45.371632Z", + "iopub.status.idle": "2024-08-12T10:36:45.905387Z", + "shell.execute_reply": "2024-08-12T10:36:45.904814Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.618832Z", - "iopub.status.busy": "2024-08-08T18:58:32.618414Z", - "iopub.status.idle": "2024-08-08T18:58:32.750397Z", - "shell.execute_reply": "2024-08-08T18:58:32.749801Z" + "iopub.execute_input": "2024-08-12T10:36:45.909279Z", + "iopub.status.busy": "2024-08-12T10:36:45.908383Z", + "iopub.status.idle": "2024-08-12T10:36:46.041822Z", + "shell.execute_reply": "2024-08-12T10:36:46.041200Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.753200Z", - "iopub.status.busy": "2024-08-08T18:58:32.752800Z", - "iopub.status.idle": "2024-08-08T18:58:32.759482Z", - "shell.execute_reply": "2024-08-08T18:58:32.758992Z" + "iopub.execute_input": "2024-08-12T10:36:46.045278Z", + "iopub.status.busy": "2024-08-12T10:36:46.044751Z", + "iopub.status.idle": "2024-08-12T10:36:46.053676Z", + "shell.execute_reply": "2024-08-12T10:36:46.053168Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.761829Z", - "iopub.status.busy": "2024-08-08T18:58:32.761453Z", - "iopub.status.idle": "2024-08-08T18:58:32.767319Z", - "shell.execute_reply": "2024-08-08T18:58:32.766838Z" + "iopub.execute_input": "2024-08-12T10:36:46.057145Z", + "iopub.status.busy": "2024-08-12T10:36:46.056094Z", + "iopub.status.idle": "2024-08-12T10:36:46.064218Z", + "shell.execute_reply": "2024-08-12T10:36:46.063721Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.769639Z", - "iopub.status.busy": "2024-08-08T18:58:32.769261Z", - "iopub.status.idle": "2024-08-08T18:58:32.774530Z", - "shell.execute_reply": "2024-08-08T18:58:32.774052Z" + "iopub.execute_input": "2024-08-12T10:36:46.066943Z", + "iopub.status.busy": "2024-08-12T10:36:46.066574Z", + "iopub.status.idle": "2024-08-12T10:36:46.073843Z", + "shell.execute_reply": "2024-08-12T10:36:46.073350Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.776858Z", - "iopub.status.busy": "2024-08-08T18:58:32.776482Z", - "iopub.status.idle": "2024-08-08T18:58:32.780555Z", - "shell.execute_reply": "2024-08-08T18:58:32.780085Z" + "iopub.execute_input": "2024-08-12T10:36:46.077228Z", + "iopub.status.busy": "2024-08-12T10:36:46.076190Z", + "iopub.status.idle": "2024-08-12T10:36:46.082285Z", + "shell.execute_reply": "2024-08-12T10:36:46.081799Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.782857Z", - "iopub.status.busy": "2024-08-08T18:58:32.782471Z", - "iopub.status.idle": "2024-08-08T18:58:32.787154Z", - "shell.execute_reply": "2024-08-08T18:58:32.786665Z" + "iopub.execute_input": "2024-08-12T10:36:46.084361Z", + "iopub.status.busy": "2024-08-12T10:36:46.084023Z", + "iopub.status.idle": "2024-08-12T10:36:46.088860Z", + "shell.execute_reply": "2024-08-12T10:36:46.088303Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.789491Z", - "iopub.status.busy": "2024-08-08T18:58:32.789118Z", - "iopub.status.idle": "2024-08-08T18:58:32.862602Z", - "shell.execute_reply": "2024-08-08T18:58:32.862119Z" + "iopub.execute_input": "2024-08-12T10:36:46.091098Z", + "iopub.status.busy": "2024-08-12T10:36:46.090782Z", + "iopub.status.idle": "2024-08-12T10:36:46.172998Z", + "shell.execute_reply": "2024-08-12T10:36:46.172344Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.864987Z", - "iopub.status.busy": "2024-08-08T18:58:32.864621Z", - "iopub.status.idle": "2024-08-08T18:58:32.882840Z", - "shell.execute_reply": "2024-08-08T18:58:32.882338Z" + "iopub.execute_input": "2024-08-12T10:36:46.175651Z", + "iopub.status.busy": "2024-08-12T10:36:46.175429Z", + "iopub.status.idle": "2024-08-12T10:36:46.187531Z", + "shell.execute_reply": "2024-08-12T10:36:46.186972Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.884927Z", - "iopub.status.busy": "2024-08-08T18:58:32.884622Z", - "iopub.status.idle": "2024-08-08T18:58:32.886985Z", - "shell.execute_reply": "2024-08-08T18:58:32.886577Z" + "iopub.execute_input": "2024-08-12T10:36:46.190271Z", + "iopub.status.busy": "2024-08-12T10:36:46.190072Z", + "iopub.status.idle": "2024-08-12T10:36:46.193436Z", + "shell.execute_reply": "2024-08-12T10:36:46.193003Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.889018Z", - "iopub.status.busy": "2024-08-08T18:58:32.888722Z", - "iopub.status.idle": "2024-08-08T18:58:32.897201Z", - "shell.execute_reply": "2024-08-08T18:58:32.896797Z" + "iopub.execute_input": "2024-08-12T10:36:46.195626Z", + "iopub.status.busy": "2024-08-12T10:36:46.195293Z", + "iopub.status.idle": "2024-08-12T10:36:46.205150Z", + "shell.execute_reply": "2024-08-12T10:36:46.204713Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.899258Z", - "iopub.status.busy": "2024-08-08T18:58:32.898932Z", - "iopub.status.idle": "2024-08-08T18:58:32.905463Z", - "shell.execute_reply": "2024-08-08T18:58:32.905006Z" + "iopub.execute_input": "2024-08-12T10:36:46.207247Z", + "iopub.status.busy": "2024-08-12T10:36:46.206910Z", + "iopub.status.idle": "2024-08-12T10:36:46.213503Z", + "shell.execute_reply": "2024-08-12T10:36:46.213035Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.907303Z", - "iopub.status.busy": "2024-08-08T18:58:32.907129Z", - "iopub.status.idle": "2024-08-08T18:58:32.910322Z", - "shell.execute_reply": "2024-08-08T18:58:32.909870Z" + "iopub.execute_input": "2024-08-12T10:36:46.215507Z", + "iopub.status.busy": "2024-08-12T10:36:46.215170Z", + "iopub.status.idle": "2024-08-12T10:36:46.218497Z", + "shell.execute_reply": "2024-08-12T10:36:46.218007Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:32.912329Z", - "iopub.status.busy": "2024-08-08T18:58:32.911996Z", - "iopub.status.idle": "2024-08-08T18:58:36.955566Z", - "shell.execute_reply": "2024-08-08T18:58:36.954981Z" + "iopub.execute_input": "2024-08-12T10:36:46.220478Z", + "iopub.status.busy": "2024-08-12T10:36:46.220119Z", + "iopub.status.idle": "2024-08-12T10:36:50.293411Z", + "shell.execute_reply": "2024-08-12T10:36:50.292905Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:36.958975Z", - "iopub.status.busy": "2024-08-08T18:58:36.958461Z", - "iopub.status.idle": "2024-08-08T18:58:36.962005Z", - "shell.execute_reply": "2024-08-08T18:58:36.961425Z" + "iopub.execute_input": "2024-08-12T10:36:50.296575Z", + "iopub.status.busy": "2024-08-12T10:36:50.295692Z", + "iopub.status.idle": "2024-08-12T10:36:50.299685Z", + "shell.execute_reply": "2024-08-12T10:36:50.299227Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:36.964011Z", - "iopub.status.busy": "2024-08-08T18:58:36.963826Z", - "iopub.status.idle": "2024-08-08T18:58:36.966830Z", - "shell.execute_reply": "2024-08-08T18:58:36.966240Z" + "iopub.execute_input": "2024-08-12T10:36:50.301503Z", + "iopub.status.busy": "2024-08-12T10:36:50.301346Z", + "iopub.status.idle": "2024-08-12T10:36:50.304200Z", + "shell.execute_reply": "2024-08-12T10:36:50.303734Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 5f2e1cdf5..f91499b91 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:40.169648Z", - "iopub.status.busy": "2024-08-08T18:58:40.169491Z", - "iopub.status.idle": "2024-08-08T18:58:41.570075Z", - "shell.execute_reply": "2024-08-08T18:58:41.569517Z" + "iopub.execute_input": "2024-08-12T10:36:53.576141Z", + "iopub.status.busy": "2024-08-12T10:36:53.575962Z", + "iopub.status.idle": "2024-08-12T10:36:55.014555Z", + "shell.execute_reply": "2024-08-12T10:36:55.014010Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:41.573086Z", - "iopub.status.busy": "2024-08-08T18:58:41.572539Z", - "iopub.status.idle": "2024-08-08T18:58:41.576186Z", - "shell.execute_reply": "2024-08-08T18:58:41.575603Z" + "iopub.execute_input": "2024-08-12T10:36:55.017150Z", + "iopub.status.busy": "2024-08-12T10:36:55.016843Z", + "iopub.status.idle": "2024-08-12T10:36:55.020291Z", + "shell.execute_reply": "2024-08-12T10:36:55.019828Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:41.578314Z", - "iopub.status.busy": "2024-08-08T18:58:41.578129Z", - "iopub.status.idle": "2024-08-08T18:58:41.589902Z", - "shell.execute_reply": "2024-08-08T18:58:41.589464Z" + "iopub.execute_input": "2024-08-12T10:36:55.022265Z", + "iopub.status.busy": "2024-08-12T10:36:55.022084Z", + "iopub.status.idle": "2024-08-12T10:36:55.033553Z", + "shell.execute_reply": "2024-08-12T10:36:55.033077Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:41.592003Z", - "iopub.status.busy": "2024-08-08T18:58:41.591658Z", - "iopub.status.idle": "2024-08-08T18:58:41.829404Z", - "shell.execute_reply": "2024-08-08T18:58:41.828796Z" + "iopub.execute_input": "2024-08-12T10:36:55.035570Z", + "iopub.status.busy": "2024-08-12T10:36:55.035381Z", + "iopub.status.idle": "2024-08-12T10:36:55.275119Z", + "shell.execute_reply": "2024-08-12T10:36:55.274521Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:41.831787Z", - "iopub.status.busy": "2024-08-08T18:58:41.831455Z", - "iopub.status.idle": "2024-08-08T18:58:41.858086Z", - "shell.execute_reply": "2024-08-08T18:58:41.857629Z" + "iopub.execute_input": "2024-08-12T10:36:55.277529Z", + "iopub.status.busy": "2024-08-12T10:36:55.277197Z", + "iopub.status.idle": "2024-08-12T10:36:55.304345Z", + "shell.execute_reply": "2024-08-12T10:36:55.303759Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:41.860066Z", - "iopub.status.busy": "2024-08-08T18:58:41.859788Z", - "iopub.status.idle": "2024-08-08T18:58:43.939713Z", - "shell.execute_reply": "2024-08-08T18:58:43.939114Z" + "iopub.execute_input": "2024-08-12T10:36:55.306815Z", + "iopub.status.busy": "2024-08-12T10:36:55.306461Z", + "iopub.status.idle": "2024-08-12T10:36:57.481211Z", + "shell.execute_reply": "2024-08-12T10:36:57.480509Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:43.942304Z", - "iopub.status.busy": "2024-08-08T18:58:43.941722Z", - "iopub.status.idle": "2024-08-08T18:58:43.959479Z", - "shell.execute_reply": "2024-08-08T18:58:43.958945Z" + "iopub.execute_input": "2024-08-12T10:36:57.483792Z", + "iopub.status.busy": "2024-08-12T10:36:57.483415Z", + "iopub.status.idle": "2024-08-12T10:36:57.501958Z", + "shell.execute_reply": "2024-08-12T10:36:57.501474Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:43.961589Z", - "iopub.status.busy": "2024-08-08T18:58:43.961242Z", - "iopub.status.idle": "2024-08-08T18:58:45.508271Z", - "shell.execute_reply": "2024-08-08T18:58:45.507697Z" + "iopub.execute_input": "2024-08-12T10:36:57.504352Z", + "iopub.status.busy": "2024-08-12T10:36:57.503863Z", + "iopub.status.idle": "2024-08-12T10:36:59.103702Z", + "shell.execute_reply": "2024-08-12T10:36:59.103079Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:45.511450Z", - "iopub.status.busy": "2024-08-08T18:58:45.510466Z", - "iopub.status.idle": "2024-08-08T18:58:45.523924Z", - "shell.execute_reply": "2024-08-08T18:58:45.523433Z" + "iopub.execute_input": "2024-08-12T10:36:59.106686Z", + "iopub.status.busy": "2024-08-12T10:36:59.105759Z", + "iopub.status.idle": "2024-08-12T10:36:59.119934Z", + "shell.execute_reply": "2024-08-12T10:36:59.119452Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:45.526034Z", - "iopub.status.busy": "2024-08-08T18:58:45.525692Z", - "iopub.status.idle": "2024-08-08T18:58:45.605037Z", - "shell.execute_reply": "2024-08-08T18:58:45.604424Z" + "iopub.execute_input": "2024-08-12T10:36:59.122050Z", + "iopub.status.busy": "2024-08-12T10:36:59.121694Z", + "iopub.status.idle": "2024-08-12T10:36:59.205641Z", + "shell.execute_reply": "2024-08-12T10:36:59.205023Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:45.607493Z", - "iopub.status.busy": "2024-08-08T18:58:45.607174Z", - "iopub.status.idle": "2024-08-08T18:58:45.821727Z", - "shell.execute_reply": "2024-08-08T18:58:45.821158Z" + "iopub.execute_input": "2024-08-12T10:36:59.208167Z", + "iopub.status.busy": "2024-08-12T10:36:59.207756Z", + "iopub.status.idle": "2024-08-12T10:36:59.420275Z", + "shell.execute_reply": "2024-08-12T10:36:59.419661Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:45.824095Z", - "iopub.status.busy": "2024-08-08T18:58:45.823714Z", - "iopub.status.idle": "2024-08-08T18:58:45.841289Z", - "shell.execute_reply": "2024-08-08T18:58:45.840855Z" + "iopub.execute_input": "2024-08-12T10:36:59.422483Z", + "iopub.status.busy": "2024-08-12T10:36:59.422110Z", + "iopub.status.idle": "2024-08-12T10:36:59.439047Z", + "shell.execute_reply": "2024-08-12T10:36:59.438607Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:45.843484Z", - "iopub.status.busy": "2024-08-08T18:58:45.843146Z", - "iopub.status.idle": "2024-08-08T18:58:45.852540Z", - "shell.execute_reply": "2024-08-08T18:58:45.851965Z" + "iopub.execute_input": "2024-08-12T10:36:59.441204Z", + "iopub.status.busy": "2024-08-12T10:36:59.440871Z", + "iopub.status.idle": "2024-08-12T10:36:59.450881Z", + "shell.execute_reply": "2024-08-12T10:36:59.450435Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:45.854687Z", - "iopub.status.busy": "2024-08-08T18:58:45.854338Z", - "iopub.status.idle": "2024-08-08T18:58:45.944901Z", - "shell.execute_reply": "2024-08-08T18:58:45.944248Z" + "iopub.execute_input": "2024-08-12T10:36:59.452925Z", + "iopub.status.busy": "2024-08-12T10:36:59.452588Z", + "iopub.status.idle": "2024-08-12T10:36:59.545723Z", + "shell.execute_reply": "2024-08-12T10:36:59.545075Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:45.947262Z", - "iopub.status.busy": "2024-08-08T18:58:45.947016Z", - "iopub.status.idle": "2024-08-08T18:58:46.085125Z", - "shell.execute_reply": "2024-08-08T18:58:46.084511Z" + "iopub.execute_input": "2024-08-12T10:36:59.548352Z", + "iopub.status.busy": "2024-08-12T10:36:59.547991Z", + "iopub.status.idle": "2024-08-12T10:36:59.687429Z", + "shell.execute_reply": "2024-08-12T10:36:59.686780Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.087579Z", - "iopub.status.busy": "2024-08-08T18:58:46.087377Z", - "iopub.status.idle": "2024-08-08T18:58:46.091512Z", - "shell.execute_reply": "2024-08-08T18:58:46.090937Z" + "iopub.execute_input": "2024-08-12T10:36:59.690123Z", + "iopub.status.busy": "2024-08-12T10:36:59.689562Z", + "iopub.status.idle": "2024-08-12T10:36:59.693688Z", + "shell.execute_reply": "2024-08-12T10:36:59.693154Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.093676Z", - "iopub.status.busy": "2024-08-08T18:58:46.093272Z", - "iopub.status.idle": "2024-08-08T18:58:46.096955Z", - "shell.execute_reply": "2024-08-08T18:58:46.096384Z" + "iopub.execute_input": "2024-08-12T10:36:59.696034Z", + "iopub.status.busy": "2024-08-12T10:36:59.695722Z", + "iopub.status.idle": "2024-08-12T10:36:59.699496Z", + "shell.execute_reply": "2024-08-12T10:36:59.698951Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.099228Z", - "iopub.status.busy": "2024-08-08T18:58:46.098739Z", - "iopub.status.idle": "2024-08-08T18:58:46.135257Z", - "shell.execute_reply": "2024-08-08T18:58:46.134705Z" + "iopub.execute_input": "2024-08-12T10:36:59.701481Z", + "iopub.status.busy": "2024-08-12T10:36:59.701177Z", + "iopub.status.idle": "2024-08-12T10:36:59.738773Z", + "shell.execute_reply": "2024-08-12T10:36:59.738181Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.137248Z", - "iopub.status.busy": "2024-08-08T18:58:46.137066Z", - "iopub.status.idle": "2024-08-08T18:58:46.177483Z", - "shell.execute_reply": "2024-08-08T18:58:46.176993Z" + "iopub.execute_input": "2024-08-12T10:36:59.740888Z", + "iopub.status.busy": "2024-08-12T10:36:59.740542Z", + "iopub.status.idle": "2024-08-12T10:36:59.781556Z", + "shell.execute_reply": "2024-08-12T10:36:59.781066Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.179434Z", - "iopub.status.busy": "2024-08-08T18:58:46.179259Z", - "iopub.status.idle": "2024-08-08T18:58:46.280145Z", - "shell.execute_reply": "2024-08-08T18:58:46.279489Z" + "iopub.execute_input": "2024-08-12T10:36:59.783621Z", + "iopub.status.busy": "2024-08-12T10:36:59.783276Z", + "iopub.status.idle": "2024-08-12T10:36:59.886618Z", + "shell.execute_reply": "2024-08-12T10:36:59.885902Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.282999Z", - "iopub.status.busy": "2024-08-08T18:58:46.282518Z", - "iopub.status.idle": "2024-08-08T18:58:46.386103Z", - "shell.execute_reply": "2024-08-08T18:58:46.385438Z" + "iopub.execute_input": "2024-08-12T10:36:59.889214Z", + "iopub.status.busy": "2024-08-12T10:36:59.888964Z", + "iopub.status.idle": "2024-08-12T10:36:59.998717Z", + "shell.execute_reply": "2024-08-12T10:36:59.998068Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.388358Z", - "iopub.status.busy": "2024-08-08T18:58:46.388122Z", - "iopub.status.idle": "2024-08-08T18:58:46.601333Z", - "shell.execute_reply": "2024-08-08T18:58:46.600750Z" + "iopub.execute_input": "2024-08-12T10:37:00.001204Z", + "iopub.status.busy": "2024-08-12T10:37:00.000820Z", + "iopub.status.idle": "2024-08-12T10:37:00.213727Z", + "shell.execute_reply": "2024-08-12T10:37:00.213136Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.603589Z", - "iopub.status.busy": "2024-08-08T18:58:46.603301Z", - "iopub.status.idle": "2024-08-08T18:58:46.823679Z", - "shell.execute_reply": "2024-08-08T18:58:46.823127Z" + "iopub.execute_input": "2024-08-12T10:37:00.216034Z", + "iopub.status.busy": "2024-08-12T10:37:00.215683Z", + "iopub.status.idle": "2024-08-12T10:37:00.436763Z", + "shell.execute_reply": "2024-08-12T10:37:00.436178Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.826110Z", - "iopub.status.busy": "2024-08-08T18:58:46.825710Z", - "iopub.status.idle": "2024-08-08T18:58:46.831597Z", - "shell.execute_reply": "2024-08-08T18:58:46.831156Z" + "iopub.execute_input": "2024-08-12T10:37:00.439376Z", + "iopub.status.busy": "2024-08-12T10:37:00.438962Z", + "iopub.status.idle": "2024-08-12T10:37:00.445033Z", + "shell.execute_reply": "2024-08-12T10:37:00.444579Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:46.833726Z", - "iopub.status.busy": "2024-08-08T18:58:46.833396Z", - "iopub.status.idle": "2024-08-08T18:58:47.049859Z", - "shell.execute_reply": "2024-08-08T18:58:47.049267Z" + "iopub.execute_input": "2024-08-12T10:37:00.447166Z", + "iopub.status.busy": "2024-08-12T10:37:00.446833Z", + "iopub.status.idle": "2024-08-12T10:37:00.664000Z", + "shell.execute_reply": "2024-08-12T10:37:00.663425Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:47.052241Z", - "iopub.status.busy": "2024-08-08T18:58:47.051861Z", - "iopub.status.idle": "2024-08-08T18:58:48.116780Z", - "shell.execute_reply": "2024-08-08T18:58:48.116238Z" + "iopub.execute_input": "2024-08-12T10:37:00.666198Z", + "iopub.status.busy": "2024-08-12T10:37:00.665906Z", + "iopub.status.idle": "2024-08-12T10:37:01.745237Z", + "shell.execute_reply": "2024-08-12T10:37:01.744556Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index f1f03c3d7..df5a01e40 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:52.530677Z", - "iopub.status.busy": "2024-08-08T18:58:52.530239Z", - "iopub.status.idle": "2024-08-08T18:58:53.916567Z", - "shell.execute_reply": "2024-08-08T18:58:53.915917Z" + "iopub.execute_input": "2024-08-12T10:37:05.388871Z", + "iopub.status.busy": "2024-08-12T10:37:05.388693Z", + "iopub.status.idle": "2024-08-12T10:37:06.803277Z", + "shell.execute_reply": "2024-08-12T10:37:06.802643Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:53.919553Z", - "iopub.status.busy": "2024-08-08T18:58:53.919079Z", - "iopub.status.idle": "2024-08-08T18:58:53.922110Z", - "shell.execute_reply": "2024-08-08T18:58:53.921647Z" + "iopub.execute_input": "2024-08-12T10:37:06.805938Z", + "iopub.status.busy": "2024-08-12T10:37:06.805652Z", + "iopub.status.idle": "2024-08-12T10:37:06.808825Z", + "shell.execute_reply": "2024-08-12T10:37:06.808280Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:53.924266Z", - "iopub.status.busy": "2024-08-08T18:58:53.923919Z", - "iopub.status.idle": "2024-08-08T18:58:53.931725Z", - "shell.execute_reply": "2024-08-08T18:58:53.931137Z" + "iopub.execute_input": "2024-08-12T10:37:06.810942Z", + "iopub.status.busy": "2024-08-12T10:37:06.810637Z", + "iopub.status.idle": "2024-08-12T10:37:06.818311Z", + "shell.execute_reply": "2024-08-12T10:37:06.817756Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:53.933808Z", - "iopub.status.busy": "2024-08-08T18:58:53.933464Z", - "iopub.status.idle": "2024-08-08T18:58:53.981484Z", - "shell.execute_reply": "2024-08-08T18:58:53.980968Z" + "iopub.execute_input": "2024-08-12T10:37:06.820375Z", + "iopub.status.busy": "2024-08-12T10:37:06.820045Z", + "iopub.status.idle": "2024-08-12T10:37:06.867480Z", + "shell.execute_reply": "2024-08-12T10:37:06.866999Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:53.983924Z", - "iopub.status.busy": "2024-08-08T18:58:53.983536Z", - "iopub.status.idle": "2024-08-08T18:58:54.000484Z", - "shell.execute_reply": "2024-08-08T18:58:54.000037Z" + "iopub.execute_input": "2024-08-12T10:37:06.869923Z", + "iopub.status.busy": "2024-08-12T10:37:06.869561Z", + "iopub.status.idle": "2024-08-12T10:37:06.886443Z", + "shell.execute_reply": "2024-08-12T10:37:06.885835Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:54.002532Z", - "iopub.status.busy": "2024-08-08T18:58:54.002198Z", - "iopub.status.idle": "2024-08-08T18:58:54.005875Z", - "shell.execute_reply": "2024-08-08T18:58:54.005418Z" + "iopub.execute_input": "2024-08-12T10:37:06.888629Z", + "iopub.status.busy": "2024-08-12T10:37:06.888293Z", + "iopub.status.idle": "2024-08-12T10:37:06.892059Z", + "shell.execute_reply": "2024-08-12T10:37:06.891606Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:54.007910Z", - "iopub.status.busy": "2024-08-08T18:58:54.007610Z", - "iopub.status.idle": "2024-08-08T18:58:54.023712Z", - "shell.execute_reply": "2024-08-08T18:58:54.023149Z" + "iopub.execute_input": "2024-08-12T10:37:06.894154Z", + "iopub.status.busy": "2024-08-12T10:37:06.893890Z", + "iopub.status.idle": "2024-08-12T10:37:06.909322Z", + "shell.execute_reply": "2024-08-12T10:37:06.908906Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:54.025667Z", - "iopub.status.busy": "2024-08-08T18:58:54.025484Z", - "iopub.status.idle": "2024-08-08T18:58:54.051609Z", - "shell.execute_reply": "2024-08-08T18:58:54.051150Z" + "iopub.execute_input": "2024-08-12T10:37:06.911202Z", + "iopub.status.busy": "2024-08-12T10:37:06.911016Z", + "iopub.status.idle": "2024-08-12T10:37:06.937454Z", + "shell.execute_reply": "2024-08-12T10:37:06.936962Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:54.053806Z", - "iopub.status.busy": "2024-08-08T18:58:54.053349Z", - "iopub.status.idle": "2024-08-08T18:58:56.151257Z", - "shell.execute_reply": "2024-08-08T18:58:56.150640Z" + "iopub.execute_input": "2024-08-12T10:37:06.939565Z", + "iopub.status.busy": "2024-08-12T10:37:06.939384Z", + "iopub.status.idle": "2024-08-12T10:37:09.089293Z", + "shell.execute_reply": "2024-08-12T10:37:09.088628Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.154500Z", - "iopub.status.busy": "2024-08-08T18:58:56.153440Z", - "iopub.status.idle": "2024-08-08T18:58:56.160994Z", - "shell.execute_reply": "2024-08-08T18:58:56.160425Z" + "iopub.execute_input": "2024-08-12T10:37:09.092048Z", + "iopub.status.busy": "2024-08-12T10:37:09.091539Z", + "iopub.status.idle": "2024-08-12T10:37:09.098539Z", + "shell.execute_reply": "2024-08-12T10:37:09.098049Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.163094Z", - "iopub.status.busy": "2024-08-08T18:58:56.162778Z", - "iopub.status.idle": "2024-08-08T18:58:56.175018Z", - "shell.execute_reply": "2024-08-08T18:58:56.174446Z" + "iopub.execute_input": "2024-08-12T10:37:09.100427Z", + "iopub.status.busy": "2024-08-12T10:37:09.100246Z", + "iopub.status.idle": "2024-08-12T10:37:09.113060Z", + "shell.execute_reply": "2024-08-12T10:37:09.112607Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.177046Z", - "iopub.status.busy": "2024-08-08T18:58:56.176707Z", - "iopub.status.idle": "2024-08-08T18:58:56.182819Z", - "shell.execute_reply": "2024-08-08T18:58:56.182359Z" + "iopub.execute_input": "2024-08-12T10:37:09.114954Z", + "iopub.status.busy": "2024-08-12T10:37:09.114778Z", + "iopub.status.idle": "2024-08-12T10:37:09.121345Z", + "shell.execute_reply": "2024-08-12T10:37:09.120881Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.184901Z", - "iopub.status.busy": "2024-08-08T18:58:56.184580Z", - "iopub.status.idle": "2024-08-08T18:58:56.187048Z", - "shell.execute_reply": "2024-08-08T18:58:56.186544Z" + "iopub.execute_input": "2024-08-12T10:37:09.123474Z", + "iopub.status.busy": "2024-08-12T10:37:09.123132Z", + "iopub.status.idle": "2024-08-12T10:37:09.125850Z", + "shell.execute_reply": "2024-08-12T10:37:09.125398Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.189035Z", - "iopub.status.busy": "2024-08-08T18:58:56.188704Z", - "iopub.status.idle": "2024-08-08T18:58:56.192263Z", - "shell.execute_reply": "2024-08-08T18:58:56.191700Z" + "iopub.execute_input": "2024-08-12T10:37:09.127879Z", + "iopub.status.busy": "2024-08-12T10:37:09.127535Z", + "iopub.status.idle": "2024-08-12T10:37:09.131216Z", + "shell.execute_reply": "2024-08-12T10:37:09.130751Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.194433Z", - "iopub.status.busy": "2024-08-08T18:58:56.194126Z", - "iopub.status.idle": "2024-08-08T18:58:56.196817Z", - "shell.execute_reply": "2024-08-08T18:58:56.196362Z" + "iopub.execute_input": "2024-08-12T10:37:09.133188Z", + "iopub.status.busy": "2024-08-12T10:37:09.132921Z", + "iopub.status.idle": "2024-08-12T10:37:09.135464Z", + "shell.execute_reply": "2024-08-12T10:37:09.135011Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.198810Z", - "iopub.status.busy": "2024-08-08T18:58:56.198636Z", - "iopub.status.idle": "2024-08-08T18:58:56.202464Z", - "shell.execute_reply": "2024-08-08T18:58:56.201932Z" + "iopub.execute_input": "2024-08-12T10:37:09.137485Z", + "iopub.status.busy": "2024-08-12T10:37:09.137147Z", + "iopub.status.idle": "2024-08-12T10:37:09.141490Z", + "shell.execute_reply": "2024-08-12T10:37:09.140918Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.204399Z", - "iopub.status.busy": "2024-08-08T18:58:56.204228Z", - "iopub.status.idle": "2024-08-08T18:58:56.232508Z", - "shell.execute_reply": "2024-08-08T18:58:56.232078Z" + "iopub.execute_input": "2024-08-12T10:37:09.143733Z", + "iopub.status.busy": "2024-08-12T10:37:09.143297Z", + "iopub.status.idle": "2024-08-12T10:37:09.171860Z", + "shell.execute_reply": "2024-08-12T10:37:09.171290Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:56.234292Z", - "iopub.status.busy": "2024-08-08T18:58:56.234120Z", - "iopub.status.idle": "2024-08-08T18:58:56.238757Z", - "shell.execute_reply": "2024-08-08T18:58:56.238283Z" + "iopub.execute_input": "2024-08-12T10:37:09.174329Z", + "iopub.status.busy": "2024-08-12T10:37:09.173962Z", + "iopub.status.idle": "2024-08-12T10:37:09.179620Z", + "shell.execute_reply": "2024-08-12T10:37:09.178987Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 6d88f9061..b1134ea67 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:58:59.277827Z", - "iopub.status.busy": "2024-08-08T18:58:59.277653Z", - "iopub.status.idle": "2024-08-08T18:59:00.665739Z", - "shell.execute_reply": "2024-08-08T18:59:00.665184Z" + "iopub.execute_input": "2024-08-12T10:37:12.374296Z", + "iopub.status.busy": "2024-08-12T10:37:12.373799Z", + "iopub.status.idle": "2024-08-12T10:37:13.806289Z", + "shell.execute_reply": "2024-08-12T10:37:13.805637Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:00.668326Z", - "iopub.status.busy": "2024-08-08T18:59:00.667857Z", - "iopub.status.idle": "2024-08-08T18:59:00.687743Z", - "shell.execute_reply": "2024-08-08T18:59:00.687276Z" + "iopub.execute_input": "2024-08-12T10:37:13.809008Z", + "iopub.status.busy": "2024-08-12T10:37:13.808701Z", + "iopub.status.idle": "2024-08-12T10:37:13.828959Z", + "shell.execute_reply": "2024-08-12T10:37:13.828395Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:00.689905Z", - "iopub.status.busy": "2024-08-08T18:59:00.689640Z", - "iopub.status.idle": "2024-08-08T18:59:00.702726Z", - "shell.execute_reply": "2024-08-08T18:59:00.702140Z" + "iopub.execute_input": "2024-08-12T10:37:13.831637Z", + "iopub.status.busy": "2024-08-12T10:37:13.831199Z", + "iopub.status.idle": "2024-08-12T10:37:13.844329Z", + "shell.execute_reply": "2024-08-12T10:37:13.843766Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:00.704701Z", - "iopub.status.busy": "2024-08-08T18:59:00.704401Z", - "iopub.status.idle": "2024-08-08T18:59:03.352147Z", - "shell.execute_reply": "2024-08-08T18:59:03.351603Z" + "iopub.execute_input": "2024-08-12T10:37:13.846676Z", + "iopub.status.busy": "2024-08-12T10:37:13.846320Z", + "iopub.status.idle": "2024-08-12T10:37:16.510716Z", + "shell.execute_reply": "2024-08-12T10:37:16.510096Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:03.354296Z", - "iopub.status.busy": "2024-08-08T18:59:03.354113Z", - "iopub.status.idle": "2024-08-08T18:59:04.702725Z", - "shell.execute_reply": "2024-08-08T18:59:04.702120Z" + "iopub.execute_input": "2024-08-12T10:37:16.513014Z", + "iopub.status.busy": "2024-08-12T10:37:16.512642Z", + "iopub.status.idle": "2024-08-12T10:37:17.880117Z", + "shell.execute_reply": "2024-08-12T10:37:17.879556Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:04.705076Z", - "iopub.status.busy": "2024-08-08T18:59:04.704884Z", - "iopub.status.idle": "2024-08-08T18:59:04.708614Z", - "shell.execute_reply": "2024-08-08T18:59:04.708094Z" + "iopub.execute_input": "2024-08-12T10:37:17.882596Z", + "iopub.status.busy": "2024-08-12T10:37:17.882225Z", + "iopub.status.idle": "2024-08-12T10:37:17.886361Z", + "shell.execute_reply": "2024-08-12T10:37:17.885898Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:04.710624Z", - "iopub.status.busy": "2024-08-08T18:59:04.710332Z", - "iopub.status.idle": "2024-08-08T18:59:06.828165Z", - "shell.execute_reply": "2024-08-08T18:59:06.827497Z" + "iopub.execute_input": "2024-08-12T10:37:17.888349Z", + "iopub.status.busy": "2024-08-12T10:37:17.888007Z", + "iopub.status.idle": "2024-08-12T10:37:20.071756Z", + "shell.execute_reply": "2024-08-12T10:37:20.071124Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:06.830673Z", - "iopub.status.busy": "2024-08-08T18:59:06.830264Z", - "iopub.status.idle": "2024-08-08T18:59:06.839006Z", - "shell.execute_reply": "2024-08-08T18:59:06.838416Z" + "iopub.execute_input": "2024-08-12T10:37:20.074339Z", + "iopub.status.busy": "2024-08-12T10:37:20.073809Z", + "iopub.status.idle": "2024-08-12T10:37:20.082089Z", + "shell.execute_reply": "2024-08-12T10:37:20.081508Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:06.841102Z", - "iopub.status.busy": "2024-08-08T18:59:06.840785Z", - "iopub.status.idle": "2024-08-08T18:59:09.385747Z", - "shell.execute_reply": "2024-08-08T18:59:09.385192Z" + "iopub.execute_input": "2024-08-12T10:37:20.084278Z", + "iopub.status.busy": "2024-08-12T10:37:20.083850Z", + "iopub.status.idle": "2024-08-12T10:37:22.681899Z", + "shell.execute_reply": "2024-08-12T10:37:22.681336Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:09.387886Z", - "iopub.status.busy": "2024-08-08T18:59:09.387699Z", - "iopub.status.idle": "2024-08-08T18:59:09.391436Z", - "shell.execute_reply": "2024-08-08T18:59:09.390899Z" + "iopub.execute_input": "2024-08-12T10:37:22.684061Z", + "iopub.status.busy": "2024-08-12T10:37:22.683869Z", + "iopub.status.idle": "2024-08-12T10:37:22.687750Z", + "shell.execute_reply": "2024-08-12T10:37:22.687180Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:09.393413Z", - "iopub.status.busy": "2024-08-08T18:59:09.393236Z", - "iopub.status.idle": "2024-08-08T18:59:09.397257Z", - "shell.execute_reply": "2024-08-08T18:59:09.396821Z" + "iopub.execute_input": "2024-08-12T10:37:22.689932Z", + "iopub.status.busy": "2024-08-12T10:37:22.689525Z", + "iopub.status.idle": "2024-08-12T10:37:22.693276Z", + "shell.execute_reply": "2024-08-12T10:37:22.692719Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:09.399283Z", - "iopub.status.busy": "2024-08-08T18:59:09.399108Z", - "iopub.status.idle": "2024-08-08T18:59:09.402133Z", - "shell.execute_reply": "2024-08-08T18:59:09.401690Z" + "iopub.execute_input": "2024-08-12T10:37:22.695409Z", + "iopub.status.busy": "2024-08-12T10:37:22.694998Z", + "iopub.status.idle": "2024-08-12T10:37:22.698292Z", + "shell.execute_reply": "2024-08-12T10:37:22.697713Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 5bfedaafb..f65b26375 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:11.992419Z", - "iopub.status.busy": "2024-08-08T18:59:11.992245Z", - "iopub.status.idle": "2024-08-08T18:59:13.399692Z", - "shell.execute_reply": "2024-08-08T18:59:13.399131Z" + "iopub.execute_input": "2024-08-12T10:37:25.163455Z", + "iopub.status.busy": "2024-08-12T10:37:25.163026Z", + "iopub.status.idle": "2024-08-12T10:37:26.589902Z", + "shell.execute_reply": "2024-08-12T10:37:26.589214Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:13.402447Z", - "iopub.status.busy": "2024-08-08T18:59:13.401819Z", - "iopub.status.idle": "2024-08-08T18:59:15.381218Z", - "shell.execute_reply": "2024-08-08T18:59:15.380383Z" + "iopub.execute_input": "2024-08-12T10:37:26.592929Z", + "iopub.status.busy": "2024-08-12T10:37:26.592372Z", + "iopub.status.idle": "2024-08-12T10:37:29.427927Z", + "shell.execute_reply": "2024-08-12T10:37:29.427190Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:15.384065Z", - "iopub.status.busy": "2024-08-08T18:59:15.383811Z", - "iopub.status.idle": "2024-08-08T18:59:15.387408Z", - "shell.execute_reply": "2024-08-08T18:59:15.386830Z" + "iopub.execute_input": "2024-08-12T10:37:29.430776Z", + "iopub.status.busy": "2024-08-12T10:37:29.430357Z", + "iopub.status.idle": "2024-08-12T10:37:29.433637Z", + "shell.execute_reply": "2024-08-12T10:37:29.433182Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:15.389595Z", - "iopub.status.busy": "2024-08-08T18:59:15.389211Z", - "iopub.status.idle": "2024-08-08T18:59:15.397118Z", - "shell.execute_reply": "2024-08-08T18:59:15.396685Z" + "iopub.execute_input": "2024-08-12T10:37:29.435768Z", + "iopub.status.busy": "2024-08-12T10:37:29.435355Z", + "iopub.status.idle": "2024-08-12T10:37:29.442998Z", + "shell.execute_reply": "2024-08-12T10:37:29.442441Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:15.399315Z", - "iopub.status.busy": "2024-08-08T18:59:15.398921Z", - "iopub.status.idle": "2024-08-08T18:59:15.714546Z", - "shell.execute_reply": "2024-08-08T18:59:15.713924Z" + "iopub.execute_input": "2024-08-12T10:37:29.445161Z", + "iopub.status.busy": "2024-08-12T10:37:29.444815Z", + "iopub.status.idle": "2024-08-12T10:37:29.761652Z", + "shell.execute_reply": "2024-08-12T10:37:29.761027Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:15.717513Z", - "iopub.status.busy": "2024-08-08T18:59:15.717322Z", - "iopub.status.idle": "2024-08-08T18:59:15.722553Z", - "shell.execute_reply": "2024-08-08T18:59:15.722107Z" + "iopub.execute_input": "2024-08-12T10:37:29.764688Z", + "iopub.status.busy": "2024-08-12T10:37:29.764324Z", + "iopub.status.idle": "2024-08-12T10:37:29.769578Z", + "shell.execute_reply": "2024-08-12T10:37:29.769125Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:15.724466Z", - "iopub.status.busy": "2024-08-08T18:59:15.724289Z", - "iopub.status.idle": "2024-08-08T18:59:15.728681Z", - "shell.execute_reply": "2024-08-08T18:59:15.728118Z" + "iopub.execute_input": "2024-08-12T10:37:29.771585Z", + "iopub.status.busy": "2024-08-12T10:37:29.771282Z", + "iopub.status.idle": "2024-08-12T10:37:29.775247Z", + "shell.execute_reply": "2024-08-12T10:37:29.774794Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:15.730799Z", - "iopub.status.busy": "2024-08-08T18:59:15.730463Z", - "iopub.status.idle": "2024-08-08T18:59:16.764446Z", - "shell.execute_reply": "2024-08-08T18:59:16.763939Z" + "iopub.execute_input": "2024-08-12T10:37:29.777435Z", + "iopub.status.busy": "2024-08-12T10:37:29.777036Z", + "iopub.status.idle": "2024-08-12T10:37:30.784967Z", + "shell.execute_reply": "2024-08-12T10:37:30.784372Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:16.766746Z", - "iopub.status.busy": "2024-08-08T18:59:16.766361Z", - "iopub.status.idle": "2024-08-08T18:59:16.977697Z", - "shell.execute_reply": "2024-08-08T18:59:16.977110Z" + "iopub.execute_input": "2024-08-12T10:37:30.787260Z", + "iopub.status.busy": "2024-08-12T10:37:30.787051Z", + "iopub.status.idle": "2024-08-12T10:37:30.987997Z", + "shell.execute_reply": "2024-08-12T10:37:30.987390Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:16.979974Z", - "iopub.status.busy": "2024-08-08T18:59:16.979613Z", - "iopub.status.idle": "2024-08-08T18:59:16.983918Z", - "shell.execute_reply": "2024-08-08T18:59:16.983382Z" + "iopub.execute_input": "2024-08-12T10:37:30.990363Z", + "iopub.status.busy": "2024-08-12T10:37:30.989918Z", + "iopub.status.idle": "2024-08-12T10:37:30.994564Z", + "shell.execute_reply": "2024-08-12T10:37:30.993981Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:16.986020Z", - "iopub.status.busy": "2024-08-08T18:59:16.985706Z", - "iopub.status.idle": "2024-08-08T18:59:17.373647Z", - "shell.execute_reply": "2024-08-08T18:59:17.373015Z" + "iopub.execute_input": "2024-08-12T10:37:30.996807Z", + "iopub.status.busy": "2024-08-12T10:37:30.996466Z", + "iopub.status.idle": "2024-08-12T10:37:31.364226Z", + "shell.execute_reply": "2024-08-12T10:37:31.363566Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:17.377012Z", - "iopub.status.busy": "2024-08-08T18:59:17.376595Z", - "iopub.status.idle": "2024-08-08T18:59:17.708054Z", - "shell.execute_reply": "2024-08-08T18:59:17.707412Z" + "iopub.execute_input": "2024-08-12T10:37:31.367681Z", + "iopub.status.busy": "2024-08-12T10:37:31.367170Z", + "iopub.status.idle": "2024-08-12T10:37:31.706920Z", + "shell.execute_reply": "2024-08-12T10:37:31.706339Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:17.710521Z", - "iopub.status.busy": "2024-08-08T18:59:17.710104Z", - "iopub.status.idle": "2024-08-08T18:59:18.073314Z", - "shell.execute_reply": "2024-08-08T18:59:18.072691Z" + "iopub.execute_input": "2024-08-12T10:37:31.709609Z", + "iopub.status.busy": "2024-08-12T10:37:31.709409Z", + "iopub.status.idle": "2024-08-12T10:37:32.078993Z", + "shell.execute_reply": "2024-08-12T10:37:32.078441Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:18.076209Z", - "iopub.status.busy": "2024-08-08T18:59:18.075839Z", - "iopub.status.idle": "2024-08-08T18:59:18.516456Z", - "shell.execute_reply": "2024-08-08T18:59:18.515840Z" + "iopub.execute_input": "2024-08-12T10:37:32.081360Z", + "iopub.status.busy": "2024-08-12T10:37:32.081154Z", + "iopub.status.idle": "2024-08-12T10:37:32.527879Z", + "shell.execute_reply": "2024-08-12T10:37:32.527315Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:18.521014Z", - "iopub.status.busy": "2024-08-08T18:59:18.520667Z", - "iopub.status.idle": "2024-08-08T18:59:18.968706Z", - "shell.execute_reply": "2024-08-08T18:59:18.968018Z" + "iopub.execute_input": "2024-08-12T10:37:32.532540Z", + "iopub.status.busy": "2024-08-12T10:37:32.532142Z", + "iopub.status.idle": "2024-08-12T10:37:32.985799Z", + "shell.execute_reply": "2024-08-12T10:37:32.985162Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:18.971840Z", - "iopub.status.busy": "2024-08-08T18:59:18.971485Z", - "iopub.status.idle": "2024-08-08T18:59:19.185389Z", - "shell.execute_reply": "2024-08-08T18:59:19.184773Z" + "iopub.execute_input": "2024-08-12T10:37:32.989074Z", + "iopub.status.busy": "2024-08-12T10:37:32.988698Z", + "iopub.status.idle": "2024-08-12T10:37:33.208103Z", + "shell.execute_reply": "2024-08-12T10:37:33.207522Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:19.187666Z", - "iopub.status.busy": "2024-08-08T18:59:19.187313Z", - "iopub.status.idle": "2024-08-08T18:59:19.386915Z", - "shell.execute_reply": "2024-08-08T18:59:19.386349Z" + "iopub.execute_input": "2024-08-12T10:37:33.210458Z", + "iopub.status.busy": "2024-08-12T10:37:33.210088Z", + "iopub.status.idle": "2024-08-12T10:37:33.410728Z", + "shell.execute_reply": "2024-08-12T10:37:33.410096Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:19.389443Z", - "iopub.status.busy": "2024-08-08T18:59:19.389083Z", - "iopub.status.idle": "2024-08-08T18:59:19.392074Z", - "shell.execute_reply": "2024-08-08T18:59:19.391614Z" + "iopub.execute_input": "2024-08-12T10:37:33.413025Z", + "iopub.status.busy": "2024-08-12T10:37:33.412734Z", + "iopub.status.idle": "2024-08-12T10:37:33.415627Z", + "shell.execute_reply": "2024-08-12T10:37:33.415176Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:19.394077Z", - "iopub.status.busy": "2024-08-08T18:59:19.393739Z", - "iopub.status.idle": "2024-08-08T18:59:20.286334Z", - "shell.execute_reply": "2024-08-08T18:59:20.285804Z" + "iopub.execute_input": "2024-08-12T10:37:33.417482Z", + "iopub.status.busy": "2024-08-12T10:37:33.417296Z", + "iopub.status.idle": "2024-08-12T10:37:34.448180Z", + "shell.execute_reply": "2024-08-12T10:37:34.447519Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:20.289070Z", - "iopub.status.busy": "2024-08-08T18:59:20.288888Z", - "iopub.status.idle": "2024-08-08T18:59:20.420973Z", - "shell.execute_reply": "2024-08-08T18:59:20.420518Z" + "iopub.execute_input": "2024-08-12T10:37:34.451508Z", + "iopub.status.busy": "2024-08-12T10:37:34.450862Z", + "iopub.status.idle": "2024-08-12T10:37:34.573013Z", + "shell.execute_reply": "2024-08-12T10:37:34.572407Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:20.423197Z", - "iopub.status.busy": "2024-08-08T18:59:20.422855Z", - "iopub.status.idle": "2024-08-08T18:59:20.552420Z", - "shell.execute_reply": "2024-08-08T18:59:20.551991Z" + "iopub.execute_input": "2024-08-12T10:37:34.575711Z", + "iopub.status.busy": "2024-08-12T10:37:34.575257Z", + "iopub.status.idle": "2024-08-12T10:37:34.734036Z", + "shell.execute_reply": "2024-08-12T10:37:34.733425Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:20.554349Z", - "iopub.status.busy": "2024-08-08T18:59:20.554172Z", - "iopub.status.idle": "2024-08-08T18:59:21.294296Z", - "shell.execute_reply": "2024-08-08T18:59:21.293685Z" + "iopub.execute_input": "2024-08-12T10:37:34.736711Z", + "iopub.status.busy": "2024-08-12T10:37:34.736306Z", + "iopub.status.idle": "2024-08-12T10:37:35.504840Z", + "shell.execute_reply": "2024-08-12T10:37:35.504202Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:21.296708Z", - "iopub.status.busy": "2024-08-08T18:59:21.296358Z", - "iopub.status.idle": "2024-08-08T18:59:21.300182Z", - "shell.execute_reply": "2024-08-08T18:59:21.299624Z" + "iopub.execute_input": "2024-08-12T10:37:35.507164Z", + "iopub.status.busy": "2024-08-12T10:37:35.506804Z", + "iopub.status.idle": "2024-08-12T10:37:35.510605Z", + "shell.execute_reply": "2024-08-12T10:37:35.510109Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 644045600..4773a2282 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -780,7 +780,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:01<00:00, 97777040.52it/s]
+100%|██████████| 170498071/170498071 [00:03<00:00, 43962237.05it/s]
 

-
+
@@ -1130,7 +1130,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index bfae6bbd1..a766c6800 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:23.456712Z", - "iopub.status.busy": "2024-08-08T18:59:23.456530Z", - "iopub.status.idle": "2024-08-08T18:59:26.572909Z", - "shell.execute_reply": "2024-08-08T18:59:26.572274Z" + "iopub.execute_input": "2024-08-12T10:37:38.065729Z", + "iopub.status.busy": "2024-08-12T10:37:38.065301Z", + "iopub.status.idle": "2024-08-12T10:37:41.286106Z", + "shell.execute_reply": "2024-08-12T10:37:41.285531Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:26.575422Z", - "iopub.status.busy": "2024-08-08T18:59:26.575146Z", - "iopub.status.idle": "2024-08-08T18:59:26.594116Z", - "shell.execute_reply": "2024-08-08T18:59:26.593681Z" + "iopub.execute_input": "2024-08-12T10:37:41.288948Z", + "iopub.status.busy": "2024-08-12T10:37:41.288365Z", + "iopub.status.idle": "2024-08-12T10:37:41.308889Z", + "shell.execute_reply": "2024-08-12T10:37:41.308264Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:26.596226Z", - "iopub.status.busy": "2024-08-08T18:59:26.595879Z", - "iopub.status.idle": "2024-08-08T18:59:26.600088Z", - "shell.execute_reply": "2024-08-08T18:59:26.599545Z" + "iopub.execute_input": "2024-08-12T10:37:41.311645Z", + "iopub.status.busy": "2024-08-12T10:37:41.311095Z", + "iopub.status.idle": "2024-08-12T10:37:41.315091Z", + "shell.execute_reply": "2024-08-12T10:37:41.314659Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:26.602053Z", - "iopub.status.busy": "2024-08-08T18:59:26.601873Z", - "iopub.status.idle": "2024-08-08T18:59:31.196461Z", - "shell.execute_reply": "2024-08-08T18:59:31.195851Z" + "iopub.execute_input": "2024-08-12T10:37:41.317247Z", + "iopub.status.busy": "2024-08-12T10:37:41.316846Z", + "iopub.status.idle": "2024-08-12T10:37:48.393813Z", + "shell.execute_reply": "2024-08-12T10:37:48.393216Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1409024/170498071 [00:00<00:12, 14024982.08it/s]" + " 0%| | 32768/170498071 [00:00<10:21, 274108.21it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 6782976/170498071 [00:00<00:04, 37290459.14it/s]" + " 0%| | 196608/170498071 [00:00<03:07, 908944.76it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 12746752/170498071 [00:00<00:03, 47351547.04it/s]" + " 0%| | 753664/170498071 [00:00<01:05, 2576934.58it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 21168128/170498071 [00:00<00:02, 61844921.35it/s]" + " 2%|▏ | 3014656/170498071 [00:00<00:17, 9427987.53it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32243712/170498071 [00:00<00:01, 79445440.14it/s]" + " 5%|▍ | 8323072/170498071 [00:00<00:06, 23803182.24it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 43352064/170498071 [00:00<00:01, 90073271.96it/s]" + " 7%|▋ | 12124160/170498071 [00:00<00:05, 28239859.63it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 54591488/170498071 [00:00<00:01, 97356618.41it/s]" + " 11%|█ | 17989632/170498071 [00:00<00:04, 37732622.19it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 65798144/170498071 [00:00<00:01, 101972482.30it/s]" + " 13%|█▎ | 21987328/170498071 [00:00<00:03, 37894761.72it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 76906496/170498071 [00:00<00:00, 104706490.07it/s]" + " 16%|█▋ | 27721728/170498071 [00:00<00:03, 43568105.00it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 88145920/170498071 [00:01<00:00, 107058665.55it/s]" + " 19%|█▉ | 32440320/170498071 [00:01<00:03, 44642004.11it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 99155968/170498071 [00:01<00:00, 107924967.31it/s]" + " 22%|██▏ | 37289984/170498071 [00:01<00:02, 45780248.62it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 110493696/170498071 [00:01<00:00, 109534362.56it/s]" + " 25%|██▍ | 42565632/170498071 [00:01<00:02, 47872643.79it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 121470976/170498071 [00:01<00:00, 109582824.38it/s]" + " 28%|██▊ | 47415296/170498071 [00:01<00:02, 45988822.57it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 132710400/170498071 [00:01<00:00, 110380471.94it/s]" + " 31%|███▏ | 53313536/170498071 [00:01<00:02, 49526120.54it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 143884288/170498071 [00:01<00:00, 110732162.11it/s]" + " 34%|███▍ | 58327040/170498071 [00:01<00:02, 49116657.11it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 154959872/170498071 [00:01<00:00, 110629075.55it/s]" + " 37%|███▋ | 63275008/170498071 [00:01<00:02, 46949788.50it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 166068224/170498071 [00:01<00:00, 110724264.09it/s]" + " 40%|████ | 69009408/170498071 [00:01<00:02, 49782525.23it/s]" ] }, { @@ -388,7 +388,159 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 97777040.52it/s] " + " 43%|████▎ | 74055680/170498071 [00:01<00:01, 49319325.77it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 46%|████▋ | 79036416/170498071 [00:02<00:01, 47966329.96it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 50%|████▉ | 84770816/170498071 [00:02<00:01, 49856821.30it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 53%|█████▎ | 89784320/170498071 [00:02<00:01, 49255046.52it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▌ | 94732288/170498071 [00:02<00:01, 49133238.59it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 59%|█████▊ | 99876864/170498071 [00:02<00:01, 49552459.46it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▏ | 104857600/170498071 [00:02<00:01, 47815966.10it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 65%|██████▍ | 110460928/170498071 [00:02<00:01, 50063421.22it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 68%|██████▊ | 115507200/170498071 [00:02<00:01, 49809431.51it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 71%|███████ | 120520704/170498071 [00:02<00:01, 47904030.30it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 74%|███████▍ | 126255104/170498071 [00:02<00:00, 50586524.68it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 77%|███████▋ | 131366912/170498071 [00:03<00:00, 49554490.83it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 80%|███████▉ | 136347648/170498071 [00:03<00:00, 47123730.03it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 83%|████████▎ | 142049280/170498071 [00:03<00:00, 49371013.50it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▌ | 147030016/170498071 [00:03<00:00, 49389515.73it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 89%|████████▉ | 152010752/170498071 [00:03<00:00, 48630973.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▏| 157483008/170498071 [00:03<00:00, 50364282.82it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▌| 162562048/170498071 [00:03<00:00, 48565960.51it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 167870464/170498071 [00:03<00:00, 48926388.73it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:03<00:00, 43962237.05it/s]" ] }, { @@ -506,10 +658,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:31.198578Z", - "iopub.status.busy": "2024-08-08T18:59:31.198391Z", - "iopub.status.idle": "2024-08-08T18:59:31.203279Z", - "shell.execute_reply": "2024-08-08T18:59:31.202715Z" + "iopub.execute_input": "2024-08-12T10:37:48.396125Z", + "iopub.status.busy": "2024-08-12T10:37:48.395766Z", + "iopub.status.idle": "2024-08-12T10:37:48.400477Z", + "shell.execute_reply": "2024-08-12T10:37:48.400028Z" }, "nbsphinx": "hidden" }, @@ -560,10 +712,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:31.205353Z", - "iopub.status.busy": "2024-08-08T18:59:31.205009Z", - "iopub.status.idle": "2024-08-08T18:59:31.745572Z", - "shell.execute_reply": "2024-08-08T18:59:31.745103Z" + "iopub.execute_input": "2024-08-12T10:37:48.402698Z", + "iopub.status.busy": "2024-08-12T10:37:48.402218Z", + "iopub.status.idle": "2024-08-12T10:37:48.949380Z", + "shell.execute_reply": "2024-08-12T10:37:48.948822Z" } }, "outputs": [ @@ -596,10 +748,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:31.747869Z", - "iopub.status.busy": "2024-08-08T18:59:31.747528Z", - "iopub.status.idle": "2024-08-08T18:59:32.254622Z", - "shell.execute_reply": "2024-08-08T18:59:32.254008Z" + "iopub.execute_input": "2024-08-12T10:37:48.951673Z", + "iopub.status.busy": "2024-08-12T10:37:48.951322Z", + "iopub.status.idle": "2024-08-12T10:37:49.445300Z", + "shell.execute_reply": "2024-08-12T10:37:49.444702Z" } }, "outputs": [ @@ -637,10 +789,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:32.256751Z", - "iopub.status.busy": "2024-08-08T18:59:32.256460Z", - "iopub.status.idle": "2024-08-08T18:59:32.259912Z", - "shell.execute_reply": "2024-08-08T18:59:32.259424Z" + "iopub.execute_input": "2024-08-12T10:37:49.447437Z", + "iopub.status.busy": "2024-08-12T10:37:49.447249Z", + "iopub.status.idle": "2024-08-12T10:37:49.450529Z", + "shell.execute_reply": "2024-08-12T10:37:49.450053Z" } }, "outputs": [], @@ -663,17 +815,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:32.261793Z", - "iopub.status.busy": "2024-08-08T18:59:32.261618Z", - "iopub.status.idle": "2024-08-08T18:59:45.175951Z", - "shell.execute_reply": "2024-08-08T18:59:45.175357Z" + "iopub.execute_input": "2024-08-12T10:37:49.452441Z", + "iopub.status.busy": "2024-08-12T10:37:49.452265Z", + "iopub.status.idle": "2024-08-12T10:38:01.958435Z", + "shell.execute_reply": "2024-08-12T10:38:01.957792Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d9555041ab7445db869f6cd68df0ded9", + "model_id": "2509f48fd1ed4a62ad24fb1513c2d81a", "version_major": 2, "version_minor": 0 }, @@ -732,10 +884,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:45.178404Z", - "iopub.status.busy": "2024-08-08T18:59:45.178072Z", - "iopub.status.idle": "2024-08-08T18:59:47.337127Z", - "shell.execute_reply": "2024-08-08T18:59:47.336539Z" + "iopub.execute_input": "2024-08-12T10:38:01.960907Z", + "iopub.status.busy": "2024-08-12T10:38:01.960497Z", + "iopub.status.idle": "2024-08-12T10:38:04.092827Z", + "shell.execute_reply": "2024-08-12T10:38:04.092254Z" } }, "outputs": [ @@ -779,10 +931,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:47.339916Z", - "iopub.status.busy": "2024-08-08T18:59:47.339536Z", - "iopub.status.idle": "2024-08-08T18:59:47.587795Z", - "shell.execute_reply": "2024-08-08T18:59:47.587244Z" + "iopub.execute_input": "2024-08-12T10:38:04.095661Z", + "iopub.status.busy": "2024-08-12T10:38:04.095199Z", + "iopub.status.idle": "2024-08-12T10:38:04.357246Z", + "shell.execute_reply": "2024-08-12T10:38:04.356649Z" } }, "outputs": [ @@ -818,10 +970,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:47.590668Z", - "iopub.status.busy": "2024-08-08T18:59:47.590227Z", - "iopub.status.idle": "2024-08-08T18:59:48.261708Z", - "shell.execute_reply": "2024-08-08T18:59:48.261130Z" + "iopub.execute_input": "2024-08-12T10:38:04.360205Z", + "iopub.status.busy": "2024-08-12T10:38:04.359731Z", + "iopub.status.idle": "2024-08-12T10:38:05.053430Z", + "shell.execute_reply": "2024-08-12T10:38:05.052864Z" } }, "outputs": [ @@ -871,10 +1023,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:48.264752Z", - "iopub.status.busy": "2024-08-08T18:59:48.264286Z", - "iopub.status.idle": "2024-08-08T18:59:48.600984Z", - "shell.execute_reply": "2024-08-08T18:59:48.600369Z" + "iopub.execute_input": "2024-08-12T10:38:05.056495Z", + "iopub.status.busy": "2024-08-12T10:38:05.056048Z", + "iopub.status.idle": "2024-08-12T10:38:05.397275Z", + "shell.execute_reply": "2024-08-12T10:38:05.396713Z" } }, "outputs": [ @@ -922,10 +1074,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:48.603230Z", - "iopub.status.busy": "2024-08-08T18:59:48.603036Z", - "iopub.status.idle": "2024-08-08T18:59:48.831730Z", - "shell.execute_reply": "2024-08-08T18:59:48.831133Z" + "iopub.execute_input": "2024-08-12T10:38:05.399451Z", + "iopub.status.busy": "2024-08-12T10:38:05.399262Z", + "iopub.status.idle": "2024-08-12T10:38:05.651456Z", + "shell.execute_reply": "2024-08-12T10:38:05.650825Z" } }, "outputs": [ @@ -981,10 +1133,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:48.834166Z", - "iopub.status.busy": "2024-08-08T18:59:48.833985Z", - "iopub.status.idle": "2024-08-08T18:59:48.911817Z", - "shell.execute_reply": "2024-08-08T18:59:48.911195Z" + "iopub.execute_input": "2024-08-12T10:38:05.654454Z", + "iopub.status.busy": "2024-08-12T10:38:05.653989Z", + "iopub.status.idle": "2024-08-12T10:38:05.743235Z", + "shell.execute_reply": "2024-08-12T10:38:05.742733Z" } }, "outputs": [], @@ -1005,10 +1157,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:48.914580Z", - "iopub.status.busy": "2024-08-08T18:59:48.914399Z", - "iopub.status.idle": "2024-08-08T18:59:59.117219Z", - "shell.execute_reply": "2024-08-08T18:59:59.116605Z" + "iopub.execute_input": "2024-08-12T10:38:05.745752Z", + "iopub.status.busy": "2024-08-12T10:38:05.745420Z", + "iopub.status.idle": "2024-08-12T10:38:16.159454Z", + "shell.execute_reply": "2024-08-12T10:38:16.158759Z" } }, "outputs": [ @@ -1045,10 +1197,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T18:59:59.119822Z", - "iopub.status.busy": "2024-08-08T18:59:59.119356Z", - "iopub.status.idle": "2024-08-08T19:00:01.314366Z", - "shell.execute_reply": "2024-08-08T19:00:01.313804Z" + "iopub.execute_input": "2024-08-12T10:38:16.162032Z", + "iopub.status.busy": "2024-08-12T10:38:16.161608Z", + "iopub.status.idle": "2024-08-12T10:38:18.469804Z", + "shell.execute_reply": "2024-08-12T10:38:18.469284Z" } }, "outputs": [ @@ -1079,10 +1231,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:01.317133Z", - "iopub.status.busy": "2024-08-08T19:00:01.316601Z", - "iopub.status.idle": "2024-08-08T19:00:01.517421Z", - "shell.execute_reply": "2024-08-08T19:00:01.516886Z" + "iopub.execute_input": "2024-08-12T10:38:18.472461Z", + "iopub.status.busy": "2024-08-12T10:38:18.471934Z", + "iopub.status.idle": "2024-08-12T10:38:18.693678Z", + "shell.execute_reply": "2024-08-12T10:38:18.693177Z" } }, "outputs": [], @@ -1096,10 +1248,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:01.519923Z", - "iopub.status.busy": "2024-08-08T19:00:01.519582Z", - "iopub.status.idle": "2024-08-08T19:00:01.522617Z", - "shell.execute_reply": "2024-08-08T19:00:01.522161Z" + "iopub.execute_input": "2024-08-12T10:38:18.696055Z", + "iopub.status.busy": "2024-08-12T10:38:18.695868Z", + "iopub.status.idle": "2024-08-12T10:38:18.699138Z", + "shell.execute_reply": "2024-08-12T10:38:18.698703Z" } }, "outputs": [], @@ -1137,10 +1289,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:01.524692Z", - "iopub.status.busy": "2024-08-08T19:00:01.524369Z", - "iopub.status.idle": "2024-08-08T19:00:01.532809Z", - "shell.execute_reply": "2024-08-08T19:00:01.532374Z" + "iopub.execute_input": "2024-08-12T10:38:18.701265Z", + "iopub.status.busy": "2024-08-12T10:38:18.700945Z", + "iopub.status.idle": "2024-08-12T10:38:18.709241Z", + "shell.execute_reply": "2024-08-12T10:38:18.708774Z" }, "nbsphinx": "hidden" }, @@ -1185,7 +1337,54 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "068a57d185be4a04939eb0a6c7ff882c": { + "139e4e91a1484e8ba04022044c812479": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a2686af12e78443eaa75828809f5a37c", + "placeholder": "​", + "style": "IPY_MODEL_2e9fa535960e4d16aa34f1aa46aaa432", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 255MB/s]" + } + }, + "2509f48fd1ed4a62ad24fb1513c2d81a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ab049ed404064be38422d534105ce1fe", + "IPY_MODEL_cbca1c46e73540d29af597198e334466", + "IPY_MODEL_139e4e91a1484e8ba04022044c812479" + ], + "layout": "IPY_MODEL_5fc5d569f4d24463a83b8ec47acfe23e", + "tabbable": null, + "tooltip": null + } + }, + "2e9fa535960e4d16aa34f1aa46aaa432": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1203,7 +1402,7 @@ "text_color": null } }, - "0d64931283cd421db4481a77c8f0ab03": { + "5fc5d569f4d24463a83b8ec47acfe23e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1256,60 +1455,23 @@ "width": null } }, - "2e2a3f2192de4cf386c36c0028f38be3": { - "model_module": "@jupyter-widgets/base", + "8644689e0baa47239b9d96c02db45587": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "40600b3c7de94a1bbede0b5a2d793524": { + "9a42a0f001b844ad9bd9f6a36419e975": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1362,7 +1524,7 @@ "width": null } }, - "6e90cfc25336468685f00a7558167c14": { + "a2686af12e78443eaa75828809f5a37c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1415,23 +1577,7 @@ "width": null } }, - "710ee04a9d8e44d0824877353ce67585": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7d311b49ce474918bf559dc5a99e9ecf": { + "ab049ed404064be38422d534105ce1fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1446,38 +1592,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0d64931283cd421db4481a77c8f0ab03", + "layout": "IPY_MODEL_ea6e3fff8a484b4d9d66bc5738b031f3", "placeholder": "​", - "style": "IPY_MODEL_e8ad647ec4944fb6b91ec2090bccff7c", + "style": "IPY_MODEL_b79b90517fd54c8c82916c9f4f30a4b6", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "c1a2b8b452924a1ba8b220572a06ba49": { + "b79b90517fd54c8c82916c9f4f30a4b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6e90cfc25336468685f00a7558167c14", - "placeholder": "​", - "style": "IPY_MODEL_068a57d185be4a04939eb0a6c7ff882c", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 273MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c528c8d7caee4d7aa23a6681b502ae4a": { + "cbca1c46e73540d29af597198e334466": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1493,56 +1634,67 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2e2a3f2192de4cf386c36c0028f38be3", + "layout": "IPY_MODEL_9a42a0f001b844ad9bd9f6a36419e975", "max": 102469840.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_710ee04a9d8e44d0824877353ce67585", + "style": "IPY_MODEL_8644689e0baa47239b9d96c02db45587", "tabbable": null, "tooltip": null, "value": 102469840.0 } }, - "d9555041ab7445db869f6cd68df0ded9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7d311b49ce474918bf559dc5a99e9ecf", - "IPY_MODEL_c528c8d7caee4d7aa23a6681b502ae4a", - "IPY_MODEL_c1a2b8b452924a1ba8b220572a06ba49" - ], - "layout": "IPY_MODEL_40600b3c7de94a1bbede0b5a2d793524", - "tabbable": null, - "tooltip": null - } - }, - "e8ad647ec4944fb6b91ec2090bccff7c": { - "model_module": "@jupyter-widgets/controls", + "ea6e3fff8a484b4d9d66bc5738b031f3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 71530130d..6c6180b19 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:05.763507Z", - "iopub.status.busy": "2024-08-08T19:00:05.763142Z", - "iopub.status.idle": "2024-08-08T19:00:07.148034Z", - "shell.execute_reply": "2024-08-08T19:00:07.147474Z" + "iopub.execute_input": "2024-08-12T10:38:23.106311Z", + "iopub.status.busy": "2024-08-12T10:38:23.106127Z", + "iopub.status.idle": "2024-08-12T10:38:24.561027Z", + "shell.execute_reply": "2024-08-12T10:38:24.560457Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.150520Z", - "iopub.status.busy": "2024-08-08T19:00:07.150226Z", - "iopub.status.idle": "2024-08-08T19:00:07.168396Z", - "shell.execute_reply": "2024-08-08T19:00:07.167834Z" + "iopub.execute_input": "2024-08-12T10:38:24.563924Z", + "iopub.status.busy": "2024-08-12T10:38:24.563331Z", + "iopub.status.idle": "2024-08-12T10:38:24.582833Z", + "shell.execute_reply": "2024-08-12T10:38:24.582349Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.170755Z", - "iopub.status.busy": "2024-08-08T19:00:07.170331Z", - "iopub.status.idle": "2024-08-08T19:00:07.173433Z", - "shell.execute_reply": "2024-08-08T19:00:07.172889Z" + "iopub.execute_input": "2024-08-12T10:38:24.585400Z", + "iopub.status.busy": "2024-08-12T10:38:24.584732Z", + "iopub.status.idle": "2024-08-12T10:38:24.588095Z", + "shell.execute_reply": "2024-08-12T10:38:24.587528Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.175475Z", - "iopub.status.busy": "2024-08-08T19:00:07.175150Z", - "iopub.status.idle": "2024-08-08T19:00:07.293623Z", - "shell.execute_reply": "2024-08-08T19:00:07.293039Z" + "iopub.execute_input": "2024-08-12T10:38:24.590164Z", + "iopub.status.busy": "2024-08-12T10:38:24.589785Z", + "iopub.status.idle": "2024-08-12T10:38:24.804068Z", + "shell.execute_reply": "2024-08-12T10:38:24.803465Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.296065Z", - "iopub.status.busy": "2024-08-08T19:00:07.295636Z", - "iopub.status.idle": "2024-08-08T19:00:07.299885Z", - "shell.execute_reply": "2024-08-08T19:00:07.299377Z" + "iopub.execute_input": "2024-08-12T10:38:24.806521Z", + "iopub.status.busy": "2024-08-12T10:38:24.806108Z", + "iopub.status.idle": "2024-08-12T10:38:24.810570Z", + "shell.execute_reply": "2024-08-12T10:38:24.809985Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.302109Z", - "iopub.status.busy": "2024-08-08T19:00:07.301643Z", - "iopub.status.idle": "2024-08-08T19:00:07.545375Z", - "shell.execute_reply": "2024-08-08T19:00:07.544768Z" + "iopub.execute_input": "2024-08-12T10:38:24.812753Z", + "iopub.status.busy": "2024-08-12T10:38:24.812418Z", + "iopub.status.idle": "2024-08-12T10:38:25.059755Z", + "shell.execute_reply": "2024-08-12T10:38:25.059259Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.547587Z", - "iopub.status.busy": "2024-08-08T19:00:07.547269Z", - "iopub.status.idle": "2024-08-08T19:00:07.551673Z", - "shell.execute_reply": "2024-08-08T19:00:07.551108Z" + "iopub.execute_input": "2024-08-12T10:38:25.061903Z", + "iopub.status.busy": "2024-08-12T10:38:25.061709Z", + "iopub.status.idle": "2024-08-12T10:38:25.066278Z", + "shell.execute_reply": "2024-08-12T10:38:25.065794Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.553712Z", - "iopub.status.busy": "2024-08-08T19:00:07.553386Z", - "iopub.status.idle": "2024-08-08T19:00:07.559294Z", - "shell.execute_reply": "2024-08-08T19:00:07.558846Z" + "iopub.execute_input": "2024-08-12T10:38:25.068321Z", + "iopub.status.busy": "2024-08-12T10:38:25.067922Z", + "iopub.status.idle": "2024-08-12T10:38:25.074136Z", + "shell.execute_reply": "2024-08-12T10:38:25.073586Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.561503Z", - "iopub.status.busy": "2024-08-08T19:00:07.561074Z", - "iopub.status.idle": "2024-08-08T19:00:07.563833Z", - "shell.execute_reply": "2024-08-08T19:00:07.563277Z" + "iopub.execute_input": "2024-08-12T10:38:25.076256Z", + "iopub.status.busy": "2024-08-12T10:38:25.075869Z", + "iopub.status.idle": "2024-08-12T10:38:25.078496Z", + "shell.execute_reply": "2024-08-12T10:38:25.078020Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:07.565743Z", - "iopub.status.busy": "2024-08-08T19:00:07.565451Z", - "iopub.status.idle": "2024-08-08T19:00:16.540372Z", - "shell.execute_reply": "2024-08-08T19:00:16.539728Z" + "iopub.execute_input": "2024-08-12T10:38:25.080454Z", + "iopub.status.busy": "2024-08-12T10:38:25.080143Z", + "iopub.status.idle": "2024-08-12T10:38:34.275824Z", + "shell.execute_reply": "2024-08-12T10:38:34.275257Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.543317Z", - "iopub.status.busy": "2024-08-08T19:00:16.542777Z", - "iopub.status.idle": "2024-08-08T19:00:16.549714Z", - "shell.execute_reply": "2024-08-08T19:00:16.549170Z" + "iopub.execute_input": "2024-08-12T10:38:34.278905Z", + "iopub.status.busy": "2024-08-12T10:38:34.278220Z", + "iopub.status.idle": "2024-08-12T10:38:34.285441Z", + "shell.execute_reply": "2024-08-12T10:38:34.284934Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.551852Z", - "iopub.status.busy": "2024-08-08T19:00:16.551509Z", - "iopub.status.idle": "2024-08-08T19:00:16.554892Z", - "shell.execute_reply": "2024-08-08T19:00:16.554417Z" + "iopub.execute_input": "2024-08-12T10:38:34.287596Z", + "iopub.status.busy": "2024-08-12T10:38:34.287249Z", + "iopub.status.idle": "2024-08-12T10:38:34.290844Z", + "shell.execute_reply": "2024-08-12T10:38:34.290392Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.556952Z", - "iopub.status.busy": "2024-08-08T19:00:16.556618Z", - "iopub.status.idle": "2024-08-08T19:00:16.559658Z", - "shell.execute_reply": "2024-08-08T19:00:16.559098Z" + "iopub.execute_input": "2024-08-12T10:38:34.292807Z", + "iopub.status.busy": "2024-08-12T10:38:34.292472Z", + "iopub.status.idle": "2024-08-12T10:38:34.295505Z", + "shell.execute_reply": "2024-08-12T10:38:34.294963Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.561745Z", - "iopub.status.busy": "2024-08-08T19:00:16.561410Z", - "iopub.status.idle": "2024-08-08T19:00:16.564242Z", - "shell.execute_reply": "2024-08-08T19:00:16.563758Z" + "iopub.execute_input": "2024-08-12T10:38:34.297619Z", + "iopub.status.busy": "2024-08-12T10:38:34.297287Z", + "iopub.status.idle": "2024-08-12T10:38:34.300228Z", + "shell.execute_reply": "2024-08-12T10:38:34.299788Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.566176Z", - "iopub.status.busy": "2024-08-08T19:00:16.565861Z", - "iopub.status.idle": "2024-08-08T19:00:16.573658Z", - "shell.execute_reply": "2024-08-08T19:00:16.573109Z" + "iopub.execute_input": "2024-08-12T10:38:34.302181Z", + "iopub.status.busy": "2024-08-12T10:38:34.301846Z", + "iopub.status.idle": "2024-08-12T10:38:34.309866Z", + "shell.execute_reply": "2024-08-12T10:38:34.309401Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.575766Z", - "iopub.status.busy": "2024-08-08T19:00:16.575430Z", - "iopub.status.idle": "2024-08-08T19:00:16.577924Z", - "shell.execute_reply": "2024-08-08T19:00:16.577492Z" + "iopub.execute_input": "2024-08-12T10:38:34.311916Z", + "iopub.status.busy": "2024-08-12T10:38:34.311580Z", + "iopub.status.idle": "2024-08-12T10:38:34.314224Z", + "shell.execute_reply": "2024-08-12T10:38:34.313758Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.580066Z", - "iopub.status.busy": "2024-08-08T19:00:16.579746Z", - "iopub.status.idle": "2024-08-08T19:00:16.707283Z", - "shell.execute_reply": "2024-08-08T19:00:16.706784Z" + "iopub.execute_input": "2024-08-12T10:38:34.316300Z", + "iopub.status.busy": "2024-08-12T10:38:34.315973Z", + "iopub.status.idle": "2024-08-12T10:38:34.447434Z", + "shell.execute_reply": "2024-08-12T10:38:34.446909Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.709441Z", - "iopub.status.busy": "2024-08-08T19:00:16.709076Z", - "iopub.status.idle": "2024-08-08T19:00:16.816886Z", - "shell.execute_reply": "2024-08-08T19:00:16.816392Z" + "iopub.execute_input": "2024-08-12T10:38:34.450013Z", + "iopub.status.busy": "2024-08-12T10:38:34.449571Z", + "iopub.status.idle": "2024-08-12T10:38:34.560887Z", + "shell.execute_reply": "2024-08-12T10:38:34.560277Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:16.819109Z", - "iopub.status.busy": "2024-08-08T19:00:16.818784Z", - "iopub.status.idle": "2024-08-08T19:00:17.330358Z", - "shell.execute_reply": "2024-08-08T19:00:17.329721Z" + "iopub.execute_input": "2024-08-12T10:38:34.563495Z", + "iopub.status.busy": "2024-08-12T10:38:34.563083Z", + "iopub.status.idle": "2024-08-12T10:38:35.086810Z", + "shell.execute_reply": "2024-08-12T10:38:35.086226Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:17.332856Z", - "iopub.status.busy": "2024-08-08T19:00:17.332665Z", - "iopub.status.idle": "2024-08-08T19:00:17.430530Z", - "shell.execute_reply": "2024-08-08T19:00:17.429939Z" + "iopub.execute_input": "2024-08-12T10:38:35.089656Z", + "iopub.status.busy": "2024-08-12T10:38:35.089208Z", + "iopub.status.idle": "2024-08-12T10:38:35.189179Z", + "shell.execute_reply": "2024-08-12T10:38:35.188526Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:17.433014Z", - "iopub.status.busy": "2024-08-08T19:00:17.432597Z", - "iopub.status.idle": "2024-08-08T19:00:17.441335Z", - "shell.execute_reply": "2024-08-08T19:00:17.440890Z" + "iopub.execute_input": "2024-08-12T10:38:35.191757Z", + "iopub.status.busy": "2024-08-12T10:38:35.191311Z", + "iopub.status.idle": "2024-08-12T10:38:35.200051Z", + "shell.execute_reply": "2024-08-12T10:38:35.199511Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:17.443194Z", - "iopub.status.busy": "2024-08-08T19:00:17.443018Z", - "iopub.status.idle": "2024-08-08T19:00:17.445584Z", - "shell.execute_reply": "2024-08-08T19:00:17.445137Z" + "iopub.execute_input": "2024-08-12T10:38:35.202162Z", + "iopub.status.busy": "2024-08-12T10:38:35.201840Z", + "iopub.status.idle": "2024-08-12T10:38:35.204702Z", + "shell.execute_reply": "2024-08-12T10:38:35.204149Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:17.447585Z", - "iopub.status.busy": "2024-08-08T19:00:17.447411Z", - "iopub.status.idle": "2024-08-08T19:00:23.130576Z", - "shell.execute_reply": "2024-08-08T19:00:23.129994Z" + "iopub.execute_input": "2024-08-12T10:38:35.206675Z", + "iopub.status.busy": "2024-08-12T10:38:35.206390Z", + "iopub.status.idle": "2024-08-12T10:38:40.863741Z", + "shell.execute_reply": "2024-08-12T10:38:40.863149Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:23.132814Z", - "iopub.status.busy": "2024-08-08T19:00:23.132622Z", - "iopub.status.idle": "2024-08-08T19:00:23.141490Z", - "shell.execute_reply": "2024-08-08T19:00:23.141035Z" + "iopub.execute_input": "2024-08-12T10:38:40.866094Z", + "iopub.status.busy": "2024-08-12T10:38:40.865698Z", + "iopub.status.idle": "2024-08-12T10:38:40.874237Z", + "shell.execute_reply": "2024-08-12T10:38:40.873673Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:23.143503Z", - "iopub.status.busy": "2024-08-08T19:00:23.143326Z", - "iopub.status.idle": "2024-08-08T19:00:23.215775Z", - "shell.execute_reply": "2024-08-08T19:00:23.215259Z" + "iopub.execute_input": "2024-08-12T10:38:40.876578Z", + "iopub.status.busy": "2024-08-12T10:38:40.876136Z", + "iopub.status.idle": "2024-08-12T10:38:40.940208Z", + "shell.execute_reply": "2024-08-12T10:38:40.939737Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 5f1f86c27..6a533d848 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -800,13 +800,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1196,7 +1196,7 @@

Get label quality scores -{"state": {"a32bdb7bceef4a72bafb8e7e586634ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9f6c054ffbd04a868ccdaa003ff82091": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f90e290855d84ddabea8ff1e503c0db3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a32bdb7bceef4a72bafb8e7e586634ef", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9f6c054ffbd04a868ccdaa003ff82091", "tabbable": null, "tooltip": null, "value": 30.0}}, "5c19d0970b3f48c7bdf258a0d2c5d12d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c894645fdab043e3beb77852b38f260a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a2aa09b4ae734036bb5d4e9d4913399a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5c19d0970b3f48c7bdf258a0d2c5d12d", "placeholder": "\u200b", "style": "IPY_MODEL_c894645fdab043e3beb77852b38f260a", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "91b86324356540958a20887c49ffe6af": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47cc410933ae4c4898b55430d2d59963": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "52531c88ab514b73aa9c8913836850ff": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_91b86324356540958a20887c49ffe6af", "placeholder": "\u200b", "style": "IPY_MODEL_47cc410933ae4c4898b55430d2d59963", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007816.51it/s]"}}, "0b9b277d67d546f38a4742fe9af5165d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "da314ac115984343824f5a4dd74c7ef5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a2aa09b4ae734036bb5d4e9d4913399a", "IPY_MODEL_f90e290855d84ddabea8ff1e503c0db3", "IPY_MODEL_52531c88ab514b73aa9c8913836850ff"], "layout": "IPY_MODEL_0b9b277d67d546f38a4742fe9af5165d", "tabbable": null, "tooltip": null}}, "58e09cca0c5a4d85877ed1ee7b1c25a4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1395378f015d4681a0fc4e67a2dda591": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8d024792f7d842a3a06ec45defd2eebc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_58e09cca0c5a4d85877ed1ee7b1c25a4", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1395378f015d4681a0fc4e67a2dda591", "tabbable": null, "tooltip": null, "value": 30.0}}, "b5325c51aa5c44098c68914f7a58c2be": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e14e50d60911477ebe4e5e9666a2e33a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4a0838c46fe4438aa23d44824eb60497": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b5325c51aa5c44098c68914f7a58c2be", "placeholder": "\u200b", "style": "IPY_MODEL_e14e50d60911477ebe4e5e9666a2e33a", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "dc64467fe611416db008f92087111af6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47a26a317dda480ba86f51e06bf50aa6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1039ae8899754fdfadf03515adac2c30": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dc64467fe611416db008f92087111af6", "placeholder": "\u200b", "style": "IPY_MODEL_47a26a317dda480ba86f51e06bf50aa6", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.17it/s]"}}, "2c9ac16b50294054adbf61f9d60b42f5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9251fdd343f461a8b61b254b3868a71": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4a0838c46fe4438aa23d44824eb60497", "IPY_MODEL_8d024792f7d842a3a06ec45defd2eebc", "IPY_MODEL_1039ae8899754fdfadf03515adac2c30"], "layout": "IPY_MODEL_2c9ac16b50294054adbf61f9d60b42f5", "tabbable": null, "tooltip": null}}, "244ef3e872c1469aa43aed49e1c9093c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9e5659698a5f441285e4abbce63666ce": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "01f1adde17704dbe989ec4d4822f4176": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_244ef3e872c1469aa43aed49e1c9093c", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9e5659698a5f441285e4abbce63666ce", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "0594aad236c3452cb68cebc7066a2a10": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5913476601474b8c917a05d0b727a895": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b9ced451e2744c2cb19ada4d8c65d671": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0594aad236c3452cb68cebc7066a2a10", "placeholder": "\u200b", "style": "IPY_MODEL_5913476601474b8c917a05d0b727a895", "tabbable": null, "tooltip": null, "value": "100%"}}, "049a5458af4c4c9fafd7cedae0e4b27b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec90a1756d5149d1885d9d68b9013615": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d7c797d006b44c62996cefee86a5731a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_049a5458af4c4c9fafd7cedae0e4b27b", "placeholder": "\u200b", "style": "IPY_MODEL_ec90a1756d5149d1885d9d68b9013615", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007151675.75it/s]"}}, "2e4ed5501c3a4923b226a6f0e1d4810a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff12be03ae6c41e4b821a56e16252503": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b9ced451e2744c2cb19ada4d8c65d671", "IPY_MODEL_01f1adde17704dbe989ec4d4822f4176", "IPY_MODEL_d7c797d006b44c62996cefee86a5731a"], "layout": "IPY_MODEL_2e4ed5501c3a4923b226a6f0e1d4810a", "tabbable": null, "tooltip": null}}, "19a958b1f93d4b23bb0a579030786f56": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9116a6c9ac1c4e22b4e9fee047ad24e8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1bc9e88eb40e47d38cafff9f1e4ce039": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_19a958b1f93d4b23bb0a579030786f56", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9116a6c9ac1c4e22b4e9fee047ad24e8", "tabbable": null, "tooltip": null, "value": 30.0}}, "c560b8e1f4744d24aec00a0c6fc85924": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "91c0160df0dd44c7a41d70b5cb70ba30": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fc788218e83a4ec18d626c6db1908798": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c560b8e1f4744d24aec00a0c6fc85924", "placeholder": "\u200b", "style": "IPY_MODEL_91c0160df0dd44c7a41d70b5cb70ba30", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "fa1455a7f4094c7e8908ea9fe26fff88": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b40e509d4c44f3c865bdaae0719b233": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "60f4696eda7241428c1bcdb5b08bc225": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fa1455a7f4094c7e8908ea9fe26fff88", "placeholder": "\u200b", "style": "IPY_MODEL_7b40e509d4c44f3c865bdaae0719b233", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.92it/s]"}}, "404f0e2aadd44f0eb87b8fa614b30ff7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1aa8517b7b8e4a3881bbdffc085404a1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fc788218e83a4ec18d626c6db1908798", "IPY_MODEL_1bc9e88eb40e47d38cafff9f1e4ce039", "IPY_MODEL_60f4696eda7241428c1bcdb5b08bc225"], "layout": "IPY_MODEL_404f0e2aadd44f0eb87b8fa614b30ff7", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"010e44b48d974beeb7690f8542184e1b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5a5c3be4f2994ba5a9fe278b993dff8b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cd7f1bbed2b3453992c2294fb7b8f062": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_010e44b48d974beeb7690f8542184e1b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5a5c3be4f2994ba5a9fe278b993dff8b", "tabbable": null, "tooltip": null, "value": 30.0}}, "1563dcc38303423d9edbed3b08c05b03": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0f4a5ca89bd44246a9513173bf74a65d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0416c162024a4fc381a45c2144135cc1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1563dcc38303423d9edbed3b08c05b03", "placeholder": "\u200b", "style": "IPY_MODEL_0f4a5ca89bd44246a9513173bf74a65d", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "bafbe32ede834e3e9065c92397de6f8c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a0fd43aebf8429ebed382e82d7f51e7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4d2a6db5bcf94f70b3a4ad24b832cd90": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bafbe32ede834e3e9065c92397de6f8c", "placeholder": "\u200b", "style": "IPY_MODEL_8a0fd43aebf8429ebed382e82d7f51e7", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007802.43it/s]"}}, "844ec110d7c84f3fb856b6b598512108": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "61e605b04d874c93b6bfbb1c76fe56ef": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0416c162024a4fc381a45c2144135cc1", "IPY_MODEL_cd7f1bbed2b3453992c2294fb7b8f062", "IPY_MODEL_4d2a6db5bcf94f70b3a4ad24b832cd90"], "layout": "IPY_MODEL_844ec110d7c84f3fb856b6b598512108", "tabbable": null, "tooltip": null}}, "1c4405e9f09347f69b059265ffec86fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "399bc87e579745ad9a2930ba8605db78": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a936ea8d446f4dc6846eb16e30670216": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c4405e9f09347f69b059265ffec86fc", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_399bc87e579745ad9a2930ba8605db78", "tabbable": null, "tooltip": null, "value": 30.0}}, "b1eb120d532440b884214ef8eacb43b4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b982f6012464407b8042bc862b7ede1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d5abd9dbf83d4476a7edecdc934d3ecd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b1eb120d532440b884214ef8eacb43b4", "placeholder": "\u200b", "style": "IPY_MODEL_2b982f6012464407b8042bc862b7ede1", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "91d043d8d3d34fb18e60e06a40ab070d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6de6c5c76e4c4c2e977861cd171624e7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bf43cbf39f1744c5b97ce89faa09ab90": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_91d043d8d3d34fb18e60e06a40ab070d", "placeholder": "\u200b", "style": "IPY_MODEL_6de6c5c76e4c4c2e977861cd171624e7", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.17it/s]"}}, "6583a0a60fe54eda962c904c18cf76f1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f08907b075b945d98f02eb7bb46dde87": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d5abd9dbf83d4476a7edecdc934d3ecd", "IPY_MODEL_a936ea8d446f4dc6846eb16e30670216", "IPY_MODEL_bf43cbf39f1744c5b97ce89faa09ab90"], "layout": "IPY_MODEL_6583a0a60fe54eda962c904c18cf76f1", "tabbable": null, "tooltip": null}}, "51800615e4584a51830cc28b3452f7e9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57f6c0fe38904916a9c68353b56e9d0f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fbe9c46e48b14c9f84f96b3a07c47b9b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_51800615e4584a51830cc28b3452f7e9", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_57f6c0fe38904916a9c68353b56e9d0f", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "e23f7a500c77422180ae8c0b19fed597": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e6b0aaa7478443f8a5807573545ef4dd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6c662917f77845909c734188e0849f3f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e23f7a500c77422180ae8c0b19fed597", "placeholder": "\u200b", "style": "IPY_MODEL_e6b0aaa7478443f8a5807573545ef4dd", "tabbable": null, "tooltip": null, "value": "100%"}}, "e6c3c5326bbc4655b166d18c64e5cbd1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4cb6725acf0d4146a26d14bcab9727f0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "538a035bd9374f96a81b2ec775e07cd3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e6c3c5326bbc4655b166d18c64e5cbd1", "placeholder": "\u200b", "style": "IPY_MODEL_4cb6725acf0d4146a26d14bcab9727f0", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007151534.24it/s]"}}, "f5b61e50c8ea418facc9fca22ce157b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "561557a580184250a3d202d08116c4ee": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6c662917f77845909c734188e0849f3f", "IPY_MODEL_fbe9c46e48b14c9f84f96b3a07c47b9b", "IPY_MODEL_538a035bd9374f96a81b2ec775e07cd3"], "layout": "IPY_MODEL_f5b61e50c8ea418facc9fca22ce157b9", "tabbable": null, "tooltip": null}}, "988ac07c05a442529f798cef6e50fb3b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "da9d3e1909784dd798b07568fde6b3f2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9ab476bf29c7452b97de539b14f89cba": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_988ac07c05a442529f798cef6e50fb3b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_da9d3e1909784dd798b07568fde6b3f2", "tabbable": null, "tooltip": null, "value": 30.0}}, "9ebd02d6b2a6471d91183ddc979dd134": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3630df7de7c24e1dbde38fd5b3ec5335": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c5796a1d25a2402f8ac7189ad2c91f00": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9ebd02d6b2a6471d91183ddc979dd134", "placeholder": "\u200b", "style": "IPY_MODEL_3630df7de7c24e1dbde38fd5b3ec5335", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "640ae108c5fd43c48a63563c80f03c92": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "019c971db6eb4ae58639c1bdf5010f25": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "410bebdd912b4f52baf94752cefcdb90": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_640ae108c5fd43c48a63563c80f03c92", "placeholder": "\u200b", "style": "IPY_MODEL_019c971db6eb4ae58639c1bdf5010f25", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200718.13it/s]"}}, "d5384d275afa4ecc9afe700c7fabaee9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d0e8171b866d49d29b94f359a1afd3b9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c5796a1d25a2402f8ac7189ad2c91f00", "IPY_MODEL_9ab476bf29c7452b97de539b14f89cba", "IPY_MODEL_410bebdd912b4f52baf94752cefcdb90"], "layout": "IPY_MODEL_d5384d275afa4ecc9afe700c7fabaee9", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index cf027ad6c..b98e8669b 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:26.154143Z", - "iopub.status.busy": "2024-08-08T19:00:26.153969Z", - "iopub.status.idle": "2024-08-08T19:00:28.407365Z", - "shell.execute_reply": "2024-08-08T19:00:28.406608Z" + "iopub.execute_input": "2024-08-12T10:38:45.300927Z", + "iopub.status.busy": "2024-08-12T10:38:45.300755Z", + "iopub.status.idle": "2024-08-12T10:38:47.705900Z", + "shell.execute_reply": "2024-08-12T10:38:47.705194Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:00:28.409933Z", - "iopub.status.busy": "2024-08-08T19:00:28.409738Z", - "iopub.status.idle": "2024-08-08T19:01:42.302193Z", - "shell.execute_reply": "2024-08-08T19:01:42.301428Z" + "iopub.execute_input": "2024-08-12T10:38:47.708436Z", + "iopub.status.busy": "2024-08-12T10:38:47.708244Z", + "iopub.status.idle": "2024-08-12T10:40:01.410752Z", + "shell.execute_reply": "2024-08-12T10:40:01.410038Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:01:42.305127Z", - "iopub.status.busy": "2024-08-08T19:01:42.304733Z", - "iopub.status.idle": "2024-08-08T19:01:43.714528Z", - "shell.execute_reply": "2024-08-08T19:01:43.713969Z" + "iopub.execute_input": "2024-08-12T10:40:01.413413Z", + "iopub.status.busy": "2024-08-12T10:40:01.413181Z", + "iopub.status.idle": "2024-08-12T10:40:02.882844Z", + "shell.execute_reply": "2024-08-12T10:40:02.882249Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:01:43.717104Z", - "iopub.status.busy": "2024-08-08T19:01:43.716644Z", - "iopub.status.idle": "2024-08-08T19:01:43.719793Z", - "shell.execute_reply": "2024-08-08T19:01:43.719360Z" + "iopub.execute_input": "2024-08-12T10:40:02.885477Z", + "iopub.status.busy": "2024-08-12T10:40:02.885002Z", + "iopub.status.idle": "2024-08-12T10:40:02.888203Z", + "shell.execute_reply": "2024-08-12T10:40:02.887746Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:01:43.721875Z", - "iopub.status.busy": "2024-08-08T19:01:43.721541Z", - "iopub.status.idle": "2024-08-08T19:01:43.725287Z", - "shell.execute_reply": "2024-08-08T19:01:43.724848Z" + "iopub.execute_input": "2024-08-12T10:40:02.890475Z", + "iopub.status.busy": "2024-08-12T10:40:02.890011Z", + "iopub.status.idle": "2024-08-12T10:40:02.894575Z", + "shell.execute_reply": "2024-08-12T10:40:02.894008Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:01:43.727408Z", - "iopub.status.busy": "2024-08-08T19:01:43.727070Z", - "iopub.status.idle": "2024-08-08T19:01:43.730800Z", - "shell.execute_reply": "2024-08-08T19:01:43.730303Z" + "iopub.execute_input": "2024-08-12T10:40:02.896712Z", + "iopub.status.busy": "2024-08-12T10:40:02.896410Z", + "iopub.status.idle": "2024-08-12T10:40:02.900059Z", + "shell.execute_reply": "2024-08-12T10:40:02.899526Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:01:43.732796Z", - "iopub.status.busy": "2024-08-08T19:01:43.732464Z", - "iopub.status.idle": "2024-08-08T19:01:43.735353Z", - "shell.execute_reply": "2024-08-08T19:01:43.734883Z" + "iopub.execute_input": "2024-08-12T10:40:02.901997Z", + "iopub.status.busy": "2024-08-12T10:40:02.901691Z", + "iopub.status.idle": "2024-08-12T10:40:02.904562Z", + "shell.execute_reply": "2024-08-12T10:40:02.904109Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:01:43.737340Z", - "iopub.status.busy": "2024-08-08T19:01:43.737003Z", - "iopub.status.idle": "2024-08-08T19:02:21.756340Z", - "shell.execute_reply": "2024-08-08T19:02:21.755612Z" + "iopub.execute_input": "2024-08-12T10:40:02.906531Z", + "iopub.status.busy": "2024-08-12T10:40:02.906183Z", + "iopub.status.idle": "2024-08-12T10:40:40.641176Z", + "shell.execute_reply": "2024-08-12T10:40:40.640533Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "da314ac115984343824f5a4dd74c7ef5", + "model_id": "61e605b04d874c93b6bfbb1c76fe56ef", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e9251fdd343f461a8b61b254b3868a71", + "model_id": "f08907b075b945d98f02eb7bb46dde87", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:02:21.759238Z", - "iopub.status.busy": "2024-08-08T19:02:21.759009Z", - "iopub.status.idle": "2024-08-08T19:02:22.206641Z", - "shell.execute_reply": "2024-08-08T19:02:22.206157Z" + "iopub.execute_input": "2024-08-12T10:40:40.643965Z", + "iopub.status.busy": "2024-08-12T10:40:40.643744Z", + "iopub.status.idle": "2024-08-12T10:40:41.093555Z", + "shell.execute_reply": "2024-08-12T10:40:41.093058Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:02:22.208861Z", - "iopub.status.busy": "2024-08-08T19:02:22.208507Z", - "iopub.status.idle": "2024-08-08T19:02:25.148897Z", - "shell.execute_reply": "2024-08-08T19:02:25.148364Z" + "iopub.execute_input": "2024-08-12T10:40:41.095831Z", + "iopub.status.busy": "2024-08-12T10:40:41.095457Z", + "iopub.status.idle": "2024-08-12T10:40:44.123477Z", + "shell.execute_reply": "2024-08-12T10:40:44.122854Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:02:25.151150Z", - "iopub.status.busy": "2024-08-08T19:02:25.150799Z", - "iopub.status.idle": "2024-08-08T19:02:57.956197Z", - "shell.execute_reply": "2024-08-08T19:02:57.955716Z" + "iopub.execute_input": "2024-08-12T10:40:44.125614Z", + "iopub.status.busy": "2024-08-12T10:40:44.125421Z", + "iopub.status.idle": "2024-08-12T10:41:17.218406Z", + "shell.execute_reply": "2024-08-12T10:41:17.217894Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ff12be03ae6c41e4b821a56e16252503", + "model_id": "561557a580184250a3d202d08116c4ee", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:02:57.958202Z", - "iopub.status.busy": "2024-08-08T19:02:57.958030Z", - "iopub.status.idle": "2024-08-08T19:03:12.962268Z", - "shell.execute_reply": "2024-08-08T19:03:12.961703Z" + "iopub.execute_input": "2024-08-12T10:41:17.220681Z", + "iopub.status.busy": "2024-08-12T10:41:17.220324Z", + "iopub.status.idle": "2024-08-12T10:41:33.032204Z", + "shell.execute_reply": "2024-08-12T10:41:33.031621Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:12.964822Z", - "iopub.status.busy": "2024-08-08T19:03:12.964507Z", - "iopub.status.idle": "2024-08-08T19:03:16.627864Z", - "shell.execute_reply": "2024-08-08T19:03:16.627319Z" + "iopub.execute_input": "2024-08-12T10:41:33.034823Z", + "iopub.status.busy": "2024-08-12T10:41:33.034402Z", + "iopub.status.idle": "2024-08-12T10:41:36.912406Z", + "shell.execute_reply": "2024-08-12T10:41:36.911872Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:16.630002Z", - "iopub.status.busy": "2024-08-08T19:03:16.629822Z", - "iopub.status.idle": "2024-08-08T19:03:18.078498Z", - "shell.execute_reply": "2024-08-08T19:03:18.077862Z" + "iopub.execute_input": "2024-08-12T10:41:36.914664Z", + "iopub.status.busy": "2024-08-12T10:41:36.914293Z", + "iopub.status.idle": "2024-08-12T10:41:38.508661Z", + "shell.execute_reply": "2024-08-12T10:41:38.508099Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1aa8517b7b8e4a3881bbdffc085404a1", + "model_id": "d0e8171b866d49d29b94f359a1afd3b9", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:18.081033Z", - "iopub.status.busy": "2024-08-08T19:03:18.080838Z", - "iopub.status.idle": "2024-08-08T19:03:18.108792Z", - "shell.execute_reply": "2024-08-08T19:03:18.108146Z" + "iopub.execute_input": "2024-08-12T10:41:38.510876Z", + "iopub.status.busy": "2024-08-12T10:41:38.510569Z", + "iopub.status.idle": "2024-08-12T10:41:38.541247Z", + "shell.execute_reply": "2024-08-12T10:41:38.540581Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:18.111474Z", - "iopub.status.busy": "2024-08-08T19:03:18.111034Z", - "iopub.status.idle": "2024-08-08T19:03:24.104510Z", - "shell.execute_reply": "2024-08-08T19:03:24.103899Z" + "iopub.execute_input": "2024-08-12T10:41:38.543961Z", + "iopub.status.busy": "2024-08-12T10:41:38.543566Z", + "iopub.status.idle": "2024-08-12T10:41:44.851830Z", + "shell.execute_reply": "2024-08-12T10:41:44.851223Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:24.106830Z", - "iopub.status.busy": "2024-08-08T19:03:24.106515Z", - "iopub.status.idle": "2024-08-08T19:03:24.162875Z", - "shell.execute_reply": "2024-08-08T19:03:24.162248Z" + "iopub.execute_input": "2024-08-12T10:41:44.854065Z", + "iopub.status.busy": "2024-08-12T10:41:44.853866Z", + "iopub.status.idle": "2024-08-12T10:41:44.911138Z", + "shell.execute_reply": "2024-08-12T10:41:44.910619Z" }, "nbsphinx": "hidden" }, @@ -1038,33 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01f1adde17704dbe989ec4d4822f4176": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_244ef3e872c1469aa43aed49e1c9093c", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9e5659698a5f441285e4abbce63666ce", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 - } - }, - "049a5458af4c4c9fafd7cedae0e4b27b": { + "010e44b48d974beeb7690f8542184e1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1117,7 +1091,66 @@ "width": null } }, - "0594aad236c3452cb68cebc7066a2a10": { + "019c971db6eb4ae58639c1bdf5010f25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0416c162024a4fc381a45c2144135cc1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1563dcc38303423d9edbed3b08c05b03", + "placeholder": "​", + "style": "IPY_MODEL_0f4a5ca89bd44246a9513173bf74a65d", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "0f4a5ca89bd44246a9513173bf74a65d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1563dcc38303423d9edbed3b08c05b03": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1170,7 +1203,7 @@ "width": null } }, - "0b9b277d67d546f38a4742fe9af5165d": { + "1c4405e9f09347f69b059265ffec86fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1223,7 +1256,59 @@ "width": null } }, - "1039ae8899754fdfadf03515adac2c30": { + "2b982f6012464407b8042bc862b7ede1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3630df7de7c24e1dbde38fd5b3ec5335": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "399bc87e579745ad9a2930ba8605db78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "410bebdd912b4f52baf94752cefcdb90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1238,31 +1323,56 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dc64467fe611416db008f92087111af6", + "layout": "IPY_MODEL_640ae108c5fd43c48a63563c80f03c92", "placeholder": "​", - "style": "IPY_MODEL_47a26a317dda480ba86f51e06bf50aa6", + "style": "IPY_MODEL_019c971db6eb4ae58639c1bdf5010f25", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.17it/s]" + "value": " 30/30 [00:01<00:00, 18.13it/s]" } }, - "1395378f015d4681a0fc4e67a2dda591": { + "4cb6725acf0d4146a26d14bcab9727f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4d2a6db5bcf94f70b3a4ad24b832cd90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bafbe32ede834e3e9065c92397de6f8c", + "placeholder": "​", + "style": "IPY_MODEL_8a0fd43aebf8429ebed382e82d7f51e7", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 802.43it/s]" } }, - "19a958b1f93d4b23bb0a579030786f56": { + "51800615e4584a51830cc28b3452f7e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1315,7 +1425,30 @@ "width": null } }, - "1aa8517b7b8e4a3881bbdffc085404a1": { + "538a035bd9374f96a81b2ec775e07cd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e6c3c5326bbc4655b166d18c64e5cbd1", + "placeholder": "​", + "style": "IPY_MODEL_4cb6725acf0d4146a26d14bcab9727f0", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 151534.24it/s]" + } + }, + "561557a580184250a3d202d08116c4ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1330,42 +1463,72 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fc788218e83a4ec18d626c6db1908798", - "IPY_MODEL_1bc9e88eb40e47d38cafff9f1e4ce039", - "IPY_MODEL_60f4696eda7241428c1bcdb5b08bc225" + "IPY_MODEL_6c662917f77845909c734188e0849f3f", + "IPY_MODEL_fbe9c46e48b14c9f84f96b3a07c47b9b", + "IPY_MODEL_538a035bd9374f96a81b2ec775e07cd3" ], - "layout": "IPY_MODEL_404f0e2aadd44f0eb87b8fa614b30ff7", + "layout": "IPY_MODEL_f5b61e50c8ea418facc9fca22ce157b9", "tabbable": null, "tooltip": null } }, - "1bc9e88eb40e47d38cafff9f1e4ce039": { + "57f6c0fe38904916a9c68353b56e9d0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5a5c3be4f2994ba5a9fe278b993dff8b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "61e605b04d874c93b6bfbb1c76fe56ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19a958b1f93d4b23bb0a579030786f56", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9116a6c9ac1c4e22b4e9fee047ad24e8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0416c162024a4fc381a45c2144135cc1", + "IPY_MODEL_cd7f1bbed2b3453992c2294fb7b8f062", + "IPY_MODEL_4d2a6db5bcf94f70b3a4ad24b832cd90" + ], + "layout": "IPY_MODEL_844ec110d7c84f3fb856b6b598512108", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "244ef3e872c1469aa43aed49e1c9093c": { + "640ae108c5fd43c48a63563c80f03c92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1418,7 +1581,7 @@ "width": null } }, - "2c9ac16b50294054adbf61f9d60b42f5": { + "6583a0a60fe54eda962c904c18cf76f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1471,60 +1634,48 @@ "width": null } }, - "2e4ed5501c3a4923b226a6f0e1d4810a": { - "model_module": "@jupyter-widgets/base", + "6c662917f77845909c734188e0849f3f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e23f7a500c77422180ae8c0b19fed597", + "placeholder": "​", + "style": "IPY_MODEL_e6b0aaa7478443f8a5807573545ef4dd", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "6de6c5c76e4c4c2e977861cd171624e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "404f0e2aadd44f0eb87b8fa614b30ff7": { + "844ec110d7c84f3fb856b6b598512108": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1577,7 +1728,7 @@ "width": null } }, - "47a26a317dda480ba86f51e06bf50aa6": { + "8a0fd43aebf8429ebed382e82d7f51e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1595,71 +1746,7 @@ "text_color": null } }, - "47cc410933ae4c4898b55430d2d59963": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4a0838c46fe4438aa23d44824eb60497": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b5325c51aa5c44098c68914f7a58c2be", - "placeholder": "​", - "style": "IPY_MODEL_e14e50d60911477ebe4e5e9666a2e33a", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "52531c88ab514b73aa9c8913836850ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_91b86324356540958a20887c49ffe6af", - "placeholder": "​", - "style": "IPY_MODEL_47cc410933ae4c4898b55430d2d59963", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 816.51it/s]" - } - }, - "58e09cca0c5a4d85877ed1ee7b1c25a4": { + "91d043d8d3d34fb18e60e06a40ab070d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1712,25 +1799,7 @@ "width": null } }, - "5913476601474b8c917a05d0b727a895": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5c19d0970b3f48c7bdf258a0d2c5d12d": { + "988ac07c05a442529f798cef6e50fb3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1783,48 +1852,7 @@ "width": null } }, - "60f4696eda7241428c1bcdb5b08bc225": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa1455a7f4094c7e8908ea9fe26fff88", - "placeholder": "​", - "style": "IPY_MODEL_7b40e509d4c44f3c865bdaae0719b233", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.92it/s]" - } - }, - "7b40e509d4c44f3c865bdaae0719b233": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8d024792f7d842a3a06ec45defd2eebc": { + "9ab476bf29c7452b97de539b14f89cba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1840,33 +1868,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_58e09cca0c5a4d85877ed1ee7b1c25a4", + "layout": "IPY_MODEL_988ac07c05a442529f798cef6e50fb3b", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1395378f015d4681a0fc4e67a2dda591", + "style": "IPY_MODEL_da9d3e1909784dd798b07568fde6b3f2", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "9116a6c9ac1c4e22b4e9fee047ad24e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "91b86324356540958a20887c49ffe6af": { + "9ebd02d6b2a6471d91183ddc979dd134": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1919,80 +1931,33 @@ "width": null } }, - "91c0160df0dd44c7a41d70b5cb70ba30": { + "a936ea8d446f4dc6846eb16e30670216": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9e5659698a5f441285e4abbce63666ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9f6c054ffbd04a868ccdaa003ff82091": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a2aa09b4ae734036bb5d4e9d4913399a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5c19d0970b3f48c7bdf258a0d2c5d12d", - "placeholder": "​", - "style": "IPY_MODEL_c894645fdab043e3beb77852b38f260a", + "layout": "IPY_MODEL_1c4405e9f09347f69b059265ffec86fc", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_399bc87e579745ad9a2930ba8605db78", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": 30.0 } }, - "a32bdb7bceef4a72bafb8e7e586634ef": { + "b1eb120d532440b884214ef8eacb43b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2045,7 +2010,7 @@ "width": null } }, - "b5325c51aa5c44098c68914f7a58c2be": { + "bafbe32ede834e3e9065c92397de6f8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2098,7 +2063,7 @@ "width": null } }, - "b9ced451e2744c2cb19ada4d8c65d671": { + "bf43cbf39f1744c5b97ce89faa09ab90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2113,15 +2078,88 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0594aad236c3452cb68cebc7066a2a10", + "layout": "IPY_MODEL_91d043d8d3d34fb18e60e06a40ab070d", "placeholder": "​", - "style": "IPY_MODEL_5913476601474b8c917a05d0b727a895", + "style": "IPY_MODEL_6de6c5c76e4c4c2e977861cd171624e7", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30/30 [00:25<00:00,  1.17it/s]" + } + }, + "c5796a1d25a2402f8ac7189ad2c91f00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9ebd02d6b2a6471d91183ddc979dd134", + "placeholder": "​", + "style": "IPY_MODEL_3630df7de7c24e1dbde38fd5b3ec5335", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "cd7f1bbed2b3453992c2294fb7b8f062": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_010e44b48d974beeb7690f8542184e1b", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a5c3be4f2994ba5a9fe278b993dff8b", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "c560b8e1f4744d24aec00a0c6fc85924": { + "d0e8171b866d49d29b94f359a1afd3b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c5796a1d25a2402f8ac7189ad2c91f00", + "IPY_MODEL_9ab476bf29c7452b97de539b14f89cba", + "IPY_MODEL_410bebdd912b4f52baf94752cefcdb90" + ], + "layout": "IPY_MODEL_d5384d275afa4ecc9afe700c7fabaee9", + "tabbable": null, + "tooltip": null + } + }, + "d5384d275afa4ecc9afe700c7fabaee9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2174,25 +2212,7 @@ "width": null } }, - "c894645fdab043e3beb77852b38f260a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d7c797d006b44c62996cefee86a5731a": { + "d5abd9dbf83d4476a7edecdc934d3ecd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2207,39 +2227,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_049a5458af4c4c9fafd7cedae0e4b27b", + "layout": "IPY_MODEL_b1eb120d532440b884214ef8eacb43b4", "placeholder": "​", - "style": "IPY_MODEL_ec90a1756d5149d1885d9d68b9013615", + "style": "IPY_MODEL_2b982f6012464407b8042bc862b7ede1", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 151675.75it/s]" + "value": "number of examples processed for checking labels: 100%" } }, - "da314ac115984343824f5a4dd74c7ef5": { + "da9d3e1909784dd798b07568fde6b3f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a2aa09b4ae734036bb5d4e9d4913399a", - "IPY_MODEL_f90e290855d84ddabea8ff1e503c0db3", - "IPY_MODEL_52531c88ab514b73aa9c8913836850ff" - ], - "layout": "IPY_MODEL_0b9b277d67d546f38a4742fe9af5165d", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "dc64467fe611416db008f92087111af6": { + "e23f7a500c77422180ae8c0b19fed597": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2292,7 +2304,7 @@ "width": null } }, - "e14e50d60911477ebe4e5e9666a2e33a": { + "e6b0aaa7478443f8a5807573545ef4dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2310,75 +2322,84 @@ "text_color": null } }, - "e9251fdd343f461a8b61b254b3868a71": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4a0838c46fe4438aa23d44824eb60497", - "IPY_MODEL_8d024792f7d842a3a06ec45defd2eebc", - "IPY_MODEL_1039ae8899754fdfadf03515adac2c30" - ], - "layout": "IPY_MODEL_2c9ac16b50294054adbf61f9d60b42f5", - "tabbable": null, - "tooltip": null - } - }, - "ec90a1756d5149d1885d9d68b9013615": { - "model_module": "@jupyter-widgets/controls", + "e6c3c5326bbc4655b166d18c64e5cbd1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f90e290855d84ddabea8ff1e503c0db3": { + "f08907b075b945d98f02eb7bb46dde87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a32bdb7bceef4a72bafb8e7e586634ef", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9f6c054ffbd04a868ccdaa003ff82091", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d5abd9dbf83d4476a7edecdc934d3ecd", + "IPY_MODEL_a936ea8d446f4dc6846eb16e30670216", + "IPY_MODEL_bf43cbf39f1744c5b97ce89faa09ab90" + ], + "layout": "IPY_MODEL_6583a0a60fe54eda962c904c18cf76f1", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "fa1455a7f4094c7e8908ea9fe26fff88": { + "f5b61e50c8ea418facc9fca22ce157b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2431,51 +2452,30 @@ "width": null } }, - "fc788218e83a4ec18d626c6db1908798": { + "fbe9c46e48b14c9f84f96b3a07c47b9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c560b8e1f4744d24aec00a0c6fc85924", - "placeholder": "​", - "style": "IPY_MODEL_91c0160df0dd44c7a41d70b5cb70ba30", + "layout": "IPY_MODEL_51800615e4584a51830cc28b3452f7e9", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_57f6c0fe38904916a9c68353b56e9d0f", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "ff12be03ae6c41e4b821a56e16252503": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b9ced451e2744c2cb19ada4d8c65d671", - "IPY_MODEL_01f1adde17704dbe989ec4d4822f4176", - "IPY_MODEL_d7c797d006b44c62996cefee86a5731a" - ], - "layout": "IPY_MODEL_2e4ed5501c3a4923b226a6f0e1d4810a", - "tabbable": null, - "tooltip": null + "value": 4997683.0 } } }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index eeaa43a81..a675f2db2 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -710,16 +710,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 8b076018d..3f733500b 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:26.412018Z", - "iopub.status.busy": "2024-08-08T19:03:26.411846Z", - "iopub.status.idle": "2024-08-08T19:03:27.765998Z", - "shell.execute_reply": "2024-08-08T19:03:27.765442Z" + "iopub.execute_input": "2024-08-12T10:41:47.559339Z", + "iopub.status.busy": "2024-08-12T10:41:47.559162Z", + "iopub.status.idle": "2024-08-12T10:41:49.515675Z", + "shell.execute_reply": "2024-08-12T10:41:49.515029Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-08 19:03:26-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-08-12 10:41:47-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,9 +94,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.246, 2400:52e0:1a00::1070:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.246|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "143.244.50.84, 2400:52e0:1a01::1109:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|143.244.50.84|:443... connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -109,9 +116,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.07s \r\n", "\r\n", - "2024-08-08 19:03:26 (7.16 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-08-12 10:41:47 (13.6 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -123,24 +130,24 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt " + " inflating: data/train.txt \r\n", + " inflating: data/valid.txt \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r\n", - " inflating: data/valid.txt \r\n" + "--2024-08-12 10:41:48-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.207.57, 3.5.25.245, 16.182.66.65, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.207.57|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-08 19:03:27-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.106.17, 52.216.24.188, 54.231.160.97, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.106.17|:443... connected.\r\n" + "connected.\r\n" ] }, { @@ -167,7 +174,23 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 64%[===========> ] 10.49M 50.2MB/s " + "pred_probs.npz 0%[ ] 151.53K 708KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 8%[> ] 1.39M 3.25MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 52%[=========> ] 8.55M 13.3MB/s " ] }, { @@ -175,9 +198,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 64.8MB/s in 0.3s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 20.3MB/s in 0.8s \r\n", "\r\n", - "2024-08-08 19:03:27 (64.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-08-12 10:41:49 (20.3 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -194,10 +217,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:27.768467Z", - "iopub.status.busy": "2024-08-08T19:03:27.768074Z", - "iopub.status.idle": "2024-08-08T19:03:29.315453Z", - "shell.execute_reply": "2024-08-08T19:03:29.314891Z" + "iopub.execute_input": "2024-08-12T10:41:49.518505Z", + "iopub.status.busy": "2024-08-12T10:41:49.518059Z", + "iopub.status.idle": "2024-08-12T10:41:51.104068Z", + "shell.execute_reply": "2024-08-12T10:41:51.103430Z" }, "nbsphinx": "hidden" }, @@ -208,7 +231,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ed1943228cd408bbef2343ae07f897ac0f8c96bd\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -234,10 +257,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:29.318097Z", - "iopub.status.busy": "2024-08-08T19:03:29.317671Z", - "iopub.status.idle": "2024-08-08T19:03:29.321133Z", - "shell.execute_reply": "2024-08-08T19:03:29.320670Z" + "iopub.execute_input": "2024-08-12T10:41:51.106639Z", + "iopub.status.busy": "2024-08-12T10:41:51.106310Z", + "iopub.status.idle": "2024-08-12T10:41:51.109732Z", + "shell.execute_reply": "2024-08-12T10:41:51.109273Z" } }, "outputs": [], @@ -287,10 +310,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:29.323188Z", - "iopub.status.busy": "2024-08-08T19:03:29.322856Z", - "iopub.status.idle": "2024-08-08T19:03:29.325951Z", - "shell.execute_reply": "2024-08-08T19:03:29.325407Z" + "iopub.execute_input": "2024-08-12T10:41:51.111950Z", + "iopub.status.busy": "2024-08-12T10:41:51.111595Z", + "iopub.status.idle": "2024-08-12T10:41:51.114751Z", + "shell.execute_reply": "2024-08-12T10:41:51.114249Z" }, "nbsphinx": "hidden" }, @@ -308,10 +331,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:29.327956Z", - "iopub.status.busy": "2024-08-08T19:03:29.327656Z", - "iopub.status.idle": "2024-08-08T19:03:38.602143Z", - "shell.execute_reply": "2024-08-08T19:03:38.601526Z" + "iopub.execute_input": "2024-08-12T10:41:51.116586Z", + "iopub.status.busy": "2024-08-12T10:41:51.116411Z", + "iopub.status.idle": "2024-08-12T10:42:00.381031Z", + "shell.execute_reply": "2024-08-12T10:42:00.380471Z" } }, "outputs": [], @@ -385,10 +408,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:38.604803Z", - "iopub.status.busy": "2024-08-08T19:03:38.604610Z", - "iopub.status.idle": "2024-08-08T19:03:38.610223Z", - "shell.execute_reply": "2024-08-08T19:03:38.609654Z" + "iopub.execute_input": "2024-08-12T10:42:00.383579Z", + "iopub.status.busy": "2024-08-12T10:42:00.383224Z", + "iopub.status.idle": "2024-08-12T10:42:00.388847Z", + "shell.execute_reply": "2024-08-12T10:42:00.388389Z" }, "nbsphinx": "hidden" }, @@ -428,10 +451,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:38.612308Z", - "iopub.status.busy": "2024-08-08T19:03:38.611971Z", - "iopub.status.idle": "2024-08-08T19:03:38.977501Z", - "shell.execute_reply": "2024-08-08T19:03:38.976938Z" + "iopub.execute_input": "2024-08-12T10:42:00.390872Z", + "iopub.status.busy": "2024-08-12T10:42:00.390560Z", + "iopub.status.idle": "2024-08-12T10:42:00.760332Z", + "shell.execute_reply": "2024-08-12T10:42:00.759676Z" } }, "outputs": [], @@ -468,10 +491,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:38.980125Z", - "iopub.status.busy": "2024-08-08T19:03:38.979765Z", - "iopub.status.idle": "2024-08-08T19:03:38.983904Z", - "shell.execute_reply": "2024-08-08T19:03:38.983362Z" + "iopub.execute_input": "2024-08-12T10:42:00.762761Z", + "iopub.status.busy": "2024-08-12T10:42:00.762568Z", + "iopub.status.idle": "2024-08-12T10:42:00.767072Z", + "shell.execute_reply": "2024-08-12T10:42:00.766515Z" } }, "outputs": [ @@ -543,10 +566,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:38.985951Z", - "iopub.status.busy": "2024-08-08T19:03:38.985634Z", - "iopub.status.idle": "2024-08-08T19:03:41.635625Z", - "shell.execute_reply": "2024-08-08T19:03:41.634944Z" + "iopub.execute_input": "2024-08-12T10:42:00.769251Z", + "iopub.status.busy": "2024-08-12T10:42:00.768906Z", + "iopub.status.idle": "2024-08-12T10:42:03.524332Z", + "shell.execute_reply": "2024-08-12T10:42:03.523593Z" } }, "outputs": [], @@ -568,10 +591,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:41.639200Z", - "iopub.status.busy": "2024-08-08T19:03:41.638251Z", - "iopub.status.idle": "2024-08-08T19:03:41.642729Z", - "shell.execute_reply": "2024-08-08T19:03:41.642123Z" + "iopub.execute_input": "2024-08-12T10:42:03.527301Z", + "iopub.status.busy": "2024-08-12T10:42:03.526667Z", + "iopub.status.idle": "2024-08-12T10:42:03.531067Z", + "shell.execute_reply": "2024-08-12T10:42:03.530504Z" } }, "outputs": [ @@ -607,10 +630,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:41.644819Z", - "iopub.status.busy": "2024-08-08T19:03:41.644484Z", - "iopub.status.idle": "2024-08-08T19:03:41.650091Z", - "shell.execute_reply": "2024-08-08T19:03:41.649622Z" + "iopub.execute_input": "2024-08-12T10:42:03.533302Z", + "iopub.status.busy": "2024-08-12T10:42:03.532960Z", + "iopub.status.idle": "2024-08-12T10:42:03.538385Z", + "shell.execute_reply": "2024-08-12T10:42:03.537896Z" } }, "outputs": [ @@ -788,10 +811,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:41.652203Z", - "iopub.status.busy": "2024-08-08T19:03:41.651869Z", - "iopub.status.idle": "2024-08-08T19:03:41.678655Z", - "shell.execute_reply": "2024-08-08T19:03:41.678160Z" + "iopub.execute_input": "2024-08-12T10:42:03.540370Z", + "iopub.status.busy": "2024-08-12T10:42:03.540061Z", + "iopub.status.idle": "2024-08-12T10:42:03.566319Z", + "shell.execute_reply": "2024-08-12T10:42:03.565770Z" } }, "outputs": [ @@ -893,10 +916,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:41.680740Z", - "iopub.status.busy": "2024-08-08T19:03:41.680403Z", - "iopub.status.idle": "2024-08-08T19:03:41.684789Z", - "shell.execute_reply": "2024-08-08T19:03:41.684320Z" + "iopub.execute_input": "2024-08-12T10:42:03.568292Z", + "iopub.status.busy": "2024-08-12T10:42:03.568116Z", + "iopub.status.idle": "2024-08-12T10:42:03.572650Z", + "shell.execute_reply": "2024-08-12T10:42:03.572178Z" } }, "outputs": [ @@ -970,10 +993,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:41.686788Z", - "iopub.status.busy": "2024-08-08T19:03:41.686514Z", - "iopub.status.idle": "2024-08-08T19:03:43.157263Z", - "shell.execute_reply": "2024-08-08T19:03:43.156660Z" + "iopub.execute_input": "2024-08-12T10:42:03.574856Z", + "iopub.status.busy": "2024-08-12T10:42:03.574378Z", + "iopub.status.idle": "2024-08-12T10:42:05.062747Z", + "shell.execute_reply": "2024-08-12T10:42:05.062151Z" } }, "outputs": [ @@ -1145,10 +1168,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-08-08T19:03:43.159855Z", - "iopub.status.busy": "2024-08-08T19:03:43.159390Z", - "iopub.status.idle": "2024-08-08T19:03:43.165161Z", - "shell.execute_reply": "2024-08-08T19:03:43.164674Z" + "iopub.execute_input": "2024-08-12T10:42:05.064817Z", + "iopub.status.busy": "2024-08-12T10:42:05.064623Z", + "iopub.status.idle": "2024-08-12T10:42:05.068882Z", + "shell.execute_reply": "2024-08-12T10:42:05.068420Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 627bcb88c..d8baadbd2 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "ed1943228cd408bbef2343ae07f897ac0f8c96bd", + commit_hash: "399938be1f46b62c047276c21928e3071ce4ba6d", }; \ No newline at end of file